

Translating Python to C++ for palmtop software development - 1 Acknowledgments

1 Acknowledgments
Thanks to mom, dad, Lisa and Cecilie for all your love and support. A big thanks to music for
keeping me sane, and thanks to Ola Skavhaug for having the patience with me when I was being
held up by the music.

2

Translating Python to C++ for palmtop software development - 1 Acknowledgments

Contents
1 Acknowledgments... 2
2 Introduction... 5

2.1 The world of palmtops...5
2.2 The main purpose of the thesis.. 6

2.2.1 Why bother translating one language to another?.. 9
2.2.1.1 The need for speed..9
2.2.1.2 Platform independence... 9
2.2.1.3 Time is money.. 10

2.2.2 Approach to the problem..10
2.3 A brief comment on the issue of object-orienting... 11
2.4 Python.. 11

2.4.1 The history of Python...11
2.4.2 The Python programming language... 12
2.4.3 Python GUI modules..13

2.5 C++.. 15
2.5.1 The history of C++... 15
2.5.2 The C++ programming language... 15

2.6 Windows programming... 16
2.6.1 The basics of the Windows platform... 16

2.6.1.1 The windows.. 16
2.6.1.2 Handles, resources and messages... 17
2.6.1.3 The resource script... 17
2.6.1.4 A Windows CE program example..18

2.6.2 Windows CE programming..29
2.6.2.1 Windows CE versus other versions of Windows... 29

2.7 Compiler concepts... 30
2.7.1 The anatomy of a compiler...30

2.7.1.1 The scanner...31
2.7.1.2 The parser... 31
2.7.1.3 The semantic analyzer.. 31
2.7.1.4 The code generator... 31
2.7.1.5 The symbol table.. 31
2.7.1.6 The syntax tree... 32

2.7.2 Finite automata ..32
2.7.2.1 Deterministic finite automata... 32
2.7.2.2 Nondeterministic finite automata... 32

2.7.3 Context-free grammars...32
2.7.4 Parser algorithms..33

2.7.4.1 Top-down parsing...33
2.7.4.2 Bottom-up parsing..33

2.8 The tools.. 33
3 Many ways to solve a problem.. 34

3.1 Using regular expressions.. 34
3.1.1 Strout and Heise's Python2C..34
3.1.2 Problems with the regular expressions approach... 35

3.2 Creating a scanner and parser from scratch .. 37
3.2.1 Using Lex and Yacc... 37

3

Translating Python to C++ for palmtop software development - 1 Acknowledgments

3.2.1.1 Lex..37
3.2.1.2 Yacc..37
3.2.1.3 Using Lex and Yacc to create my translator program.. 38

3.2.2 Really creating a scanner and parser from scratch... 38
3.3 Using existing modules in Python... 38

3.3.1 Using the Python modules in practice..39
3.4 The hybrid..40
3.5 Other attempts..41

3.5.1 Ariel... 41
3.5.2 Pyrex.. 41

3.6 Conclusion... 42
4 My Python2C...42

4.1 Source code documentation... 42
4.1.1 The main code.. 42

4.1.1.1 The user interface... 42
4.1.1.2 The global variables... 51
4.1.1.3 The global functions...52

4.1.2 The LanguageConstruct class and subclasses.. 53
4.1.3 The VisitorFunctions class...56
4.1.4 The Stack class...59
4.1.5 The VStack class.. 59
4.1.6 The VariableTable class...60
4.1.7 The FunctionTable class.. 61
4.1.8 The Translator class... 62

4.1.8.1 The translated syntax tree (TST).. 62
4.1.8.2 The abstract syntax tree (AST)...63
4.1.8.3 The variable table... 63
4.1.8.4 The function table...64
4.1.8.5 The various translation tables...64
4.1.8.6 Translation of Python data types.. 67

4.2 Translating GUIs..69
4.2.1 The GUI class...69
4.2.2 Generating the contents of the handler functions...70
4.2.3 How to implement GUI translation as a part of Python2C ... 71

4.2.3.1 The “GUI translation mode”.. 71
4.2.3.2 Additions to the data structures.. 71

4.2.4 To implement or not to implement?...72
4.3 The problems of translation... 72

4.3.1 Variable creation.. 73
4.3.1.1 Determining the types...73
4.3.1.2 Has it already been created?... 74
4.3.1.3 Global variables and other special cases.. 75

4.3.2 Functions..77
4.3.2.1 Determining the return type..78
4.3.2.2 Determining the types of argument variables...79
4.3.2.3 Forward declarations and other issues..80

4.3.3 Loops and if statements..80
4.3.3.1 The for statement..80

4.3.4 Lists, tuples and dictionaries.. 83

4

Translating Python to C++ for palmtop software development - 1 Acknowledgments

4.3.5 Classes and objects...89
5 Project evaluation.. 95
6 Appendix... 96

6.1 The source code for the modified version of Strout and Heise's Python2C............................ 96
6.2 A scanner and parser for the Pedagola language... 104

7 References... 132

2 Introduction
Writing code in a low-level programming language is considered to be more difficult, more error-
prone and more time-consuming than writing the same code in a high-level language. A lot of
software is implemented in low-level languages today, because it tends to produce efficient
software. If this efficient code could be created through the use of a high-level language, many
developers would probably prefer to use these types of languages more frequently.

One way to achieve this kind of efficiency in a high-level language is to produce a tool that
translates code from one programming language to another. This tool could turn the code of a high-
level language into the code of a low-level language. Java or Python could be translated to C or C++
(May hereafter be referred to as one entity with the use of “C/C++”, for convenience.), for instance.

Creating code for more than one platform can also be tedious and time-consuming labor. A lot of
time and precious finances could be saved if there existed a tool that could take care of this process
automatically. One would only have to develop the code for one platform and run this code through
the translation tool, which would generate and output the code for the other platforms. The
translated bits of code could then be compiled on each respective system by already existing
compilers. With such a tool you could create software with support for numerous systems at the cost
of creating the code for only one of them. Once you have created a translation tool that translates
from Python to C/C++, it would not be too much work to implement support for more than one
platform. The C/C++ source code looks a little different from platform to platform, but the most of
the code would remain unchanged in the various system versions.

The creation of such a translation tool is by no means a small task, and several attempts and
experiments have been carried out to figure out how it can be done. Attempts have been made to
translate the high-level language of Python to the low-level language of C. None of the attempts that
I am aware of have been able to solve this complex problem in full, but a few useful techniques and
methods by which this problem can be solved can perhaps be deduced from these attempts. In this
thesis I will take a look at what has been done in the field of code translation, and I will try to create
a scaled-down implementation of a Python to C/C++ translator. I will also make investigations into
how this translator could translate graphical user interfaces (GUIs). In this regard I will look into
how to translate Python to native C++ code for the Pocket PC 2002 operating system, a tiny version
of Microsoft Windows that is designed to run on Palmtop computers. This system does not have a
command line utility and is heavily dependent on GUIs to display information on-screen.

2.1 The world of palmtops

The palmtops or hand-held devices are basically computers that are small enough to fit in your
hand. Many of these devices have functions and abilities that are similar to what you would expect
to find on an average stationary or laptop computer. The palmtops allow you to surf the Internet,

5

Translating Python to C++ for palmtop software development - 2 Introduction

read and write e-mail, keep track of your appointments, read and write various documents, listen to
music and watch video almost wherever you are. PDAs (Personal Digital Assistants) and,
increasingly, mobile phones belong to this category of devices. They all have quite a bit of
computational power in spite of their physical appearance and size.

Although the devices are getting more and more advanced and powerful, almost on a monthly basis,
they still have a way to go before they actually start to rival the average PC. All of these devices do
not have much memory or storage capacity, and the operating systems that run on them are
significantly scaled down compared to the full blown Windows or Linux operating systems that run
on your typical PC.

There are also a number of different software platforms to be found among the various devices on
the market today. The Symbian operating system is available on devices in version 4.0 or 6.0. This
is an operating system specially designed for running on mobile phones. Microsoft is trying to
compete with Symbian through its Windows CE or Pocket PC system, which is a scaled-down
version of the Windows operating system for PCs. Windows CE has been a very popular operating
system with the PDA manufacturers, and many PDA models have been designed to run this system.
Recently, Microsoft has been able to put Windows CE in a few mobile phone models as well. Palm
OS is found on the PDAs made by Palm and is currently in version 5.

The open source community has been able to produce scaled-down and specially adapted versions
of the Linux operating system for many PDA models, called Embedded Linux [LinuxDevices.com,
2005]. This can be viewed as an alternative for the consumers that want to install another operating
system on their PDAs. Some manufacturers also produce PDAs that are designed for running the
Linux platform. The products in the Zaurus series from Sharp are among these.

2.2 The main purpose of the thesis

The main goal of the thesis is to produce a software product that translates Python source code to
C++. By especially focusing on the world of palmtops, where there are quite a few significantly
different platforms, the aim with such a tool is to achieve platform independence. I will only focus
my attention on the translation to one palmtop system, namely Windows CE or, more accurately, the
Windows Pocket PC 2002 operating system.

I will not make any attempts at translating the Python code to more than one platform. It is the
translation process itself I wish to take a closer look at. It is nor my intention to translate the entire
language of Python, since this would be a fairly huge task for one man to execute in the time set
aside for completing this thesis. I only wish to translate some basic parts of the language, enough to
be able to test the translation engine on a set of relatively simple Python programs. (Such a simple
program is translated in the below example.) The most basic parts would be things like creation and
assignment of variables, if statements, for and while loops, functions and class structures. In
addition to this, I also want to take a look at the possibilities for translating graphical user interfaces
(GUIs). I have chosen to work with Pythons Tkinter module. I will look at the possibilities for my
translation engine to translate Python Tkinter code to GUI code for Windows Pocket PC 2002.

6

Translating Python to C++ for palmtop software development - 2 Introduction

Below, I have included an example of what I want to achieve. The short Python program is
automatically translated by a translator software tool, to C++. This is a small Python program that
takes a text as input and then an integer telling it how many times the text shall be printed.

#!/usr/bin/env python
class Print:
 unused_var1 = 0
 unused_var2 = ""
 unused_var3 = 2.333

 def __init__(self):
 print "Object created!"

 def printOut(self, number, string):
 for i in range(number):
 if(i % 5) == 0:
 print "\n" + string
 else:
 print string
 def unusedFunction(self):
 print "This function is never called."
string = raw_input("Type a string: ")
temp_string = raw_input("and the number of times it should be printed: ")
number = int(temp_string)
print_object = Print()
print_object.printOut(number, string)
print "\nString \"" + string + "\" printed " + str(number) + " times."

The translation produces two files containing the translated C++ code. The first of them is the code
that contains the main function.

/* File translated Tue Sep 13 15:33:13 2005
 * by Python2C version 0.013. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
/* The includes generated by the translation: */
#include "Print.h"
char* string;
char* temp_string;
int number;
Print* print_object;

7

Translating Python to C++ for palmtop software development - 2 Introduction

int main(int argc, char* argv[])
{
 printf("Type a string: ");
 string = (char*) malloc(256);
 scanf("%s", string);
 printf("and the number of times it should be printed: ");
 temp_string = (char*) malloc(256);
 scanf("%s", temp_string);
 number = atoi(temp_string);
 *print_object = Print();
 print_object->printOut(number, string);
 cout << "\nString \"" << string << "\" printed " << number << " times." <<
endl;
 return 0;
}

This is the second file that is produced by the translator software. It contains the translated C++
code for the Print class.

/* File translated Tue Sep 13 15:33:13 2005
 * by Python2C version 0.013. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
class Print
{
 public:
 int unused_var1;
 char* unused_var2;
 double unused_var3;
 ~Print();
 void printOut(int number, char* string);
 void unusedFunction();
 Print();
};
Print::Print()
{
 unused_var3 = 2.333;
 unused_var2 = "";
 unused_var2 = (char*) malloc(256);
 unused_var1 = 0;
 cout << "Object created!" << endl;
}
void Print::printOut(int number, char* string)
{
 int i;
 for(i = 0; i < number; i += 1)
 {

8

Translating Python to C++ for palmtop software development - 2 Introduction

 if(i % 5 == 0)
{
 cout << "\n" << string << endl;
}

 else
{
 cout << string << endl;
}

 }
}
void Print::unusedFunction()
{
 cout << "This function is never called." << endl;
}
Print::~Print()
{
}

I have chosen to work on a PDA model running the Windows Pocket PC 2002 operating system,
called iPAQ, developed by Hewlett-Packard. My task will be to develop a Python to C++ translator
for this specific device. Once a basic translation engine has been developed, additions can be made
to create a software package that is able to translate Python code to native C++ code for other
platforms. This is outside the scope of this thesis, however.

2.2.1 Why bother translating one language to another?

2.2.1.1 The need for speed

One answer to the above question is “the need for speed”. This need especially crops up in areas of
software development where one needs to produce complex graphics or other heavy computations.
Another area is in software development for devices that do not have much computational power or
memory storage, such as most of the palmtops.

The palmtops or hand-helds usually have slower processors and storage facilities than the regular
desktop or laptop computers. This is mostly due to the share size of these small devices. Sometimes
it is not possible to fit the really fast hardware into such a small space, or the battery that is going to
power the fast hardware would get too large. It is up to the manufacturers of the device to make the
trade-off between the desired computing power and how long the device is going to be able to run
without a recharge of its batteries. As a consequence, the hand-held devices that have been
developed are usually a result of a compromise between hardware requirements, size requirements
and power requirements.

2.2.1.2 Platform independence

Another reason for turning one language into another is the need for platform independence, as
mentioned earlier. A problem that software developers often are faced with today, is that the code
that works really well while running on one specific platform, may run quite poorly - or possibly not
at all - on another. It may be tedious labor to manually convert the original code into something that
also works well on another system. If the original code had been written in a platform independent
language, all this work could have been saved at the cost of the software running less efficiently. In

9

Translating Python to C++ for palmtop software development - 2 Introduction

the field of developing software for hand-held devices, the need for platform independence is
definitely felt because of the large number of product models that exist on the market.

To counter this problem, a language called Java has been developed. In this case, the platform
independence is achieved through the use of a so-called virtual machine, a program that runs on top
of the underlying system and provides an identical interface for all Java programs. The use of the
virtual machine turns Java into a language that is not normally preferred when the “need for speed”
is felt, as Java can be pretty slow when compared to competitor languages such as C or C++. C and
C++ do not use a virtual machines. Regardless of this, Java is currently being used more and more
in cellular phones, especially to develop games.

In the area of software development for palmtops, where both the need for speed and platform
independence is felt, Java does not really offer a complete solution as yet. As already mentioned, the
computational power of these devices is relatively weak, and the memory of these devices do not
provide much space for storing programs. Some of these devices may only have one storage area,
namely the RAM of the device. This means that these devices store all files and the data of running
programs in the same, small memory area, and extreme caution is therefore advised when
controlling the way that these programs use this scarce resource. Not paying enough attention to this
issue may produce fatal errors from the use of the software.

2.2.1.3 Time is money

Programming in high-level languages is generally perceived as easier and more efficient. The time it
takes to get a working prototype of a program up and running is low compared to the time is takes
to develop a similar thing in a low-level language, like C or C++. The high-level languages are often
used to produce software prototypes. Thus, the final software product is often the result of some
kind of a translation process from this prototype, to a software product written in a lower-level
language. Sometimes the end result comprises a hybrid of high-level and low-level languages.

It is generally quick and easy to produce a fairly functional program with a GUI in high-level
languages. The problem with these languages, when developing for palmtops, is the fact that they
run relatively slowly and use too much memory. Developing software for hand-held devices using
anything other than C/C++ (or assembly language, for that matter) may turn out software that is too
slow to operate well. You have to pay good attention to speed and the way that the software uses
memory. C/C++ has utilities for controlling the use of memory in detail (This is not possible in Java
or Python, for instance). Software development in C/C++ can be quite time consuming and
cumbersome because of the extended time required for testing, as the memory handling is especially
error prone.

2.2.2 Approach to the problem

The task at hand is basically to create a Python compiler. What sets my compiler aside from other
compilers is the fact that the target language is a programming language, not machine language. To
complete this task I will have to dive into the field of compiler theory and compiler construction,
and I will have to study the languages I am going to be dealing with. These languages are Python,
Tkinter (This is a Python module, but the programming style and syntax of this module is slightly
different from the Python language.), C++ and resource script (This is a separate scripting language
that defines the layout of the Windows CE GUI.). In addition, I will take a look at other attempts at
translating Python to C or C++. I might be able to extract some valuable information from such

10

Translating Python to C++ for palmtop software development - 2 Introduction

earlier attempts. Information of this kind might help me to avoid some discovered pitfalls and steer
me in the right direction.

I will write my Python to C++ translator in the Python language, based on the information that I am
able to gather in my research. As I have already mentioned; this will not be a full-blown Python to
C++ translator software that is able to translate every element of the Python language into fully
functional, error-free C++ code. The development will go on until I feel like I have covered enough
ground to be able to draw my conclusions and answer my questions. When this point has been
reached, I will evaluate the entire project and the resulting software to find what has been learned.

2.3 A brief comment on the issue of object-orienting

Python and C++ are object oriented languages in the sense that they support all language concepts
that are typical for languages of this type, according to the most widespread opinions. These
concepts are classes, data encapsulation, inheritance and polymorphism. There is an ongoing debate
as to whether C++ is an object-oriented language in the true sense of the term, mostly because of its
backward compatibility with C. This allows programs to be written in C++ that are not using any of
the above mentioned concepts or features. From this perspective, Python can also be viewed as “not
entirely object-oriented” since it allows programs to be written in a functional manner, without the
explicit use of objects or classes.

I use the term object-oriented loosely anywhere it occurs in this entire thesis. Any language that
supports the above mentioned features is in my view an object-oriented language.

2.4 Python

Python is often referred to as a scripting language and is often mentioned in the same sentence as
and compared to the language Perl, which is used widely by software developers. Both Python and
Perl belong to a group of “very high-level languages” [Langtangen, August 2002] where you can
typically achieve a lot by writing relatively small amounts of code, especially when compared to
lower-level languages like Fortran, C/C++ or Java. The scripting languages are often used for
crunching large amounts of data, building prototype software, creating graphical user interfaces or
connecting programs written in other languages together, to form new and powerful software
bundles.

The programming style and versatile syntax of these languages often offer new possibilities
compared to other languages. The software is created faster and requires less lines of code. Python
has an advantage over Perl when it comes to the user-friendly and clean syntax. When prototype
software is created in Python, the syntax of the source code can be relatively easily understood by
people that are not familiar with the language. The language is also easy to learn by programmers.

2.4.1 The history of Python

In 1989 a programmer named Guido Van Rossum decided he would try to design a new
programming language. Van Rossum was working for Stichting Mathematisch Centrum in the
Netherlands on the Amoeba distributed operating system group. [Python.org, May 20, 2004] While
working on this project Van Rossum was looking for a scripting language to ease his work tasks. He
wanted a language that had a syntax similar to a language called ABC, but with access to the
Amoeba system calls. Having some experience with using the Modula-2+ language, a language in

11

Translating Python to C++ for palmtop software development - 2 Introduction

the Pascal family [Digital Equipment Corporation, September 1999], Van Rossum decided to have a
talk with the designers of Modula-3. Some of Pythons features are inspired by this particular
language, especially the syntax and semantics used for exception handling.

Python version 0.9.0 was released in 1991, getting its special name from a not entirely unknown
British comedy series from the seventies, called "Monty Python's Flying Circus". The Python
Software Foundation (PSF) was formed in 2001, a non-profit organization created to own the
Python-related intellectual property. This organization continues the open source development and
release of the Python development software, currently in version 2.4.2 (released on September 28,
2005).

2.4.2 The Python programming language

Python is an object oriented scripting language with a clean and user-friendly syntax that is easy to
use and understand [Langtangen, August 2002]. It is available on a large number of platforms, so
that the Python code that you write on a Linux platform will run on Windows without any
alterations, in most cases. This is also the case with the Python code that makes up the GUI, if you
use one of the GUI modules that support various platforms. Python has bindings to the Tk library
for GUI programming, making it very fast and easy to create GUIs. The fact that Python is object
oriented makes for faster and more flexible GUI programming.

Most languages like C, C++ or Java are statically and strongly typed. Every variable you create has
to be of a certain type. Strong typing is present in these languages to minimize the number of errors
in a program and to pair the right data with the right variables and functions. Python is dynamically
typed and you do not have to declare the types explicitly. A variable is simply created without a type
in the source code. This does not mean that types do not exist in Python, however. Python is
actually more strongly typed than C/C++. When a variable is created and assigned a value of some
sort, the variable will get the same type as the type of the value assigned to it. The type of this
variable can also change during execution. A Python variable can be assigned a value of a different
type at any time, which will change the type of the variable itself. If this were to occur in a C/C++ or
Java program, the compiler would typically report the “wrong type in assignment” error. In a similar
fashion, the return type of a Python function is not declared, making it possible for a Python
function to return values of more than one type. The types of the function arguments are not
declared either, making it possible to send any type of data into a function.

The fact that Python is not statically typed makes it a more flexible language with a larger potential
for code reuse. Where you would have to use multiple functions in C/C++ or Java to be able to send
different types of data to a function, you may only have to use one in Python. The run-time
environment in Python continually checks for bugs related to the types of variables and return types
of functions, at the cost of the programs' efficiency and the time it takes to execute the code.

12

Translating Python to C++ for palmtop software development - 2 Introduction

There is no need to worry about memory management in Python since this is taken care of by the
run-time environment. In C and C++ you have to worry about allocating and freeing space in
memory for variables and data structures. A fair amount of time of the development process has to
be spent on paying attention to this issue, and many errors usually arise from bugs in the memory
management code. The elimination of the need for a programmer to worry about this is a great time-
saving feature. The run-time environment of Python takes care of the allocation of memory and the
“garbage collection”. This is done with a loss of efficiency, of course, because the garbage
collection algorithm has to check for unreferenced variables and data structures and delete these, at
given intervals to free memory.

Python code is interpreted, not compiled. This means that each statement in the code is turned into
machine instructions as the program is running. With compiled languages you have to create an
executable file from the source code using a compiler program. Then this file typically has to be
executed by the operating system to run the program. When a program is interpreted, the program is
not run directly by the operating system. Instead, the code is interpreted and run by an interpreter
program. This program can check for errors during run-time and add features like the automatic
garbage collection.

Python is a very dynamic programming language. It is possible to generate new code during run-
time and execute it. It is also possible to make changes to a class while the program is running, by
adding variables that were not present in the original code.

2.4.3 Python GUI modules

Python makes GUI programming fairly easy when compared to other programming languages that
may support these kinds of features, like C++ or Java. In Python you have a series of GUI toolkits or
modules to chose from that can be used depending on what sort of graphical interface you would
like to create for your program. None of these toolkits are actually a part of the Python language
itself, but are instead additional utilities that can be installed at will. All Python GUI toolkits have
been written as extensions to the Python language. The Python GUI toolkits might have a syntax
that differs from the sort of syntax you normally associate with Python, depending on how the
toolkits are meant to be used and how they have been developed and designed. The programming
style may also differ from the general programming style of the Python language. New modules can
also be written trough what has been termed Python Extension Programming [Rossum and Drake,
June 22, 2001].

• Tkinter
The Tkinter module is an interface to the Tk GUI toolkit that used to be developed by Sun Labs
and is currently being developed by Scriptics. It is one of the oldest Python GUI toolkits,
supporting the Windows, Unix, Linux and - to a certain degree - also the Mac OS. It is easy to
use, but lacks the ability to create GUIs with a real look and feel of any native platform GUI (if
you ignore the 8.0 release and later releases). The Tk interface module also contains a number of
other Python modules of which the Tkconstants is the most important. Both Tkinter and
Tkconstants import one another so it does not matter which one you actually put in an import
statement in the Python source code. [Lundh, 1999]

• Tix

13

Translating Python to C++ for palmtop software development - 2 Introduction

Tix is short for “Tk Interface eXtension”, and, as the name suggests, it is meant to be used with
the existing Tkinter module to extend it and enhance GUIs with an additional rich set of
graphical elements, called widgets in Python terminology. Both Tkinter and Tix are included in
the releases of Python from Python.org. One advantage of the Tix module over Tkinter is that
many of the of the features in Tix have been implemented in native source code for each
platform. This enhances the performance of the GUIs and improves the look and feel of them
from a user-perspective. [Python.org, November 29, 2004]

• PyQt
This Python GUI module is based on the C++ GUI toolkit made by Troll Tech, called Qt. It
supports the Windows, Unix, Linux and Mac OS X platforms and binds the complete Qt library,
with a few exceptions. Apposed to the Tkinter module this GUI toolkit makes it possible to
create the look and feel of the native platform GUI on a number of systems, and it comes with a
fairly large inventory of advanced GUI features. [Rempt, January 1, 2002]

• wxPython
This module is based on the wxWidgets GUI toolkit, implemented in C++. wxPython interfaces
with the native C++ GUI toolkit of each platform, making it possible to program native platform
GUIs with Python. wxWidgets, originally developed by the Artificial Intelligence Applications
Institute at the University of Edinburgh, provide the programmer with GUI facilities and more
for several different platforms. Version 2 of the software supports the Windows, Unix and Linux
platforms. Mac OS support is also underway. [Smart, Roebling, Zeitlin, Dunn, et al, October
2004]

• FXPy
FXPy is based on another cross-platform GUI toolkit implemented in C++, called FOX, this GUI
toolkit is one of the least known and least used by programmers out there. The main focus of this
toolkit is execution speed, and in addition to being a GUI toolkit it also acts as an interface to
OpenGL and Mesa facilities, making it easy to do 3D-modeling. This module currently supports
the Windows, Unix and Linux platforms. [Johnson, 2002]

• PyGTK
The PyGTK toolkit mainly supports the Unix and Linux platforms and is a wrapper for the GTK+
or Gimp toolkit. The GTK+ toolkit was, among other things, used to create the popular GNOME
desktop interface for Linux. PyGTK was never intended for any cross-platform development, but it
has recently been given some support for Windows and Mac OS X. It provides a comprehensive
set of widgets and has Unicode and bidirectional text support. [The GNOME Project, 2003]

• Pythonwin
This module is a binding to the Microsoft Foundation Class (MFC) library, and thus this GUI
toolkit only has support for the Windows platform. Pythonwin consists of the poorly
documented module win32ui, that provide access to the raw MFC classes. For every MFC object
there usually exists a win32ui counterpart. Functions in the win32ui classes can be overridden
using subclassing, which provides the programmer with a flexible, powerful and object oriented

14

Translating Python to C++ for palmtop software development - 2 Introduction

tool that is easier to use than the C++ toolkit it is based upon. [Hammond and Robinson, January
2000]

2.5 C++

C++ can be regarded as an extended version of C, with classes and other features that qualify a
language for being object-oriented. It is entirely backward compatible with C and was originally
designed with this in mind. The result of this compatibility feature is a kind of hybrid language that
is both object-oriented and functional (meaning “not object oriented”, like C or Fortran). It is
possible to write programs in C++ that are entirely functional and do not make use of any of the
language's object-oriented features.

Since C++ was created in the eighties, it has become very widespread and popular in its use. It has
become the major programming language used for developing applications for almost any platform
or operating system today. The language is very efficient, just as its predecessor, and there is almost
no system that does not have a C++ compiler for itself. Its efficiency comes to good use when
developing software with GUIs or 3D-graphics.

2.5.1 The history of C++

The basis for C++, C, was a functional programming language developed by Bell Labs from around
1969 to circa 1973. With Bell Labs being the developer of the UNIX operating system, C was
originally developed for and implemented on this platform. Ninety percent of the original UNIX
operating system was written in C.

In 1989 the C programming language was standardized by ANSI (American National Standard
Institute). This was almost out of pure necessity, since there existed quite a number of confusingly
different versions of the language at the time, especially before the ANSI committee started the
standardization work in the early eighties.

Prior to 1983 Bjarne Stroustrup at Bell Labs wrote an extension to C called “C with classes” that
was very much inspired by the object oriented Simula programming language. The term C++ was
first used in 1983. This new programming language was further developed for the UNIX system by
AT&T under the leadership of Bjarne Stroustrup, with the aim to create an object-oriented
extension of C that would allow existing C code to be used whenever possible. The first commercial
release of the language and its manual was published in 1985.

In 1998 C++ became a standardized language when an ANSI/ISO (American National Standard
Institute/International Organization for Standardization) committee adopted a worldwide uniform
language specification. This standard was amended in 2002, creating the second version that is still
in effect, to be followed by developers of compilers for this language worldwide. [The C++
Resources Network, 2000]

2.5.2 The C++ programming language

C++ is a statically typed, object-oriented, backward compatible hybrid-language. A C++ program
can be compiled on almost any platform without any alterations. At least this is true in most cases
where the program has been written using the basic C++ libraries (equivalent to “modules” in
Python terminology). If some special libraries have been used in a program this might not be the

15

Translating Python to C++ for palmtop software development - 2 Introduction

case, however. For Windows GUI programming for instance, there exists a number of different
libraries that can be included into a C++ program. Programs that use these facilities will typically
not compile without errors on a UNIX system, for instance. When using only the basic C++
libraries, compiler errors may arise due to the way that different processors handle and represent the
data. The bit resolution of various types of data may vary across different systems and cause
problems.

New toolkits for this programming language is being developed all the time. There exists especially
a lot of different toolkits that have been designed for creating GUIs or 3D-graphics. C++ is very
popular for creating 3D-graphics because of its efficiency and memory management features that
allow you to write your own memory handling routines and make them as efficient as possible. C++
is a language that is compiled and has no run-time environment facilities. There is no extra
processing power being used on checking the validity of a program during execution and there is no
built-in garbage-collection, unless you build these sort of things into the software yourself.

2.6 Windows programming

The Windows programming environment differs from the environments found on other
development platforms, such as Linux. All is more centered around the users actions and the
graphical user interface of a program. On Linux, the programmer's focus is more on firstly creating
the program and secondly creating a GUI that wraps around it. The Windows environment turns this
way of viewing the development process on its head and forces the programmer to firstly think of
the way the program is presented to the user. The GUI may be created first, and the underlying
program is written to serve the GUI. As with other platforms, you can of course create the
underlying program first. The software can always be tested by using the Windows command line,
and the GUI can be created later. Never the less, the Windows platform is focused on GUIs rather
than the old command line and its textual interface. The command line is very seldomly used by
Windows applications and the command line function is more hidden away from the users of the
system. On Linux, the command line still gets a lot of attention and is still at the heart of the
platform. Many Linux programs do not have GUIs, although the number of GUI programs for this
system is increasing rapidly.

2.6.1 The basics of the Windows platform

2.6.1.1 The windows

A Windows program consists of various visual components called windows. A window can be any
kind of visual GUI object from a simple click-to-push button to an entire window that can contain
multiple child windows. Each window has an appearance associated with it, defining how the
window looks on-screen to the user. The data that are associated with a window are called
properties in Windows terminology. The properties may be the text on the face of a button or the
options in a window menu. All windows are able to respond to events, or actions that are typically
generated by the user clicking on some visual element in the user interface. Windows programs are
referred to as being event-driven. Each individual window listens for events and determines what
action to take, based on what kind of event that occurs.

16

Translating Python to C++ for palmtop software development - 2 Introduction

Each type of window is called a window class, and each class has a predefined appearance, property
set and action set. A normal Windows program will typically make use of many different kinds of
these classes. It is possible to make your own window classes from scratch or by enhancing an
already existing class, by using inheritance for instance.

When a window in a program creates or contains other windows, this main window is referred to as
the parent window and the windows created by the main window are referred to as child windows.
A child window can also be the parent of other windows that will be its child windows. Both a
parent and a child window can respond to events without relying on each other, but if a parent
window is destroyed, closed, hidden, moved or disabled, then so is the child window and what ever
child windows it might have. A child window can also send messages to its parent when an event
occurs, and let it be up to the parent window to take the appropriate action.

2.6.1.2 Handles, resources and messages

In a Windows program there are two fundamental elements: handles and resources. A resource is a
component (usually a graphical component) that has some kind of function in the program. The
resource identifier in the program is called a handle. To be able to use a resource in a Windows
program you have to acquire the handle for it. Each window in an application has a unique window
handle which is identified with the HWND data type. A handle can be obtained by calling one of the
CreateWindow, GetWindow or FindWindow functions.

Interaction in a Windows program is achieved through sending messages. These messages can be
used to interact with the Windows system or with other components of the same program. Such a
message is represented by an integer and is passed on through using the SendMessage function.

The message processing involves the message queue, the message loop and the window procedure.
All events that occur are detected by the Windows system, which passes the messages along to the
right application and puts it in the application's message queue. Every Windows program has a
message queue created for it by the Windows system when the program is started. The application
receives the messages sent to it by polling or removing the messages from this queue, using the
GetMessage or PeekMessage functions. Messages that are received must be forwarded to the proper
window inside the application. In a similar fashion, messages can be placed by using the
PostMessage function.

The message loop is a series of statements that is responsible for polling the message queue, and
sending the messages to the right window. A window procedure is a function that reacts and ignores
specific Windows messages, depending on how it is programmed. It is a callback function, which
means that it does not have to be called directly. The Windows operating system will call this
function when necessary. In addition to handling the messages, this procedure controls the
appearance and behavior of all windows of the class that it belongs to. In many cases, this procedure
does not have to be written as there already exists predefined window procedures for the common
window classes.

2.6.1.3 The resource script

The resource script is a scripting language for defining the various GUI elements in a Windows
program. The visual elements of each graphical component in the Windows program is tied to the
rest of the program through this scripting language. Each graphical component in Windows must

17

Translating Python to C++ for palmtop software development - 2 Introduction

have its own ID that uniquely distinguishes it from all other graphical components in the program.
The IDs are simply unique names that are used to refer to the graphical components both in the C++
code and in the resource script. The resource script is usually kept in its own file with a “.rc”
extension. This file is tied together with the rest of the code during compilation by a development
software package, such as Microsoft's Visual C++ or eMbedded Visual C++ (for palmtop software
development only).

A feature that is commonly found in these types of software packages is that the software packages
create and maintain the resource script for you. A programmer does not have to worry about it or to
write any of it. The software package will generate all the resource script code as the graphical
components are created by the programmer. See chapter 2.6.1.4 for an example of what the resource
script code looks like and how it is used as a part of the source code to build the GUI.

2.6.1.4 A Windows CE program example

Below are screenshots and the complete source code for a simple Windows CE program. The source
code illustrates the way the C++ code and the resource script are combined to create the resulting
program. An equivalent Python example has also been included to exemplify the differences
between these programming languages. The differences between the Python source code and the
Windows CE source code illustrates the challenges faced by a programmer who is trying to create a
translator program that translates code from the former to the latter.

These are two screenshots taken when the source code has been loaded into the eMbedded Visual
C++ software. This serves to illustrate what the executable program will look like on a Pocket PC
device. The first screen shot shows the text fields and the “search” button, the second shows the
program's file menu. The menu bar of an application is usually located at the bottom of the screen
on the Pocket PC platform, as opposed to being placed at the top of a window on the Windows
95/98/ME/NT/2000/XP or Linux platforms.

18

Translating Python to C++ for palmtop software development - 2 Introduction

Below is an example of how the same program might look when created using Python source code.
The screenshot was taken when running the Python code using the Python IDLE software from
Python.org.

This is the resource script code, contained in the file TestGUI.rc, that defines the layout of the
GUI of the simple Windows program. This code was written by hand and has not been generated by
any kind of development software.

#include <windows.h>
#include "resource.h"
#if !defined(UNDER_CE)
#define UNDER_CE _WIN32_WCE
#endif
#if defined(_WIN32_WCE)

19

Translating Python to C++ for palmtop software development - 2 Introduction

#if !defined(WCEOLE_ENABLE_DIALOGEX)
#define DIALOGEX DIALOG DISCARDABLE

#endif
#include <commctrl.h>
#define SHMENUBAR RCDATA
#if defined(WIN32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)

#include <aygshell.h>
#define AFXCE_IDR_SCRATCH_SHMENU 28700

#else
#define I_IMAGENONE (-2)
#define NOMENU 0xFFFF
#define IDS_SHNEW 1
#define IDM_SHAREDNEW 10
#define IDM_SHAREDNEWDEFAULT 11

#endif // _WIN32_WCE_PSPC
#define AFXCE_IDD_SAVEMODIFIEDDLG 28701

#endif // _WIN32_WCE
#ifdef IDC_STATIC
#undef IDC_STATIC
#endif
#define IDC_STATIC (-1)
///
//
// Dialog
//
IDD_CALC DIALOG DISCARDABLE 0, 0, 156, 81
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU // See STYLE Statement
in Visual C++ Help for all options!!!
CAPTION "Sin(x)"
FONT 8, "System"
BEGIN
 DEFPUSHBUTTON "OK", IDOK, 19, 60, 48, 14
 PUSHBUTTON "Cancel", IDCANCEL, 90, 60, 49, 14
 LTEXT "Compute sin(x)", IDC_STATIC, 53, 7, 50, 8
 LTEXT "sin(", IDC_STATIC, 14, 31, 12, 10
 EDITTEXT IDC_CALCEDIT1, 26, 29, 40, 15, ES_AUTOVSCROLL | WS_VSCROLL
 LTEXT ") =", IDC_STATIC, 68, 31, 10, 10
 EDITTEXT IDC_CALCEDIT2, 83, 29, 59, 15, ES_AUTOHSCROLL | ES_READONLY
END
///
//
// Dialog
//
IDD_SEARCH DIALOG DISCARDABLE 0, 0, 161, 166
STYLE WS_POPUP | WS_VISIBLE
FONT 8, "System"
BEGIN
 EDITTEXT IDC_SEARCHEDIT1, 0, 0, 160, 145, ES_MULTILINE |
ES_AUTOHSCROLL |
 ES_READONLY | ES_WANTRETURN | WS_VSCROLL | WS_HSCROLL
 DEFPUSHBUTTON "Search", IDC_SEARCHBUTTON1, 0, 145, 35, 20
 EDITTEXT IDC_SEARCHEDIT2, 35, 145, 125, 20, ES_AUTOHSCROLL
END

///
//

20

Translating Python to C++ for palmtop software development - 2 Introduction

// Data
//
IDM_MENU SHMENUBAR MOVEABLE PURE
BEGIN
 IDM_MENU, 1,
 I_IMAGENONE, IDM_MAIN, TBSTATE_ENABLED,
 TBSTYLE_DROPDOWN | TBSTYLE_AUTOSIZE, IDS_MENU, 0, 0,
END
///
//
// Menubar
//
IDM_MENU MENU DISCARDABLE
BEGIN
 POPUP "Menu"
 BEGIN

 MENUITEM "Sin(x)", IDM_CALC
 MENUITEM "About", IDM_ABOUT
 MENUITEM "Exit", IDM_EXIT
 END
END
///
//
// Dialog
//
IDD_ABOUT DIALOG DISCARDABLE 0, 0, 140, 63
STYLE DS_MODALFRAME | WS_POPUP | WS_CAPTION | WS_SYSMENU
EXSTYLE 0x80000000L
CAPTION "About TestGUI v1.0"
FONT 8, "System"
BEGIN
 ICON IDI_APPLICATION, IDC_STATIC, 11, 17, 21, 20
 LTEXT "TestGUI v1.0", IDC_STATIC, 40, 10, 70, 8, SS_NOPREFIX
 LTEXT "(C) Tom Simonsen, 2004", IDC_STATIC, 40, 25, 84, 8
 PUSHBUTTON "OK", ABOUT_OKBUTTON, 44, 42, 50, 14
END
///
//
// Icon
//
// Icon with lowest ID value placed first to ensure application icon
// remains consistent on all systems.
IDI_APPLICATION ICON DISCARDABLE "TestGUI.ICO"
///
//
// String Table
//
STRINGTABLE DISCARDABLE
BEGIN
 IDS_MENU "Menu"
END

21

Translating Python to C++ for palmtop software development - 2 Introduction

Below is the contents of the resource.h file that is included by the “.rc” file and the main C++
code. This file defines the values of the unique IDs given to each graphical component. This file is
also normally generated by development software, together with the resource script code. In this
case the code was written by hand.

#define IDM_MENU 101
#define IDM_EXIT 102
#define IDM_ABOUT 103
#define IDD_ABOUT 104
#define ABOUT_OKBUTTON 105
#define IDI_APPLICATION 106
#define IDM_MAIN 107
#define IDS_MENU 108
#define IDD_CALC 109
#define IDC_CALCEDIT1 110
#define IDC_CALCEDIT2 111
#define IDD_SEARCH 112
#define IDC_SEARCHEDIT1 113
#define IDC_SEARCHEDIT2 114
#define IDC_SEARCHBUTTON1 115
#define IDM_CALC 116

Below is the main C++ source code for the program, contained in a file called TestGUI.cpp. Here
you can see how the IDs are used to check the identity of the graphical component where an event
has occurred.

// "Standard" includes:
#include <windows.h>
#include <commctrl.h>
#include <aygshell.h>
#include "resource.h"
#include <math.h>
#include <stdlib.h>
#include <oleauto.h>
// Forward declarations:
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);
HWND CreateMenuBar(HWND hWnd);
LRESULT CALLBACK About(HWND hDlg, UINT uMessage, WPARAM wParam, LPARAM lParam);
LRESULT CALLBACK Calc(HWND hDlg, UINT uMessage, WPARAM wParam, LPARAM lParam);
LRESULT CALLBACK SearchDialog(HWND hDlg, UINT uMessage, WPARAM wParam, LPARAM
lParam);
void calculate(HWND hDlg);
// Globals:
TCHAR strClassName[] = _T("TestGUI");
TCHAR strTitle[] = _T("TestGUI");
HINSTANCE hInst;
HWND hwndCB;
char buffer[256];
int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInst, LPTSTR lpCmdLine,

22

Translating Python to C++ for palmtop software development - 2 Introduction

int nCmdShow)
{

HWND hWnd;
MSG Msg;
WNDCLASS WndClass;
WndClass.hInstance = hInstance;
WndClass.lpszClassName = strClassName;
WndClass.lpfnWndProc = WndProc;
WndClass.style = 0;
WndClass.hIcon = LoadIcon(NULL, MAKEINTRESOURCE(IDI_APPLICATION));
WndClass.hCursor = LoadCursor(NULL, IDC_ARROW);
WndClass.lpszMenuName = NULL;
WndClass.hbrBackground = (HBRUSH) GetStockObject(WHITE_BRUSH);
WndClass.cbClsExtra = 0;
WndClass.cbWndExtra = 0;
hInst = hInstance;
if(!RegisterClass(&WndClass))
{

MessageBox(NULL, _T("Error registering class."), NULL,
MB_ICONEXCLAMATION|MB_OK);

return(0);
}
hWnd = CreateWindow(strClassName, strTitle, WS_VISIBLE, CW_USEDEFAULT,

CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
NULL,

NULL, hInstance, NULL);
if(!hWnd)
{

MessageBox(NULL, _T("Error creating window."), NULL,
MB_ICONEXCLAMATION|MB_OK);

return(0);
}
ShowWindow(hWnd, nCmdShow);
UpdateWindow(hWnd);
while(GetMessage(&Msg, NULL, 0, 0))
{

TranslateMessage(&Msg);
DispatchMessage(&Msg);

}
return(Msg.wParam);

}
LRESULT CALLBACK WndProc(HWND hWnd, UINT uMessage, WPARAM wParam, LPARAM lParam)
{

//HDC DC;
int wmId, wmEvent;
switch(uMessage)
{
case WM_COMMAND:

wmId = LOWORD(wParam);
wmEvent = HIWORD(wParam);
switch(wmId)
{
// The menu item "Sin(x)":
case IDM_CALC:

DialogBox(hInst, (LPCTSTR) IDD_CALC, hWnd, (DLGPROC) Calc);
break;

// The menu item "About":

23

Translating Python to C++ for palmtop software development - 2 Introduction

case IDM_ABOUT:
DialogBox(hInst, (LPCTSTR) IDD_ABOUT, hWnd, (DLGPROC) About);
break;

// The menu item "Exit":
case IDM_EXIT:

if(MessageBox(hWnd, _T("Are you sure you want to quit?"),
_T("Confirmation"),

 MB_ICONQUESTION|MB_YESNO|MB_DEFBUTTON1) == IDYES)
DestroyWindow(hWnd);

default:
return DefWindowProc(hWnd, uMessage, wParam, lParam);

}
break;

case WM_CREATE:
hwndCB = CreateMenuBar(hWnd);
CreateDialog(hInst, (LPCTSTR) IDD_SEARCH, hWnd, (DLGPROC)

SearchDialog);
break;

case WM_CLOSE:
if(MessageBox(hWnd, _T("Are you sure you want to quit?"),

_T("Confirmation"),
 MB_ICONQUESTION|MB_YESNO|MB_DEFBUTTON1) == IDYES)
 DestroyWindow(hWnd);

case WM_DESTROY:
CommandBar_Destroy(hwndCB);
PostQuitMessage(0);
break;

default:
return(DefWindowProc(hWnd, uMessage, wParam, lParam));

}
return(0);

}
HWND CreateMenuBar(HWND hWnd)
{

SHMENUBARINFO mbi;
memset(&mbi, 0, sizeof(SHMENUBARINFO));
mbi.cbSize = sizeof(SHMENUBARINFO);
mbi.hwndParent = hWnd;
mbi.nToolBarId = IDM_MENU;
mbi.hInstRes = hInst;
mbi.nBmpId = 0;
mbi.cBmpImages = 0;
if (!SHCreateMenuBar(&mbi))

return NULL;
return mbi.hwndMB;

}
// Message handler for the About dialog:
LRESULT CALLBACK About(HWND hDlg, UINT uMessage, WPARAM wParam, LPARAM lParam)
{

SHINITDLGINFO shidi;
switch(uMessage)
{
case WM_INITDIALOG:

shidi.dwMask = SHIDIM_FLAGS;
shidi.dwFlags = SHIDIF_DONEBUTTON | SHIDIF_SIPDOWN |

SHIDIF_SIZEDLGFULLSCREEN;
shidi.hDlg = hDlg;

24

Translating Python to C++ for palmtop software development - 2 Introduction

SHInitDialog(&shidi);
return TRUE;

case WM_COMMAND:
if (LOWORD(wParam) == ABOUT_OKBUTTON)
{

EndDialog(hDlg, LOWORD(wParam));
return TRUE;

}
break;

}
 return FALSE;
}
// Message handler for the Search dialog.
LRESULT CALLBACK SearchDialog(HWND hDlg, UINT uMessage, WPARAM wParam, LPARAM
lParam)
{

SHINITDLGINFO shidi;
switch (uMessage)
{

case WM_INITDIALOG:
shidi.dwMask = SHIDIM_FLAGS;
shidi.dwFlags = SHIDIF_DONEBUTTON | SHIDIF_SIPDOWN |

SHIDIF_SIZEDLGFULLSCREEN;
shidi.hDlg = hDlg;
SHInitDialog(&shidi);
return TRUE;

case WM_COMMAND:
if(LOWORD(wParam) == IDC_SEARCHBUTTON1)
{

SetDlgItemText(hDlg, IDC_SEARCHEDIT1, _T("Search..."));
return TRUE;

}
return TRUE;

}
 return FALSE;
}
// Message handler for Window Contents.
LRESULT CALLBACK Calc(HWND hDlg, UINT uMessage, WPARAM wParam, LPARAM lParam)
{

SHINITDLGINFO shidi;
switch (uMessage)
{

case WM_INITDIALOG:
// Create a Done button and size it.
shidi.dwMask = SHIDIM_FLAGS;
shidi.dwFlags = SHIDIF_DONEBUTTON | SHIDIF_SIPDOWN |

SHIDIF_SIZEDLGFULLSCREEN;
shidi.hDlg = hDlg;
SHInitDialog(&shidi);
SendDlgItemMessage(hDlg, IDC_CALCEDIT1, EM_LIMITTEXT,

sizeof(buffer), 0);
return TRUE;

case WM_COMMAND:
if (LOWORD(wParam) == IDOK)
{

calculate(hDlg);
return TRUE;

}
else if (LOWORD(wParam) == IDCANCEL)

25

Translating Python to C++ for palmtop software development - 2 Introduction

{
EndDialog(hDlg, LOWORD(wParam));
return TRUE;

}
break;

}
 return FALSE;
}
void calculate(HWND hDlg)
{

double number = 0;
GetDlgItemText(hDlg, IDC_CALCEDIT1, (unsigned short *)buffer,

sizeof(buffer));
number = atof(buffer);
number = sin(number);
wsprintf((unsigned short *)buffer, _T("%f"), number);
SetDlgItemText(hDlg, IDC_CALCEDIT2, (unsigned short *)buffer);

}

Below is the Python code for the equivalent GUI program. This code was written in a “windowsy”
manner. Writing the code in this way will probably make it easier for a translation program to
translate it to Windows CE code. The creation of all the GUI objects (widgets) is done statically, in
the main code. No graphical components are created dynamically. A window that is not to be
displayed at this point in the execution is created and then hidden from view using the withdraw
function. It can be displayed, when the time comes, by using the deiconify function.

#!/usr/bin/env python
from Tkinter import *
from math import *
##
##
##
##
Code that is not concerned with layout:
def calculate():
 global calc_entry1, calc_entry2
 try:
 number = float(calc_entry1.get())
 calc_entry2.delete(0, "end")
 calc_entry2.insert(0, str(sin(number)))
 except:
 popup1.deiconify()
 calc_entry1.delete(0, "end")
##
Message handlers:
Handler for the "Search" button:
def handler_search_button():
 global text_area
 text_area.delete("1.0", "end")
 text_area.insert("insert", "Search...")

26

Translating Python to C++ for palmtop software development - 2 Introduction

Handler for the "Sin(x)" menu item:
def handler_calc():
 global calc
 calc.deiconify()
Handler for the About menu item:
def handler_about():
 global about
 about.deiconify()

##
##
##
##
MAIN CODE:
IPAQ resolution:
SCREEN_WIDTH = 240
SCREEN_HEIGHT = 320
begin gui
##
The main window:
root = Tk()
root.title("The Recipe Database")
root.maxsize(SCREEN_WIDTH, SCREEN_HEIGHT)
root.minsize(SCREEN_WIDTH, SCREEN_HEIGHT)
root.resizable(0,0)
menubar = Menu(root)
file_menu = Menu(menubar, tearoff=0)
file_menu.add_command(label="Sin(x)", command=handler_calc)
file_menu.add_command(label="About", command=handler_about)
file_menu.add_command(label="Exit", command=root.quit)
menubar.add_cascade(label="Menu", menu=file_menu)
root.config(menu=menubar) # Display menu.
top_frame = Frame(root, width=SCREEN_WIDTH, height=250)
bottom_frame = Frame(root, width=SCREEN_WIDTH, height=40)
vertical_scrollbar = Scrollbar(top_frame)
horisontal_scrollbar = Scrollbar(top_frame)
text_area = Text(top_frame, yscrollcommand=vertical_scrollbar.set,
xscrollcommand=horisontal_scrollbar.set)
text_area.config(bg="white")
text_area.place(relwidth=1, relheight=1)
text_field = Text(bottom_frame, height=1)
text_field.config(bg='white', width=25, setgrid=0)
text_field.pack(side='right', fill='both');
search_button = Button(bottom_frame, text="Search",
command=handler_search_button)
search_button.pack(side='right');
top_frame.pack(side='top')

27

Translating Python to C++ for palmtop software development - 2 Introduction

bottom_frame.pack(side='bottom')
##
The "Sin(x)" dialog:
calc = Toplevel()
calc.withdraw()
calc.title("Sin(x)")
calc.maxsize(SCREEN_WIDTH, SCREEN_HEIGHT)
calc.minsize(SCREEN_WIDTH, SCREEN_HEIGHT)
calc.resizable(0,0)
calc_text1 = Label(calc, text="Compute sin(x)")
calc_text1.pack(side="top")
calc_frame1 = Frame(calc)
calc_frame2 = Frame(calc)
calc_text2 = Label(calc_frame1, text="Sin(")
calc_text2.pack(side="left")
calc_entry1 = Entry(calc_frame1)
calc_entry1.pack(side="left")
calc_text3 = Label(calc_frame1, text=") = ")
calc_text3.pack(side="left")
calc_entry2 = Entry(calc_frame1)
calc_entry2.pack(side="left")
calc_button1 = Button(calc_frame2, text="OK", command=calculate)
calc_button1.pack(side="left")
calc_button2 = Button(calc_frame2, text="Cancel", command=calc.withdraw)
calc_button2.pack(side="left")
calc_frame1.pack(side="top")
calc_frame2.pack(side="top")
##
The About dialog:
about = Toplevel()
about.withdraw()
about.title("About")
about.maxsize(SCREEN_WIDTH, SCREEN_HEIGHT)
about.minsize(SCREEN_WIDTH, SCREEN_HEIGHT)
about.resizable(0,0)
about_text = Label(about, text="TestGUI v1.0\n(C) Tom Simonsen, 2004")
about_text.pack(side="top")
about_button1 = Button(about, text="OK", command=about.withdraw)
about_button1.pack(side="bottom")
##
Pop-ups:
begin popup
popup1 = Toplevel()
popup1.withdraw()
popup1.title("About")
popup1.maxsize(SCREEN_WIDTH, SCREEN_HEIGHT)

28

Translating Python to C++ for palmtop software development - 2 Introduction

popup1.minsize(SCREEN_WIDTH, SCREEN_HEIGHT)
popup1.resizable(0,0)
popup1_text = Label(popup1, text="The input has to be a number.")
popup1_text.pack(side="top")
popup1_button1 = Button(popup1, text="OK", command=popup1.withdraw)
popup1_button1.pack(side="bottom")
end popup
root.mainloop()
end gui

2.6.2 Windows CE programming

Windows CE is basically i scaled down version of the Windows operating system. It takes advantage
of the Windows API, well-known classes and visual components and brings these to various hand-
held device platforms. Windows CE was rebuilt entirely from the ground up with a completely new
kernel source code that can run on a wide range of different CPUs. The footprint of Windows CE is
very small compared to most operating systems for desktop systems, and it may only require as little
as 1.5 megabytes of memory to run, depending on the version of the software. In this way, the
Windows CE operating system is ideal for use with palmtop devices with limited resources and
processing power. [Giannini and Keogh, 2001]

2.6.2.1 Windows CE versus other versions of Windows

There are a few issues that require attention when writing programs for Windows CE. Windows CE
uses Unicode strings, meaning that characters are represented using 16 bits as opposed to the 8 bit
ASCII character scheme that has become standard on many systems. The normal C string functions
like strcpy or strcat will not work on Unicode strings, and functions like wcscpy and wcscat
have to be used instead.

The displays for the hand-held devices are usually quite small with a relatively low screen
resolution. Anything that is displayed on-screen has to be adapted so that it works well in such a
small area. The display area of your program can be reduced further by panels that take up some of
the screen, such as on-screen keyboards on devices with a touch sensitive display. The layout of the
GUI should be constructed in such a way that these panels do not conceal important information.

Most Windows CE devices do not have a power-off button. These devices only offer a standby
mode where the screen and sound is turned off to reduce power consumption. In other words, when
a program is started, it may run for weeks or months. If a program has a memory leak error, this
could prove to be fatal over such a long period of time, possibly leading to crashes or other
malfunctions. Memory leaks are not released when you terminate the program in Windows CE, so a
programmer has to be careful in maintaining the memory resources taken up by the program. Such
memory leaks would have to be solved by a reboot of the device.

Windows CE has a hibernate mode to let an application go into hibernation to free up precious
memory resources. When a program goes into hibernation it should release any unneeded memory
so that it may be used by another applications. While in hibernation a program can receive a close or

29

Translating Python to C++ for palmtop software development - 2 Introduction

activate command. The close command should cause the program to close, and the activate should
cause the program to acquire the resources that was released, if necessary, and start up where it left
off before it was asked to hibernate.

When creating software for a palmtop device, the focus of attention should always be to design the
code to use as little memory as possible. One should also favor this over speed. If a speedy data
structure takes up too much memory, a slower one that takes up less memory should be chosen, for
instance.

2.7 Compiler concepts

Compilers are programs that translate one language to another. The most common type of this sort
of program is the type that translates a programming language to machine code. In this instance the
source language is the programming language and the target language is the machine language.
What I seek to do in this thesis is, as already mentioned, to translate one programming language to
another programming language. Both the source language and target language will be programming
languages. The same principles will apply to my compiler as to other compilers, regardless of the
nature of the target language. Looking into the practices and principles of compiler construction
before embarking on this mission of translating Python to C++ would probably be wise. This
chapter seeks to briefly explain some of the compiler construction know-how that this thesis and the
resulting software is based upon.

2.7.1 The anatomy of a compiler

There are many types of computer programs that are related to or used with compilers. These
include interpreters, assemblers, linkers, loaders, preprocessors, editors, debuggers, profilers and
project managers, to name a few [Louden, 1997]. I will not go into any of the details of these
programs, nor is it my intention to produce any of the afore mentioned programs as a part of writing
this thesis. I will look at what is traditionally known as the compiler, only.

A compiler consists of a number of internal phases. The phases perform distinct operations that may
be coded separately or kept separately within the structure of the compiler itself. The phases of a
compiler may include the scanner, the parser, the semantic analyzer, the source code optimizer, the
code generator and the target code optimizer [Louden, 1997]. I will only focus on the parts of the
compiler that are relevant to what I see as my task at hand, which are the scanner, the parser, the
semantic analyzer and the code generator.

In addition to the various phases, the compiler also has a number of important data structures that
the phases produce or rely upon. These are the literal table, the symbol table and the syntax tree.
The literal table is used by the compiler to construct addresses for literals and for entering data
definitions in the target code file. It is also used to reduce the amount of system memory that is
taken up by the resulting program [Louden, 1997]. The literal table is really only necessary when the
compiler outputs machine language, in my view. I will not look any further into the use of this data
structure.

30

Translating Python to C++ for palmtop software development - 2 Introduction

2.7.1.1 The scanner

The scanner is, as the name implies, the part of the compiler that scans the actual source code. It
assembles the characters in the source code into meaningful entities called tokens or words. This
process is known as lexical analysis. [Louden, 1997]

A token is usually represented symbolically in some way by the scanner. In some cases it is also
necessary to store the original string of characters that make up the token in the source code. The
names of variables and functions have to be kept for later use in the compiler, for instance. Single
symbol lookahead is the most usual form of scanner algorithm, where the scanner only generates
one token at a time. [Louden, 1997]

2.7.1.2 The parser

The parser relies on the results produced by the scanner. It receives the stream of tokens and
performs a syntax analysis that determines the structure of the program. Syntax analysis is
analogous to checking the grammar of the code, which is key to understanding the meaning of it.
The parse phase of the compiler usually results in the construction of the syntax or parse tree data
structure. [Louden, 1997]

2.7.1.3 The semantic analyzer

The semantics of the code is the meaning of it. This semantic analyzer checks the static semantics of
the program. The semantics of a program determines the behavior of the program when it is
running. The dynamic semantics of a program cannot be checked by a compiler, since the compiler
does not actually run the program. The static semantics, however, are not altered by the program at
runtime and can be checked. Mostly, this includes the checking of declarations and types of
variables or expressions. The extra information produced by the semantic analyzer is called
attributes, and these attributes are often used to “decorate” the syntax tree. This extra information
can also be entered into other data structures used by the compiler. [Louden, 1997]

2.7.1.4 The code generator

The code generator is responsible for generating the target language [Louden, 1997]. It can do this
based on the results from the source code optimizer or from the results of the semantic analyzer. In
the latter case there is no optimization of the source code before the target language is generated.
The target language is in most cases machine language, as mentioned above. In the case of this
thesis the target language is not machine language, but another programming language, namely
C++.

The target code can also go through an optimization phase, after it has been generated, to improve
its efficiency. I have decided not to look into the optimization phases at all in this thesis.

2.7.1.5 The symbol table

This table structure (usually a hash table) interacts with almost every phase of the compiler
program. An efficient data structure is of importance here, since this table is used very frequently. It
stores information associated with identifiers, functions, variables, constants and data types. The
symbol table does not have to be made up of one table, indeed it is not unusual to divide it into

31

Translating Python to C++ for palmtop software development - 2 Introduction

more than one table. A program could hold separate tables for variables and functions, for instance.
In some cases the symbol table is not a table at all, but some other form of data structure that is
suitable to serve its purpose. Such structures might be linear lists and various search tree structures,
like binary search trees, AVL trees1 and B trees2, for instance. [Louden, 1997]

2.7.1.6 The syntax tree

The syntax tree is usually built by the parse phase of the compiler to represent the syntax of the
source language and provide the storage for this syntax in the compiler's data structure. The syntax
tree, in its most basic form, contains one node for each token that has been provided by the scanner.
Usually, this basic syntax tree is turned into a simpler form, known as the abstract syntax tree
(AST). The AST will still represent the exact same syntax, but with the use of fewer nodes. It is
very common to remove the redundant nodes that represent certain types of brackets and
encapsulations, for instance.

2.7.2 Finite automata

Finite automata are closely related to the scanning phase of a compiler. They are a mathematical
way of describing particular kinds of algorithms and can be used to recognize string patterns. Thus a
scanner algorithm can be constructed from finite automata. Sometimes referred to as finite-state
machines, finite automata are related to regular expressions. [Louden, 1997]

2.7.2.1 Deterministic finite automata

In deterministic finite automata (DFAs) the next state of the machine is uniquely given by the
current state of the machine and the character that is currently being scanned. There is a strong
relationship between a regular expression for a string pattern and a DFA that accepts strings
according to it. A DFA has accepted a string when it has reached one of its final states. The
language accepted by the machine is the set of strings it accepts. [Lewis and Papadimitriou, 1998]

2.7.2.2 Nondeterministic finite automata

Nondeterminism is basically the ability to change states in a way that is only partially determined by
the current state and the current input character. Where there is only one possible next state in a
DFA there might be many possible next states to chose from in nondeterministic finite automata, or
NFAs. The machine can chose to skip to any of the legal states as it is scanning, and this changing
of states is not defined by any rule in the model. It is nondeterministic in the way that there is no
rule for which of the next legal states the machine is going to chose. An NFA is equivalent to a
DFA in the sense that they will accept the same language. An NFA will usually have fewer states
than a DFA, but it will still be able to do the same job. [Lewis and Papadimitriou, 1998]

2.7.3 Context-free grammars

A context-free grammar specifies the syntactic structure of a programming language using recursive
rules. A context-free grammar uses naming conventions and operations that look similar to those of

1 An AVL tree is a balanced binary tree where the height of the two subtrees of a node differs by at most one.
2 A B tree is a balanced search tree in which every node has between m/2 and m children where m>1 is a fixed

integer. m is the order. The root may have as few as two children.

32

Translating Python to C++ for palmtop software development - 2 Introduction

regular expressions. The rules of the context-free grammar are recursive, however, to allow for the
nesting of various syntactic elements inside of each other. An if-statement can contain other if-
statements and a while-loop can contain other while-loops, for instance. Since the notation for the
grammar specification was developed by John Backus and Peter Naur, such grammar rules are said
to be in Backus-Naur form, or BNF. [Louden, 1997]

2.7.4 Parser algorithms

A parser algorithm has the task of determining the syntax of a program. It does the syntax analysis
based on the grammar rules, usually given by a context-free grammar. The parsing algorithms differ
a great deal from the scanning algorithms. They usually depend on recursive calls and larger data
structures. Where the scanning algorithm does not depend on much data structuring, the parsing
algorithm usually maintains a parsing stack to help it build the syntax tree. The tree structure is
representing the recursive nature of the syntactic structure. A linear structuring of the data would not
be able to do this. There exists a number of different parsing algorithms that mainly falls into two
major categories: top-down and bottom-up parsing. [Louden, 1997] I will not go into further details
surrounding the algorithms. I will simply point out some of the various algorithms that exist. Plenty
of good literature can be found on this subject.

2.7.4.1 Top-down parsing

A top-down parsing algorithm creates the parse or syntax tree from the root node to the leaf nodes.
The traversal order of the resulting syntax tree is preorder. There are two forms of top-down parsing
algorithms: backtracking parsers and predictive parsers. Some predictive parsing algorithms are
recursive-decent, LL(1), LL(k) and SLL(k) parsing, to name a few. A kind of backtracking parsing
algorithm is called combinator parsing. [Louden, 1997]

2.7.4.2 Bottom-up parsing

A bottom-up parser builds the syntax tree starting at the leaf nods and works its way to the root
node. The most general bottom-up parsing algorithm is called LR(1)1 parsing. Variations on this
basic algorithm includes LR(0), SLR(1), and LALR(1)2 parsing. The Yacc parser generator software
(described in chapter 3.2.1.2) generates LALR(1) parsers.

2.8 The tools

I have used a number of different software packages to develop the code for the Python to C++
translator. The Python source code has been written in Python version 2.4, using the IDLE version
1.1 from the Python Software Foundation. The handwritten C and C++ source code has been
developed using Emacs version 21.3.1 and compiled using both g++ (on the Linux platform) and
Open Watcom version 1.3 (on the Windows XP platform). The translated code for Windows CE has
been assembled and compiled in Microsoft's eMbedded Visual C++ version 3.0.

1 The “L” in LR(1) indicates that the input is processed from left to right, the “R” indicates that a rightmost derivation
is used and 1 indicates that one symbol of lookahead is used.

2 LALR(1) stands for lookahead LR(1) parsing. A complete definition of this type of algorithm is found in Kenneth C.
Louden's book on compiler construction [Louden, 1997], among others.

33

Translating Python to C++ for palmtop software development - 2 Introduction

Code that has been translated to “standard” C++ has been tested on the Windows XP and Fedora
Core 3 Linux operating systems. Windows CE GUI code has only been tested on the Hewlett-
Packard iPAQ device running the Microsoft Pocket PC 2002 operating system.

3 Many ways to solve a problem

3.1 Using regular expressions

Regular expressions represent patterns of strings of characters. A regular expression is completely
defined by the set of strings that it matches. [Louden, 1997] This set is called the language
generated by the regular expression. The word language in this context is used to mean “set of
strings”. Python has the support for regular expressions built into it. This is a very powerful string
recognition tool. A regular expression in Python will recognize any sequence of characters in any
given string or text.

Since Python's regular expressions can be used to recognize strings as they occur in a text, this tool
could be useful for building a translator program. The regular expressions would be able to
recognize the various string elements that make up the source code of a program. The basic idea is
that a translation program that is built using regular expressions has a very simple structure. It does
not rely on large data structures like parsing stacks, syntax trees or variable tables to be able to
translate one language to another. Nor does it rely on having typical scanner and parser algorithms
to be able to read the code and decipher its meaning. The idea is that the string patterns that are
matched can be turned into the equivalent string patterns in the target language, on the fly. The
while loop in Python, for instance, will make up a set of certain string patterns that can be
recognized by one or more regular expressions. All of these Python string patterns will have their
equivalent C++ string patterns. It is just a matter of matching them up.

Joe Strout and Dirk Heise's “Python2C” is a short and simple attempt at making a Python program
that translates Python code to C/C++ code [Strout and Heise, 1998]. This attempt at creating a
Python to C translator also inspired me to give the same name to my own attempt at translating
Python to C++. The very first investigations I made in connection with this thesis were related to
what Strout and Heise where trying to do with their Python2C. It is a small experiment into what
can be done with regular expressions alone. The source code for Strout and Heise's Python2C
program is available on Joe Strout's website. By making some additions to Strout and Heise's
program, I set up a modified version of this code. The complete source code for this modified
version is included in the appendix.

3.1.1 Strout and Heise's Python2C

The translator code in Strout and Heise's Python2C mainly consists of regular expressions and
provides support for translation of a few of the basic elements of the Python programming language
to C. This includes loops, variable assignment and other basic utilities. The translator also has some
support for some types of C++ statements.

The Python2C code does not comprise many lines of code, and yet it seems to manage to translate
many of the basic features of Python to C/C++. The program is only meant do be a small
experiment, and it will just translate a small subset of all possible Python statements to C/C++.

34

Translating Python to C++ for palmtop software development - 3 Many ways to solve a
problem

The following example has been taken from the web page of Joe Strout and can be found at the
following web address: http://www.strout.net/python/ai/python2c_demo.html

This Python code was fed to python2c.py:

this is a test
x = -1
while x: # loop until 0 spam
 x = input('\nHow much spam?')
 if x:
 print "We have:"
 for i in range(0,x):
 print 'spam',
 if i == x-2: # (don't forget the beans!)
 print "baked beans and",
 else:
 print "Enjoy!"
all done!

...which spewed out the following C++ code in response:

// this is a test
x = -1;
while (x) // loop until 0 spam
{
 cout << "\nHow much spam?"; cin >> x ;
 if (x)
 {
 cout << "We have:" << endl;
 for (i=0; i<x; i++) {
 {
 cout << "spam" << " ";
 if (i == x-2) // (don't forget the beans!)
 {
 cout << "baked beans and" << " ";
 }
 }
 }
 else
 {
 cout << "Enjoy!" << endl;
 }
}
// all done!

3.1.2 Problems with the regular expressions approach
As seen in the execution example take from Joe Strout's website, Strout and Heise's Python2C does
not handle the problem concerning variable creation. My amended version of the program does not
do anything to correct this problem either. To make the resulting C++ code from the example run
through a compiler without errors, one would have to edit the code by hand. The variable x in the
translated C++ code is initialized but never declared. The same is true for the variable i. The type of
the variable is never explicitly declared in Python, as it must be in C/C++. To declare a variable in

35

Translating Python to C++ for palmtop software development - 3 Many ways to solve a
problem

C/C++ the translator has to find out what type of value variable x stores. The only good solution to
this problem, the way I see it, is to scan and parse the code just like a compiler would. When you
have a statement such as “x = -1;”, the problem of finding out what type x holds is trivial. If the
statement is something like “x = class.function(y)[1]”, it is a whole different matter. A
statement such as this can be picked apart by a traditional parser algorithm very efficiently. When
the parser has found the meaning of what is on the left of the “=”, the type of x has been found in
the process. How the same thing can be achieved through the use of regular expressions is
uncertain. It is unclear how the matching of string patterns in this way will acquire the meaning of
code.

The regular expressions approach runs into further problems, relating to the structuring of the code.
The approach gives rise to a number of questions. When the translator program comes across some
variable, how does the translator program know that it has not encountered the same variable
before? If it has encountered a variable with the same name before, what was the scope of that
variable? When encountering a function call, is there any way of determining the return type of the
function?

When dealing with function calls that call functions that are defined in the Python language, the
return type problem can be solved by having look-up tables. If a function is not defined in the
Python language, how can the return type of a function be determined when the function's definition
or code has to be translated? If you are able to determine the return type, how do you store it in your
translator program? How does a regular expression translator program know if a function belongs to
a class or not? How does such a translator program know that a piece of code belongs to a function,
a while loop, a for loop or an if statement? The questions go on.

The problem with the regular expression approach is that the matching of the strings is done with no
regard for the context in which the strings are found. This approach can probably work fairly well
on short and simple programs, but most likely not on larger programs with complex data structures.
As soon as we start to talk about variable type, scope, functions and classes, we will run into
trouble. In essence, the regular expression translator program is an implementation of some sort of a
scanner algorithm. It has all the functionality required to make it a scanner, but all to little of what is
required to make it a parser.

There are other problems related to the regular expression approach found in Strout and Heise's
Python2C, and one of them relates to the balancing of parenthesis. If you have a string containing
multiple parenthesis like this example; “((()())((())())))()”, it is quite difficult to write a
regular expression that would pick out the pairs of left and right parenthesis that belong to each
other. If you use a standard scanner algorithm however, that reads one character at a time, it is quite
easy to pick these pairs out. The “balancing of parenthesis problem” crops up more than once when
translating code. Almost every code element can be enclosed in parenthesis and various forms of
brackets. Consider the “{“and the “}“in C/C++, for instance. This turns out to be a big problem for
a translator using regular expressions in the way that it is being used in Strout and Heise's
Python2C.

I feel that it is beyond the scope of this thesis to try and find answers to the many questions and
problems above. My conclusion is that I will not pursue the “pure” regular expression approach to
building a Python to C++ translator. There are just too many unanswered questions. I can speculate
that a hybrid solution might do the job properly. Such a hybrid solution could be a solution where

36

Translating Python to C++ for palmtop software development - 3 Many ways to solve a
problem

the code is scanned and possibly also parsed by the regular expressions and the meaning of the code
is represented by some sort of a syntax tree data structure. This solution would perhaps look
something like the solution provided by Lex and YACC, described in chapter 3.2.1.

3.2 Creating a scanner and parser from scratch

3.2.1 Using Lex and Yacc

3.2.1.1 Lex

Lex is a popular scanner generator program that exists in a number of different versions. The most
popular version is called “flex”, for Fast Lex. This version is produced by the Free Software
Foundation and is freely available at many websites [Louden, 1997]. Lex can generate a scanner
program for any language from a description of the tokens of the language. The description for each
token must be a regular expression. The Lex conventions for writing regular expressions do not
differ much from the conventions found in the Python language. I will not go into the details of
these in Lex or Python. Instead I will provide an example of a Lex scanner that I wrote for a small
and simple language called Pedagola. The source code is included in the appendix.

Lex takes a text file as input that needs to contain the regular expression descriptions paired with the
actions to be taken when each expression is matched. Lex outputs a file, usually named lex.yy.c or
lexyy.c, that contains the C source code for the scanner program. This file can than be compiled
and linked to a main program to get a running piece of software. The C source code defines a
procedure called yylex that is a table-driven implementation of a DFA corresponding to the regular
expressions in the input file. [Louden, 1997]

3.2.1.2 Yacc

Yacc, which stands for Yet Another Compiler-Compiler, is a parser generator program. Historically,
parser generators were called compiler-compilers. Yacc takes a specification of a language's syntax
as input and produces a parse procedure for the language as output. This procedure is an
implementation of a LALR(1) (See chapter 2.7.4.2) parsing algorithm. There are a number of
different versions of Yacc to be found, also several public domain versions under the name of
Bison. One popular version is the GNU Bison, distributed by the Free Software Foundation.
[Louden, 1997]

The Yacc output file consists of C source code. This file is usually named y.tab.c or ytab.c. The
input or specification file has a basic format that divides the file contents into three sections. The
sections are the definitions section, the rules section and the auxiliary routines section. These are
separated by lines of double percent signs. [Louden, 1997]

The definitions section contains the information about the tokens, data types and grammar rules that
Yacc needs to build the parser. It also includes any C code that must go directly into the beginning
of the output file. These are often #include directives of source code files that make up the other
parts of the parser program. [Louden, 1997]

The rules section contains grammar rules for the language in a modified BNF form [Louden, 1997].
For each rule there are actions in C code that are to be executed every time the associated grammar

37

Translating Python to C++ for palmtop software development - 3 Many ways to solve a
problem

rule is recognized. I have included an example of a Yacc input file for the Pedagola language in the
appendix, together with the Lex input file for the same language. This will exemplify what a
scanner and parser will typically look like when using the Lex and Yacc software tools, and how
much work that has to be invested into making them.

The third and last section of the Yacc input file makes up the auxiliary routines. It contains
procedures and function declarations that may not be available through #include directives and that
are needed to complete the program. [Louden, 1997]

3.2.1.3 Using Lex and Yacc to create my translator program

Creating a Python scanner and parser from scratch using Lex and Yacc would involve a lot of work.
When looking at what it takes to get the compiler for the small and simple Pedagola language up
and running, one has to realize that it is not realistic for one man to do the same thing - and then
some - to create a Python translator in the time set aside for this thesis. The Pedagola compiler code
in the previous chapter is far from complete, since it only checks the syntax and the grammar of a
Pedagola program. It does not even check all grammar rules. It does neither compile or translate
anything, and no machine language is generated. A lot more code would have to be added for that to
be possible.

The Python BNF is a lot larger and more complex than the short and simple Pedagola BNF. A lot of
work and too much time would have to go into getting a correct syntax tree generated by the
software. Creating the syntax tree is not what this thesis is really about, and the workload put into
the development process should be focused around the code that does the actual translation. I want
to look at what can be generated from this syntax tree in terms of translated code. It would be
preferable if there exists some tool that could provide me with a correct syntax tree in an easier and
faster way.

3.2.2 Really creating a scanner and parser from scratch

Based on my final notes regarding using the Lex and Yacc software tools in the previous chapter,
actually writing a scanner and a compiler for the Python language, entirely from scratch, is a
monstrous task. No tools would be used to generate anything and every line of code would have to
be written by hand. It is completely unrealistic for one programmer to do this in the space of such
limited time. Thus, this way of solving the problem should be dismissed all together.

3.3 Using existing modules in Python

The Python compiler and parser modules provide functions to access the Python internal
compiler and parser. The compiler module contains functions to parse and compile the contents of
files using the Python compiler. A module called compiler.visitor contains a function to walk
the Python AST, called walk. The compiler.ast module contains further functions to get at the
nodes stored in the AST. The Python parser and byte-code compiler can be accessed through the
functions found in the parser module. This is a module that has been created for the purpose of
being able to access and manipulate the AST and its objects.

By using the functions found in the compiler, compiler.ast and compiler.visitor modules I
am actually able to create, access and traverse the Python AST without having to create a compiler

38

Translating Python to C++ for palmtop software development - 3 Many ways to solve a
problem

from scratch. I can also access each AST node and its contents through the walk function The
programmers at Python.org as tried and tested this code and I can be fairly certain that the AST
contains a minimum of bugs. These modules provide me with the tools to create a syntax tree
without much effort and to be able to focus the workload on the translator code.

3.3.1 Using the Python modules in practice

To create the Python AST the Python compiler must parse the Python source code in question. The
Python source code to be translated will be found in files, in my case, and the contents of files can
be parsed by using the parseFile function found in the compiler module. This function returns a
pointer to the Python AST structure. This pointer can be passed as an argument to the walk
function, found in the compiler.visitor module.

To be able to get the walk function to actually do its job a visitor function for each type of AST
node has to be implemented in the translator program's code. In the example below all the visitor
functions have been put inside a class. An instance of this class is passed as the second argument to
the walk function. The name of each visitor function starts with “visit” followed by the type of
node it is programmed to visit. If the type of the node in question is “Add”, then the name of the
corresponding visitor function is “visitAdd”. The walk function will detect the type of each AST
node and call the appropriate function accordingly. If the corresponding visitor function is not
found, a default function is called and the subtree of the node will not be traversed. Totally, there
exists some sixty or so types of AST nodes. If the translator program is going to be able to traverse
any Python AST, then all of these types of nodes must have a corresponding visitor function.

For the subtree rooted at each AST node to be traversed, the walk function has to be called inside
every visitor function, as indicated by the example below. A child node is passed as the first
argument to the walk function and the parent node or root node of the subtree is passed as the
second. The children of an AST node can be accessed though the getChildren or getChildNodes
functions found in the compiler.ast module. The getChildren function returns a list of AST
nodes and other objects stored in the parent AST node, and the getChildNodes function returns
only a list of the AST nodes. As indicated by the example below, it does not take many lines of code
to get this to start working.

This short Python code example shows how using the Python modules to traverse the Python AST
could work in practice. “...” indicates that the code is incomplete and that more lines of code is
needed.

import compiler
from compiler.ast import *
from compiler.visitor import *
class VisitorFunctions:
 def visitAdd(self, node):
 ...
 children = node.getChildNodes()
 for child in children:
 walk(child, self)
 ...
 def visitAnd(self, node):

39

Translating Python to C++ for palmtop software development - 3 Many ways to solve a
problem

 ...
 children = node.getChildNodes()
 for child in children:
 walk(child, self)
 ...
 ...
Parse the Python source code:
ast = compiler.parseFile(python_file_name)
visitor_functions = VisitorFunctions()
Walk the Python AST:
walk(ast, visitor_functions)

3.4 The hybrid
The hybrid solution to creating a Python to C++ translator is a solution that may borrow from all the
above ways to solve the problems that are encountered. I think I have pointed out the need for a
scanner/parser algorithm quite clearly in the previous chapters. To be able to translate code well, the
translator program needs to know what the code means. This can only be done by checking the
grammar and semantics. The most obvious and tried and tested solution is to use a standard scanner
algorithm to scan the code and a standard parser algorithm to build a syntax tree to represent the
meaning of the code. When looking at Strout and Heise's Python2C in chapter 3.1.1, I concluded
that their attempt at creating a translator, based on regular expressions, would not work. The
segments of code are translated out of context and the meaning of each segment is never picked up
by the program. Strout and Heise's Python2C is only a scanner, although an incomplete one. The
other solutions I have looked at have got the scanner and the parser algorithms built into them. One
“hybrid solution” may be the use of regular expressions to create a translator program that
incorporates a scanner and a parser algorithm.

Regular expressions can be used in various parts of the program. The most obvious use would be to
use regular expressions as a basis for the scanner algorithm, quite similar to the way that the regular
expressions are used by Lex. It could also be used as a tool that picks out certain parts of the target
code for code optimization. Here it might look something like Strout and Heise's Python2C, and it
does not have to recognize one token at a time. This sort of code optimization would be based on
recognizing code patterns that have an inefficient form. Many such patterns are relatively
independent of the context or the meaning of the code. Regular expressions can also be used rather
efficiently to determine the type of constants in Python code, as is shown by the example below.

The below Python code shows how the types of constants can be determined using regular
expressions. This example requires the Python re module to be imported.

class LangConst(LanguageConstruct):
 parent = None
 value = ""
 type = ""
 def __init__(self, p, v):
 self.debugInfo()

40

Translating Python to C++ for palmtop software development - 3 Many ways to solve a
problem

 self.parent = p

 self.value = str(v)
 #The type can be determined based on the contents of the "value" string.
 integer_pattern = r"[+\-]?\d+"
 hex_pattern = r"0x[01]+"
 scientific_pattern = r"[+\-]?\d(\.d+|)[eE][+\-]\d\d?"
 decimal_pattern = r"[+\-]?(\d+\.\d*|\d*\.\d+)"
 float_pattern = r"(" + scientific_pattern + "|" + decimal_pattern + r")"

 match = re.match(hex_pattern, self.value)
 if(match != None):
 self.type = "HEX"
 else:
 match = re.match(float_pattern, self.value)
 if(match != None):
 self.type = "FLOAT"
 else:
 match = re.match(integer_pattern, self.value)
 if(match != None):
 self.type = "INT"
 else:
 self.type = "STRING"

3.5 Other attempts

3.5.1 Ariel
Ariel is a research project to investigate the design of user interfaces that “take advantage of natural
means of communication such as speech, gestures, and facial expressions” [Hugunin, June 1996].

Here, a working prototype was constructed using Python. From this initial version of the software it
was evident that parts of the Python code were acting like bottlenecks in the program, and needed to
be sped up somehow. The solution was to translate these slowly executing segments of Python code
into C. After having translated a bit of C code it became evident that much of the translation was
quite trivial in places, and an attempt was made to automate this process.[Hugunin, June 1996]
Unfortunately, I have not come across any samples of the code or any code documentation from this
project.

3.5.2 Pyrex

"Pyrex is a language specially designed for writing Python extension modules" [Ewing, 2002], since
writing these extensions can be quite messy using C/C++.

Pyrex has turned out to use most of the usual Python syntax, with some amendments like the
introduction of having to declare types. As mentioned earlier, types are not declared in Python, and
a variable can be of several types during execution. In Pyrex you have to add the word “cdef” ahead
of every variable declaration. A typical such statement in Pyrex would look something like: “cdef
int x”.

Since the developers of Pyrex basically have created a new language based on the Python language,
this project does not attempt to solve the Python to C++ translation problem as such. The ambitions
of the Pyrex developers were first and foremost to develop an easy-to-use translator that had the

41

Translating Python to C++ for palmtop software development - 3 Many ways to solve a
problem

abilities to produce fairly efficient C code. It did not matter whether this meant that changes had to
be made to Python itself. In this way the development of Pyrex differs from what I wish to do. My
intentions are to create a translator that can translate pure Python to C++, without the use of
amendments such as the ones found in Pyrex.

3.6 Conclusion

I have gained some knowledge from my encounters with Lex and Yacc and Strout and Heise's
Python2C. The hands-on approach with Lex and Yacc gave me some more insights into the inner
workings of a compiler, and the scanner and parser algorithms. I used the hands-on approach with
Strout and Heise's Python2C as well, and found many weaknesses in using just regular expressions
to create a translator.

As I have mentioned earlier, I do not want to spend a lot of time creating a Python compiler. Since I
wish to focus my attention on the code translation process, I want to be able to build and get access
to a syntax tree in the easiest possible way. Creating a compiler entirely from scratch or using Lex
and Yacc to do this is not an option. It would take a lot of time to create a complete and working
Python compiler. The best solution available, as I see it, is to use the existing modules in the Python
language to build and access the Python syntax tree. I have already shown how this can be done in
chapter 3.3.1, using just a few lines of code.

4 My Python2C
I have chosen to create a Python to C++ translator that will use the existing Python modules to build
and access the Python AST. As a tribute to Joe Strout and Dirk Heise, I have named it “Python2C”.

In this chapter I will start with the code documentation and go on to describe and discuss the various
translation problems that I have encountered. The code documentation will provide the overview of
the inner workings of my Python2C translator program. When the inner workings and major data
structures have been pointed out, I go on to describe and discus the translation problems.

4.1 Source code documentation

4.1.1 The main code

The main or global part of the code ties it all together. This is the Python code that does not reside
inside of any class structure in Python2C, and it is there to provide the simple textual user interface
and the functions that start the translation process.

4.1.1.1 The user interface

Through the textual user interface the user can set a number of global variables that determine the
output of Python2C. The list of the commands or options that are available through Python2C's
command line is displayed when typing in the “-help” option, followed by pressing the “enter” key.
This list is included as it appears in the Python2C command line, below. No options can be sent to
Python2C directly from the command line of the operating system. Python2C does not check the
input to the program via the sys.argv list, and the program has to be started before anything can be
passed to it.

42

Translating Python to C++ for palmtop software development - 4 My Python2C

This is a snapshot of Python2C displaying the short start-up information and the help menu as it
appears in Python2C version 0.014.

Python2C version 0.014
Programmed by Tom Simonsen (tom.simonsen@gmail.com).
###
Type in a file name or various options below.
Type "-help" to display options.
->: -help
###
###
#
Python2C options:
#
file_name (Parse and translate file with name file_name.)
-p (Turn on/off only parsing mode.)
-p file_name (Turn on/off only parsing mode.)
-g (Turn on/off graphical mode.)
-g file_name (Turn on/off graphical mode.)
-s path (Set the source code folder.)
-d path (Set the destination folder.)
-salloc number (Set the string allocation size.)
-tstnodes (Turn on/off the printing of TST-nodes.)
-tstnodes file_name (Turn on/off the printing of TST-nodes.)
-vtable (Turn on/off the printing of the variable table.)
-vtable file_name (Turn on/off the printing of the variable table.)
-ftable (Turn on/off the printing of the function table.)
-ftable file_name (Turn on/off the printing of the function table.)
-ptree (Turn on/off printing of the parser tree.)
-ptree file_name (Turn on/off printing of the parser tree.)
-q (Quit Python2C.)
-help (Display this menu.)
#
###
###
->:

Many of the commands that are available in Python2C can be given in two ways. Either they can be
entered followed by a string, or only the command itself can be entered. The “two-way” commands
are “-p”, “-g”, “-tstnodes”, “-vtable”, “-ftable” and “-ptree”. If you enter “-p” the “only parsing
mode” is activated. If you enter “-p” followed by the file name “hw.py”, the only parsing mode is
activated and the file named “hw.py” is parsed by Python2C. You can set more than one mode by
entering the various commands in any order. Modes “-p” and “-g”, for instance, can be activated at
the same time. “-p” can be entered – that is; you have to press the “enter” key after typing it -
followed by “-g” and the “enter” key. This will sett both the parsing mode and the graphical mode.
If you now enter a filename, this file will be processed with these two modes activated.

Entering the same command a second time will deactivate the mode. By default none of the
Python2C modes are activated upon start-up, unless you make changes to the values of some of the
global variables that govern these modes, in the source code.

The simplest way to get something done is to just enter the name of a file into Python2C. This will
cause Python2C to translate this file, if it exists. If only the name of a file is entered into the

43

Translating Python to C++ for palmtop software development - 4 My Python2C

program, then Python2C will assume that this file resides in the current folder, which is normally
the same folder as where Python2C's source code is found. If this is not the case, the source folder
has to be set. The source folder is set with the command “-s” followed by the path to the specific
folder (for instance “-s /python/source/”). The “-s” command has to be followed by a valid path or
an error message will be displayed. When a valid path has been entered, Python2C will assume that
all the file names that are entered refer to files in this folder. The source folder can of course be
changed at any time. The source_folder variable holds the source folder path string in the source
code.

The user can also set and change the path to the output folder or destination folder of Python2C. By
default, this is also the current folder. All the resulting files of the translation are created or
overwritten in the destination folder. (More information on all the files produced by Python2C is to
follow in this chapter.) The destination folder is basically set in the same way as the source folder.
The difference is that you must enter “-d”, for destination, followed by a valid path to the desired
folder. Until the path is changed, all the translation data will end up in the same folder. Python2C
does not ask before overwriting the files it produces, so some care has to be taken to ensure that this
does not produce undesired results. Python2C generates a substantial number of files, so decided it
would probably be inconvenient to make Python2C ask the user for permission to overwrite already
existing files. The names of the generated files are a bit unusual, so it is unlikely that they will
overwrite files that have nothing to do with the Python2C translation. The dest_folder variable
holds the destination folder path string.

The “-p” command turns the only parsing mode on or off. The only parsing mode will make
Python2C do basically everything it normally does, except for outputting the translated C++ code.
The code is still parsed by the the Python compiler module, the AST is still traversed and the TST
(the Translated Syntax Tree. See chapter 4.1.8.) is still created. All the debugging information and
data files are produced as well. This mode exists mostly for debugging purposes. The Python2C
execution can be seen as having two major stages: the “parsing stage” and the “translation stage”,
named very loosely. For debugging purposes it can be very useful to be able to separate these two
stages and deal with them separately. If errors are produced in the first stage more errors are certain
to occur in the second, since the second stage relies on all the data created in the first stage. Stage
one, which I have named the “parsing stage”, creates a fair deal of output in the form of data files.
All of these can be checked to verify that the program is functioning as desired when given a
specific set of input data. All of this can be done before Python2C has done any actual code
translation. When one has made sure that the parsing stage is setting up the TST in a correct
manner, the second stage can be activated. If any errors should occur now, one can be relatively
certain that they are originating from within the code that makes up the second stage, the
“translation stage”. Most of the actual translation work is already done in the first stage, in the
process of setting up the TST. The actual creation and output of the C++ source code is done in
stage two. This stage relies heavily on the parsing stage having been able to produce all the required
data and having put it in the TST correctly. If this is not the case, Python2C will usually crash. The
parsing mode is set by the translation_mode variable in the Python2C source code. Its default
value is 1, where it makes the program go through with the translation to C++. Set it to 0 to activate
the only parsing mode.

The “-g” command turns on or off the graphical mode of translation. This mode assumes that the
Python file that is going be translated has a graphical user interface that needs to be translated. The
Python GUI code will be translated to Windows CE GUI. This mode could also be set automatically
by Python2C, instead of manually by the user, when it finds that the Tkinter module is imported in

44

Translating Python to C++ for palmtop software development - 4 My Python2C

the code that it is translating. Currently, I have chosen not to implement this. This would require the
Tkinter module to be imported only at the beginning of the source code file. Nor has any actual
support for GUI code translation been implemented (See chapter 4.2.4.). The graphical mode is set
by the graphical_mode variable in the Python2C source code.

Every Python string variable is translated to a character pointer in C++. All character pointers have
to have some memory set aside for them by allocating memory through the malloc function in C++.
The “-salloc” command sets the allocated size of all the C++ character pointers that are produced by
the translation. “-salloc” has to be entered followed by an integer. The default value of this integer is
256 and is stored in the malloc_string_size variable.

An example showing how to activate and deactivate modes in Python2C.

Python2C version 0.012
Programmed by Tom Simonsen (tom.simonsen@gmail.com).
###
Type in a file name or various options below.
Type "-help" to display options.
->: -p
Only parsing mode activated.
->: -tstnodes
Printing of the TST-nodes activated.
->: -p
Only parsing mode deactivated.
->: -q
Exiting Python2C.

The “-tstnodes” command activates printing of the TST nodes as they are created by Python2C.
Only the name of the class of the node is being printed for each node in addition to a number
indicating how many nodes have been created so far. Some of these nodes are intermediate and do
not end up as being a part of the TST data structure. Never the less, the printing of these nodes give
you an overview of the nodes that end up being created and roughly what the TST ends up looking
like. This information on the TST nodes are not printed to file as with some of the other debugging
data output by Python2C. All the nodes are printed out on the command line as the the parsing stage
of the program is running. By default the printing of the TST nodes is turned off. The variable
controlling this feature is named print_tst_nodes in the Python2C source code.

Below is an example of what the “-tstnodes” mode looks like, taken from the command line.

Python2C version 0.012
Programmed by Tom Simonsen (tom.simonsen@gmail.com).
###
Type in a file name or various options below.
Type "-help" to display options.
->: -tstnodes hw.py
Printing of the TST-nodes activated.
Parsing and translating file "..\Tests\hw\hw.py".
1 LangModule
2 LangStmt

45

Translating Python to C++ for palmtop software development - 4 My Python2C

3 LangMain
4 LangImport
5 LangAssign
6 LangAssName
7 LangAssName
8 LangCallFunc
9 LangName
10 LangSubscript
11 LangGetattr
12 LangName
13 LangConst
14 LangCreate
15 LangCreate
16 LangAssign
17 LangAssName
18 LangAdd
19 LangConst
20 LangCallFunc
21 LangGetattr
22 LangName
23 LangName
24 LangCreate
25 LangAssign
26 LangAssName
27 LangConst
28 LangCreate
29 LanguageConstruct
30 LangPrintnl
31 LangAdd
32 LangAdd
33 LangAdd
34 LangConst
35 LangCallFunc
36 LangName
37 LangName
38 LangConst
39 LangCallFunc
40 LangName
41 LangName
Debug info files written.
Additional source files written.
Code translated and written to files.
###
About the execution:
Nodes in the AST: 35
Total number of TST nodes created (All may not be part of the TST
structure.): 41
Parsing of the AST and creation of the TST completed in 0.4276 seconds.
Translation completed in 0.0007 seconds.
###
->:

The activation of the “-vtable” command will output the same information that is found in the
“*_var_stack.txt” data file. “*” represents the name of the file containing the Python code to be
translated, without the file name extension. The content of the variable table is printed to the
command line for each new addition that is made to it. By default this option is turned off in
Python2C. The variable that governs this mode is the print_var_table.

46

Translating Python to C++ for palmtop software development - 4 My Python2C

Below is an example of a Python2C execution with the “-vtable” option activated.

Python2C version 0.012
Programmed by Tom Simonsen (tom.simonsen@gmail.com).
###
Type in a file name or various options below.
Type "-help" to display options.
->: -vtable hw.py
Printing of the variable table activated.
Parsing and translating file "..\Tests\hw\hw.py".
VariableTable
<Global level> {"r" : LangAssName <type FLOAT>, }
VariableTable
<Global level> {"r" : LangAssName <type FLOAT>, "t" : LangAssName <type
FLOAT>, }
VariableTable
<Global level> {"s" : LangAssName <type FLOAT>, "r" : LangAssName <type FLOAT>,
"t" : LangAssName <type FLOAT>, }
VariableTable
<Global level> {"s" : LangAssName <type FLOAT>, "r" : LangAssName <type FLOAT>,
"u" : LangAssName <type STRING>, "t" : LangAssName <type FLOAT>, }
Debug info files written.
Additional source files written.
Code translated and written to files.
###
About the execution:
Nodes in the AST: 35
Total number of TST nodes created (All may not be part of the TST
structure.): 41
Parsing of the AST and creation of the TST completed in 0.1437 seconds.
Translation completed in 0.0014 seconds.
###
->:

The “-ftable” command activates the output of the function table in the same way as the “-vtable”
command activates the output of the variable table. This is also the same information that is found
in one of the debugging information files, namely the “*_func_table.txt” file. When the “-ftable”
option is active, the content of the function table is printed to the command line each time a new
function is added to this table. In the Python2C source code the variable print_func_table
governs the “-ftable” printing mode.

I have included an example of the translation of a file named “test08_functions.py” below. In
the example you can see that the return type of the function printOut has not yet been determined
when the function is added to the function table. This is a problem that occurs fairly frequently.
Often, the statements that determine the return type of the function are located further down the
code than the definition of the function itself, leading the return type of a function to be determined
at some later point in the parsing stage. If you take a look at the translated C++ code (also included
below), the return type has indeed been determined at the point of translation. The return type in this
case is “void”.

47

Translating Python to C++ for palmtop software development - 4 My Python2C

Below is the Python source code found in the file “test08_functions.py”.

#!/usr/bin/env python
def printOut(number, string):
 s = ""
 for i in range(number):
 if(i % 5) == 0:
 print "\n" + string
 else:
 print string
string = raw_input("Type a string: ")
number = int(raw_input("and the number of times it should be printed: "))
printOut(number, string)
print "\nString \"" + string + "\" printed " + str(number) + " times."

The execution example below shows what is printed to the command line when running the
test08_functions.py code through Python2C with the “-ftable” option activated. As you can
see, the return type of the printOut function has not been determined at the point of the function's
addition to the function table.

Python2C version 0.012
Programmed by Tom Simonsen (tom.simonsen@gmail.com).
###
Type in a file name or various options below.
Type "-help" to display options.
->: -ftable test08_functions.py
Printing of the funciton table activated.
Parsing and translating file "..\Tests\test08\test08_functions.py".
<"Global level"> {"printOut" : LangFunction <return type = >, }
Debug info files written.
Additional source files written.
Code translated and written to files.
###
About the execution:
Nodes in the AST: 56
Total number of TST nodes created (All may not be part of the TST
structure.): 79
Parsing of the AST and creation of the TST completed in 0.1343 seconds.
Translation completed in 0.0014 seconds.
###
->:

Finally, the code below shows the translated C++ source code. Here, the return type of the
printOut function has been determined.

/* File translated Tue Jun 07 15:55:41 2005
 * by Python2C version 0.012. */

48

Translating Python to C++ for palmtop software development - 4 My Python2C

#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
/* Forward declarations: */
void printOut(int number, char* string);
void printOut(int number, char* string)
{
 char* s;
 int i;
 s = (char*) malloc(256);
 s = "";
 for(i = 0; i < number; i += 1)
 {
 if(i % 5 == 0)

{
 cout << "\n" << string << endl;
}

 else
{
 cout << string << endl;
}

 }
}
char* string;
int number;
int main(int argc, char* argv[])
{
 printf("Type a string: ");
 string = (char*) malloc(256);
 scanf("%s", string);
 printf("and the number of times it should be printed: ");
 number = atoi(scanf("%s"));
 printOut(number, string);
 cout << "\nString \"" << string << "\" printed " << number << " times." <<
endl;
 return 0;
}

The “-ptree” command activates or deactivates the printing of the Python parser tree as it exists in
the Python parser module. The print_parser_tree variable controls this mode in the Python2C
source code. Below is an example of what an execution of Python2C looks like in this mode. (The
output has not been included in its entirety as it is too lengthy to include here. The line “...”
indicates where the output has been edited. For the complete output you are hereby encouraged to
run the Python2C program with the “-ptree” option activated.) The parser tree is more complicated
and contains more nodes than the Python abstract syntax tree. This is an example using a very
simple “Hello, world!” program. The source code of this program is found in chapter 4.1.3. Even
though the code is short and simple, the parser tree does not look short or simple to human eyes.

49

Translating Python to C++ for palmtop software development - 4 My Python2C

The Python AST excludes the code comments completely. These are present in the parser tree and
can be picked out and used for giving additional commands to Python2C. I have not implemented
any support for this in Python2C, as my intention has always been to investigate how to translate the
Python language as it is, without making any amendments to it or trying to change the language
itself.

This is an execution example showing the command line output of Python2C when the “-ptree”
option is active. The line “...” indicates where a section of the output has been removed.

Python2C version 0.012
Programmed by Tom Simonsen (tom.simonsen@gmail.com).
###
Type in a file name or various options below.
Type "-help" to display options.
->: -ptree
Printing of the parse tree activated.
->: hw.py
Parsing and translating file "..\Tests\hw\hw.py".
##
The complete parser syntax tree:

[257,
 [266,
 [267,
 [268,
 [280,
 [281,
 [1, 'import'],
 [286,
 [284, [287, [1, 'sys']]],
 [12, ','],
 [284, [287, [1, 'math']]]]]]],
 [4, '# load system and math module']]],
 [266,
 [267,
 [268,
 [269,
 [320,
 [298,
 [299,
 [300,
 [301,
 [303,
 [304,
 [305,
...
 [311, [1, 's']]]]]]]]]]]]]]]],
 [8, ')']]]]]]]]]]]]]]]],
 [4, '']]],
 [4, ''],
 [0, '']]
Debug info files written.
Additional source files written.
Code translated and written to files.
###
About the execution:

50

Translating Python to C++ for palmtop software development - 4 My Python2C

Nodes in the AST: 35
Total number of TST nodes created (All may not be part of the TST
structure.): 41
Parsing of the AST and creation of the TST completed in 0.0789 seconds.
Translation completed in 0.0007 seconds.
###
->:

4.1.1.2 The global variables

Many of the variables that are a part of Python2C's main code has already been described in the
previous chapter. These are the variables that control the various modes of Python2C, and the value
of these variables can be set and altered through the simple textual user interface. There are a few
other global variables in Python2C, and this chapter aims to identify and describe their functions.

The version of the Python2C software is set in a variable called python2c_version. As
exemplified through the command line examples from the previous chapter, the value of this
variable is printed each time Python2C starts. It is also amended to every source code file generated
by Python2C. This is to inform the user of the version of the software. The user can expect different
translation results from the different Python2C versions. The later the version the more functionality
has been added to the software, but the user can also expect more bugs and unexpected behavior
from the software the more complicated the underlying code is.

The AST_counter variable helps to add up the number of nodes in the Python AST during the
parsing stage of Python2C. Each of the visitor functions in the VisitorFunctions class increases
the value of this variable with 1. As the parsing stage is over, the AST_counter variable holds the
total number of nodes in the Python AST.

The TST_counter variable is closely linked to the “-tstnodes” option that is available through
Python2C's textual interface. This variable helps to add up the number of TST nodes that are created
during Python2C's parsing stage in the same way as the AST_counter counts the number of nodes
in the Python AST. None of these counters are actually used for anything more than just counting
the number of nodes. In this regard they only provide the user of Python2C with statistics. It does
not matter a great deal exactly how many nodes there are in the Python AST, for instance. Python2C
does not utilize this knowledge in any way during the execution. The nodes are counted and the
numbers are printed. That is it. As mentioned earlier, the TST_counter does not hold an accurate
number of the nodes in the TST, it holds the number of TST nodes that are created during
execution. Most of these nodes do end up in the TST structure, but not all. Some TST nodes that are
created during execution are intermediate and do never become a part of the TST data structure.

parse_time and trans_time are two variables that are used to time the execution of Python2C.
The results of this timing is output to the command line after each code translation is done.
Examples of what this looks like is given in the previous chapter. parse_time times the parsing
stage of Python2C and trans_time times the translation stage. The timing feature of Python2C is
not very scientific, by any standard. It measures how long the execution takes in seconds. It
completely disregards the fact that many other processes probably are running on the same
computer. As a result, the timing results may vary when Python2C translates the same code more
than once. The timing feature was included mostly for fun on my part, and it can be upgraded to
time the execution more accurately in the future.

51

Translating Python to C++ for palmtop software development - 4 My Python2C

The global part of the code also holds a number of file names. This includes the name of the Python
file that is going to be translated, the files that contain the resulting translation and the files that
contain the various debugging information. The python_file_name variable holds the name of the
Python file that contains the code that is going to be translated. cpp_file holds the file that contains
the resulting C++ translation. This may not be the entire resulting C++ code, however. The resulting
translation could easily comprise more than one file. cpp_file will always hold the C++ file that
holds the main function. If the original Python code contains class structures, the resulting C++
translation will have one file for each class in addition to the one file referred to by cpp_file. (For
more on the translation of classes see chapter 4.3.5.) More than one file will also be created when
translating a Python program that has a GUI. These additional files will be held in the variables
gui_header_file and gui_resource_file. (More on the topic of translating GUIs is found in
chapter 4.2.3.) The debugging information is written to the files that are held by the variables
v_stack_file, var_stack_file, func_table_file, ast_file and exceptions_file. These
files contain debugging information about the visitor stack, variable table, function table, Python
AST and exceptions that have occurred during execution, respectively.

Below is a table that shows the files that are output to the destination folder by Python2C. The left
column contains the variables in the source code that hold the corresponding file name in the right
column. The “*” indicates that this part of the file name will be the same as the name of the Python
source code file, without the extension. If the Python source code file is named “hw.py”, then “hw”
will replace the “*”.

4.1.1.3 The global functions

The global part of the Python2C code contains a few functions that set the program in motion.
These functions tie the structure of the program together and provide the user with an interface.

printHelp simply prints the help menu to the command line. This function is called from the
startCommandLineMenu function whenever the user enters the “-help” option. See chapter 4.1.1.1
for an example of what kind of output the printHelp function produces.

52

Variable File name
python_file_name *.py
cpp_file *.cxx
gui_header_file resource.h
gui_resource_file *.rc
v_stack_file *_visitor_stack.txt
var_stack_file *_var_stack.txt
func_table_file *_func_table.txt
ast_file *_AST.txt
exceptions_file *_exceptions.txt

Translating Python to C++ for palmtop software development - 4 My Python2C

The parseFile function is responsible for parsing and translation. It sets up all the data structures
that are required, creates names for most of the files that are going to be created and starts the
parsing and translation by calling the appropriate functions based on some of the options entered
into Python2C by the user.

checkPaths checks that the paths and file names that are given to Python2C by the user are valid.
This basically means that this functions checks three things. The path to the source folder and the
destination folder have to be existing paths. There also has to exist a file name matching the file
name the user has given for the file to be translated. This file has to exist in the source folder. If one
or more of these checks fail, the checkPaths function will return 0. If both paths are valid and the
file exists, the function returns 1. This function is called by the parseFile function with each new
parse or translation.

startCommandLineMenu is the first function to be called at the very beginning of the Python2C
execution. This function creates and displays the programs textual user interface. It provides the
user with the controls to the Python2C software. This function checks all the user input and passes it
on to other parts of the program as necessary. It checks that all the commands given by the user are
correctly formed and outputs error messages when the user makes mistakes.

4.1.2 The LanguageConstruct class and subclasses

The LanguageConstruct class is a superclass to all classes of nodes that make up the TST. There is
one class of node for each language construct in the Python language. There is also an equivalent
relationship to the functions found in the VisitorFunctions class. For each function in the
VisitorFunctions class there exists a corresponding node subclass of the LanguageConstruct
class. Each of these subclasses contain its own definition of a function named getString. This is
the function that is producing the C++ code translation for the code that is represented by an
instance of one of these classes. When the translation process is started, the getString function of
the root node in the TST is called first. This function calls the getString functions in the child
nodes being pointed to by the root node. The child nodes getString functions call getString
functions further down the TST, and so on. The entire TST is, in other words, traversed by calls to
getString functions in the TST nodes. Each TST node is responsible for producing its part of the
C++ translation. All the strings are gathered and output to the C++ source code files.

All the names of the subclasses to the LanguageConstruct class bear the same name as in the
Python compiler.ast module documentation. The only difference is that I have added the string
“Lang” to the beginning of each class name, making “Add” “LangAdd”, “And” “LangAnd” and so
on. I have chosen to do this to make it clear that these are new classes of objects that contain
different and additional information compared to the original Python counterparts. The new objects
are a part of a new syntax tree structure that is an altered and decorated version of the original
Python AST. New classes of objects have been added and additional information is stored in
modified versions of the original Python AST node objects.

There are two special classes of nodes that have been added to make the translation to C++ a little
easier. These classes do not have a corresponding visitor function. These two added classes are
LangCreate and LangMain. An instance of LangMain is meant to represent the main function in the
translated C++ code. A Python program may have no main function, and as such, this class helps to
contain all the code that should be put in the main function in the resulting translation.

53

Translating Python to C++ for palmtop software development - 4 My Python2C

The LangCreate class of objects is designed to hold created variables. These objects are a part of
translating variable creation, as variable creation is treated differently in Python and C++. More on
the problem of variable creation can be found in chapter 4.3.1.

The table below shows the relationship between all the LanguageConstruct subclasses and the
visitor functions. It also points out the classes and visitor functions that have been implemented in
the current version of Python2C. A “Yes” in the rightmost column does not mean that the class and
its corresponding visitor function has been fully implemented. A lot of work may still need to be
done. As for the ones with a “No” in the rightmost column, they do exist in the source code. The
classes and corresponding functions are defined. Objects of the “No”-classes are never created
and the visitor function does not really do anything.

...

...

54

Visitor functions Implemented
LangAdd visitAdd Yes
LangAnd visitAnd No
LangAssAttr visitAssAttr Yes
LangAssList visitAssList No
LangAssName visitAssName Yes

Subclasses of LanguageConstruct

Translating Python to C++ for palmtop software development - 4 My Python2C

55

LangAssTuple visitAssTuple No
LangAssert visitAssert No
LangAssign visitAssign Yes
LangAugAssign visitAugAssign No
LangBackquote visitBackquote No
LangBitand visitBitand No
LangBitor visitBitor No
LangBitxor visitBitxor No
LangBreak visitBreak No
LangCallFunc visitCallFunc Yes
LangClass visitClass Yes
LangCompare visitCompare Yes
LangConst visitConst Yes
LangContinue visitContinue No
LangCreate Yes
LangDict visitDict Yes
LangDiscard visitDiscard No
LangDiv visitDiv Yes
LangEllipsis visitEllipsis No
LangExec visitExec No
LangFor visitFor Yes
LangFrom visitFrom Yes
LangFunction visitFunction Yes
LangGetattr visitGetattr Yes
LangGlobal visitGlobal No
LangIf visitIf Yes
LangImport visitImport Yes
LangInvert visitInvert No
LangKeyword visitKeyword No
LangLambda visitLambda No
LangLeftShift visitLeftShift No
LangList visitList Yes
LangListComp visitListComp No
LangListCompFor visitListCompFor No
LangListCompIf visitListCompIf No
LangMain Yes
LangMod visitMod Yes
LangModule visitModule Yes
LangMul visitMul Yes
LangName visitName Yes
LangNot visitNot No
LangOr visitOr No
LangPass visitPass No
LangPower visitPower No
LangPrint visitPrint No
LangPrintnl visitPrintnl Yes
LangRaise visitRaise No
LangReturn visitReturn Yes
LangRightShift visitRightShift No

Translating Python to C++ for palmtop software development - 4 My Python2C

4.1.3 The VisitorFunctions class

The VisitorFunctions class holds all the visitor functions that are called by the walk function in
the compiler.visitor module. walk is responsible for walking the Python AST structure. In
Python2C this is done by calling the walk function and supplying the root node of the Python AST
as an argument. walk will then call the appropriate visitor function for each of the nodes pointed to
by the root node. The name of the function it tries to call is “visit” followed by the name of the
Python class that the node belongs to. If the node is an object of the class Assign, for instance, the
visitAssign function will be called, if it exists. The visitor functions will in their turn call the
walk function and supply the root of the current subtree as argument. This process goes on until the
entire syntax tree has been traversed and all the nodes have been visited. The walk of the Python
AST is output to the “*_AST.txt” file. Below is an example of such a file and the Python source
code is was derived from. The numbers on the left in the file indicate the number of nodes in the
AST. For this particular source code the AST is made up of 35 nodes.

This is a simple Python “Hello, world!” program contained in a file called “hw.py”.

#!/usr/bin/env python
import sys, math # load system and math module
r = t = float(sys.argv[1]) # extract the 1st command-line arg.
s = 1 + math.sin(r)
u = ""
print "Hello, World! sin(" + str(r) + ")=" + str(s)

This is the resulting contents of the “hw_ast.txt” file.

##
The complete compiler AST:
Module(None, Stmt([Import([('sys', None), ('math', None)]), Assign([AssName('r',
'OP_ASSIGN'), AssName('t', 'OP_ASSIGN')], CallFunc(Name('float'),
[Subscript(Getattr(Name('sys'), 'argv'), 'OP_APPLY', [Const(1)])], None, None)),
Assign([AssName('s', 'OP_ASSIGN')], Add((Const(1),
CallFunc(Getattr(Name('math'), 'sin'), [Name('r')], None, None)))),
Assign([AssName('u', 'OP_ASSIGN')], Const('')),
Printnl([Add((Add((Add((Const('Hello, World! sin('), CallFunc(Name('str'),

56

LangSlice visitSlice Yes
LangSliceobj visitSliceobj No
LangStmt visitStmt Yes
LangSub visitSub Yes
LangSubscript visitSubscript Yes
LangTryExcept visitTryExcept No
LangTryFinally visitTryFinally No
LangTuple visitTuple Yes
LangUnaryAdd visitUnaryAdd No
LangUnarySub visitUnarySub No
LangWhile visitWhile Yes
LangYield visitYield No

Translating Python to C++ for palmtop software development - 4 My Python2C

[Name('r')], None, None))), Const(')='))), CallFunc(Name('str'), [Name('s')],
None, None)))], None)]))
##
The walk of the AST:
1 visitModule

|--> (None, Stmt([Import([('sys', None), ('math', None)]),
Assign([AssName('r', 'OP_ASSIGN'), AssName('t', 'OP_ASSIGN')],
CallFunc(Name('float'), [Subscript(Getattr(Name('sys'), 'argv'), 'OP_APPLY',
[Const(1)])], None, None)), Assign([AssName('s', 'OP_ASSIGN')], Add((Const(1),
CallFunc(Getattr(Name('math'), 'sin'), [Name('r')], None, None)))),
Assign([AssName('u', 'OP_ASSIGN')], Const('')),
Printnl([Add((Add((Add((Const('Hello, World! sin('), CallFunc(Name('str'),
[Name('r')], None, None))), Const(')='))), CallFunc(Name('str'), [Name('s')],
None, None)))], None)]))
2 visitStmt

|--> (Import([('sys', None), ('math', None)]), Assign([AssName('r',
'OP_ASSIGN'), AssName('t', 'OP_ASSIGN')], CallFunc(Name('float'),
[Subscript(Getattr(Name('sys'), 'argv'), 'OP_APPLY', [Const(1)])], None, None)),
Assign([AssName('s', 'OP_ASSIGN')], Add((Const(1),
CallFunc(Getattr(Name('math'), 'sin'), [Name('r')], None, None)))),
Assign([AssName('u', 'OP_ASSIGN')], Const('')),
Printnl([Add((Add((Add((Const('Hello, World! sin('), CallFunc(Name('str'),
[Name('r')], None, None))), Const(')='))), CallFunc(Name('str'), [Name('s')],
None, None)))], None))
3 visitImport

|--> ([('sys', None), ('math', None)],)
4 visitAssign

|--> (AssName('r', 'OP_ASSIGN'), AssName('t', 'OP_ASSIGN'),
CallFunc(Name('float'), [Subscript(Getattr(Name('sys'), 'argv'), 'OP_APPLY',
[Const(1)])], None, None))
5 visitAssName

|--> ('r', 'OP_ASSIGN')
6 visitAssName

|--> ('t', 'OP_ASSIGN')
7 visitCallFunc

|--> (Name('float'), Subscript(Getattr(Name('sys'), 'argv'), 'OP_APPLY',
[Const(1)]), None, None)
8 visitName

|--> ('float',)
9 visitSubscript

|--> (Getattr(Name('sys'), 'argv'), 'OP_APPLY', Const(1))
10 visitGetattr

|--> (Name('sys'), 'argv')
11 visitName

|--> ('sys',)
12 visitConst

|--> (1,)
13 visitAssign

|--> (AssName('s', 'OP_ASSIGN'), Add((Const(1),
CallFunc(Getattr(Name('math'), 'sin'), [Name('r')], None, None))))
14 visitAssName

|--> ('s', 'OP_ASSIGN')
15 visitAdd

|--> (Const(1), CallFunc(Getattr(Name('math'), 'sin'), [Name('r')], None,
None))
16 visitConst

|--> (1,)
17 visitCallFunc

|--> (Getattr(Name('math'), 'sin'), Name('r'), None, None)
18 visitGetattr

|--> (Name('math'), 'sin')

57

Translating Python to C++ for palmtop software development - 4 My Python2C

19 visitName
|--> ('math',)

20 visitName
|--> ('r',)

21 visitAssign
|--> (AssName('u', 'OP_ASSIGN'), Const(''))

22 visitAssName
|--> ('u', 'OP_ASSIGN')

23 visitConst
|--> ('',)

24 visitPrintnl
|--> (Add((Add((Add((Const('Hello, World! sin('), CallFunc(Name('str'),

[Name('r')], None, None))), Const(')='))), CallFunc(Name('str'), [Name('s')],
None, None))), None)
25 visitAdd

|--> (Add((Add((Const('Hello, World! sin('), CallFunc(Name('str'),
[Name('r')], None, None))), Const(')='))), CallFunc(Name('str'), [Name('s')],
None, None))
26 visitAdd

|--> (Add((Const('Hello, World! sin('), CallFunc(Name('str'), [Name('r')],
None, None))), Const(')='))
27 visitAdd

|--> (Const('Hello, World! sin('), CallFunc(Name('str'), [Name('r')],
None, None))
28 visitConst

|--> ('Hello, World! sin(',)
29 visitCallFunc

|--> (Name('str'), Name('r'), None, None)
30 visitName

|--> ('str',)
31 visitName

|--> ('r',)
32 visitConst

|--> (')=',)
33 visitCallFunc

|--> (Name('str'), Name('s'), None, None)
34 visitName

|--> ('str',)
35 visitName

|--> ('s',)

For every visitor function there is a matching class to be found in the subclasses of the
LanguageConstruct class, but there is no one-to-one relationship between the functions and the
classes. There are only so many visitor functions as there are types of objects in the Python AST.
All the added classes of objects that are a part of the TST (and not part of the Python AST) have no
corresponding visitor function. The creation of the objects of the additional TST classes are taken
care of within the visitor functions. visitStmt, for instance, is responsible for creating LangStmt
objects and adding them to the TST structure. In some cases it has to create a LangMain object
instead.

The VisitorFunctions class does not only contain the visitor functions. It also holds a few other
important elements of the Python2C program. The first and perhaps the most important one is the
pointer to the VStack instance, stored in the variable v_stack. The VStack is described in detail in
chapter 4.1.5.

The second element is a pointer called global_constructs. This is a pointer that always points to
the TST node that represents the main function, an instance of the LangMain class. Easy access to

58

Translating Python to C++ for palmtop software development - 4 My Python2C

the main node is quite useful since new additions to the main function's contents are made quite
frequently during the traversal of the AST. A direct pointer is more efficient than having to do a
search of the TST each time the LangMain object is needed. The “main code” in a Python program
can be found in many locations in the source code, since this part of the code does not have to be
contained within something like a class or a function. C++, on the other hand, requires the main
code to be put in a function called “main”. The LangMain object also holds information about the
overall structure of the translated program. All include statements, classes, global variables and
forward declarations of functions are pointed to by this object.

Third, the VisitorFunctions class holds a number of flags that are used to check what part of the
code an AST Stmt object is part of. The Stmt object contains all statements in a code block, the part
of the code that you would find within brackets “{}” in C++. The brackets are replaced by
indentation of the lines of the code statements in Python. To be able to easily determine if the
statements the Stmt object points to are part of a class, a function or a conditional structure (else, if,
for and while) flags are set and checked by visitClass, visitFunction, visitWhile and other
functions. These flags make it easier to determine what part of the code an Stmt object is part of,
and appropriate action can be taken on the basis of this information. These flags are inside_class,
inside_function and inside_conditional.

The flags are also useful for debugging. The variable and function tables can be validated more
easily when additional information in the form of the flags are present. It is easier to check if a
variable or function is global or part of a class, for instance, and if it has been added to the tables
correctly by Python2C.

4.1.4 The Stack class

This is a simple implementation of a stack data structure by using the Python language's built-in list
structure. It contains the common stack functions push and pop that add an object to the top of the
stack and remove an object from the top of the stack, respectively. In addition, this class also
contains the function getTop that returns the object at the top of the stack. The function isEmpy
returns 1 if the stack does not contain any objects and 0 if it contains objects. Instances of the Stack
class are used to make up the VariableTable class' data structure.

4.1.5 The VStack class

General

This class is very similar to the Stack class and the name “VStack” is short for “Visitor Stack”.
Only one instance of this class is created during the execution of Python2C and the v_stack
variable in the VisitorFunctions class points to this object. This VStack object is a vital part of
the data structure that is used during the traversal of the Python AST, and it serves as the parsing
stack for the creation of the TST. Every syntactic element or AST node is pushed onto the top of it
as the AST is being traversed. When the parsing of the particular syntactic element is done, the
element is popped off the visitor stack.

The top element of this stack is used to build the “translated syntax tree”, or TST, structure. When
parsing a sub-element of a syntactic structure the parent structure is always the top element of this
stack. The child element is then linked to its parent in the TST structure before the child element is
pushed on top of the stack. The resulting TST structure is very similar to the Python AST structure,

59

Translating Python to C++ for palmtop software development - 4 My Python2C

that is obtainable through the compiler.ast module. The TST is created from traversing the
Python AST, and the AST and the TST are therefore closely related. The TST is an altered and
decorated version of the Python AST. The translated C++ source code is translated from the TST
structure, and all the extra information is added to the TST to aid this translation.

The internal functions

The VStack's functions are basically identical to the ones of the Stack class. The only difference is
that the VStack's pop function writes debugging information to the “*_visitor_stack.txt” file
in addition to popping the top element. Each time the VStack is popped, the textual representation
of the contents of the entire stack is added to this file.

4.1.6 The VariableTable class

General

An instance of the VariableTable class makes up Python2C's internal symbol table structure
together with an instance of the FunctionTable class. The VariableTable object maintains a stack
of all variables reachable from the scope that is currently being parsed by the code. When the
parsing stage is finished the VariableTable's stack contains no variables.

The data structure

The VariableTable class is made up of two separate internal stack structures. The first and most
important of these two is the one made up of a list of dictionaries, using the built-in Python list and
dictionary structures. The top of this stack contains a dictionary containing all the variables declared
in the current scope of the code. The names of the variables are the keys in this dictionary and the
LanguageConstruct objects are the values. The variables created outside the current scope are
stored in the stack elements below the top.

The second internal stack is an instance of the Stack class. Each stack element contains a list of the
values of the VisitorFunctions' inside_class, inside_function and inside_cond flags. The
top element of this stack corresponds to the top element of the first stack. This part of the data
structure keeps track of where the variables where created. For instance, if the variables were
created inside a function inside a class, both the inside_class and the inside_function flags
would be set to 1 and inside_cond set to 0.

This class implements the “most closely nested” rule. This rule states that variables that are not
created in the same scope can use the same names. The scope in which a variable is created,
together with its name, identifies the variable uniquely. When the VariableTable is asked to look
up a variable by name it checks the current scope for a variable with this name. If it exists, then this
is the variable that is looked up. If no variable with this name exists in the current scope the search
continues down the stack until a variable with a matching name is found or until the bottom of the
stack is reached.

The internal functions

In addition to the usual push and pop functions this class contains the functions find, getType,
getValue, getObject, addToTop, getTop, isEmpty and getFlagList. The find, getType,

60

Translating Python to C++ for palmtop software development - 4 My Python2C

getValue and getObject functions searches the stack for a variable with a matching name
according to the most closely nested rule. If found the “find” function returns the value 1, if it is not
found the value 0 is returned. getType returns the type of the variable if it exists. If the variable is
not found it returns the empty string. getValue and getObject both return objects or none if the
variable does not exist. getValue returns the value currently stored in the variable. This is not fully
implemented in Python2C and this function is not in use. getObject returns the variable object
stored in the VariableTable stack.

addToTop is not the same as the push function. The push function pushes an entirely new dictionary
to the top of the stack while addToTop adds a new entry to the already existing dictionary at the top
of the stack.

getTop returns the top element of the VariableTable. isEmpty returns the value 1 or 0 based on
whether the stack is empty or not, respectively. getFlagList returns the entire internal stack
containing the flags.

4.1.7 The FunctionTable class

General

The FunctionTable class differs a bit from the VariableTable class. The VariableTable only
provides temporary storage for the variables during parsing of the code. After the parsing process is
over the VariableTable is empty and no longer in use. The FunctionTable, however, is set up
during the parsing of the Python source code, and its contents continue to exist after the parsing has
ended. Its job is to maintain a table of all classes and functions in the parsed program. It also maps
the functions to the classes that they belong to. A function that is not declared inside a class belongs
to the “Global level”. All the static functions, the ones that are declared outside classes, are
translated to be a part of this level.

The data structure

The FunctionTable also differs from the VariableTable when it comes to the structuring of the
data. Where the VariableTable is implemented as a stack structure the FunctionTable actually
has more of a table structure. It consists of two internal dictionaries called function_table and
class_table. The first one of these is a dictionary containing dictionaries, with the class names as
keys. Each dictionary entry in the function_table contains a dictionary that contains all the
functions that have been declared in the source code of the class in question. The names of the
functions are the keys in this dictionary and the values are pointers to the corresponding
LangFunction objects. The class_table is a dictionary that contains a mapping between the class
names and their corresponding LangClass objects.

The internal functions

The FunctionTable contains the functions addClass, getClass, getClassFunctions,
addFunction and getFunction. Since the FunctionTable is not implemented as a stack, it does
not contain the usual push and pop functions.

The names for the functions are relatively self-explaining. The addClass function adds a TST class
object (an instance of the LangClass class) to the FuctionTable structure. In the internal

61

Translating Python to C++ for palmtop software development - 4 My Python2C

function_table, a new entry is added with the name of the class as the key. An empty dictionary
that will hold the functions of the class is set as the value of this new entry. These functions can be
added using addFunction explained in more detail below. addClass also adds a new entry to the
internal class_table. The key of this entry is the class name and the value is the TST LangClass
object.

The getClass function is used to look up the name of a class in the FunctionTable. If it finds a
matching name among the keys of the class_table, the object stored in the corresponding value in
this dictionary will be returned.

getClassFunctions is also a look-up function, used to return all the functions of a class. If this
function finds a matching class name in the function_table, the entire dictionary stored in this
class name's entry is returned.

addFunction adds a function object to the FunctionTable by adding it to the internal
function_table dictionary. To be able to add a function's object to the FunctionTable's structure
you have to provide addFunction with the name of the class that the function belongs to. If the
function does not belong to any class and is a global or static function, it has to be added to the
“Global level”. The string “Global level” is used as the “class name” in this case. The “Global
level” entry in the FunctionTable is always present in the structure, and adding a function to it is
not any different from adding a function to a class.

Known weaknesses

There is currently no implemented support for subclasses in Python2C. The structure of the
FunctionTable does support this, however. All LangClass objects contain information about
inheritance in the form of the names of the parent classes. The parent classes and their functions can
therefore be looked up in the FunctionTable.

4.1.8 The Translator class

The Translator class is responsible for overseeing the translation process. It holds what I have
chosen to name the TST (Translated Syntax Tree) and various translation tables and dictionaries. In
Python2C there is no TST class, a value in the TST list in the Translator class points to the top
element in the TST node structure that is created in the parsing stage of the Python2C execution.
The Translator class contains functions for searching the TST in various ways and functions for
correctly adding variables to the variable table.

4.1.8.1 The translated syntax tree (TST)

The reference to the top TST node is held in the first element of a list named TST. The reason that
this variable is a Python list structure and not a regular pointer is that an implementation using a list
opens the possibility for storing more than one TST during the Python2C execution. Using more
than one syntax tree structure during parsing or translation can be useful for many reasons. It can be
used to keep back-ups of different versions of the same TST as the TST is altered as the program is
executing. Many compilers use different stages in the compilation process. In some
implementations the reason for keeping these separate is that it is better if the stages do not
overwrite the same data structures or files. Many compilers also utilize the different stages to create
different versions of the syntax tree. The first parsing stage of the compiler may create the first and

62

Translating Python to C++ for palmtop software development - 4 My Python2C

preliminary version of the syntax tree, a second parsing stage may create a “decorated” version of
the syntax tree that contains extra information of different sorts, a third stage may traverse the
decorated version of the syntax tree to produce a more optimal version of it and so on. This
optimization is usually performed to make the resulting target code more efficient.

4.1.8.2 The abstract syntax tree (AST)

The current implementation of Python2C does not take advantage of a multiple stage strategy to
manipulate the TST, but code that uses this feature can be added at some later point, without having
to make changes to the existing first-stage code. The translation process executed by Python2C can
be seen as having more than one stage, never the less. The first stage of the process is executed by
the Python compiler. It scans and parses the source code to create an abstract syntax tree (AST),
which can be obtained through Python's compiler modules.

In Python2C the traversal of the AST to create the TST is done by using the walk function found in
the compiler.visitor module, as already mentioned. This function is responsible for traversing
the AST correctly from top to bottom. All the visitor functions reside in the VisitorFunctions
class, which is documented in chapter 4.1.3.

4.1.8.3 The variable table

The Translator class holds the pointer to the variable table, which is named stack_of_variables
because of its internal data structure (See chapter 4.1.6 for a detailed description of this structure).
Every time the Python2C encounters a variable in the code it is translating, it consults the variable
table to check if the variable exists or not. The consulting itself is done through calling two
functions in the Translator class. The first one of these is checkVariable. This function consults
the variable table directly and takes the appropriate action depending on whether the variable exists
in this table or not. If the variable does not exist, the createVariable function is called to create
the variable and add it to Python2C's data structures correctly.

Python2C generates a few extra variables in some cases. These are variables that do not exist in the
original Python source code but have to exist in the translated C++ source code to make the
translated program work. These variables are typically created whenever a for loop is being
translated. (This is explained further in chapter 4.3.3.) To avoid creating a new variable with a name
that is already in use and to avoid conflicts the checkVariable function also ensures that a created
variable receives a unique name that is not in use by the Python program that is being translated.
Firstly, the name that is suggested for the new variable is fairly long and is therefore less likely to be
in use. When you have two or more while or for loops occurring in the same scope, variable names
are most likely to already be in use. This is because Python2C will suggest the same name for the
variable each time. In this case a number is added at the end of the name starting on 1 and
increasing with the number of conflicting names.

When a variable name is completely new, meaning that it does not exist in the variable table,
checkVariable calls createVariable. createVariable, which the name suggests, is responsible
for adding the variable object to the variable table. It is also responsible for determining the type of
the variable, if this is possible at this stage in the code.

In some cases the type of a variable can be very hard to determine. The more complex an
assignment statement is, the harder it is to determine the type. Another case, that occurs frequently,

63

Translating Python to C++ for palmtop software development - 4 My Python2C

is when the part of the statement that assigns the value refers to a part of the code that has not yet
been parsed by Python2C. In this case the createVariable function has no way of determining the
type and the determination has to be done at some later point in the translation process. The current
version of Python2C has a very limited support for checking the type later. The best way to make
sure that the types of all variables have been determined correctly is to do a second traversal of the
syntax tree. In practice, this would be done by a second pass of the TST. As mentioned earlier in
this thesis, Python2C supports multiple passes of the syntax tree structure but it remains to be
implemented.

4.1.8.4 The function table

Python2C's function table structure is pointed to by function_table in the Translator class.
Unlike the checking and creation of variables described above, the Translator class has no
functions for controlling the checking and creation of functions. All the checking is done by code
found in some of the LanguageConstruct classes, some of the VisitorFunctions functions and
the code in the FunctionTable class. The data structure of the function table is made up of an
instance of the FunctionTable class, described in more detail in chapter 4.1.7.

4.1.8.5 The various translation tables

The Translator class contains quite a few translation tables that are implemented as Python
dictionaries. These tables can roughly be divided into two categories: The ones that translate
something and the ones that keep track of something. The ones that translate something are usually
filled out by hand, and the ones that keep track of something are usually filled out by Python2C as it
is running. The important variable table and function table are also pointed to by variables in the
Translator class.

The module_table contains the modules that can be translated or partially translated by an
#include in the translated C++ code. Python's math module is a good example. This module is very
similar to math.h, which is the C++ equivalent. Both the math module and math.h have the same
purpose and functionality. The functions correspond and have the same names to a good extent. If
the math module is imported in the Python code, then math.h should be included in the translated
C++ code. The translation of a complete Python module is of course not as easy as just importing
the C++ equivalent. Each function in the module may have to be translated as well. In some cases it
is enough to have a table that lists what each of these functions return. This is largely the case with
the math module. In other cases the translation of a module function has to be done by writing the
function by hand in C++ code and including this C++ code as a part of the translated target code.

64

Translating Python to C++ for palmtop software development - 4 My Python2C

imported_modules and imported_modules_from are two tables that keep track of the modules
that have been imported in the Python code. imported_modules keeps track of the modules that
have been imported using the import statement. imported_modules_from keeps track of the ones
that have been imported using the from statement. The reason to separate these two import tables is
the fact that the two import statements have different meanings. When a standard import statement
is used to import a Python module, the functions in the module can only be referenced by referring
to the imported module. The pow function in the math module, for instance, can only be referenced
by math.pow, if this is the case. If the math module is imported through a from statement, its pow
function can now be referenced directly, without using the name of the module. A call to pow will
call the math module's pow function. The two tables make it easier to decide what function is being
called in the Python code and to keep track of the modules that were imported in the one or the
other way.

standard_includes is a list of all the C++ #include directives that are always present in the
translated code, regardless of the program that is being translated. A list of all the #includes that
are generated by Python2C's traversal of the AST is held in generated_includes. This is a list of
all the #includes that must be a part of the C++ code in addition to the standard includes, to make
the translation complete.

The types dictionary is also among the translation tables, containing a complete list of all supported
Python2C types that are used in the TST. Most of the types in this dictionary correspond to types
found in Python, but they have their own Python2C name to distinguish them from their Python
equivalents. These names are all written in capital letters. The Python2C types are listed as the keys
in the dictionary and the values are the corresponding types found in C++. Not all of the Python2C
types in the types table have C++ or real Python equivalents. This is true for all the types related to
the translation of the Tkinter module. More on this is found in the chapter dealing with GUI
translation (chapter 4.2).

Below is the dictionary types as it appears in the Translator class.

This dictionary contains a mapping between the string representations used for
types in this program and the string representations used in C++.
types = {"FLOAT": "double",
 "INT": "int",
 "STRING": "char*",
 "VOID": "void",
 "LIST": "struct List*",
 "TUPLE": "struct Tuple*",
 "DICT": "struct Dict*",
 "LISTNODE": "struct ListNode*",
 "TUPLENODE": "struct TupleNode*",
 "TOPLEVEL": "TOPLEVEL",
 "FRAME": "FRAME",
 "BUTTON": "BUTTON",
 "CANVAS": "CANVAS",
 "CHECKBUTTON": "CHECKBUTTON",
 "ENTRY": "ENTRY",
 "LABEL": "LABEL",
 "LISTBOX": "LISTBOX",
 "MENU": "MENU",
 "MENUBUTTON": "MENUBUTTON",
 "RADIOBUTTON": "RADIOBUTTON",

65

Translating Python to C++ for palmtop software development - 4 My Python2C

 "SCALE": "SCALE",
 "SCROLLBAR": "SCROLLBAR",
 "TEXT": "TEXT",
 "NOTYPE": "/* Python2C Error NOTYPE */",
 # The type should never be of type "NOTYPE"
 # at the point of translation.
 "": "/* Python2C Error \"\" */"
 # The type should never be the empty string
 # at the point of translation.
 }

tkinter_types is a dictionary that contains all of the types related to the translation of the Tkinter
module. This is basically just a look-up table, used to check if a type is a Tkinter type. All the
Tkinter types are also listed in the types dictionary, as you can see above. Tkinter types do not
really exist in the Python language and is something uniquely created for Python2C to make it easier
to translate GUIs. When an object can be identified as a part of a program's GUI, it makes it easier
to keep the GUI translation less dependent on the rest of the code. All objects that have some
function in the GUI are labeled and their function in the GUI is pointed out by their type.

Below is the dictionary tkinter_types as it appears in the Translator class. The values for all
the Tkinter types are empty strings as there exists no C++ equivalents.

tkinter_types = {"TOPLEVEL": "",
 "FRAME": "",
 "BUTTON": "",
 "CANVAS": "",
 "CHECKBUTTON": "",
 "ENTRY": "",
 "LABEL": "",
 "LISTBOX": "",
 "MENU": "",
 "MENUBUTTON": "",
 "RADIOBUTTON": "",
 "SCALE": "",
 "SCROLLBAR": "",
 "TEXT": ""}

The Translator class also contain a number of translation tables that list the functions or variables
in various Python modules. The keys in these tables are the names of the variables or functions and
the values are their types or return types respectively. Some of these tables are
functions_module_math, functions_module_tkinter and vars_module_sys. I have created
some sort of a naming convention for these tables. As exemplified by the three tables that I have
mentioned above, this naming convention is as follows: The first part indicates whether the module
contains a mapping of functions and their return types or variables and their types. The second part
indicates that it is a module. If this part does not say “module” it might say “python_lang” instead,
indicating that the table contains a mapping for some functions or variables found in the Python
language. The third, and last part, names the module in question, pointing out the module that
contains the functions or variables. If the second part reads “python_lang” then there is no third
part.

66

Translating Python to C++ for palmtop software development - 4 My Python2C

4.1.8.6 Translation of Python data types

The list, the tuple and the dictionary are data types that are a part of the Python language, but
equivalent data types do not exist in the C++ language. If Python2C is going to be able to translate
programs that use these data types, these data types must be given their C++ equivalents. I chose to
do this by implementing a list, a tuple and a dictionary in pure C, not C++. Coding it in C is a bit
more cumbersome, but hopefully it will make the translated code run more efficiently. All of the
names of the files containing this C source code are in the standard_includes table, described in
the previous chapter. The lists, tuples and dictionaries are frequently in use in a typical Python
program, so I chose to always have them as a part of the translated C++ code. All the files in the
standard_includes table are always included in any program translated by Python2C. This can be
seen in the many code examples throughout this thesis.

The source_code_files list holds the file names that contain the C source code for the above
mentioned data structures. These files are stored in the same folder as the Python2C source code.
When a program is translated by Python2C, all of these files are copied to the destination folder
along with all the other files related to the translation.

The python2ctypesheader.h file

The python2ctypesheader.h file is included by all the files that comprise the C translation of the
Python data types. This file defines the types NoType, IntType, DoubleType, StringType,
ListType, TupleType and DictType by setting them to values in a C enumeration. The NoType
value is a value indicating that no type has been set in the C struct in question. The C structs
List, Tuple and Dict are also defined in this file in addition to some definitions that set the size of
the amount of memory that is allocated by certain elements.

CHAR_PER_NODE1, CHAR_PER_NODE2 and DICT_CHAR_PER_INDEX are precompiler definitions that
can have their values altered according to what is required by the translation task at hand. These
three values are a part of determining the size of the string buffers used when printing the textual
representation of the contents of the data types. CHAR_PER_NODE1 is a part of setting the string buffer
size for each individual tuple or list node, and CHAR_PER_NODE2 is a part of setting the size of the
string buffer used for each entire List or Tuple. DICT_CHAR_PER_INDEX sets the size of the string
buffer used for printing an entire dictionary. The value corresponds to number of characters per
index in the dictionary. If there are 1000 indexes in the dictionary and the value of
DICT_CHAR_PER_INDEX is 4, the buffer will be 4000 characters long. The DICT_SIZE value sets the
number of indexes in a dictionary.

The List

All of the translated Python types have been coded in C by creating data structures from C structs
and pointers. The list structure, contained in the file python2clist.h is built up of a singly linked
list, where the nodes contain only one pointer to to next node in the list sequence. The list structure
has a head pointer that points to the first node in the list and a tail that points to the last node in the
list. It also stores its length (its number of nodes) and the type of variables its nodes hold. All the
nodes in one list can only store values of the same type. An attempt to add an integer to a list
containing doubles would result in an error being generated. The list cannot change its type during
execution, although this is fully possible considering the data structure alone.

67

Translating Python to C++ for palmtop software development - 4 My Python2C

The list nodes, defined in python2clistnode.h, contain storage space for each type of value it can
hold. These values are: int, double, char*, List*, Tuple* and Dict*. In addition to the pointers
and the values, the nodes hold an integer variable type that stores a number defining the type of
value stored in the List node. This is a value between 0 and 6 that corresponds to the values
defined in the enumeration in the file python2ctypesheader.h. Lastly, the nodes contain a char*
key that is only in use when a List node is a part of a dictionary structure, explained later. The
python2clistnode.h file is included by both python2clist.h and python2cdict.h, since these
two structures use the same node structs.

The Tuple

The tuple structure has a lot in common with the list structure described in the above section. It is
also built using a singly linked list structure where the nodes only contain one pointer to the
following node. It has a head and a tail node and keeps track of the number of nodes it holds. The
difference is that it does not care about what type of data the nodes hold. A tuple can hold a
combination of all types of data in any sequence.

The tuple nodes are defined by the code in the file python2ctuplenode.h. This file is included by
the python2ctuple.h file that defines the functionality of the tuple structure. These nodes are very
similar to their list counterparts and the only thing that tells them apart is the fact that the tuple
nodes do not have the key variable.

You can not append or delete items in a Python tuple. This is indeed possible in my translation of
this structure, although a translation from Python to C++ that is using this feature is not possible
since it does not exist in Python. In my translation it is also possible to assign a value to a tuple
element (such as the statement tuple[2] = 1). This is also not possible in the Python language. All
in all, my translation of the tuple data type is not as rigid as the Python version of the same
structure. That aside, my translation should retain all the functionality of its Python counterpart.

The Dict

The C translation of the dictionary data type is implemented as a hash table. The size of this table is
set by the DICT_SIZE in the python2ctypesheader.h file and cannot be changed during execution.
The table consists of a single array that contain pointers to Lists. The hash function uses the key
string to compute the index at which the new element is going to be stored. When a new element is
added a new List is created, and the pointer in the array at the computed index will point to this
List. The new element is then inserted into this List as a ListNode. If a List is already being
pointed to at the computed index, a collision has occurred. Two or more elements are now being
stored at the same index in the dictionary. The new element is simply added to the end of this List
and the number of collisions for the dictionary is increased by one. The key variable in the
ListNode is used to store the key string when the ListNode is a part of a Dict.

As already indicated, the Dict stuct contains a collisions variable that stores the number of
collisions that has occurred in this dictionary. The fewer indexes a dictionary has, the more likely
these collisions become. The standard value of DICT_SIZE is 1000, which is quite a small number
when considering the norm for the size of the typical hash table structure. This number has mostly
been set this low for debugging purposes, so that collisions do occur rather frequently.

The Dict struct also stores its own size. In this case the size relates to the number of indexes in

68

Translating Python to C++ for palmtop software development - 4 My Python2C

the hashed array. The actual number of elements is stored in the num_elements variable. The
dictionary also has a type variable, meaning that it can only store one type of data. The type of the
dictionary can not change during execution, making the Dict a stricter data structure than the one
found in Python.

Currently the Dict structure has no getKeys function, making it impossible to translate calls to the
keys function of a Python dictionary. This function can be added rather easily. Python2C will not
translate statements like i = dict[“abc”], since this feature has not been developed as yet.

4.2 Translating GUIs

I have done a bit of investigating when it comes to translating the Python Tkinter module to
Windows CE GUI. No implementation of this has been made a part of my Python2C translator,
although some of the data structuring that is required is present in the source code in the current
version.

My solution is based on the idea that the GUI translation should be done with only one pass of the
TST, as is the case with the rest of the translation of Python to C++. As mentioned earlier,
Python2C does not currently support multiple passes. The GUI translation should not be any
different in this regard, the way I see it. This does require, however, that the GUI code is structured
in a certain way for a one pass algorithm to be able to translate as much as possible and make the
translated code work. The programmer cannot structure the Python GUI code in any way he wants
to or is accustomed to. Why this is and how the code should be structured is discussed in this
chapter. This chapter serves as a description of how GUI translation could be automated using
Python2C.

4.2.1 The GUI class

When you have only one pass in which to translate the Python GUI there is one fundamental issue
that requires attention: Each GUI element has to be identified before it is referenced. Each GUI
element in the Python source code can be referenced as any other type of variable. If a reference to a
variable is placed at line 13 and the creation of this variable is done on line 509, then Python2C will
not realize that it is dealing with a reference to a GUI element (or widget) while it is examining the
code on line 13. This could lead to an erroneous translation. The Windows GUI code uses a handler
function for each displayed dialog. Tkinter does not require this. In Tkinter a function is normally
called based on the action that just took place. It is the GUI element that registered the action that is
responsible for taking action. This could amount to several functions being called depending on the
actions that a particular widget listens for. In Windows the handler function is always called. It is
this function that decides what to do based on the action that just took place. Thus, it is very
important for Python2C to know when it is dealing with a GUI element. For the handler function to
be called, it is required that the handler function exists in the target code. Python2C has to parse the
creation of the GUI element before any reference to it, to be able to generate a handler function
definition for that specific GUI element.

Windows GUI programming is what I would label as “dialog-oriented”. The GUI is made up of
dialog elements that are typically displayed in separate windows. A dialog usually contains more
than one graphical element that each is given its own unique identifier within the program. The
dialogs themselves also have unique identifiers. Each dialog has a message handler function that
responds to events that occur as the program is running. To be able to translate handler functions

69

Translating Python to C++ for palmtop software development - 4 My Python2C

well, Python2C has to identify what graphical components belong to what dialog. This can be done
by generating a message handler function for each window except pop-ups, as pop-up windows are
treated separately by Windows and do not need any. The elements that belong to a window will
have to be included in the translated message handler function code. Each such element can be
identified as they are added to the layout or frame inside a window. The menu bar of a program does
not need its own message handler function. All of the message handling for this element is done in
the WndProc callback function (WndClass.lpfnWndProc). The contents of this function has to be
generated by Python2C, however.

It is important for the translation that all the GUI elements are created at more or less the same time.
All dialogs and their components have to be parsed and identified before they are referenced. The
earlier in the source code this is done the better it is. The ideal thing would be to put all the creation
of GUI elements inside one, single class that is as close to the first line of code as possible. This
class must be named “GUI” to set it apart from all the other classes that might be found in the
program. Python2C would then be able to map out the entire GUI structure and generate all the
handler functions and the complete resource script, before any other part of the AST is traversed.
This would ensure that all the handler functions and all handles, resources, layouts and unique
identifiers exist at the time they are referenced.

All GUI elements would have to be created inside this class. Even the windows and other GUI
elements that are not to be used or displayed at this point in the execution of the program, will have
to be created here. The root window in a Python program is created by a call to the Tk function. All
additional windows are created by a call to the Toplevel function. These windows will become
visible by default. If the purpose of the code is to create the window for future use and not display it
right away, a call to this window's withdraw function is necessary. A call to the deiconify
function will display the window again.

As explained in chapter 2.6.1.3, all the layout of the Windows GUI is taken care of in a separate
language, known as resource script. The resource script or RC script is located in a separate file
with a “.rc” file name extension. The RC script defines the layout of each graphical element inside
each dialog and uses the unique identifiers to refer to the graphical elements. It takes care of text
inside the windows and the formatting of it, although text can also be put in the GUI by the C++
code. The RC script controls the positioning by setting the position for each component in pixels.

4.2.2 Generating the contents of the handler functions

This is where it gets a little tricky. The insides of the translated handler functions would have to be a
translated version of the contents of the functions that are called when actions occur, in the Python
source code. For this to even be possible, the functions that are called by a GUI element have to be
identified.

The easiest way to get around this problem is to apply some naming and coding conventions.
Firstly, all the functions that are called by a GUI element have to be named “handler_*”. This is so
that Python2C can tell the handler functions apart from other functions in the source code. In
addition, all such functions have to have the name of the GUI element following “handler_” in their
names. This would be the name of the variable where the GUI element is stored. If a handler
function is called by two different GUI elements, then there needs to be two separate definitions of
this function, under different names (The variable names following “handler_” would be the only
difference between the two functions.), in the Python code. It is important to identify exactly the one

70

Translating Python to C++ for palmtop software development - 4 My Python2C

GUI element that uses the handler function through the naming convention. This is one way of
matching up the GUI elements and functions that belong together without using multiple passes to
track the use of the functions. Two GUI elements that have to use the same function might reside in
two different dialogs, and this one function has to become two in order to get the contents of the
Windows handler functions right. If there is only one handler function in the Python code, one of
the GUI elements will not be tied to this function by Python2C and the code inside this function will
not be added to the Windows handler function for the dialog where this GUI element resides. If GUI
element gui1 calls function handler_gui1 and gui2 also calls the same function, then only gui1
will get the translated code from handler_gui1 added to its Windows handler function. A copy of
handler_gui1 has to made in this case, called handler_gui2. GUI element gui2 needs to call this
function instead to get the code inside handler_gui2 added to its Windows handler function.

The Python code example found in chapter 2.6.1.4 illustrates the use of the naming convention.
That example also illustrates quite well what sort of structuring of the Python code that is required
to get the GUI translation to work with a one-pass translator. The example does not use the
convention of the GUI class. Instead it uses markers in the code comments to indicate where the
creation of all GUI elements begin and end. As seen in the example code these markers are “#
begin gui” and “# end gui”. Since all comments are ignored by the Python compiler and does
not become a part of the Python AST, I had to abandon the idea of using the markers. The GUI class
now serves the same purpose.

4.2.3 How to implement GUI translation as a part of Python2C

4.2.3.1 The “GUI translation mode”

To implement GUI translation as a part of Python2C the program would have to be able to tell a
“regular” program from a program that includes a GUI. If a GUI is found as a part of the source
code a “GUI translation mode” would have to be activated. “Regular” C++ code looks quite
different from Windows CE GUI code. The GUI code has a WinMain function that must replace the
main function, handles, resources and identifiers must be introduced, handler functions and callback
functions must be added and the resource script has to be generated.

The “GUI translation mode” could be activated when Python2C comes across an import statement
importing the Tkinter module. If the GUI mode is going to be triggered by finding this statement,
it is required that it is put as early as possible in the source code. This mode would have to be active
by the time the GUI class code is being traversed in the AST and the TST is being generated.
Activating the mode as early as possible is the only thing that would ensure a correct translation of
this class and also the important WinMain function.

Currently, Python2C's GUI translation mode is activated manually, though the “-g” option described
in chapter 4.1.1.1. With a manual activation the mode will be active as Python2C scans the first line
of the code. This certainly eliminates any problems or bugs that could arise as a result of having the
mode triggered by elements in the source code. It is very likely that the person that is using
Python2C to translate a program knows if the program supports a GUI or not. In this regard, manual
activation works just as well as – or perhaps better than – triggering.

4.2.3.2 Additions to the data structures

For the GUI translation mode to work properly, a lot of the visitor functions would have to do a

71

Translating Python to C++ for palmtop software development - 4 My Python2C

check to see if this mode has been activated. The same check would also have to be performed by
many of the TST objects at the time of code translation, as the objects generate their part of the
resulting C++ code. The new mode would have to generate a different TST than the one that would
be generated otherwise. New classes of TST objects would have to be introduced or significant
changes would have to be made to many of the existing classes.

The classes of TST nodes that hold the variables (LangCreate, LangName and LangAssName) will
have to be amended to be able to hold information about variables holding GUI objects. Another,
safer approach is not to alter any of the existing classes of TST nodes as it could introduce bugs in
the translation of “non-GUI” code. When the GUI translation demands a change in the TST
structure or different C++ code to be generated by certain TST objects, new objects that support
these changes should be introduced as a part of the Python2C source code. LangCreate will turn
into LangGUICreate, LangName will be replaced by LangGUIName and so on. Both the “regular”
version and the GUI version of the TST objects will exist in the Python2C source code and the two
versions would be used as necessary, while translating the same program. Changes and additions to
the TST objects that hold the variables would also require changes in the Translator class. The
checkVariable and createVariable functions would have to be amended, for instance.

The regular variables must be told apart from the variables that hold GUI objects. One way to pick
them apart from the rest is to introduce a set of new variable types. Only a variable that holds a
graphical component can have one of these types that will be linked to Python widgets and their
function in the GUI, exclusively. A frame widget will be given the type “FRAME” internally in
Python2C, a variable holding a button will be given the type “BUTTON” and so on. These types
will not become a part of the translated C++ code. They are only meant to be an aid for Python2C as
it is trying to determine what parts of the code relates to the GUI. With GUI types implemented,
Python2C can more easily determine if a variable that is being operated upon holds a widget or not.
Python2C can just check the type of a variable to determine if it holds a GUI object. In addition, it
will also be able to tell exactly what kind of a function the widget has in the GUI, just by checking
the type. Without the introduction of the GUI types Python2C could still find all of these things out
by checking the symbol table, finding the object that the variable refers to and checking the contents
of this object. This would be less efficient and would require more operations and lines of code.

4.2.4 To implement or not to implement?
That was the question. I decided that it would be to much work to do the former, so I did the latter.
Implementing GUI translation would mean that I would have to rewrite and add to most of the
existing visitor functions. Most of the TST object classes would also need to be revised and
amended, and new classes of TST objects would have to be written. The lines of code would
probably double to get some of it working and I can only guess at the increase of the number of bugs
in the code. The Pocket PC 2002 operating system is already starting to get outdated and has been
replaced by both Pocket PC 2003 and Pocket PC 2004. Creating a translation tool for an outdated
system does not seem like a hot idea, although there are many similarities between the 2002 version
and these new systems. There are also many similarities between GUI code for the Pocket PC and
GUI code for the Windows XP operating system, for instance. I am still satisfied with figuring out
how it can be done, even though I decided not to do it. Figuring this out was the aim of the thesis,
not implementing a fully functional Python to C++ translator with support for GUI translation.

4.3 The problems of translation
A nice thing to know when working with the translation of programming languages is that it is

72

Translating Python to C++ for palmtop software development - 4 My Python2C

always possible to translate the entire source code to the target language. It is just a matter of finding
out how to do it and get around the obstacles that are in your way. The two languages can be used to
create programs that do the same thing on the same type of computer. They may be different in
syntax and in how they utilize the power of the hardware, but deep down they are essentially
equivalent. This can be different when translating one human language to another. In this area you
can frequently come across words or turns of phrase which are untranslatable: There does not exist
equivalents in the target language.

This chapter describes some of the problems I have come across when writing Python2C, and it
assumes that the reader has read the code documentation in chapter 4.1. Python2C's strengths and
weaknesses are commented upon, and, in this regard, the table in chapter 4.1.2 serves as a good
overview of what has been implemented in Python2C and what has not.

4.3.1 Variable creation

The Python syntax does not distinguish variable creation from just setting or changing the value
stored in a variable. Variable creation and initialization is always done in one statement. You cannot
create a variable without initializing it. If this statement contains a variable that has never been seen
in the code before, this statement is a variable creation and initialization statement. If the variable
has already been created and initialized this statement is just setting or changing the value that the
variable holds.

One variable can hold a value of any type, and this type can also change at any time during
execution, if the programmer so wishes. Types are never declared and cannot be declared as this is
not a part of the Python syntax. Types do never the less exist internally in the Python interpreter.
Each variable is automatically assigned a type depending on the value it holds. The programmer
does not need to worry about it so much. Variable creation and initialization could look like this in
C++: “int i; i = 2;”. Here it is divided into two separate statements. The first one creates the
variable and gives it the type int without assigning a value to it. The second assigns the value,
which is 2 in this case. In Python this has to be done in one simple statement: “i = 2”. This
statement creates the variable i and gives it the type int, since the value being assigned to it is an
integer, and sets the value to 2. If the variable has already been created earlier in the Python code,
this statement will just change the value and/or the type. In C++ you could also write “int i =
2;”. This would take care of both the creation and the initialization in one statement.

4.3.1.1 Determining the types

To be able to translate variable creation and assignment from Python to C++ you first have to find a
way to determine what type to assign to the variables. This means that you first have to figure out
how to determine the type of the expression to the right of the “=”. When you have a statement like
“i = 2”, the translator program just needs to check one constant. “2” is all that is to the left of the
“=” in this case. 2 is an integer thus i gets the type int. Determining the type gets more complex if
you have a statement like “i = a.get()[1]”. Now, the translator needs to break up the expression
on the right. First, there is a variable a that probably holds an object that contains a function called
get. The get function seems to return a list. The translator will have to determine the type of the
elements stored in this list to be able to set the type of i. This may get more complicated if the
object stored in a is an instance of a class that is defined in the source code that is being translated,
as this part of the code may not have been looked at by the translator yet. If that is the case, there is
no way that Python2C can come up with a correct type for i, and the code will have to be translated

73

Translating Python to C++ for palmtop software development - 4 My Python2C

by a second traversal of the TST to create a working translation. Since Python2C currently is a one
pass translator, it may fail to determine the type of such complex expressions quite frequently.

The algorithm for determining the type of a variable is contained in the createVariable function
in the Translator class. This function attempts to determine the type of each new variable. It then
creates a new variable object and adds this to the variable table. (For more on the variable table and
the createVariable function see chapter 4.1.8.3.) All global variables have to be declared
statically, outside of the main function in C++. Types of constants are determined by the __init__
function in the LangConst class. The code of this function was included in the example in chapter
3.4.

The types themselves are stored as strings in the TST nodes. An integer variable can be represented
as a LangName object with the type “INT”. Python2C also supports the nesting of types as a type
string can contain more than one type. If a variable holds a list of lists that contain integers, the type
of this variable will be “LIST LIST INT”, in that order. The string starts at the top of the “type
hierarchy” and ends at the bottom. All the types that are supported by Python2C are listed in the
types dictionary in the Translator class. This dictionary is found in chapter 4.1.8.5.

I have chosen to enforce the C++ rule that types of variables cannot change during execution,
although they can do so in Python. Python2C will not translate a change of the type of a variable
correctly, in its current version. To implement support for this in Python2C one could envision more
than one possible solution. One solution could be to create a new variable for each time the type
changes. If the integer variable i changes its type to double, Python2C could create a new
i_double that is inserted into the translated C++ code wherever i occurs after the change of type.
Another solution could be to create a variable struct or class of objects in C++. All variables
would be an instance of this class or struct. It would provide storage for every possible type that a
variable can have. With such a solution Python2C would not need to create a new variable for each
time one variable changes its type. The contents of the struct or object would change during
execution of the translated C++ program. These structs or objects would look very similar to the
structs that are used to translate the Python lists, tuples and dictionary data types.

4.3.1.2 Has it already been created?

As already mentioned, variable creation and setting the value of a variable is all done in the same-
looking statement in Python. You cannot tell from the syntax if the variable is being created when
you find a statement like “i = 2” or if the value of i is being set. To find this out you have to look
at the context where the statement occurs. According to the most closely nested rule (“[...] given
several declarations for the same name, the declaration that applies to a reference is the one in the
most closely nested block to the reference.” [Louden, 1997]), this variable is a new variable if there
is no other variable in the same block or in the above nested blocks named “i”. If a variable i has
been created before the above statement, then this statement is just setting the value of this variable.
If i has not been created earlier in this block or in any above blocks, then it must be a statement
creating the variable i.

Python2C uses the variable table to keep track of the variables that have been created. The variable
table has a stack structure where each block in the program has its own stack element. The current
block is the top element of the stack, and the previous blocks are found according to the most
closely nested rule when going down the stack. Each time Python2C detects that the traversal of the
AST enters a new block structure, a new stack element is pushed onto the variable table. When

74

Translating Python to C++ for palmtop software development - 4 My Python2C

Python2C leaves this block the element is popped from this stack. The bottom level of the stack is
the global level, where you find all the static variables in C++. The checkVariable function in the
Translator class is responsible for determining if a variable has previously been created or not. It
checks with the variable table to see if it can find a variable with the same name as the variable it is
currently checking. It starts by checking the top element of the variable table and goes down the
stack from there. As soon as a matching name is found in one of the stack elements it is clear that
the variable already exists, and the statement in question is just setting its value. If no matching
name is found, the variable must be created and added to the variable table. In this case
checkVariable calls createVariable, which is responsible for doing that.

4.3.1.3 Global variables and other special cases

The global code in a Python program does not reside inside any kind of block structures. All the
variables that are created here are available by using the global keyword in Python. The global
keyword is used to access global variables from parts of the Python code that reside inside a block
structure, in other words; a class or a function. I have not implemented support for translation of the
global keyword in Python2C, although this can be implemented fairly easily. As mentioned earlier,
all the variables that have been created globally are found in the bottom element in the variable table
in Python2C.

Python does not have a main function, like C++. The main function basically starts the program in
C++, where the same thing is done by the statements in the global code in Python. In C++, global
variables, forward declarations of functions and #include directives are more or less the only
things that are found outside any block structure. You cannot have code statements in the global or
static part of the code. In Python you can, as this global part of the code basically replaces the main
function. This means that all the variables that are created globally in Python must be created
statically in the translated C++ code. In other words; they must reside outside the main function. All
the other statements that are a part of the global Python code must go inside the main function.
Variables cannot even be given values in the static C++ code, they can only be created. Thus, a
statement like “i = 2” will have to be divided into two C++ statements “int i;” and “i = 2;”.
The first one will be put in the static part of the C++ code and the second will have to reside inside
the main function.

To make the translation of the global code a little easier I decided to create a class of TST objects
called LangMain. The global level of the Python code is represented by a Stmt object in the Python
AST. Normally, Stmt objects are replaced by LangStmt objects in the TST. I chose to make the
global code a special case, as I needed to keep certain parts of the global code separate from each
other. I wanted to store the code that goes inside the main function separate from the static variable
declarations. This new class would also enable me to store all the forward declarations of the
translated functions in one place. LangMain is a special version of the LangStmt class that can store
all this extra information and keep it separate. It serves to represent the entire global part of the code
in the TST and to translate this code to C++. Only one LangMain object can be present in any TST.

The example below illustrates the structuring that is being done by the LangMain object. As you can
see, the forward declaration occurs before the rest of the program. In the case of multiple functions,
all the forward declarations will be gathered after one another in that same location in the code. All
the global variables are also gathered in one spot, above the main function. They are declared
outside the main function and used inside of it. Thus, the original Python statements have been
turned into two C++ statements, as described above.

75

Translating Python to C++ for palmtop software development - 4 My Python2C

Below is a simple Python program that takes a string and an integer as input. The integer sets the
number of times the string shall be printed. A function does the actual printing.

#!/usr/bin/env python
def printOut(number, string):
 s = ""
 for i in range(number):
 if(i % 5) == 0:
 print "\n" + string
 else:
 print string
string = raw_input("Type a string: ")
temp_string = raw_input("and the number of times it should be printed: ")
number = int(temp_string)
printOut(number, string)
print "\nString \"" + string + "\" printed " + str(number) + " times."

This is the C++ translation of the above Python program, as produced by Python2C.

/* File translated Wed Aug 24 14:35:51 2005
 * by Python2C version 0.012. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
/* Forward declarations: */
void printOut(int number, char* string);
void printOut(int number, char* string)
{
 char* s;
 int i;
 s = (char*) malloc(256);
 s = "";
 for(i = 0; i < number; i += 1)
 {
 if(i % 5 == 0)

{
 cout << "\n" << string << endl;
}

 else
{
 cout << string << endl;
}

 }
}

76

Translating Python to C++ for palmtop software development - 4 My Python2C

char* string;
char* temp_string;
int number;
int main(int argc, char* argv[])
{
 printf("Type a string: ");
 string = (char*) malloc(256);
 scanf("%s", string);
 printf("and the number of times it should be printed: ");
 temp_string = (char*) malloc(256);
 scanf("%s", temp_string);
 number = atoi(temp_string);
 printOut(number, string);
 cout << "\nString \"" << string << "\" printed " << number << " times." <<
endl;
 return 0;
}

The createVariable function in the Translator class determines if a variable is global or not.
This is done with the help of the flags that are located in the VisitorFunctions class. These flags are
inside_class, inside_function and inside_cond. These flags indicate whether the code that is
currently being traversed in the AST is located inside a class, function or an if, else, for or while
block respectively. If the current code is global, all the flags will be set to 0. If the code is located
inside a for loop inside a function inside a class, all the flags will be set to 1. The flags are set by the
visitor functions responsible for traversing the relevant parts of the code. The visitClass's
functions is responsible for setting the inside_class flag to 1 when the traversal of the AST enters
the code body of a class. It is also responsible for setting it back to 0, when the traversal of the class
code has finished. In the same way the other flags are set by the relevant visitor functions.

Before setting a flag, a check needs to be done for whether the flag was already set. This can occur
when you have functions inside of functions or nested loops, for instance. When this is the case, it is
very important that one of the nested blocks does not set the relevant flag to 0 before it is time to do
so. Only the outermost of the nested blocks should set this flag to 0.

4.3.2 Functions

When implementing the support for translating Python functions to C++ functions, one realizes that
determining the types proves to be the most difficult problem. Python is a language that is not
particularly concerned with the types of anything, while C++ certainly is. Both the argument
variables to functions and the return value from functions do not have fixed types in Python, as they
must have in C++. A Python function can basically accept any type of argument and return any type
of value as a result. This does require that the “inner workings” of the function supports this. Many
operations can only be done on certain types of data in Python, as with any other programming
language. When trying to determine the types of both the arguments to and the return value from a
function, the translator program will have something to go on here. The code inside the function
will tell you something about what types of data this function is meant to accept and return. The
values that are passed to the function from other parts of the code will also provide information
about the types of the argument variables.

In C++, the return value from a function can only be of one fixed type. The same is the case for the

77

Translating Python to C++ for palmtop software development - 4 My Python2C

argument variables. Python2C will have to try to determine the types of all arguments and returns
for each function in the Python code. This requires that the programmer of the Python program that
is being translated, takes care to program functions that only accept and return the same types of
data each time. Anything else might lead to conflicting types and errors. If the programmer needs to
have more than one type of data returned by one function, another function should be written that
takes care of the other type of data. This is what you would have to do in C++. One could of course
design a translator that creates multiple C++ functions from one Python function, when necessary. I
have not invested any work in trying to do that, as it would take up a lot of time.

4.3.2.1 Determining the return type

The return type of a function is currently set by the visitReturn function in Python2C. This is
done by a call to the function appendReturnType in the LangFunction object. This function
appends the return type to a list of return types, and the final return type is determined on the basis
of what types exist in this list. When the traversal of the entire function definition is done the
determineReturnType function in the LangFunction object is called to do this. Many functions
will contain more than one return statement, and all of these statements will add its type to the
return types list. This ensures that all return statements are taken into consideration to produce the
final return type from the function. If no return statement is found in the code of the function, the
function's return type is set to void.

If it is clear from the code contained in the function what the type of the return is, this way of
determining the type works well. In some cases it is not clear what the type of the return might be,
because the operations that is being done inside the function might support more than one type.
Sometimes the return type of the function relies on what the types of the argument variables are. In
such cases, the types of these variables have to be determined before the return type, to be able to
get the translation right. In many cases this requires more than one pass of the code.

This is a small example of how a very simple Python function can be impossible to translate without
creating more than one C++ function. The add function in the Python program below can add any
two argument variables passed to it and return the result. The types of the arguments do not matter
as long they can be added, otherwise the program will crash.

#!/usr/bin/env python
def add(arg1, arg2):
 return arg1 + arg2
i = add(2, 2)
print "add returned " + str(i) + "."
list1 = [1, 2]
list2 = [3, 4]
list = add(list1, list2)
print "add returned " + str(list) + "."

This is the translation of the above code as it is produced by Python2C. As you can clearly see, the
passing of both integers and lists to the add function leads to confusion about the type of its return

78

Translating Python to C++ for palmtop software development - 4 My Python2C

value. The return type of the function is never set. This, in its turn, leads to further errors. With no
determined return type for the add function, it is impossible for Python2C to determine the type of
variables i and list. The types of both of these variables depend on the return type of the add
function.

/* File translated Fri Aug 26 13:32:50 2005
 * by Python2C version 0.013. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
/* Forward declarations: */
/* Python2C Error NOTYPE */ add(int arg1, int arg2);
/* Python2C Error NOTYPE */ add(int arg1, int arg2)
{
 return arg1 + arg2;
}
/* Python2C Error NOTYPE */ i;
struct List* list1;
struct List* list2;
/* Python2C Error NOTYPE */ list;
int main(int argc, char* argv[])
{
 i = add(2, 2);
 cout << "add returned " << i << "." << endl;
 list1 = createIntList();
 appendList(list1, 1);
 appendList(list1, 2);
 list2 = createIntList();
 appendList(list2, 3);
 appendList(list2, 4);
 list = add(list1, list2);
 cout << "add returned " << list << "." << endl;
 return 0;
}

4.3.2.2 Determining the types of argument variables

Python2C is currently determining the types of the argument variables on the basis of what is being
passed as arguments to the functions through function calls. If the type of a variable that is being
passed as an argument has been determined, the type of the corresponding function argument will be
set. If the type of the variable that is being passed has not yet been determined, the type of the
function argument will not be determined at this time. It might be determined by another call to the
same function, later on. The types of the argument variables are passed to the function object in the
function table by the visitCallFunc function. There is very limited support for complex
expressions being passed as arguments. Passing constants and variables as arguments will work fine
in most cases in the current version of Python2C. I have not spent time implementing any support

79

Translating Python to C++ for palmtop software development - 4 My Python2C

for anything more complex than this.

Argument variables can also, to some extent, be determined by they way they are used inside the
code of the function, similar to the way that the return type is determined. By having Python2C
checking this as well, one would be able to determine the types of the arguments even more
accurately. This remains to be implemented, however.

4.3.2.3 Forward declarations and other issues

A forward declaration is created by the createForward function in the LangFunction object. As
soon as the code of the function has been traversed the forward declaration can be generated
correctly. This function is called by visitCallFunc which checks the function table for the
definition of the function that is being called. If this function turns out to be global, a forward
declaration should be created and added to the LangMain object. visitCallFunc does exactly that.
createForward is also called by the LangClass object at the time of code translation. The
LangClass object needs the forward declaration to be able to generate the C++ class definition
correctly. This definition contains forward declarations of each function inside the class.

Functions can exist inside of functions, but I have not put any effort into translating these things.
Nested functions in the Python source code is sure to produce undesired behavior in Python2C in its
current version.

4.3.3 Loops and if statements

I have loosely labeled loops and if statements as “conditionals” in the code of Python2C and in the
code comments. They all have a condition for whether a certain piece of code should be executed or
not. They are also code blocks that can be nested within each other. I variable that is created inside
one of these blocks will not exist outside the block. It is in use for that limited time only, as is also
the case with functions. Variables inside classes can however be reached from the code residing
outside of the class' block. The inside_cond flag in the VisitorFunctions class is used to tell the
translation engine if the current code is located inside a conditional block. These blocks include if,
else, elif, for and while structures.

The else and elif code blocks are parts of the if structure in Python. Each if statement starts
with the if keyword that marks the beginning of the if block. The elif or else block follows the
if block, although these blocks are not required to form a syntactically correct if statement. For
more on the syntax of if statements consult the Python documentation from Python.org.

The syntax of the if statement is quite similar in Python and C++. Only trivial changes has to be
made to the syntax to produce a working translation, like the addition of parenthesis and brackets,
for instance. This is also the case with the while statement. One thing that needs special attention is
the inside_cond flag. This flag needs to be set at the right time to produce a correct translation and
to add any new variable that is created inside these blocks to the variable table correctly.

4.3.3.1 The for statement

The syntax of the for statements do differ when comparing Python to C++. The main difference is
the fact that C++ must have a counter variable as a part of its for statement, and Python does not.
C++ normally uses an integer variable that is incremented or decremented by each repetition of the

80

Translating Python to C++ for palmtop software development - 4 My Python2C

loop. When the this counter variable reaches a certain value, the loop is broken. A test is performed
by each repetition to check if the variable has reached this value or not. This test is also a part of the
for statement in C++.

Python's for loops are “list oriented”. The for loops are specially designed to loop though a Python
list from beginning to end or from a start index to a stop index. The syntax is basically as follows in
the for statement: “for i in list:”. The variable i will always contain a copy of what is stored at
the list's current index. It is not a counter variable. The body of the for loop block follows the “:”.
In this case, the for loop will loop though the list from beginning to end. To loop through the list
from a start index to a stop index the syntax is as follows: “for i in list[start:stop]:”. The
Python range function is often used to produce a list of integers that can be used as counters almost
like the counter variables are used in C++. Such a for statement would look something like this:
“for i in range(start, stop, increment):”. The variable i can now be used as an index to
look up elements in another list, for instance.

The differences in Python and C++ syntax usually means that new variables have to be introduced
in the target code that were not originally a part of the source code. How these new variables are
created is explained in chapter 4.1.8.3. New variables cannot be introduced inside a for statement
in C++ and the counter variables must be created outside the for block in the translated code. The
code below shows how the translation of the various Python for loop constructions are translated to
C++, in detail.

This is a small and simple Python program that loops though the arguments in the sys.argv list.

#!/usr/bin/env python
import sys, math
print "Hello, World!"
for x in sys.argv[1:]: # Loop through the list of arguments, compute the sin-
 r = float(x) # value and print the results.
 s = math.sin(r)
 print "sin(" + str(r) + ")=" + str(s)

This is the C++ translation of the above Python program as it is produced by Python2C.

/* File translated Mon Aug 29 18:11:31 2005
 * by Python2C version 0.013. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
#include <math.h>

81

Translating Python to C++ for palmtop software development - 4 My Python2C

char* x;
int __py2c__for_counter;
int __py2c__for_length;
int main(int argc, char* argv[])
{
 __py2c__for_length = argc;
 cout << "Hello, World!" << endl;
 x = (char*) malloc(256);
 for(__py2c__for_counter = 1; __py2c__for_counter < __py2c__for_length;
__py2c__for_counter++)
 {
 double r;
 double s;
 x = argv[__py2c__for_counter];
 r = atof(x);
 s = sin(r);
 cout << "sin(" << r << ")=" << s << endl;
 }
 return 0;
}

In the C++ translation above the number of lines of code has increased significantly. Python2C has
introduced two new variables: __py2c__for_counter and __py2c__for_length. The first one of
these are used as the loop counter, the second is used to store the length of the list that is being
looped through. Also notice that the Python sys.argv is translated to the C++ argv argument to the
main function. Another alternative would have been to translate sys.argv to an actual list structure
in C++ and not use the argv array. All other Python list structures are translated to list in C++. The
sys.argv is the only exception.

Below is a simple Python program that demonstrates the use of the range function in a for loop.

#!/usr/bin/env python
import sys, math
s = "Hello, World!"
length = len(s)
for i in range(0, length, 1):
 print str(i) + " " + s[i]

This is the C++ translation of the above Python program as it is produced by Python2C. In this
case no new variables are created. The length argument variable to the range function is used in
the test, and the variable i is used as the counter. Both the variables must be created outside the
for block in C++, and since the for block is global in the Python code, both the variables must be
created outside the main function in C++.

/* File translated Mon Aug 29 18:02:33 2005
 * by Python2C version 0.013. */

82

Translating Python to C++ for palmtop software development - 4 My Python2C

#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
#include <math.h>
char* s;
int length;
int i;
int main(int argc, char* argv[])
{
 s = (char*) malloc(256);
 s = "Hello, World!";
 length = strlen(s);
 for(i = 0; i < length; i += 1)
 {
 cout << i << " " << s[i] << endl;
 }
 return 0;
}

The C++ argv array is being looped through in both the above translation examples. It is of course
possible to do the same thing with actual list structures, although support for this has not been fully
implemented in Python2C. Some looping though actual lists is supported, however. The next
chapter contains an example of this.

4.3.4 Lists, tuples and dictionaries

As mentioned, all Python lists are translated into actual lists in C++ with the exception of
sys.argv. Python tuples and dictionaries are also translated into C++ equivalents. Lists, tuples and
dictionaries do not exists as C++ data types, so I had to create these myself. How this was done has
already been described in detail in chapter 4.1.8.6. How these data types are used when translating
from Python to C++ is best explained through the use of some code examples.

This is a simple Python program that exemplifies most of the list operations that is currently
supported by Python2C.

#!/usr/bin/env python
list1 = [1, 2, 3, 4, 5, 6]
list2 = [7, 8, 9]
list becomes a copy of the two lists.
list = list1 + list2
print "list = " + str(list)
print "list1 = " + str(list1)
print "list2 = " + str(list2)

83

Translating Python to C++ for palmtop software development - 4 My Python2C

list.append(10)
list.append(11)
print "list = " + str(list)
print "list[10] = " + str(list[10])
list2 = list1
print "list2 = " + str(list2)
del list1[5]
print "list1 = " + str(list1)
print "list2 = " + str(list2)
for i in range(len(list)):
 print "list[" + str(i) + "] = " + str(list[i])
i = list[3]
print "i = " + str(i)
list[1] = list[0] = 999
print "list[0] = " + str(list[0]) + ", list[1] = " + str(list[1])
print "list = " + str(list)

Here is the C++ version of the above Python program as translated by Python2C.

/* File translated Mon Jan 10 15:26:18 2005
 * by Python2C version 0.009. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
struct List* list1;
struct List* list2;
struct List* list;
struct ListNode* __py2c__subscript_temp_var0;
int i;
struct ListNode* __py2c__subscript_temp_var2;
struct ListNode* __py2c__subscript_temp_var3;
struct ListNode* __py2c__subscript_temp_var4;
int main(int argc, char* argv[])
{
 list1 = createIntList();
 appendList(list1, 1);
 appendList(list1, 2);
 appendList(list1, 3);
 appendList(list1, 4);
 appendList(list1, 5);
 appendList(list1, 6);
 list2 = createIntList();
 appendList(list2, 7);
 appendList(list2, 8);
 appendList(list2, 9);

84

Translating Python to C++ for palmtop software development - 4 My Python2C

 list = createList();
 list = addLists(list, list1);
 list = addLists(list, list2);
 cout << "list = " << printList(list) << endl;
 cout << "list1 = " << printList(list1) << endl;
 cout << "list2 = " << printList(list2) << endl;
 appendList(list, 10);
 appendList(list, 11);
 cout << "list = " << printList(list) << endl;
 __py2c__subscript_temp_var0 = getListNode(list, 10);
 cout << "list[10] = " << printListNode(__py2c__subscript_temp_var0) << endl;
 list2 = list1;
 cout << "list2 = " << printList(list2) << endl;
 deleteListNode(list1, 5);
 cout << "list1 = " << printList(list1) << endl;
 cout << "list2 = " << printList(list2) << endl;
 for(i = 0; i < list->length; i += 1)
 {
 struct ListNode* __py2c__subscript_temp_var1;
 __py2c__subscript_temp_var1 = getListNode(list, i);
 cout << "list[" << i << "] = " <<
printListNode(__py2c__subscript_temp_var1) << endl;
 }
 __py2c__subscript_temp_var2 = getListNode(list, 3);
 i = __py2c__subscript_temp_var2->int_value;
 cout << "i = " << i << endl;
 setListValue(list, 1, 999);
 setListValue(list, 0, 999);
 __py2c__subscript_temp_var3 = getListNode(list, 0);
 __py2c__subscript_temp_var4 = getListNode(list, 1);
 cout << "list[0] = " << printListNode(__py2c__subscript_temp_var3) << ",
list[1] = " << printListNode(__py2c__subscript_temp_var4) << endl;
 cout << "list = " << printList(list) << endl;
 return 0;
}

In the above example the Python statements creating list1 and list2 have been translated to a call
to createIntList and a series of calls to appendList. createIntList creates the list stuct and
sets the type to IntType. There are separate functions for creating lists that contain doubles, strings,
lists and so on. appendList adds the ListNode structs to the list that is passed as the first
argument. The second argument to this function is the value. The list pointer is set by a call to
createList, as it is unclear what type this list is going to hold, at the point of creating it. The type
of a list that is created like this will be set when the first element is appended or when the pointer is
set to point to another list. Until then, the type of list will be NoType. Deletion is translated by a
call to deleteListNode and the printing is being done by printing the strings returned by the calls
to the printList function. A number of temporary variables, that are not present in the Python
code, are created as necessary.

Python tuples do not support some of the operations that can be performed on a Python list. You
cannot append an element to a Python tuple and you cannot delete an element from a Python tuple.
You can change the contents of a Python tuple by setting it to point to another tuple or adding tuples
together. It is also possible to set or change the value stored in a tuple element, although this is not
being translated by Python2C at the moment. This remains to be implemented.

85

Translating Python to C++ for palmtop software development - 4 My Python2C

This is a simple Python program that exemplifies most of the tuple operations that is currently
supported by Python2C.

#!/usr/bin/env python
tuple1 = (1, 2, 3, 4, 5, 6)
tuple2 = (7, 8, 9)
tuple becomes a copy of the two tuples.
tuple = tuple1 + tuple2
print "tuple = " + str(tuple)
print "tuple1 = " + str(tuple1)
print "tuple2 = " + str(tuple2)
tuple2 = tuple1
print "tuple2 = " + str(tuple2)
for i in range(len(tuple)):
 print "tuple[" + str(i) + "] = " + str(tuple[i])
print "tuple[0] = " + str(tuple[0]) + ", tuple[1] = " + str(tuple[1])
print "tuple = " + str(tuple)

This is the C++ translation of the above Python program as produced by Python2C.

/* File translated Mon Jan 10 15:48:57 2005
 * by Python2C version 0.009. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
struct Tuple* tuple1;
struct Tuple* tuple2;
struct Tuple* tuple;
int i;
struct TupleNode* __py2c__subscript_temp_var1;
struct TupleNode* __py2c__subscript_temp_var2;
int main(int argc, char* argv[])
{
 tuple1 = createTuple();
 appendTuple(tuple1, 1);
 appendTuple(tuple1, 2);
 appendTuple(tuple1, 3);
 appendTuple(tuple1, 4);
 appendTuple(tuple1, 5);
 appendTuple(tuple1, 6);
 tuple2 = createTuple();
 appendTuple(tuple2, 7);

86

Translating Python to C++ for palmtop software development - 4 My Python2C

 appendTuple(tuple2, 8);
 appendTuple(tuple2, 9);
 tuple = createTuple();
 tuple = addTuples(tuple, tuple1);
 tuple = addTuples(tuple, tuple2);
 cout << "tuple = " << printTuple(tuple) << endl;
 cout << "tuple1 = " << printTuple(tuple1) << endl;
 cout << "tuple2 = " << printTuple(tuple2) << endl;
 tuple2 = tuple1;
 cout << "tuple2 = " << printTuple(tuple2) << endl;
 for(i = 0; i < tuple->length; i += 1)
 {
 struct TupleNode* __py2c__subscript_temp_var0;
 __py2c__subscript_temp_var0 = getTupleNode(tuple, i);
 cout << "tuple[" << i << "] = " <<
printTupleNode(__py2c__subscript_temp_var0) << endl;
 }
 __py2c__subscript_temp_var1 = getTupleNode(tuple, 0);
 __py2c__subscript_temp_var2 = getTupleNode(tuple, 1);
 cout << "tuple[0] = " << printTupleNode(__py2c__subscript_temp_var1) << ",
tuple[1] = " << printTupleNode(__py2c__subscript_temp_var2) << endl;
 cout << "tuple = " << printTuple(tuple) << endl;
 return 0;
}

As seen above, the translation for the supported tuple operations is done in the same way as with the
translation of operations on lists. The only difference is that the C tuples have their own functions.
Where createList was being used in the previous example with lists, this function has been
replaced by createTuple. appendList has been replaced by appendTuple, and so on. (The C
tuples support appending although the Python tuples do not.) Tuples can contain a collection of
values that have different types, thus there are no need for functions that create tuples with different
types. The Tuple struct does not have a type, but the values stored in the TupleNodes certainly
do.

The Python dictionary does not support the addition of two dictionaries and there exists no append
function for the Python dictionary. There is no need for such a function since a dictionary is not a
sequential data structure where the indexes are numbered. This data structure is indexed by strings
that are called keys. A new element is inserted into a dictionary by setting the value at the string
index. This operation is currently not being translated by Python2C. Looping though the elements of
a dictionary is not supported either. There are also some bugs in the source code for the C dictionary
that remain to be fixed.

This is a simple Python program that exemplifies most of the dictionary operations that is currently
supported by Python2C.

#!/usr/bin/env python
dict1 = {"jalla" : 1,
 "sommer" : 2,
 "tusen" : 3,
 "mega" : 4,
 "ransel" : 5,
 "kamel" : 6}

87

Translating Python to C++ for palmtop software development - 4 My Python2C

dict2 = {"smalahovud" : 7,
 "saklig" : 8,
 "nabo" : 9}
print "dict1 = " + str(dict1)
print "dict2 = " + str(dict2)
dict2 = dict1
print "dict2 = " + str(dict2)
del dict1["jalla"]
print "dict1 = " + str(dict1)
print "dict2 = " + str(dict2)
i = len(dict1)
print "len(dict1) = " + str(i)

This is the C++ translation of the above Python program as output by Python2C. The translation of
dictionaries and the operations on them is done much in the same way as when translating lists or
tuples. Dictionaries have types as only one type of data can be stored in one dictionary at one time.

/* File translated Mon Aug 29 20:56:36 2005
 * by Python2C version 0.013. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
struct Dict* dict1;
struct Dict* dict2;
int i;
int main(int argc, char* argv[])
{
 dict1 = createDictOfType(IntType);
 dictInsert(dict1, "jalla", 1);
 dictInsert(dict1, "sommer", 2);
 dictInsert(dict1, "tusen", 3);
 dictInsert(dict1, "mega", 4);
 dictInsert(dict1, "ransel", 5);
 dictInsert(dict1, "kamel", 6);
 dict2 = createDictOfType(IntType);
 dictInsert(dict2, "smalahovud", 7);
 dictInsert(dict2, "saklig", 8);
 dictInsert(dict2, "nabo", 9);
 cout << "dict1 = " << dict1 << endl;
 cout << "dict2 = " << dict2 << endl;
 dict2 = dict1;
 cout << "dict2 = " << dict2 << endl;
 deleteDictItem(dict1, "jalla");
 cout << "dict1 = " << dict1 << endl;
 cout << "dict2 = " << dict2 << endl;

88

Translating Python to C++ for palmtop software development - 4 My Python2C

 i = dict1->num_elements;
 cout << "len(dict1) = " << i << endl;
 return 0;
}

4.3.5 Classes and objects

The Python syntax for writing classes is quite simple and is exemplified through the code examples
found in this chapter. The C++ syntax differs quite a bit from the simple set-up that is found in
Python. Code for C++ classes are usually put in separate files that define a class interface and the
functions that belong to the class. Memory management issues also do their part to complicate the
use of classes in C++, and the Python counterparts come out looking quite streamlined and flexible
in comparison. The translation of classes is probably best explained through the use of code
examples.

In the example below, a small Python program containing one simple class is translated to C++ by
Python2C. As usual, the number of lines of code increases significantly in the target code.
Translations of code that contains one or more class definitions will produce one file that contains
the main program and one file for each class definition. The class definition files contain a C++
class interface. This interface contains forward declarations of the class' functions and holds its data,
variables and pointers. Everything listed in the interface can be declared as public or protected.
Since Python does not have any protection of class variables or functions, all of these will be
translated as public in every case.

Python2C adds two functions to the C++ class in the translation below, that were not present in the
original source code. These are the constructor and destructor functions, called Print and ~Print in
this case. A Python class definition does not have to include an explicit constructor, but a C++ class
definition must have one. This is why an empty constructor is added to the translated C++ class file.
If the constructor function is present in the Python code, its code will of course be translated and put
inside the translated constructor. The destructor does not have to be present to make the program
work, it is just considered to be a good programming practice. The code body of the destructor is
not generated by Python2C and must be written manually.

This is an example of a Python program using a small and simple class that contains one function
and no constructor.

#!/usr/bin/env python
class Print:
 def printOut(self, number, string):
 s = ""
 for i in range(number):
 if(i % 5) == 0:
 print "\n" + string
 else:
 print string
string = raw_input("Type a string: ")
temp_string = raw_input("and the number of times it should be printed: ")
number = int(temp_string)

89

Translating Python to C++ for palmtop software development - 4 My Python2C

print_object = Print()
print_object.printOut(number, string)
print "\nString \"" + string + "\" printed " + str(number) + " times."

This is one of the files that make up the translation of the above Python program. This particular
program produces two files that hold the translated code. The first one is the code that holds the
main function, and the second is the file containing the class definition. The class definition file is
imported through an #include statement in the file containing the main code.

/* File translated Sun Nov 14 17:57:57 2004
 * by Python2C version 0.006. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
#include "Print.h"
char* string;
char* temp_string;
int number;
Print* print_object;
int main(int argc, char* argv[])
{
 printf("Type a string: ");
 string = (char*) malloc(256);
 scanf("%s", string);
 printf("and the number of times it should be printed: ");
 temp_string = (char*) malloc(256);
 scanf("%s", temp_string);
 number = atoi(temp_string);
 *print_object = Print();
 print_object->printOut(number, string);
 cout << "\nString \"" << string << "\" printed " << number << " times." <<
endl;
 return 0;
}

This is the file Print.h containing the class definition.

/* File translated Sun Nov 14 17:57:57 2004
 * by Python2C version 0.006. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
class Print
{
 public:
 ~Print();

90

Translating Python to C++ for palmtop software development - 4 My Python2C

 void printOut(int number, char* string);
 Print();
};
void Print::printOut(int number, char* string)
{
 char* s;
 int i;
 s = (char*) malloc(256);
 s = "";
 for(i = 0; i < number; i += 1)
 {
 if(i % 5 == 0)

{
 cout << "\n" << string << endl;
}

 else
{
 cout << string << endl;
}

 }
}
Print::Print()
{
}
Print::~Print()
{
}

Below is an example of a Python program that uses two classes. The main difference between the
two classes is that one of them has a defined constructor function, the __init__ function, and the
other does not. Both the classes have variables that are stored in the instance objects, although these
are never actually used for anything. Python2C has no real support for statements containing
AssAttr expressions. This means that Python2C will not translate expressions like
self.unused_var1 correctly. This requires the ability to understand what the variable self holds
or points to. That, in its turn, requires the ability to trace the contents of self back to its origin.
Currently, this has not been implemented.

As with the previous example, there is a class named Print. This time the definition if the
__init__ function causes the translation of the code body to be put inside the C++ constructor
Print. In the previous example this function remained empty. The second class, named
PrintSomeMore, has no definition of the constructor in the source code but still gets a translation
that has a C++ constructor with a statement in the code body. This is because the variable
unused_var1 cannot be initialized in the class interface, as this is not allowed in C++. The value is
set to 0 in the constructor instead. #include directives are generated for both of the class files. The
main code file includes both the files and the class files include each other by default. The fact that
the class files include each other may lead to errors when compiling the translated code. The files
will include themselves in an infinite loop. To fix this problem you have to remove the #include
"Print.h" directive in the PrintSomeMore.h file and the #include "PrintSomeMore.h" in the
Print.h file. Another bug in Python2C is the fact that all variables that are declared in the body of
the class code are added to the interface of each class. These bits of code also has to be edited by
hand. Python's len function is not translated correctly either.

91

Translating Python to C++ for palmtop software development - 4 My Python2C

This is a Python program that uses two classes to do some trivial printing.

#!/usr/bin/env python
class Print:
 unused_var1 = ""
 unused_var2 = 2

 def __init__(self):
 print "Object created!"

 def printOut(self, number, string):
 for i in range(number):
 if(i % 5) == 0:
 print "\n" + string
 else:
 print string
class PrintSomeMore:
 unused_var1 = 0
 def printOut(self, number, string):
 if number > len(string):
 number = len(string)
 for i in range(number):
 print string[i]
string = raw_input("Type a string: ")
temp_string = raw_input("and the number of times it should be printed: ")
number = int(temp_string)
print_object = Print()
print_object.printOut(number, string)
print "\nString \"" + string + "\" printed " + str(number) + " times."
string = raw_input("Type another string: ")
temp_string = raw_input("and the number of characters you want printed from this
string: ")
number = int(temp_string)
printsomemore_object = PrintSomeMore()
printsomemore_object.printOut(number, string)
print "\nThe first " + str(number) + " characters of \"" + string + "\" was
printed."

This is the contents of the translated file containing the main function.

/* File translated Wed Aug 31 13:37:54 2005
 * by Python2C version 0.013. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"

92

Translating Python to C++ for palmtop software development - 4 My Python2C

/* The includes generated by the translation: */
#include "Print.h"
#include "PrintSomeMore.h"
char* string;
char* temp_string;
int number;
Print* print_object;
PrintSomeMore* printsomemore_object;
int main(int argc, char* argv[])
{
 printf("Type a string: ");
 string = (char*) malloc(256);
 scanf("%s", string);
 printf("and the number of times it should be printed: ");
 temp_string = (char*) malloc(256);
 scanf("%s", temp_string);
 number = atoi(temp_string);
 *print_object = Print();
 print_object->printOut(number, string);
 cout << "\nString \"" << string << "\" printed " << number << " times." <<
endl;
 printf("Type another string: ");
 scanf("%s", string);
 printf("and the number of characters you want printed from this string: ");
 scanf("%s", temp_string);
 number = atoi(temp_string);
 *printsomemore_object = PrintSomeMore();
 printsomemore_object->printOut(number, string);
 cout << "\nThe first " << number << " characters of \"" << string << "\" was
printed." << endl;
 return 0;
}

This is the translated Print.h file.

/* File translated Wed Aug 31 13:37:54 2005
 * by Python2C version 0.013. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
#include "PrintSomeMore.h"
class Print
{
 public:
 char* unused_var1;
 int unused_var2;
 int unused_var1;
 ~Print();

93

Translating Python to C++ for palmtop software development - 4 My Python2C

 void printOut(int number, char* string);
 Print();
};
Print::Print()
{
 unused_var2 = 2;
 unused_var1 = "";
 unused_var1 = (char*) malloc(256);
 cout << "Object created!" << endl;
}
void Print::printOut(int number, char* string)
{
 int i;
 for(i = 0; i < number; i += 1)
 {
 if(i % 5 == 0)

{
 cout << "\n" << string << endl;
}

 else
{
 cout << string << endl;
}

 }
}
Print::~Print()
{
}

This is the translated PrintSomeMore.h file.

/* File translated Wed Aug 31 13:37:54 2005
 * by Python2C version 0.013. */
#include <stdlib.h>
#include <stdio.h>
#include <iostream.h>
#include <fstream.h>
/* The python types translation headers: */
#include "python2clist.h"
#include "python2ctuple.h"
#include "python2cdict.h"
#include "Print.h"
class PrintSomeMore
{
 public:
 char* unused_var1;
 int unused_var2;
 int unused_var1;
 ~PrintSomeMore();
 void printOut(int number, char* string);
 PrintSomeMore();
};

94

Translating Python to C++ for palmtop software development - 4 My Python2C

void PrintSomeMore::printOut(int number, char* string)
{
 int i;
 if(number > len(string))
 {
 number = len(string);
 }
 for(i = 0; i < number; i += 1)
 {
 cout << << endl;
 }
}
PrintSomeMore::PrintSomeMore()
{
 unused_var1 = 0;
}
PrintSomeMore::~PrintSomeMore()
{
}

Each LangClass object holds the name and the path to the file where the translated class code will
end up. These objects' getString function returns the empty string and writes the translated code to
this file on its own. The code that resides outside of classes is written to file by the writeCode
function in the Translator class. Each new LangClass object also adds a new type to the types
table in the Translator class and gives it the same name as the name of the class with the string
“POINTER ” in front. Any variable or expression in the source code that is found to point to an
object of this class will be given this pointer type by Python2C. Its equivalent in the C++ translation
is a regular pointer to a class object. Print* print_object from the C++ translation example
above, is such a pointer. The Translator class' types table will hold a mapping between the
internal POINTER Print type and the C++ Print* in this case.

The constructor function of any class will be given the type “OBJECT “ followed by the class name.
This type signals that the constructor actually returns an object and not a pointer to an object, an
important thing to get right to make the translation work. All new types are added to the types table
in the Translator class, and this is no exception. As seen in the above example, the statement
*print_object = Print(); contains a cast. The object returned by the Print constructor is
pointed to by print_object. All such statements are translated in this way by Python2C; a class
object is always pointed to and never held by a variable in the target code.

5 Project evaluation
Through working on this thesis I feel that I have covered a lot of ground. I have studied the relevant
languages and hardware systems and the inner workings of compilers in theory and practice. I
studied other attempts at creating translator programs and investigated a few alternative approaches
to creating this kind of software.

The time that was set aside for all this work was limited and it was never my intention to produce a
fully functional and optimal translator software bundle, that would be able to completely translate
the Python language to C++. I had to make priorities and decide what parts of my program that
needed the focus of attention. A lot of wanted functionality was sacrificed because of this time
shortage, but this can always be implemented at some later point, if someone should wish to pick

95

Translating Python to C++ for palmtop software development - 5 Project evaluation

the work up where I left off. I invested most of the labor into translating Python to “standard” C++
and getting most of the basic language elements translated. Once I figured out how to do this, in a
relatively good manner, the remaining functionality could be implemented in much the same way. I
never had time enough to get around to implementing the Windows CE GUI translation, but I have
explained how this can be done. The translation engine has been created, it just needs tweaking and
a few upgrades to become more powerful. Python2C is capable of translating GUIs if someone takes
the time to do this.

One could argue that I should have implemented multiple passes of the TST in order to get more of
the translation working and to increase support for any type of valid and syntactically correct Python
program. It would also minimize the need for new programming styles or conventions that I have
suggested, especially related to the translation of GUIs. I see this as being outside the scope of this
thesis, yet there is no doubt in my mind that a multiple pass translator would be more powerful. A
complete translator software package would also include a target code optimizer. I have chosen not
to look further into that problem either, since it would just take up too much time.

6 Appendix

6.1 The source code for the modified version of Strout and Heise's
Python2C

This is the complete source code for the modified version of Strout and Heise's Python2C that I
created.

#!/usr/bin/env python
#--
Python2C Tom Simonsen
#
Changes made to the original Strout/Heise code:
- The deprecated regex module changed to the re module.
Regex expressions and some bits of code changed accordingly...
- Additional regular expressions...
- Additional functions...
- Rewriting and some restructuring of the original code...
- Added an attempt to translate some python modules...
- It seems that I'm going to need a parser that builds a "rough"
structure of the program. I will have to keep track of all
variables to be able to tell what data types they hold, and
their scope.
- Problem with translation of for loops. Much due to the
keeping-track-of-variables problem.
#
Here are the original notes made by Joe Strout:
#
python2c.py joe@strout.net

This is a cheezy little program that converts some Python code
into C++ code. It has a very limited range, but it does a good
job on the example code it was built around! =)

first release: 3/21/97 JJS
#

96

Translating Python to C++ for palmtop software development - 6 Appendix

Changes by Dirk Heise 01-12-98 (Thanks, Dirk!)
- created a very simple file interface
- some more rules for C++ support
- added another "action" that may contain a python statement to
be executed on match, so a match can trigger something
- create a class header
- temporarily buffer output in several lists of strings
- added DEVELOPING option to help in examining operation of rules
#--
import re
import string
DEVELOPING = 0
 # set this to 0 for simple translation
 # set this to 1 if you want to have supplementary comments in the
 # generated C++ code that help finding out what PYTHON2C did
dirk heise:
---------------------------- RULES ------------------------------
All these rules work on single lines of input text !
Every rule consists of three strings (the third may be None)
- regex
If you wanna create new rules:
the regex must contain one or more "\(.*\)" patterns,
- replacement rule
the replacement rule can refer to the patterns mentioned above
with "^1","^2", "^3" etc. to insert the substring swallowed by that subexpr.
- None or a Python statement to be executed on match.
When this statement is executed, it can refer to the subexpressions
eaten by the regex as "sub[1]", "sub[2]" etc.
you can use this to store info from the parsed text into string
variables.
IMPORTANT : the line you're defining works in a local namespace;
it can NOT setup global variables in this program directly
(i suspect it might be a bug in Python1.4)
My workaround suggestion:
When you define such a line, simply call a function you define yourself!
That function (see SetClassName() below) can access every global object.
The rules are applied from top to bottom of list!
You can exploit this by first catching special cases and later
catch more generalized cases! (In other words, the sequence order
might be important)
trans = [
 # Remove all invocations of the str(...) conversion method. (Tom Simonsen)
 # This will not work in regex, because there's no way of expressing that
 # parenthesis have to be balanced.
 ["(.*str\(.*\).*)" , "^1", "s = translateMethod(s, 'str', None)"],
 # COMMENTS
 # 0
 ["(.*)#(.*)", "^1//^2", None],

 # STRING LITERALS
 # 1
 ["(.*)'(.*)'(.*)", '^1"^2"^3', None],

 # WHILE LOOPS
 # 2
 ["while (.*):(.*)", "while (^1)^2", None],

 # FOR LOOPS
 # loops that iterate integers can easily be converted:
 # 3

97

Translating Python to C++ for palmtop software development - 6 Appendix

 ["for (.*) in range\((.*),(.*)\):(.*)",
 "for (int ^1=^2; ^1<^3; ^1++) {^4", None],
 # an attempt to make sense of loops that iterate over some sequence/list:
 # (rule sequence is important here as the following rule is a superset
 # of the last one!):
 # 4
 ["for (.*) in (.*):(.*)",
 "for (int ^1i=0; ^1i<^2.Length(); ^1i++) { int ^1 = ^2[^1i]; ^3", None],
 # Here, i assume that a Python sequence is represented by some
 # C++ container, and this container offers a method Length()
 # to find out its number of elements.
 # While a Python loop does not need an int counter variable for
 # this, iterating a C++ dynamic array-like container requires
 # a counter int. And it requires accessing the container content
 # explicitly. This rule constructs some code for that.
 # Even if it doesn't compile, it'll notify you of the necessity of
 # explicit indirection, it's a thing easily overlooked.
 # TODO : replace Length() with something more flexible
 # or define a complete container interface somewhere...

 # IF LINES
 # 5
 ["if (.*):(.*)", "if (^1)^2", None],

 # ELIF LINES (Added by Tom Simonsen)
 #
 ["elif (.*):(.*)", "else if (^1)^2", None],
 # Remove any reference to the math module. (Tom Simonsen)
 #
 ["(.*)math\.(.*)" , "^1^2", None],

 # IMPORT LINES (Added by Tom Simonsen)
 #
 ["import (.*)", "", "s = translateImportStatements(sub[1])"],

 # ELSE LINES
 # 6
 ["else:(.*)", "else^1", None],
 # PRINT LINES
 # 7
 ["print (.*),$", "cout << ^1 << ' ';", None],
 # 8
 ["print (.*)", "cout << ^1 << endl;", None],
 # INPUT STATEMENTS
 # 9
 ['(.*)=(.*)raw_input\("(.*)"\)(.*)',
 'cout << "^3"; cin >> ^1;^4', None],
 # 10
 ["(.*)=(.*)raw_input\((.*)\)(.*)",
 "cin >> ^1;^4", None],
 # 11
 ['(.*)=(.*)input\("(.*)"\)(.*)',
 'cout << "^3"; cin >> ^1;^4', None],
 # 12
 ["(.*)=(.*)input\((.*)\)(.*)",
 "cin >> ^1;^4", None],
 # C++ RULES
 # some more rules by dirk heise
 # MEMBER VARIABLE PREFIXES (TREATING "SELF.")

98

Translating Python to C++ for palmtop software development - 6 Appendix

 # this is done by two rules, the sequence is important!
 # 13
 #["\(.*\)self\.\(\(\|[a-z]\|[A-Z]\)+\)(\(.*\)" , "^1^2(^4" , None],
 # this catches "self.id("
 # first catch function calls to the object itself, and simply kill
 # ".self"
 # TODO this regex fails... why? and find an easier way to catch
 # id char set
 # 14
 ["(.*)self\.(.*)" , "^1m_^2" , None],
 # catch the rest: member variable accesses
 # this rule assumes the C++ programmer has the habit of calling member
variables
 # "m_something" (which is a habit of mine)
 # Change this rule to fit your personal C++ naming conventions!
 # CLASS DECLARATIONS
 # 15
 ["class (.*):" , "", "SetClassName(sub[1])"],
 # assign the detected class name to a global string
 # FUNCTION & METHOD DECLARATIONS
 # first catch method declarations:
 # 16
 ["def (.*)\(self\):(.*)" , "void ^c::^1()^2", None],
 # 17
 ["def (.*)\(self\),(.*)" , "void ^c::^1(^2", None],
 # put classname in front of function name, eat parameter "self"
 # the "void" is just a guess, of course.
 # TODO : ^c for classname is quite arbitrary.
 # Setting up "classname" is okay cause its a clean way of
 # extending but ^c is built into the translate function and
 # it shouldn't
 #
 # now catch normal function declarations (they have no "self" argument):
 # 18
 ["def (.*)" , "void ^1", None]
 # again, the void is a guess.
 #
]
Tom Simonsen:
This is a part of the attempt at translating the imported python modules to
their C++ equivalents.
modules = [
 ["[,]+math", "#include <math.h>\n", None]
]
--------------------- EXTENSIONS --------------------------
These variables and functions are used by user-defined python statements
(see descriptions of rules)
header = [] # will store list of strings for class header
 # only used when a class definition is found
def hprint(s):
 # append string to class header text
 header.append(s)
classname = ""
 # dirk heise
 # global variable to keep a detected class name

def replaceGroups(match, s):

99

Translating Python to C++ for palmtop software development - 6 Appendix

 # This piece of code was turned into a separate method by Tom Simonsen.
 # Originally a part of translate.
 pos = string.find(s,'^')
 #print "Position of ^: " + str(pos)
 while pos > -1:
 # dirk heise : special : ^c means "classname"
 # TODO: this is a nonsystematic hasty improvement hack
 # (see the annotation in the rules section, seek TODO)
 if s[pos+1] == 'c' :
 # insert "classname" into our string
 left = s[:pos]
 right = s[pos+2:]
 k = classname
 else:
 num = string.atoi(s[pos+1:pos+2])
 #print "Number of group: " + str(num)
 # s = s[:pos] + keys[i].group(num) + s[pos+2:]
 # dirk heise : i splitted that to make it more understandable
 # for me
 left = s[:pos]
 right = s[pos+2:]
 k = match.group(num)
 if k == None :
 raise "Error in regex rule!"
 s = left + k + right
 # find another caret:
 pos = string.find(s,'^')
 return s

def translateMethod(s, method, replacement):
 # Replaces the name of a method in a method reference, with the name of
 # another method. If the replacement parameter == None, the reference
 # to the method will be deleted, along with the parenthesis.
 counter = 0
 pos = string.find(s, method)
 if pos == -1:
 return s
 number = string.count(s, method)
 for i in range(0, number, 1): # Replace all occurencies.
 if hasParenthesisToTheRight(s, pos, len(method)):
 s = changeStr(s, pos, len(method), replacement)
 s = removeParenthesisBalanced(s, pos)
 pos = string.find(s, method, pos, (len(s)-1))
 return s

def hasParenthesisToTheRight(string, position, length):
 # Checks if the sub_string in string has a "(" directly to the right
 # of it (indicating that the sub_string is in fact a part of a method
 # reference). Returns 1 if this is the case, 0 otherwise.
 c = string[position+length]
 if(c == "("):
 return 1
 else:
 return 0

def changeStr(string, position, length, replacement):

100

Translating Python to C++ for palmtop software development - 6 Appendix

 if replacement == None:
 # Removes any substring at position with length, within string.
 return string[0:position] + string[(position+length):]
 else:
 # Replaces the existing substring with a different substring, within string.
 return string[0:position] + replacement + string[(position+length):]

def removeParenthesisBalanced(string, l_position):
 # Removes the left "(" at position and then finds the right ")",
 # keeping the parenthesis balanced. (There might be parenthesis within
 # parenthesis within parenthesis and so on.)
 p_counter = 0
 r_position = l_position
 for c in string[l_position:]:
 if c == "(":
 p_counter = p_counter + 1
 elif c == ")":
 p_counter = p_counter - 1
 if p_counter == 0:
 # The right parenthesis has been found. Now, remove the pair.
 return string[0:l_position] + string[(l_position+1):r_position] +
string[(r_position+1):]
 r_position = r_position + 1
 raise "ERROR: Unbalanced parenthesis"

def translateImportStatements(s):
 global m_keys
 global m_values
 global m_exe # TODO: Incorporate exe!
 global history
 translated_s = ""
 for i in range(0,len(m_keys)):
 match = m_keys[i].search(s)
 if match != None:
 translated_s = translated_s + m_values[i];
 history = history + "m_keys[" + str(i) + "] "
 return translated_s

def SetClassName(s):
 # dirk heise
 # set up class name , to be used in user executable statements
 # i suppose here that this function is called when a Python class
 # is defined.
 # So create some code that will work as a template for a header file
 global classname
 classname = s
 hprint ("VERY ROUGH HEADER FILE TEMPLATE FOR CLASS "+classname)
 hprint ("copy this into its own file and refine it by hand.")
 hprint ("// "+classname+".H")
 hprint ("//")
 hprint ("//")
 hprint ("#ifndef _"+classname+"_H_")
 hprint ("#define _"+classname+"_H_")
 hprint ('#include "globs.h"')
 hprint ("class "+classname)
 hprint (" {")
 hprint (" public:")

101

Translating Python to C++ for palmtop software development - 6 Appendix

 hprint (" "+classname+"();")
 hprint (" virtual ~"+classname+"();")
 hprint (" protected:")
 hprint (" private:")
 hprint (" };")
 hprint ("#endif // _"+classname+"_H_")
 hprint ("END OF HEADER FILE TEMPLATE FOR CLASS "+classname)
 # TODO why all the mess with hprint? Well, the idea is to extend this
 # one: First write only until destructor prototype, later
 # when fetching a "def NAME(" "print" translation and "hprint"
 # line as prototype (so this header file will contain
 # more accurate info)
 # In the end, "hprint" the rest of the header file.

test_counter = 0
dirk heise: added parameter exe
def translate(s,keys,values,exe):
 # translate line s
 # find a match among keys
 # returns transformed "s" and a history string telling numbers of
 # transformations applied, in the form of a C++ comment
 global classname # dirk heise
 global history
 global test_counter
 changed = 1
 while changed:
 changed = 0
 for i in range(0,len(keys)):
 print str(test_counter) + " Matching string " + str(s) + " with pattern: "
+ str(keys[i].pattern)
 test_counter = test_counter + 1
 match = keys[i].match(s)
 if match != None:
 # print "*** MATCH! ***"
 # found a match ... apply translation
 history = history + "g_keys[" + str(i) + "] "
 # make sure history string entries are separated by spaces
 # to facilitate parsing these comments later (if someone wants
 # to)
 s = values[i]
 # we've got a response... stuff in adjusted text where indicated
 s = replaceGroups(match, s)
 # dirk heise : execute user statement if one is given:
 if exe[i] != None:
 # before execution, setup "environment" strings:
 sub = []
 sub.append("")
 k = " "
 num = 1
 while num != 0:
 try:
 k = match.group(num)
 num = num + 1
 sub.append(k)
 except:
 num = 0 # to quit the loop
 # sub is now a list of strings containing parsed subexpressions
 exec(exe[i])
 #changed = 1 # check for more matches! Tom Simonsen commented this
out.

102

Translating Python to C++ for palmtop software development - 6 Appendix

 # Should be set by exe, if
desirable.
 # special case: add semicolon after most statements
 pos = string.find(s+"//", "//")
 endpos = len(string.rstrip(s[:pos])) - 1
 if s != "":
 # dirk heise: to allow rules that return an empty string
 endchar = s[endpos]
 if endpos >= 3 and s[endpos-3:endpos+1] == 'else' and (endpos == 3 or
s[endpos-4] in " \t"):
 # found dangling keyword -- no semicolon needed
 return (s," //$$$ trafos applied: "+history)
 if endpos > 0 and endchar not in "{}>;":
 s = s[:endpos+1] + ';' + s[endpos+1:]
 return (s," //$$$ trafos applied: "+history)
 # I use "//$$$" as a marker for the history string to facilitate later
 # automatic wipeaway of these comments

def processLine(s,keys,values,exe):
 # find the indentation
 global gIndents
 global translated_code
 global output
 match = re.findall("(^[\t]*)", s)
 qtywhitechars = len(match[0])
 whitechars = match[0]
 if len(whitechars) > len(gIndents[-1]):
 indent = gIndents[-1] + "{"
 translated_code.append(indent)
 output.append(indent)
 gIndents.append(whitechars)
 else:
 while gIndents and gIndents[-1] != whitechars:
 del gIndents[-1]
 if gIndents:

 indent = gIndents[-1] + "}"
 translated_code.append(indent)
 output.append(indent)

 # if not gIndents: raise "Inconsistent indentation"
 # dirk heise: Come on... Never give up!
 if not gIndents:
 print "WARNING! Inconsistent indentation."
 gIndents.append(whitechars)
 # dirk heise: added exe , take care for history return value:
 s,history = translate(s[qtywhitechars:], keys, values, exe)
 return gIndents[-1] + s , gIndents[-1] + " " + history

THE MAIN CODE:
General regex:
gKeys = map(lambda x:re.compile(x[0]), trans)

103

Translating Python to C++ for palmtop software development - 6 Appendix

gValues = map((lambda x:x[1]), trans)
gExe = map((lambda x:x[2]), trans)
gEndWhite = re.compile("(.*)([\t]*)$")
gIndents = ['']
Used for module translation:
m_keys = map(lambda x:re.compile(x[0]), modules)
m_values = map((lambda x:x[1]), modules)
m_exe = map((lambda x:x[2]), modules)
s = ""
Dirk Heise 12.01.97 : a very simple file interface.
Modified by JJS to be platform-independent.
print "Python2C v0.01\tProgrammed by Tom Simonsen"
print "\t\t tomsi@ifi.uio.no\n"
s = raw_input("### Write the path to the input file: ")
file_name = s
translated_code = [] # Contains the entire translated file.
output = [] # Contains the entire translated file and debugging
 # information.
history = "" # Temporary storage for the debugging information.
 # history stores textual references to the changes
 # that have been made by what regular expressions.
 # Set DEVELOPING = 1 to get the output.
try:
 f = open(s)
 print "### Translating..."
 lines = f.readlines()
 for s in lines:
 translated_line, history = processLine(s, gKeys, gValues,gExe)
 translated_code.append(translated_line)
 output.append(translated_line)
 if DEVELOPING:
 # print numbers of transformations applied
 output.append(history)
 history = ""
 # now output class header if there is one:
 for s in header:
 print s
 print "### COMPLETED translation of the file \"" + file_name + "\".\n"
 print "### Beginning of file."
 for line in output:
 print line
 print "### End of file.\n"
except IOError:
 print "### File \"" + file_name + "\" not found!"

6.2 A scanner and parser for the Pedagola language
This chapter includes all the source code that went into making my scanner and parser for the
Pedagola language. I have only included the source code that was written by hand and not the Lex
and Yacc output files. The output files from Lex and Yacc go into the actual source code of the
scanner/parser program itself, the input files do not. This is not a complete implementation of a
Pedagola language scanner and parser, nor is it meant to be. It only serves as an example of the
amount of work that goes into making a scanner and parser from scratch using the Lex and Yacc

104

Translating Python to C++ for palmtop software development - 6 Appendix

generators. Pedagola is a very small and limited language. Its grammar does not come close to the
complex grammar of a full-blown, real-world programming language.

This is the contents of the Lex input file for making the scanner for the Pedagola language. The
grammar for the Pedagola language can be found at the University of Oslo's website,
http:// www.ifi.uio.no /inf310/ oblig -sprak-2004 .

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "y.tab.h"
#include "datastructure.h"
const int DEBUG_L = 0;
size_t CONST_LENGTH = 16;
extern int current_type;
extern char* current_name;
extern struct table_entry* current_proc;
int counter = 0, line_counter = 1;
int last_scanned_token;
%}
non_zero_digit [1-9]
digits [0-9]
number ({non_zero_digit}{digits}*("."{digits}+)?)|("0."{digits}+)|"0"
true "true"
false "false"
const {number}|{true}|{false}
alpha [a-zA-Z]
name {alpha}+[0-9a-zA-Z]*
whitespace [\t]+
newline "\n"
semi ";"
assign ":="
less "<"
lessequal "<="
larger ">"
largerequal ">="
equal "="
notequal "=/="
orop "or"
andop "and"
notop "not"
addop "+"
subop "-"
mulop "*"
divop "/"
powop "**"
prog "prog"
proc "proc"
begprog "begprog"
endprog "endprog"
begproc "begproc"
endproc "endproc"
if "if"
then "then"
else "else"
endif "fi"

105

http://www.ifi.uio.no/inf310/oblig-sprak-2004

Translating Python to C++ for palmtop software development - 6 Appendix

real "real"
bool "bool"
void "void"
while "while"
do "do"
enddo "od"
return "return"
comment "--"[^\n]*
leftp "("
rightp ")"
comma ","
%%
{whitespace} {
 if(DEBUG_L)
 printf("Line %d: whitespace = \"%s\"\n", line_counter, yytext);
}
{newline} {
 if(DEBUG_L)
 printf("Line %d: newline = \"%s\"\n", line_counter, yytext);
 line_counter++;
}
{comment} {
 if(DEBUG_L)
 printf("Line %d: comment = \"%s\"\n", line_counter, yytext);
}
{true} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: true = \"%s\"\n", line_counter, yytext);
 entry->real_value = 0;
 entry->bool_value = 1;
 entry->type = BOOL;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = CONST;
 return CONST;
}
{false} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: false = \"%s\"\n", line_counter, yytext);
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = BOOL;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = CONST;
 return CONST;
}
{semi} {
 if(DEBUG_L)
 printf("Line %d: semi = \"%s\"\n", line_counter, yytext);
 last_scanned_token = SEMI;

106

Translating Python to C++ for palmtop software development - 6 Appendix

 return SEMI;
}
{assign} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: assign = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = ASSIGN;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = ASSIGN;
 return ASSIGN;
}
{less} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: less = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = LESS;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = LESS;
 return LESS;
}
{lessequal} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: lessequal = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = LESSEQUAL;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;

107

Translating Python to C++ for palmtop software development - 6 Appendix

 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = LESSEQUAL;
 return LESSEQUAL;
}
{larger} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: larger = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = LARGER;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = LARGER;
 return LARGER;
}
{largerequal} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: largerequal = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = LARGEREQUAL;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = LARGEREQUAL;
 return LARGEREQUAL;
}
{equal} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: equal = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = EQUAL;
 entry->is_func = 0;

108

Translating Python to C++ for palmtop software development - 6 Appendix

 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = EQUAL;
 return EQUAL;
}
{notequal} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: notequal = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = NOTEQUAL;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = NOTEQUAL;
 return NOTEQUAL;
}
{orop} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: orop = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = OROP;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = OROP;
 return OROP;
}
{notop} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: notop = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;

109

Translating Python to C++ for palmtop software development - 6 Appendix

 entry->bool_value = 0;
 entry->type = NOTOP;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = NOTOP;
 return NOTOP;
}
{addop} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: addop = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = ADDOP;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = ADDOP;
 return ADDOP;
}
{subop} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: subop = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = SUBOP;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = SUBOP;
 return SUBOP;
}
{andop} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: andop = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;

110

Translating Python to C++ for palmtop software development - 6 Appendix

 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = ANDOP;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = ANDOP;
 return ANDOP;
}
{mulop} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: mulop = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = MULOP;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = MULOP;
 return MULOP;
}
{divop} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: divop = \"%s\"\n", line_counter, yytext);
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = DIVOP;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = DIVOP;
 return DIVOP;
}
{powop} {
 struct table_entry *entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: powop = \"%s\"\n", line_counter, yytext);

111

Translating Python to C++ for palmtop software development - 6 Appendix

 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 entry->real_value = 0;
 entry->bool_value = 0;
 entry->type = POWOP;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = POWOP;
 return POWOP;
}
{prog} {
 if(DEBUG_L)
 printf("Line %d: prog = \"%s\"\n", line_counter, yytext);
 push(); /* Creates the bottom stack_entry

 in the symbol stack.*/
 last_scanned_token = PROG;
 return PROG;
}
{proc} {
 if(DEBUG_L)
 printf("Line %d: proc = \"%s\"\n", line_counter, yytext);
 last_scanned_token = PROC;
 return PROC;
}
{begprog} {
 if(DEBUG_L)
 printf("Line %d: begprog = \"%s\"\n", line_counter, yytext);
 last_scanned_token = BEGPROG;
 return BEGPROG;
}
{endprog} {
 if(DEBUG_L)
 printf("Line %d: endprog = \"%s\"\n", line_counter, yytext);
 last_scanned_token = ENDPROG;
 return ENDPROG;
}
{begproc} {
 if(DEBUG_L)
 printf("Line %d: begproc = \"%s\"\n", line_counter, yytext);
 last_scanned_token = BEGPROC;
 return BEGPROC;
}
{endproc} {
 if(DEBUG_L)
 printf("Line %d: endproc = \"%s\"\n", line_counter, yytext);
 last_scanned_token = ENDPROC;
 return ENDPROC;
}
{if} {
 if(DEBUG_L)
 printf("Line %d: if = \"%s\"\n", line_counter, yytext);
 last_scanned_token = IF;
 return IF;
}
{then} {
 if(DEBUG_L)

112

Translating Python to C++ for palmtop software development - 6 Appendix

 printf("Line %d: then = \"%s\"\n", line_counter, yytext);
 last_scanned_token = THEN;
 return THEN;
}
{else} {
 if(DEBUG_L)
 printf("Line %d: else = \"%s\"\n", line_counter, yytext);
 last_scanned_token = ELSE;
 return ELSE;
}
{endif} {
 if(DEBUG_L)
 printf("Line %d: endif = \"%s\"\n", line_counter, yytext);
 last_scanned_token = ENDIF;
 return ENDIF;
}
{real} {
 if(DEBUG_L)
 printf("Line %d: real = \"%s\"\n", line_counter, yytext);
 yylval.type = REAL;
 last_scanned_token = REAL;
 current_type = REAL;
 return REAL;
}
{bool} {
 if(DEBUG_L)
 printf("Line %d: bool = \"%s\"\n", line_counter, yytext);
 yylval.type = BOOL;
 last_scanned_token = BOOL;
 current_type = BOOL;
 return BOOL;
}
{void} {
 if(DEBUG_L)
 printf("Line %d: void = \"%s\"\n", line_counter, yytext);
 yylval.type = VOID;
 last_scanned_token = VOID;
 current_type = VOID;
 return VOID;
}
{while} {
 if(DEBUG_L)
 printf("Line %d: while = \"%s\"\n", line_counter, yytext);
 last_scanned_token = WHILE;
 return WHILE;
}
{do} {
 if(DEBUG_L)
 printf("Line %d: do = \"%s\"\n", line_counter, yytext);
 last_scanned_token = DO;
 return DO;
}
{enddo} {
 if(DEBUG_L)
 printf("Line %d: enddo = \"%s\"\n", line_counter, yytext);
 last_scanned_token = ENDDO;
 return ENDDO;
}
{return} {
 if(DEBUG_L)
 printf("Line %d: return = \"%s\"\n", line_counter, yytext);
 last_scanned_token = RETURN;
 return RETURN;

113

Translating Python to C++ for palmtop software development - 6 Appendix

}
{number} {
 struct table_entry* entry;
 entry=(struct table_entry*)malloc(sizeof(struct table_entry));
 if(DEBUG_L)
 printf("Line %d: number = \"%s\"\n", line_counter, yytext);
 if(strlen(yytext) > CONST_LENGTH)
 {
 printf("Scanning error:\nNumber cannot exceed 16 characters.(\"%s\")\n",
yytext);
 exit(1);
 }
 else
 {
 entry->name = NULL;
 entry->real_value = atoi(yytext);
 entry->bool_value = 0;
 entry->type = REAL;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 yylval.te = entry;
 last_scanned_token = CONST;
 return CONST;
 }
}
{name} {
 if(DEBUG_L)
 printf("Line %d: name = \"%s\"\n", line_counter, yytext);
 if(strlen(yytext) > CONST_LENGTH)
 {
 printf("Scanning error:\nName cannot exceed 16 characters.(\"%s\")\n",
yytext);
 exit(1);
 }
 else
 {
 struct table_entry* entry;
 entry = (struct table_entry*)malloc(sizeof(struct table_entry));
 entry->bool_value = 0;
 entry->real_value = 0;
 entry->type = NAME;
 entry->is_func = 0;
 entry->has_param = 0;
 entry->param_type = 0;
 entry->left = NULL;
 entry->right = NULL;
 if(last_scanned_token == PROC)

entry->is_func = 1;
 /* Copy the yytext string to a separate memory location: */
 char* n = malloc(sizeof(yytext));
 memset(n, '\0', strlen(yytext));
 const char* copy = yytext;
 strcpy(n, copy);
 entry->name = n;
 current_name = n;
 if(last_scanned_token == REAL || last_scanned_token == BOOL ||

 last_scanned_token == VOID || last_scanned_token == PROC ||
 last_scanned_token == COMMA)

114

Translating Python to C++ for palmtop software development - 6 Appendix

{
 /* We are currently scanning a variable or function declaration. */
 entry->type = current_type;
 if(existsInTop(yytext))
 {
 printf("Error on line %d: Variable or function name already in use

(Name = \"%s\").\n", line_counter, yytext);
 exit(1);
 }
 else
 addName(entry, current_type);
}

 else
{
 /* We are currently scanning a variable or function reference. */
 if(!existsInStack(yytext))
 {
 printf("Error on line %d: Referencing undeclared variable or

function (Name = \"%s\").\n", line_counter, yytext);
 exit(1);
 }
}

 yylval.te = entry;
 if(last_scanned_token == PROC)

{
 current_proc = entry;
 push();
}

 if(DEBUG_L)
printStack();

 last_scanned_token = NAME;
 return NAME;
 }
}
{leftp} {
 if(DEBUG_L)
 printf("Line %d: leftp = \"%s\"\n", line_counter, yytext);
 last_scanned_token = LEFTP;
 return LEFTP;
}
{rightp} {
 if(DEBUG_L)
 printf("Line %d: rightp = \"%s\"\n", line_counter, yytext);
 last_scanned_token = RIGHTP;
 return RIGHTP;
}
{comma} {
 if(DEBUG_L)
 printf("Line %d: comma = \"%s\"\n", line_counter, yytext);
 last_scanned_token = COMMA;
 return COMMA;
}
. {
 printf("Scanner error on line %d: Unrecognized token \"%s\".\n", line_counter,
yytext);
 exit(1);
}
%%

This is the contents of the Yacc input. Yacc uses this file to generate the parser for the Pedagola
language.

115

Translating Python to C++ for palmtop software development - 6 Appendix

#include "lex.yy.c"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "datastructure.h"
const int DEBUG_Y = 0;
int current_type = 0;
char* current_name = "";
struct table_entry* current_proc;
extern int line_counter;
%}
%union {
 struct table_entry* te;
 int type;
}
%token <te> NAME
%token <te> CONST
%token SEMI
%token <te> ASSIGN
%token <te> LESS
%token <te> LESSEQUAL
%token <te> LARGER
%token <te> LARGEREQUAL
%token <te> EQUAL
%token <te> NOTEQUAL
%token <te> OROP
%token <te> NOTOP
%token <te> ANDOP
%token <te> ADDOP
%token <te> SUBOP
%token <te> MULOP
%token <te> DIVOP
%token <te> POWOP
%token PROG
%token PROC
%token BEGPROG
%token ENDPROG
%token BEGPROC
%token ENDPROC
%token IF
%token THEN
%token ELSE
%token ENDIF
%token <type> REAL
%token <type> BOOL
%token <type> VOID
%token WHILE
%token DO
%token ENDDO
%token RETURN
%token LEFTP
%token RIGHTP
%token COMMA
%type <te> STMT
%type <te> EXPM
%type <te> EXP
%type <te> PARAM
%type <te> EXPPART
%type <te> CALL

116

Translating Python to C++ for palmtop software development - 6 Appendix

%type <te> TERM1
%type <te> TERM2
%type <te> TERM3
%type <te> TERM4
%type <te> TERM5
%type <te> TERM6
%type <te> FACTOR
%type <te> MULDIV
%type <te> ADDSUB
%type <te> RELOP
%%
PROGRAM : PROG DECL BEGPROG STMTSM ENDPROG
 {

 if(DEBUG_Y)
 printf("### Parser: program\n");
 pop(); /* The last pop on the stack.

 The stack is now empty. */
 }

 ;
DECL : /* nothing */
 {

 if(DEBUG_Y)
 printf("### Parser: decl1\n");

 }
 | VARS
 {

 if(DEBUG_Y)
 printf("### Parser: decl2\n");

 }
 ;
VAR : REAL NAMES SEMI
 {

if(DEBUG_Y)
 printf("### Parser: var1\n");

 }
 | BOOL NAMES SEMI
 {

if(DEBUG_Y)
 printf("### Parser: var2\n");

 }
 | REAL PROC NAME PARAM DECL BEGPROC STMTSM ENDPROC SEMI
 {

struct table_entry* entry;
if(DEBUG_Y)
 printf("### Parser: decl2\n");
entry = getTableEntry($3->name);
if(entry != NULL && $4 != NULL)
 {
 entry->has_param = 1;
 entry->param_type = $4->type;
 }
current_proc = NULL;
pop();

 }
 | BOOL PROC NAME PARAM DECL BEGPROC STMTSM ENDPROC SEMI
 {

struct table_entry* entry;
if(DEBUG_Y)
 printf("### Parser: decl3\n");
entry = getTableEntry($3->name);
if(entry != NULL && $4 != NULL)
 {
 entry->has_param = 1;

117

Translating Python to C++ for palmtop software development - 6 Appendix

 entry->param_type = $4->type;
 }
current_proc = NULL;
pop();

 }
 | VOID PROC NAME PARAM DECL BEGPROC STMTSM ENDPROC SEMI
 {

struct table_entry* entry;
if(DEBUG_Y)
 printf("### Parser: decl4\n");
entry = getTableEntry($3->name);
if(entry != NULL && $4 != NULL)
 {
 entry->has_param = 1;
 entry->param_type = $4->type;
 }
current_proc = NULL;
pop();

 }
 ;
VARS : VAR
 {

 if(DEBUG_Y)
 printf("### Parser: vars1\n");

 }
 | VARS VAR
 {

 if(DEBUG_Y)
 printf("### Parser: vars2\n");

 }
 ;
NAMES : NAME
 {

 if(DEBUG_Y)
 printf("### Parser: names1\n");
 if($1->is_func)
 {
 printf("Error on line %d: Function \"%s\" used as a variable

reference.\n", line_counter, $1->name);
 exit(1);
 }
}

 | NAMES COMMA NAME
 {

 if(DEBUG_Y)
 printf("### Parser: names2\n");
}

 ;
PARAM : LEFTP RIGHTP
 {

 if(DEBUG_Y)
 printf("### Parser: param1\n");
 $$ = NULL;
}

 | LEFTP REAL NAME RIGHTP
 {

 struct table_entry* entry;
 if(DEBUG_Y)
 printf("### Parser: param2\n");
 entry = getTableEntry($3->name);
 if(entry != NULL)
 $$ = $3;

118

Translating Python to C++ for palmtop software development - 6 Appendix

}
 | LEFTP BOOL NAME RIGHTP
 {

 struct table_entry* entry;
 if(DEBUG_Y)
 printf("### Parser: param3\n");
 entry = getTableEntry($3->name);
 if(entry != NULL)
 $$ = $3;
}

 ;
STMT : NAME ASSIGN EXPM
 {

 struct table_entry* entry;
 if(DEBUG_Y)
 printf("### Parser: stmt1\n");
 if($1->is_func)
 {
 printf("Error on line %d: Function \"%s\" used as a variable

reference.\n", line_counter, $1->name);
 exit(1);
 }
 entry = getTableEntry($1->name);
 if(entry != NULL)
 {
 if(entry->type != $3->type)
 {

 printf("Error on line %d: Wrong type in assignment.\n",
line_counter);

 exit(1);
 }
 }

 }
 | IF EXPM THEN STMTSM ELSESTMT ENDIF
 {

 if(DEBUG_Y)
 printf("### Parser: stmt2\n");
 if($2->type != BOOL)
 {
 printf("Error on line %d: Expression after \"if\" must return

bool.\n", line_counter);
 exit(1);
 }

 }
 | WHILE EXPM DO STMTSM ENDDO
 {

 if(DEBUG_Y)
 printf("### Parser: stmt3\n");
 if($2->type != BOOL)
 {
 printf("Error on line %d: Expression after \"while\" must return

bool.\n", line_counter);
 exit(1);
 }

 }
 | RETURN EXPPART
 {

 if(DEBUG_Y)
 printf("### Parser: stmt4\n");
 if(current_proc == NULL)
 {
 printf("Error on line %d: Cannot have return statement outside

function.\n", line_counter);

119

Translating Python to C++ for palmtop software development - 6 Appendix

 exit(1);
 }
 if($2 == NULL)
 {
 if(current_proc->type != VOID)
 {

 printf("Error on line %d: Void function \"%s\" cannot return a
value.\n", line_counter, current_proc->name);

 exit(1);
 }
 }
 else
 {
 if(current_proc->type == VOID)
 {

 printf("Error on line %d: Function \"%s\" not declared as void.\n",
line_counter, current_proc->name);

 exit(1);
 }
 }

 }
 | CALL
 {

 struct table_entry* entry;
 if(DEBUG_Y)
 printf("### Parser: stmt5\n");
 entry = getTableEntry($1->name);
 if(entry != NULL)
 {
 if(entry->type != VOID)
 {

 printf("Error on line %d: Illegal use of function call. ",
line_counter);

 if(entry->type == REAL)
 printf("Function \"%s\" declared as real.\n", $1->name);
 else if(entry->type == BOOL)
 printf("Function \"%s\" declared as bool.\n", $1->name);
 exit(1);

 }
 }

 }
 ;
STMTSM : /* nothing */
 {

 if(DEBUG_Y)
 printf("### Parser: stmtsm1\n");
}

 | STMTS
 {

 if(DEBUG_Y)
 printf("### Parser: stmtsm2\n");
}

 ;
STMTS : STMT SEMI
 {

 if(DEBUG_Y)
 printf("### Parser: stmts1\n");
}

 | STMTS STMT SEMI
 {

 if(DEBUG_Y)
 printf("### Parser: stmts2\n");
}

120

Translating Python to C++ for palmtop software development - 6 Appendix

 ;
ELSESTMT : /* nothing */
 {

 if(DEBUG_Y)
 printf("### Parser: elsestmt1\n");
 }

 | ELSE STMTSM
 {

 if(DEBUG_Y)
 printf("### Parser: elsestmt2\n");
 }

 ;
EXPPART : /* nothing */
 {

 if(DEBUG_Y)
 printf("### Parser: exppart1\n");
 $$ = NULL;
 }

 | EXPM
 {

 if(DEBUG_Y)
 printf("### Parser: exppart2\n");
 $$ = $1;
 }

 ;
ADDSUB : ADDOP
 {

 if(DEBUG_Y)
 printf("### Parser: addsub1\n");
}

 | SUBOP
 {

 if(DEBUG_Y)
 printf("### Parser: addsub2\n");
 }

 ;
MULDIV : MULOP
 {

 if(DEBUG_Y)
 printf("### Parser: muldiv1\n");
 }

 | DIVOP
 {

 if(DEBUG_Y)
 printf("### Parser: muldiv2\n");
 }

 ;
RELOP : LESS
 {

 if(DEBUG_Y)
 printf("### Parser: less\n");
}

 | LESSEQUAL
 {

 if(DEBUG_Y)
 printf("### Parser: lessequal1\n");
}

 | LARGER
 {

 if(DEBUG_Y)
 printf("### Parser: larger\n");
}

 | LARGEREQUAL

121

Translating Python to C++ for palmtop software development - 6 Appendix

 {
 if(DEBUG_Y)
 printf("### Parser: largerequal\n");
}

 | EQUAL
 {

 if(DEBUG_Y)
 printf("### Parser: equal\n");
}

 | NOTEQUAL
 {

 if(DEBUG_Y)
 printf("### Parser: notequal\n");
}

 ;
EXPM : EXP
 {

 if(DEBUG_Y)
 printf("### Parser: expm\n");
 $$ = $1;
 printf("\n### Expression found:\n");
 printTree($1);
 printf("\n### End of expression\n\n");

 }
 ;
EXP : EXP OROP TERM1
 {

if(DEBUG_Y)
 printf("### Parser: exp1\n");
if($1->type != BOOL)
 {
 printf("Error on line %d: \"%s\" has wrong type.\n", line_counter, $1-

>name);
 exit(1);
 }
if($3->type != BOOL)
 {
 printf("Error on line %d: \"%s\" has wrong type.\n", line_counter, $3-

>name);
 exit(1);
 }

 $2->left = $1;
$2->right = $3;
$2->type = BOOL;
$$ = $2;

 }
 | TERM1
 {

if(DEBUG_Y)
 printf("### Parser: exp2\n");
$$ = $1;

 }
 ;
TERM1 : TERM1 ANDOP TERM2
 {

 if(DEBUG_Y)
 printf("### Parser: term11\n");
 if($1->type != BOOL)
 {
 printf("Error on line %d: Left \"%s\" has wrong type.\n",

line_counter, $1->name);
 exit(1);
 }

122

Translating Python to C++ for palmtop software development - 6 Appendix

 if($3->type != BOOL)
 {
 printf("Error on line %d: Right \"%s\" has wrong type.\n",

line_counter, $3->name);
 exit(1);
 }
 $2->left = $1;
 $2->right = $3;
 $2->type = BOOL;
 $$ = $2;
}

 | TERM2
 {

 if(DEBUG_Y)
 printf("### Parser: term12\n");
 $$ = $1;
}

 ;
TERM2 : NOTOP TERM3
 {

 if(DEBUG_Y)
 printf("### Parser: term21\n");
 if($2->type != BOOL)
 {
 printf("Error on line %d: \"%s\" has wrong type.\n", line_counter,

$2->name);
 exit(1);
 }
 $1->right = $2;
 $1->type = BOOL;
 $$ = $1;
}

 | TERM3
 {

 if(DEBUG_Y)
 printf("### Parser: term22\n");
 $$ = $1;
}

 ;
TERM3 : TERM4 RELOP TERM4
 {

 if(DEBUG_Y)
 printf("### Parser: term31\n");
 if($1->type != REAL)
 {
 printf("Error on line %d: \"%s\" has wrong type.\n", line_counter,

$1->name);
 exit(1);
 }
 if($3->type != REAL)
 {
 printf("Error on line %d: \"%s\" has wrong type.\n", line_counter,

$3->name);
 exit(1);
 }
 $2->left = $1;
 $2->right = $3;
 $2->type = BOOL;
 $$ = $2;
}

 | TERM4
 {

 if(DEBUG_Y)

123

Translating Python to C++ for palmtop software development - 6 Appendix

 printf("### Parser: term32\n");
 $$ = $1;
}

 ;
TERM4 : TERM4 ADDSUB TERM5
 {

 if(DEBUG_Y)
 printf("### Parser: term41\n");
 if($1->type != REAL)
 {
 printf("Error on line %d: \"%s\" has wrong type.\n", line_counter,

$1->name);
 exit(1);
 }
 if($3->type != REAL)
 {
 printf("Error on line %d: \"%s\" has wrong type.\n", line_counter,

$3->name);
 exit(1);
 }
 $2->left = $1;
 $2->right = $3;
 $2->type = REAL;
 $$ = $2;
}

 | TERM5
 {

 if(DEBUG_Y)
 printf("### Parser: term42\n");
 $$ = $1;
}

 ;
TERM5 : TERM5 MULDIV TERM6
 {

 if(DEBUG_Y)
 printf("### Parser: term51\n");
 if($1->type != REAL)
 {
 printf("Error on line %d: \"%s\" has wrong type.\n", line_counter,

$1->name);
 exit(1);
 }
 if($3->type != REAL)
 {
 printf("Error on line %d: \"%s\" has wrong type.\n", line_counter,

$3->name);
 exit(1);
 }
 $2->left = $1;
 $2->right = $3;
 $2->type = REAL;
 $$ = $2;
}

 | TERM6
 {

 if(DEBUG_Y)
 printf("### Parser: term52\n");
 $$ = $1;
}

 ;
TERM6 : FACTOR POWOP TERM6
 {

 if(DEBUG_Y)

124

Translating Python to C++ for palmtop software development - 6 Appendix

 printf("### Parser: term61\n");
 if($1->type != REAL)
 {
 printf("Error on line %d: \"%s\" has wrong type.\n", line_counter,

$1->name);
 exit(1);
 }
 if($3->type != REAL)
 {
 printf("Error on line %d: \"%s\" has wrong type.\n", line_counter,

$3->name);
 exit(1);
 }
 $2->left = $1;
 $2->right = $3;
 $2->type = REAL;
 $$ = $2;
}

 | FACTOR
 {

 if(DEBUG_Y)
 printf("### Parser: term62\n");
 $$ = $1;
}

 ;
FACTOR : LEFTP EXP RIGHTP
 {

 if(DEBUG_Y)
 printf("### Parser: factor1\n");
 $$ = $2;
 }

 | NAME
 {

 struct table_entry* entry;
 if(DEBUG_Y)
 printf("### Parser: factor2\n");
 entry = getTableEntry($1->name);
 if(entry != NULL)
 $$ = entry;
 }

 | CONST
 {

 if(DEBUG_Y)
 printf("### Parser: factor3\n");
 $$ = $1;
 }

 | CALL
 {

 struct table_entry* entry;
 if(DEBUG_Y)
 printf("### Parser: factor4\n");
 entry = getTableEntry($1->name);
 if(entry != NULL)
 {
 if(entry->type == VOID)

 {
 printf("Error on line %d: Illegal use of function call. ",

line_counter);
 printf("Function \"%s\" declared as void.\n", $1->name);
 exit(1);
 }

 $$ = $1;
 }

125

Translating Python to C++ for palmtop software development - 6 Appendix

 }
 ;
CALL : NAME LEFTP EXPPART RIGHTP
 {

 struct table_entry* entry;
 if(DEBUG_Y)
 printf("### Parser: call\n");
 entry = getTableEntry($1->name);
 if(entry != NULL)
 {
 if(!(entry->is_func))
 {

 printf("Error on line %d: Variable \"%s\" referenced as a function
call.\n", line_counter, entry->name);

 exit(1);
 }
 if($3 == NULL)
 {

 if(entry->has_param)
 {
 printf("Error on line %d: Function \"%s\" called without

parameter.\n", line_counter, entry->name);
 exit(1);
 }

 }
 else
 {

 if(!(entry->has_param))
 {
 printf("Error on line %d: Function \"%s\" has no parameter.\n",

line_counter, entry->name);
 exit(1);
 }
 else
 {
 if(entry->param_type != $3->type)
 {

 printf("Error on line %d: Parameter in call to function
\"%s\" has wrong type.\n", line_counter, entry->name);

 exit(1);
 }
 }

 }
 $$ = entry;
 }

 }
 ;
%%
int main(int argc, char *argv[])
{
 if (argc > 0)
 yyin = fopen(argv[1], "r");
 else
 yyin = stdin;
 return yyparse();
}

126

Translating Python to C++ for palmtop software development - 6 Appendix

This is the contents of the datastructure.h file. It defines the parts of the data structure used in
the scanner/parser program and the functions that define the operations that can be done on these
data structures.

#ifndef DATASTRUCTURE_H
#define DATASTRUCTURE_H
/*******************************/
/* The symbol table structure: */
/*******************************/
struct table_entry
{
 char* name; /* The name of the function or variable.

 Function names and variable names cannot
 overlap within the same scope. */

 double real_value; /* Set to the variable's value if the
 variable is a real. */

 int bool_value; /* Set to the variable's value if the
 variable is a bool. */

 int type; /* Indicates the return type of a function
or

 the type of a variable. */
 int is_func; /* If set the node represents a funcion.

 If not, the node represents a variable.*/
 int has_param; /* Indicates if a function has a parameter
or not. */
 int param_type; /* The type of the function's parameter. */
 struct table_entry *left, *right; /* Syntax tree pointers. */
};
struct stack_entry
{
 struct table_entry* table_entries[100];
 int length;
 int free_index;
 struct stack_entry* below_element;
};
static struct stack_entry* top = NULL;
int teller = 0;
/*************************/
/* Symbol table methods: */
/*************************/
void addToTop(struct table_entry* t)
{
 if(top->free_index < 100)
 {
 top->table_entries[top->free_index] = t;
 top->free_index++;
 }
 else
 {
 printf("Error: Too many variables declared in scope. (Cannot exceed
100.)");
 exit(1);
 }
}

127

Translating Python to C++ for palmtop software development - 6 Appendix

struct table_entry* getTableEntry(char* name)
{
 int i, l = top->length;
 struct stack_entry* current = top;
 char* n = "";
 while(current != NULL)
 {
 for(i = 0; i < l; i++)

{
 if(current->table_entries[i]->name != NULL)
 {
 n = current->table_entries[i]->name;
 if(strcmp(name, n) == 0)

return current->table_entries[i];
 }
}

 current = current->below_element;
 }
 return NULL;
}
void push()
{
 // Just adds a new stack_entry struct to the top of the stack.
 int i;
 struct stack_entry *element;
 element = (struct stack_entry*)malloc(sizeof(struct stack_entry));
 element->length = 100;
 teller++;
 for(i = 0; i < 100; i++){
 element->table_entries[i] = (struct table_entry*)malloc(sizeof(struct
table_entry));
 element->table_entries[i]->name = NULL;
 }
 element->free_index = 0;
 if(top == NULL)
 element->below_element = NULL;
 else
 element->below_element = top;
 top = element;
}
void pop()
{
 struct stack_entry* old_top = top;
 top = old_top->below_element;
 free(old_top);
}
int existsInTop(char* name)
{
 int i, l = top->length;
 struct stack_entry* current = top;
 char* n = "";
 for(i = 0; i < l; i++)
 {
 if(current->table_entries[i]->name != NULL)

{
 n = current->table_entries[i]->name;
 if(strcmp(name, n) == 0)
 return 1;
}

128

Translating Python to C++ for palmtop software development - 6 Appendix

 else
return 0;

 }
 return 0;
}
int existsInStack(char* name)
{
 int i, l = top->length;
 struct stack_entry* current = top;
 char* n = "";
 while(current != NULL)
 {
 for(i = 0; i < l; i++)

{
 if(current->table_entries[i]->name != NULL)
 {
 n = current->table_entries[i]->name;
 if(strcmp(name, n) == 0)

return 1;
 }
}

 current = current->below_element;
 }
 return 0;
}
int isEmpty()
{
 if(top == NULL)
 return 1;
 return 0;
}
void printStack()
{
 int i, n = 0, l = top->length;
 struct stack_entry* current;
 current = top;
 printf("\nSymbol stack: (from top to bottom)\n");
 while(current != NULL)
 {
 printf("free_index = %d, length = %d\n", current->free_index, current-
>length);
 printf("element %d = [", n);
 for(i = 0; i < l; i++)

{
 if(current->table_entries[i]->name != NULL)
 printf("%s ", current->table_entries[i]->name);
}

 printf("]\n");
 current = current->below_element;
 n++;
 }
 printf("\n");
}
void addName(struct table_entry* entry, int current_type)
{
 struct table_entry* temp;
 temp = (struct table_entry*)malloc(sizeof(struct table_entry));
 temp->name = entry->name;

129

Translating Python to C++ for palmtop software development - 6 Appendix

 temp->type = current_type;
 temp->is_func = entry->is_func;
 temp->has_param = entry->has_param;
 temp->param_type = entry->param_type;
 if(temp->name != NULL)
 addToTop(temp);
}
/************************/
/* Syntax tree methods: */
/************************/
void setLeft(struct table_entry* n, struct table_entry* new_node)
{
 if(n->left != NULL)
 n->left = new_node;
 else
 {printf("n->left not NULL! Check C-code!\n"); exit(1);}
}
void setRight(struct table_entry* n, struct table_entry* new_node)
{
 if(n->right != NULL)
 n->right = new_node;
 else
 {printf("n->right not NULL! Check C-code!\n"); exit(1);}
}
void printTree(struct table_entry* node)
{
 if(node != NULL)
 {
 if(node->left != NULL)

{
 printf("(");
 printTree(node->left);
 printf(")");
}

 if(node->name != NULL)
printf(" %s ", node->name);

 else
{
 if(node->type == BOOL)
 {
 if(node->bool_value)

printf("true");
 else

printf("false");
 }
 else if(node->type == REAL)
 {
 printf("%.2f", node->real_value);
 }
}

 if(node->right != NULL)
{
 printf("(");
 printTree(node->right);
 printf(")");
}

 }
 else

130

Translating Python to C++ for palmtop software development - 6 Appendix

 printf("Error in printTree(): Node == NULL.\n");
}
#endif

This is the contents of the tree.c file. It defines the syntax tree structure used in the resulting
scanner/parser program and the functions that define the operations that can be done on the nodes
of the syntax tree.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
typedef enum {Var, Const, Add, Sub, Mul, Div, Pow, Relop} NodeType;
typedef struct node
{
 NodeType type; // Holds the sematic value of the node.
 char* string; // The string that was found by lex.
 struct node *left = NULL, *right = NULL;
} TreeNode;
typedef TreeNode* syntax_tree;
void setLeft(struct node* n, struct node* new_node)
{
 if(n->left != NULL)
 n->left = new_node;
 else
 {printf("n->left not NULL! Check your C-code!"); exit(1);}
}
void setRight(struct node* n, struct node* new_node)
{
 if(n->right != NULL)
 n->right = new_node;
 else
 {printf("n->right not NULL! Check your C-code!"); exit(1);}
}
void printTree(struct node* root)
{
 struct node* n = root;
 if(n->type == Var || n->type == Const)
 printf("%s", n->string);
 else
 {
 printf("%s", n->string);
 if(n->left->type == Var || n->left->type == Const)

printTree(n->left);
 else

{
 printTree(n->left);
}

 if(n->right->type == Var || n->right->type == Const)
printTree(n->right);

 }
}

131

Translating Python to C++ for palmtop software development - 6 Appendix

int main()
{
 return 0;
}

7 References

C++ Resources Network, The (2000). Introduction: History of C++.
http://www.cplusplus.com/info/history.html

Digital Equipment Corporation (September 1999). Welcome to the world of Modula-3!
http://research.compaq.com/SRC/modula-3/html/home.html

Ewing, G. (August 2002). Pyrex: A language for writing Python extension modules.
http://nz.cosc.canterbury.ac.nz/~greg/python/Pyrex/version/Doc/About.html

Ghezzi, C. and Jazayeri, M. (1998). Programming Language Concepts. John Wiley & Sons, Inc.
ISBN: 0-471-10426-4.

Giannini, M. and Keogh, J. (2001). Windows Programming: Programmer's Notebook. ISBN 0-13-
027845-9.

GNOME Project, The (2003). PyGTK: GTK+ for Python. http://www.pygtk.org/

Hammond, M. and Robinson, A. (1st Edition January 2000). Python Programming on Win32. ISBN:
1-56592-621-8.

Hugunin, J. (June 1996). Building Ariel - OpenGL GUI and Python to C.
http://www.python.org/workshops/1996-06/papers/hugunin.IPCIV.html

Johnson, L. (2002). FXPy a Python binding for FOX. http://fxpy.sourceforge.net/

Josuttis, N. M. (2001). Object-Oriented Programming in C++. ISBN 0-470-84399-3.

Krogdahl, S. (2004). Beskrivelse av programmeringsspråket Pedagola: Til obligatorisk oppgave i
INF 5110, våren 2004. http://www.ifi.uio.no/inf310/oblig-sprak-2004

Langtangen, H. P. (August 2002). Scripting Tools for Scientific Computations.

Lewis, H. R. and Papadimitriou, C. H. (1998). Elements of the Theory of Computation, Second
Edition. Prentice Hall, Inc. ISBN: 0-13-262478-8.

LinuxDevices.com (2005). http://www.linuxdevices.com

Louden, K. C. (1997). Compiler Construction: Principles and Practice. PWS Publishing Company,
ISBN: 0-534-93972-4.

132

http://www.linuxdevices.com/
http://www.ifi.uio.no/inf310/oblig-sprak-2004
http://fxpy.sourceforge.net/
http://www.python.org/workshops/1996-06/papers/hugunin.IPCIV.html
http://www.pygtk.org/
http://nz.cosc.canterbury.ac.nz/~greg/python/Pyrex/version/Doc/About.html
http://research.compaq.com/SRC/modula-3/html/home.html

Translating Python to C++ for palmtop software development - 7 References

Lundh, F. (1999). An Introduction to Tkinter.
http://www.pythonware.com/library/tkinter/introduction/

MacIntyre, B. (1997). Modula-3 Reference and Tutorial.
http://www1.cs.columbia.edu/graphics/modula3/tutorial/.index.html

Pemberton, S. (May 2003). A Short Introduction to the ABC Language.
http://homepages.cwi.nl/~steven/abc/

Rossum, Guido van, Drake, Fred L. (June 22, 2001). Extending and Embedding the Python
Interpreter. http://www.python.org/doc/2.0.1/ext/ext.html

Python.org (May 20, 2004). History of the software.
http://www.python.org/doc/2.3.4/ref/node104.html

Python.org (November 29, 2004). Python 2.4. Documentation.

Rempt, B. (January 1, 2002). Gui Programming With Python: Using the Qt Toolkit. Opendocs Llc,
ISBN: 0970033044.

Smart, J., Roebling, R., Zeitlin, V., Dunn, R., et al (October 2004). wxWidgets 2.5.3: A portable
C++ and Python GUI toolkit. http://www.wxpython.org

Strout, J. and Heise, D. (1998). python2c (Python source
code)http://www.strout.net/python/ai/python2c.py

133

http://www.strout.net/python/ai/python2c.py
http://www.wxpython.org/
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Boudewijn Rempt/102-9865081-5636928
http://www.python.org/doc/2.3.4/ref/node104.html
http://www1.cs.columbia.edu/graphics/modula3/tutorial/.index.html
http://www.pythonware.com/library/tkinter/introduction/

	1 Acknowledgments
	2 Introduction
	2.1 The world of palmtops
	2.2 The main purpose of the thesis
	2.2.1 Why bother translating one language to another?
	2.2.1.1 The need for speed
	2.2.1.2 Platform independence
	2.2.1.3 Time is money

	2.2.2 Approach to the problem

	2.3 A brief comment on the issue of object-orienting
	2.4 Python
	2.4.1 The history of Python
	2.4.2 The Python programming language
	2.4.3 Python GUI modules

	2.5 C++
	2.5.1 The history of C++
	2.5.2 The C++ programming language

	2.6 Windows programming
	2.6.1 The basics of the Windows platform
	2.6.1.1 The windows
	2.6.1.2 Handles, resources and messages
	2.6.1.3 The resource script
	2.6.1.4 A Windows CE program example

	2.6.2 Windows CE programming
	2.6.2.1 Windows CE versus other versions of Windows

	2.7 Compiler concepts
	2.7.1 The anatomy of a compiler
	2.7.1.1 The scanner
	2.7.1.2 The parser
	2.7.1.3 The semantic analyzer
	2.7.1.4 The code generator
	2.7.1.5 The symbol table
	2.7.1.6 The syntax tree

	2.7.2 Finite automata
	2.7.2.1 Deterministic finite automata
	2.7.2.2 Nondeterministic finite automata

	2.7.3 Context-free grammars
	2.7.4 Parser algorithms
	2.7.4.1 Top-down parsing
	2.7.4.2 Bottom-up parsing

	2.8 The tools

	3 Many ways to solve a problem
	3.1 Using regular expressions
	3.1.1 Strout and Heise's Python2C
	3.1.2 Problems with the regular expressions approach

	3.2 Creating a scanner and parser from scratch
	3.2.1 Using Lex and Yacc
	3.2.1.1 Lex
	3.2.1.2 Yacc
	3.2.1.3 Using Lex and Yacc to create my translator program

	3.2.2 Really creating a scanner and parser from scratch

	3.3 Using existing modules in Python
	3.3.1 Using the Python modules in practice

	3.4 The hybrid
	3.5 Other attempts
	3.5.1 Ariel
	3.5.2 Pyrex

	3.6 Conclusion

	4 My Python2C
	4.1 Source code documentation
	4.1.1 The main code
	4.1.1.1 The user interface
	4.1.1.2 The global variables
	4.1.1.3 The global functions

	4.1.2 The LanguageConstruct class and subclasses
	4.1.3 The VisitorFunctions class
	4.1.4 The Stack class
	4.1.5 The VStack class
	4.1.6 The VariableTable class
	4.1.7 The FunctionTable class
	4.1.8 The Translator class
	4.1.8.1 The translated syntax tree (TST)
	4.1.8.2 The abstract syntax tree (AST)
	4.1.8.3 The variable table
	4.1.8.4 The function table
	4.1.8.5 The various translation tables
	4.1.8.6 Translation of Python data types

	4.2 Translating GUIs
	4.2.1 The GUI class
	4.2.2 Generating the contents of the handler functions
	4.2.3 How to implement GUI translation as a part of Python2C
	4.2.3.1 The “GUI translation mode”
	4.2.3.2 Additions to the data structures

	4.2.4 To implement or not to implement?

	4.3 The problems of translation
	4.3.1 Variable creation
	4.3.1.1 Determining the types
	4.3.1.2 Has it already been created?
	4.3.1.3 Global variables and other special cases

	4.3.2 Functions
	4.3.2.1 Determining the return type
	4.3.2.2 Determining the types of argument variables
	4.3.2.3 Forward declarations and other issues

	4.3.3 Loops and if statements
	4.3.3.1 The for statement

	4.3.4 Lists, tuples and dictionaries
	4.3.5 Classes and objects

	5 Project evaluation
	6 Appendix
	6.1 The source code for the modified version of Strout and Heise's Python2C
	6.2 A scanner and parser for the Pedagola language

	7 References

