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WW
e first briefly recall the Weierstrass theory of
elliptic functions. Every elliptic curve is isomor-
phic to a Weierstrass cubic

d}=dzð Þ2¼ 4}3 � g2}� g3 � CP2 };d}=dz½ � ; ð1Þ

where
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is the meromorphic Weierstrass function with double
poles, z 2 C is a point on the curve (a torus), and s 2 C is
its modulus (‘‘shape’’); see Figures 1 and 2.1 The coeffi-
cients are Eisenstein functions, which come in three
varieties that differ only by how they are normalized:

EwðsÞ ¼ 1� 2w

Bw

X1

n¼1

nw�1qn

1� qn
;

GwðsÞ ¼ 2fðwÞEwðsÞ ;
gw=2ðsÞ ¼ 4ðw2 � 1ÞGwðsÞ ;

ð3Þ

where 2 � w 2 2Z, q ¼ expð2pisÞ, f is Riemann’s zeta
function, and B2 ¼ 1=6, B4 ¼ �1=30, B6 ¼ 1=42, are Ber-
noulli numbers.

Translations T ðsÞ ¼ sþ 1 and inversions SðsÞ ¼ �1=s
generate the modular group C ¼ PSLð2;ZÞ, which is the set
of all Möbius transformations with integer coefficients and
unit determinant. All Gw with w � 4 are modular forms of
weight w, which means that they transform like tensors,

Gw
asþ b

csþ d

� �
¼ ðcsþ dÞwGwðsÞ; 4 � w 2 2Z ; ð4Þ

and the ring of all holomorphic modular forms is generated
by G4 and G6. The Eisenstein series

E2ðsÞ ¼
3

p2
G2ðsÞ ¼ DuðsÞ ¼ 1

2pi
du
ds

derives from the logarithm of Dedekind’s eta function [3],

uðsÞ ¼ 24 log gðsÞ ¼ logDðsÞ ;

gðsÞ ¼ q1=24
Y1

n¼1

1� qnð Þ :

Cusp forms are modular forms that vanish when s ! i1,
and the discriminant

DðsÞ ¼ g32 � 27g23
� �

=ð2pÞ12 ¼ g24ðsÞ
of the elliptic curve is the unique modular cusp form of
weight 12, up to normalization. Since

1See any of the many excellent textbooks on elliptic functions, e.g., [1].
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gðsþ 1Þ ¼ eip=12gðsÞ; gð�1=sÞ ¼
ffiffiffiffiffiffiffiffi
�is

p
gðsÞ ;

the Dedekind eta function transforms almost (i.e., up to
phases) like a modular form of weight 1/2 on C, and it is a
modular form of weight 1/2 on the metaplectic double
cover of C. It has many subtle and surprising connections
to other areas of mathematics, including number theory,
topology, index theory of elliptic operators, algebraic
geometry, and gauge theory [2].

Quasimodular Planar Cubics
Because the sum defining G2 in (3) is not uniformly con-
vergent, it does not transform like a modular form as in (4),

G2
asþ b

csþ d

� �
¼ ðcsþ dÞ2G2ðsÞ � 2picðcsþ dÞ : ð5Þ

This had to be the case, since no modular form on C of
weight less than four exists. Rather, iG2=p transforms like a

connection on the modular curve X , which is Cþ=C com-
pactified by gluing the rational numbers to the upper half-
plane, called a quasimodular form of weight two. It is
implicit in the work of Weierstrass, as will be explained
below, but quasimodular forms were first studied system-
atically by Ramanujan [9], who called them mock theta
functions, and a decade later by Hecke [6].

This lack of modularity is why Weierstrass removes the
constant term G2 from the Laurent expansion of the would-
be modular } on a disk punctured at the origin, leaving

}ðz; sÞ ¼ 1

z2
þ
X1

k¼1

ð2k þ 1ÞG2kþ2ðsÞz2k : ð6Þ

The price he pays for this is that his sigma and zeta func-
tions have parts containing G2 that spoil an otherwise

perfect analogy with trigonometry (cf. the section on lattice
functions below).

Let us consider what happens to the planar Weierstrass
cubic in (1) if we put the constant term back in the game,

}2ðz; sÞ ¼ }ðz; sÞ þ G2ðsÞ : ð7Þ
Using the Ramanujan identities [9]

12DE2 ¼ E2
2 � E4 ;

3DE4 ¼ E2E4 � E6 ;

2DE6 ¼ E2E6 � E2
4

ð8Þ

(a geometric interpretation of these may be found in the
appendix), we find that every elliptic curve is isomorphic to
a quasimodular planar cubic

d}2=dzð Þ2 ¼ 4}3
2 � g1}

2
2 � og1}2 � o2g1=6

¼ 4}3
2 þ ou}2

2 þ o2u}2 þ o3u=6
ð9Þ

in CP2½}2;d}2=dz�. Surprisingly, the coefficients in this
curious cubic are simply derivatives ou ¼ 2pi du=ds ¼
�g1 ¼ �12G2, etc., of the logarithm of Dedekind’s
g-function.

Thus, every elliptic curve is ‘‘contained’’ in the logarithm
of the Dedekind g-function (or equivalently, the logarithm
of the discriminant), since it is completely determined by
the first three derivatives of log g (or logD) evaluated at the
point s on the modular curve that gives the shape of the
elliptic curve (up to modular transformations).

What follows is a more or less self-contained introduc-
tion to elliptic functions, which will enable us to derive (9)
directly from first principles, i.e., without the aid of
Weierstrass theory. The presentation is not the conven-
tional one found in textbooks, but it is arguably a more
intuitive approach that may serve as a precursor to the
classical theory.2 It is also better adapted to the task of
studying pinched tori, i.e., the large complex structure limit
s ! i1, where the tension between holomorphy and
automorphy (modular symmetry) that infects modular
mathematics becomes acute. This should not be sup-
pressed, as is usually done, but confronted head on from
the beginning so that we can see how it fits into the story.
Anomalous symmetries play a fundamental role in quan-
tum field theory, and we shall see that quasimodular
symmetries and the associated holomorphic anomaly are
equally important in understanding properties of singular
geometries.

Elliptic Functions
Periodic (circle) functions are called trigonometric func-
tions. A product of two circles is a torus, which after a point
of origin has been chosen is called an elliptic curve. If we
do not impose any constraints, it is way too easy to make
doubly periodic functions: the product P(x)Q(y) of any two
periodic functions P and Q is doubly periodic, frequently

Figure 1. The two-dimensional lattice Ks � C is generated by

the vectors (1, 0) and ð0; sÞ spanning the fundamental lattice

cell (shaded purple). The punctured lattice K0
s is Ks with the

origin � removed. Each horizontal string of lattice points is a

one-dimensional sublattice that we will call a chain, whence

Ks may be parsed as a stack of chains.

2This presentation is, at least in spirit, much closer to Eisenstein’s original work than to the subsequent (and now universally adopted) approach taken by Weierstrass

[4, 10].
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finite, but never (by Liouville’s theorem) holomorphic
(complex analytic), except for constants; cf. Figure 2(a).
The useful compromise is to consider meromorphic doubly
periodic (toroidal) functions, which are called elliptic
functions.

The minimum amount of divergence is to have a double
pole (which may be split into two simple poles) per lattice
cell; cf. Figure 1. The prototypical elliptic function is the
Weierstrass }-function defined in (2), which is plotted on a
square torus (s ¼ i) in Figure 2(b), and on a rectangular
torus with s ¼ 2i in Figure 2(c). If the real part R} or
imaginary part I} is plotted instead of (as here) j}j, then it
is obvious that it has double poles; cf. Figures 5 and 6 .

We can regard both periodic and doubly periodic
functions as lattice functions, i.e., lattice sums that are
manifestly periodic in one or two directions. Furthermore,
we shall view a two-dimensional (2D) lattice as a stack of
one-dimensional (1D) lattices, each of which is a string of
lattice points parallel to the real line (cf. Figures 1 and 2 )
that we call a chain. We can dissect 2D sums by doing one
chain at a time, and we therefore suspect that elliptic and
trigonometric functions are close cousins. That this is
indeed the case is most easily seen by constructing both as
lattice sums. For example, we shall soon see that the closest

cousin to }ðzÞ is p2 csc2 pz.
A chain is a very specific horizontal linear string of

points that stay together when the complex structure s of
the torus is changed. This changes how far apart the chains
are, but they do not change shape, and it is therefore nat-
ural to treat them as building blocks of the 2D lattice; cf.
Figures 1, 2, and 6 .

This carries over to chain functions, which are 1D lattice
sums of rational functions that define trigonometric func-
tions. When these functions are complexified, the chain
functions are glued together by the complex structure, but
they retain their identity as building blocks of elliptic
functions.

This parsing of a 2D lattice as a stack of chains highlights
the similarities between 1D and 2D lattice functions, and it
is the main pedagogical device used here to explain that
elliptic lattice functions (rather than Weierstrass functions)
are the closest relatives of trigonometric functions.

Our convention is that the lattice Ks is 1D with period

s if s is a positive real number, i.e., Ks ¼ sZ when s 2 R
þ.

The lattice Ks is 2D with basis ð1; sÞ if s is not real
(Is 6¼ 0), and we can without loss of generality parame-
terize all such lattices by the upper complex half-plane

C
þ ¼ fs 2 C j Is[ 0g,

Ks ¼ Z� sZ ¼ fmþ ns j s 2 C
þ; m;n 2 Zg :

Doubly periodic functions are obtained by tracing fractions
(rational functions) over a 2D lattice Ks62R.

Chain Functions
We first consider 1D periodic functions from the lattice
point of view, preparing a template onto which we later
can graft doubly periodic functions. In other words, we

want to have a unified treatment of multiperiodic functions
that exposes cross-dimensional similarities, which can then
be exploited in the construction of elliptic functions. Our
aim is to be as concrete and explicit as possible, using only
elementary analysis and checking results by plotting them.
Subtle convergence questions (convergence, absolute
convergence, or uniform convergence) are effectively
avoided by exploiting well-known analytic properties of
special (zeta and polygamma) functions.

The lattice is K1 ¼ Z. The choice of origin on the lattice
is arbitrary, but an origin is required in order to have a
group structure on the lattice (elliptic curves are abelian
groups). Functions that are manifestly periodic can be
obtained by cloning a rational function on each link. The
simplest seed function that has any chance of giving a
convergent sum is x�n for sufficiently large n, which is

Figure 2. Doubly periodic functions are rarely elliptic. (a) The

real doubly periodic function sin x sin y, with some of the

graph removed to reveal the checkerboard symmetry. This is

not an elliptic function. The Weierstrass function }ðz; sÞ is

elliptic, with one double pole on each lattice cell: (b) j}ðz; iÞj
(square torus), (c) j}ðz; 2iÞj (rectangular torus). Notice how

strings of lattice points move apart as Is increases, eventually

becoming individual 1D lattices that we here call chains.
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copied onto each link of the lattice K1 ¼ Z by translation.
The trace over the lattice is a superposition of these link
functions, i.e., the lattice sum

pnðxÞ ¼
X

m2Z

1

ðx þmÞn ; x 2 R n Z ; ð10Þ

which has poles of order n when x 2 Z. Since the sum is
absolutely convergent when n � 2, it can be differentiated
term by term, giving the recurrence relation (d/dx is
abbreviated as ox)

pnþ1 ¼ � 1

n
oxpn ¼ 1

n!
�oxð Þn�1p2; n � 1 :

So we need to compute only p2, but it is instructive to
calculate all the pn directly, using a method that is tailor-
made for the analytic regularization that will follow.

For n � 2, the Riemann–Hurwitz zeta function is

fðn; xÞ ¼
X1

m¼0

1

ðx þmÞn ¼ ð�1Þn

CðnÞ wðn�1ÞðxÞ ;

where wðnÞðxÞ ¼ onþ1
x logCðxÞ (n � 0) is the polygamma

function. Equation (10) can therefore be written as

pnðxÞ ¼ fðn; xÞ þ ð�1Þnfðn; 1� xÞ

¼ 1

CðnÞ wðn�1Þð1� xÞ þ ð�1Þnwðn�1ÞðxÞ
h i

:

Using that the polygamma function satisfies the reflection
formula

ð�1ÞnwðnÞð1� xÞ ¼ wðnÞðxÞ þ p onx cot px; n � 0 ; ð11Þ
we obtain

pnðxÞ ¼
p

CðnÞ �oxð Þn�1cot px; n � 2 : ð12Þ

As expected, all these periodic functions are trigonometric.
We would like to extend this result to the case n ¼ 1,

but it is not even obvious that p1 is well defined, since the
zeta function has its only pole at n ¼ 1. Whenever we
encounter a sum of dubious convergence, we must regu-
late it.3 Regularization is a procedure that extracts a finite
part from a (potentially) divergent series. As long as the
procedure satisfies the Hardy axioms [5], the result should
be independent of the chosen regularization scheme. The
most popular schemes (in both physics and mathematics)
are cutoff regularization and analytic regularization.

A cutoff scheme makes everything explicitly finite at
every step until the limit is taken at the end. However, a
cutoff is a discrete regulator that typically breaks every
symmetry in sight. For example, the lattice K1 ¼ Z is

invariant under translations T ðxÞ ¼ x þ 1, since we can
relabel all lattice points, but note that this works only
because the lattice is infinite in both directions. No points
‘‘drop off the end’’ when shifted left or right, because there
are no end points. If the lattice sum is regularized by
chopping off all but a finite piece in the middle, as is often
done, then this symmetry is brutally violated. Since our
motivation for tracing over infinite lattices is to build
manifestly periodic functions, it is not very appealing to
immediately destroy this circle symmetry by cutting off the
sum at both ends in order to make it finite, even if peri-
odicity is eventually restored. We prefer a more benign
scheme that respects symmetries.

The finiteness of analytic schemes is not as explicit, but
they are continuous and do minimal harm to the geometric
structure of the theory. In particular, they respect all sym-
metries as far as possible.4 Since symmetry is the DNA of
any quantum theory, analytic schemes are usually preferred
in physics. They are essentially variations on Riemann’s
analytic continuation of the series that defines his zeta
function: embed the sum into a larger analytic family, using
a reflection formula if possible, and then define the value of
the suspicious series to be the limit of a sequence of well-
behaved family members. Here we need only the (gener-
alized) Riemann zeta function.

Sometimes it is not possible to regulate a function
(theory) without harming its geometric structure, i.e.,
without breaking some symmetry. This generates so-called
anomalies that carry subtle and useful information about
the geometric structure. In the theory of elliptic functions,
they give an explicit parameterization of the conflict
between holomorphy and automorphy suffered by modu-
lar forms of low weight. If it is impossible to maintain both
a holomorphic structure and modular symmetry, then the
modular anomaly explicitly exhibits the problem, and it can
be used to construct functions that respect one or the other
of these geometric structures, but not both simultaneously.

This will play an important part in our discussion, since
we are particularly interested in the boundary of moduli
space, where this problem becomes acute.5 In order to
analyze the so-called nodal limit, in which a torus is
pinched, we need a holomorphic function that transforms
anomalously under modular transformations. It is nearly a
weight-two form, and it emerges naturally from lattice sums
that are convergent, but not uniformly convergent. This
subtle aspect of infinite series is respected by our analytic
regulator, and the required anomaly appears automatically.
This is a good reason to use an analytic regulator. If a cutoff
scheme produces an anomaly, how can we be absolutely
sure that this is not an artifact of the explicit symmetry-
breaking introduced by the regularization scheme? How do

3Regularizing a quantum field theory, which usually is rife with infinities, is a prerequisite for the infamous procedure called renormalization. This extracts the physical

content from apparently ill-defined expressions and may be regarded as a very adult version of our discussion of p1.
4Classical symmetries are sometimes broken by quantum fluctuations. If this anomalous symmetry is local (gauge invariance), then this is fatal, and the quantum field

theory is discarded, but anomalous global symmetries may be tolerable (since global symmetries typically are broken in the real world), and even useful.
5The original physical motivation is that this is the weak coupling limit of a particular effective quantum field theory that captures universal properties of quantum Hall

systems. This theory is a nonlinear sigma model with a toroidal target space, which degenerates to a nodal curve in the perturbative domain [7, 8]. Conventional

quantum perturbation theory is a nonmodular asymptotic expansion adapted to the singular geometry. The broken (or hidden) modular symmetry is presumably related

to the holomorphic anomaly.
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we know that other symmetry-violating schemes do not
produce different anomalies? The anomaly would then not
be canonical, and would not carry any invariant geometric
or topological information.

So, since the zeta function can be analytically continued
to C 3 s 6¼ 1, we investigate the analytic continuation

psðzÞ ¼
X

m2Z

1

ðz þmÞs ¼ fðs; zÞ þ ð�1Þsfðs; 1� zÞ

of pn in the limit as s ! 1. If p1 is well defined, the poles of
the two zeta functions must cancel, and they do:

p1ðxÞ ¼ lim
s!1

psðxÞ

¼ lim
s!1

1

s � 1
� wðs�1ÞðxÞ � 1

s � 1
þ wðs�1Þð1� xÞ

� �

¼ wð1� xÞ � wðxÞ ¼ p cot px ;

where use has been made of the reflection property of the

digamma function wðxÞ ¼ wð0ÞðxÞ recorded in (11).
Equation (12) can therefore be extended to include the

case n ¼ 1, since this also gives p1ðxÞ ¼ p cot px. Finally,
since p1ðxÞ ¼ �oxp0ðxÞ with p0ðxÞ ¼ � log sin px, we can
obtain all pn from the ‘‘potential’’ p0 by derivation:

pnðxÞ ¼
ð�1Þn

CðnÞ onxp0ðxÞ; n � 1 : ð13Þ

As a final check, we expand the pnðxÞ defined by (10) for
jxj \ 1,

pnðxÞ ¼
1

xn
þ
X1

k¼0

cnþk

nþ k � 1

n� 1

� �
ð�xÞk ;

cnþk ¼
X

m2K0
1

1

mnþk
; K0

1 ¼ Z n f0g :

We observe that odd coefficients (nþ k ¼ 2r þ 1) vanish,
while even coefficients (nþ k ¼ 2r) are zeta functions,

c2r ¼
X

m2K0
1

1

m2r
¼ 2fð2rÞ :

Using that fð0Þ ¼ �1=2, we find that p1ðxÞ must be the
cotangent function,

p1ðxÞ ¼ �
X1

r¼0

c2r x
2r�1 ¼ �2

X1

r¼0

fð2rÞ x2r�1 ¼ p cot pxv ;

since it is well known that this is a generating function for
zeta functions. Notice also that

p2ðxÞ ¼
1

x2
þ
X1

k¼0

ð2k þ 1Þc2kþ2 x
2k ¼ 1

x2
þ c2 þ 3c4x

2 þ 	 	 	 :

Comparison with (6) and (7) shows that the 1D lattice

functions cw ¼ 2fðwÞ on K0
1 are analogous to the 2D lattice

functions GwðsÞ on K0
s in Weierstrass theory. Not surpris-

ingly, from (3) we see that cw is in fact the leading (s-
independent) term in the q-expansion of Gw, so we are on

the right track. Since pnðxÞ ¼ ð�1Þnpnð�xÞ, these periodic
lattice functions are parity eigenstates, and we have found
the two complete families of odd/even functions shown in
Figure 3.

Equation (13) gives a hierarchy of algebraic and differ-
ential equations:

p0 ¼ � log sin px ;

p1 ¼ �p00 ¼ p cot px ;

p2 ¼ �p01 ¼ p21 þ p2 ¼ p2 csc2 px ;

p3 ¼ � 1

2
p02 ¼

1

2
p001 ¼ p1p2 ¼ p3 cot px csc2 px ;

p4 ¼ � 1

3
p03 ¼

1

6
p002 ¼ p2 p2 �

2p2

3

� �
;

p5 ¼ � 1

4
p04 ¼ p1p2 p2 �

p2

3

� �
;

;

where p00 ¼ oxp0 ¼ dp0=dx, etc. The two expressions for p4
give a second-order differential equation for p2, while a
first-order equation is obtained by squaring p3 and using

that p21 ¼ p2 � p2,

p23 ¼
1

4
p02ðxÞ

2 ¼ p21p
2
2 ¼ p22 p2 � p2

� �
:

This is a cubic equation in (renormalized) chain functions,

which with ðX ;Y Þ ¼ ðp2=p2; p3=p3Þ is the cubic6

Y 2 ¼ X2ðX � 1Þ ¼ ðX 0Þ2=4 � R
2 : ð14Þ

Although this looks like a planar cubic (a nodal curve in the
complex projective plane CP2), as a real equation it is

equivalent to the conventional quadratic equation u2 þ
v2 ¼ 1 that embeds the circle in the real plane R

2ðu; vÞ. At
the moment, this just looks like a very clumsy way of
writing trigonometric identities, but when these functions
are promoted to elliptic functions, they will become non-
trivial statements. The corresponding elliptic equation
embeds a pinched torus in the complex projective
plane CP2.

Stereography of Circles
We give a geometric interpretation of real chain functions
and the algebraic equations they satisfy that will be useful
later. Consider first the projective representation of the

circle Y 2 ¼ Xð1� XÞ � R
2 shown in Figure 4. Every point

(X, Y) on this circle, except the origin, is projected onto the
line X ¼ 1 by finding the point (1, c) on the line where a
ray from the origin through (X, Y) intersects it.7 If the ray
makes an angle u with the Y-axis, then c ¼ cotu, and the

6Notice that the ‘‘Weierstrassian’’ choice YW ¼ p02=p
3 ¼ �2Y would give Y 2

W ¼ 4X2ðX � 1Þ. The analogous construction in the elliptic case explains the factor of 4 in

(1).
7In Figure 4, this line is called a screen, by which we mean a one- or two-dimensional manifold onto which another shape is projected. In two dimensions, discussed in

the section on pinched nodal cubics below, the analogous ‘‘projection screen’’ is a 2D plane, for which the terminology is more appropriate.

� 2021 The Author(s), Volume 43, Number 3, 2021 19



projection is given by

ðX ;Y Þ �!P1 ð1; cÞ ¼ ð1;Y=XÞ ¼ ð1; cotuÞ :
The inverse projection is obtained by inserting Y ¼ cX into

the quadric Y 2 ¼ Xð1� XÞ,

ð1; cÞ �!
P�1

1 ðX ;Y Þ ¼ 1

1þ c2
ð1; cÞ ¼ sin2 u;

sin 2u
2

� �
:

Note that both the projection and its inverse are rational
transformations. The line X ¼ 1 is therefore birational to
the circle almost everywhere. The exception is the point
ðX ;Y Þ ¼ ð0; 0Þ, where the transformations are singular. In
order that this point also have an image on the real line, a
single new point at infinity is added to the screen X ¼ 1,
which is thereby closed at infinity to form a topological
circle. In short, the full circle is birational to the compact-
ified line, and no structure has been lost by this procedure.

Consider next the real cubic given by (14), which is also
plotted in Figure 4. Since it is built from periodic (circle)
functions, we expect it to be related to a circle. It does not
look much like a circle, but neither did the line X ¼ 1 in the
example above. In order to see what is going on, we also
project the cubic onto this line. Using again y ¼ cx, we get

ðX ;Y Þ �!P2 ð1; cÞ ¼ ð1;Y=XÞ ;

ð1; cÞ �!
P�1

2 ðX ;Y Þ ¼ 1þ c2
� �

ð1; cÞ ¼ csc2 u; cotu csc2 u
� �

:

With the identification u $ px, we see that we have

recovered the functions p2 ¼ p2X ¼ p2 csc2 u and p3 ¼
p3Y ¼ p3 cotu csc2 u previously obtained from lattice
sums. In other words, the lattice functions are a kind of
stereographic coordinates for this real cubic curve. A sim-
ilar result in the complex case will illuminate the nodal
limit.

Figure 3. The periodic lattice functions split into two families.

(a) pn is odd for odd n � 1; p1 fits snugly into this family, as it

should if the lattice trace has been properly regularized. (b) pn
is even for even n � 0. (c) Magnification of (b) showing how

the potential p0 fits into the even family.

Figure 4. Stereography of real quadrics and cubics. Simulta-

neous parametric plot of the quadric Y 2 ¼ Xð1� XÞ (orange)
and the cubic Y 2 ¼ X2ðX � 1Þ (purple). Solid curves have

c 2 �1=2; 2½ �, while the dashed parts of the curves are

obtained for other values of c, i.e., c 2 h�1;�1=2i [ h2;1i.
A pair of points on the quadric (orange) and cubic (purple)

parameterized by c both project to the same point (1, c)

(black) on the line x ¼ 1, here called a (projection) screen.

The point (0, 0) on the circle projects to i1 on the screen and

on the cubic, which are compactified by adding this point.
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Since both P1 and P2 are birational transformations, so
are compositions of these maps:

P�1
2 
P1ðX ;Y Þ ¼

X2 þ Y 2

X3
ðX ;Y Þ

is a rational map of the quadric to the cubic, and

P�1
1 
P2ðX ;Y Þ ¼

X

X2 þ Y 2
ðX ;Y Þ

is a rational map of the cubic to the quadric. This shows
that this cubic is a birational projective representation of the
circle.

In short, by gluing in the point at infinity, the cubic is
compactified and given the topology of a circle. When we
consider tori, this will become more explicit. Taking the
two simplest slices of the torus gives two orthogonal circles
that can be used to generate the torus, and in the projective
picture, one of them typically looks like the cubic curve in
Figure 4.

The manner in which a real cubic can faithfully
represent a circle is closely related to how a pinched
torus can represent a sphere. The analogous result in 2D
is that a planar nodal cubic (a degenerate complex cubic
equation in the complex projective plane CP2) is stere-

ographically birational to the complex line CP1 ’ S2, i.e.,
a sphere.

In summary, chain sums give a simple family of periodic
functions that may be derived from the potential function
p0ðxÞ ¼ � log sin px (by derivation), which is perfectly
adapted to (real) stereography. The main virtue of this
approach to trigonometry is that it immediately generalizes
to stacks of chains, i.e., 2D lattices, i.e., elliptic functions. In
doing so, the large complex structure limit of the torus,
where it is pinched down to a topological sphere, is illu-
minated, thereby clarifying the somewhat mysterious
modular/holomorphic anomaly that gives rise to quasi-
modular (mock modular) forms that have recently
resurfaced in various contexts.

Lattice Functions
Elliptic functions can be constructed from the simplest
lattice sums in 2D, regularized using 2D ‘‘zeta functions,’’ in
close analogy with the 1D case. Note, however, that while a
2D lattice is exactly the same as a stack of 1D lattices or
chains (cf. Figure 1), elliptic (2D) lattice functions are not
simply stacks of real chain functions (cf. the section on
elliptic functions above). When chain functions are com-
plexified, they become glued together by the complex
structure of the 2D manifold to form meromorphic func-
tions. The sums

}nðz; sÞ ¼
X

w2Ks

1

ðz þ wÞn ; n � 3 ;

where Ks is the lattice shown in Figure 1, are explicitly
doubly periodic and meromorphic (elliptic) when they are
well defined, i.e., absolutely convergent (n � 3). We wish
to expand this family of functions to the missing cases

n ¼ 0; 1; 2, and more generally to a meromorphic function
}sðz; sÞ, using analytic continuation.

The recurrence relation is as before,

}nþ1ðz; sÞ ¼ � 1

n

d

dz
}nðz; sÞ ¼

1

n!
� d

dz

� �n

}1ðz; sÞ ; ð15Þ

where }1 is given by a q-expansion,

}1ðz; sÞ ¼ p1ðzÞ þ S1ðz; sÞ ;

S1ðz; sÞ ¼
X1

m¼1

p1ðz �msÞ þ p1ðz þmsÞ½ �

¼ 2pi
X1

m¼1

1

qmu� 1
� 1

qm=u� 1

� �
;

with q ¼ expð2pisÞ and uðzÞ ¼ expð2pizÞ. In the last line,
we used that p1ðzÞ ¼ p cot pz, derived with great care
above in the section on chain functions. Feeding this back
into the recurrence relation gives

}nþ1ðz; sÞ ¼ pnþ1ðzÞ þ
1

n!
�2piu

d

du

� �n

S1ðz; sÞ :

For jzj \ 1 we can expand }n in a power series:

}nðz; sÞ ¼
1

zn
þ

X1

m¼0

GnþmðsÞ
n� 1þm

n� 1

� �
ð�zÞm ;

GnðsÞ ¼
X

w2K0
s

1

w
¼

X

m2K0
1

X

k2K1

1

ðk þmsÞn ;
ð16Þ

where the Gn by definition are the expansion coefficients

of }1. Since Gn ¼ ð�1ÞnGn, these coefficients vanish for
odd n. For even n, we evaluate them using f-functions [1],

GnðsÞ ¼ 2fðnÞ þ 2
ð2piÞn

CðnÞ
X1

k¼1

kn�1qk

1� qk
:

The real part of the Weierstrass function is very similar to
the 1D lattice function p2ðxÞ � p. They are by construction

Figure 5. TheWeierstrass functionR}ðz; sÞ (green) plotted on

top of the stack R½}2ðz; sÞ � G2ðsÞ� (red) of complex trigono-

metric chains p2ðz þmsÞ ¼ p2 csc2 pðz þmsÞ, with m ¼ �2;

�1; 0; 1; 2 and s ¼ i. The quilt appears because of tiny random

numerical differences between the two functions. Compare also

Figure 6, where the chain stacking is investigated inmore detail.
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close relatives, but they are not the same, because the other
chains contribute a small amount also for real arguments.

Consider, for example,
p2ð1=2Þ � p ¼ pðp� 1Þ ¼ 6:72801, which should be com-
pared to

}ð1=2; iÞ ¼ }2ð1=2; iÞ � G2ðiÞ
¼ p2

X

m2Z
sech2pm� p ¼ p21 ¼ 6:87519. . . ;

where

p1 ¼ pG ¼ p
Cð1=4Þ2

ð2pÞ3=2
¼ 2:6220575542. . . � 21=8

is the lemniscate constant,8 G is Gauss’s constant, and
G2ðiÞ ¼ p has been used. In order to banish any lingering
doubt about the veracity of the stack picture of elliptic
functions, both }ðz; iÞ and }2ðz; iÞ � p have been plotted
on top of each other in Figure 5. Including only the four
chains m ¼ �2;�1; 1; 2 nearest to the m ¼ 0 chain is suf-
ficient to make the two functions numerically
indistinguishable.

We can bring the chain potential p0ðxÞ ¼ � log sinðpxÞ
into a form suitable for generalization to two dimensions by
exponentiating it and using Euler’s product formula for the
sine function. This leads us to define rK and }0 by

rKðz; sÞ ¼ e�}0ðz;sÞ ¼ pz
Y

w2K0
s

1� z2

w2

� �
! sin pz ;

where z 2 C, w take values in a 2D punctured lattice K0
s (cf.

Figure 1), and the chain limit s ! i1 is shown. For com-
parison with Weierstrass, we also relabel }1 as fK, and }2

as }K:

fKðz; sÞ ¼
d

dz
log rKðz; sÞ ¼ }1ðz; sÞ ! p cot pz ;

}Kðz; sÞ ¼ � d

dz
fKðz; sÞ ¼ }2ðz; sÞ ! p2 csc2 pz :

These should be compared with the corresponding
Weierstrass functions:

rW ðz; sÞ ¼ ez
2g2ðsÞ=2�}0ðz;sÞ ! ep

2z2=6 sin pz;

fW ðz; sÞ ¼ d

dz
log rW ðz; sÞ

¼ }1ðz; sÞ þ zg2ðsÞ ! p cot pz þ p2z=3 ;

}ðz; sÞ ¼ � d

dz
fW ðz; sÞ

¼ }2ðz; sÞ � g2ðsÞ ! p2 csc2 pz � p2=3 ;

where g2 is Weierstrass’s eta function, not to be confused
with Dedekind’s eta function. Comparison with (7) shows
that g2ðsÞ ¼ G2ðsÞ, which may also be verified by direct
calculation.

Figure 6 shows why the Weierstrass function }ðz; sÞ
may be regarded as a stack }2ðz; sÞ of trigonometric chain
functions p2ðz þmsÞ (compare also Figure 5). We see how
the Weierstrass function } reduces to a single trigonometric

chain function p2 csc2 pz shifted by the anomaly p2=3 in the
large complex structure limit s ! i1, where the ‘‘bagel’’ is
pinched off to a ‘‘bun’’ (topologically). In other words, the
planar cubic degenerates to a nodal curve that is birational

to a 2-sphere: CP2½3� �! CP1 ’ S2, as will be discussed in
more detail in the section on pinched nodal cubics.

In short, it is the 2D lattice functions }n that enjoy a
flawless analogy to trigonometry. The lattice function }2 ¼
}ðz; sÞ þ G2ðsÞ differs from the Weierstrass function } by
the modular anomaly G2, and this accounts for all the
awkward bits in the contrived analogy between Weierstrass
theory and trigonometry. This vindicates our starting point,
which was to fully exploit the obvious similarities between
lattice functions in one and two dimensions (periodic and
doubly periodic functions).

Finally, we derive a differential equation satisfied by the
lattice functions, using the series expansion in (16). Since

}2 has double poles, the leading-order pole of d}2=dzð Þ2 is
4=z6. This can be eliminated by subtracting 4}3

2, leaving a

pole of order four, which is eliminated by adding 12G2}
2
2,

which leaves a pole of order two, which is canceled by

subtracting 12ðG2
2 � 5G4Þ}2. The series expansion of this

pole-free function is

d}2=dzð Þ2�4}3
2 þ 12G2}

2
2 � 12 G2

2 � 5G4

� �
}2

¼ 4 15G2
2G4 � G3

2 � 35G6

� �
þOðz2Þ ;

ð17Þ

where the remainder Oðz2Þ is a regular function. Since the
only holomorphic function on a torus is constant (by

Liouville’s theorem), we have Oðz2Þ ¼ 0. This may also be
verified order by order in the series expansion by explicit
calculation. Finally, using the Ramanujan identities from
(8), derived from the geometry of the modular curve X in
the appendix, we obtain (9). For reasons that soon will be
obvious, we shall sometimes refer to this as the stereo-
graphic cubic. The Weierstrass cubic in (1) is recovered by
substituting }2 ¼ }þ G2 in (17).

Papillon Plots
We wish to compare the Weierstrass cubic to the ‘‘stereo-
graphic’’ equation solved by the lattice functions }2 and
}0
2 ¼ d}2=dz ¼ �2}3.

While the complexification and projectivization of
geometry is the key to modern mathematics, it is not easy to
visualize. Even the simple cubic ‘‘curve’’ in the projective
‘‘plane’’ CP2 is really (using real numbers) the intersection
of two 3D hypersurfaces in a 4D projective space. We
therefore introduce a graphical device that goes some way

8The lemniscate constant p1 (in our nonstandard notation) has gone out of fashion, but it is a fundamental transcendental constant that plays the same role for doubly

periodic functions as p does for periodic functions. The lemniscate in question appears if you slice a bagel with the knife tangential to the hole. Notice that the rational

approximation p1 � 21=8 is surprisingly similar to Archimedes’s famous result p � 22=7 (sometimes called the engineering value, because it is sufficiently accurate for

many practical applications), both good to about one part per thousand.
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toward visualizing these objects. Clearly, there is no way to
retain all information about the cubic in a plot, but a judi-
cious choice of ‘‘sections’’ or ‘‘slices’’ allows us to image the
skeleton, i.e., the generating cycles. We consider ‘‘family
plots’’ that we shall call papillon plots. The main idea is to
‘‘flatten’’ each pair of cycles onto a plane, and then stack
these planes together as one of the parameters of the cubic
is changing. They are constructed as follows for the general
pure (no mixed terms) cubic

Y 2 ¼ CðXÞ ¼ a0 þ a1X þ a2X
2 þ a3X

3; X ;Y 2 C :

If the coefficients an are complex, then even this simple
curve is too complicated, so we restrict attention to an 2 R.
With X ¼ x1 þ ix2 and Y ¼ y1 þ iy2 (x1; x2; y1; y2 2 R), this
is equivalent to the two real equations

y21 � y22 ¼ C x1ð Þ � a2 þ 3a3x1ð Þx2
2 ;

2y1y2 ¼ a1 þ 2a2x1 þ a3 3x2
1 � x2

2

� �	 

x2 :

We obtain maximal simplification by choosing the first
section to be x2 ¼ 0. Then either y1 ¼ 0 or y2 ¼ 0, giving
two orthogonal sections:

x2 ¼ 0 ¼ y2)y21 ¼ C x1ð Þ ;
x2 ¼ 0 ¼ y1)y22 ¼ �C x1ð Þ :

The 2D papillon (plot of one family member) is obtained
by flattening these orthogonal sections into one 2D dia-
gram composed of four branches (parametric plots):

P2ðxÞ ¼ x;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�CðxÞ

ph i
jx 2 x�; xþð Þ

n o
:

This rotation does not do justice to the geometry of these
surfaces, but it does preserve the homotopy, i.e., it respects
the topology of the 1-cycles found by sectioning the cubic.
A 3D papillon, or family plot, is a two-parameter plot

P3ðx; tÞ ¼ t; x;�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Cðx; tÞ

ph i
jx 2 x�; xþð Þ; t 2 t�; tþð Þ

n o
:

The real parameter t is often chosen to be one of the
coefficients ai, and the other coefficients may also depend
parametrically on t, i.e., an ¼ anðtÞ. As an example of this
graphical device, a particularly simple family of cubics is
exhibited as a papillon plot in Figure 7.

The top row of Figure 8 shows how the 2D papillon plot
develops as the torus is pinched by shrinking a short cycle.
The pictures in the middle row are cartoons obtained by
‘‘closing the circles at infinity’’ (where they all meet). The
resulting plot is a flattened picture of the cycles exposed by
cutting the shapes in the bottom row. Similarly, Figure 9
shows how the 2D papillon plot develops as the torus is
pinched by shrinking a long cycle.

Pinched (Nodal) Cubics
One virtue of the lattice basis is that it allows us to examine
in a very explicit way how the torus degenerates to a nodal
cubic, which by a stereographic transformation is bira-
tionally equivalent to a sphere.

Figure 6. The Weierstrass function }ðz; sÞ is the stack }2ðz; sÞ
of complex trigonometric chain functions p2ðz þmsÞ ¼
p2 csc2 pðz þmsÞ (m 2 Z), except for the modular anomaly

G2ðsÞ, which has been removed from } because it is only

quasimodular (compare also Figure 5). (a) The m ¼ 0

chain shifted by G2ðiÞ ¼ p: Rp2ðzÞ � p ¼ p2R csc2 pz � p.

(b) Ip2ðzÞ ¼ p2I csc2 pz. (c) R}ðz; iÞ. (d) I}ðz; iÞ. (e)

R}ðz; 2iÞ. (f) R}ðz; 4iÞ � Rp2ðzÞ � p, since G2ðs ! i1Þ !
p2=3 � p [compare (a)].

Figure 7. Portrait (papillon plot) of the simple cubic family

y2 ¼ x3 � ax2 þ ða� 1Þx, with increasing real values of a out

of the plane of the paper.
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Consider first the family of rectangular tori parameter-
ized by s ¼ it, where t is a positive real number. Since
qðitÞ ¼ expð�2ptÞ is real, so are all the coefficients of the
stereographic cubic in (9) [cf. (3)], and we can construct the
papillon plot shown in Figure 10. This plot shows very
clearly how a node emerges as t grows larger than 1 and
completely dominates the structure of the cubic for t  1.

In the (large complex structure) limit t ! 1, the stere-

ographic cubic reduces to }2
3 ¼ }2

2ð}2 � p2Þ ¼ ð}0
2Þ

2=4.

With ðX ;Y Þ ¼ ð}2=p2; }3=p3Þ, this gives a planar cubic

Y 2 ¼ X2ðX � 1Þ ¼ ðX 0Þ2=4 � CP2ðX ;Y Þ ð18Þ

that looks quite similar to (14). Equation (18) should be
compared to the Weierstrass cubic in this limit,

ðX 0Þ2=4 ¼ X3 � p4X=3� 2p6=27, which is not particularly
illuminating.

The similarity between (14) and (18) is to some extent
misleading, since we now are dealing with complex func-
tions, and we need to decompress the complex notation in
order to draw pictures of what is going on.

With X ¼ x1 þ ix2 and Y ¼ y1 þ iy2, the two slicings
discussed in the previous section become

x2 ¼ 0 ¼ y2)y21 ¼ x3
1 � x2

1 ; ð19Þ

x2 ¼ 0 ¼ y1)y22 ¼ x2
1 � x3

1 : ð20Þ

We recognize (19) as the real smooth cubic that we studied
above in the section on stereography of circles, so this cycle
must be the circle that has not degenerated.

Both cubics are plotted in Figure 11, which also shows
the stereographic projection of these cubics onto the 2D
plane x1 ¼ 1, which we can think of as a projection screen.

In Figure 11(a), the smooth cubic y21 ¼ x3
1 � x2

1 (purple)

and the nodal cubic y22 ¼ x2
1 � x3

1 (orange) are orthogonal

cycles that generate the nodal curve. To see this, we can
think of all the endpoints as touching at infinity, repre-
sented here by dashed circles intersecting in the point
labeled1. Sliding and shrinking the purple circle along the
orange graph, to which it is attached at two points, gen-
erates the nodal surface shown in the inset (a pinched
torus). Both cycles are projected onto the 2D plane x1 ¼ 1,

which we can think of as the surface of a sphere, by
identifying all points at infinity.

Figure 11(b) shows parametric plots of the smooth cubic

ð1þ c21Þð1; c1Þ (purple) parameterized by c1 ¼ cotu1, and

the nodal cubic ð1� c22Þð1; c2Þ (orange) parameterized by

c2 ¼ cotu2, flattened by drawing both in the same plane.
This is the t ! 1 member of the family whose portrait
(papillon plot) is shown in Figure 10. The point (0, 0) on
the nodal curve projects to c2 ¼ �1 on the screen. The tail
of the node projects to points on the screen outside the
interval c2 2 h�1; 1i. Unlike the projection of the smooth
cubic, which is well defined everywhere, the nodal pro-
jection is ill defined at the node and must be blown up at
this point. Since the mappings are bijective (except at
(0, 0)), this provides a birational map between the cubic
nodal curve and the 2D screen.

In summary, we have obtained a detailed and consistent
picture of the geometry of the nodal cubic. The mero-
morphic 2D lattice functions labeling the point ð}2; }3Þ on
a nodal planar cubic are somewhat peculiar complexified
stereographic coordinates. This allows us to conclude that
the nodal cubic is birational to a sphere.
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Appendix: Modular Curve Geometry
Up to normalization, G2ðsÞ is a holomorphic connection on
the modular curve X . The covariant derivative with this
connection generates the Ramanujan identities in (8).

Let T ðn�mÞ denote a mixed tensor with n contravariant
(vector) indices and m covariant (covector) indices. Since
these indices take only one value on a complex curve, they
are usually suppressed. Under a modular coordinate

transformation s ! s0, the holomorphic connection vðsÞ ¼
C1
11ðsÞ and k-tensors transform as

vðsÞ �! ðcsþ dÞ2vðsÞ þ 2cðcsþ dÞ ;
T ð�kÞ �! ðcsþ dÞ�2k T ð�kÞ ;

and the covariant derivative with this connection is

rT ðn�mÞ ¼ o

os
þ ðn�mÞ v

� �
T ðn�mÞ :

Holomorphic modular k-tensors are called modular forms
of weight w ¼ �2k. The ring of all modular forms is gen-
erated by E4 and E6.

The renormalized Eisenstein function e2ðsÞ ¼ piE2ðsÞ=3
is a holomorphic modular connection, cf. (5), rather than a
holomorphic modular tensor (form). Furthermore, since
the difference between two connections is a tensor, by
subtracting the hyperbolic connection h2ðs;�sÞ ¼ i=Is on
the upper half-plane, e2 can be traded for a quasiholo-
morphic modular 2-form ê2ðs;�sÞ ¼ e2ðsÞ � h2ðs;�sÞ.

The only nonvanishing component of the holomorphic

modular curvature 2-tensor (w ¼ 4) is x ¼ ov� v2=2 (with
o ¼ o=os), and since the space of forms of weight 4 is one-
dimensional, xðv ¼ e2Þ must be proportional to E4.
Matching constant terms gives

x ¼ oe2 �
1

2
e22 ¼ � 1

2

pi
3

� �2

E4 : ð21Þ

The covariant derivative of a k-tensor produces a ðk þ 1Þ-
tensor, i.e., a form of weight w þ 2, from a form of weight
w. The covariant derivative of x is therefore a 3-tensor, and

Figure 11. Stereography of a complex cubic. (a) The smooth

cubic y21 ¼ x3
1 � x2

1 (purple) and the nodal cubic y22 ¼ x2
1 � x3

1

(orange) are orthogonal cycles that generate the nodal curve.

(b) Parametric plots of the smooth cubic (purple) parameter-

ized by c1 ¼ cotu1, and the nodal cubic (orange)

parameterized by c2 ¼ cotu2, have been flattened by drawing

both in the same plane.
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since the space of forms of weight 6 is one-dimensional,
rx must be proportional to E6. Matching constant terms,
we obtain

rx ¼ o� 2e2ð Þx ¼ pi
3

� �3

E6 : ð22Þ

Similarly, the covariant derivative of rx produces a 4-
tensor, and since the space of forms of weight 8 is one-

dimensional, r2x must be proportional to E2
4 . Matching

constants gives

r2x ¼ o� 3e2ð Þ o� 2e2ð Þx ¼ �3
pi
3

� �4

E2
4 : ð23Þ

When these geometric statements (tensor identities on the
modular curve), (21)–(23), are rewritten in terms of E2 and

the derivation D ¼ o=o ln q ¼ ð2piÞ�1
o, we obtain the

Ramanujan identities in (8).
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