
Introduction

i
F

Chapter 1 - Introduction

ii

ABSTRACT

A component model is a defined set of services that assist the developer with
traditionally difficult tasks such as transaction handling, synchronization, and
security. The two component models Enterprise Java Beans 2.0 and COM+ are the
two main competitors on the current market, and they are compared both from a
service and performance perspective.

To benchmark performance, implementations of a common test case were
conducted in both technologies. WebLogic 6.1 was used for the Enterprise Java
Beans implementation. The set of services offered by the component models are
compared systematically, and mapped according to the authors’ own experience and
to the test implementation.

The primary goal of this thesis is to provide an unbiased comparison of the two
component models. The findings of this thesis indicate that the two component
models are quite analogous with respect to services. From the performance point of
view, COM+ proved to be somewhat faster than Enterprise Java Beans.

Chapter 1 - Introduction

iii

TABLE OF CONTENTS

INTRODUCTION .. 1
1.1 THE AUTHORS.. 1
1.2 MOTIVES.. 1
1.3 DELIMITATION... 2
1.4 OVERVIEW ... 2

BACKGROUND ... 4
2.1 COMPONENT-BASED DEVELOPMENT .. 4
2.2 WHAT IS A COMPONENT? .. 5

2.2.1 The component – a superior explanation... 5
2.2.2 The component market .. 5

2.3 WHAT IS A COMPONENT MODEL? ... 6
2.4 WHAT IS A DISTRIBUTED SYSTEM?... 7

2.4.1 Why use distributed systems? ... 7
2.4.2 Reality of distributed systems ... 8
2.4.3 Object-oriented distributed systems ... 9

2.5 BACKGROUND TERMINOLOGY ... 9
2.5.1 Transmission Control Protocol/Internet Protocol (TCP/IP)................................... 9
2.5.2 Sockets.. 11
2.5.3 Architectures.. 11
2.5.4 Object distribution architecture ... 12
2.5.5 Remote Procedure Call (RPC) ... 12
2.5.6 Remote Method Invocation ... 12
2.5.7 eXtensible Markup Language (XML)... 13
2.5.8 Simple Object Access Protocol (SOAP)... 13
2.5.9 Web Services .. 13
2.5.10 JINI.. 14
2.5.11 Wireless Application Protocol (WAP) .. 14

2.6 COMPONENT ARCHITECTURES.. 14
2.6.1 CORBA... 15
2.6.2 Overview of the most significant components of CORBA....................................... 15
2.6.3 CORBA 3.. 16
2.6.4 Distributed Component Object Model (DCOM)... 17
2.6.5 COM+ - a new generation of COM ... 19
2.6.6 Microsoft .NET .. 20
2.6.7 Enterprise Java Beans... 20

2.7 COMMON CONCEPTIONS (HYPOTHESIS).. 23
2.8 PERFORMANCE BENCHMARKING .. 24

APPROACH .. 26
3.1 RESEARCH METHODS.. 26

3.1.1 Literature study.. 26
3.1.2 Design... 27
3.1.3 Implementation and methodology .. 28
3.1.4 Informal interviews.. 29

3.2 DEVELOPMENT PROJECT EXPERIENCE.. 29
3.3 DEVELOPMENT METHODOLOGY ... 30

3.3.1 Runtime qualities ... 30
3.3.2 Development qualities ... 30

Chapter 1 - Introduction

iv

3.3.3 External qualities... 31
3.4 IMPLEMENTATION ... 31

3.4.1 Hardware ... 31
3.4.2 Software.. 31
3.4.3 Model.. 33
3.4.4 Clients... 37
3.4.5 Application servers.. 42
3.4.6 Conducting the tests .. 46

IMPLEMENTATION.. 48
4.1 DETERMINING PROPERTIES ... 48
4.2 RUNTIME QUALITIES ... 49

4.2.1 Functionality.. 49
4.2.2 Usability ... 59
4.2.3 Performance... 61
4.2.4 Security... 61
4.2.5 Reliability and availability.. 63
4.2.6 Scalability... 65
4.2.7 Upgradability... 66

4.3 DEVELOPMENT QUALITIES.. 67
4.3.1 Modifiability... 67
4.3.2 Reusability.. 67
4.3.3 Portability .. 69
4.3.4 Buildability... 70
4.3.5 Testability... 70

4.4 EXTERNAL QUALITIES ... 71
4.4.1 Time to market ... 71
4.4.2 Cost of system .. 72
4.4.3 Maturity.. 73
4.4.4 Simplicity.. 73
4.4.5 Future plans... 73

4.5 PERFORMANCE .. 74
4.5.1 New Customer business transaction .. 74
4.5.2 Populate Shopping Cart business transaction... 77
4.5.3 New Order business transaction... 79
4.5.4 Let’s Buy Some Records business transaction... 81

DISCUSSION .. 85
5.1 RUNTIME QUALITIES ... 85

5.1.1 Functionality.. 85
5.1.2 Usability ... 88
5.1.3 Performance... 89
5.1.4 Security... 89
5.1.5 Reliability and availability.. 89
5.1.6 Scalability... 89
5.1.7 Upgradability... 90

5.2 DEVELOPMENT QUALITIES.. 91
5.2.1 Modifiability... 91
5.2.2 Reusability.. 91
5.2.3 Portability .. 91
5.2.4 Buildability... 92
5.2.5 Testability... 93

5.3 EXTERNAL QUALITIES ... 93
5.3.1 Time to market ... 93

Chapter 1 - Introduction

v

5.3.2 Cost of system .. 94
5.3.3 Maturity.. 94
5.3.4 Simplicity.. 94
5.3.5 Future Plans .. 95

5.4 PERFORMANCE .. 95
5.4.1 Stateless vs. stateful implementation .. 96
5.4.2 Persistence in the middle tier.. 99
5.4.3 COM+ vs. EJB performance ..100

EVALUATION..103
6.1 RIGHT APPROACH? ..103
6.2 COMPARISON WITH EXISTING WORK ..103
6.3 COMMON CONCEPTIONS..104

CONCLUSION..105
FUTURE WORK..107

8.1 .NET VS. J2EE, ON A MORE EXTENSIVE AND HIGHER LEVEL......................................107
8.2 PORTABILITY ...107
8.3 PERFORMANCE - UNBIASED TEST WITH TUNING ..107
8.4 CORBA 3 ..108
8.5 SCALABILITY ...108
8.6 LIFE CYCLE COST OF PROJECT...108
8.7 INTER-PLATFORM COMMUNICATION ..108

BIBLIOGRAPHY...109
HARDWARE...116
SAMPLE LOGFILE ..117
EJB VS. COM+ SUPERIOR COMPARISON TABLE...118
SOURCE CODE COMPARISON...120
INDEX ..121

Chapter 1 - Introduction

vi

LIST OF FIGURES

Number Page
FIGURE 2-1: COMMUNICATION ON SHARED SERVERS.. 8
FIGURE 2-2: THE FOUR LAYERS OF THE TCP/IP PROTOCOL .. 10
FIGURE 2-4: CLIENT INVOCATION OF A SERVER METHOD USING CORBA 15
FIGURE 2-5: EJB INTEROPERABILITY.. 22
FIGURE 3-2: UML CLASS DIAGRAM OF THE RECORD SHOP .. 34
FIGURE 3-3: COMPONENT DIAGRAM OF RECORD SHOP... 35
FIGURE 3-4: MYORDER.JAVA CLASS .. 36
FIGURE 3-5: TEST ENVIRONMENT ... 37
FIGURE 4-2: WEB LOGIC MANAGEMENT CONSOLE.. 60
FIGURE 4-4: CPU USAGE IN THE COM+ "NEW CUSTOMER" CASE... 74
FIGURE 4-5: CPU USAGE IN THE EJB "NEW CUSTOMER" CASE.. 75
FIGURE 4-6: TRANSACTIONS PR. SECOND COMPARISON FOR THE NEW CUSTOMER BUSINESS

TRANSACTION.. 76
FIGURE 4-7: CPU USAGE IN THE COM+ "POPULATE SHOPPING CART" CASE 77
FIGURE 4-8: CPU USAGE IN THE EJB "POPULATE SHOPPING CART" CASE 78
FIGURE 4-9: TRANSACTIONS PER SECOND COMPARISON FOR THE POPULATE SHOPPING CART

BUSINESS TRANSACTION .. 79
FIGURE 4-10: CPU USAGE IN THE COM+ "NEW ORDER" CASE.. 79
FIGURE 4-11: CPU USAGE IN THE EJB "NEW ORDER" CASE... 80
FIGURE 4-12: TRANSACTIONS PER SECOND COMPARISON FOR THE NEW ORDER BUSINESS

TRANSACTION.. 81
FIGURE 4-13: CPU USAGE IN THE COM+ "LET'S BUY SOME RECORDS" CASE................................ 82
FIGURE 4-14: CPU USAGE IN THE EJB "LET'S BUY SOME RECORDS" CASE..................................... 83
FIGURE 4-15: TRANSACTIONS PR. SECOND COMPARISON FOR THE LET'S BUY SOME RECORDS

BUSINESS TRANSACTION.. 84
FIGURE 5-1: AVERAGE RESPONSE TIME COMPARISON IN THE NEW CUSTOMER BUSINESS

TRANSACTION .. 96
FIGURE 5-2: AVERAGE RESPONSE TIME COMPARISON IN THE NEW ORDER BUSINESS TRANSACTION

.. 97
FIGURE 5-3: STATEFUL VS. STATELESS COMPONENTS COMPARISON.. 97
FIGURE 5-4: COMPARISON OF CPU USAGE AND THREAD USAGE FOR STATELESS (LEFT GRAPH) AND

STATEFUL (RIGHT GRAPH) COMPONENTS.. 98
FIGURE 5-5: % TPS VARIATION BETWEEN STATEFUL AND STATELESS COMPONENTS IN EJB AND

COM+.. 99
FIGURE 5-6: AVERAGE RESPONSE TIME COMPARISON FOR THE "LET'S BUY SOME RECORDS"

BUSINESS TRANSACTION..100
FIGURE 5-7: AVERAGE RESPONSE TIME COMPARISON POPULATE SHOPPING CART BUSINESS

TRANSACTION. ...101

Chapter 1 - Introduction

vii

ACKNOWLEDGMENTS

We would like to acknowledge the encouragement and constructive advice offered
by our mentors, Knut Sagli and Arne Maus, in the completion of this thesis.

We are indebted to Genera AS for their support and encouragement in our studies.

We wish to thank Magali Rouyer for invaluable support and help in reading and
assessing the readability of this thesis. Big thanks also to Bruno Kieba.

A huge hug goes out to our families for always having a hot meal ready for us.
Finally, a magical and totally recyclable thanks to our most loved ones, Bente and
Magali, for showing us patience in the final phase of this thesis.

Chapter 1 - Introduction

viii

GLOSSARY

Application Programming Interface
(API)

A set of routines, protocols, and tools for
building software applications.

Bean Sun Microsystems calls a component a
"Bean" (thus continuing their coffee
analogy). A Bean is simply the EJB variation
on the idea of a component.

Business transaction A business transaction is a collection of
methods that model or emulate expected
behavior of the system.

Component A physical, replaceable part of a system that
packages implementation and conforms to,
and provides the realization of a set of
interfaces.

Component A component is a reusable program building
block that can be combined with other
components in the same or other computers
in a distributed network to form an
application.

Component model A component model is a defined set of
services that assist the developer with
traditionally difficult tasks such as transaction
handling, synchronization, and security.

Component Object Model (COM) Component Object Model (COM) is
Microsoft's framework for developing and
supporting program component objects

Component Object Model + (COM+) COM+ is both an object-oriented
programming architecture and a set of
operating system services. COM+ is an
extension of Component Object Model
(COM).

Container A container is an application program or
subsystem in which the program building
block known as a component is run.

Distributed system A distributed system allows objects to be
distributed through a heterogeneous
network, which allows every component to
cooperate.

Distributed Component Object Model
(DCOM)

DCOM is a set of Microsoft concepts and
program interfaces in which client program
objects can request services from server
program objects on other computers in a
network. DCOM is an extension to COM.

Dynamic Link Library (DLL) Packages containing object implementations
used by COM+.

Chapter 1 - Introduction

ix

Enterprise Java Beans (EJB) Enterprise JavaBeans (EJB) is an architecture
for setting up program components, written
in the Java programming language, that run
in the server parts of a computer network
that uses the client/server model.

Graphical User Interface (GUI) A GUI is a graphical, rather than purely
textual, user interface to a computer.

Integrated Development Environment
(IDE)

A programming environment integrated into
an application.

Interface Definition Language (IDL) IDL is a generic term for a language that
allows a program or object written in one
language to communicate with another
program written in a language unknown to
the given program.

Java Archive (JAR) A file format used to bundle components
used by EJB.

Java Message Service (JMS) JMS provides a reliable, flexible service for
the asynchronous exchange of critical
business data and events throughout an
enterprise.

Java Naming and Directory Interface
(JNDI)

An API for naming-service-independent
resource location. This provides Java
applications with a unified interface to
multiple naming and directory services on the
enterprise.

Java Transaction Monitor (JTS) JTS is an API to ensure data integrity across
several systems and their databases using
two-phased commits and rollbacks.

Java Virtual Machine (JVM) A JVM is a platform-independent
programming language that converts Java
byte code into machine language and
executes it.

Just In Time (JIT) activation. When JIT activation is activated in a
component, the instance is not created
before a call is made to the component, and
the component is terminated immediately
after the call is done.

Let’s Buy Some Records business
transaction

This business transaction is implemented as a
persistent component.

Load balancing Load balancing is dividing the amount of a
computer’s work between two or more
computers so that more work is
accomplished in the original amount of time.
As a result, all users are usually served faster

Microsoft Message Queue (MSMQ) The Microsoft Message Queue Server
(MSMQ) guarantees a simple, reliable and
scalable means of asynchronous
communication freeing up client applications

Chapter 1 - Introduction

x

to perform other tasks without waiting for a
response from the other end.

Microsoft Transaction Server (MTS) The MTS manages application and database
transaction requests on behalf of a client
computer user

Middleware The term middleware is used to describe
separate products that serve as the glue
between two applications.

New Customer business transaction This business transaction is implemented as a
stateless component that accesses the
RDBMS.

New Order business transaction This business transaction is implemented as a
stateful component that accesses the
RDBMS.

Object Pooling The application server keeps a pool of
objects instantiated to enhance performance.
When the instance is terminated by the client,
it does not get physically terminated, but it is
put back into the object pool.

Object Request Broker (ORB)

The ORB is a broker that handles the request
from a distributed object, and ensures that
this request is carried out.

Performance The effectiveness of a computer system,
including throughput and individual response
time.

Populate Shopping Cart business
transaction

This business transaction is implemented as a
stateful component with no RDBMS access.

Relational DataBase Management
System (RDBMS)

A RDBMS is a program that allows creating,
updating, and administering a relational
database.

Skeleton The skeleton is the generic server side code
that allows communication between different
components.

Stateful component A stateful component is session-oriented,
meaning that it maintains state across
methods calls and transactions. It is to be
considered a private resource for a client.

Stateless component A stateless component is relatively short-
lived and typically provides a single-use
service, independent of which client is calling
the service, e.g. adding a customer to the
record shop.

Stub The stub is the generic client side code that
allows communication between different
CORBA components.

TPC-C A standardized transaction processing
benchmark.

Chapter 1 - Introduction

xi

Transaction A sequence of information exchange and
related work (such as database updating) that
is treated as a unit for the purposes of
satisfying a request and for ensuring database
integrity.

Unified Modeling Language (UML) A general-purpose notational language for
specifying and visualizing complex software,
especially large, object-oriented projects

Introduction

1

1 C h a p t e r 1

INTRODUCTION

Systems based on components solve many of the problems that have arisen
from the vast increase in the number of distributed systems. Distributed
systems appeared as a consequence of the existence of several decentralized
organizations and the introduction of the Internet. With component-based
development, it is possible to buy and develop components, needed by a
system, but also appropriate for reuse as part of a larger application. This is
both time and cost efficient. Component-based technology is a way to ease
communication between different applications across distributed networks.

A component model is a defined set of services that assist the developer with
traditionally difficult tasks such as transaction handling, synchronization, and
security.

The object of this thesis is to compare and contrast the two major component
models currently available , namely Microsoft’s Component Object Model+
(COM+) and SUN’s Enterprise Java Beans (EJB). The EJB implementation
used in the practical work of this thesis has been conducted with BEA
WebLogic 6.1.

1.1 The authors
This thesis was written by Jan Henrik Gundelsby and Steinar Henrik Johnsen.
The work was equally divided in the sense that Mr. Gundelsby primarily
handled the EJB technology and that Mr. Johnsen primarily handled COM+.
Both authors evenly participated in the discussion chapters, and they feel that
their respective contribution to this work is equivalent.

1.2 Motives
The motives underlying the writing of this thesis are numerous. First of all, it
is relevant to say that the authors find the topic of application server
technology both extremely interesting and exciting. Another telling argument
is that the application server communities are debating this topic on a daily
basis, and the industry follows the debate with great interest.

Next, it is important to indicate that no objective and neutral comparison of
these two component models have yet been made. Finally, as the authors
were professionally involved with these two technologies, they were naturally
inclined to choose this subject of study, which findings are of practical use to
them, and their motivation was spontaneously enhanced.

Chapter 1 - Introduction

2

The primary goal of this thesis is to provide an unbiased comparison of the
two component models. The secondary goal is to help the reader, upon the
study of this material, to acquire a broader perspective for making the most
qualified technology choice considering a given project.

1.3 Delimitation
In such a large field as component models, it is important to remain focused
on the most significant aspects. Additionally, in order to keep this thesis
within the scope of a Cand. Scient. degree, further delimitations had to be
made. All delimitations, except the tuning of the application servers, are
delimitations of the performance test implementation. The theoretical
research of these subjects is included.

Owing to lack of resources, clustering, and therefore load balancing and partly
scalability are excluded from the practical part of this thesis.

Since event-driven communication was not implemented in WebLogic (the
EJB implementation used throughout this study) at the time of performance
testing, it could not be part of the test implementation.

The security aspects of the application servers are very extensive and they are
similar for both technologies. By excluding security in the implementation,
the security overhead in the comparison is not an issue.

Finally, the application servers are only tuned to have the same parameters
set, and not to improve performance. The tuning of application servers is a
huge area, and is also beyond the scope of this thesis.

1.4 Overview
Chapter 1 first introduces the reader to component technology. Besides, it
presents the motives for writing this thesis as well as some delimitation. It also
provides an overview of all the chapters and appendixes presented in order to
complete the thesis.

Chapter 2 provides the reader with a summary of technologies that have been,
and still are in use for component-based technology. It defines concepts and
background terminology, and introduces common conceptions. Finally, it
describes the concept of benchmarking.

Chapter 3 describes the approach to writing the thesis. First, it describes the
applied research methods, subsequently the methodology of the development.
Finally, it specifies the implementation setup and the way in which the tests
are conducted.

Chapter 1 - Introduction

3

Chapter 4 presents the results found when comparing side-by-side the two
technologies. It points how the technologies handle the runtime, development
and external qualities. Finally, it presents the performance results.

Chapter 5 discusses the findings of chapter 4.

Chapter 6 is devoted to an evaluation of the authors’ approach. It compares
the results with existing work, and examines the hypothesis (common
conceptions).

Chapter 7 contains the conclusion of the thesis. It presents a summary of the
most significant findings.

Chapter 8 describes further research that could be conducted, induced by the
material presented in this thesis.

Appendix 1 presents the software, hardware and platform used in the
performance test.

Appendix 2 contains a sample log file of the performance test.

Appendix 3 provides a comparison table of COM+ and EJB’s most
fundamental qualities.

Chapter 2 - Background

4

2 C h a p t e r 2

BACKGROUND

This chapter presents a description of COM+, EJB, and the technologies
from which they arose. It is observed the way component-based technology
came to be, as well as its evolution throughout the years. At the end of the
chapter, common conceptions about the two technologies are presented, and
finally benchmarking is explained.

2.1 Component-based development
There exist countless components and possibilities available for use. In a
word processor, such as Microsoft Word, several components are present: the
thesaurus, graphics viewing, printing, and graph functionality, undo/redo
functionality, etc. These components are independent of the word processor
component and can be used freely by other isolated applications within
Windows. This is how components are reused, hence saving valuable
development costs and time in the development of new applications. System
maintenance is simplified and becomes less time consuming thanks to the
easier localization of potential problems.

Purchase or reuse allows the developer to reuse functionality in several
projects, reducing the cost and increasing the time effectiveness of
component-based development. The alternative to developing themselves the
whole environment, as opposed to buying components, will be chosen by
other developers who will reuse, at a later time, in other projects.

A component, typically, but not always, works under several operating
systems (UNIX, Linux, Windows, Mac OS etc.). A component can also
communicate with any other given component through a standard interface;
hence a component can be programmed to communicate with other
components by exchanging information and functionality.

Chapter 2 - Background

5

2.2 What is a component?

”Oh no!! You’re making graph support in both Word and
PowerPoint. Implement it once, and find a way to reuse it”.

 Bill Gates, Microsoft (The birth of OLE)

A component is a widely used term. The authors’ interest, in respect of the
scope of this thesis, resides in the context of software, although the meaning
of the word component can then be extensive as well: class libraries,
encapsulated software modules, CASE models, pre-built applications, etc.
Their common denominator is that they can be combined with other
components so as to shape and create an application.

2.2.1 The component – a superior explanation

Definition [OMG]: "A physical, replaceable part of a system that
packages implementation and conforms to and provides the
realization of a set of interfaces. A component represents a
physical piece of implementation of a system, including software
code (source, binary or executable) or equivalents such as scripts
or command files"

A standalone component is not an application but can be combined with
several other components in order to shape one. It has to encapsulate its
implementation and offer a standard interface to communicate with other
components. Components can share methods, independently of the
component implementation programming language or the underlying
operating system. A component is able, through its interface, to communicate
with other components. Lastly, a component should contain everything it
needs to complete the tasks it is meant to accomplish (modular).

2.2.2 The component market

At the time of writing this thesis, Microsoft is still the leader of the
component market with their Windows-specific components. They provide
various encapsulated software in the forms of Visual Basic Controls (VBXs),
Object Linking and Embedding (OLE) and OLE Custom Controls (OCX). A
component is sold from about ten up to tens of thousands of US dollars.

There are many components available on the market – developed with
Microsoft’s tools, Sun’s tools or with the aid of the Common Object Request
Broker Architecture (CORBA). These components vary in complexity, from
simple buttons, through a graphical user interface (GUI), to more advanced
software packages such as a database interface.

Chapter 2 - Background

6

2.3 What is a component model?
The popularity of distributed systems has compelled several different
component architectures and technologies to handle communication between
components in a distributed system.

Different sources give different definitions of a component model. If one
defines it as “a complete component-based architecture for distributed
systems”, some delimitation has been done.

Definition [IBM]: An architecture and a set of APIs that allow
developers to define software components that can be dynamically
combined together to create an application.

The Application Programming Interfaces (API) in this definition can be
explained as a set of system services that are offered by the component
model.

Sun [SUN] defined their component model as a set of services:

 Component interface and discovery. A component can communicate with
another component, discover its characteristics and the way to
communicate with it. This renders the possibility for various
providers to implement components communicating with each other,
without directly knowing which components are cooperating.

 Component properties. A component should publicly offer its properties
to other components.

 Event management. A component should be able to deliver a message to
one or more components to notify that an event (e.g. the user pushed
a button) has occurred, so that the component(s) receiving the
message can respond to the event.

 Persistence. The possibility to store the component state for later use.
 Application building support. Components should not only be easy and

flexible to introduce into a distributed network, but users should be
able to easily create new components and view properties of existing
ones.

 Component packaging. Since components often have several associated
files, such as icons or other graphic files, the Sun component model
includes facilities to pack files together in an easily administrated and
distributed format. Sun calls the component packages Java Archives
(JAR).

This defines Sun’s set of services for a component model. Other component
models offer other sets of services.

Chapter 2 - Background

7

Another way of defining a component model is to determine what the
industry uses. In order to decide what component architectures satisfy the
requirements to be a component model, one could observe which component
models application servers use.

An application server offers services, as interfaces, targeted for an accepted
component infrastructure. Application servers offer services for the
Enterprise JavaBeans (EJBs) model from Sun Microsystems [SUN], the
Component Object Model (COM) [COM95] from Microsoft Corp. Another
alternative is to combine the use of Java and CORBA to achieve a simple
distributed component model although it has the inconvenience of lacking
the complexity of EJB and COM+ [ASU 99].

A component model is defined as joint characteristics between existing
services for component architectures that are currently supported by
application servers, namely EJB and COM+.

2.4 What is a distributed system?

Definition [BLAIR97]: A distributed system consists of a number
of autonomic computers that does not share primary storage, but
cooperates through asynchronous messages over a network.

A distributed system allows objects to be distributed through a heterogeneous
network, which allows every component to cooperate. A distributed system
contains nodes that execute calculations. A node can be a PC, a mobile phone
or any other device. The Internet is an excellent example of a distributed
system.

One of the reasons for the increasing popularity of components and
component architectures is the extended usage of distributed systems.
Distribution raises numerous new challenging issues but, sometimes,
applications and systems are simply distributed by nature, e.g. in mobile
systems.

2.4.1 Why use distributed systems?
One of the reasons why distributed systems arose is the existence of
decentralized organizations, that is, organizations or companies with offices in
different locations, e.g. multinational companies.

A number of applications share (distributed) components; providers rent
services from each other in order to achieve reuse and limit maintenance.
Statistics shows that the maintenance costs of systems represent in average

Chapter 2 - Background

8

twice the development costs. Maintenance is therefore a factor important to
keep at a minimum.

Data can be distributed, often because of administrative reasons. E.g. data,
which would be conveniently accessed from outside the system, has to be
stored locally because of the security policy.

By using distributed systems, multiple processor usage can be exploited,
hence increasing performance. Also, a given application may need the unique
properties of one specific computer; and the distributed application can use
the scalability and heterogeneity of the distributed system.

Users of current systems typically execute shared objects on one or more
shared servers, see Figure 2-1. The users communicate through the same
application.

Figure 2-1: Communication on shared servers

2.4.2 Reality of distributed systems
In distributed systems, there exist some fundamental properties; they are
taken for granted in a local program where all logic happens in the same
operating system and in the same process.

Table 2-1 points to a few differences between objects that are local in the
same process and objects that cooperate in different processes or machines.

Chapter 2 - Background

9

 Local Distributed
Communication Fast Slow
Error Objects fail

simultaneously
Objects fail
separately

Parallelity Only when multi-
threaded

Yes

Security Yes No
Table 2-1: Local vs. distributed systems

The communication between two machines will be noticeably slower than
between two local objects. If two objects are distributed in different
processes, the objects can fail separately from each other, thus processes can
execute independently (and unknowingly) of the other process success or
failure. Distributed objects act as multi-threaded objects on a local system; all
distributed objects operate on their own thread. While, with distributed
objects on different machines, security mechanisms are often needed to
authenticate the objects’ identity, these are not necessary to consider if two
objects are in the same process.

2.4.3 Object-oriented distributed systems
An object-oriented distributed system is the product of two technologies:
networking and object-orientation. An application built in a distributed object
environment means that “the network is the computer”. Objects are
distributed to different computers through a network, and still used locally
within the application through an interface. In object-oriented distributed
systems, the objects can be components that encapsulate their
implementation and offer an interface outwards.

2.5 Background Terminology
After some basic concepts are examined, a closer study of the component
models will be presented.

During the last 20 years there has been a change from having centralized
servers to using distributed systems. The conception of communication
between computers constitutes the foundation for distributed systems.

2.5.1 Transmission Control Protocol/Internet Protocol (TCP/IP)
There exist several network standards, and the family of Transmission
Control Protocol/Internet Protocol (TCP/IP) stands out as the prevailing
standard protocol. A protocol is simply a determined way of executing a task.

Chapter 2 - Background

10

Communication protocols specify how computers (or other devices)
cooperate by exchanging messages.

Innumerable TCP/IP-protocols exist and each protocol is usually represented
as one to four layers, see Figure 2-2. Each protocol layer has a specific
function, and functionality becomes more primitive in the lower levels.
Typically, the upper layers are involved with the user needs, while the lower
layers are more involved with technology.

Figure 2-2: The four layers of the TCP/IP protocol

Because the functionality of the network layer is very primitive, this layer
often becomes transparent to the user. This layer is responsible for the
restructuring of data to a form suitable for network transmission, and for
connecting logical addresses to physical addresses. A logical address is also
known as an IP-address, or an IP-number that uniquely identifies a network
device.

The Internet layer consists mainly of two protocols: The Internet Protocol
(IP) and the Internet Control Messages Protocol (ICMP). IP standardizes the
content and formats the data packages for transmission. It chooses a suitable
route, fragments and reassembles the data packages for data forwarding to an
appropriate higher level protocol. ICMP takes charge of transmission speed
to insure that the receiver can keep up with the transmission pace. It detects if
the receiver does not exist, reroutes network traffic dynamically and offers an
echo service used for IP-protocol verification on external systems.

The most commonly used version of IP is the Internet Protocol Version 4
(IPv4). IP Version 6 (IPv6) is starting to be supported. IPv6 allows creating

Chapter 2 - Background

11

longer addresses, hence increasing the number of Internet users. IPv6
includes all IPv4 services, and all servers supporting IPv6 packages also
support IPv4.

The transport layer, similarly to the Internet layer, consists mainly of two
protocols: TCP and User Datagram Protocol (UDP). TCP takes charge of
error checking and retransmission in order to increase transmission reliability.
Additionally, it collects packages from a continuous stream of data and puts it
into a sequence. Finally, it delivers data to the processing application. UDP
also offers delivery of a package to an application although it lacks the
reliability and connectivity of TCP. TCP also guarantees data delivery in
order, with no duplicates, and no data corruption, while UDP does not.

The application layer consists of all the applications that use the data delivered
by TCP/IP. Some applications, such as e-mail, have been standardized, while
other applications are specialized, e.g. the messenger service named ICQ
[MIRABILIS].

TCP/IP is an important technology that lays the foundation for distributed
programming. Nearly all architectures and technologies use TCP/IP as their
foundation.

2.5.2 Sockets
The basic form of information exchange between devices are sockets; a facility
offered by a TCP/IP network. Sockets allow sending and receiving messages,
or datagrams, over a TCP/IP network. Sockets are the assembly language of
TCP/IP data transfer, where Remote Method Invocation (RMI) and CORBA
(explained in section 2.5.6 and 2.6.1) represent the high-level language. If the
transmitted data are simple, such as an ASCII text, sockets are an excellent
choice. When transmitting complex objects, socket programming becomes
complicated and high-level solutions are preferred.

2.5.3 Architectures
A basic information system without a network consists of at least one unit
such as a PC. A network system is composed of at least three parts: a client, a
network and a server. The user operates the client through a user interface.
The server holds the resources, such as data or programs needed to satisfy the
client’s demand. Finally, the network binds the client and server together.

The first of the two traditional architectures is the mainframe architecture. It
arose in the early 60s, mainly as a consequence of expensive hardware. All
computation is carried out on a server (mainframe). The other traditional
architecture is the file server architecture. It is considered as a modern
architecture but is traditional in the sense that it has existed for a long time. In
the file server architecture, the clients do the computation, and a relatively
small server functions mostly as a storage medium for joint client data.

Chapter 2 - Background

12

The client-server concept surfaced in the early 90s. In this more balanced
architecture, the client and the server share the computation, and replaces flat
files with relational databases. The Structured Query Language (SQL) made
the client-server systems more scalable than file server systems because it was
no longer necessary to transfer large amounts of data over the network
[SQL92]. Instead, only the necessary data are transferred, e.g. a database table,
database row or database field.

The client-server architecture would face a major challenge if a client used
several servers, usually servers with different operating systems and/or
different database engines. As a consequence, the client had to be equipped
with specific drivers for every configuration. To address this issue, the three-
tier-architecture was introduced. It is a middleware solution put as a layer
between the server and the client. Clients are equipped with a simple driver
(thin driver) that communicates with a middleware server. The middleware
server again communicates with the server. It makes the clients responsible
for the user interface, the middleware servers responsible for computation
and business logic. The servers have responsibility for storing data in one or
more relational databases.

2.5.4 Object distribution architecture
Object distribution architectures apply the middleware concept by
encapsulating data in object interfaces. Implementation details are concealed
from the user of the object; distributed object architectures support location-,
platform- and programming language transparence.

2.5.5 Remote Procedure Call (RPC)
Remote Procedure Call (RPC) abstracts the communication interface for a
procedure call. Instead of working directly on sockets, it creates the illusion of
calling a local procedure. The call’s arguments are packed together and
transmitted to the external object.

2.5.6 Remote Method Invocation
The successor of RPC is Java Remote Method Invocation [RMI 97] which is
based on the principles of RPC. It has been adapted to distributed object
systems, with the possibility of attaching one or more objects to an enquiry.
Enquiry object serialization is how Sun terms it.

RMI is a language-dependent architecture that offers Java-to-Java distributed
applications. One of the most significant advantages of RMI lays in the use of
the Java object model, which provides language independence and platform
heterogeneity.

RMI is the foundation for the distribution mechanisms in the Sun component
model Enterprise Java Beans.

Chapter 2 - Background

13

2.5.7 eXtensible Markup Language (XML)
XML [XML 98] is becoming an accepted standard of data exchange,
especially between different platforms. It looks like Hyper Text Markup
Language (HTML), although there is a major difference: HTML is the
presentation of data, while XML is concerned with the specification of data.
XML provides the tools to describe and deliver structured data from any
application in a standard and consistent way. XML does not replace but rather
complement HTML.

2.5.8 Simple Object Access Protocol (SOAP)
The increasing popularity of the Internet has created new problems with
respect to security and firewalls. Microsoft made Distributed Component
Object Model (DCOM) run on top of RPC using the TCP/IP protocol, to
make it functional through a firewall. The idea is to communicate in an open
and neutral way over port 80 (HyperText Transport Protocol (HTTP), the
underlying protocol used by the World Wide Web, which is normally open in
firewalls). SOAP running over HTTP does exactly this, by using XML as a
language for passing parameters [SOAP99].

Certainly the most substantial characteristic regarding SOAP/XML is that it is
an open standard driven mainly by Microsoft. In other words, objects
communication with any other XML object running on any platform can be
written.

2.5.9 Web Services
Web services is an emerging technology driven by the purpose to securely
expose business logic beyond the firewall. Web services can encapsulate
existing business processes, publish them as services, search for and subscribe
to other services, and finally exchange information. Although there are many
opinions as to what constitutes a “Web service,” each definition shares some
common ground; a Markup Language component transported over the
Internet via HTTP [WHATIS].

The Gartner Group[GARTNER] defines a Web service as “a software
component that represents a business function (or a business service) and can be accessed by
another application (a client, a server or another Web service) over public networks using
generally available ubiquitous protocols and transports (i.e. SOAP over HTTP).”

The Web Service specification is driven forward by Microsoft and IBM.

Chapter 2 - Background

14

2.5.10 JINI
JINI [JINI] is a technology that enables
devices to communicate without any form of
planning, installation or human interaction.
Each of these devices have a specific
interface, which ensures compatibility and
reliability. A device can be a PC, a refrigerator,
a TV, etc.

The JINI technology utilizes a directory
service in which all the devices and services
are registered. When a device is enabled, it
automatically goes through an add-in protocol
called discovery and join. First, the device
discovers the directory services, and then it

sends to the directory server an object that implements the interfaces for the
device services (join).

When a device or a person wishes to make use of a service, the object is
copied from the directory service to the device. The directory service
becomes a communicator of the service.

Java is JINI’s programming language, and the devices in a Jini network are
connected using Java RMI.

According to SUN, JINI is powerful enough to build a fully distributed
system in a network of workstations, and at the same time compact enough to
enable smaller consumer articles to communicate (e.g. a mobile telephone
network).

2.5.11 Wireless Application Protocol (WAP)
WAP is a specification for a set of communication protocols. Its objective is
to standardize the way wireless devices, such as mobile phones and radio
transmitters, can be used with the Internet. WAP includes services such as e-
mail, WWW, newsgroups, IRC and other. Such services have been available
for a long time, although not standardized, which makes it practically
impossible for a vendor to support all implementations. WAP is the result of
cooperation between Ericsson, Motorola, Nokia and Unwired Planet.

2.6 Component architectures
There are currently three complete component models available: CORBA 3,
COM+ and EJB.

Figure 2-3: JINI layers

Chapter 2 - Background

15

2.6.1 CORBA
In 1990, Object Management Group (OMG) developed a specification for
distributed objects that offers location transparency. CORBA is not an
implementation, but rather a specification written by OMG, which means that
there are several independent implementations of CORBA by different
vendors. In any CORBA implementation, the communication between
objects is handled by an Object Request Broker (ORB), which is present on
both client and server sides. It enables the developer to perform calls to
objects without knowing their exact location, what language they are written
in or what operating system (OS) they are running on [CORBA97].

Figure 2-4: Client invocation of a server method using CORBA

2.6.2 Overview of the most significant components of CORBA
• Object implementation

The object implementation is the server component. It is the
application that contains the business logic.

• Skeleton
The skeleton is the generic server side code that allows
communication between different CORBA components.

• Client
The client uses the server to perform services. Traditionally, this is the
visual application that the user sees on a client machine.

• Stub
The stub is the generic client side code that allows communication
between different CORBA components. This generic code is
generated for each function that the client wishes to perform on the

Chapter 2 - Background

16

server. The stub performs the communication between the client and
the ORB.

• ORB
The ORB is a broker that handles the request from a distributed
object, and makes sure that this request is carried out. To accomplish
this, the ORB utilized the CORBA Interface Repository, where all the
services of a component are stored. To present services to the world,
the CORBA Interface Definition Language (IDL) can be used or the
compiler can handle it. IDL is a generic term for a language that
allows a program or object written in one language to communicate
with another program written in a language unknown to the given
program.

• Internet Inter-ORB Protocol (IIOP)
IIOP is the a protocol designed and optimized for transmitting
information from and to distributed components using CORBA. This
protocol allows, as the name implies, that the Internet is used as the
medium of transportation. IIOP also provides ORBs from different
vendors with the ability to communicate. The ORB also handles
persistency, transactions, security and the other services offered by
CORBA.

2.6.2.1 Services and advantages

CORBA is an open specification. There are implementations for most
platforms (UNIX, Linux, Windows, Solaris, etc.) and hardware
configurations. The Java objects are platform independent, and communicate
with EJB and DCOM/COM+.

CORBA offers security services such as encryption, authentication and
authorization. CORBA supports nearly all programming languages on most
platforms. This ensures availability for all projects.

2.6.2.2 CORBA 2 – a component model?

CORBA 2 objects can be considered as components where the interface and
the communication between these objects are specified. The CORBA 2
specification does not include the implementation of the objects, and
therefore cannot be regarded as a complete component model. CORBA and
JAVA/RMI frame a complete component model.

2.6.3 CORBA 3
The specification for CORBA 3 [CORBA3] was completed in the fall of
2001. CORBA 3, the latest release, adds a Component Model, a Quality of
Service control, a messaging invocation model, and tightened integration with
Enterprise Java Beans and the Java programming language. In a press release
on April 6, 1999, the OMG officially announced that the EJB model would

Chapter 2 - Background

17

also serve as a subset to CORBA's Component Oriented Middleware
platform [OMG99].

CORBA 3 adds a Java-to-IDL mapping, which defines IDL interfaces for
Java objects. This permits Java programmers to use the OMG standard
protocol IIOP for their remote invocations. EJB is based on the same
CORBA 3 specification: EJBs interoperate on the wire using IIOP.

In CORBA 2, the implementation of the objects was outside the
specification; hence, CORBA was not a component model. CORBA 3 adds
the CORBA Component Model (CCM), which provides the integration with
EJB. EJBs are Java-language basic level CORBA components, and
applications can be built from any combination of EJBs and CORBA
components. Indeed, the required application programming interface (API)
for Java CORBA Components is EJB 1.1.

The CCM specification includes a comprehensive forward and reverse
mapping of EJB and CCM operations, not only method invocations, but also
container, factory, finder, and other infrastructure operations. CORBA
components supply a container that integrates with EJB, handles transactions,
security, persistence, interface, and events. This means that EJBs can function
as basic CORBA components, and that Java-language level basic CORBA
components can function as EJBs. By basic CORBA components is
designated a model that corresponds nearly exactly to EJB, accompanied with
a higher level that adds multiple interfaces, navigation, event handling, and
advanced persistence.

The new features in CORBA 3 include:

• CORBA 3 handles communication over SOCKS, a protocol used by
proxy servers.

• There will be two new methods of finding an object instance through
the Interoperable Name Service. The name service has two URL-
based methods, iioploc (that refers to the location of the object) and
iiopname (which refers to the name of the object). An example would
be: iioploc://www.ifi.uio.no/NameService

• CORBA 3 allows asynchronous messages. The client can set the
timeout for a desired reply and the priority of a message.

The few implementations that are currently available are still beta versions,
and no major software house has yet committed to implementing the CCM.

2.6.4 Distributed Component Object Model (DCOM)
Microsoft’s distributed object protocol DCOM [DCOM98] is an extension of
the Microsoft COM architecture [COM95]. DCOM offers interaction
between objects registered in a network on different servers.

Chapter 2 - Background

18

COM was introduced as a method of letting clients dynamically use and share
objects implementation. The Dynamic Link Library (DLL) was introduced as
packages containing the implementation. The COM interface appears to the
client as a pointer to a virtual function table in a block of memory and hides
the details in the implementation.

To meet the growing demands for distributed systems, Microsoft developed
DCOM, which is an extension of COM. Since DCOM is an extension of
COM, everything formulated about COM in this thesis applies to DCOM as
well.

According to Microsoft, all distributed object architectures should have the
following properties:

• Interface definitions. In DCOM, the objects communicate with
each other through interfaces. An interface in DCOM is a collection
of methods that define a contract. The interface also defines the
behavior of an object, regardless of what language it is implemented
in. COM objects can be implemented in the most common
languages: Ada, C, C++, Java, Modulo-3, Pascal, etc. The Microsoft
Java Virtual Machine (JVM) can be used to obtain a natural access to
COM objects from Java; however this JVM is no longer updated
since the last Sun’s lawsuit against Microsoft. JVM is a platform-
independent programming language that converts Java byte code into
machine language and executes it. The interface used in COM,
Interface Definition Language (IDL), is language independent. The
interface description can be written manually, however most tools
can make type libraries that include the IDL interface. These tools
include Visual Basic (VB), Visual C++, Visual J++ and Inprise’s
Delphi. The fact that the tools handle so much of the work for the
developer has contributed to COM’s success. Unlike CORBA,
DCOM is not tied to IDL.

• Catalog services. When a COM-client knows the name of the
component that it wishes to utilize, it can use the COM catalog
service to look up the class ID of the component. It can then find
whether the component is run locally or remotely. The combination
of the COM catalog service and the Windows registry constitutes the
catalog service for COM.

• Marshalling. Marshalling is a key concept in localization
transparency, and is the process of putting information into packets
before sending them to another component, which in turn
unmarshalls these and routes them to the destination component.
The marshalling is done with a proxy and stub DLL.

Chapter 2 - Background

19

• Object persistence. COM objects are normally stateless objects. If
the developer chooses persistence, it has to be implemented
programmatically.

• Security. DCOM is closely tied to the NT security model, both for
administration and development.

COM and DCOM offer the benefit of being released on all computers
running any Windows version newer than Windows 3.11. All the 32-bit
Windows systems have DCOM support.

2.6.4.1 DCOM and Microsoft Transaction Server (MTS)

MTS is a container for DCOM components, and offers services to these
components. DCOM combined with MTS represent a complete component
model, as DCOM communicates with MTS that provides services on its
behalf. MTS is DCOM’s server environment; DCOM is MTS’s protocol. In
the same way as EJB utilizes RMI as its protocol, MTS functions as an
application server but offers additional services that make DCOM a complete
component model.

2.6.5 COM+ - a new generation of COM
COM+ [PLATT99] is the successor of the COM architecture, with a new
generation technology. COM+ was made for Windows 2000 – it is COM
with multiple inheritance, a new runtime environment and extensions for the
languages, which enables implementations in more languages.

COM+ can be described as the combination of COM and MTS, with the
addition of a series of new services.

COM+ is integrated in Windows 2000 and its improvements over COM can
be categorized in two sections: improvements/updates and new services.

The three most important improvements/updates are:

• Transaction services. A mechanism to keep data integrity in a
distributed system despite communication or hardware failure.

• Security services. While COM used the Windows NT security
model, COM+ approaches the issue in an administrative manner.
Mostly everything can be done administratively and little code is
required.

• Synchronization services. One of the problems encountered with
distributed services is the concurrent use of multi-threaded objects.
COM+ offers services to synchronize components in an
administrative manner: no code is required. However, to achieve
complex concurrency control, a developer may choose to do it
programmatically.

Chapter 2 - Background

20

The four new services offered in COM+ are:
• Queued components. This service represents a means of

communication that allows COM+ clients to call COM+
components that are not necessarily available at the time when the call
is made. When the COM+ component being called becomes
available, the system ensures that the call is carried out.

• Event services. This service is built around a subscriber and a
publisher. The publisher is a component that offers information (e.g.
updates of stock prices). A subscriber is a component that receives
these updates and then publishes it to its subscribers.

• In-memory database. This service offers a way to improve the
performance on frequently used database tables.

• Load balancing. This service enables the load of a clustered server
solution to be as even as possible by directing each call to the server
with the least central processing unit (CPU) load. Load refers to the
amount work being carried out by the CPU.

It is still possible to write standard COM components with the same tools,
the main difference being the tight integration to the operating system.

2.6.6 Microsoft .NET
This new product from Microsoft is the “successor of COM+”, and was
released in December 2001. The .NET framework is therefore not included in
this thesis.

The goal of the Microsoft .NET framework is to simplify the process of
building Web applications and Web Services. Web Services allows
communication over the HTTP protocol, usually with the aid of the Simple
Object Access Protocol (SOAP) [SOAP99]. Since Web Services and the
SOAP technology are already supported in WebLogic’s EJB implementation,
communication between these two technologies is being facilitated.

2.6.7 Enterprise Java Beans
Enterprise Java Beans is a specification from Sun Microsystems, and already
exists, at the time of the writing of this study, in version 2 final draft [EJB2.0].
The first draft specification, version 1.0, was released in December 1997.

Like CORBA, EJB is an open specification, not an implementation. There are
several implementations available today, the most known are:

• Bea System – WebLogic Application Server
• IBM – Websphere
• Inprise – Inprise Application Server
• Lotus – Notes/Domino
• Netscape – Netscape Application Server (Kiva)

Chapter 2 - Background

21

• Oracle – Oracle Application Server
• Sun – NetDynamics
• Sybase – Enterprise Application Server

Since EJB is language dependent to Java, it presents the advantage of using
the java object model and the Java 2 Enterprise Edition (J2EE) [J2EE]
framework for many of its services. J2EE is beyond the scope of this thesis;
however the parts of J2EE that are used by EJB are naturally explained.

The objective of EJB, as stated in the introduction of the specification is:
“Applications written using the Enterprise JavaBeans architecture are scalable,
transactional, and multi-user secure. These applications may be written once, and then
deployed on any server platform that supports the Enterprise JavaBeans specification.”

To meet this objective, the key features of EJB are:

• Transaction management. It may be vendor specific although EJB
uses Java Transaction Service (JTS) /Java Transaction API (JTA). JTS
is an API to ensure data integrity across several systems and their
databases using two-phased commits and rollbacks. JTA specifies
standard Java interfaces between a transaction manager and the
parties involved in a distributed transaction system: the resource
manager, the application server, and the transactional applications.

• Security. The Java object model security is used.
• Portability. EJB supports most platforms including Windows, Linux

and UNIX.
• Event-driven messaging. The Java Message Service (JMS) [JMS] is

used to implement this feature. JMS provides a reliable, flexible
service for the asynchronous exchange of data and events.

• Naming and catalog service. Java Naming and Directory Service
(JNDI) is utilized in order to perform this property. It is an API
destined to naming-service-independent resource location. It provides
Java applications with a unified interface that allows access to multiple
naming and directory services in the enterprise.

• Interoperability. The EJB specification uses Java RMI as the default
protocol to invoke Enterprise Beans over a network. Additionally, the
specification refers to CORBA/IIOP mappings to enable CORBA
clients to invoke Enterprise Beans. However, EJB is not tied to these
solutions and can be run over any protocol (e.g. HTTP or DCOM) in
order to support a multitude of clients (see Figure 2-5).

• Scalability. Mechanisms for scalability, such as load balancing and
object pooling are included. An EJB component instance from a pool
of shared instances may be used when a client makes a call. As soon
as the request is serviced and the reply is sent back to the client, the

Chapter 2 - Background

22

actual EJB component is returned to the pool. It may not be
destroyed. This process is called object pooling.

• Stateless, stateful and persistent objects. A bean, the name of an
EJB component, falls into three categories: the Stateless Session Bean,
the Stateful Session Bean and the Entity Bean.

Figure 2-5: EJB interoperability

An EJB container creates, manages, and destroys EJB components. The EJB
specification [EJB2.0] uses the terminology EJB Container: An EJB Container
(Container) is a system that functions as the “container” for enterprise beans. The Container
is a part of the target operational environment, its runtime provides the deployed enterprise
beans with transaction and security management, network distribution of remote clients,
scalable management of resources, and other services that are generally required as part of a
manageable server platform. The EJB Container provider is an application server
implementation, e.g. BEA with WebLogic server. This is the EJB Container
provider utilized by the authors in the test implementation. The Container
expression can also be used in a COM+ or CORBA context, i.e. the runtime
environment in COM+.

Stateless Session Bean
The Stateless Session Beans are designed to be easy to implement and to have
a low resource usage. If any state is to be held, it will be done on the client
side, which leaves the server scalable. Because this type of Enterprise Bean is
not stateful, it does not have a tie to a specific client; hence any client can use
the first instance of this bean that it can find.

Stateful Session Bean

The Stateful Session Beans imply that the server has to keep track of which
specific bean every client uses. Consequently, every Stateful Session Bean is

Chapter 2 - Background

23

created exclusively for a specific client, and is to be considered as a private
resource for that specific client (even though it can be shared). A Stateful
Session Bean is a logic extension of the client, but the load is shared between
the client and the server.

Stateful Session Beans will not survive a server crash or other Byzantine
errors (some implementations of EJB have mechanisms to allow this).

Stateful Sessions Beans have access to persistent resources (like databases and
files) but, unlike the Entity Beans, they do not represent the data. A Session
Bean can access these persistent resources through a database API or an
Entity Bean.

Entity Bean

Entity Beans are persistent objects that represent data in a permanent storage.
An Entity Bean lives in an EJB container in the same way than a table
instance lives in a database. The EJB containers exist for different data
sources (Oracle, CISC etc.), but this does not represent an issue the developer
needs to address. However, entity beans can be bean managed or container
managed, or more specifically bean/container managed persistent and/or
have bean/container-managed transactions. In bean-managed transactions,
the developer implements the database code or chooses when to start and
stop a transaction programmatically. In container-managed transactions, this
is up to the container.

Unlike the Stateful Session Bean, the Entity Bean can be accessed by several
clients simultaneously. Because an Entity Bean lives in a permanent storage, it
will not be affected by a server crash or other Byzantine failures.

2.7 Common conceptions (hypothesis)
By reading various literatures and researching the subject of this thesis, the
authors developed the following common conceptions concerning application
server differences between the component-based models COM+ and EJB.

H1: COM+ and EJB should have identical (linear) performance curves,
although EJB should be slower because of the Java runtime overhead.
COM+ has stronger ties to the operating system; hence it should offer
shorter response times. In addition to that, Java is considered as slow.

H2: EJB presents more features (such as state and persistence handling)
for the developer, but is more arduous to learn properly.

H3: COM+ is less reliable than EJB, because of the history of instability
of the Windows operating system.

Chapter 2 - Background

24

These statements will be corroborated or invalidated in the discussion,
Chapter 5.

2.8 Performance benchmarking
With performance as one of the key features of a system, the term
benchmarking needs to be introduced.

A benchmark can be defined as a set of conditions against which a product or system is
measured.

[WHATIS].

In this thesis, performance benchmarking is introduced as a method of
obtaining trusted measurable results. A benchmark conducted on two
application servers, namely COM+ and EJB, will be exposed to the reader in
section 3.4.

The industry standard benchmark for transactional throughput is specified by
The Transaction Processing Performance Council (TPC) [TPC]. It is a non-
profit organization which defines transaction processing, database
benchmarks and delivers objective, verifiable, results to the industry.

TPC-tests fall into several categories which are briefly described in Table 2-2.

TPC-
test

Status Description

TPC-A Obsolete
as of 6/6-
95

TPC-A measures performance in update-intensive
database environments, typical in online transaction
processing applications.

TPC-B Obsolete
as of 6/6-
95

TPC-B measures throughput in terms of the number
of transactions per second that a system can
perform.

TPC-C In use

TPC-C is an online transaction processing
benchmark.

TPC-D Obsolete
as of 4/6-
99

TPC-D represents a broad range of decision support
(DS) applications that require complex and long
running queries against large complex data
structures.

TPC-H In use TPC-H is an ad-hoc, decision support benchmark.
TPC-R In use TPC-R is a business reporting and decision support

benchmark.
TPC-W In use TPC-W is a transactional web e-Commerce

benchmark.
Table 2-2: The TPC Benchmarks

Chapter 2 - Background

25

In an application server context, it is natural to look at the TPC-C test. TPC-
C simulates a complete computing environment where a population of users
executes transactions against a database. The benchmark is centered on the
principal activities (transactions) of an order-entry environment. These
transactions include entering and delivering orders, recording payments,
checking the status of orders, and monitoring the level of stock at the
warehouses.

TPC-C involves a combination of five concurrent transactions of different
types and complexity, which are characterized by:

 The simultaneous execution of multiple transaction types which span
a breadth of complexity

 Online and deferred transaction execution modes
 Multiple online terminal sessions
 Moderate system and application execution time
 Significant disk input/output
 Transaction integrity (ACID properties)
 Non-uniform distribution of data access through primary and

secondary keys
 Databases consisting of many tables with an extensive variety in sizes,

attributes, and relationships
 Contention with data access and update

For the performance benchmark, this thesis uses a simplified TPC-C test; it is
described in detail in section 3.1.3.

Chapter 3 - Approach

26

3 C h a p t e r 3

APPROACH

The objective of this chapter, as described in the introduction, is to present an
unbiased comparison of the currently available component models by directly
comparing their qualities and properties.

The most significant source of information comes from various forms of
research, where the study of literature prevails. The authors’ project
experience gained from commercial projects gives a legitimate starting point
and a fairly comprehensive view of the big picture, and is therefore playing a
central role in the understanding of the theory and the complexity of
component technology. In order to organize the qualities and properties into
rational categories, a well-known development methodology [DW99]
 has been utilized as the starting point.

At the end of this chapter, the authors will present the implementation and
the complete configuration of the test environment.

3.1 Research Methods
A fair amount of research had to be conducted in order to comprehend the
underlying concepts of component models. In order to achieve a most
complete understanding of a component model, a thorough comprehension
of the entire process, from design to implementation, test and deployment is
necessary. In view of this, there is a strong focus on understanding all the
steps of the process.

3.1.1 Literature study
The main methodology used for collecting information is the study of
literature. The authors initiated their research by gathering information on
both the Internet and at the library, then sorted out the relevant pieces of
literature and finally studied them. The different categories of gathered
literature sources are:

• Published articles or similar work, in the respect of research which is not
currently available, only bits and pieces from other sources and not
always unbiased written sources can be identified.

• Functional specification, a formal document used to describe, in detail,
intended capabilities, appearance and interactions with users
[WHATIS]. This is factual information on how the system should- or
has been implemented to- function. It is considered as unbiased.

Chapter 3 - Approach

27

• Many published books are written by authors affiliated with companies
that have vested interests in either technology. Even when it is not so,
the author often has preferences and is somewhat biased.

• A whitepaper is an article that states an organization's position or
philosophy about a social, political, or other subject, or a summary
technical explanation of an architecture, framework, or product
technology [WHATIS]. This is often biased information but presents
important facts and knowledge about a product.

• Articles on the Internet comes in various formats: contents from
homepages, Usenet discussions, debates in communities, etc. They are
publicly accessible on the Internet. The nature of the Internet itself
makes it difficult to evaluate the seriousness and validity of these
sources. Nevertheless, these personal opinions and statements are of
interest and should be taken into consideration.

• Newsletters. Several companies publish newsletters; this is a (e.g.
monthly) subscription service open to anyone’s participation, where
the ones of interest to this thesis discuss different aspects of the
technologies in question.

• An important debate is going on concerning the subject discussed in this
study. In some occasions, transcripts are published. These debates will
of course reflect the opinion of the participants, but will nonetheless
provide useful input.

The rule of thumb is that nearly all information gathered from literature is
biased, with the exception of serious research. Obviously, this must be taken
into account when the direct comparison is performed, and literature is the
basis.

3.1.2 Design
It was essential that the design covered all aspects of what would be
implemented in the next stage. Therefore, the realized case is a real life
example to fully illustrate the mechanisms in the component models. The
authors found that a simple Internet record shop (see 3.4.3) contained the
different types of components needed to make the comparison.

By choosing the Unified Modeling Language (UML) [BRJ99a] as the
modeling language, the latest standard of modeling presently available has
been used. Working closely with Genera AS [Genera AS]
 naturally led the authors to choose a model-close-development strategy, that
is, an iterative process where as much code as possible is generated in the
early stages of the development. Later, the developer can easily go back,
change the model, and regenerate the necessary code.

Chapter 3 - Approach

28

3.1.3 Implementation and methodology
In order to measure a system’s runtime qualities, an implementation is
imperative. The companies promoting their respective component models
give a highly positive pitch about “their” technology. The only way to put
their claims to the test is to actually check their technology by implementing
important parts of each component model.

There is a need for a consistent method in order to test the behavior of
applications with accuracy. The methodology used here was borrowed from
[GZ00], which originally tested web-applications. In their methodology, they
use a tool called The Grinder. Two test clients, which can be described as
simplified Grinder tools, were implemented; one for each technology.

The primary motive for not using existing and renowned tools such as
LoadRunner from Mercury Interactive [LOADRUNNER] is cost-related.
Self-made tools cannot replace commercial products in this field, but can be
used as a start to test applications. Additionally, the thorough understanding
gained from developing similar custom-made tools is highly valuable.

The tests are performed by so-called business transactions. A business
transaction is a collection of methods that model or emulate expected
behavior of the system. An instance of one of the business transactions used
in one test implementation (see Figure 3-1) illustrates a collection of use cases;
when executed in a certain order, they form a business transaction. According
to the UML, a use case constitutes a set of
functionality, represented by an oval. An
actor, represented by a matchstick person,
performs actions towards a system
[BRJ99a]. In this example, the actor in the
use case diagram can retrieve a list of orders,
modify the order, and finally create a new
order. To simulate a real-life course of
events, a business transaction with the
following flow of events is created:

• ShoppingCart.findAllOrders ();
• sleep (10); // Seconds
• ShoppingCart.setOrder (myOrder);
• sleep (12); // Seconds
• ShoppingCart.createOrder (myOrder);
• sleep (10); // Seconds
• ShoppingCart.findAllOrders ();

Figure 3-1: Sample business
transaction

Chapter 3 - Approach

29

First of all, the actor lists the available customers. The actor then views the
results and modifies some data concerning a given customer (the whole
process is estimated to take 10 seconds). Then, a new customer is added and
finally, all the customers are listed out. This is the same business transaction
as in section 3.4.4.3 referred to as the New Order business transaction.

3.1.4 Informal interviews
Throughout the research process necessary to this thesis, several informal
interviews have been conducted. The authors have been in touch with BEA,
Microsoft, and IBM on several occasions regarding questions about products,
preferences, technicalities, etc.

The project leaders in the reference projects (see next paragraph) have also
contributed in communicating information and has been taken into account
in this thesis.

Taking part in professional projects, which involve the technologies in
question, lead the authors into discussions about these technologies, their
strengths, as well as their weaknesses.

3.2 Development project experience
Personal development experience gained from commercial development
projects was very helpful with providing real life examples of how these
technologies work in practice.

Both authors are part-time employees with Genera AS, and have several years
of professional development experience. In the course of the past two years,
there have been two projects of particular interest and they are used as
reference projects within this thesis.

The authors’ reference COM+-project is Rikstoto’s [RIKSTOTO]

• A web system for betting on horses, the project was implemented
using Visual Studio, COM+, and MS SQL Server 2000. The
architecture of the system involves database replication, load
balancing, high transaction volumes (up to 500 complete transactions
every second) and very high security (as money is involved).

The authors’ reference EJB 2.0-project is The Norwegian Railway’s new ticket
system, called NSB-LISA [NSB]

• This project uses Rational Rose, Genova, BEA WebLogic application
server and an Oracle database. The project is due to be released 2nd
quarter, 2002.

Diverse ideas and experience were collected from these projects, both from
the design and implementation phases. First hand experience in developing

Chapter 3 - Approach

30

and designing distributed applications was of undeniable help when deciding
on how to approach this implementation.

3.3 Development methodology
The Catalysis approach [GZ00] is the chosen platform of the authors’
development methodology, where qualities are partitioned into runtime and
development qualities; the traditional categories are functional and non-
functional requirements.

The runtime qualities correspond to the task of measuring the application
server runtime functionality. The development qualities, however, relate to
the design structure and how it can be manipulated. In this particular case,
these qualities must be measured up against the respective component model
specification.

3.3.1 Runtime qualities
Runtime qualities are measured on a running system, and related to the
dynamic behavior of the deployed system. The runtime qualities are:

- Functionality measures how well the system assists its users in
performing tasks.

- Usability measures how intuitive the interface is for all kinds of users.
- Performance measures many different metrics concerning the speed of

the system.
- Security measures the ability to prevent systems’ unauthorized access

or misuse.
- Reliability measures how the system performs over extended periods

of time.
- Availability measures how the system handles failure.
- Scalability measures how easily the system can be scaled up to handle

greater loads.
- Upgradability measures how easily the system can be upgraded.

3.3.2 Development qualities
Development qualities represent how easy it is to design and maintain the
system. The development qualities are:

- Modifiability measures how easy it is to modify single components in
the system while not interfering with the rest of the system.

- Reusability measures how easy it is to reuse components as well as the
systems ability to integrate with legacy systems.

- Portability measures how easy it is to change runtime platform and/or
vendor.

- Buildability measures how easy it is to implement and build the system.
- Testability measures how easy it is to test and debug the system.

Chapter 3 - Approach

31

- Conceptual integrity measures the system’s elegance and practicality in a
single quality. It is renamed to external qualities, and described in
chapter 3.3.3.

3.3.3 External qualities
External qualities are allocated under the Conceptual integrity metric or fall
outside of the Catalysis approach, which only views the system from a
developer’s/end user’s perspective. The external qualities are meaningful to
the person in charge of choosing technologies. Subsequently, these five
metrics are included in this comparison. The external qualities are:

- Time to market measures the ability to deliver solutions fast, as the
market evolves.

- Cost of system measures the actual price of the development platform.
- Maturity measures how long the technology has been on the market

and how much it is being used.
- Simplicity measures how difficult it is for the application server users to

gain an understanding, and to be able to develop applications for the
server.

- Future plans are an overview of the roadmap for the technologies.

3.4 Implementation
For a proper measurement of the qualities listed in section 3.3, an
implementation in both EJB and COM+ was needed. As far as the
implementation is concerned, many things had to be figured out: the
implementation, the hardware, and the software that should be employed.
This called for a decision in order to make the benchmark as up-to-date and
as neutral and fair as it possibly could.

3.4.1 Hardware
The hardware available for this benchmarking was limited; hence the setup of
the hardware was not optimized to run big complex applications with a high
transaction volume. The configuration featured only one physical server
running both the database server and the application server. In a commercial
solution, it would most likely be constituted of (at least) two physical servers.
However, the hardware available was sufficient to perform these tests
adequately, considering that the database server did not have a heavy load,
since most of the load was on the application server.

3.4.2 Software
Choosing the appropriate software to use for the benchmark and analyzing
the properties and qualities of these products represented important necessary
steps, as they would directly affect the comparison. In the following

Chapter 3 - Approach

32

subsections, the choice of the operating system, programming language,
application server and database is explained.

3.4.2.1 Operating System

The choice of platform, in order to perform neutral tests in which both
application servers had exactly the same environment came quite naturally. As
COM+ only runs on Windows 2000 and Windows XP, and Windows XP
was still in beta at the time when the tests were commenced, there was no
other choice than running all tests on the Microsoft Windows 2000 platform.
While EJB is best known for running on powerful UNIX servers, BEA claims
to have high performance on Windows 2000 as well. Having both application
servers running on the same configuration for both solutions ensured a
neutral “battleground”. The operating system (OS) used was Microsoft
Windows 2000 Server Service Pack 2.

As for the three client PCs, they all ran Windows 2000 Professional Service
Pack 2.

3.4.2.2 Programming languages

The programming language for COM+ was initially planned to be Visual
Basic (VB). Owing to a minimal amount of business logic, the choice of
programming language was not of prime importance. Visual Basic became the
most natural choice, because it is one of the most commonly used
programming language on the Microsoft platform and has a high learning
curve, in addition to being the choice of the COM+ reference project (see
section 3.2). However, components written in Visual Basic unexpectedly do
not support object pooling, due to the simple VB threading model. In the
latest VB release, Visual Basic.NET, object pooling is supported. In order to
achieve object pooling for one of the stateless components in COM+, the
component had to be implemented in C++. As Microsoft Visual C++ is part
of the Microsoft Visual Studio development suite which also contains Visual
Basic, the authors chose it as their C++ compiler. Using C++ also
demonstrates heterogeneity of programming languages on the COM+
platform. Both Microsoft Visual C++ and Microsoft Visual Basic were used
with Microsoft Visual Studio version 6 Service Pack 5.

The EJB server does not give much option but to use Java. Since the
application server was shipped with Sun JDK 1.3.1, it was the chosen version
of the Java Virtual Machine throughout the implementation.

3.4.2.3 Application Servers

The choice of application server for COM+ is obvious as there was only one
implementation available at the time the tests were commenced, that is,
Microsoft Windows 2000.

Chapter 3 - Approach

33

The choice of application server(s) for EJB is not as obvious, as there are so
many implementations to choose from. It soon became fairly manifest that
the only two contenders were IBM WebSphere and BEA WebLogic. These
two market leaders were the most complete and up-to-date implementations
of the EJB specification, and had been on the market for a long time. At first,
it was considered to test at least two application servers, since the EJB
specification should make the implementation portable. However, the
decision to test only one, in this case BEA WebLogic, was retained because it
was the only implementation that supported the latest EJB 2.0 specification
[EJB2.0]. It is incidental that one of the authors had former professional
experience with BEA WebLogic as well.

3.4.2.4 The databases

The choice of the database server was not an easy task as both application
server vendors had their preference. In addition to that, both application
servers support all Open DataBase Connectivity (ODBC) for COM+/Java
DataBase Connectivity (JDBC) for EJB compliant database servers, so the
choices for database server were numerous. ODBC and JDBC are APIs for
accessing a database. However, some of these database servers do not
support all the transaction mechanisms and/or the locking mechanisms that
EJB and COM+ utilize, and therefore they were dismissed in order to have
access to all the mechanisms available in EJB and COM+.

BEA preferred the use of Oracle for optimal results, while Microsoft naturally
recommended the use of MS SQL Server for best results. The objective of
this thesis is not to measure the speed of any database server in any way, and
thus the benchmark was made with very limited use of the database. Since
Microsoft preferred SQL Server and BEA preferred Oracle, and these two
servers being the marked leaders, it seemed natural to include both of them in
this benchmark, so as to make the benchmark as neutral as possible.
Unfortunately, there was a problem obtaining a version of Oracle, with the
resources available to the authors. MS SQL Server supporting all the
necessary standards that EJB and COM+ need in order to be fully functional,
the choice was once again straightforward.

The database server was used with the default configuration, that is, the
configuration of the server was not changed after the installation. While one
can configure and tweak a database server for optimal performance, such
tweaking was not the goal of this thesis and therefore ruled out.

The version used was SQL Server 2000.

3.4.3 Model
The methodology chosen for conducting the benchmarks called for a real life
application to be implemented (see section 3.1.3 for implementation details).

Chapter 3 - Approach

34

Creating an ecommerce application seemed like a reasonable approach, and
the test ended up being a simple Internet record shop.

The first thing that needed to be done was a UML class diagram of the
application, in order to plan how to implement it, in the most suitable fashion
for the benchmark purposes. It was necessary to have all three classes of
components in the system: stateless, stateful and persistent, to see how all
these features make the application servers behave under normal and loaded
conditions.

3.4.3.1 Class modules

This simple model contains four classes: Artist, MyRecord, MyOrder and
Customer.

Figure 3-2: UML class diagram of the Record Shop

Figure 3-2 illustrates the four module classes present in the database as tables
as well as their respective attributes (Boolean is represented by a short). The
classes have been designed as small simple classes in order to keep the
database traffic to a minimum.

Chapter 3 - Approach

35

3.4.3.2 Components

Figure 3-3 shows the component diagram of the record shop. The MyOrder,
ShoppingCart and RecordServices components each expose a business
interface to the client tier. The record shop client is only communicating
directly with the three interfaces. The four business cases are represented with
their main correspondent business logic components.

Figure 3-3: Component diagram of Record Shop

In the New Customer business transaction, the stateless RecordServices
component uses an API (JDBC or MS ODBC) to communicate with the
Relational DataBase Management System (RDBMS). A RDBMS is a program
that allows creating, updating, and administering a relational database. The
RecordServices component is implemented using C++ in order to achieve
object pooling in COM+ as discussed above. The RecordServices component
handles the business and the database logic in this business case.

In the Populate Shopping Cart business transaction, the RDMS is not utilized
and state is stored internally in the object instance.

Chapter 3 - Approach

36

In the MyOrder business transaction, a stateful component uses the same
API’s for RDBMS connections as in the first business transaction. The main
difference from the New Customer case lies in that, this time, the component
handling the business logic is stateful.

In the case of MyRecord, a persistent component, the RecordServices
component is placed in front of the persistent components and makes the
client tier independent of the persistent implementation. The interface
IMyRecord is also represented in the diagram. With EJB, it represents the
remote interface of the MyRecord entity bean. The entity bean is container
managed persisted, meaning that the database logic is handled by the EJB
container, as illustrated by the diagram. In the EJB world, wrapping entity
beans with session beans such as this represents a structural design pattern
known as the facade pattern [GHJV95] or distributed facade pattern [BEP99].
With COM+, this type of component is simulated by implementing a stateless
component with programmatical database logic.

The class modules of Figure 3-2 also function as value objects in the
implementation. Value objects encapsulate information needed by the
presentation logic. For example, the MyOrder value object, as indicated in the
code below, encapsulates the information from a persistent MyOrder-
component and ensures a clean separation between the persistent tier and the
presentation tier. In this way, the persistent object is never returned to the
client tier; this pattern is known as the Replicate Object [BEP99] or Data
Transfer Object [FOW01] pattern. When a findOrders() function call is
issued from the client, the stateless component (RecordServices, see Figure
3-4) creates the collection of MyOrder value objects and returns them to the
client.

//Source file: o:\\Hovedfag\\src\\no\\henrik\\domain\\Myorder.java
package no.henrik.domain;
import java.io.Serializable;

public class MyOrder implements Serializable{
 private Integer Id;
 private String OrderDate;
 private Integer Cnt;
 private String Creditcard;
 private java.util.List theRecord;

 public getOrderDate() {
 return this.OrderDate;
 }
 .
 .
 .
}

Figure 3-4: MyOrder.java class

This can only be seen as a snapshot of the actual values in the persistent
storage; however, it is a commonly used method for distributing information.

Chapter 3 - Approach

37

3.4.4 Clients
The clients are based on The Grinder, a test client application tool for web
applications [GZ00]. By implementing these test clients, they became as
identical as technically possible; a great deal of effort was necessary in order to
obtain a common foundation for the two client implementations. Naturally,
with different programming languages and several differences in application
server architecture, the clients differ programmatically, but not in
functionality. To investigate qualities, and to load - and stress test the
application servers - simulation of a set of actions, which a user would
normally perform on the client, was conducted. One sequence of actions is
called a business transaction. By running many instances of the client on
several machines in a network, a simulation of the average every-day usage of
a complete system is archived.

Figure 3-5: Test environment

As illustrated by Figure 3-5, the clients (the gray boxes) were distributed on
the network, running several instances (the blue boxes) and iterations on
different machines.

In order to simulate real EJB clients, multiple JVMs (or instances) must be
started, with only one thread each. When several Weblogic clients run in one

Chapter 3 - Approach

38

JVM, they use one socket to communicate with the server because it
optimizes performance [GZ00]. That is why the clients, on both technologies,
run only one thread on each instance.

The first time that a component is activated from a client, a lookup/activation
process is initiated. With COM+, the application is started (if not running)
and, in this case, the COM+ stub is already on the client. The EJB client uses
JNDI to return a RMI-stub to the client; this step is necessary owing to
portability reasons. Transferring the stub could take a considerable amount of
time, and is not included in the measurements of the business transaction
response time. However, the creation time of the component is included.

3.4.4.1 Client options

To easily simulate various loads on the application servers, the clients support
several tuning options. The values actually used in the tests can be found
under section 3.4.6. The tuning options are:

- No. of instances. This number indicates how many instances of the
program run on one machine. In the Java world, it corresponds to the
number of JVM’s to be started. Windows 2000 starts the program in
the background with normal priority.

- No. of iterations. This is the number of times that each business
transaction is repeated. Reiterating the business transaction several
times allows making an analysis of the server load over an extended
amount of time. Application server optimizing and caching need a
few iterations to improve the performance of the code. Stress tests
usually have 3 to 10 iterations of the business transaction [GZ00].

- Initial sleep. This number states, in milliseconds, the maximum wait
there can be before the business transaction starts. The instance of a
program waits for a random number of milliseconds, comprised
between 0 and this determined value, before it starts the business
transaction. This option is necessary because a great number of
simultaneous connections to the application server will not be a
realistic situation.

- Start time. The clients are able to start running at a given time
(hh:mm:ss). This optional parameter can be left blank if the clients are
to start immediately. In this way, clients on different machines can be
synchronized to start simultaneously.

- Log file wait. In order to prevent unnecessary CPU-usage on the client
machine, the log file is not produced until a given period of time has
elapsed since the completion of the client process.

3.4.4.2 Recording data on the client

The client is not only expected to perform the business transaction, but to
also report reasonable data for interpretation. To retrieve a summary of the

Chapter 3 - Approach

39

data, a script was written in order to collect and calculate the average and peak
numbers needed for the interpretation. This script simply takes all log files
available in a directory and gathers them so as to present sensible numbers
that could be worked with.

Applying the test methodology described in [GZ00], was collected the
following data, important for the further interpretation of the results:

- HostId, jvmId and IterationId. Together, these variables present a unique
reference clarifying from which host, instance, and iteration the
measurement originated.

- Total Successful Transactions (TST). This number is a counter
incremented by one, every time a successful business transaction is
completed and no errors occurred during the entire business
transaction.

- Total Processing Time (milliseconds) (TPT). This is the total of milliseconds
accumulated for the entire business transaction, waiting time not
included.

- Average Response Time (milliseconds) (ART). This is the average response
time of the individual method call. It represents the total average of all
iterations in all instances on all client machines.

- Transactions Per Second (TPS). The number of transactions is logically
calculated as 1/ART.

- Total Unsuccessful Transactions (TUT). This number is a counter
incremented by one, every time any method in a business transaction
fails. The remaining methods will not be executed.

A sample output from the client log file is presented in Appendix 2.

In addition to this, CPU usage on the client machine was recorded by using
Windows 2000 performance monitor. This recording was done in order to
ensure that the client machines were capable of handling the amount of
clients required by the test. Had the client CPU been overloaded, the test
results might have been considered as void since the delays from the client
could have affected the test results.

3.4.4.3 Client business transactions

At least one business transaction for each type of component is defined:
stateless component, stateful component, and persistent component.
The different business transactions are typical for the component in question.
A more detailed view of the business transactions follows.

Chapter 3 - Approach

40

Figure 3-6: New Customer business transaction

1. New customer business transaction.

A stateless component is relatively short-
lived and typically provides a single-use
service, independent of which client is
calling the service, e.g. adding a customer
to the record shop. Also, stateless
components often function as a layer
between the client and one or more
persistent components [GWE01], which
will be tested in business transaction no.
4 and 5.

In this business transaction, the client
simulates a typical user’s course of events.
First, it lists the available customers,
secondly, it views the results and then, it
modifies some data on a customer (the entire process is estimated to
take 10 seconds). Lastly, the client adds a new customer and retrieves
all customers.

The stateless component developer will manage the persistence
programmatically.

1. RecordServices.findAllCustomers ();
2. sleep (5); // Seconds
3. RecordServices.setCustomer (customer);
4. sleep (5); // Seconds
5. RecordServices.createCustomer (customer);
6. sleep (5); // Seconds
7. RecordServices.findAllCustomers ();

No. Business transaction name Component type
1 New customer Stateless
2 Populate shopping cart Stateful
3 New Order Stateful with persistent

storage
4 “Let’s buy some records” Persistent

Table 3-1: Overview of business transactions

Chapter 3 - Approach

41

Figure 3-7: Populate shopping cart business
transaction

Figure 3-8: New order business
transaction

2. Populate shopping cart business transaction
A stateful component is session-oriented, meaning that it maintains state
across methods calls and transactions. This state is kept in the applications
server’s memory, and no database operations are necessary. A typical
example of a stateful component is the
shopping cart, which life depends on the
life of the client.

In the stateful business transaction, the
way the shopping cart is handled by a
real life user is simulated by adding
records to the shopping cart at regular
intervals. No calls to the persistent
storage are made, but all state is kept in the memory of the application
server.

• ShoppingCart.addItem (myRecord);
• sleep (5); // seconds
• ShoppingCart.addItem (myRecord);
• sleep (5); // seconds
• ShoppingCart.addItem (myRecord);
• sleep (5); // seconds
• ShoppingCart.listItems ();

3. New Order business transaction
The second business transaction of the
stateful component contained persistent
storage to the database in order to compare
the performance with the stateless
component. It is a similar flow of events as
in the aforementioned business transactions.

• ShoppingCart.findAllOrders ();
• sleep (5); // Seconds
• ShoppingCart.setOrder (myOrder);
• sleep (5); // Seconds
• ShoppingCart.createOrder (myOrder);
• sleep (5); // Seconds
• ShoppingCart.findAllOrders ();

Chapter 3 - Approach

42

Figure 3-9: Let's buy some records
business transaction

4. “Let’s buy some records” business transaction
Persistent components are a
representation or a view of the data
from a data store (typically a relational
database). In EJB, they are known as
Entity Beans. Because they represent a
data store, persistent components are
transactional, and their transaction
setting has much to do with the
achieved performance, as mentioned in
[GZ00] and as the further test results
will indicate.

This business transaction is very similar
to the business transaction defined by
the stateless component. The difference lies in that another table
(Record instead of Customer) was used. Indeed, this time, a stateless
component is utilized as a layer between the persistent component
and the client.

8. RecordServices.findAllRecords ();
9. sleep (5); // Seconds
10. RecordServices.setRecord (myRecord);
11. sleep (5); // Seconds
12. RecordServices.createRecord (myRecord);
13. sleep (5); // Seconds
14. RecordServices.findAllRecords ();

3.4.5 Application servers
There is a fundamental difference between the two application server
implementations: WebLogic has emerged from a specification while Windows
2000 is a proprietary implementation of COM+.

BEA has added several features in WebLogic 6.1 not available in the EJB 2.0
specification. Time to market being a key issue, BEA does not necessarily
have the time to wait for the EJB 2.0 specification to be completed before
presenting their products to the market. Several of the features that BEA has
added to their WebLogic 6.1 implementation, such as extensions to the QL-
language and Read-Only Entity Beans [BEA 01b], are proposed for the next
version of the EJB Specification. This was an interesting dilemma. Was the
BEA server or the EJB Specification being tested? All special features of the
BEA product should be taken into account when looking at the performance.
When comparing the qualities and properties on a less technical level, it had

Chapter 3 - Approach

43

to be the specification that counted, not the specific implementation. After all,
certain aspects, such as vendor neutrality, would then be void.

3.4.5.1 Server tuning

It is an extremely difficult, if not impossible, task to place both application
servers side by side in every single technical setting. Where the settings on a
very detailed level can be tuned, the default setting of the application server is
maintained and is not (also for delimitation purposes) mentioned here. It is
important to remember that the test implementations are as identical as
possible on both technologies, and not necessarily optimal.

Options referenced in the official tuning and the performance papers from
BEA [BEA 01a] and Microsoft [PLATT00] are considered substantial and are
taken into account when adjusting the parameters and the setting of the
application servers.

Table 3-2 presents a listing of important tuning parameters with their initial
setting at the start of the test period. Some of the parameters were changed
during the tests, as further described in section 3.4.6.

No Setting EJB COM+
 Application server BEA WebLogic Server MS Windows 2000
 Version 6.1 Service Pack 1 Service Pack 2
1 Runtime environment

JDK1.3.1 Windows 2000

2 Heap size of JVM 128MB N/A
3 Transaction handling Container managed,

required
Required

5 Transaction isolation level SERIALIZABLE SERIALIZABLE
6 Database Connection pool

size min/max
25/100 Handled by ODBC

driver
7 Transaction timeout 60 sec. 60 sec.
8 Initial and maximum

component pool
0/limited by memory 0/limited by memory

9 Creation timeout 60 sec. 60 sec.
10 Just in time activation Yes Yes
11 Activation type Call by reference where

possible
Library application
where possible

12 No. of execute threads 100 Handled internally
13 Database driver Type 4 (MSSQL) driver ODBC and ADO 2.6
14 Security None None

Table 3-2: Tuning parameters

Chapter 3 - Approach

44

1.
The default JVM for Weblogic 6.1 is used: JDK 1.3.1 [SUN]. According to
[GZ00], this generation of JVM with hotspot optimizer performs remarkably
better than other JVM’s. Being also Weblogic default, JVM was the natural
choice. As mentioned, Windows 2000 is the only runtime environment for
COM+.

2.
The JVM heap size determines how often and how long the VM collects
garbage (de-allocating unused Java objects from memory). When a JVM runs
out of memory in the heap, all executions in the JVM stop, while a garbage
collection algorithm frees space that is no longer required by an application.
This process affects performance because server-side work cannot proceed
during garbage collection. If a large heap size is set, full garbage collection is
slower but occurs less frequently. If heap size is set in accordance to the
memory needs, full garbage collection is faster, but occurs more frequently.
The goal sought in tuning heap size is to minimize the time spent doing
garbage collection, while maximizing the number of clients that can be
handled by the server at any given time. This value is raised to 128 from the
default of 64MB, in a case of trial and error.

3.
Transaction handling. The setting REQUIRED specifies that all objects created
by the component will be transactional. It is the preferred setting for an object
that performs resource activities, because it guarantees transaction protection
for these activities [GWE01]. The EJB specification allows a session bean to
choose between either container-managed or bean-managed transactions. In
container-managed transactions, the transactions automatically start and
commit as requested.

5.
Transaction isolation level. The EJB 2.0 specification supports explicit setting of
the transaction isolation level (how the database handles the issued
concurrency) for any or all transactions. In COM+, the transaction isolation
level must be set manually or in the database. The SERIALIZABLE isolation
level was chosen, because it is the only supported isolation level for the MTS
in COM+.

6.
Database connection pool. The application server opens connections and puts
them in a connection pool accessible to all clients. When a client closes a
connection from a connection pool, the connection is returned to the pool
and becomes available for other clients; the connection itself is not closed.
The best performance occurs when the connection pool has as many
connections as there are concurrent users [BEA 01a]. The COM+ connection
pool is handled by the ODBC driver.

Chapter 3 - Approach

45

7.
Transaction timeout. It sets the default timeout for the transactions initiated in
this component. If the duration of a transaction is longer than this default
value, it will be rolled back. 60 seconds is the default setting.

8.
Initial and maximum component pool size. The nature of stateless components
allows applications servers to maintain a pool of components for every
stateless component class. There is, per default, no upper limit except for the
available memory. Setting the initial value to a number different from the
default (zero) populates the component pool at startup, and improves the
initial response time of the application server.

9.
Creation timeout. It represents the maximum time that the creation of a
component can remain active before it times out. Creation processes that
remain active beyond this period of time are automatically aborted by the
system. 60 seconds is the default setting.

10.
Just In Time (JIT) activation. The purpose of JIT activation is to save resource. It
achieves this by ensuring that a component lives exactly as long as needed.
When JIT activation is activated for a component, the instance is not created
before a call is made to the component, and the component is terminated
immediately after the call is done.

11.
Pass by value is always necessary when the component is called remotely (not
from within the server). Components that are called from within the server
should be library applications (COM+ terminology) or call-by-reference-
components (EJB-terminology). Passing by reference increases the
performance of the method invocation since the parameters are not copied.

12.
No. of execute threads. This value equals the number of simultaneous operations
performed by the server. As a job enters the application server, it is placed in
the execute queue. This job is then assigned to a thread that does the work on
it. Threads consume resources, so a value too high could degrade the
performance. The value is set to 100 for the WebLogic server.

Chapter 3 - Approach

46

13.
Database driver. WebLogic supports several types of JDBC drivers [GWE01].
The JDBC driver for Microsoft SQL server is a type 4 driver, for lack of
available type 2 drivers. This is a 100% Java implementation of the JDBC
API. It provides direct access to MS SQL Server, and requires no vendor-
supported client libraries.

COM+ uses Windows 2000 Microsoft SQL server driver.

14.
Security. The security is set to none for all components. While being an
important part of a distributed system, it is cheaper to handle some of the
security aspects with hardware [PLATT00].

3.4.5.2 Recording test data on the server

Several measurements are recorded on the application server or in the server
operating system.

During a test run, Windows 2000 performance monitor logs the server CPU
usage, thread and processes count, number of connections to the database
and the network usage. The metrics are sampled every second and written to
a log file on the server. The network usage is measured in order to detect if
the network is a bottleneck for the system.

3.4.6 Conducting the tests
The tests are conducted with the test clients running on three client machines
(as shown in Figure 3-5). The COM+ test and the EJB test are naturally not
run simultaneous. The performance tests are conducted in a clean
environment; when the tests are not running, the network load is none. All
tests are run with a synchronized start time. To synchronize the starting time
on all computers, the Network Time Protocol (NTP) [NTP] is used. NTP
synchronizes the clocks of hosts and the routers in the Internet.

In order to stress test a system, the stress tester starts by analyzing individual
response, verifying that the response time falls within an acceptable range, and
that the application actually functions as desired. This is called a functional test
[GWE01]. After a successful testing of the application functionality, the
baseline case [GZ00] test is conducted: A small discrete number of
simultaneous clients are executed in order to understand how the application
behaves when the server is not stressed. The baseline case is typically defined
with about 50 users in an application such as this one.

The increase in the load is stepped in such a way that a meaningful
performance chart can be drawn. At first, it is a case of trial and error but
eventually permits to identify the limits of the application.

Chapter 3 - Approach

47

The test client options available have previously been presented. The mutual
settings for the test runs are indicated as follow in Table 3-4.

No. of
client
machines

No. of iterations
in each instance

Initial sleep
(milliseconds)

Log file wait
(seconds)

3 5 5000 120
Table 3-3: Mutual test parameters for all tests

12 tests per application server were conducted, which is three per business
transaction as shown in Table 3-4.

Business transaction Nr. of instances on each
machine (test1/test2/test3)

New Customer 20/50/100(50)
Populate Shopping Cart 20/50/100(50)
New Order 20/50/100(50)
Let’s buy some records 20/50/100(50)

Table 3-4: Test cases

As indicated in Table 3-4, the tests are run with 60 (20 * 3 client machines),
150 (50 * 3 client machines) and 250 (100 * 2 client machines and 50 on the
last client machine) simulated clients. As presented in the following chapter,
the upper limit for both applications server is reached at 250 simultaneous
clients. Three test runs per business transaction are sufficient to observe the
application behavior in typical, loaded and stressed (atypical) conditions
[GZ00].

Chapter 4 - Implementation

48

Figure 4-1: MMC treeview

4 C h a p t e r 4

IMPLEMENTATION

This chapter presents the allocation of component model services into
runtime, development and external qualities [DW99]
. The key aspects of a component-based application are listed and organized
for a thorough comparison in the next chapter. Also presented are the results
from the conducted tests.

See Appendix 3 for a summary and high level comparison of COM+ and EJB
properties.

4.1 Determining properties
In order to decide what was a significant property or quality, a close attention
was paid to what the component models had to offer, or more specifically
what the implementations had to offer. The selected aspects come from
various definitions of component models (see chapter 2) and from other
work conducted on the subject.

Several articles have been written about component models head-to-head
comparison, with a strong focus on their entirety. Anne Thomas
[THOMAS98] looks at basic family
values such as language support,
platform support, protocol support,
etc. Two of the most prominent
persons in the EJB vs. COM+ debate
are Ed Roman and Roger Sessions.
Each of them wrote a book on this
subject: [SESSIONS00] and [RO99].
A transcript from a debate [RS99]
between these two personalities has
been an important source of research.
The Serverside [SERVERSIDE] is an
Internet community discussing
component technology with a focus
on J2EE. The Middleware Company
wrote a whitepaper [RO99]
presenting what they call “Technical
Benefits of EJB and J2EE
Technologies over COM+ and
Windows DNA”. Microsoft also
published an article about the benefits
of MTS vs. Enterprise Java Beans

Chapter 4 - Implementation

49

[MICROSOFT98]. In addition to that, Roger Sessions published a more
recent paper that compares the technical aspects of .NET vs. J2EE
[SESSIONS01]

In COM+, the configuration of the components and the transaction statistics
are presented to the user with a graphical user interface. This tool is available
from the Microsoft Management Console (MMC), which is included in all
Windows 2000 versions (see Figure 4-1). To locate functionality and services
provided by COM+, a thorough examination of the functionality available in
the MMC has been carried out.

EJB available functionality and services provided have to be taken from the
current available specification [EJB2.0].

4.2 Runtime qualities
In this study, the runtime qualities correspond to the task of measuring the
application server runtime functionality. In this case, they must be measured
up against the respective component model specification. Diversity in
behavior of different application server implementations can be expected with
EJB. In this case, the WebLogic implementation is therefore the only one to
be taken into account.

4.2.1 Functionality
Functionality measures how well the system assists its users in performing
tasks. The main user in an application server context is the developer, but
some tasks can be distributed to other actors in a project. The developer
performs many tasks, such as tuning the server, compiling against it,
deploying components, etc. A list of such tasks is compiled and listed in this
section.

4.2.1.1 Event management

According to the definition of a component model from SUN, a component
model should contain event management, or asynchronous event-driven
communication.

An example usage scenario would be an event-driven process that operates
asynchronously. An intranet workflow application fits the profile wherein
business objects (examples are leave requests, travel reimbursement requests,
etc.) send asynchronous messages. After the requests have been processed (it
may even take a day or two), the application can further invoke another event
to inform the user via email, mobile phone, or pager that the request has been
processed.

Both technologies have their own solution to asynchronous event-driven
communication.

Chapter 4 - Implementation

50

Event management in EJB
Event management is supported in EJB by an implementation of message-
driven beans. This type of enterprise bean is asynchronously invoked to
handle the processing of incoming Java Messaging Service (JMS) messages.
JMS [JMS] is a standard vendor - a neutral API that is part of the J2EE
platform and can be used to access enterprise messaging systems. A typical
message-driven object is stateless, can be transaction aware and executes upon
receipt of a single client message. JMS is a prerequisite in the EJB
specification.

The message driven bean was not implemented in the test implementation
because the implementation was then unavailable. At the time of the writing,
WebLogic 6.1 (among others) fully supports message driven beans.

Event management in COM+
COM+ handles messages through the Microsoft Message Queue (MSMQ).
On top of the MSMQ, there is an infrastructure called Queued Components
(QC). It abstracts the details of what is happening behind the curtain in
MSMQ, away from the developer. As a result, the developer feels as though
programming regular COM+.

The queue listener can be disabled / enabled as appropriate on the application
level.

No tests of MSMQ and QC were conducted in the implementation. Indeed,
they would have had no relevance since the corresponding feature was not
available in the EJB implementation.

4.2.1.2 Component packaging

According to the definition by SUN of a component model, a component
model should offer the possibility of packing files belonging to a component
(such as icons, or graphics files) to a distributable format.

Component packaging in EJB
The EJB specification states that the EJB-jar file should be the standard
format for the packaging of Enterprise Beans. It contains one or more
enterprise beans, plus application assembly information describing how the
enterprise beans are combined into a single application deployment unit. The
EJB-jar file must also contain, either by inclusion or by reference, the class
files for all the classes and interfaces, which upon each enterprise bean class as
well as the home and component interfaces depend, with the exception of the
system classes. Client stubs should not be included in the EJB-jar file, and are
typically generated at runtime or deployment time.

Chapter 4 - Implementation

51

The details about the packaging of components for deployment are specified
in the J2EE specification [J2EE] and are too extensive to be presented here.

Component packaging is fully supported by WebLogic, and the test
implementation uses a single EJB-jar file for the entire application.

Component packaging in COM+
In COM+, the standard for packaging is the Dynamically Linked Library
(DLL) file. This DLL file can contain any number of components, as well as a
lot more than just the implementations of the components. It includes the
type library, configuration information, and class factories. Client stubs are
generated from the MMC and exported to the client computers. These client
proxy stubs can be automatically exported to a single server through the
Application proxy, which specifies a remote server where to export the stubs.

The test implementation consists of 5 DLL files.

4.2.1.3 Instance and life cycle management

A component model runtime typically manages creation, management, and
destruction of components; there are similarities in existing component
models.

Instance management is about giving the client the impression that a
dedicated component is waiting to service its request. The Container enters its
instance management algorithm when a call is made from a client. In COM+,
this is called Object Pooling and in EJB, Instance Pooling. For COM+, it is
quite common to use JIT activation with Object Pooling, so that a
component instance is placed back into the pool immediately after the
execution of a function.

EJB instance and life cycle management
The EJB specification presents two main types of objects: session objects and
entity objects.

According to the EJB specification, a typical session object is relatively short-
lived and executes on behalf of a single client. It does not represent directly shared data in
the database, although it may access and update such data. The object is removed when the
EJB Container crashes, if so the client has to re-establish a new session object to continue
computation.

The specification also states that a typical EJB Container provides a scalable
runtime environment to execute concurrently a large number of session
objects. Session beans are intended to be stateful. The EJB specification also
defines a Stateless Session Bean as a special case of a Session Bean.

Chapter 4 - Implementation

52

All session objects of the same Stateless Session Bean within the same home
have the same object identity, while a stateful session object has a unique
identity that is assigned by the container at creation time. The EJB
specification recommends stateless beans regarding scalability, as mentioned
in section 4.2.6.

The second object type in EJB, the entity object, provides an object view of
the data in the database. It allows shared access from multiple users and can
be long-lived (it lives as long as the data in the database). The entity, its
primary key, and its remote reference can survive the crash of the EJB
Container.

In EJB, an object instance of a component may be pooled; this is called
instance pooling, as described in section 2.6.7.

WebLogic supports both object types and follows the specification. To
prevent long-lived stateful components from monopolizing too many
resources, the EJB container passivates idle components by temporarily
persisting them to the disk. The components are reactivated when necessary.
In the implementation, the business cases test the various components. The
first business case, New Customer, tests the stateless bean. Populate Shopping
Cart and New Order business transactions tests the stateful bean. Finally, Buy
Some Records tests the Entity Bean.

COM+ Instance and life cycle management
COM+ has one type of object. Statelessness or statefulness is not an issue– it
is left to the sole discretion of the developer as to decide which is the most
reasonable way to implement an object. Against popular belief, it is possible
to implement stateful components in COM+.

COM+ has several ways of influencing the life cycle of an object. A developer
can:

• Enable JIT activation. It will make a component deactivated as soon
as it completes its task(s), and will be activated when needed. This
process is transparent to the programmer (but still needs to be taken
into account as it means that the next object instance the client
acquires, will most likely not be the same).

• Control the life cycle manually by creating and releasing the
component programmatically. If JIT activation is disabled, the stateful
components will become available.

• Ensure that a minimum number of components are ready at all times,
and sets a limit of how many of them can be active at one given time.

Chapter 4 - Implementation

53

A COM+ component can be stateful in various ways [PLATT99]. The state
can be stored in the client, in the component itself, in a resource dispenser, or
in a resource manager. A resource manager can be any type of storage, from a
flat file to a database. All of these four approaches to state management
present pros and cons.

Storing the state with the client is convenient. Indeed, the component is not
concerned at all with the state, although this approach calls for advanced
clients.

Storing the state in the component means fast access to the state, but this
solution does not scale as the component will be tied to one client, for as long
as the client deems it necessary – thus the component can not be used by
other clients while it is inactive waiting for the first client to complete
execution.

Having the state in a resource dispenser, such as the shared property manager
(SPM), is a mediocre solution, but it scales better as the component is not tied
to the client. The SPM is a resource dispenser that can be used to share state
among multiple objects in a server process

A forth place where to keep the state is in a resource manager. It means that
the state is persistent, but the persistence comes at a price. Access to the
resource manager is very slow.

Of course, the state can also be stored in other numerous ways, such as text
files, excel spreadsheets, etc. All these methods are too costly, both speed-
wise and implementation-wise, and do not represent serious options for a
business system.

In a beta version of COM+, Microsoft had implemented support for this
kind of component, but made a strategic decision by removing all state from
the middle tier.

In the implementation, different approaches are tested. The New Customer
business case is implemented as a stateless component. The Populate
Shopping Cart and the New Order business case are both implemented as
stateful components, keeping the state within the component itself. The last
business case, Buy Some Records, is implemented as a component with
persistent state.

4.2.1.4 Query language

Every component model needs a language to communicate with its persistent
storage. An example of usage can be found in Appendix 4.

Chapter 4 - Implementation

54

Query language in EJB
In container-managed persistence, unlike in bean-managed persistence, the
developer does not write database access calls in the methods of the Entity
Bean class. EJB QL is a query specification language for the finder and selects
methods of Entity Beans with container-managed persistence. EJB QL can be
compiled to a target language, such as SQL, to a database or to any other
persistent store. EJB QL is a subset of SQL, but substantially less mature.

Entity Beans, with bean-managed persistence, enable the developer to write
database access calls with JDBC (SQL).

WebLogic fully supports QL and is used for the Entity Bean in the test
implementation.

Query language in COM+
Microsoft provides a library for database access called ActiveX Data Objects
(ADO). ADO uses SQL [SQL92] as its query language. A developer is free to
use any third party library for database access as well.

ADO was used for all database access in the test implementation.

4.2.1.5 Naming or directory service

Both EJB and COM+ support location transparency, meaning that it is not
necessary for the client of a component to know the physical location of the
component. A client, at best, may only need to know the Domain Name
Service (DNS) name to a server to get a reference to the component. An
example on how to invoke a server object instance can be found in
Appendix 4.

A description of how to locate the service of a component follows.

Naming and directory service in EJB
The specification states that a client can locate an enterprise bean home
interface through the standard Java Naming and Directory Interface (JNDI)
API.

A remote client may also obtain the metadata interface of an enterprise bean.
The metadata interface is typically used by clients who need to perform
dynamic invocation of the enterprise bean (dynamic invocation is needed if
the classes that provide the enterprise client view were not available at the
time the client program was compiled).

The specification also states that containers may optionally support runtime
downloading of stub and value classes needed by the referencing container.

Chapter 4 - Implementation

55

The CORBA 2.3.1 specification and the Java Language to IDL Mapping
specify the way stub and value type implementations are to be downloaded.

WebLogic supports JNDI and metadata interfaces, but not the runtime
downloading of the stub and the value classes. JNDI is also implemented in
the test implementation for all clients. The metadata interface is not tested.

Naming and directory service in COM+
With COM+, there are several options for locating an application and its
components. From the MMC, a developer can choose to export proxy stubs
to a file that should be distributed to the clients. The proxy stub contains
information about the server computer, its application and the interfaces
supported by the applications. These are loaded into the registry of the client
and are available as though they were on the local machine. The components
can also be reached programmatically.

For the test implementation, client proxy stubs were created with the MMC
and executed on all three clients.

4.2.1.6 Synchronization services

The application server should properly synchronize access in order to keep
track of current activities in different threads.

Allowing components to start threads would lead to serious problems. An
example would be to image two concurrent threads running with the same
transaction context and trying to access an underlying database. If one thread
is reading the data while the other thread is updating the data, it is completely
unpredictable to know which data the first thread would read.

Synchronization services in EJB
The EJB specification makes it illegal for an enterprise bean to start new
threads. The Container ensures that the system is manageable, and must
control all thread creations.

For session beans, section 7.11.8 of the EJB specification states that the
container must ensure that only one thread can be executing an instance at
any time. Note that a session object is intended to support only a single client.
Therefore, it would be an application error if two clients attempted to invoke
the same session object. One implication of this rule is that an application
cannot make loop-back calls to a session bean instance.

Multiple clients can access an entity object concurrently. The Container, in
which the Entity Bean is deployed, properly synchronizes access to the state
of the entity object by using transactions.

Chapter 4 - Implementation

56

Synchronization services in COM+
COM+ features a service called activity-based synchronization [PLATT99].
This service provides locking and transaction features that keep track of the
current activities in the different threads, that is, it provides automatic
synchronization by the use of process-wide locking. There are four different
settings available for this service (see Table 4-1).

Synchronization
Setting

Creator in an activity Creator not in an
activity

Disabled None None
Supported Activity of the creator None
Required Activity of the creator New activity
Required New New activity New activity

Table 4-1: COM+ synchronization settings

4.2.1.7 Transaction handling

Transactions free the application programmer from dealing with the complex
issues of failure recovery and multi-user programming. If the application
programmer uses transactions, the programmer divides the work of the
application into units called transactions. The transactional system ensures
that a unit of work either fully completes, or the work is fully rolled back.

Transaction handling in EJB
In chapter 18 of the EJB specification, the following is stated: One of the key
features of the Enterprise JavaBeans architecture is support for distributed transactions. The
Enterprise JavaBeans architecture allows an application developer to write an application
that atomically updates data in multiple databases which may be distributed across multiple
sites.

EJB transaction attributes
The specification states in section 17.4.1 that the transaction attribute
specifies how the Container must manage transactions for a method. Some
attributes are not supported by container-managed Entity Beans and message-
driven beans (see the specification for further details on this).

The specification lists the following transaction attributes in its section 17.6.2,
listed in Table 4-2.

Chapter 4 - Implementation

57

Transaction
attribute

Client’s transaction Transaction
associated with
business method

Transaction
associated with
resource manager

NotSupported None
T1

None
None

None
None

Required None
T1

T2
T1

T2
T1

Supports None
T1

None
T1

None
T1

RequiresNew None
T1

T2
T2

T2
T2

Mandatory None
T1

Error
T1

N/A
T1

Never None
T1

None
Error

None
N/A

Table 4-2: Transaction attributes in EJB

The figure is quite self-explanatory and provides a summary of the transaction
context. T1 is a transaction passed with the client request, while T2 is a
transaction initiated by the Container. If the bean’s business method invokes
other beans, the transaction indicated in the “Transaction associated with
business method” column will be passed as part of the client context to the
target bean.

EJB Transaction modes
The EJB specification presents two different types of transaction models:
programmatic (bean-managed) and declarative (container-managed). With
bean-managed transactions, the enterprise bean code demarcates transactions.
With container-managed transaction, the Container demarcates transactions
per instructions provided by the settings of the component.

According to [GWE01], container-managed transactions should always be
used.

EJB Isolation levels
The specification provides guidelines for implementing isolation levels
(section 17.3.2 in the specification), but does not define the API to manage
them because isolation levels are resource specific (e.g. not all persistent
storages have support for all isolation levels). The isolation level describes the
degree to which the access to a resource manager, by a transaction, is isolated
from the access to the resource manager, by other concurrently executing
transactions.

Chapter 4 - Implementation

58

EJB Nested transactions
EJB does not support nested transactions, because it allows vendors of
existing transaction processing and database management systems to
incorporate support for Enterprise Java-Beans. If these vendors provide
support for nested transactions in the future, Enterprise Java-Beans may be
enhanced to take advantage of nested transactions (the EJB specification,
section 17.1.2).

WebLogic fully supports all transaction modes proposed by the specification.
In the test implementation, declarative transactions are used on all
components with the Required transaction attribute and the Serializable
isolation level set.

Transaction handling in COM+
COM+ supports distributed transactions through MTS and the MS DTC.

EJB COM+
Never Disabled
Supports Supported
Requires New Requires New
Not supported Not supported
Required Required
Mandatory N/A
Table 4-3: Transaction mapping of EJB and

COM+

When a component is added to an application, it is analyzed and MMC finds
and sets the transaction attributes. COM+ transaction attributes is a subset of
the EJB services, as indicated in Table 4-3.

The component has its default (set programmatically by setting a variable, or
set manually in the MMC). The Microsoft Distributed Transaction
Coordinator (MS DTC), a part of MTS, handles the coordination of the
transactions. In a transaction, an object has to inform the transaction manager
of the transaction’s success or a failure before exiting the transactional
context. The MS DTC can be run on a different server if desirable.

The MS DTC requires a resource manager to function. However, there are
still too few RM’s on the market that have all the functionality required by MS
DTC and MTS, in order to enable all their features. The list of available
resource managers can be found in Table 4-4.

MTS supports only the SERIALIZABLE isolation level, which is the strictest
form of isolation available. The SERIALIZABLE isolation level guarantees

Chapter 4 - Implementation

59

data integrity, however the prices to be paid is performance as it is the slowest
of all isolation levels.

In the test implementation, MTS is used for all transactional activity. MTS
fully supports nested transactions with the RM mentioned in Table 4-4.

RM Version
Microsoft SQL Server 6.5 or higher
Microsoft Message Queue Server
Oracle 7.3 or higher
Informix
Sybase
CA Ingres

Table 4-4: Resource managers that fully support COM+

In addition to that, COM+ supports the transactional handling of non-
database operations through the Compensating Resource Manager (CRM). If
a developer wants to write a file as part of a transaction, the CRM, available
from the MMC as an option on the component level, can be used to ensure
that the transaction as a whole is rolled back, even if only the non-database
operation failed [MSDN CRM] .

4.2.2 Usability
How can the general user interface help the users performing their tasks? Is
the interface intuitive for all kinds of users?

Chapter 4 - Implementation

60

Figure 4-3: Hierarchy in COM+

Figure 4-2: Web Logic management console

EJB usability
As a specification, EJB does not give any guidance on how the user interface
should look, as this naturally will be specific to every implementation.
WebLogic has solved this issue with a web-interface to runtime tuning of the
application server (see Figure 4-2). The WebLogic internal web server must
be up and running in order for this
solution to function. Alternatively,
the WebLogic configuration files in
.xml-format are editable when the
server is offline.

Component parameters are put in
xml-descriptors and packed with
the component and must be edited
by a text editor or other third-party
tool.

COM+ usability
Microsoft traditionally makes fairly
intuitive graphical user interfaces
for all their applications, and the
management console for COM+

Chapter 4 - Implementation

61

(MMC) is, in this matter, no different (see Figure 4-1).

This is a hierarchical structure, where the lower layers inherit the defaults set
in the higher ones (see Figure 4-3), and where some of the settings from the
Server level can be overridden on both the Application and the Component
level.

All these settings can be made programmatically as well, so that big
operations, e.g. changing the security settings for several applications, will not
require hours of work.

The MMC is used throughout the implementation.

4.2.3 Performance
Performance relates to how the application server performs, and is
thoroughly described in section 4.5.

4.2.4 Security
The issue of security is becoming more important as more sensitive systems
become distributed. The author of [PLATT99] goes as far as saying that “any
system should have an excellent reason for not implementing a high degree of
security”.

EJB security
EJB uses the security mechanisms of J2EE, which are based on two separate
security models. The first is called declarative security model, and expresses the
security structure of an application, including roles, access control, and
authentication requirements. All the latter can be changed without modifying
the application. The second model is called programmatic security, and is about
adding explicit security checks within the application code. Declarative
security is preferred wherever possible in order to separate application code
and security constraints.

Section 21.1 of the EJB specification encourages the developer to implement
the enterprise bean class without hard-coding the security policies and
mechanisms into the business methods. Because not all security policies can
be expressed declaratively, the EJB architecture provides a simple
programmatic interface that the developer may use to access the security
context from the business methods.

Web clients can be authenticated over a Secure Sockets Layer (SSL) in Java
Server Pages (JSP), and servlets. J2EE also enables integration with existing
security systems. For instance, WebLogic can interoperate with Windows
security.

Chapter 4 - Implementation

62

According to the EJB specification (19.8: security interoperability), EJB
supports the secure interoperable mechanisms based on the CORBA/IIOP
protocol. It also supports Kerberos-based secret key mechanism and X.509
certificate-based public key mechanisms. Kerberos is a secure method for
authenticating a request for a service in a computer network.

WebLogic Server relies on the standards-based technologies just explained for
its security services.

COM+ security
The Windows Distributed Internet Applications Architecture (Windows
DNA) security model is quite analogous to the one of J2EE. Web clients can
be authenticated over Secure Sockets Layer (SSL) in Active Server Pages
(ASP) or Internet Server Application Program Interface (ISAPI) code.
Application code typically accesses credentials in Microsoft’s Active
Directory, and authorization can be either programmatically or declaratively
controlled in COM+ components.

Authentication
Level

Description Security

None No authentication None
Connect Authenticates only at connection Low
Call Authenticates for every call to the

component
Medium

Packet Authenticates and verifies that all
call data is received

Medium

Packet Integrity Authenticates and verifies that none
of the data has been modified in
transit

High

Packet Privacy Authenticates and encrypts the
packet, including the data and the
sender's identity and signature

Very high

Table 4-6: Authentication settings in COM+

The COM+ can enforce security in several layers. All components in an
application are set to run as a given user or as the user currently logged on.
This helps ensure that the component process does not have access to e.g.
files on the server. There are two other settings and one additional feature
that can be set for security in COM+.

First of all, there is the authentication layer, which sets the standards for the
level of identification that the client must provide to the component process.
This setting has been divided into six authentication levels, see Table 4-6.

Chapter 4 - Implementation

63

Then there is the impersonation layer, which sets the standards for the way
how a component process can impersonate the client. It is useful for paranoid
database access, where the different users have different access rights to the
database, and so the component process can use the identity of the client to
access the database. This setting has been divided into four different
impersonation levels as described in Table 4-7.

Impersonation level Description
Anonymous The client is anonymous to the server application.
Identify The server application can obtain the client's identity, and

can impersonate the client to do access list checks.
Impersonate The server application can impersonate the client while

acting on its behalf, but with restrictions.
Delegate The server application can impersonate the client while

acting on its behalf, whether it is or not on the same
computer as the client. During impersonation, all of the
client's credentials can be communicated to any number of
computers.
Table 4-7: Impersonation settings in COM+

Last, there is the ability to define roles. The administrator can set that e.g. Jim
is a member of the Managers and is therefore able to access the
administration component.

Every component in COM+ can enable object construction, this in order to
pass a string to the component as it is being created. Typically, a string is
inaccessible to the client. Kerberos comes with Windows 2000, and is fully
supported by COM+. All these settings can be done either programmatically
or manually in the MMC.

The test implementation does not include the security features as it is outside
the scope of this thesis.

4.2.5 Reliability and availability
This section tries to answer whether the application servers perform correctly
over extended periods of time, and how they handle failure. Are there
possibilities for fault-tolerance with duplicate hardware and/or software?

Clustering & Load Balancing in EJB
The EJB specification does not mention these properties, and hence leaves
the issue up to the application server implementation. However, it does, at
some point, take into account the fact that the clustering of application
servers is a widespread phenomenon.

Chapter 4 - Implementation

64

A WebLogic Server cluster is a group of servers that work together to provide
a more reliable application platform than would a single server. It also
improves the application scale (see section 4.2.6). A cluster appears to its
clients as a single server but is, in fact, a group of servers acting as one. If one
server fails, another can take over. The ability to fail-over, from a failed server
to a functioning server, increases the availability of the application to clients.

Several load balancing algorithms are supported by WebLogic: Round-Robin,
weight-based and random. The round-robin algorithm cycles through a list of
WebLogic Server instances in sequence. The weight-based algorithm
improves on the round-robin algorithm by taking into account a pre-assigned
weight for each server. Finally, the random algorithm chooses the next replica
at random.

Reliability in EJB
When it comes to reliability, the extensive tests and the often used trial and
error approach put the technologies up for a challenge. The WebLogic server
crashed two or three times, including times when reboot of the operating
system was a necessity. The most probable cause was the trial-and-error
eccentric parameter settings in the server, and cannot be taken into account.
The WebLogic server behaved exemplary and showed no signs of
unreliability. NSB-Lisa, the authors’ EJB reference project, had problems
when the database became unavailable; WebLogic did not continue
operations before it had been restarted. At the time of the writing of this
thesis, the developers and administrators in the project are unsure if the
servers are correctly set up.

Handling failure in EJB is analogous in Java, and exceptions from the server
can easily be caught on the client side.

Clustering & Load Balancing in COM+
COM+ solves the issues of clustering and load balancing by adding at least
two servers to create a Component Load Balancing (CLB) cluster. The first
server, the one that the clients see as the only server in the network, is
formally known as the Application Cluster Router. This server is in charge of
dynamically balancing the load of the servers in the network. This is done by
the other servers which report back to the load balancing server regularly with
reports on their current load. The rest of the servers are the “slaves” and do
the actual work (while the Application Cluster Router takes all the credit).
Now, the administrator can add as many “slaves” as needed in order to
maintain an acceptable performance.

Reliability in COM+
The Rikstoto project had an overall excellent experience with COM+. It was
running smoothly all along. The only problem the project encountered was a
taste of the “DLL hell”, a situation that arises in the Windows registry when

Chapter 4 - Implementation

65

changing the interface of a component and the lack of DLL versioning
support. With this single exception, everything was running very well.
As for the MSMQ functionality, if a message fails and is to be sent to the dead
letter queue, as an option component can be launched to correct the error
that has occurred. It serves as an exception class for the component.

4.2.6 Scalability
As a system grows, the response time of the application will become higher
and higher, until the system is left unusable. One solution to this problem is
adding more hardware (clustering) and making sure that the hardware is used
properly (load balancing). Other mechanisms are also implemented in
applications server in order to make a system scale.

Scalability is defined by Roger Sessions in his Objectwatch newsletter, issue #26:

I consider a system to be "scalable" if we can add more workload to the
system without increasing the cost of the system per unit of workload. The
common unit of workload for a commerce system is a transaction.

The industry standard benchmark for transactional throughput is specified by
a consortium called the Transaction Performance Council (TPC) and the
benchmark is called the TPC-C benchmark [TPC].

On its website, TPC presents the Top Ten TPC-C by performance. Two
different tables are presented, one with clustered solutions and one with non-
clustered solutions. On the clustered list, COM+ is the only participant
offering eight different solutions. It is reasonable to believe that no other
vendors have delivered TPC numbers for clustered solutions.

However, on the non-clustered list, Websphere, being the only EJB-vendor
with publicly released TPC-C numbers, ranks in at number 5, ahead of all
COM+ solutions. Because this has much to do with the kind of hardware in
use, the number of CPUs, and the number of servers put in a cluster, the
results appeared as fairly irrelevant to this particular comparison context.

Therefore, the TPC-C has to be seen together with the rate of the new order
transactions (tpmC), which gives COM+ monopoly of the top ten list. More
comments on this can be found in section 4.4.2, where the cost of system
quality is presented.

Scaling mechanisms
With the features implemented in both technologies, scalability is primarily a
question of good design. A lot of hardware cannot compensate for an
application that does not scale much.

Chapter 4 - Implementation

66

The joint mechanisms for scaling are:
 Object pooling
 Database connection pooling
 Load balancing in a cluster

EJB
The fact that an implementation should scale has nothing to do with the EJB
specification. However, the specification section 7.8 states the following:
Because Stateless Session Beans minimize the resources needed to support a large
population of clients, depending on the implementation of the container, applications
that use Stateless Session Beans may scale somewhat better than those using Stateful
Session Beans. However, this benefit may be offset by the increased complexity of the
client application that uses the stateless beans.

WebLogic supports all mechanisms mentioned: load balancing in a cluster, as
described in section 4.2.5, and object pooling and instance management, as
described in section 4.2.1.3.

Database connection pooling is supported as of JDBC version 2.0, and hence
is supported by WebLogic. This is described further in section 3.4.5.1.

COM+
COM+ also supports all mechanisms mentioned: load balancing in a cluster,
as described in section 4.2.5, and object pooling and instance management, as
described in section 4.2.1.3.

Database connection pooling is built into the ODBC, and MTS uses ODBC
for database access.

4.2.7 Upgradability
Upgradability brings to the question of whether the system at runtime can
upgrade new features or versions without bringing operations to halt. It is an
important issue to the systems that demand continuous operation.

EJB upgradability
The EJB specification states in 3.1.5 that “The Container Provider typically
provides support for versioning the installed enterprise Bean components. For example,
the Container Provider may allow enterprise Bean classes to be upgraded without
invalidating existing clients or losing existing enterprise Bean objects.” This is more
a suggestion than a demand to the Container Provider. Because the automatic
redeployment feature in WebLogic uses dynamic deployment, the server can
only redeploy EJB's implementation classes. Redeployment of EJB's public
interfaces can be done without restarting the application server. However,
changing interfaces requires the application server to restart.

The issue might be solved with a clustered solution by taking down one server
for the redeployment of Entity Beans, while another server is up serving the

Chapter 4 - Implementation

67

public. This solution is not tested because it is beyond the scope of this thesis.
But, according to postings in the BEA newsgroups, it is possible and has been
implemented. WebLogic has no feature allowing the upgrade of the
WebLogic version while it is running.

When taking down a server in a clustered environment, local state (in stateful
components) needs to be replicated to another server to preserve the state.
WebLogic has functionality to ensure state preservation across servers in a
cluster.

COM+ upgradeability
According to [RS99], a COM+ application server can bring down any
machine in a cluster for system upgrade.

COM+ has a system of CLS (class ID’s) that uniquely identifies a component.
Since COM+ supports inheritable multiple interfaces and each interface have
its own unique Globally Unique Identifier (GUID), not all clients have to be
updated simultaneously when an interface is modified. The old clients use the
old interface, while the updated clients use the new one. After all clients have
been updated, the old interface will be phased out.

COM+ has no functionality to ensure state preservation when taking down a
server in a cluster.

4.3 Development qualities
Development qualities represent the level of easiness in designing and
maintaining an application developed for the respective application server.
The qualities must be observed during development and maintenance
activities, because they relate to the design structure and the way it can be
manipulated.

4.3.1 Modifiability
This is the ability to modify a component without having to rebuild all other
components related to the deployed application. The redeployment of
modified components is covered in section 4.2.7. When designing a
deployable application, it is important to consider the component packaging
and possible limitations that may arise. This is covered in section 4.2.1.

4.3.2 Reusability
In distributed systems, reusability is a key concept. It reflects the ability of the
system to reuse other components, that is, components from other vendors
and/or platforms as well as third-party components.

Interoperability is an important part of reusability. Indeed, new systems might
need to communicate with existing ones, potentially huge and implemented
with outdated technology, in order to avoid rewriting of the existing systems.

Chapter 4 - Implementation

68

Interoperability is defined in [WHATIS] as the ability of a system or a product
to work with other systems or products without particular effort on the part
of the customer. In this section, the focus is on interoperability.

EJB reusability and interoperability
As mentioned in 4.2.1, the EJB specification states that containers may
optionally support the runtime downloading of the stub and the value classes
needed by the referencing container. At the time of the writing, however, this
is not supported by WebLogic.

According to the EJB specification, new in EJB 2.0 is a defined
interoperability protocol based on CORBA/IIOP to allow remote
invocations on session and Entity Beans from J2EE components, which are
deployed in products from different vendors. CORBA clients can be written
in a variety of languages and use the Interface Definition-Language (IDL) to
interact with a remote object.

Clients wishing to use the COM+ protocol communicate with the server
component through a COM-CORBA bridge. EJB supports web clients
through servlets, Java Server Pages, or similar Web extensions.

The specification does not address interoperability issues between enterprise
beans and non-J2EE components.

As of version 6.1 of WebLogic, Web Services is supported, which makes
communicating with e.g. COM+ web services straightforward. Web Services
is not part of the EJB 2.0 specification.

All interoperability issues discussed above are supported by WebLogic as of
version 6.1.

COM+ reusability
COM+ does not have any fixed network protocol; it can utilize any protocol
installed on the server. The default protocol to use is TCP/IP, but any other
protocol can be chosen from the MMC. COM+ components are available
from any computer running DCOM, or simply COM, for local access to
components on the server.

HTTP tunneling is available through the COM Internet Services (CIS)
[MSDN CIS], which allows COM+ components to interact through port 80
in order to enable access through proxies and firewalls.

COM+ components can be activated from the Internet Information Services
(IIS), the web server that comes with Windows NT, Windows 2000, and
Windows XP.

Chapter 4 - Implementation

69

Another way of communicating with e.g. EJB is to exchange information
through Web Services, a service that is part of Microsoft .NET but is already
implemented for BEA WebLogic, Windows 2000, and Windows XP. Web
Services exchange data over SOAP/XML and can therefore easily
communicate with other systems.

COM+ components can communicate with CORBA/IIOP through a COM-
CORBA bridge.

4.3.3 Portability
Does the system design permit easy porting to other platforms? Are there
hardware and infrastructure dependencies localized in the implementation?

EJB is a specification and COM+ an implementation. As previously
mentioned, both technologies are starting at two opposed ends and finishing
where the other started. EJB is open for everyone to implement, COM+ has
already been implemented.

EJB portability
The EJB specification strives to specify programming restrictions of portable
enterprise beans in its chapter 24.

WebLogic is committed to the EJB 2.0 specification but, as do other vendors,
has its own extensions to the product. Features, such as extensions to the QL-
language and Read-Only Entity Beans [BEA 01b], are proposed for the next
version of the EJB Specification but are already implemented in WebLogic.

In order to be a portable cross-vendor, the developer must use only features
described in the specification, and possibly be willing to sacrifice useful and
convenient extensions. In addition to that, several parameters are set on the
application server, such as tuning parameters and component database field-
to-field mapping, which are WebLogic specific and probably need manual
porting.

Java, and hence EJB, are platform independent; therefore only an
implementation of EJB needs to exist in order for a platform to be EJB-ready.

WebLogic is currently available at the following platforms: NT, Solaris, HP-UX,
AIX, Tru64, Windows 2000, OpenVMS, AIX 4.3.3, Sequent Dynix 4.4.4, OS/400
V4R4, Linux, SGI Irix 6.5, SNI Reliant 5.44C, Unisys OS1100, Unisys Burroughs,
OS/390 V2R6

COM+ portability
COM+ was designed and implemented by Microsoft. This is not based on a
specification, but on Microsoft’s proprietary ideas.

Chapter 4 - Implementation

70

COM+ is currently available only for Windows 2000 and Windows XP
running on either Intel or Alpha hardware. Microsoft does not have any plans
of releasing any UNIX versions of COM+ in the near or distant future.

Since COM+ is by nature operation system close, it can have access to the
memory above 2 gigabyte in Windows 2000 Advanced Server.

4.3.4 Buildability
This measures whether the system is easy to implement and to build, and
what third-party components or libraries it takes advantage of.

EJB buildability
The choice of the programming language is very straightforward. EJB is based
on, and supports Java and only Java.

The J2EE platform supports other languages through the Java Native
Interface (C++) and through CORBA interoperability. SUN recommends the
latter approach [CATTELL00].

The development environment is provided by third-party tools. Editors, Java
Virtual Machine, Debuggers, etc. are all third-party tools. The choice between
different tools and vendors is large and some good tools are even free of use.

COM+ buildability
The COM+ platform natively supports several languages, and leaves it to the
developer’s discretion to choose the language best suited for the needs of a
component. COM+ has been designed to run especially with Visual Basic,
C++, ASP (VBScript), but can be invoked from various languages.

COM+ has common tools, editors, runtime environments, and tools all
wrapped up in an integrated development environment (IDE) called Visual
Studio. This package tool is included when buying either of Microsoft’s Visual
Tools. Any language on the platform that can access the Windows API can be
used for developing COM+ components. Hence the developer does not
necessarily have to use the Microsoft suite of tools. A developer is also free to
use a third-party editor.

4.3.5 Testability
The testability metric measures how easy it is to demonstrate defects in the
system, or in the application server context, the deployed application. This is
determined by the degree of easiness in accessing the internal state and inputs
of the components so they can be stimulated and observed.

Chapter 4 - Implementation

71

EJB testability
Testing is beyond the scope of the EJB specification. WebLogic
comprehensive log files from the server are available and can be tuned
runtime to contain all debug messages through only fatal errors.

In EJB, there is a need for third-party tools to debug java code inside the
components. NSB-Lisa uses BugSeeker from Karmira [KARMIRA] and
Visual Café from WebGain [WEBGAIN]. Other third-party tools both for
measuring performance and pinpointing performance bottlenecks are
available for Java from e.g. Rational. Some tools, such as JProbe from Sitraka
[SITRAKA], specifically support BEA WebLogic server.

COM+ testability
The IDE that comes with Visual Studio has a built-in debugger that allows
stepping through code line by line, setting breakpoints, watching variables,
debugging components that run under MTS, and many other features. Visual
Studio and Windows 2000 come with a set of performance testing and
general system monitoring tools. Each component can be enabled for
statistics and event reporting.

When launched, a COM+ application can be set started in a debugger. The
developer can specify which debugger to use, as well as which command line
options to use for the latter.

4.4 External qualities
External qualities are important to the person in charge of choosing
technologies, e.g. the project leader.

4.4.1 Time to market
Today, the technology strides ahead and delivering projects fast is alpha
omega.

As mentioned earlier, EJB has a specification that is time consuming to
implement. Sometimes, the vendors impatiently advance faster than the
specification itself.

In NSB-Lisa, when using the first version of WebLogic 6.0, the
implementation came out only a few days after the specification was released
to the public. The finder-methods did not compile, even though it was
consistent with the specification. This was corrected in a service pack later on.

Microsoft’s technologies have a short time to market as Microsoft does not
have to wait for specifications to be accepted by several parties. As they are
the masters of their domain, they do not have to wait for anyone else but
themselves.

Chapter 4 - Implementation

72

The time to market for developing projects for a customer depends mainly on
simplicity issues and domain knowledge, which are described in section 4.4.4.

4.4.2 Cost of system
The cost of system metric reflects the total cost of the entire platform on
which to run the application server. Not included are the costs related to
teaching developers how to use the application server properly. The latter is
covered in section 4.4.4.

According to BEA Norway, a license on a BEA WebLogic server starts at
approximately USD 8000. The database or persistent storage is not taken into
account. In addition to that, an operating system and appropriate hardware on
which to run the server must be purchased. Third-party components are
necessary to develop against the server.

However, other free implementation exists: JBOSS is available under a public
license, alternative operating systems, such as Linux, are available for free
[JBOSS].

The current price of Microsoft Windows 2000 Advanced Server is USD 3999
with 25 client licenses. It includes the operating system but excludes the
programming languages, which translates into an additional USD 1690. The
supported hardware is either Intel (or compatible) or Alpha servers.

The Transaction Performance Council (TPC) has published metrics for Top
Ten Non-Clustered TPC-C by Price/Performance. When looking at the
associated price per transaction (USD/tpmC) of all submitted non-clustered
configurations (see Table 4-8), Microsoft positively stands out.

HW
Vendor

System tpmC Price/tpmC System
availability

Database Operating
system

TP
Monitor

Date
submitted

DELL
PowerEdge

2500/1.13/1P

11,320 USD 4.38 10/31/01

Microsoft
SQL

Server
2000

Standard
Edt.

Microsoft
Windows

2000
Server

Microsoft
COM+

10/31/01

IBM
IBM eServer
pSeries 660 57,346 USD 28.47 06/19/01

Oracle9i
Database

Ent.
Edition
9.0.1

IBM AIX
4.3.3

Webshpere
App.

Server
Ent.

Edition
V.3.0

04/23/01

Table 4-8: TPC-C by Price/Performance for COM+ and Websphere

As mentioned in section 4.2.6, the top ten list of Price/Performance is
monopolized by COM+. As of now, no numbers about clustered solutions
are available for non-COM+ technologies.

Chapter 4 - Implementation

73

4.4.3 Maturity
The first EJB specification was released in 1998 and the first beta
implementations in 1999. It was three years after the first implementation of
MTS, the forerunner of COM+. The major EJB application servers use
transaction monitors that existed long before the introduction of MTS.
WebLogic uses Tuxedo as its transaction monitor. Tuxedo was first
introduced in 1978 [TUXEDO].

4.4.4 Simplicity
The simplicity measures how easy it is for the application server users to gain
an understanding, and to be able to develop applications for the server.

According to [THOMAS98], important simplicity factors are a number of
development options and automation for the application programmer.
Thomas calls this a draw between the two technologies, because COM+ (or
MTS) might be considered easier due to fewer development options. As tools
available for EJB automate a lot for the application programmer, EJB
development will probably be the easiest solution for most applications.

4.4.5 Future plans
What are the plans for the two technologies in the nearest future?

The features deferred to future releases according to the current EJB
specification are as follow:

• support for other types of messaging in addition to JMS
• aggregate operations and other extensions to EJB QL
• read-only Entity Beans with container-managed persistence
• specification for the pluggability of Persistence Managers
• support for method interceptors
• support for component-level inheritance

Everything implies that Java remains EJB’s language. COM+, on the other
hand, will probably support every new language. EJB will probably cooperate
closely with CORBA in the future, as the technologies, after all, are pretty
similar.

As for Microsoft, they have recently released their .NET platform for
development [MS .NET]. The most interesting service in .NET is their
innovation named Web Services, which allows applications to communicate
and share data over the Internet.

There is, to this date, no information on what Microsoft plans to do next.

Chapter 4 - Implementation

74

4.5 Performance
In this section are presented the results of the performance test. The focus is
on the server CPU load and on the average response time (ART) [GZ00]. The
section is divided into the four business cases, and results from both
technologies are presented in the subsections.

The final subsection presents two other interesting findings discovered while
looking at the result logs. Firstly, how the application server handles RDBMS
connections, and secondly the connection between the CPU load and the
number of threads allocated by the application server.

It is important to note that the results indicate the performance on the
hardware (see Appendix 1) and the configuration used (see section 3.4.5).

4.5.1 New Customer business transaction
The New Customer business transaction is implemented, as described in
section 3.4.4.3, as a stateless component and the developer handles the
persistence programmatically.

4.5.1.1 COM+ results

Figure 4-4 shows the server CPU load for COM+ when it runs 60 (blue), 150
(red) and 250 (yellow) clients. The graph of the three different cases form a
similar pattern that indicates that the higher the load is, the more time it takes
to complete the task.

CPU Server usage COM+
New Customer

0

20

40

60

80

100

1 18 35 52 69 86 103 120 137 154 171 188 205

250 clients
150 clients
60 clients

%

Seconds

Figure 4-4: CPU usage in the COM+ "New Customer" case

At 150 clients, the server load is maximized for shorter periods, while, at 60
clients, the server load never exceeds 60%. It takes the server about 85, 121
and 197 seconds to complete the task at hand for 60, 150 and 250 clients.

Chapter 4 - Implementation

75

To keep the server load at less than 100%, the number of concurrent users
creating new customers should be less than 150.

Clients Average Response

Time in milliseconds
(ART)

Transactions per
second (TPS)

60 16 62,5
150 365 2,7
250 3043 0,3

Table 4-9: Average response time in the COM+ New Customer case.

Table 4-9 shows that by adding 90 clients to a total of 150, the average
response time increases radically by 2181%. Table 4-9 combined with Figure
4-4 indicates that once the server load reaches 100%, the response time
increases dramatically.

4.5.1.2 EJB results

Figure 4-5 is the EJB counterpart to Figure 4-4, hence it describes the server
load while running the EJB ”New Customer” business transaction. In this
figure, there is a longer stretch on the X axis, the time axis, since the EJB
solution takes a longer time to complete, especially in the case with 250
clients.

CPU Server Usage EJB
New Customer

0

20

40

60

80

100

1 33 65 97 129 161 193 225 257 289 321 353 385
seconds

%

250 clients
150 clients
60 clients

Figure 4-5: CPU usage in the EJB "New Customer" case

It appears that, when the server had the time to start up all the clients in the
cases of both 150 and 250 clients, it hits 100% load and stays there until
completion of all the clients. It takes the server about 133, 215 and 397
seconds to complete the three cases.

Chapter 4 - Implementation

76

Clients Average Response
Time in milliseconds
(ART)

Transactions per
second (TPS)

60 168 5,95
150 4088 0,25
250 8756 0,11

Table 4-10: Average response time in the EJB New Customer case.

Table 4-10 shows the EJB result for this business case, and is the counterpart
to Table 4-9. The leap from 60 to 150 clients caused a 2333% increase in the
average response time.

4.5.1.3 EJB vs. COM+ results

The previous graphs, which show EJB and COM+ CPU usage, have similar
patterns in the way that they both look alike for 60, 150 and 250 clients: the
higher the client count is, the more the graph stretches on both the X and the
Y axes.

The EJB solution uses more time to complete the transaction (see the X-axis
on the two CPU usage graphs), independently of the number of clients. It
also presents a higher server load and processes fewer transactions per
second.

Figure 4-6 shows that the difference in transactional throughput per second is
nearly ten times in favor of COM+ for 60 and 150 concurrent clients.
However, at 250 clients, when the CPU load is staying at 100% for both
technologies, the difference in transaction throughput per second is only
about 170%.

New Customer Business Transaction

0

10

20

30

40

50

60

70

60 150 250 # clients

TPS

COM+
EJB

Figure 4-6: Transactions pr. second comparison for the New Customer Business Transaction

Chapter 4 - Implementation

77

4.5.2 Populate Shopping Cart business transaction
The “Populate Shopping Cart” business transaction is implemented as a
stateful component with no access to persistent storage (see section 3.4.4.3).

4.5.2.1 COM+ results

CPU Server Usage COM+
Populate Shopping Cart

0

20

40

60

80

100

1 10 19 28 37 46 55 64 73 82 91 100 109 Seconds

%

250 clients
150 clients
60 clients

Figure 4-7: CPU usage in the COM+ "Populate Shopping Cart" case

As indicated in Figure 4-7, even with 250 clients pounding the server, the load
on the server never exceeds 70%. Another interesting fact is that all the
configurations use approximately the same amount of time, about 85 seconds,
to complete their tasks.

Clients Average Response

Time in milliseconds
(ART)

Transactions per
Second (TPS)

60 1,8 555,6
150 2,67 374,5
250 1,97 507,6

Table 4-11: Average response time in the COM+ Populate Shopping Cart case.

In the “Populate Shopping Cart” business transaction case, the increase in
ART from 60 to 150 clients is only 48%, and drops by 35% when the number
of clients is increased from 150 to 250.

Chapter 4 - Implementation

78

4.5.2.2 EJB results

CPU Server Usage EJB
Populate Shopping Cart

0

20

40

60

80

100

1 14 27 40 53 66 79 92 105 118 131 144 157
seconds

%

250 clients
150 clients
60 clients

Figure 4-8: CPU usage in the EJB "Populate Shopping Cart" case

As shown in Figure 4-8, the server load never exceeds 30% with the EJB
implementation. All three configurations of this business transaction case take
about 145 seconds to complete their tasks.

Clients Average Response

Time in milliseconds
(ART)

Transactions per
second (TPS)

60 2,23 448,4
150 3,19 313,5
250 3 333,3

Table 4-12: Average response time in the COM+ Populate Shopping Cart case.

For the EJB solution, the increase in ART from the 60-client configuration to
the 150-client configuration is as low as 30%. When the number of clients is
increased from 150 to 250, the ART drops by 6%.

4.5.2.3 EJB vs. COM+ results

While the server load using the EJB implementation is next to nothing, and
certainly much lower than the one of the COM+ implementation, the ART is
longer for the EJB implementation and the EJB implementation also uses a
longer time to complete its task. As indicated by Figure 4-9, the difference in
transactional throughput for 60 and 150 clients is about 20%. However, when
running with 250 clients, the difference increases to more than 50%.
Interestingly enough, the transactional throughput is higher when running 150
clients than it is when running 60 clients.

Chapter 4 - Implementation

79

Populate Shopping Cart

0

100

200

300

400

500

600

60 150 250 # clients

TPS

COM+
EJB

Figure 4-9: Transactions per second comparison for the Populate Shopping Cart Business

Transaction

4.5.3 New Order business transaction
The New Order business transaction is implemented, as described in section
3.4.4.3, as a stateful component with persistent storage.

4.5.3.1 COM+ results

CPU Server Usage COM+
New Order

0

20

40

60

80

100

1 15 29 43 57 71 85 99 113 127 141 155 169 Seconds

%

250 clients
150 clients
60 clients

Figure 4-10: CPU usage in the COM+ "New Order" case

Figure 4-10 shows that running this business transaction with 150 clients, the
CPU load of the server hits 100% repeatedly, while it stays below 60% with
60 clients. Running 250 concurrent clients puts the server load to 100% for
most of the time that it takes to complete the task. The time spent completing
the task increases from the 90-100 seconds compared with the time that it

Chapter 4 - Implementation

80

takes with 60 and 150 concurrent users, about 165 seconds with 250
concurrent users.

Clients Average Response

Time in milliseconds
(ART)

Transactions per
second (TPS)

60 18 55,6
150 386 2,6
250 1932 0,5

Table 4-13: Average response time in the COM+ New Order case.

As indicated in Table 4-13, the TPS drops from 55,6 when running 60
concurrent clients to 2,6 when running 150 concurrent clients. The ART
increases by 2044% from 60 to 150 clients, and increases by another 401%
when running 250 concurrent clients.

4.5.3.2 EJB results

CPU Server Usage EJB
New Order

0

20

40

60

80

100

1 22 43 64 85 106 127 148 169 190 211 232 253
seconds

%

250 clients
150 clients
60 clients

Figure 4-11: CPU usage in the EJB "New Order" case

As seen in Figure 4-11, while the CPU load runs 60 concurrent clients, it
remains well below the 50% mark. Adding 90 clients makes the server reach
100% for shorter periods of time. Adding another 100 clients, in order to
reach 250 concurrent clients, causes the server CPU load to be at 100% for
more than half the time that it takes to complete the task. In spite of this, the
150 client configuration used about 10 seconds less than the 60 client
configuration to complete its task.

Chapter 4 - Implementation

81

Clients Average Response

Time in milliseconds
(ART)

Transactions per
second (TPS)

60 33 30,3
150 568 1,8
250 4040 0,2

Table 4-14: Average response time in the EJB New Order case.

As for the ART, as indicated in Table 4-14, the increase from 60 to 150 clients
is 1621%, while the increase from 150 to 250 concurrent clients is 611%.
There is also a massive drop in TPS from both 60 to 150 clients and from 150
to 250 clients.

4.5.3.3 The EJB vs. COM+ comparison

The EJB solution does not load the server as much as the COM+ solution
does, but it uses substantially more time to complete the tasks for all 3 client
counts. COM+ has longer ART for all client counts as well. Figure 4-12
shows that when running 60 clients, COM+ processes almost twice as many
transactions per second.

New Order Business Transaction

0

10

20

30

40

50

60

60 150 250 # clients

TPS

COM+
EJB

Figure 4-12: Transactions per second comparison for the New Order Business Transaction

4.5.4 Let’s Buy Some Records business transaction

Chapter 4 - Implementation

82

The “Let’s Buy Some Records” business transaction was implemented with a
persistent component, as described in section 3.4.4.3.

4.5.4.1 COM+ results

CPU Server Usage COM+
Let's Buy Some Records

0

20

40

60

80

100

1 16 31 46 61 76 91 106 121 136 151 166 181 Seconds

%

250 clients
150 clients
60 clients

Figure 4-13: CPU usage in the COM+ "Let's Buy Some Records" case

The pattern noticed in the three previous business transactions (sections 4.5.1,
4.5.2 and 4.5.3) repeats itself for this last one as well. As shown in Figure 4-13,
the server load peaks at about 60% when running 60 concurrent clients, while
peaking at 100% several times when running 150 concurrent clients. When
running 250 concurrent clients, the server CPU load is at 100% more than
half of the time that it uses to complete the tasks.

Clients Average Response

Time in milliseconds
(ART)

Transactions per
second (TPS)

60 30 33,3
150 548 1,8
250 2284 0,4

Table 4-15: Average response time in the COM+ Let’s Buy Some Records case.

The ART increases by 1727% when the number of concurrent clients is
increased from 60 to 150, as calculated from the numbers presented in Table
4-15. The increase in the ART from 150 to 250 concurrent clients is 317%.

Chapter 4 - Implementation

83

4.5.4.2 EJB results

CPU Server Usage EJB
Let's Buy Some Records

0

20

40

60

80

100

1 38 75 112 149 186 223 260 297 334 371 408 445 482
seconds

%
250 clients
150 clients
60 clients

Figure 4-14: CPU usage in the EJB "Let's Buy Some Records" case

Figure 4-14 indicates that, while peaking at about 90% with 60 clients, the
CPU server load is at 100% most of the time with 150 clients. The time spent
to complete the tasks for 60, 150 and 250 clients is about 120, 300 and 470
seconds, which make it the slowest business transaction to complete its job.

Clients Average Response

Time in milliseconds
(ART)

Transactions per
second (TPS)

60 223 4,5
150 4806 0,2
250 15707 0,1

Table 4-16: Average response time in the EJB Let’s Buy Some Records case.

The average response time, as indicated in Table 4-16, is drastically longer
than the response time in the three other tests. The increase in response time
from 60 to 150 clients is about 1963%, and the increase from 150 to 250
clients is approximately 227%.

4.5.4.3 EJB vs. COM+ comparison

The EJB solution uses almost three times longer to complete the task when
running 250 concurrent users. The EJB solution has 100% CPU server load
for almost the entire test run, both for 150 and 250 concurrent clients.
COM+ uses substantially less CPU time for both of these two test runs.
When running 60 concurrent users, COM+ and EJB load the server equally

Chapter 4 - Implementation

84

much, about 25% in average. As Figure 4-15 shows, at 60 clients the number
of transactions processed per second is 6,5 times higher with COM+ than
with EJB.

Let's buy some records

0

5

10

15

20

25

30

35

60 150 250 # clients

TPS

COM+
EJB

Figure 4-15: Transactions pr. second comparison for the Let's Buy Some Records business

transaction

Chapter 5 - Discussion

85

5 C h a p t e r 5

DISCUSSION

In this chapter, the results and the facts presented in the previous chapters
will be used to perform a direct comparison between the two technologies, as
well as to carry out a discussion on the meaning of these results. The chapter
is organized in a manner similar to the one of the previous chapter, in respect
to headings and subsections.

5.1 Runtime qualities
A comparison of the runtime qualities in the two architectures is presented in
this section. Only the WebLogic implementation of EJB will be taken into
account.

5.1.1 Functionality
As described in section 3.3.1, functionality in this case represents the
capability of the system to assist the user in completing its tasks.

5.1.1.1 Event management

Event-driven systems are important in distributed technology
[COULOURIS01], because distributed systems are asynchronous by nature.
As the Internet grows and more distributed services become available, event-
driven systems become a matter of necessity.

Event management is supported in both technologies and complies with
Sun’s definition of a component model. Both technologies support
asynchronous messaging. Asynchronous messaging is not tested in the
implementation presented in the thesis, due to lack of vendor-implementation
on the EJB platform.

The COM+ platform has a built-in queue manager within the MSMQ. The
EJB platform fully relies on a third party product. However, both
technologies will, in most cases, have MQ client support (EJB in all). On
paper, the two technologies appear as similar.

5.1.1.2 Component packaging

The importance of component packaging presents significant differences
between the two technologies. On one hand, Microsoft is not required to
invest much into the technology since COM+ is only to be used on the
Windows platform. On the other hand, EJB, because of their portability,
ought to support a host of platforms. Sun has included the component

Chapter 5 - Discussion

86

packaging service in their component model definition, for the sole and
unique reason of the portability issue.

Both technologies have their respective component packaging solution.
Microsoft has DLLs and EJB uses .jar.

5.1.1.3 Instance and life cycle management

This is an important issue. Indeed, the way how an object instance life cycle is
managed reflects the application design.

While COM+ supports stateful components, although it does not have life
cycle management support for them, it recommends not storing state in the
middle tier. Microsoft and Sun have two completely different views on
persistence in the middle tier. EJB supports life cycle management for stateful
components (passivation and activation). This is mainly due to scalability
reasons. The instance and life cycle management are closely related to
scalability, which is briefly discussed in section 5.1.6.

Having the choice of where to put the state is an advantage for EJB.
Introducing the container-managed bean eases the developer’s task but
compromises performance. With the Entity Bean, EJB takes a more object-
oriented approach than COM+. The business logic is separated from the
component, often into a stateless bean between the client and the Entity
Bean. In COM+, the component manages the business logic and relies on
ADO, or a third party product, to retrieve the data.

Instance Pooling in EJB is analogous to Object Pooling with Just In Time
activation enabled. The Object Pooling in COM+ is supported only by
programming languages with a supported threading model, currently C and
C++. In the COM+ reference project, one critical component had to be
implemented in C++, as object pooling was desired in order to decrease the
response time. This contrasts with Microsoft’s language heterogeneity. Just In
Time activation still works as a scalable resource saving mechanism, as objects
have the shortest possible life span. However, the optimal solution would be
to have both JIT activation and object pooling, like in EJB.

5.1.1.4 Query language

The way the application server and the developer persist data is naturally
important. Both technologies allow the developer to choose how to persist
data. The most common choices are ADO for COM+, and JDBC for EJB,
but the study of these two technologies is beyond the scope of this thesis.

WebLogic has their own extensions to the EJB QL language to make it more
practical and user friendly. COM+ lacks the container-managed stateful
component and has no use for a language such as EJB QL.

Chapter 5 - Discussion

87

5.1.1.5 Naming or directory service

Naming is an issue that is easily overlooked, but is nonetheless fundamental in
distributed system design. Names are needed to look up components, and
assist the developer since knowledge of the component’s physical location is
no longer needed.

Both technologies have their own name and directory service, which are quite
analogous. They both support the most common ways of obtaining server
references: the compile time creation or the runtime downloading of proxy
stubs.

5.1.1.6 Synchronization services

Thread management is difficult and confronts the developer with arduous
problems. The handling of synchronization services by the application server
allows the developer to focus on the business logic.

EJB has defined rules to handle synchronization for each component type.
For session beans, only one client is allowed to enter an object instance
concurrently. Entity Beans have transactional support, as described in section
5.1.1.7, because the Entity Bean reflects a database table. COM+ does not
support this kind of component.

COM+ allows the developer to set synchronization at a component level.
Each component can have a different rule for synchronization, which is left
to the developer’s sole discretion.

The forced serialization in EJB renders it thread-safe, but not necessarily
efficient. The COM+ model leaves it up to the developer to choose the level
of security, although handling threads manually is a very difficult task.
Synchronization services are enabled by default in COM+.

5.1.1.7 Transaction handling

The handling of transactions is important in order to maintain consistent data.
An application server abstracts this issue by providing transparent transaction
services. Maintaining the integrity of the data of an enterprise system across
multiple applications, users and machines is an essential and arduous task.

The transactions can be controlled declaratively or programmatically in both
application servers. COM+ only supports the SERIALIZABLE isolation
setting, while EJB supports all settings. While SERIALIZABLE guarantees
concurrency in the database, it is curious that faster settings, such as
READ_COMMITTED, are unsupported by COM+.

READ_COMMITTED is used as the default setting in the Oracle database.
The EJB reference project also prefers this setting over SERIALIZABLE as

Chapter 5 - Discussion

88

it prevents dirty-read, although it allows non-repeatable and phantom reads
on the database table. The SERIALIZABLE setting waits until rows write-
locked by other transactions are unlocked, which prevents the client from
reading any "dirty" data. Because other transactions cannot update or delete
the rows in the range, the current transaction avoids any non-repeatable reads.
Because other transactions cannot insert any rows in the range, the current
transaction avoids any phantoms. The SERIALIZABLE isolation level is
stricter than necessary for most applications, and this represents a drawback
for COM+.

Both technologies support the same transactional attributes in a similar
manner.

COM+ supports nested transactions, while EJB does not. Nested
transactions are particularly useful in distributed systems because child
transactions may run concurrently in different servers. The lack of nested
transactions makes it harder to perform complex distributed transactions,
because the application design is less flexible.

5.1.2 Usability
For the developer, the usability is mostly involved with the graphical user
interface and the easy maintenance of the application server configuration
settings.

WebLogic uses a web interface, XML-based configuration files and XML-
descriptors. More and more functions are removed from the text files, and
relocated into GUI components as new versions of WebLogic are released.
The text-based configuration makes generating configuration files easy, while
the web interface is more intuitive and helps seeing the big picture. Still, most
configuration files are textually based and not reachable from the web
interface.

Microsoft is known for their intuitive user interfaces, and COM+ uses GUI
actively. All configuration settings, both on the application server and the
component level, can be viewed and updated graphically from the MMC. It is
also possible to generate configurations.

The COM+ solution gives an excellent overview of the application and of its
components in the MMC. All settings can be viewed nicely. WebLogic has
much to accomplish in order to match the MMC user interface, and the web
browser is currently not powerful enough to produce such an elegant
interface. Additionally, using a web solution makes the server reachable from
virtually anywhere. In COM+, the MMC is reachable from any remote client
running Windows 2000 or Windows XP. The extensive use of XML-text files
in the EJB solution can be an advantage. The developer may feel more
comfortable editing text files, as developers generally work with text.

Chapter 5 - Discussion

89

5.1.3 Performance
In the performance test conducted for the test implementation, COM+
comes out substantially better than EJB in all areas. As thoroughly discussed
in section 5.4, it has probably to do with Java performance and COM+’s
advantage of being closely tied to the operating system.

5.1.4 Security
Security is a key aspect in an application server and is carefully taken care of
by both technologies.

EJB and COM+ both have good security models, which support the most
common protocols and seem quite architecturally analogous.

5.1.5 Reliability and availability
Many current systems demand a 100% uptime and the modern application
server provides solutions to achieve this goal. Clustering is the main method
of increasing reliability and availability. Both technologies support clustering
of the application server onto two or more servers. The clustering solutions
look equally adequate on paper. Practical testing has not been conducted in
respect of the scope of this study.

In order to achieve availability, also at potentially high loads on the server,
support for load balancing is provided in the cluster.

As far as reliability goes, the uptime of the operating system is an important
factor. It is a common conception that the Windows operating system is less
reliable than other systems, but this reputation may have been earned in the
early Windows versions. The authors have had some poor experience with
the WebLogic server reliability, but good experience with BEA support. It is
important to recall that WebLogic is only one of the many EJB
implementations.

5.1.6 Scalability
Scalability is the sum of many aspects, which some depend on the application
server and others on the developer.

The most obvious way of achieving scalability is through clustering, which is
supported by both technologies. However, this alone does not ensure a
scalable solution. Scalability is mostly a design issue, as both application
servers have the necessary mechanisms to provide a scalable solution. For
stateless components, object pooling is a method to maintain a low latency
even with high server loads.

The load balancing service, provided by both servers, ensures that the load is
shared between the servers in a cluster, assuring that no single server receives

Chapter 5 - Discussion

90

all the requests. The load balancing service also makes the choice of the server
transparent to the developer, who sees one application server. The COM+’s
method of load balancing is to have, on each of the servers in the cluster, a
service that reports back to the load balancing server with its current server
load. The load balancing server then sends the request to the server with the
least load. WebLogic, on the other hand, can choose from three different
ways to load balance, but lacks what might be the most useful one – the one
offered by COM+.

The stateless component scales very well, as its life span is that of the call
from a client. The stateful component, on the other hand, is to be regarded as
a private resource to a single client and may live as long as the client does.
This poses a problem: the stateful component is monopolizing valuable
resources on the server, while it may be accessed rarely. The WebLogic EJB
implementation introduces some compensation to this problem by offering
passivation of idle stateful beans, and it also can replicate the state of such a
bean so that it works with a clustered load balanced solution. This enables
some, however little, scaling to the Stateful Session Bean.

State in the middle tier should only be implemented if the system load is
relatively stable. However, Stateful Session Beans have specific advantages:
they are very convenient for the developer and easy to implement. As long as
the application server has enough memory, and the load is stable, stateful
components represent a good solution. On the other hand, in order to have
potential for future growth, state should be moved out of the middle tier.

In the Rikstoto reference project, session specific state was stored both client
side and in the RDBMS. To keep the RDBMS updated, a cleaning job was
executed on the RDBMS every hour to delete inactive session objects. The
alternative, to store the state in an object instance, would mean that one single
client could hold that single instance alive as a personal resource until the
client has been inactive longer than the allowed timeout value (which was 15
minutes). In addition to this, COM+ does not have mechanisms for scaling
stateful components in a clustered environment and hence a solution with
state in the object instance would not scale. Even though the stateful solution
(with no RDBMS access) would perform substantially better on a single
server, the solution would not scale and was for that reason not chosen.

EJB has some mechanisms to make stateful components scale to a certain
degree, but the specification explicitly notes that the Stateless Session Bean
“may scale somewhat better than Stateful Session Beans”.

5.1.7 Upgradability
Both technologies support upgradability on a similar level. A computer, which
is part of a cluster solution, can be brought down for maintenance and
upgrade without bringing the system to a halt.

Chapter 5 - Discussion

91

COM+ has the advantage of allowing inheritable multiple interfaces to one
single component, so that the clients do not have to be updated instantly.
This can also be a trap, and the developer should aim at keeping the number
of interfaces for a component to a minimum. Upgrading a component can be
done at runtime in COM+ as long as the interface is binary compatible.

The fact that COM+ allows for runtime upgrading of components is an
advantage.

Preservation of stateful components, when taking down a server in a clustered
environment, is possible in WebLogic only. When designing COM+
applications, a stateless architecture will normally be utilized. WebLogic offers
an alternative stateful model.

5.2 Development qualities
This section covers how the two technologies handle the development
qualities.

5.2.1 Modifiability
Modifiability has already been already discussed in the sections about
upgradability (section 5.1.7) and component packaging (section 5.1.1.2).

5.2.2 Reusability
Interoperability with legacy systems and third-party components is important
in order to have current systems interoperate with earlier generation and
potentially huge systems. Rewriting earlier generation and fully functional
systems can be time consuming, very costly and should not be necessary.

There exist bridges that allow communication across many technologies. EJB
interoperate with CORBA through IIOP, and CORBA can talk to COM+
through a special CORBA-COM bridge; hence EJB can communicate with
COM+. Java has a native interface to C (and C++), which eases
communication with legacy systems. Both EJB and COM+ support MQ and
Web Services, which can be used to interoperate.

Both technologies have support for web clients through ASP/JSP, which
enables users to execute server code from any platform.

Regardless of the application server choice, communicating with other
technologies is possible.

5.2.3 Portability
Portability is divided into two categories: platform and vendor. One of the
EJB specifications primary concerns is: “An application may be written once,

Chapter 5 - Discussion

92

and then deployed on any server platform that supports the Enterprise
JavaBeans specification.”

Since Microsoft supports only the Windows platform, and they are the only
maker of COM+, the vendor and platform are provided.

Microsoft has the advantage of choosing what they believe should be the
next step for the application server and simply implement it. They can see
what ideas the consortium takes into consideration for the next EJB
specification, but the consortium has no access to Microsoft’s ideas
concerning their next release, which gives Microsoft an edge. Some people
believe that Microsoft has too much power on what the next step about
component models should be, and disapprove of their lack of openness.
The authors feel that further discussion has no place in a formal study such
as this thesis.

As for EJB being portable, experience from the EJB reference project
proves that developers are tempted to use the vendor-specific extensions to
the EJB specification. In WebLogic, some configuration files are vendor-
specific. As a result, it ties to one specific vendor, hence loosing the vendor
independence. As regards WebLogic, new versions are first released for the
most popular platforms, although these releases include some platform
specific differences. A company often wants to contract with the vendor in
order to have long term support for their product.

Changing platform and vendor every now and then seems highly unrealistic,
and it may come at a high cost both in terms of time and money.

5.2.4 Buildability
The programming languages and the development tools available form the
buildability properties. Buildability is important for the developer as it defines
how comfortable it is to work with the application server.

Java is the most elegant programming language of the ones available to the
application servers in question; it incorporates garbage collection and is a fully
object-oriented language. Visual Basic has garbage collection, but is not fully
object oriented. C++ is fully object oriented but the developer must handle
the garbage collection manually. The two main advantages of C++ are its
performance and the freedom it gives the developer. Java runs inside a virtual
machine, therefore the language is not platform dependent. Performance is
the price Java has to pay for its features. However, if a developer does not like
Java, then staying away from EJB is a wise advice.

Java is the authors’ preferred language among the available existing, but the
performance is a serious drawback. A competitor to Java is the newly released
C#, Microsoft’s Java clone for COM+, which promises all the properties of

Chapter 5 - Discussion

93

Java, combined with an improved performance thanks to its ties to the
operating system. Also, Visual Basic.NET has become more object oriented,
and is now a more modern and attractive architecture.

The primary COM+ development environment is Visual Studio, a tool that is
included when Visual Basic or Visual C++ is purchased. Microsoft Visual
Studio has been around for many years. Being very mature and having a rich
set of features, it has grown extremely popular. So popular, in fact, that
several companies have made clones of it for the Java platform. Other tools
for developing COM+ components exist, but are not frequently used.

Java relies on third-party tools for their development environment: editors,
Java virtual machines and debuggers. Some of these are freeware. Traditional
UNIX development environment, such as ‘make’, are still in use, even on the
Windows platform.

The rich functionality and the look-and-feel of Microsoft Visual Studio make
it an excellent tool. The clones that exist for Java present the disadvantage of
having Java poor performance.

5.2.5 Testability
The ability to demonstrate defects in the deployed application is significant
for fault correction. To be able to debug and test applications in an
application server environment is important to ensure the quality of the
component.

The quality of the development tools is important for debugging and testing
applications. The logging of running components can dynamically be turned
on and off at runtime in both technologies, and there exist tools that take care
of debugging and testing in a highly satisfactory manner.

5.3 External qualities
This section covers the qualities that did not fit into the Catalysis approach,
but that the authors found relevant to include in the study.

5.3.1 Time to market
This metric measure how long it takes for the application server product to
reach the market.

While EJB has to wait for the specification to be finalized before
implementations can be made available, COM+ is already implemented (as
discussed in section 5.2.3).

Microsoft has the application server as part of their OS; hence the application
server is not released until the OS is released.

Chapter 5 - Discussion

94

Which approach takes the least time? It is hard to say, but Microsoft, at early
stages, gives developers free beta-versions of their operating system, including
their application server. Such practice gives them an undeniable edge.

5.3.2 Cost of system
When choosing an application server technology, the cost, as much as the
technology itself must be taken into consideration. It is an undisputed fact
that Intel-based Windows servers are cheaper than UNIX servers. However,
both technologies run on the Windows platform. Windows 2000 Server
includes the COM+ application server, therefore when running EJB on a
Windows platform, COM+ has been purchased as well, whether it is a
personal preference or not.

The cost of an EJB server license from one of the major vendors is at best
steep: it is about twice as expensive as the COM+ solution. The TPM-C
benchmark includes price/performance metrics, and Microsoft emerges
ahead in this regard. However, one could imagine running a freeware EJB
implementation on Linux using Intel hardware. This would be the cheapest of
all solutions, but it comes with the disadvantage of none, or expensive,
support which has made companies reluctant to adopt these solutions as of
now.

The experience from the reference projects clearly indicates that in order to
scale the system further, it is necessary to add more hardware. This is a lot
cheaper with the Microsoft reference project than with the EJB one.

5.3.3 Maturity
A system that has been around for some time is more likely to be more stable
and to have fewer bugs than a newer system.

EJB is regarded as a newer technology than the COM technology, and this
might be a reason why many skeptics do not dare using it yet, even though
several major and successful projects are developed using EJB.

5.3.4 Simplicity
The simplicity metric measures the general easiness of the application server
use. This has to do with the amount of training required in order to make a
developer efficient, as well as the daily efficiency, when using the application
server.

The development environment simplicity is discussed in section 5.2.4.
Visual Studio includes all necessary tools, while third-party products have to
be obtained for EJB. Finding the right tools for EJB requires time but may be
necessary in order to have specific needs met, whereas Visual Studio is more a
general purpose tool.

Chapter 5 - Discussion

95

COM+ presents a better design for configuration and fewer knobs to turn.

EJB has automated generation of code of an entire bean.

The reference projects gave clear indications as to the learning curve and the
simplicity. In the EJB project, the developers had difficulties comprehending
the full architecture and the possibilities that EJB had to offer. The COM+
project proceeded a lot more smoothly. One of the reasons is that few of the
developers had prior knowledge of Java, and the project included a lot of
people without prior work experience. In addition to this, finding the right
development tools proved to be a time-consuming activity. The COM+
project, the first COM+ project for all participants, consisted of fewer and
more experienced people. However, the simplicity of the tools and the use of
Visual Basic in the COM+ project were certainly influential.

The authors believe that COM+ is easier owing to fewer development
options

5.3.5 Future Plans
The future plans are important to take into account when choosing an
application server platform since the technology is likely to remain for a
significant period of time.

Microsoft has recently released .NET, but has not released any specific
information about their future plans. .NET does not bring in a lot of new
services to the COM+ application server, but includes one of Microsoft’s
primary focuses, namely Web Services.

The most important EJB future plans include the extension of the QL
language, the introduction of other types of event management and other
features already seen implemented by major vendors, such as WebLogic’s
implementation of read-only beans and web services.

The EJB specification has in the past held surprises close to final releases, e.g.
the leap from the final draft to the final version radically changed the way
how the local and the remote interfaces are used. What the future holds for
COM+, only Microsoft knows, but surprises from them as well are likely to
be expected. The authors assume that Web Services will make the world of
components more uniform, as it allows communication of all languages on all
platforms.

5.4 Performance
Clients often require short response times in order to take full advantage of a
system. Additionally, users may end up not using the system, because the
system is too slow. With the hardware and computational power that exist

Chapter 5 - Discussion

96

today, an end-user expects short response times. A system has to be designed
to perform for potential future high loads, as discussed in the section about
scalability (see section 5.1.6).

First, in this section, a discussion of the stateless vs. stateful implementation is
carried out. Secondly, the results from the test case are analyzed in respect to
programmatically vs. declaratively persistence. A discussion on where to
persist data is included. The two technologies respective performance and
response times are directly compared in the following subsection.

5.4.1 Stateless vs. stateful implementation
Both a stateless and a stateful component, with all business logic and database
code included, were implemented.

In the stateless version, the client makes a create() function-call to the server
each time that the component is invoked. Additionally, state must be stored
away from the middle tier, as the client is independent of the stateless object
instance.

Average Response Time
New Customer Business Transaction

4088

8756

365

3043

168
160

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

60 150 250 # clients

ms.

EJB
COM+

Figure 5-1: Average Response Time comparison in the New Customer business transaction

Figure 5-1 shows the average response time for both application servers
running the New Customer business transaction, which is the stateless
component.

For stateful components, the client has a reference to the same object
instance and considers the component to be a private resource. State is, as the
name implies, stored in the server component instance. Figure 5-2 indicates
the COM+ and EJB average response time for the stateful component: the
New Order business transaction.

Chapter 5 - Discussion

97

Average Response Time
New Order Business Transaction

4040

1932

568

33 386
180

500
1000
1500
2000
2500
3000
3500
4000
4500

60 150 250 # clients

ms.

EJB
COM+

Figure 5-2: Average Response Time comparison in the New Order business transaction

5.4.1.1 COM+

In COM+, the stateless solution has a lower response time for both 60 and
150 clients, but is 40% higher when running 250 clients. Looking at the CPU
graphs of the two implementations, Figure 4-4 and Figure 4-10, shows two
almost identical patterns, so this would not explain these results. However,
the CPU graphs indicate that when running 250 clients, the CPU load is
100% most of the time, and this explains why the stateful solution is faster at
this test run. The CPU being loaded means that obtaining object instances
demands unavailable resources, therefore the solution performs slower.

Stateful vs. Stateless components

0
10
20
30
40
50
60
70

60 150 250 # clients

TPS

COM+ Stateless
EJB Stateless
COM+ Stateful
EJB Stateful

Figure 5-3: Stateful vs. Stateless components comparison

Chapter 5 - Discussion

98

As Figure 5-3 indicates, the difference between the stateful and the stateless
implementation in COM+ is a minor one when it comes to transactional
throughput. Although it is impossible to notice it from the figure, Table 4-9
and Table 4-13 show that the transaction throughput, when running 250
clients, is about 66% higher for the stateful implementation. One of the
reasons for this can be found in Figure 5-4: As the JIT activation is enabled
for the stateless component, the components are not instantiated until
needed, and the number of threads gradually increases until the CPU load
reaches 100%.

Figure 5-4: Comparison of CPU usage and thread usage for stateless (left graph) and stateful (right

graph) components

The COM+ threading model evidently takes into consideration how much
CPU time is available, and when the CPU load is 100%, there is no longer a
need to create new threads. The objects are then put on hold in an execution
queue, and wait for a thread to become available. Notice that for the stateless
component, as soon as the CPU drops from 100% and after about 180
seconds, the number of threads almost triples. As for the stateful component,
because clients hold the reference to the component instance until it
terminates, the variation of threads is a lot less. The instances are created at
the beginning of every client’s execution and the number of threads decreases
as the clients terminate.

5.4.1.2 EJB

Comparing the results indicates that the stateful solution has a shorter
response time for all test runs in EJB. It is partly explained by the fact that the
stateful component is already instantiated, since the client does not have to
request a new instance on the server. Looking at Figure 5-5, the difference in
transactional throughput, measured in percentage, between the stateful
implementation and the stateless implementation is approximately 50%
higher at 150 clients than when running 60 clients. Looking at the CPU usage
in the two different test runs, Figure 4-5 and Figure 4-11, gives a reasonable
explanation for this. The CPU is running at 100% for the stateless
implementation when running 150 clients, but is more moderately loaded in
the stateful implementation. The difference in CPU load and the fact that the

CPU Usage/# Threads COM+ 250
New Customer Business Transaction

0

20

40

60

80

100

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256

Seconds

CPU %

Threads
CPU Usage/# Threads COM+250

New Order Business Transaction

0

20

40

60

80

100

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181

Seconds

CPU%

#Threads

Chapter 5 - Discussion

99

stateless solution has to obtain object instances for every invocation explains
these results.

Because the EJB application server does not have as strong ties to the
operating system as COM+, the way how it utilizes threads does not show on
the measurements. Therefore, it is unknown whether the threading model of
EJB has anything to do with the results or not.

An interesting aspect of Figure 5-3 is the difference between stateful and
stateless components in EJB is as high as 400% when it comes to
transactional throughput. In the COM+ solution, the difference is only 10%.

Stateful vs. Statless components
% variation between stateful and stateless

using TPS

-100

0

100

200

300

400

500

600

700

60 150 250 # clients

%
 T

PS
 v

ar
ia

tio
n

COM+
EJB

Figure 5-5: % TPS variation between stateful and stateless components in EJB and COM+

Many designers choose the stateless solution over the stateful solution, due to
scalability issues. EJB has introduced mechanisms to scale stateful
components. If the server CPU load is at 100%, the stateful component
clearly performs better than the stateless one.

5.4.2 Persistence in the middle tier
The ability to have container-managed persistence in the middle tier is
probably the single biggest difference between the two technologies. EJB
supports it in their architecture, a field-to-field mapping from the component
to the database. In the test implementation, this feature is emulated in COM+
by manually doing the required database operations.

Only minor differences can be observed over the stateless implementation in
the New Customer business transaction, with the exception of the run with
250 clients. The results of the New Customer business transaction reflect

Chapter 5 - Discussion

100

longer ART and higher CPU load than in the other business transactions. The
“persistent” COM+ component utilizes a stateless component as a proxy
between the client and itself. The results are better for the Let’s Buy Some
Records business transaction when running 250 clients; in the collected data
no explanation for this was found.

Average Response Time
Let's Buy Some Records Business Transaction

4806

15707

548
2284223 300

2000
4000
6000
8000

10000
12000
14000
16000
18000

60 150 250 # clients

ms.

EJB
COM+

Figure 5-6: Average Response Time comparison for the "Let's Buy Some Records" business

transaction

Comparing the ART results between EJB (see Figure 5-6) with the stateless
component (see Figure 5-1) shows that the ART is longer and the CPU load
higher. The increase in both the ART and the CPU load is about 50% in
average on all test runs and must be considered as a substantial increase.
Microsoft claims that this kind of component does not scale, while BEA and
the rest of the EJB community claims it does. It has not been tested in this
implementation, owing to the lack of clustering. The performance would be
improved if the developer implemented the database logic manually, however
this would make maintenance harder.

Many designers, including the designers of the EJB reference project, prefer
the container-managed persistence model as it eases the developer’s job and is
a better object-oriented design. This comes at the cost of performance.
However, additional hardware compensates the performance loss compared
to having to code it manually and, therefore, can represent a reasonable
solution.

5.4.3 COM+ vs. EJB performance
For the stateless component (New Customer business transaction), the
COM+ server average response time is about ten times faster than EJB on
low load (see Figure 5-1). The CPU load is somewhat higher for EJB, and, as

Chapter 5 - Discussion

101

a combined result of these metrics, it also takes more time to complete the
task.

The CPU usage for the stateful component is far lower for EJB than for
COM+. However, the average response time is shorter and the time that it
takes to complete the task is shorter for COM+ than for EJB. This is mainly
the result of Java performance and the overhead of the virtual machine.

WebLogic is implemented in Java, and therefore runs inside a JVM. This
indicates that there are more “layers” involved in this technology than there
are for COM+ with its close ties to the Windows OS. Generally, Java is not a
strong performer.

Figure 5-7 shows that the ART is reduced from 150 to 250 clients. This may
be caused by instance lookup algorithms, e.g. using hash tables with binary
trees where a balanced tree is the most efficient. It would be pure speculation
to assert that the instance lookup algorithms are the cause of the decrease in
ART from 150 to 250 clients.

Average Response Time
Populate Shopping Cart Business Transaction

2,23

3,19
3

1,8

2,67

1,97

0

0,5

1

1,5

2

2,5

3

3,5

60 150 250 # clients

ms.

EJB
COM+

Figure 5-7: Average Response Time comparison Populate Shopping Cart business transaction.

The comparison between the container-managed persistent bean in EJB and
the emulated “persistent” component in COM+ is questionable. Indeed, as
the EJB container manages the persistence, the overhead naturally increases.
The comparison can describe the performance advantages of handling
persistence manually. Figure 5-6 indicates a considerable difference in the
average response time of the two technologies; again COM+ emerges ahead.

Comparing the results of the Populate Shopping Cart business transaction,
which is the only business transaction that does not use database storage, with

Chapter 5 - Discussion

102

the other three business transactions, it is clear that the performance of EJB
solutions is more heavily affected than the one of COM+ when access to
database is introduced. The reason for this difference is unclear, but this could
be related to the choice of a Microsoft RDBMS, the database drivers and the
extra overhead that EJB has when performing tasks. This has not been closely
examined owing to lack of data and resources.

All findings in the test implementation point to the same observation: COM+
performs better than EJB. It is important to remember that both servers were
run using primarily the default configuration, and only tuned so that they
would match each other in particular cases. The choice of OS and database
also affects the results. The fact that COM+ is closely tied to the OS and that
Java is a slow performing language would place COM+ ahead as far as the
performance is concerned, regardless of tuning. The TPC-C benchmark
results discussed in section 4.4.2 support these findings.

Chapter 6 - Evaluation

103

6 C h a p t e r 6

EVALUATION

In this chapter, the author’s estimate their work and look at what could have
been done differently and what they believe was done correctly. A
comparison with results of existing work is also conducted to evaluate how
the findings presented in this thesis may differ from those of others. Finally, a
look at the common conceptions regarding the two technologies is given.

6.1 Right approach?
The Catalysis approach that has been used throughout this thesis proved to
be a valuable and lucid approach. It helped keep the different qualities of the
technologies apart, and provided a natural mapping of the traditional
functional and non-functional requirements.

The test implementation supplied important results so that a better
comparison of the performance could be done. Additionally, it is easier to
understand a technology that one has implemented in a project, than a
technology that one has just read about. To have a reference project for each
technology proved to be valuable in terms of real life experience and
examples of what can go wrong.

During the research work for this thesis, it became manifest that clustering is
important in order to obtain good results concerning scalability. Clustering
should have been included to make the results of the thesis more complete.
The available hardware did not permit clustering to be part of this study, and
including clustering would have made this thesis too extensive.

In order to increase the reliability of the results of the performance
comparison, at least some tuning of the servers could have been done. The
tuning of application servers is actually a sophisticated task that some people
perform for a living, which illustrates how complicated it can be.

The approach was satisfactory. However some delimited parts (see section
1.3) could have been included, although they would have made this thesis too
extensive. Especially clustering and load balancing would give important
results for scalability issues.

6.2 Comparison with existing work
Articles that compare versions of these two technologies head-to-head are
available and have been used as a resource in the planning of this thesis.
These articles are all based on specifications and white papers produced by
SUN and Microsoft, and the persons who wrote these articles seemed biased.

Chapter 6 - Evaluation

104

This study, unlike the mentioned articles, bases its performance comparison
on an actual implementation conducted in a similar environment. Even
though the application servers were not tuned, the results reflect the reality.

The results in these articles, however different they may look, are actually
quite similar to the ones presented in this thesis. The importance of the
differences found between EJB and COM+ is open for discussion, and in this
lays the main difference between the articles and this study.

That the results from the articles and this thesis are so similar is not all that
surprising since they are facts for the most part.

6.3 Common conceptions
Whether or not the hypotheses are verified is summarized in this subsection.

The common conceptions stated in section 2.7 are:

H1: COM+ and EJB should have identical (linear) performance curves,
although EJB should be slower because of the Java overhead. COM+ has
stronger ties to the operating system; hence it should offer shorter
response times. In addition Java is considered slow.

H2: EJB presents more opportunities for the developer, but is more
arduous to learn properly.

H3: COM+ is less reliable than EJB, because of the history of instability
of the Windows operating system.

The first part of the first hypothesis is clearly falsified. The performance
curves show that EJB performs gradually worse compared to COM+ as the
number of clients increases. One of the reasons is that EJB is more CPU
intense than COM+. The second part of the first hypothesis is verified,
although if COM+’s strong ties to the operating system is the cause for it
cannot be stated. COM+ had shorter ART for all tests conducted.

The second hypothesis concerns the learning curve of EJB and that EJB has
more features than COM+. As EJB seems more difficult to learn, and it
certainly has more features than COM+, this hypothesis is verified.

The third and final hypothesis concerns the reliability of COM+, and it claims
that COM+ is less stable than EJB. According to the authors’ experience, the
reality is actually quite opposite, and this hypothesis is falsified.

Chapter 7 - Conclusion

105

7 C h a p t e r 7

CONCLUSION

Presented in the thesis are findings of an attempt to objectively evaluate the
COM+ and EJB component models.

Both models present all the necessary properties and qualities required of a
component model, and hence this is not an issue in choosing technology.
They are both mature enough, but the authors do not like the fact that
WebLogic has a tendency to crash, even with final releases. However, this is
mainly a WebLogic issue and not an EJB issue.

In the performance test, COM+ performs drastically better than EJB on all
types of tests. This might be due to a non-tuned EJB server, but it is hard to
explain such huge gaps.

EJB achieves platform and vendor independence, meaning that one will
probably remain tied to one platform and one vendor in the end owing to
vendor specific extensions.

Interoperability is covered in both technologies. However, EJB has strong ties
to CORBA which eases the communication with CORBA components. As
both technologies now support Web Services, interoperability should become
a less cumbersome issue in the years to come.

In the case of EJB, a strong inclination for Java is preferred, if not necessary.
COM+ gives the choice between several programming languages, and offers
transparency while using them. However, in order to utilize the object pooling
mechanism for COM+, Visual Basic can not be used because of its simple
threading model.

The transactional support in EJB has the advantage of supporting all isolation
levels, while COM+ only supports the strictest isolation which compromises
performance. However, COM+ supports nested transactions, EJB does not.

As for development tools, Microsoft provides Visual Studio, which therefore
will be most likely what the developer will eventually use. Finding a tool for
EJB is more time consuming.

The external qualities of the application servers are important:: time to
market, cost of system, maturity, simplicity and future plans. External qualities
are Microsoft’s prime domain. They particularly excel in cost of system and in
simplicity. EJB offers more in terms of properties, by providing choice of

Chapter 7 - Conclusion

106

persistence in the middle tier and life cycle management of stateful
components.

The bottom line is to know what qualities are considered important, since the
application servers are quite analogous, more analogous than both
communities like to admit!

Chapter 8 - Future work

107

8 C h a p t e r 8

FUTURE WORK

While planning this thesis, one of the challenges was delimitation. Originally,
the thesis was meant to be two separate theses, about performance and
properties respectively. Because of the complexity and extent of the
application server technology, the delimitation was made in order to keep the
amount of work at a reasonable level. Event-driven communication, security
and scalability are all services of component models that could serve as a basis
for further research.

As the research advanced, the authors found delimitated aspects that should
have been included (clustering) and aspects that could be further investigated.
The following subsections describe the most important areas in which to
expand the subject of this thesis.

8.1 .NET vs. J2EE, on a more extensive and higher level
This study compares the component models of the two major distributed
technologies. Several recent papers are available in comparing the .NET and
J2EE platforms, however these are again biased. By comparing on a more
superior level, a wider understanding of the advantages and disadvantages is
undeniably gained.

8.2 Portability
EJB claims to be portable across platforms and vendors. Porting a WebLogic
implementation to Websphere, JBOSS or another application server that
follows the EJB 2.0 specification would test the actual portability of EJB.

8.3 Performance - unbiased test with tuning
The performance test was conducted with default configurations on one set
of hardware. Only one EJB implementation was considered, and SQL Server
became the only RDBMS. Further research and testing could be done with
respect to tuning and multiple choices of software and/or hardware. Running
the EJB on the same hardware, utilizing another OS, e.g. Linux, would be
interesting to determine whether the choice of the platform matters.

Tuning the application servers could drastically modify results presented in
this thesis. Furthermore, it would be interesting to determine whether the
choice of the RDBMS or EJB implementation matters. If the results found
after optimal tuning remained analogous to the results in this thesis (far better
COM+ performance), detailed logging and analyzing on several levels could
be carried on to determine the cause of a gap in performance.

Chapter 8 - Future work

108

8.4 CORBA 3
Similar study can be conducted including the CORBA 3 CCM as an actor in
the comparison. The first implementations are now available; however, the
industry has not yet shown great interest for this technology.

CORBA could also be compared directly to .NET and J2EE, as in section
8.1.

8.5 Scalability
Further research can be conducted on clustering and load balancing. The
consequences of the design and possible development disadvantages when
using a clustered solution could be investigated.

Further research could be done on the different load-balancing algorithms to
discern which one works better under different circumstances. Additionally, a
measurement on how well the different component types scaled in a clustered
environment could be done.

8.6 Life cycle cost of project
What technology gives the least expensive total project cost? Estimation of
the life cycle cost of a project; including hardware, platform/project software,
and development.

8.7 Inter-platform communication
Communicating cross platform with Web Services, bridges between and
message queuing would give an interesting approach to research on
interoperability.

Bibliography

109

BIBLIOGRAPHY

[ASU99]
Bharat Gogia , Max P. Grasso, Hoa Nguyen
Application Servers Unmasked, Oct 99 issue
http://www.adtmag.com/Pub/oct99/fe991001a.htm
ADTMag.com

[BEA 01a]
BEA WebLogic 6.1 Documentation, Tuning WebLogic Server.
http://e-docs.sbea.com/wls/docs61/perrform/WLSTuning.html
BEA, 2001.

[BEA 01b]
BEA WebLogic 6.1 Documentation
http://e-docs.bea.com/wls/docs61
BEA, 2001

[BEP99]
K. Brown, P. Eskelin, N. Pryce
A Mini-Pattern Language for Distributed Component Design.
PLOP 1999 Conference. Pattern Languages of Programs, August 1999.

[BLAIR97]
Gordon S. Blair, Jean-Bernard Stefani
Open Distributed Processing and Multimedia.
Addison-Wesley, 1997

[BRJ99a]
Booch, Grady, Rumbaugh, James and Jacobson, Ivar.
The unified modeling language user guide.
Addisson-Wesley, 1999

[BRJ99b]
Grady Booch, James Rumbaugh, Ivar Jacobson.
The unified software development process.
Addisson-Wesley, 1999

[CATTELL00]
Interview with Rick Cattell
JavaLive, 2000

Chapter 8 - Bibliography

110

[COM95]
The Component Object Model Specification
Microsoft Corporation, 1995

[CORBA3]
The CORBA 3 specification.
http://www.omg.net
OMG, 2001

[CORBA97]
“The Common Object Request Broker: Architecture and Specification,
Version 2.1”
OMG, 1997

[COULOURIS01]
G. Coulouris, J. Dollimore, T. Kindberg
Distributed Systems, Concepts and Design.
Addison-Wesley, 2001

[DCOM98]
N. Brown, C. Kindel
Distributed Component Object Model Protocol.
Microsoft Corporation, 1998

[DMENTOR]
DevelopMentor’s home page
http://www.developmentor.com/

[DW99]
Desmond Francis D’Souza, Alan Cameron Wills
Objects, Components, and Frameworks with UML. The catalysis approach.
Addison-Wesley, 1999

[EJB2.0]
Enterprise Java Beans 2.0 specification
http://java.sun.com/products/ejb/docs.hhtml
Sun Microsystems, 2001

[FOW01]
M. Fowler
Information System Architecture.
http://martinfowler.com/isa/index.html
Martin Fowler, 2001

Chapter 8 - Bibliography

111

[GARTNER]
The Gartner Group home page
http://www.gartnergroup.com

[Genera AS]
A company in the Software Innovation group.
http://www.genera.no

[GHJV95]
E. Gamma, R. Helm, R. Johnson, H. Vlissides
Design Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995

[GWE01]
Michael Girdley, Rob Woollen, Sandra L. Emerson
J2EE applications and BEA WebLogic Server.
Prentice Hall, 2001.

[GZ00]
Paco Gómez, Peter Zadrozny
Java 2 Enterprise Edition with BEA WebLogic Server.
Wrox press ltd, 2000

[J2EE]
Java 2 Enterprise Edition specification version 1.3
http://java.sun.com/j2ee/download.html#platformspec
Sun Microsystems, 2000

[JBOSS]
World class J2EE technology in open source
http://www.jboss.org

[JINI]
JINI Network Technology.
http://www.sun.com/jini/
Sun Microsystems

[JMS]
Java Messaging Services.
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
Sun Microsystems, 2000

[KARMIRA]
Bugseeker for Java 2
http://www.karmira.com

Chapter 8 - Bibliography

112

[LOADRUNNER]
Load testing tool
http://www-svca.mercuryinteractive.com/products/loadrunner/
Mercury Interactive

[MICROSOFT]
http://www.microsoft.com

[MICROSOFT98]
Comparing Microsoft Transaction Server to Enterprise Java Beans.
http://www.microsoft.com/com/wpaper/mts-ejb.asp
Microsoft, 1998

[MIRABILIS]
ICQ Messenger Service home page
http://web.icq.com/
Mirabilis

[MS .NET]
Homepage for Microsoft .NET
http://www.microsoft.com/net/default.asp
Microsoft

[MSDN CIS]
MSDN
COM Internet Services
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndcom/html/cis.asp
Microsoft, 1999

[MSDN CRM]
COM+ Documentation Team
Compensating Resource Manager
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgcrmcpt_9yr6.asp
Microsoft, 2001

[NSB]
Norges Statsbaner, the Norwegian railway company
http://www.nsb.no

[NTP]
Network Time Protocol
http://www.eecis.udel.edu/~ntp/

[OMG]
Object Management Group
http://www.omg.net

Chapter 8 - Bibliography

113

[OMG99]
EJB, CORBA and Application Servers Press Kit
http://cgi.omg.org/news/pr99.html
OMG, 1999

[PLATT00]
David S. Platt
http://msdn.microsoft.com/library/en-us/dnmag00/html/dnmag00/html/ComTips.asp?frame=true
Rolling Thunder Computing Inc., 2000

[PLATT99]
David S. Platt
Understanding COM+.
Microsoft Press, 1999

[RIKSTOTO]
Portal for horse-betting on the Internet.
http://www.rikstoto.no

[RMI 97]
Java Remote Method Invocation
http://java.sun.com/products/jdk/rmi/index.html
Sun Microsystems, 1997

[IBM]
Eliezer Dekel
http://www.haifa.il.ibm.com/Technion/beansp6.htm
IBM, 1997

[RO99]
Ed Roman, Rickard Oberg
The Technical Benefits of EJB and J2EE Technologies over COM+ and
Windows DNA.
The Middleware Company, 1999

[ROMAN99]
Ed Roman
Mastering Enterprise Java Beans and the Java 2 Platform Enterprise Edition.
Wiley, 1999

[RS99]
Ed Roman, Roger Sessions.
EJB vs. COM+. Debate at Austin Foundation for Object Oriented
Technology
http://www.objectwatch.com/eddebate.htm
AFOOT, 1999

Chapter 8 - Bibliography

114

[SERVERSIDE]
J2EE community
http://www.theserverside.com

[SESSIONS00]
Roger Sessions
COM+ and the Battle for the Middle Tier.
Wiley, 2000

[SESSIONS01]
Roger Sessions
Java 2 Enterprise Edition (J2EE) versus The .NET Platform Two Visions for
eBusiness
http://www.objectwatch.com
Objectwatch, 2001

[SIEGEL]
Jon Siegel
CORBA 3 Fundamentals and Programming, Second Ed.
Wiley, 2000

[SITRAKA]
JProbe Performance Tuning Solutions
http://www.sitraka.com/software/jprobe/
Sitraka

[SOAP 99]
Simple Object Access Protocol (SOAP) 1.1 specification
http://www.w3.org/TR/SOAP/
Microsoft, et. al.

[SQL92]
SQL specification draft
http://www-2.cs.cmu.edu/afs/andrew.cmu.edu/usr/shadow/www/sql/sql1992.txt
Digital Equipment Corporation, 1992

[SUN]
Sun Microsystems, the creators of Java.
http://www.sun.com
http://java.sun.com
Sun Microsystems

[THOMAS98]
Anne Thomas
Comparing MTS and EJB.
Distributed Computing, 1998

Chapter 8 - Bibliography

115

[TPC]
Transaction Processing Performance Council.
http://www.tpc.org

[TUXEDO]
BEA Tuxedo product overview
http://www.it.iitb.ernet.in/~suresh/tuxedo/prodov/oview.htm
BEA

[WEBGAIN]
WebGain | Accelerating e-Business
http://www.webgain.com

[WEBLOGIC]
BEA WebLogic application server
http://www.weblogic.com
BEA

[WHATIS]
Definitions for thousands of the most current IT-related words.
http://www.whatis.com

[XML 98]
eXtensible Markup Language (XML)
http://www.w3.org/XML/

Appendix 1 - Hardware

116

9 A p p e n d i x 1

HARDWARE

This appendix presents the hardware used for conducting the test on the
performance. All hardware was connected using an Intel 10/100 Mbit switch,
and CAT-5 TP cables.

The hardware used is as follows:

Server:
CPU: 1,4 GHz AMD Thunderbird
RAM: 512 Mb DDR Ram
HD: 60 Gb IBM 7200 rpm
OS: Windows 2000 Server
Net: 3Com 3c905tx 10/100
Database SQLServer 2000 with no alterations made

Test machine 1:
CPU: 500 MHz Intel Pentium III
RAM: 256 Mb SDRam
HD: 20 Gb IBM 4800 rpm
OS: Windows 2000 Professional
Net: 3Com 3c905tx 10/100

Test machine 2:
CPU: 750 MHz Intel Pentium III
RAM: 256 Mb SDRam
HD: 20 Gb IBM 4800 rpm
OS: Windows 2000 Server
Net: 3Com 3c905tx 10/100

Test machine 3:
CPU: 500 MHz Intel Pentium III
RAM: 512 Mb SDRam
HD: 40 Gb IBM 7200 rpm
OS: Windows 2000 Professional
Net: 3com 3c905tx 10/100

Appendix 2 - Sample logfile

117

1 0 A p p e n d i x 2

SAMPLE LOGFILE

<xxx.xxx.xxx.xxx><010> --- --

<xxx.xxx.xxx.xxx><010> --- (TST) Total Successful Full Transactions
<xxx.xxx.xxx.xxx><010> --- (TPT) Total Processing Time (ms)
<xxx.xxx.xxx.xxx><010> --- (ART) Average Response Time (ms)
<xxx.xxx.xxx.xxx><010> --- (TPS) Transactions per Second
<xxx.xxx.xxx.xxx><010> --- Total Unsuccessful Transactions : 0
<xxx.xxx.xxx.xxx><010> --- TST TPT ART TPS
<xxx.xxx.xxx.xxx><010> --- 5 139 27,8 35,9712230215827 findCustomer()
<xxx.xxx.xxx.xxx><010> --- 5 15 3 333,333333333333 setCustomer()
<xxx.xxx.xxx.xxx><010> --- 5 9 1,8 555,555555555556 createCustomer()
<xxx.xxx.xxx.xxx><010> --- 5 183 36,6 27,3224043715847 findCustomer()
<xxx.xxx.xxx.xxx><010> --- --

<xxx.xxx.xxx.xxx><010> --- 20 346 17,3 0,238045629070514
<xxx.xxx.xxx.xxx><010> ---
==
<xxx.xxx.xxx.xxx><010> --- TOTAL:;
5;139;27,8;35,9712230215827;5;15;3;333,333333333333;5;9;1,8;555,55555555555
6;5;183;36,6;27,3224043715847;20;346;17,3;0,238045629070514

A
pp

en
di

x
3

- E
JB

 V
S.

 C
O

M
+

 S
U

PE
RI

O
R

CO
M

PA
RI

SO
N

 T
A

BL
E

11
8

1
1

 A
p

p
en

d
ix

 3

E
JB

 V
S.

 C
O

M
+

 S
U

PE
RI

O
R

CO
M

PA
RI

SO
N

 T
A

BL
E

D

CO
M

/C
O

M
+

E
nt

er
pr

is
e

Ja
va

 B
ea

ns

CO
R

BA

A
pp

lic
at

io
n

Se
rv

er

M
icr

os
of

t T
ra

ns
ac

tio
n

Se
rv

er

(M
TS

)
CO

M
+

 is
 a

W
eb

sp
he

re
, W

eb
lo

gi
c,

O
ra

cle

CO
RB

A
 3

 ap
pl

ica
tio

n
se

rv
er

.

O
pe

nn
es

s
Bi

na
ry

 st
an

da
rd

s
O

pe
n

sta
nd

ar
ds

, b
ut

 S
U

N
 h

as
 v

et
o

O
pe

n
sta

nd
ar

ds

La
ng

ua
ge

su

pp
or

t
Ja

va
, C

+
+

, C
, V

isu
al

Ba
sic

, D
elp

hi
,

Po
w

er
Bu

ild
er

Ja

va
. B

in
di

ng
s t

o
C/

C+
+

 e
xi

st.

A
D

A
, C

, C
+

+
, C

O
BO

L,
 Ja

va

to
 ID

L,
 ID

L
to

 JA
V

A
,

Sm
all

ta
lk

, E
iff

el.

W
eb

 se
rv

er

A
ll

th
at

 su
pp

or
t A

SP
, m

os
t u

se
d

is
In

te
rn

et
 In

fo
rm

at
io

n
Se

rv
er

 (I
IS

)
A

ll
th

at
 su

pp
or

t s
er

vl
et

s
A

ll
w

eb
 se

rv
er

s t
ha

t s
up

po
rt

th
e

lan
gu

ag
e

us
ed

Pl

at
fo

rm

su
pp

or
t

D
CO

M
: A

ll
32

-b
it

W
in

do
w

s
ve

rs
io

ns

CO
M

+
: W

in
do

w
s 2

00
0

/
W

in
do

w
s

X
P

Th
er

e
ar

e i
m

pl
em

en
ta

tio
ns

 fo
r m

os
t p

lat
fo

rm
s

Th
er

e
ar

e
im

pl
em

en
ta

tio
ns

 fo
r

m
os

t p
lat

fo
rm

s

Pr
ot

oc
ol

su

pp
or

t

D
CO

M

RM
I o

ve
r J

RM
P

or
 II

O
P

II
O

P,
 S

O
CK

S

A
pp

en
di

x
3

- E
JB

 V
S.

 C
O

M
+

 S
U

PE
RI

O
R

CO
M

PA
RI

SO
N

 T
A

BL
E

11
9

D

CO
M

/C
O

M
+

E
nt

er
pr

is
e

Ja
va

 B
ea

ns

CO
R

BA

Pe
rs

ist
en

t o
bj

ec
t

re
fe

re
nc

es

H
av

e
tra

ns
ien

t o
bj

ec
ts,

 b
ut

 c
an

ha

ve
 p

er
sis

te
nt

 o
bj

ec
ts

pr
og

ra
m

m
at

ica
lly

Pe
rs

ist
en

t o
bj

ec
ts

w
ith

 p
er

sis
te

nt
 o

bj
ec

t
re

fe
re

nc
es

Pe

rs
ist

en
t o

bj
ec

ts
th

at
 h

av
e

pe
rs

ist
en

t o
bj

ec
t r

ef
er

en
ce

s

CO
RB

A
-

co
m

pa
tib

ili
ty

CO

M
 an

d
CO

RB
A

 c
an

 ac
ce

ss
 e

ac
h

ot
he

r t
hr

ou
gh

 b
rid

ge
s,

bu
t n

ot
 w

ith

fu
ll

fu
nc

tio
na

lit
y

M
os

t E
JB

 se
rv

er
s s

up
po

rt
ac

ce
ss

 o
f E

JB

co
m

po
ne

nt
s f

ro
m

 C
O

RB
A

 c
lie

nt
s.

It
is

po
ss

ib
le

be
ca

us
e

Ja
va

 h
as

 a
lan

gu
ag

e
bi

nd
in

g
to

 ID
L.

10
0%

Appendix 4 - Source code comparison

120

1 2 A p p e n d i x 4

SOURCE CODE COMPARISON

With precompiled proxy stubs on the client, the code for invoking a server components is as
follows:

// Create new reference to server object

RecordServices rs = (RecordServices)
Naming.lookup("no.henrik.ejb.RecordServices");

// Invoke server object instance
rs.findAllCustomers();

‘Create new reference to server object

Dim rs As RecordServices
rs = new RecordServices

‘Invoke server object instance
rs.findAllCustomers()

The following example shows database code for the findAllCustomers() method.
The main difference is that the EJB code obtains the sqlsource from the application server.

// Obtain application server context
InitialContext initCtx = new InitialContext();

// Get application server sqlsource
DataSource ds = (javax.sql.DataSource)
 initCtx.lookup("SQLSource");

// Get database connection
Connection con = ds.getConnection();

// SQL-statement
PreparedStatement ps =
con.prepareStatement("select Name, Address,
Email, Telephon, Information, Id from
Customer");

// Execute query
ps.executeQuery();

// Obtain resultset
ResultSet rs = ps.getResultSet();

// Declaration of variables
Dim myRecSet As adodb.Recordset
Dim myConnection As New adodb.Connection

// Open database connection
 myConnection.Open "Data
source=ejbvscomplus01;User ID=sa;Password=sa;"

// Execute SQL-query, and obtain resultset
Set myRecSet = myConnection.Execute("select *
from Customer")

The next example shows QL-database code for the findRecord(String title) method. The EJB-QL is
from the ejb-jar.xml file included with the RecordBean. The database connectivity is managed by the
container. The VB example is similar to the one above.

<query>
<query-method>
<method-name>findRecord</method-name>
<method-params>
<method-param>double</method-params>
</method-params>
<ejb-ql>
 <![CDATA[SELECT OBJECT(a) FROM MyRecordBean
AS a WHERE a.title = ?1]]>
</ejb-ql>
</query-method>
</query>

// Declaration of variables
Dim myRecSet As adodb.Recordset
Dim myConnection As New adodb.Connection

// Open database connection
 myConnection.Open "Data
source=ejbvscomplus01;User ID=sa;Password=sa;"

// Execute SQL-query, and obtain resultset
Set myRecSet = myConnection.Execute("select *
from Record where title = ‘" + title + "‘")

INDEX

121

1 3 I N D E X

INDE X

.

.NET framework, The · 24, 56, 77, 82, 106,
118, 119

A

ActiveX Data Objects · 50, 61, 62, 96
actor · 32
ADO · See ActiveX Data Objects
Application Programming Interface · 6, 19,

25, 40, 53, 57, 62, 65, 79
ART · See Average Response Time
Availability · 34
Average Response Time · 44, 84-90, 92, 93,

111, 112

B

benchmarking · 2, 4, 28, 36
Buildability · 35, 78, 103
business transaction · 32

C

Catalog services · 21
CCM · See CORBA Component Model
client-server architecture · 13
clustering · 2, 72, 73, 99, 100, 111, 114, 118,

119
COM Internet Services · 77
Common Object Request Broker Architecture

· 7, 12, 16- 21, 24, 25, 26, 62, 70, 76, 77,
79, 82, 102, 116, 119

component · 5
component model · 1, 6, 7, 14, 19, 22, 30, 32,

34, 55- 58, 61, 95, 96, 116
Component packaging · 7, 57, 58, 95
Conceptual integrity · 35
container · 20, 22, 26, 27, 41, 50, 59, 61-65,

74, 76, 82, 110-112
CORBA · See Common Object Request

Broker Architecture
CORBA Component Model · 19, 20, 119
Cost of system · 35, 80, 104

D

Database connection pool · 51
DCOM · See Distributed Component Object

Model
Development qualities · 34
dirty-read · 98
Distributed Component Object Model · 14,

18, 20-22, 25, 77
distributed facade pattern · 41
distributed system · 6-8, 10, 16, 23, 53, 97
DNS · See Domain Name Service
Domain Name Service · 62

E

Entity Bean · 26, 27, 59, 61, 63, 97
Event management · 6, 56, 57, 95
Event service · 23
execute threads · 49, 52
eXtensible Markup Language · 14
External qualities · 35

F

facade pattern · 41
file server architecture · 12
finder-method · 20, 61, 80
Functionality · 34, 56, 95
Future plans · 35, 82

G

garbage collection · 50, 103
graphical user interface · 6
GUI · See graphical user interface

H

heap size · 50
hotspot optimizer · 50
HTML · See Hyper Text Markup Language
HTTP · See HyperText Transport Protocol
Hyper Text Markup Language · 14
HyperText Transport Protocol · 14

INDEX

122

I

ICMP · See Internet Control Messages
Protocol

IIOP · See Internet Inter-ORB Protocol
interface · 4-6, 10, 12, 13, 16, 19-21, 25, 34,

39, 41, 56, 62, 67-69, 73, 75, 98, 99, 101,
102

Internet Control Messages Protocol · 11
Internet Information Services · 77
Internet Inter-ORB Protocol · 18
Internet Protocol · 11
interoperability · 25, 76, 102, 116
Interoperable Name Service · 20
IPv4 · See Internet Protocol
IPv6 · See Internet Protocol
isolation level · 49, 51, 65, 66, 98

J

J2EE · See Java 2 Enterprise Edition
JAR · See Java Archives
Java 2 Enterprise Edition · 24, 55-58, 69, 70,

76, 77, 79, 118, 119
Java Archives · 7
Java DataBase Connectivity · 37, 40, 53, 61,

74, 96
Java Messaging Service · 25, 57, 82, 3
Java Naming And Directory Service · 25, 43,

62
Java Transaction API · 25
Java Transaction Service · 25
Java Virtual Machine · 21, 37, 42, 43, 49,

50, 79
JINI · 16, 3
JIT · See Just In Time activation
JMS · See Java Messaging Service
JNDI · See Java Naming And Directory

Service
JTA · See Java Transaction API
JTS · See Java Transaction Service
Just In Time activation · 51, 58, 60, 96, 109
JVM · See Java Virtual Machine

K

Kerberos · 70, 71

L

Let’s buy some records business transaction ·
48

load balancing · 2, 26, 33, 72-74, 99, 100,
114, 119

Load balancing · 23, 74

localization transparency · 22

M

mainframe architecture · 12
Marshalling · 22
Maturity · 35, 81, 105
Microsoft Management Console · 56, 58, 62,

63, 66, 67, 69, 71, 77, 98, 99
Microsoft Message Queue · 57, 67, 73, 95
Microsoft Transaction Server · 22, 23, 51,

56, 66, 67, 75, 80-82
middleware · 13
MMC · See Microsoft Management Console
Modifiability · 35, 76, 101
MSMQ · See Microsoft Message Queue
MTS · See Microsoft Transaction Server

N

nested transactions · 65, 98
Network Time Protocol · 53
New customer business transaction · 45
New Order business transaction · 47
non-repeatable read · 98

O

Object distribution architecture · 13
Object Linking and Embedding · 5, 6
Object Management Group · 17
object pooling · 26, 36, 40, 74, 100
OCX · See OLE Custom Controls
ODBC · See Open DataBase Connectivity
OLE · See Object Linking and Embedding
OMG · See Object Management Group
Open DataBase Connectivity · 37, 49-51, 75
Operating System · 36
ORB · 17, 18
OS · See Operating System

P

Pass by value · 52
persistence · 20, 22, 28, 45, 60, 61, 82, 83,

96, 106, 110-112, 117
phantom read · 98
Populate shopping cart business transaction

· 47
portability · 25, 35, 77, 102, 118

INDEX

123

Q

QC · See Queued Components
Query language · 61, 96
Queued Components · 57

R

RDBMS · See Relational DataBase
Management System

Relational DataBase Management System ·
40, 83, 118

Reliability · 34, 72, 73, 99
Remote Method Invocation · 12-14, 16, 19,

22, 25, 43
Remote Procedure Call · 13
resource manager · 25, 60, 64, 65
Reusability · 35, 76, 102
RMI · See Remote Method Invocation
RPC · See Remote Procedure Call
Runtime qualities · 34, 56

S

scalability · 26, 34, 73, 100, 119
Secure Sockets Layer · 69, 70
security · 1, 2, 8-10, 14, 18, 20, 22, 23, 25,

26, 33, 50, 53, 69, 70, 71, 97, 99, 118
Simple Object Access Protocol · 14, 15, 24,

77
Simplicity · 35, 82, 105
Skeleton · 17
SOAP · See Simple Object Access Protocol
Sockets · 12
SQL · See Structured Query Language
SSL · See Secure Sockets Layer
Stateful Session Bean · 26, 27, 100
Stateless Session Bean · 26, 27, 59, 101
Structured Query Language · 13
Stub · 18
synchronization · 23, 63, 97

T

TCP/IP · See Transmission Control
Protocol/Internet Protocol

Testability · 35, 79, 104
Time to market · 35, 48, 80, 104
Total Processing Time · 44
Total Successful Transactions · 44
Total Unsuccessful Transactions · 44
TPC-C · 28, 29, 73, 74, 81, 113
TPS · See Transactions Per Second
TPT · See Total Processing Time
transaction ·1, 25-33, 36, 37, 40, 42-51, 54,

56, 57, 63-67, 73, 81, 83-89, 91, 93, 97,
98, 107, 110-112

transaction attributes · 66
Transactions Per Second · 44
Transmission Control Protocol/Internet

Protocol · 10, 12
TST · See Total Successful Transactions
TUT · See Total Unsuccessful Transactions

U

UDP · See User Datagram Protocol
UML · See Unified Modeling Language
Unified Modeling Language · 31, 32, 38, 39
Upgradability · 34, 75, 101
Usability · 34, 67, 98
User Datagram Protocol · 11

V

VBX · See Visual Basic Controls
Visual Basic Controls · 5
Visual Studio · 33, 37, 79, 80, 103-105, 116

W

WAP · See Wireless Application Protocol
Web Services · 14, 24, 77, 82, 102, 106, 116,

119
Wireless Application Protocol · 16

X

XML · See eXtensible Markup Language

