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Abstract

Uncrewed aerial systems (UAS), combined with structure-from-motion photogram-

metry, has already proven to be very powerful for a wide range of geoscience appli-

cations and different types of UAS are used for scientific and commercial purposes.

However, the impact of the UAS used on the accuracy of the point clouds derived is

not fully understood, especially for the quantitative analysis of geomorphic changes

in complex terrain. Therefore, in this study, we aim to quantify the magnitude of sys-

tematic and random error in digital elevation models derived from four commonly

used UAS (XR6/Sony α6000, Inspire 2/X4s, Phantom 4 Pro+, Mavic Pro) following

different flight patterns. The vertical error of each elevation model is evaluated

through comparison with 156 GNSS reference points and the normal distribution

and spatial correlation of errors are analysed. Differences in mean errors (�0.4 to

�1.8 cm) for the XR6, Inspire 2 and Phantom 4 Pro are significant but not relevant

for most geomorphological applications. The Mavic Pro shows lower accuracies with

mean errors up to 4.3 cm, thus showing a higher influence of random errors. QQ

plots revealed a deviation of errors from a normal distribution in almost all data. All

UAS data except Mavic Pro exhibit a pure nugget semivariogram, suggesting spatially

uncorrelated errors. Compared to the other UAS, the Mavic Pro data show trends

(i.e. differences increase with distance across the survey—doming) and the range of

semivariances is 10 times greater. The lower accuracy of Mavic Pro can be attributed

to the lower GSD at the same flight altitude and most likely, the rolling shutter sensor

has an effect on the accuracy of the camera calibration. Overall, our study shows that

accuracies depend highly on the chosen data sampling strategy and that the survey

design used here is not suitable for calibrating all types of UAS camera equally.
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1 | INTRODUCTION

The combination of uncrewed aerial systems (UAS) image

data with structure-from-motion (SfM) photogrammetry and multi-

view-stereo (MVS) workflows is regarded as a powerful tool for

precise surface reconstructions in a wide range of geosciences

(e.g. Carrivick et al., 2016; Eltner et al., 2016; Harwin & Lucieer, 2012;

James et al., 2017a) such as glaciology (e.g. Piermattei et al., 2016; Ros-

sini et al., 2018), soil science (e.g. Krenz et al., 2019), forestry

(e.g. Zhang et al., 2019) or geomorphology (e.g. Hamshaw et al., 2019;

Koci et al., 2017). UAS imagery combined with SfM-MVS allows 3D

point clouds to be obtained, from which it is possible to generate digital
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elevation models (DEMs) of varying resolution, depending on the

achieved ground sample distances (GSDs). Multi-temporal UAS-DEMs

are often used to quantify surface elevation changes with reported

magnitudes of change between a few centimetres and several metres

(e.g. Neugirg et al., 2016; Stark et al., 2020). Often, those studies have

been carried out in challenging environments (e.g. Gindraux

et al., 2017; Neugirg et al., 2016) characterized by demanding operating

factors such as insufficient positioning signal and a complex morphol-

ogy with an increased risk of crashing. Therefore, the choice of appro-

priate UAS is a trade-off between price, system performance (size,

weight, motor speed, platform design, etc.), specific site conditions and

the accuracies required for the research topic. Generally, the principle

of ‘as accurate as required but also as efficient as possible’ should be

applied. In the last decade, the fast and steady development in the UAS

sector brought a wide range of remotely controlled aerial vehicles of

different types (fixed-wing, multi-rotor), prices and dimensions to the

consumer market (Colomina & Molina, 2014). The mounted cameras

(e.g. RGB, thermal, multispectral) and sensor designs (global shutter,

rolling shutter) vary widely and so do the corresponding image resolu-

tions. Considering the myriad of potential combinations of system and

sensors, we see the necessity to investigate in the quality of UAS-

DEMs further. Therefore, we analysed the vertical accuracy and error

distribution of various DEMs obtained by four flight systems commonly

used in geomorphic research. Since there is no official price classifica-

tion of UAS in terms of which system can be attributed to ‘consumer

grade’ and which to ‘high end’ (professional to enterprise grade), we

have set a price threshold of €2000 for ‘consumer-grade’ UAS.
Data generated from modern topographic techniques are affected

by random and systematic errors (Milan et al., 2011). Commonly, the

accuracy of the DEM is evaluated against reference data with higher

known accuracy. Statistical parameters of accuracy and precision such

as mean, standard deviation and root mean square error (RMSE) are

then calculated. The mean is an indicator of systematic error, but it

does not identify the spatial distribution of errors. Similarly, RMSE or

robust statistics such as the normalized median absolute deviation

(Hoaglin et al., 1983, cited in Höhle & Höhle, 2009) are not sufficient

to detect systematic errors, which is crucial in quantitative geomor-

phological analyses. DEM errors can be introduced by numerous fac-

tors, such as (i) survey point quality, (ii) data sampling strategy

(Gindraux et al., 2017) or (iii) topographic complexity (Kraus

et al., 2006; Milan et al., 2011; Müller et al., 2014). Factors (i) and

(ii) are mainly a function of sensor quality and survey design

(Carbonneau & Dietrich, 2017) while factor (iii) is defined by the mor-

phology and surface characteristics of the respective study site. Con-

cerning sensor quality, rolling shutter cameras can be modelled less

effectively than those with global shutters (Vautherin et al., 2016)

when applying photogrammetric procedures. Another source of error

is the inaccurate modelling of lens parameters in photogrammetric

software products, which can result from on-board image pre-

processing (James et al., 2020). Different lens models will require dif-

ferent qualities of image network to determine their parameter values

accurately (Fraser, 2001; Gruen & Beyer, 2001).

Based on these previous studies, we saw the need to further

investigate the degree of error in UAS-derived photogrammetric

DEMs. Specifically, we consider four different UAS to address the fol-

lowing four objectives. (1) Defining the influence of sensors and flight

patterns and (2) exploring the influence of terrain factors on DEM

accuracy. Since a higher spatial correlation of errors tends to have a

larger impact on the total uncertainty budget (Anderson, 2019) of a

DEM-of-difference (DoD), we further investigate (3) the spatial pattern

and magnitude of differences in several DoDs when UAS are changed

between acquisitions (under stable environmental conditions). With

objective (3) we mainly aim to increase our understanding of systematic

errors in a given DoD, because systematic errors can fundamentally

F I GU R E 1 Research site (left) with 3D oblique view (top right) and DEM (bottom right). The white square in the research site marks the
subset for the experimental multi-temporal (DoD) approach. The purple symbol in the left figure marks the UAS launch point [Color figure can be

viewed at wileyonlinelibrary.com]
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affect the way topography is represented in a DEM (Kasprzak

et al., 2018) and characterize the correlation structure of random errors

(Anderson, 2019). Several studies have examined the accuracy of pho-

togrammetric UAS data with relation to ground control point (GCP) dis-

tribution (Gindraux et al., 2017; James et al., 2017b), flight design

(Gerke & Przybilla, 2016; Sanz-Ablanedo et al., 2020), image overlaps

(Torres-S�anchez et al., 2018), GSDs and camera systems

(e.g. Mosbrucker et al., 2017) and processing parameters (Gindraux

et al., 2017; James et al., 2017a). However, it is still unclear to which

degree DEMs obtained by UAS of varying prices are affected by ran-

dom and systematic errors. Many of the previously mentioned studies

have been carried out with consumer-grade UAS. This is understand-

able, since from a global perspective, ‘high-end’ UAS and the necessity

of additional operational training may be unaffordable for a large num-

ber of (research) institutes. Therefore, we further (4) evaluate whether

a specific flight pattern (carried out at a constant flight height) and

post-processing of ‘consumer-grade’ UAS data can generate results

comparable to so-called ‘high-end’ UAS, by discussing the implications

of our findings for geomorphological applications. In order to assess

the cause of error in photogrammetric DEMs from four different UAS,

we carried out a careful inspection of the bundle adjustment

(BA) results before evaluating and comparing the respective errors.

2 | MATERIALS AND METHODS

2.1 | Study area

The study site (656 703 E; 5 419 175 N/UTM32N; European

Petroleum Survey Group Geodesy code 25832) (Figure 1) is part of a

limestone quarry located 3.5 km northwest of the city of Eichstaett,

Germany and spans a shape area of approximately 37 000 m2 with

elevations ranging from 582 to 617 m (ETRS 89). The quarry is mainly

formed by dumped limestone plates and gravel, deposited sands, soils

and granite bricks of approximate 0.1 m edge length, sparse vegeta-

tion and dirt tracks. We choose the study site because of its complex

terrain, with a wide variety of surface covers, roughness and

landforms, which allow us to investigate the impact of certain terrain

factors (Gerke & Przybilla, 2016) on DEM accuracy. Terrain composi-

tions can have a direct impact on UAS surveys (Gerke &

Przybilla, 2016). Elevation changes, for example, can cause varying

image overlaps when operating at a constant altitude above launch

point, as in the present study.

2.2 | UAS and flight pattern

We tested three standard and one customized multi-rotor UAS of dif-

ferent sizes and prices (Figure 2 and Table 1). The Mavic Pro, Phantom

4 Pro+ and Inspire 2/X4s are off-the-shelf systems manufactured by

Da-Jiang Innovations Science & Technology Co., Ltd (DJI). The XR6

was developed by Airborne Robotics & geo-konzept GmbH and is

fully assembled with a Sony α6000 system camera with a fixed wide-

angle Sigma lens.

Three different flight patterns (Figure 3) were carried out for

each UAS. The UAS headings are east for parallel axes (PA) flights,

north for cross-grid (CG) flights and towards the centre of the area

of interest for cross-grid-circle (CGC) flights. The point of interest

(PoI) flight is composed of off-nadir images with a camera tilt of

35�, as suggested by Nesbit and Hugenholtz (2019), and with the

camera always pointing towards the centre of the study site. The

information required for each flight path commonly includes the

global position of each waypoint, the flying height, the speed and

heading of the UAS as it approaches the waypoint and the image

overlap (Table 2). For the Phantom 4 Pro+, the flight information is

set manually during the flight so we deploy a pre-defined camera

trigger every 2 s with an airspeed of 3 m/s to guarantee an overlap,

comparable to the other systems. Since not all UAS support the

same flight planning software, we use two different software

F I GU R E 2 Tested UAS: Mavic Pro, Phantom 4 Pro+, Inspire
2 and XR6 (from left to right) [Color figure can be viewed at
wileyonlinelibrary.com]

T AB L E 1 Manufacturers’ information on the tested UAS (CMOS = complementary metal–oxide–semiconductor)

UAS Mavic pro Phantom 4 pro Inspire 2 XR6

Manufacturer DJI DJI DJI Airborne Robotics & geo-konzept GmbH

Camera Internal device Internal device Zenmuse X4s Sony α6000

Focal length [mm] 26 24 24 28.5

Sensor Sony 1/2.3” CMOS Sony 1” CMOS Sony 1” CMOS Sony EXMOR APS HD CMOS

Sensor resolution [pixels] 4096 � 2160 5472 � 3648 5472 � 3648 6058 � 4012

Pixel pitch [μm] 1.51 2.41 2.41 3.88

Take-off weight [g] 734 1388 3440 4990

Rotor count 4 4 4 6

Size (diameter in cm) 33.5 35 85 95

Application flight time [min] 27 30 27 20

Range [km] 7 7 7 1.5

Critical wind velocity [kmf/h] >36 >36 >36 >36

Price [€] 999 1996 3399 25 300
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products for our study. The XR6 flights were configured with Mis-

sion Planner (freeware by Ardupilot, Version 1.3.52), while the flight

configurations for Mavic Pro and Inspire 2 were designed with DJI

Ground Station Pro. Flights were taken between 11:00 and 14:30

UTC under stable weather conditions (sunny, no clouds) with a

steady wind velocity of 12 km/h (approximately 6.5 knots) from the

southeast. For efficiency reasons, we choose to store the images

directly in JPG format. Image overlaps were chosen to gain high

redundancy in image content in order to minimize systematic errors

in UAS surveys (Luhmann et al., 2016). Aperture settings, focus,

white balance and ISO were defined automatically but kept stable

for each survey.

The rationale for flying all systems at the same height

irrespective of the expected GSDs was justified by the possibility

of directly comparing results from a flight height commonly used in

geoscience (see Table A1 in the Appendix). Achieving a consistent

GSD for all systems would have resulted in a much slower survey,

lower flight height and higher number of images for the Mavic Pro

system. Due to efficiency reasons in terms of both data acquisition

and processing effort (data size, CPU performance, RAM, etc.), we

refrained from flying the UAS below 80 m. Another reason for the

chosen flight height was compliance with the German national

regulation on UAS operations (German Federal Ministry of

Transport and Digital Infrastructure, 2020). This limits flight height

to within 100 m above the ground, while keeping a safe distance

from critical infrastructure such as power lines (in Germany, these

are commonly between 30 and 60 m high) (Federal Network

Agency of Germany, 2019). Note that the terrain varies from

approximately 580 to 615 m in elevation, while the UAS launch

point is at 600 m, which implies effective flight heights between

65 and 100 m above ground.

2.3 | Global navigation satellite systems data

GCPs were designed as red carpets (40 � 40 cm). A reflector (10 cm

diameter) was placed in the centre of each carpet and stones were

placed at every corner to prevent movement by wind. 25 GCPs

were spread and served for a global exterior orientation. We aimed

for a GCP spacing of 15–80 m (Gindraux et al., 2017; James

et al., 2017a) and a uniform distribution (horizontally and in elevation)

of GCPs across the study site. Additionally, we collected 156 indepen-

dent check points (CPs) on natural surfaces, which serve as reference

data for addressing vertical differences between DEMs and CPs

(James & Robson, 2014; James et al., 2017a). CPs were distributed

randomly, covering the entire area of interest to allow for a differenti-

ated analysis of vertical offsets between CPs and 3D points. All points

were measured with a Stonex S9III global navigation satellite system

(GNSS) in real-time kinematic mode, controlled by a Nomad handheld

computer (Windows mobile 6.1). Mean standard deviations (StDs) of

GNSS data are given in Table 3 (a complete list of all GCP and CP

StDs is given in Table A2 in the Appendix).

2.4 | Data processing of UAS imagery

We implemented a standard SfM-MVS workflow (Figure 4) in

Photoscan Pro by Agisoft LLC (Version 1.4.2) to process the UAS

images into 3D point clouds (autocalibration of lens parameters). Lane

et al. (2004) have shown that random errors in exterior orientation

parameters can propagate into systematic DEM errors. Therefore, we

eliminated five error-prone GCPs due to insufficient positioning signal

in certain parts of the area of interest. BA parameters have been cho-

sen following James et al. (2017a) but including two affine distortion

coefficients (b1 and b2). Computer specifications are as follows: DELL

Precision 7510 with 32GB RAM, Nvidia Quadro M2000 graphic card

and Intel i7 processor.

F I GU R E 3 Flight patterns. The orange circle shows the flight path
for the convergent images while the black and blue lines show the
structure of the parallel-axes flights [Color figure can be viewed at
wileyonlinelibrary.com]

T AB L E 2 UAS survey parameters for all flights

UAS type ISO UAS altitude [m] Air speed [m/s] Overlap (front & side) [%]

Survey time [min] Image count

PA CG CGC PA CG CGC

Mavic Pro 100 80 5 80/75% 3:00 4:00 3:40 48 70 41

Phantom 4 Pro+ 100 80 app. 4 app. 80/75% 3:20 3:29 2:54 38 48 30

Inspire 2 400 80 7.8 80/75% 1:32 2:30 2:28 33 50 36

XR6 250 80 5 80/75% 3:11 3:10 3:00 50 60 18

T AB L E 3 Mean accuracies of GNSS coordinate measures. Note
that the distance to the closest SAPOS station (providing a correction
signal for real-time kinematic [RTK] measures) is less than 10 km;
coordinates (European Petroleum Survey Group Geodesy code
25832) 657 512.393, 5 418 703.245, 583.25 m

Direction StD [m]

X-coordinate 0.007

Y-coordinate 0.004

Z-coordinate 0.012
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2.5 | Data analysis

2.5.1 | DEM generation and assessment of vertical
DEM errors (random and systematic)

To address the differences between the point clouds and CPs, we cal-

culated local meshes by 2D Delaunay triangulations in SAGA LIS/GIS

for all point clouds. The meshes are computed within a predefined 2D

neighbourhood search radius of 1 m around every CP (point cloud den-

sities 386 to 1240 p/m2; Table 4). The elevation differences between

the respective CPs and the local meshes are calculated along the

plumbs of the respective CPs and expressed as error statistics. We

chose the point-to-mesh-distance approach to avoid incorrect esti-

mates of elevation differences caused by short horizontal offsets

between the reference and UAS data in point-to-point measurements,

especially in areas of steep slopes and sudden terrain changes (Müller

et al., 2014). Formulas to describe the accuracy of a DEM based on the

RMSE, mean error, absolute mean error or StD can be found, for exam-

ple, in Höhle and Höhle (2009) but those descriptors are only appropri-

ate with normally distributed random errors. As outliers can negatively

affect both error statistics and distribution, we filtered all CPs with dif-

ferences larger than three times the respective StD. Generally, the

accuracy of a photogrammetric-derived DEM is highly subject to spa-

tially non-independent (systematic) errors (Lane et al., 2003).

To describe the systematic error in each dataset, we applied a

two-sided t-test with α = 0.05 to the differences. Given the large

sample size (n = 156) and, consequently, the enhanced tendency to

reject the null hypothesis, we additionally evaluated the effect size

after Cohen. Komolgorov–Smirnov tests with Lilliefors correction

(R package nortest; Gross & Ligges, 2015) were used to test whether

the differences for each UAS/flight pattern follow a normal distribu-

tion. In the next step, we calculated semivariograms of all data (differ-

ences) to explore the degree and range of spatial autocorrelation.

2.5.2 | Correlation analysis of terrain factors

In order to explore the dependence of error on topography, we com-

puted Spearman rank correlations between measured differences and

selected terrain factors. Slope (Zevenbergen & Thorne, 1987), rough-

ness (StD of slope) and general curvature (Zevenbergen &

Thorne, 1987) were derived from a DEM005 that was smoothed

using a moving window mean filter with radius r = 5 cells. This filter

radius was found to yield the highest correlations with the CP differ-

ences in a series of tests covering radii between 1 and 10 cells. Both

signed and unsigned differences were analysed for correlation with

terrain factors using the Spearman rank correlation coefficient. We

did this because we assumed that some terrain factors would be

related more to the magnitude than to the direction of differences

(e.g. roughness or slope; see Scheidl et al., 2008), which would be

reflected in a correlation with unsigned differences. In contrast, other

terrain properties could lead to a more systematic difference

(e.g. curvature), which would be indicated by a correlation with signed

differences.

2.5.3 | Creation of DEM of differences

For a more geomorphological perspective on the resulting uncer-

tainties, we also investigated error assessments based on multi-

temporal DEM analysis. As topographic changes certainly did not

occur between flights, the resulting DoD represents ‘stable areas’
throughout the whole area and can be used to investigate (i) the

effect of using different UAS (CG pattern) in multi-temporal surveys

and (ii) the influence of various terrain factors with a very large num-

ber of observations.

In reality, even in carefully designed and processed surveys,

small systematic (and random) errors will remain in data

(Sanz-Ablanedo et al., 2020) and may be further reduced by co-

registration procedures (Anderson, 2019). So, we applied iterative

closest point (ICP) algorithms in the SAGA-LIS software to all point

clouds with the XR6 CG dataset as reference. DoDs were calcu-

lated before and after ICP adjustments. To arrive at a more robust

adjustment, we used pre-computed normal vectors (for each point)

so that only areas with similar orientation are considered for the

error minimization (Besl & McKay, 1992). The maximum nearest

neighbour distance for two points to be considered as homologous

was at 0.2 m for all adjustments. After co-registration, the point

clouds were rasterized with a bilinear resampling scheme to a

0.05 m cell-sized DEM of common extent. If multiple points corre-

spond to one grid cell, the mean z-value of the respective points

was used for aggregation.

Even though ICP adjustments can minimize systematic errors

(James & Robson, 2014), it will not be possible to reduce them to

zero. To evaluate the effect of co-registration on systematic errors

and to provide an estimate of the remaining error in co-registered

DoDs, we also calculated the semivariances of DoDs before and

after ICP adjustments. The semivariogram range of a DoD

F I GU R E 4 Workflow and parameters
used for point cloud generation with
Agisoft PhotoScan Pro

T AB L E 4 SfM point cloud densities (mean value)

UAS

Point density [points*m�1]

PA CG CGC

Mavic Pro 386 444 387

Phantom 4 Pro+ 617 623 517

Inspire 2 595 681 544

XR6 1020 1240 1030

STARK ET AL. 2023



functions as a measure of space in which DoD errors are corre-

lated and can be used for error propagation methods (e.g. the con-

cept of spatially variable errors and levels of detection [LoD];

Wheaton et al., 2010). Error descriptors that relate to the precision

of individual measurements (e.g. StD) only, or metrics

that involve absolute values or square of individual records

(e.g. RMSE), tend to have little impact on the accuracy of a

volumetric change estimate and should not be seen as a

representative of DoD quality (Anderson, 2019). Figure 5

summarizes the entire workflow of data surveying, processing and

analysis.

3 | RESULTS AND DISCUSSION

3.1 | SfM-MVS results

3.1.1 | Point cloud generation and uncertainty
estimation of camera parameters

Image alignment was successful for all data. Processing time was

between 13 min (Mavic Pro, PA data) and 6 h 15 min (XR6, CGC data).

The overall tie-point count ranged from 32 583 (Mavic Pro, PA) to

311 699 points (Inspire 2, CGC) (Table 4). GSD varies from 1.4 cm

(XR6, CG) to 2.5 cm (Mavic Pro, PA) (Table 5). Figure 6 shows an

example of tie-point density and distribution across the different data.

The RMSE on GCPs for surveys with the XR6 and the Inspire 2 can be

regarded as equal, whereas the Phantom 4 Pro+ data are weaker by a

factor of two in all flight patterns (Table 5). This is interesting because

the Inspire 2 and Phantom 4 Pro+ are equipped with the same sensor

and, apart from the manual control of the Phantom 4 Pro+, all flight

parameters were kept stable for the entire survey. It is possible that

the differences may be due to different in-camera processors (RAW

to JPG conversion), but testing this would require further investiga-

tions. It is more likely that variable image overlaps cause the high

errors in external orientation of the Phantom 4 Pro+ data. This

assumption is supported by the higher RMSE on GCPs of the Phan-

tom 4 Pro+ data when compared to the Inspire 2 data (Table 5). The

Mavic Pro data stand out as the RMSE surpasses the error of

the Phantom 4 Pro+ data by a factor of two and by a factor of four

when compared to Inspire 2 and XR6 data. The RMSEs of GCPs of

the XR6, Inspire 2 and Phantom 4 Pro+ data are consistent across all

flight patterns. This is not the case for the Mavic Pro system, where

the CG dataset shows lower errors than data obtained by PA and

CGC flights.

The strong systematics in Figure A1 in the Appendix suggest that

the weak modelling of lens distortion is likely to be responsible for the

large error in units of pixel dimensions (2.8) in the Mavic Pro data (all

other UAS ≤ 0.5) (Table 5). Moreover, the sensor of the Mavic Pro

yielded a larger GSD when compared to the other systems, and a low

pixel count corresponding to the GCP reflectors (Figure 7) makes an

accurate GCP marker placement in Mavic Pro images difficult. As

Mosbrucker et al. (2017) revealed that GSD is the most influential fac-

tor when predicting point cloud quality (accuracy), we assume that the

results could be improved if surveys were acquired with a smaller

GSD. Nevertheless, despite the almost similar GSD of the Inspire

2 and Phantom 4 Pro+ data, the RMSE of GCPs [cm] of the Phantom

4 Pro clearly exceeds the error of the Inspire 2 by an order of two

F I GU R E 5 Workflow of data surveying, processing and analyses
[Color figure can be viewed at wileyonlinelibrary.com]

T AB L E 5 Ground sample distances for images (mean value) and digital orthomosaics (DOM); used tie points and GCP RMSE, by flight pattern

UAS

GSD [cm] Used tie points GCP RMSE [cm] (pixel)

Single nadir image

Orthomosaic

PA CG CGC PA CG CGC PA CG CGC

Mavic Pro 2.27 2.54 2.37 2.54 32 583 72 453 104 760 24 (2.4) 15 (2.8) 11 (1.1)

Phantom 4 Pro+ 1.87 1.99 2.00 2.20 38 719 45 764 55 390 9.9 (0.3) 10 (0.2) 10 (0.4)

Inspire 2 1.91 2.05 1.92 2.14 40 220 102 091 311 699 5.3 (0.3) 5.3 (0.4) 5.4 (0.4)

XR6 1.33 1.56 1.42 1.56 79 265 149 185 156 475 5.5 (0.3) 5.3 (0.5) 5.5 (0.4)
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(Table 5). We conclude that differences in RMSE of GCPs [cm] are

caused by poorer estimation of exterior but also interior orientation

parameters.

A large sensor also enables a wider ISO range and the camera can

shoot at higher ISO speeds with a high signal-to-noise ratio. The low

resolution and relatively small sensor of the Mavic Pro UAS enables

an ISO range of 100–1600 only. This is quite low compared to the

range of the Phantom 4 Pro+ and Inspire 2 (100–12 800) and the XR

6 system (10–25 600). Note that UAS surveys should be done at the

lowest possible ISO value given the required shutter speed and aper-

ture. Generally, ISO values above 400 should be avoided to maintain

high-quality imagery.

3.1.2 | Autocalibration and variation of internal
orientation parameters

Except for the XR6 data, all cameras show systematic residuals of

more than 1 pixel after autocalibration (see Figure A1 in the Appen-

dix). The same effect was observed by Przybilla et al. (2020), who

assume that residuals are caused by aspherical lenses (P4P and Inspire

2) and rolling shutter effects (Mavic Pro). As a general result, Ki and Pi

parameters show the lowest variations. All other internal orientation

parameters show higher variations, especially those of the Mavic Pro

system (Table 6). Variations in focal length estimates for the XR6 and

the Inspire 2 can be regarded as equal, whereas the P4P system

shows slightly higher variations. Bi parameters of the XR6 show a

slightly higher variation than those of the Inspire 2 and Phantom

4 Pro+ datasets, pointing towards a greater influence of flight pattern

on autocalibration. The largest variations can be found in Yp and Xp.

High residuals in the distortion models of the Mavic Pro data sug-

gest that the survey error is likely to be caused by a distortion model

being poorly suited to the distortion pattern of the imagery. We

assume that some imagery is likely to have undergone a higher degree

of image on-board pre-processing, from raw DNG to JPG, than others.

In such cases, distortion models will represent corrections to the ini-

tially applied manufacturer’s corrections, which generally aim to

reduce radial distortion while altering the relative importance of

decentring distortions since the centre of the practical radial distor-

tion may not be consistent with the centre of image format (James

et al., 2020). Accuracy issues may also result from relatively weak

image network geometry of the double grid, and of course parallel-

axes flight plans, a configuration which has become standard in flight

planning for topographic surveying (James et al., 2020).

3.1.3 | Correlation between internal orientation
parameters

High correlations between internal orientation parameters can be a

result of specific terrain morphology but also of data sampling strat-

egy. As the study was carried out under stable environmental condi-

tions, we assume that differences in correlations of internal

orientation parameters result only from different flight patterns. In

general, we observed only moderate correlations of internal orienta-

tion parameters with focal length, mainly Yp and ki (see Tables A3–

A14 in the Appendix). The relationship is more pronounced in CGC

datasets, especially in those obtained with the Phantom 4 Pro+ and

Mavic Pro (Figure 8). The highest correlations can be found between

focal length and Yp and between Xp and p1. Xp correlates with b1 with

F I GU R E 6 Tie points extracted from
example images from different UAS
(CG flight mode) [Color figure can be
viewed at wileyonlinelibrary.com]

F I GU R E 7 Different image resolution
covering selected GCPs in the UAS datasets.
Ground-sensor distances are 50 m (GCP 27)

and 80 m (CGP 8) [Color figure can be
viewed at wileyonlinelibrary.com]
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the exception of the XR6 CG, CGC and all Inspire 2 datasets. As

expected, ki and pi are internally correlated in all datasets, regardless

of flight pattern or UAS.

Distortion parameter correlations for the Inspire 2 PA and CG

data are comparable to those of the XR6 system, whereas the CGC

dataset of the Inspire 2 system reports slightly stronger correlations

between pi and ki. Interestingly, the PA datasets obtained with the

Phantom 4 Pro+ and Mavic Pro system showed much stronger rela-

tionships between the Xp and Yp and b1 and b2 than all other datasets,

which again we assume to be caused by the factors (i) aspherical lens

(Phantom 4 Pro+) and (ii) rolling shutter effects (Mavic Pro). Zhou

et al. (2020) have shown that, especially in parallel-axes surveys, the

correction of rolling shutter effect (as done in this study) improves

results when processed with an eight-parameter optimization but that

the best results are obtained by employing a 10-parameter camera

model without rolling shutter compensation.

3.2 | Statistical properties

3.2.1 | Differences and random errors

The calculation of CP-DEM difference yielded different magnitudes

but identical directions of errors for all data (Figure 9). Boxplots show

that most distributions correspond to a slight overestimation of z-

values in all data. Average differences (Table 7) are remarkably similar

for all flight patterns of the UAS and there are no significant differ-

ences (overlapping notches) between the medians produced by

different devices. Also, the spread of most distributions is remarkably

similar, except for the Mavic Pro data. A Levene test suggests that the

variances of XR6, Inspire 2 and Phantom 4 Pro+ can be considered

equal (p = 0.23). The StD can be regarded as a measure of random

error, so our data show that this uncertainty is fairly low for XR6,

Inspire 2 and P4P, and two to three times higher for the Mavic Pro.

Similar results (StD = 0.10–0.25 m) were be observed by

Gindraux et al. (2017) in a UAS survey over glaciated areas with a

12MP sensor (global shutter), mounted on a fixed-wing UAS (Sensefly

eBee). The effect of overestimated z-values in photogrammetric

DEMs was also observed by Salach et al. (2018), who analysed the

accuracy of photogrammetric DEMs obtained with a Sony α6000

camera (same camera system as in the present study) on a MSP Hawk

Moth multi-copter, a system comparable to the XR6. However, their

approach yielded an RMSE of 0.14 m (approximately seven times

GSD) that is quite high compared to the XR6 data but comparable to

the accuracies obtained with our Mavic system. We assume differ-

ences in survey design (only two flight lines with a mean flight height

of 50 m above ground), low image overlaps (70% front and 50%

sidelap) and consequently few image observations per tie point, but

also differences in surface texture and structure to be responsible for

the higher RMSE in Salach et al. (2018).

To make the results more comparable and widely applicable, we

calculated a RMSE/GSD ratio (Müller et al., 2014) for all data

(Table 8). RMSE/GSD ratios are comparable for the XR6, Inspire 2 and

Phantom 4 Pro+ (three times GSD) but approximately two times

higher for the Mavic Pro data. We therefore conclude that the dis-

crepancies observed in the StD of our data are caused by a lower

GSD (Mosbrucker et al., 2017) and poor BA results of the Mavic Pro

data when compared to the GSD obtained with the other UAS

F I GU R E 8 Correlation between f and
Xp (left) and Yp (right) with respect to
all data [Color figure can be viewed at
wileyonlinelibrary.com]

F I GU R E 9 Vertical differences between GNSS-CPs and DEMs,
differentiated by UAS and flight pattern (upper figure: limit of y-
axis = 0.5; lower figure: limit of y-axis = 0.05) [Color figure can be
viewed at wileyonlinelibrary.com]
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(Figure 8). This underlines the importance of appropriate survey plan-

ning, adjusted to the performance of the respective UAS, in order to

meet the requirements for reliable (self-)calibration in SfM processing.

Different sensors might require different survey designs

(Carbonneau & Dietrich, 2017) and processing strategies to enable

reliable photogrammetric image network performance (James

et al., 2019) and to accurately determine lens distortion parameters

(Fraser, 2001). We also investigated whether more aggressive filtering

of error-prone tie points improves the accuracy of the Mavic Pro data

to arrive at point cloud accuracies comparable to the other tested

UAS. Therefore, we increased the thresholds in the filter operations in

the tie-point gradual selection within Photoscan Pro. However, the fil-

tering process did not increase the point cloud accuracy and the GCP-

RMSE increased by approximately 10 cm for all data.

3.2.2 | Significant differences from zero

Under a significance level of 0.05, the mean errors of all XR6 data

and those of the Phantom 4 Pro+ for the CG flight pattern are not

significantly different from zero, and hence do not suggest the pres-

ence of a systematic error. For the other flights, the Cohen effect

size was between �0.31 and �0.24 and suggests a negligible to

weak effect, which means that statistical significance does not nec-

essarily point to a relevant systematic error in these cases. Con-

cerning systematic errors, the Mavic Pro system stands out, with

mean errors between �2.9 and �4.3 cm, while all other systems

have considerably smaller mean errors between �0.4 and �1.8 cm.

Median errors are in the range between �0.3 cm (XR6/CGC) and

�3.2 cm (Mavic Pro/CG).

3.2.3 | Normal distribution of errors

P-values for all of the Komolgorov–Smirnov tests were low,

suggesting that deviation of the differences from a normal distribution

was significant, except for Mavic Pro CG and Inspire 2 CGC data. The

general assumption of Gaussian-distributed errors was rejected. The

QQ plots (Figure 10) show the quantiles of the observed error distri-

bution plotted against the theoretical quantiles of the respective nor-

mal distribution and reveal a deviation from the normal distribution,

especially in the upper quantiles. In the case of normally distributed

errors, the QQ plots would yield a straight line.

An evaluation of excess kurtosis reveals that almost all distribu-

tions that deviate from the normal distribution are leptokurtic. This

implies heavier tails than the normal distribution, so a higher influence

of outliers. Having verified the assumption of equal variances (Levene

test), we conducted one-way ANOVA to investigate significant differ-

ences (i) between the three flight patterns for each UAS and

(ii) between the four UAS for each flight pattern. According to the

results, the mean does not differ significantly among flight patterns

for the same UAS. Conversely, there were significant differences

between the Mavic and other UAS for the PA and CG flight patterns

and no significant differences between UAS for the CGC pattern.

3.2.4 | Spatial autocorrelation

All UAS except Mavic Pro show a ‘pure nugget’ variogram of mea-

sured differences (Figure 11), suggesting spatially uncorrelated ran-

dom errors. Higher semivariances at a range of 135 m indicate slightly

tilted surfaces in all data. We noted a slight variability of

semivariances with UAS and flight pattern, but it has to be empha-

sized that the differences are less than 2 mm at all ranges, thus negli-

gible. In contrast, the Mavic Pro data show much higher variability of

semivariances up to 3.9 cm and at the full range of spatial lag trends

(i.e. differences increase with distance; indicative for doming).

Generally, we expected a stronger impact of flight patterns on

spatial autocorrelation. We assume that the discrepancies between

our results and those of other studies are caused by different flight

configurations. While Nesbit and Hugenholtz (2019) integrated the

nadir flights with oblique images from single and double-convergent

T AB L E 8 RMSE/GSD ratio

UAS

RMSE/GSD

PA CG CGC

Mavic Pro 6.4 7.1 4.9

Phantom 4 Pro+ 2.6 2.7 2.5

Inspire 2/Zenmuse X4s 3.0 2.8 2.9

XR6/α6000 3.2 3.6 3.4

T AB L E 7 Statistical properties of all data (MAE = mean absolute error, ME = mean eror)

XR6 Inspire 2 Phantom 4 Pro+ Mavic Pro

PA CG CGC PA CG CGC PA CG CGC PA CG CGC

RMSE [m] 0.05 0.051 0.053 0.061 0.053 0.061 0.052 0.053 0.055 0.162 0.169 0.124

MAE [m] 0.034 0.035 0.038 0.046 0.039 0.046 0.038 0.038 0.041 0.126 0.132 0.099

ME [m] �0.004 �0.006 �0.008 �0.015 �0.014 �0.018 �0.009 �0.006 �0.013 �0.039 �0.043 �0.029

T-test (eff.) �0.08 �0.11 �0.15 �0.25 �0.27 �0.31 �0.18 �0.11 �0.25 �0.24 �0.26 �0.24

T-test (p) 0.35 0.18 0.07 0 0 0 0.03 0.17 0 0 0 0

Median [m] �0.004 �0.007 �0.003 �0.022 �0.011 �0.016 �0.01 �0.005 �0.011 �0.011 �0.032 �0.014

StD [m] 0.05 0.05 0.053 0.059 0.051 0.058 0.052 0.053 0.053 0.158 0.164 0.12

Skewness 1.483 1.456 0.639 1.019 0.741 0.417 1.147 1.065 0.539 �0.361 �0.311 �0.324

Kurtosis 5.928 5.986 4.145 2.27 2.551 0.945 3.926 3.471 1.442 �0.24 0.029 �0.242

KS test 0 0 0.001 0 0 0.125 0.001 0.034 0.049 0.003 0.315 0.037
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arcs, we examined the integration of images acquired during a single

point of interest flight with a camera roll angle of 35� and a fixed cam-

era orientation towards the centre of the area of interest in each

image. As a result, oblique images do not overlap with vertically ori-

ented images. Nevertheless, from the literature (e.g. Nesbit &

Hugenholtz, 2019; Sanz-Ablanedo et al., 2020) we know that if appro-

priate camera angles and overlapping convergent arc patterns are cho-

sen, the integration of oblique images into a set of (near) nadir images

serves for a better lens calibration in the BA and improves the accu-

racy and precision of the point cloud (Jaud et al., 2019). The Mavic

Pro CGC semivariogram could also be interpreted in terms of spatial

autocorrelation within a 60 m range if oblique images are included.

This behaviour is only visible with the Mavic Pro data.

Spatially correlated errors need to be treated differently than ran-

dom errors (Rolstad et al., 2009) as they tend to increase with an

increasing number of measurements in multi-temporal analysis

(Anderson, 2019). On a very small sub-area (spatial extent < 60 m),

this could have the same consequences as a survey-wide systematic

error, but if the survey area is large compared to the autocorrelation

range, the uncertainty will eventually cancel out (Anderson, 2019).

Concerning spatial autocorrelation, we have to keep in mind that the

main source of systematic errors in photogrammetric products is

the sensor (Roth et al., 2018). Nevertheless, the superior performance

of the α6000 was also demonstrated by DxOMarks’ lab tests, which

revealed a huge dynamic range of 13.1 EV and a signal-to-noise ratio

three times greater than a P4P (12.5 EV) or Inspire 2/X4s (12.6 EV)

(DxOMark, n.d.).

The spatial structure of the XR6, Inspire 2 and Phantom 4 Pro

+ semivariances could also be interpreted as cyclical (although not

distinctive), also described as a ‘wave hole effect variogram’
(Pereira et al., 2017). The influence of terrain characteristics on

DEM errors (Kraus et al., 2006; Müller et al., 2014) could be a

possible explanation for the slight intermittency of the

semivariances. To verify this hypothesis, we conducted correlation

analysis with a focus on the terrain factors of slope, roughness and

general curvature.

F I GU R E 1 1 Semivariances of
differences between CP and DEMs (note
that the Mavic Pro diagram has a 10-fold
range of semivariances compared to all
other diagrams) [Color figure can be
viewed at wileyonlinelibrary.com]

F I GU R E 1 0 QQ plots showing the
distribution of errors (black circles) and the
theoretical quantiles of their normal
distribution (red line) [Color figure can be
viewed at wileyonlinelibrary.com]
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3.2.5 | Correlation with terrain factors

The correlation analyses (p-values not corrected for multiple testing)

yielded the following results: slope and curvature were correlated

with both unsigned and signed differences, but with different

strengths and signs (Table 9). A general observation is that curvature

correlates more strongly with signed and slope with unsigned differ-

ences. Concave surfaces tend towards negative differences, whereas

convex areas tend towards positive differences and flat parts show

differences around zero (Figure 12). Roughness shows a weak correla-

tion with the magnitude of unsigned differences. The correlation

between Mavic Pro differences and terrain properties is either insig-

nificant or weaker than with other UAS. Here, we assume relatively

high errors in all parts of the study site to mask the correlation with

terrain factors. This assumption was confirmed by further analysis,

such as by the differencing of Mavic Pro and a reference DEM.

The correlations between slope inclination and DEM errors are

not as strong as the reported correlations of other studies. Scheidl

et al. (2008), for example, analysed the dependence of DEM errors

(airborne LiDAR) on slope inclination. They found quadratic relation-

ships with r2 around 0.9 that led to a conspicuous increase of errors

beyond 40� of slope. Müller et al. (2014) confirmed those results for

the case of photogrammetric DEMs and identified slope inclination as

the main factor that determines DEM accuracy. Furthermore, the

authors proved that errors increase significantly in areas steeper than

45�. The fact that 95% of CPs in our study are located on slopes with

less than 35.5� inclination may serve as an explanation of why the

dependence of DEM uncertainty on slope inclination is not as strong

as observed by Scheidl et al. (2008). The correlations found here are

in contrast to our findings (spatial autocorrelation), which can be

explained by the facts that (i) the semivariance only reflects unsigned

differences and (ii) the autocorrelation ranges of the analysed

terrain factors and those of the measured differences may not be

the same.

3.3 | Repeated measurements

To develop an understanding of the magnitude and spatial structure

of errors in our data, we aim at a comparative error assessment

based on repeated measurements under stable environmental circum-

stances, where the true change is assumed to be zero. Therefore, the

entire study site can be interpreted as stable and all the differences

can be considered as measurement differences.

ICP adjustments for the Inspire 2 data produced slightly larger dif-

ferences (Table 10) and the corresponding histogram reflects a

Poisson distribution with a majority of values in the negative range

(Figure 13). After co-registration, the histogram of the XR6/Phantom

4 Pro+ DoD changed from a bimodal distribution to a right-skewed

distribution with a relatively low peak and a larger spread. StD and

mean are comparable to those of the XR6/Inspire 2 DoD. Besides, the

flat area in the northwest of the area of interest (higher differences in

the Phantom 4 Pro+ DoD), the spatial structure of the Inspire 2 and

Phantom 4 Pro+ DoD is quite similar. Compared to the Inspire

2 and Phantom 4 Pro+ DEMs, the Mavic Pro DEM shows clearly

higher differences and StD, which could be drastically reduced by co-

registration procedures from 11.1 to 1.2 cm and from 16.1 to 7.5 cm,

respectively. Thus, the offsets caused by surveying with individual

UAS could be negligible for a large number of geomorphological appli-

cations (from landscape to catchment scale).

T AB L E 9 Correlation coefficients of signed and unsigned differences and geofactors (unless denoted by ‘n.sgin.’; correlations are significant
at α = 0.05)

UAS Flight pattern

Signed differences Unsigned differences

Slope General curvature Roughness Slope General curvature Roughness

XR6 PA �0.173 0.518 n.sign. 0.378 �0.138 0.458

XR6 CG �0.203 0.496 n.sign. 0.409 �0.144 0.387

XR6 CGC �0.196 0.532 n.sign. 0.403 �0.210 0.464

Inspire 2 PA �0.229 0.546 n.sign. 0.226 �0.347 0.219

Inspire 2 CG �0.243 0.549 n.sign. 0.398 �0.300 0.396

Inspire 2 CGC �0.197 0.630 n.sign. 0.429 �0.325 0.536

Phantom 4 Pro+ PA �0.197 0.544 n.sign. 0.350 �0.190 0.368

Phantom 4 Pro+ CG �0.207 0.586 n.sign. 0.389 �0.175 0.436

Phantom 4 Pro+ CGC �0.223 0.628 n.sign. 0.445 �0.279 0.541

Mavic Pro PA n.sign. 0.238 �0.148 n.sign. �0.141 n.sign.

Mavic Pro CG n.sign. 0.273 �0.150 n.sign. n.sign. n.sign.

Mavic Pro CGC n.sign. 0.433 n.sign. 0.210 �0.169 0.360

F I GU R E 1 2 Correlation of Inspire 2 data with general curvature
[�] of the strongest correlation in Table 9 (R2 = 0.6) with ordinary
least squares (black) and robust (red, blue) trend lines [Color figure can
be viewed at wileyonlinelibrary.com]
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Semivariogram analyses revealed no spatial dependence of DoD

values above a distance of 0.9 m for the XR6/Inspire 2 and

XR6/Phantom 4 Pro+ calculations. For these two datasets, ICP

adjustments had no relevant effect on the spatial dependency of

the variables, whereas in the case of the XR6/Phantom 4 Pro+ a

clear minimization of both value range and tilt effect (indicated by

the strong trend in the semivariograms) is evident. The phenomenon

of tilted DEM surfaces and the effect of ICP procedures becomes

even more evident in the XR6/Mavic Pro DoDs. Here, the semi-

variogram shows that variables are spatially dependent at all dis-

tances before and up to a distance of 11 m after co-registration of

point clouds. A slight cyclic pattern points towards spatial structure

in all DoDs, but it is more evident in the case of XR6/Inspire 2 and

less distinct in the DoD of XR6/Mavic Pro. We have already shown

that differences are correlated with terrain properties; this correla-

tion is reflected in the spatial autocorrelation shown here. The latter

has a range (0.9 m) that is well below the smallest distance between

CPs, so that it is not shown in the semivariograms of the above

‘Spatial autocorrelation’ section. A relative peak at a distance of

approximately 50 m indicates a slight dome effect (Eltner &

Schneider, 2015) in the peripheral parts (outer 10 m) of all DoDs. In

the case of the XR6/Mavic Pro DoD, the dome effect is masked by

an overall trend pointing towards slightly tilted surfaces in the

Mavic Pro DEM.

F I GU R E 1 3 CG-DoDs with
histograms before (top) and after ICP
adjustments (middle) (reference: XR6 CG-
DEM) and respective semivariograms

(bottom). Note that in the XR6/Mavic Pro
semivariogram the semivariances above
15 m lag distance are not shown for
graphical reasons (limit of y-axis) [Color
figure can be viewed at wileyonlinelibrary.
com]

T AB L E 1 0 DoD standard deviation and mean error before and after ICP registration (I2 = Inspire 2; P4P+ = Phantom 4 Pro+; MP = Mavic
Pro)

UAS

Before ICP After ICP

Mean [m] σ [m] Median [m] RMSE [m] Mean [m] σ [m] Median [m] RMSE [m]

XR6/I2 �0.009 0.030 �0.007 0.031 �0.016 0.034 �0.013 0.038

XR6/P4P+ �0.009 0.040 �0.013 0.041 �0.009 0.038 �0.007 0.039

XR6/MP �0.111 0.161 �0.103 0.195 �0.012 0.075 �0.004 0.076
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Surveying from multiple altitudes would have resulted in a higher

variation in image scale and consequently would have helped to miti-

gate the dome effect, as shown by many authors (e.g. Sanz-Ablanedo

et al., 2020). However, the study design is based on a uniform survey

height for all UAS and so we refrain from surveying from multiple

altitudes.

The differencing of DEMs obtained with different UAS revealed

non-Gaussian-distributed errors of different magnitude in all DoDs, so

the use of different UAS within comparisons should be avoided if pos-

sible. This represents a challenge as all technologies evolve, which

inevitably means that some models will be withdrawn from the mar-

ket, as has already happened with Inspire 2 (now equipped with a X5s

or X7 camera) and Mavic Pro. The follow-up models (Mavic Air

2, Mavic 2 Pro and DJI Mini 2) are also equipped with rolling shutters,

so the results presented may be relevant to those systems as well.

Based on the results of Kersten et al. (2020), who carried out compar-

ative accuracy analysis between a P4P, a Zenmuse X5 and an Inspire

2/X4s, we assume no substantial difference in the sensor quality/per-

formance between the X4s and X5s cameras. This assumption is con-

firmed by the results of DxOmark lab tests, which yielded only

marginal higher dynamic range for the X5s (12.7 EV) but a large

improvement of EV in the X7 (13.9), which allows more entropy/detail

in image content.

4 | CONCLUSION

UAS-SfM has emerged as a very user-friendly method for generating

high-resolution DEMs for geomorphological analysis. This study pre-

sents a comparative analysis of four different UAS examining the dif-

ferences in point cloud accuracies derived from different flight

patterns. Furthermore, we investigated the influence of terrain factors

on DEM accuracy and showed how the use of varying UAS in multi-

temporal surveys affects the quality of the DoD.

Our analysis revealed different magnitudes but identical direction

of errors in all data. The differences and spread of random errors are

remarkably similar for all flight patterns of each UAS. Systematic

errors occur, but Cohen’s effect sizes suggest a negligible effect, so it

does not necessarily indicate a relevant systematic error. Our results

clearly separate the Mavic Pro UAS from the XR6, Inspire 2 and Phan-

tom 4 Pro+ systems in terms of random and systematic errors, but

also in terms of spatial autocorrelation of errors.

The main sources of the discrepancies between the Mavic Pro

data and all other systems are the higher GSD and weak modelling of

lens distortion. This can be attributed to (a) rolling shutter effects,

even if rolling shutter compensations are applied in the SfM process

and (b) a higher degree of on-board image pre-processing as observed

by James et al. (2020).

Overall, this study has demonstrated that the survey designs used

here could not be guaranteed to work for all UAS to the same degree.

If the use of varying UAS in multi-temporal surveys cannot be

avoided, operators should focus on achieving a consistent GSD for all

flight systems (Mosbrucker et al., 2017) and determine flight height as

part of a careful initial survey design. In general, we consider the sur-

vey design as the most crucial factor influencing the data accuracy of

a respective UAS. Not every survey strategy might be suitable for the

purpose of calibrating a specific UAS camera and, depending on

the quality of the sensor and the intended purpose, the acquisition

strategy can vary widely. In other words, the survey design has to be

adapted to the respective UAS and a careful inspection of the BA

results, such as high correlation between internal orientation parame-

ters or high image residuals (lens calibration), should always be per-

formed for a first quality assessment of the results. It is worth

mentioning that the offsets reported here, caused by surveying with

different UAS (StD between 3.4 and 7.5 cm), might be negligible for a

large number of geomorphological applications. Our results showed

that consumer-grade UAS (here Phantom 4 Pro+) can produce results

comparable to the reported accuracies of professional to enterprise-

grade UAS, but that accuracies depend on the chosen data sampling

strategy and processing parameters. Therefore, surveys should be

planned so that they can deliver the data required for the particular

geomorphological question being asked.
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APPENDIX A

T AB L E A 1 UAS flight heights of recently published studies

Author Flight height above ground

James et al., 2017a, b) 100 and 20–250 m

Przybilla et al. (2020) 60–80 m

Capolupo et al. (2020) 100 m

Sanz-Ablanedo et al. (2020) 35–65 m

Hendrickx et al. (2019) 95 m

Cook (2017) 35–60 m

Kersten et al. (2020) 50–96 m

James et al. (2020) 50 m

Nesbit and Hugenholtz (2019) 50 m

Zhou et al. (2020) 30–90 m

Gindraux et al. (2017) 115 m

Neugirg et al. (2016) Approx. 110 m

Haas et al. (2016) 50–80 m

F I GU R E A 1 Camera residuals after
autocalibration with decentring and radial
distortion plots. Note the non-uniform
scaling of the Y-axes in distortion plots
[Color figure can be viewed at
wileyonlinelibrary.com]
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T AB L E A 2 Complete list of all GCP and CP StDs (GNSS measurements in RTK mode)

ID

Coordinates StD [m]

Type Satellites [count]X Y Z X Y Z

1 656 623.192 5 419 163.19 592.258 0.004 0.002 0.007 GCP 13

2 656 629.780 5 419 179.18 592.623 0.004 0.003 0.009 GCP 12

3 656 646.442 5 419 156.90 592.192 0.005 0.004 0.011 GCP 14

4 656 668.790 5 419 150.92 591.634 0.005 0.003 0.01 GCP 15

5 656 698.026 5 419 157.67 591.013 0.006 0.004 0.012 GCP 14

6 656 713.713 5 419 170.70 590.856 0.009 0.009 0.025 GCP 8

7 656 743.792 5 419 161.89 590.292 0.006 0.004 0.012 GCP 14

8 656 774.523 5 419 168.15 589.515 0.006 0.004 0.013 GCP 12

9 656 804.583 5 419 151.30 588.966 0.003 0.002 0.007 GCP 12

10 656 761.308 5 419 191.48 589.853 0.005 0.004 0.014 GCP 12

11 656 691.193 5 419 190.17 595.191 0.009 0.006 0.025 GCP 11

12 656 666.715 5 419 180.82 591.786 0.008 0.006 0.023 GCP 11

13 656 769.972 5 419 239.61 600.793 0.005 0.004 0.012 GCP 13

14 656 749.776 5 419 264.61 600.215 0.006 0.004 0.014 GCP 13

15 656 742.314 5 419 248.43 599.591 0.006 0.004 0.014 GCP 13

16 656 724.067 5 419 277.70 603.595 0.008 0.005 0.021 GCP 12

17 656 714.125 5 419 263.35 603.816 0.008 0.005 0.021 GCP 12

18 656 724.607 5 419 248.25 604.390 0.006 0.005 0.015 GCP 13

19 656 712.843 5 419 249.17 604.626 0.005 0.004 0.012 GCP 12

20 656 695.361 5 419 276.90 603.846 0.008 0.005 0.018 GCP 13

21 656 656.784 5 419 279.61 604.293 0.009 0.006 0.023 GCP 12

22 656 643.585 5 419 263.97 606.597 0.011 0.007 0.029 GCP 12

23 656 657.345 5 419 214.66 609.446 0.009 0.006 0.021 GCP 12

24 656 698.890 5 419 219.71 607.882 0.008 0.006 0.018 GCP 13

25 656 728.995 5 419 227.56 606.593 0.008 0.005 0.017 GCP 13

26 656 756.121 5 419 222.19 606.219 0.008 0.005 0.017 CP 13

27 656 695.988 5 419 186.19 594.141 0.005 0.004 0.009 CP 14

28 656 699.311 5 419 186.40 593.513 0.005 0.003 0.008 CP 15

29 656 702.828 5 419 180.11 590.967 0.005 0.003 0.009 CP 14

30 656 708.432 5 419 174.08 590.870 0.005 0.003 0.009 CP 15

31 656 690.943 5 419 173.65 591.328 0.005 0.003 0.009 CP 14

32 656 684.361 5 419 180.80 591.278 0.005 0.003 0.009 CP 15

33 656 676.978 5 419 187.79 591.743 0.005 0.004 0.009 CP 14

34 656 669.518 5 419 190.20 593.138 0.005 0.004 0.009 CP 14

35 656 667.753 5 419 183.07 591.758 0.005 0.004 0.009 CP 14

36 656 658.510 5 419 178.33 591.998 0.005 0.004 0.009 CP 14

37 656 653.668 5 419 184.10 592.592 0.006 0.004 0.01 CP 14

38 656 651.103 5 419 182.35 592.500 0.006 0.004 0.01 CP 14

39 656 650.194 5 419 185.65 594.212 0.006 0.004 0.01 CP 14

40 656 648.506 5 419 175.14 593.713 0.006 0.004 0.011 CP 14

41 656 650.079 5 419 168.93 591.896 0.005 0.004 0.009 CP 15

42 656 663.318 5 419 171.93 591.769 0.005 0.004 0.009 CP 15

43 656 677.938 5 419 172.37 591.445 0.005 0.004 0.009 CP 15

44 656 688.629 5 419 171.31 591.402 0.005 0.004 0.009 CP 15

45 656 706.185 5 419 170.89 590.799 0.005 0.004 0.009 CP 14

46 656 721.846 5 419 173.72 590.703 0.005 0.004 0.009 CP 15

47 656 730.463 5 419 178.95 590.646 0.005 0.004 0.009 CP 15

48 656 737.982 5 419 196.75 592.757 0.006 0.004 0.011 CP 13

(Continues)
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T AB L E A 2 (Continued)

ID

Coordinates StD [m]

Type Satellites [count]X Y Z X Y Z

49 656 734.888 5 419 196.04 592.670 0.006 0.004 0.011 CP 13

50 656 725.116 5 419 194.65 592.367 0.009 0.005 0.015 CP 10

51 656 705.424 5 419 197.25 592.998 0.007 0.004 0.012 CP 12

52 656 700.990 5 419 199.59 594.667 0.007 0.004 0.012 CP 11

53 656 695.521 5 419 198.15 593.874 0.007 0.004 0.013 CP 12

54 656 695.115 5 419 194.13 591.865 0.007 0.004 0.012 CP 12

55 656 694.194 5 419 191.28 593.438 0.008 0.005 0.014 CP 12

56 656 700.063 5 419 188.48 591.972 0.006 0.005 0.012 CP 14

57 656 702.819 5 419 186.47 591.299 0.006 0.004 0.011 CP 15

58 656 704.912 5 419 183.69 590.973 0.006 0.004 0.011 CP 14

59 656 709.803 5 419 177.12 590.903 0.006 0.004 0.01 CP 15

60 656 740.056 5 419 167.52 590.313 0.004 0.003 0.008 CP 14

61 656 749.223 5 419 177.58 589.955 0.004 0.003 0.008 CP 14

62 656 754.130 5 419 191.41 589.921 0.005 0.003 0.009 CP 15

63 656 750.358 5 419 198.58 592.494 0.005 0.004 0.011 CP 13

64 656 755.559 5 419 198.98 592.349 0.007 0.004 0.012 CP 10

65 656 757.734 5 419 200.61 592.842 0.006 0.004 0.012 CP 13

66 656 762.527 5 419 200.15 592.327 0.006 0.004 0.012 CP 13

67 656 762.741 5 419 198.83 591.412 0.006 0.004 0.012 CP 12

68 656 772.818 5 419 193.62 589.490 0.006 0.004 0.011 CP 13

69 656 778.104 5 419 199.80 590.211 0.005 0.004 0.01 CP 14

70 656 779.658 5 419 202.48 592.045 0.005 0.004 0.011 CP 14

71 656 811.609 5 419 203.94 592.332 0.006 0.004 0.011 CP 14

72 656 796.590 5 419 215.56 595.131 0.008 0.006 0.015 CP 12

73 656 789.378 5 419 228.53 597.558 0.006 0.004 0.012 CP 13

74 656 776.493 5 419 242.82 600.381 0.012 0.012 0.028 CP 9

75 656 773.982 5 419 242.74 600.516 0.003 0.002 0.007 CP 14

76 656 768.454 5 419 241.29 601.393 0.003 0.002 0.007 CP 14

77 656 763.362 5 419 245.40 601.758 0.003 0.003 0.007 CP 14

78 656 763.232 5 419 247.14 601.319 0.003 0.003 0.007 CP 14

79 656 765.782 5 419 247.10 601.676 0.003 0.003 0.007 CP 14

80 656 760.292 5 419 240.67 601.979 0.004 0.003 0.008 CP 13

81 656 754.815 5 419 236.00 603.248 0.003 0.003 0.007 CP 14

82 656 745.820 5 419 237.98 604.658 0.004 0.003 0.008 CP 13

83 656 745.334 5 419 227.74 606.763 0.005 0.003 0.01 CP 14

84 656 746.163 5 419 223.41 606.062 0.004 0.003 0.008 CP 14

85 656 748.383 5 419 217.33 606.302 0.004 0.003 0.008 CP 14

86 656 755.183 5 419 218.04 605.740 0.004 0.003 0.008 CP 14

87 656 761.460 5 419 219.12 606.143 0.004 0.003 0.008 CP 14

88 656 763.737 5 419 218.94 605.933 0.004 0.003 0.008 CP 14

89 656 738.206 5 419 221.81 606.075 0.004 0.003 0.008 CP 14

90 656 728.034 5 419 216.92 606.521 0.004 0.003 0.008 CP 14

91 656 726.815 5 419 215.35 606.519 0.004 0.003 0.008 CP 14

92 656 725.723 5 419 223.73 606.544 0.004 0.003 0.008 CP 13

93 656 722.464 5 419 229.03 607.238 0.004 0.003 0.008 CP 15

94 656 716.361 5 419 227.94 607.185 0.004 0.003 0.008 CP 15

95 656 713.206 5 419 222.00 607.157 0.004 0.003 0.008 CP 14

96 656 709.902 5 419 215.98 607.587 0.004 0.003 0.008 CP 14

(Continues)
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T AB L E A 2 (Continued)

ID

Coordinates StD [m]

Type Satellites [count]X Y Z X Y Z

97 656 707.283 5 419 215.67 608.149 0.004 0.003 0.009 CP 14

98 656 700.013 5 419 226.71 608.264 0.004 0.003 0.008 CP 14

99 656 693.715 5 419 221.96 608.038 0.004 0.003 0.008 CP 14

100 656 685.000 5 419 222.39 608.123 0.004 0.003 0.009 CP 14

101 656 683.690 5 419 225.73 608.208 0.004 0.003 0.008 CP 14

102 656 678.239 5 419 220.62 608.289 0.004 0.003 0.008 CP 14

103 656 673.774 5 419 213.51 608.204 0.004 0.003 0.008 CP 13

104 656 665.233 5 419 221.42 608.937 0.004 0.003 0.009 CP 12

105 656 658.037 5 419 218.31 609.501 0.007 0.005 0.015 CP 13

106 656 653.297 5 419 215.78 609.797 0.004 0.003 0.008 CP 14

107 656 650.380 5 419 213.93 610.532 0.004 0.003 0.008 CP 14

108 656 650.832 5 419 211.61 609.991 0.004 0.003 0.008 CP 14

109 656 645.651 5 419 217.68 610.918 0.008 0.005 0.018 CP 6

110 656 643.607 5 419 226.75 611.766 0.004 0.003 0.009 CP 12

111 656 638.798 5 419 235.23 613.236 0.004 0.003 0.01 CP 13

112 656 621.834 5 419 236.72 615.268 0.005 0.003 0.01 CP 12

113 656 619.076 5 419 226.13 615.419 0.006 0.004 0.012 CP 14

114 656 611.816 5 419 239.76 615.557 0.006 0.004 0.013 CP 12

115 656 597.453 5 419 243.98 615.484 0.005 0.004 0.011 CP 14

116 656 607.381 5 419 263.35 616.302 0.007 0.005 0.015 CP 11

117 656 609.793 5 419 261.51 615.331 0.006 0.004 0.011 CP 11

118 656 585.832 5 419 277.93 614.691 0.004 0.003 0.009 CP 11

119 656 577.729 5 419 294.45 613.679 0.007 0.004 0.016 CP 9

120 656 607.003 5 419 299.49 609.914 0.006 0.004 0.012 CP 11

121 656 637.353 5 419 307.57 609.391 0.012 0.007 0.019 CP 12

122 656 643.118 5 419 290.46 608.775 0.009 0.007 0.019 CP 12

123 656 638.440 5 419 274.59 607.232 0.009 0.008 0.022 CP 10

124 656 645.861 5 419 266.72 606.930 0.009 0.007 0.02 CP 11

125 656 641.245 5 419 255.86 606.746 0.075 0.009 0.076 CP 7

126 656 646.262 5 419 247.93 606.020 0.004 0.003 0.008 CP 14

127 656 656.554 5 419 253.55 606.346 0.005 0.004 0.01 CP 14

128 656 657.012 5 419 235.37 605.971 0.016 0.009 0.032 CP 10

129 656 661.422 5 419 235.22 606.702 0.008 0.006 0.015 CP 12

130 656 665.278 5 419 231.58 606.143 0.007 0.005 0.014 CP 13

131 656 666.646 5 419 240.18 604.995 0.011 0.006 0.016 CP 10

132 656 668.221 5 419 230.74 604.649 0.007 0.005 0.015 CP 14

133 656 676.814 5 419 230.00 605.261 0.009 0.005 0.015 CP 12

134 656 678.498 5 419 235.63 605.190 0.008 0.006 0.017 CP 10

135 656 682.103 5 419 240.14 604.920 0.008 0.007 0.017 CP 11

136 656 683.038 5 419 245.16 604.541 0.007 0.005 0.014 CP 13

137 656 703.969 5 419 246.54 604.420 0.01 0.006 0.018 CP 10

138 656 718.230 5 419 241.15 604.536 0.009 0.006 0.016 CP 10

139 656 728.771 5 419 237.76 604.014 0.007 0.005 0.014 CP 13

140 656 722.861 5 419 247.44 604.681 0.007 0.005 0.015 CP 12

141 656 726.829 5 419 249.08 603.984 0.007 0.005 0.014 CP 13

142 656 718.88 5 419 254.58 604.574 0.007 0.005 0.015 CP 13

143 656 707.125 5 419 267.99 603.956 0.007 0.005 0.013 CP 13

144 656 690.901 5 419 279.6 604.903 0.01 0.006 0.017 CP 12

(Continues)
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T AB L E A 2 (Continued)

ID

Coordinates StD [m]

Type Satellites [count]X Y Z X Y Z

145 656 692.839 5 419 283.89 606.434 0.007 0.005 0.014 CP 13

146 656 692.761 5 419 285.99 606.072 0.006 0.005 0.013 CP 13

147 656 678.4 5 419 283.42 604.074 0.006 0.005 0.013 CP 13

148 656 662.938 5 419 271.04 604.614 0.007 0.006 0.017 CP 10

149 656 654.838 5 419 273.96 604.476 0.013 0.006 0.017 CP 9

150 656 650.426 5 419 274.07 604.643 0.007 0.005 0.014 CP 11

151 656 649.805 5 419 273.54 605.184 0.007 0.005 0.013 CP 12

152 656 649.018 5 419 274.97 605.556 0.007 0.005 0.014 CP 11

153 656 648.052 5 419 275.07 605.272 0.007 0.005 0.014 CP 12

154 656 650.167 5 419 276.29 604.745 0.007 0.005 0.014 CP 12

155 656 652.714 5 419 277.86 604.448 0.007 0.005 0.015 CP 13

156 656 694.741 5 419 258.92 604.115 0.017 0.008 0.033 CP 7

157 656 713.732 5 419 277.07 603.845 0.076 0.012 0.055 CP 10

158 656 741.901 5 419 268.02 603.309 0.004 0.003 0.008 CP 14

159 656 741.539 5 419 270.89 603.393 0.004 0.003 0.008 CP 14

160 656 743.156 5 419 270.98 603.972 0.004 0.003 0.008 CP 14

161 656 741.485 5 419 279.25 603.391 0.006 0.004 0.013 CP 11

162 656 727.544 5 419 259.87 603.291 0.006 0.004 0.012 CP 14

163 656 737.709 5 419 261.86 602.928 0.005 0.004 0.011 CP 14

164 656 745.303 5 419 260.67 601.593 0.004 0.003 0.009 CP 14

165 656 751.714 5 419 262.1 600.302 0.005 0.004 0.01 CP 13

166 656 746.645 5 419 264.81 600.516 0.005 0.004 0.01 CP 13

167 656 753.282 5 419 265.32 600.553 0.004 0.003 0.009 CP 14

168 656 760.315 5 419 257.24 599.657 0.005 0.003 0.009 CP 14

169 656 749.493 5 419 250.96 599.981 0.005 0.004 0.01 CP 14

170 656 742.436 5 419 262.42 600.871 0.005 0.004 0.01 CP 13

171 656 733.01 5 419 257.07 603.143 0.005 0.004 0.01 CP 13

172 656 738.901 5 419 254.36 601.547 0.005 0.003 0.009 CP 13

173 656 737.053 5 419 253.29 601.050 0.004 0.003 0.008 CP 13

174 656 737.787 5 419 252.22 600.376 0.004 0.003 0.008 CP 13

175 656 738.258 5 419 248.63 599.165 0.005 0.003 0.009 CP 13

176 656 736.172 5 419 241.9 599.616 0.007 0.004 0.012 CP 12

177 656 765.726 5 419 251.14 600.213 0.006 0.004 0.011 CP 13

178 656 769.057 5 419 246.99 600.907 0.007 0.005 0.012 CP 11

179 656 752.521 5 419 237.9 603.439 0.006 0.004 0.012 CP 13

180 656 756.421 5 419 235.2 603.884 0.006 0.004 0.011 CP 13

181 656 693.525 5 419 280.47 605.455 0.005 0.003 0.009 CP 12
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T AB L E A 3 Correlation matrix of α6000 camera internal orientation parameters in PA flight mode (f = focal length; Xp and Yp = coordinates
of principal point offset, b1 and b2 = skewness; k1–k4 = components of radial distortions; p1 and p2 = components of decentring distortions)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 0.04 �0.01 �0.02 �0.02 �0.22 0.13 �0.10 0.09 �0.01 0.05

Xp (pix) 1.00 �0.13 �0.50 0.10 �0.01 �0.00 0.01 �0.02 �0.21 0.04

Yp (pix) 1.00 0.04 �0.49 �0.01 0.01 �0.00 0.00 0.17 �0.32

b1 1.00 0.00 �0.01 �0.00 �0.00 0.00 0.18 0.06

b2 1.00 0.01 �0.00 0.00 0.00 �0.10 0.38

k1 1.00 �0.97 0.92 �0.87 �0.02 0.01

k2 1.00 �0.99 0.96 0.02 �0.02

k3 1.00 �0.99 �0.02 0.02

k4 1.00 0.01 �0.01

p1 1.00 �0.18

p2 1.00

T AB L E A 4 Correlation matrix of α6000 camera i.O. parameters in CG flight mode (parameters are described in the caption to Table A3)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 �0.28 �0.11 �0.04 �0.03 �0.20 0.13 �0.09 0.08 0.07 0.05

Xp (pix) 1.00 0.30 0.01 0.30 0.02 �0.00 �0.00 0.00 0.14 0.26

Yp (pix) 1.00 �0.38 0.09 0.01 �0.00 0.00 �0.01 0.29 0.24

b1 1.00 �0.01 0.03 �0.05 0.04 �0.04 �0.05 �0.03

b2 1.00 �0.00 0.01 �0.01 0.01 �0.06 �0.03

k1 1.00 �0.96 0.92 �0.87 �0.06 �0.02

k2 1.00 �0.99 0.96 0.04 0.01

k3 1.00 �0.99 �0.03 �0.01

k4 1.00 0.02 0.01

p1 1.00 0.66

p2 1.00

T AB L E A 5 Correlation matrix of α6000 camera i.O. parameters in CGC flight mode (parameters are described in the caption to Table A3)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 �0.04 �0.40 �0.02 �0.07 �0.37 0.35 �0.32 0.30 �0.02 0.12

Xp (pix) 1.00 0.06 �0.06 0.23 �0.01 0.01 �0.00 �0.00 0.55 0.03

Yp (pix) 1.00 �0.30 0.12 0.03 �0.03 0.03 �0.03 �0.01 0.34

b1 1.00 �0.03 0.03 �0.04 0.04 �0.03 �0.05 0.05

b2 1.00 �0.01 0.01 �0.01 0.01 �0.01 �0.05

k1 1.00 �0.97 0.93 �0.88 �0.02 0.01

k2 1.00 �0.99 0.96 0.02 �0.03

k3 1.00 �0.99 �0.01 0.03

k4 1.00 �0.00 �0.03

p1 1.00 �0.24

p2 1.00
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T AB L E A 6 Correlation matrix of Inspire 2/X4s camera i.O. parameters in PA flight mode (parameters are described in the caption to
Table A3)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 �0.01 �0.05 �0.06 �0.03 �0.09 0.03 0.01 �0.04 �0.03 0.03

Xp (pix) 1.00 0.04 �0.04 �0.23 �0.03 0.02 �0.03 0.03 0.20 �0.02

Yp (pix) 1.00 0.18 �0.17 �0.01 �0.00 0.00 �0.00 0.03 0.43

b1 1.00 �0.00 0.03 �0.02 0.02 �0.02 0.12 0.01

b2 1.00 �0.00 0.00 �0.00 0.00 �0.03 �0.19

k1 1.00 �0.96 0.91 �0.86 �0.07 0.02

k2 1.00 �0.99 0.95 0.08 �0.01

k3 1.00 �0.99 �0.08 0.01

k4 1.00 0.08 �0.01

p1 1.00 0.17

p2 1.00

T AB L E A 7 Correlation matrix of Inspire 2/X4s camera i.O. parameters in CG flight mode (parameters are described in the caption to
Table A3)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 �0.17 �0.36 �0.08 �0.06 �0.09 0.02 0.02 �0.05 0.03 0.03

Xp (pix) 1.00 0.14 �0.07 0.25 �0.04 0.06 �0.07 0.07 0.53 0.19

Yp (pix) 1.00 �0.23 0.02 �0.01 0.04 �0.06 0.07 0.05 0.36

b1 1.00 0.00 0.04 �0.04 0.03 �0.03 �0.01 �0.04

b2 1.00 �0.03 0.03 �0.03 0.03 �0.01 �0.06

k1 1.00 �0.96 0.91 �0.86 �0.10 �0.08

k2 1.00 �0.99 0.95 0.11 0.08

k3 1.00 �0.99 �0.13 �0.09

k4 1.00 0.14 0.10

p1 1.00 0.58

p2 1.00

T AB L E A 8 Correlation matrix of Inspire 2/X4s camera i.O. parameters in CGC flight mode (parameters are described in the caption to
Table A3)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 �0.06 �0.55 �0.26 �0.06 �0.36 0.32 �0.28 0.25 0.01 �0.04

Xp (pix) 1.00 0.11 �0.00 0.30 �0.03 0.03 �0.03 0.03 0.65 0.21

Yp (pix) 1.00 �0.26 0.08 �0.05 0.04 �0.05 0.05 0.08 0.39

b1 1.00 �0.02 0.06 �0.05 0.05 �0.04 �0.02 �0.03

b2 1.00 �0.00 0.00 0.00 �0.00 0.03 �0.00

k1 1.00 �0.97 0.92 �0.87 �0.09 �0.09

k2 1.00 �0.99 0.96 0.10 0.09

k3 1.00 �0.99 �0.12 �0.10

k4 1.00 0.13 0.11

p1 1.00 0.52

p2 1.00
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T AB L E A 9 Correlation matrix of Phantom 4 Pro+ camera i.O. parameters in PA flight mode (parameters are described in the caption to
Table A3)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 �0.11 0.05 �0.04 �0.02 �0.06 �0.00 0.02 �0.03 0.04 �0.05

Xp (pix) 1.00 0.02 0.70 �0.16 �0.01 0.02 �0.03 0.03 0.39 0.12

Yp (pix) 1.00 0.19 0.62 �0.02 0.01 �0.01 0.01 0.02 0.25

b1 1.00 �0.00 0.00 �0.01 0.01 �0.01 0.25 0.08

b2 1.00 �0.01 0.01 �0.01 0.01 �0.04 �0.09

k1 1.00 �0.97 0.93 �0.89 �0.01 �0.00

k2 1.00 �0.99 0.96 0.00 0.02

k3 1.00 �0.99 �0.00 �0.02

k4 1.00 0.00 0.01

p1 1.00 0.01

p2 1.00

T A B L E A 1 0 Correlation matrix of Phantom 4 Pro+ camera i.O. parameters in CG flight mode (parameters are described in the caption to
Table A3)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 0.00 0.46 �0.03 0.02 �0.05 �0.00 0.02 �0.04 0.06 �0.00

Xp (pix) 1.00 �0.07 0.36 �0.24 �0.01 0.00 �0.00 0.00 0.59 �0.01

Yp (pix) 1.00 0.09 0.40 0.00 �0.03 0.03 �0.04 0.07 0.54

b1 1.00 �0.01 0.06 �0.08 0.08 �0.07 0.12 �0.15

b2 1.00 �0.00 �0.00 �0.00 �0.00 0.12 0.17

k1 1.00 �0.97 0.92 �0.88 �0.01 0.00

k2 1.00 �0.99 0.96 0.00 0.01

k3 1.00 �0.99 �0.00 �0.01

k4 1.00 0.01 0.01

p1 1.00 0.05

p2 1.00

T A B L E A 1 1 Correlation matrix of Phantom 4 Pro+ camera i.O. parameters in CGC flight mode (parameters are described in the caption to
Table A3)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 �0.13 �0.68 �0.44 �0.24 �0.36 0.33 �0.30 0.27 �0.05 �0.10

Xp (pix) 1.00 0.12 0.26 0.17 �0.00 0.00 �0.00 0.01 0.68 0.14

Yp (pix) 1.00 0.18 0.31 �0.03 0.01 �0.01 0.00 0.08 0.48

b1 1.00 0.12 0.04 �0.06 0.06 �0.06 0.13 �0.01

b2 1.00 �0.01 0.00 0.00 �0.00 0.02 0.13

k1 1.00 �0.97 0.92 �0.87 0.01 �0.02

k2 1.00 �0.99 0.96 0.00 0.01

k3 1.00 �0.99 �0.02 �0.01

k4 1.00 0.04 0.02

p1 1.00 0.37

p2 1.00
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T A B L E A 1 2 Correlation matrix of Mavic Pro camera i.O. parameters in PA flight mode (parameters are described in the caption to Table A3)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 �0.11 0.01 �0.05 �0.07 �0.03 �0.06 0.12 �0.17 0.03 �0.04

Xp (pix) 1.00 �0.00 0.67 �0.17 0.10 �0.11 0.13 �0.14 0.44 0.04

Yp (pix) 1.00 0.13 0.58 0.05 �0.08 0.10 �0.13 0.06 0.32

b1 1.00 �0.00 0.08 �0.11 0.12 �0.14 0.25 �0.03

b2 1.00 0.01 �0.02 0.02 �0.03 �0.04 �0.05

k1 1.00 �0.97 0.92 �0.87 0.05 0.04

k2 1.00 �0.99 0.96 �0.09 �0.04

k3 1.00 �0.99 0.10 0.05

k4 1.00 �0.12 �0.06

p1 1.00 0.02

p2 1.00

T A B L E A 1 3 Correlation matrix of Mavic Pro camera i.O. parameters in CG flight mode (parameters are described in the caption to Table A3)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 �0.00 0.06 �0.09 �0.07 0.03 �0.16 0.26 �0.35 0.01 0.03

Xp (pix) 1.00 �0.10 0.37 0.02 0.01 �0.02 0.02 �0.02 0.53 �0.05

Yp (pix) 1.00 �0.12 0.30 �0.01 0.00 �0.00 �0.00 �0.05 0.50

b1 1.00 �0.01 0.06 �0.05 0.04 �0.03 0.04 �0.21

b2 1.00 0.00 0.01 �0.02 0.02 0.09 0.03

k1 1.00 �0.97 0.91 �0.85 0.02 �0.01

k2 1.00 �0.98 0.95 �0.03 0.01

k3 1.00 �0.99 0.03 �0.01

k4 1.00 �0.03 0.00

p1 1.00 0.01

p2 1.00

T A B L E A 1 4 Correlation matrix of Mavic Pro camera i.O. parameters in CGC flight mode (parameters are described in the caption to
Table A3)

f (pix) Xp (pix) Yp (pix) b1 b2 k1 k2 k3 k4 p1 p2

f (pix) 1.00 �0.11 �0.82 �0.26 �0.24 �0.10 �0.01 0.09 �0.16 �0.02 �0.15

Xp (pix) 1.00 0.09 0.16 0.34 �0.04 0.04 �0.05 0.05 0.78 0.04

Yp (pix) 1.00 �0.11 0.27 �0.10 0.17 �0.24 0.29 0.00 0.39

b1 1.00 0.08 0.02 �0.01 �0.00 0.01 0.05 �0.10

b2 1.00 �0.04 0.06 �0.08 0.10 �0.04 �0.08

k1 1.00 �0.97 0.92 �0.86 �0.02 �0.03

k2 1.00 �0.99 0.95 0.02 0.04

k3 1.00 �0.99 �0.02 �0.07

k4 1.00 0.01 0.09

p1 1.00 0.05

p2 1.00
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