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Abstract

We have numerically tested the stability and convergence properties of the Parareal algo-
rithm when it is run on the unsteady Stokes equations. The Parareal algorithm is a parallel–
in–time scheme for solving time dependent differential equations. The unsteady Stokes
equations from fluid mechanics is a PDE describing creeping flow. The motivation for
wanting to use Parareal with the unsteady Stokes equations is to obtain faster computations
in time.

We have tested stability and convergence by using variations of theθ–rule discretiza-
tions. The results were compared to similar numerical tests of the algorithm used with the
heat equation. The Parareal algorithm is known to be stable and convergent for the heat
equation from earlier analyses done of the Parareal algorithm. For stiff systems of ODEs
the Parareal analysis states that the algorithm is stable when the coarse propagator uses
θ∈ [2/3,1]. The unsteady Stokes equations are parabolic PDEs, and when semi–discretized
in space they become systems of stiff ODEs. We therefore believe that the Parareal algo-
rithm will remain stable and convergent when run on this problem.

Our numerical results indicate that the Parareal algorithm is indeed stable for[2/3,1]
when it is use to solve the unsteady Stokes equations, although some uncertainty on its
convergence rate is experienced atθ = 2/3.

A common way to estimate the error of the solution at time–stepk in the Parareal al-
gorithm is by basing it on the norm‖λk

i − λk−1
i ‖. It is then assumed that this reflects the

true error compared to the exact solution, which is given by the algorithm’s equivalent serial
solution. We have performed numerical tests that indicate that the ratio of the true error and
the approximative error is constant, which suggests that this is indeed a good estimate of the
error at iterationk.

The thesis was solved using a combination of Python and Diffpack where all governing
code is written in Python. Through its successful usage in this project, the thesis implemen-
tation acts as a proof–of–concept to that such a combination is indeed possible for solving
problems like the unsteady Stokes equations.
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Chapter 1

Introduction

In 2001, a new parallel scheme in time, called the Parareal algorithm, was proposed by
Lions, Maday and Turinici [14], which decomposes the time domain to make parallel im-
plementation possible.

The time dependent Stokes equations describe creeping flow, and are an important sim-
plification of the more complex Navier–Stokes equations that are central in fluid dynamics.
Finding a computational solution to the Stokes equation that will execute efficiently is there-
fore of interest, as they will need to be solved in many situations.

As shown in [2], the Parareal algorithm works well with most time discretizations of
parabolic PDEs, and as the time dependent Stokes equations are parabolic, we believe that
the Parareal algorithm will be suited for solving the Stokes equations such that the overall
simulation time can be reduced.

The main goal of this master thesis is to test whether the Parareal algorithm can be used
to solve the unsteady Stokes equations, and to determine possible restrictions as to when
the algorithm may be used. Particularly, we will study whether the Parareal algorithm will
follow the same stability and convergence properties as for other less complex and well
tested parabolic PDEs. We will also evaluate the quality of one of the more commonly used
stop criteria for the Parareal algorithm, as little literature is available on this topic.

Naturally, a thesis based on numerical mathematics will have a dual focus; the math
associated with discretizing continuous model problems into discrete systems we can solve
on a computer, and the technical details of implementation, with all the considerations that
accompanies programming.

The heat and Stokes equations will be our model problems throughout this thesis. The
heat equation is a well tested PDE with the Parareal algorithm, and its convergence and
stability properties are known. We can use the heat equation both as a reference point for
how we expect the algorithm to perform with the time dependent Stokes equationsandas a
means for testing the Parareal implementation itself.

It was decided that a flexible combination of Python and Diffpack would be used for
our implementation. All governing code such as the Parareal algorithm, handling of time
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iterations and solving the linear system would be written in Python. Diffpack would merely
be seen as a linear system generator and apossiblesource for iterative solvers. The Python
library for sparse matrices, Pysparse, would be used as a second source for iterative solvers.

Based on personal preference, we made a decision to use Windows as the development
environment for this thesis. The scientific community seems to favor Unix based platforms
for their development. Thus at the start of the project there was no clear documentation for
using the scientific tools required for the thesis on the Windows platform. Our colleagues
and tutors felt uncomfortable using Windows, and we wished to create a guide for using
Windows as en environment for scientific computing.

Chapter 2 gives an introduction to spatial and temporal time discretization techniques em-
ployed on our model problems. Temporal stability will be introduced for future use
with the Parareal algorithm.

Chapter 3 and 4 introduce the heat and Stokes equations, respectively. Discretization of
the equations, choice of iterative solvers and associated preconditioners is discussed.
An overview of the respective implementations is also provided.

Chapter 5 covers the Parareal algorithm, the possible choices of stop–criteria, its conver-
gence rate and its Python implementation.

Chapter 6 presents the numerical test results from running the Parareal algorithm on the
heat and Stokes equations. We will test the stability and convergence properties when
it runs with the Stokes equations, and compare this to the equivalent tests for the heat
equation. We will also investigate the quality of the error estimate used in Parareal to
determine convergence.

Chapter 7 provides the guide to working in the Windows environment.

Chapter 8 describe our reasons for using a Python–Diffpack combination and the experi-
ences we had working with such a combination.

Chapter 9 presents the conclusions from our investigation, and proposes areas for future
work.

All source code written for this thesis is available for download athttp://heim.ifi.
uio.no/~erical/masterThesis/



Chapter 2

Preliminaries

In the coming chapters we will make use of temporal and spatial discretization techniques
Before proceeding we will in this preliminary chapter present some of the basic principles
used in the subsequent chapters. It is not intended as a comprehensive study of the methods,
and we thus opt for an engineering approach and only present the practical results which will
be used in later chapters. This chapter will also to some degree cover the stability properties
of the temporal discretization methods, as it relates to the stability of the Parareal algorithm,
which is covered in greater detail in chapter 5 on page 54.

2.1 Spatial discretization with the Finite Element Method

For the discretization of the space–domain we will use thefinite element method(FEM).
During the work on this thesis the discretization of the spatial domain was merely a tool to
achieve a fully discretized system, and so the finer points of the method will not be covered
here. In this chapter we will present the outlines of the method to justify the discretizations
of the heat and Stokes equations done in the following chapters. AsDiffpackhas extensive
support for handling FEM, the goal here is merely to give the necessary tools for rendering
an equation into a general finite element expression which can, with relatively little effort,
be translated into program code using the Diffpack library. Diffpack hides the more com-
plex parts of the finite element method, such as defining the so–calledbasis functionsover
each element,integrationof the said basis functions, and assembling element matrices and
vectors. We will therefore not discuss such topics in detail here.

The Finite Element Method (FEM) is a tool for solving partial differential equations
(PDEs)approximately. Whereas the PDE is assumed to hold directly over a given region,
Ω, it is a characteristic of FEM that the equation is only assumed to hold over a subregion of
Ω (a finite element), and the approximation is carried out over each subregion. The global
solution overΩ is then found by combining the solutions found over each element. Be-
cause of this element approach the method has flexible support of variations in the shape of
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4 2.1. Spatial discretization with the Finite Element Method

the domain the problem is the defined over. As we shall see, FEM is well suited for solv-
ing initial-boundary value problems such as the time dependent heat and Stokes equations,
because the boundary conditions are easily adapted into the discretization. The following
discussion is based on [7, 8.1] and [8, 2.1 and 2.3].

To illustrate the principles, we introduce a simple boundary–value problem (BVP)

∇2u(x) = f (x), x in Ω (2.1)

∇u·η = g(x), x on ∂ΩN (2.2)

u(x) = h(x), x on ∂ΩE, (2.3)

whereu(x) is the unknown function andx∈ Rd. The boundary∂Ω = ∂ΩE ∪ ∂ΩN, ∂ΩN ∩
∂ΩE = /0, has a Neumann condition on the outwards–pointing normal of the boundary, and
one where Dirichlet boundary conditions are assumed to apply1. As shall become evident
below, the Neumann condition fits naturally into the FEM scheme, and is often referred to
as thenatural boundary condition, whereas the Dirichlet conditions are often dubbed as the
essential boundary conditions(thus the subscripts∂ΩN and∂ΩE, respectively). Note that
without the boundary conditions, an infinite number of candidate functions satisfy (2.1).

The continuous functionu(x) that satisfy the given initial-and boundary value conditions
is very often hard to find. We therefore wish to approximateu(x) in a finite contextthat can
be solved using a computer. The starting point of the finite element method is seeking an
approximation ofu(x) on the form

u(x)≈ û(x) = N0(x)+
n

∑
j=1

u jNj(x), x∈Ω,

where the functionN0 is chosen so that it satisfies the essential boundary condition (2.3).
The n remaining (basis) functionsNj(x) are chosen so that they arelinearly independent
andvanishon the part of the boundary where essential boundary conditions are prescribed,
i.e. they satisfy the zero Dirichlet boundary conditionNj(x) = 0, for x on ∂ΩE. The basis
functions must also satisfy certain smoothness criterions (more on this later). The weights
{u j} are real, albeit unknown, constants, and we can thus see the approximation ˆu(x) as a
weighted sum of basis functions. As we shall see in 2.1.2, due to the definition of the the
basis functions, the essential boundary condition (2.3) can be incorporated into the sum such
that we, without loss of information, can represent it by

u(x)≈ û(x) =
n

∑
j=1

u jNj(x), x∈Ω. (2.4)

1A Dirichlet boundary condition dictates the values a solution is to take on the boundary of the domain,
while a Neumann condition specifies the values thederivativeof the solution is to take on the boundary [8].
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2.1.1 The Galerkin equations

Clearly, if we insert ˆu for u in (2.1), we will have aresidualfunction,r(x), given by

r(x) = L(û(x))− f (x) 6= 0, L(û) =
n

∑
j=1

u jL(Nj),

whereL is the differential operator∇2. If û≡ u, the residual would of course be zero.
Therefore, the closer the residual is to the zero function, the better our approximation will
be. Without going into the details of functional analysis2, we note that as the functions{Nj}
are defined to be linearly independent, they span then–dimensional linear space

Hn = Sp{N1,N2, . . . ,Nn},

in which we can define the inner product〈·, ·〉 as

〈q,w〉=
Z

Ω
q(x)w(x)dΩ.

The zero function inHn is identified as being orthogonal to all members of said space, such
the inner product of the zero function and an arbitrary member ofHn is zero. AsHn is,
by definition, spanned by the basis functionsNj(x), it is sufficient to demand that the zero
function is orthogonal to the basis functions. Hence, we seek weights{u j} such that the
residualr is (close to) the zero function, by demanding that

〈r,Ni〉=
Z

Ω
r(x)Ni(x) dΩ = 0, i = 1, . . . ,n. (2.5)

Note that this reasoning is valid only ifHn is a reasonable approximation to the infinite–
dimensional space to all the candidate solutions of (2.1). The equations that arise from the
orthogonality conditions in (2.5) are called theGalerkin equations. Writing out the inner
product〈r,Ni〉 for (2.1), we have

Z
Ω

[
∇2û− f

]
Ni dΩ = 0 i = 1, . . . ,n. (2.6)

Integrating by parts using Lemma 2.1.1 on the next page, the equation reads

−
Z

Ω
∇û·∇Nj dΩ+

Z
∂Ω

Ni
∂û
∂η

dΓ =
Z

Ω
f Ni dΩ i = 1, . . . ,n,

and as the basis functions vanish on∂ΩE by design, this reduces to

−
Z

Ω
∇û·∇Nj dΩ+

Z
∂ΩN

Ni g(x) dΓ =
Z

Ω
f Ni dΩ i = 1, . . . ,n.

2[7, appendix A.2] is the basis for the little we use of functional analysis here



6 2.1. Spatial discretization with the Finite Element Method

Substituting ˆu with (2.4) and rearranging the terms, we have the rudiments of a linear system
of n equations withn unknowns:

n

∑
j=1

(
−
Z

Ω
∇Nj ·∇Ni dΩ

)
u j =

Z
Ω

f Ni dΩ−
Z

∂ΩN

Ni g(x) dΓ i = 1, . . . ,n. (2.7)

This final version of the Galerkin equations is preferable to the linear system based on (2.6),
because integration by parts reduces the degree of differentiability required by the basis
functions, which again gives us greater flexibility in our choice ofNj . By solving the linear
equation (2.7) we recover the coefficientsu1,u2, . . . ,un that render the best (in the sense of
the underlying inner product) linear combination in ˆu. The linear system exists on a global
level in the sense that each basis function is defined over the entire domainΩ, although they
will eventuallyvanishover large parts of the domain.

Lemma 2.1.1(Green’s Lemma for integration by parts).

−
Z

Ω
∇·[κ∇u] v dΩ =

Z
Ω

κ∇u·∇v dΩ−
Z

∂Ω
v κ∇u·η dΓ (2.8)

which implies

−
Z

Ω
(∇·u)v dΩ =

Z
Ω

u· (∇v)dΩ−
Z

∂Ω
v u·η dΓ.

Alternatively, we can write∇u·η as
∂u
∂η

.

2.1.2 The Finite Elements

We now turn our attention to the choice of basis functions. As mentioned earlier, we need to
construct the set of functions{Ni} so that they are (approximately) linearly independent, but
we would also like to keep the computational cost of evaluating the integrals at a minimum,
which is true since we ensure that they disappear over large parts of the global domain and
by choosing them so that one can construct efficient methods for numerically evaluating
their definite integrals. Quoting [8, 2.3.1], we have that “the finite element choice of Ni

consists of three fundamental ideas:

1. divide the domain into non–overlappingelements,

2. let Ni be a simple polynomial over each element,
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3. construct the global Ni as a piecewise polynomial that vanishes over most of the ele-
ments, except for a local patch of elements.”

Following the first principle, we divideΩ into m non–overlapping elements (sub domains),
Ω1, . . . ,Ωm. To each element we assign a set ofp+ 1 points (nodes)x[i], i = 1, . . . , p+ 1,
which is enough to represent a polynomial of degreep. Globally we then havemp+1 nodes
(x[i], i = 1, . . . ,mp+1) distributed over the domain. To achieve the 2nd and 3rd principles,
we define the basis functions to have the properties3

1. Ni is a polynomial over each element, uniquely determined by its values at the nodes
in the element.

2. Ni(x[ j]) = δi j . δi j is the Kroenecker delta, which equals unity when i= j and vanishes
otherwise.

This last property has the logical consequence that

û(x[i]) =
n

∑
j=1

u jNj(x[i]) = ui , i = 1, . . . ,n,

which suggests that we can interpretui as the value of the function ˆu at nodei. As was
mentioned earlier, ˆu(x) is really approximated as

û(x) = N0(x)+
n

∑
j=1

u jNj(x), x∈ (Ω∪∂Ω).

We have so far omitted to consider theN0 term, though we will do so here. As some of the
elementsΩe will include the boundary of the model problem,∂Ω = ∂ΩE∪∂ΩN, a subset of
the nodesx[ j] will lie on ∂ΩE. As we have established, this subset{uk} of the weights{u j},
is the solution to ˆu on ∂ΩE. By the essential boundary condition (2.3),{uk} should be given
by h(x[k]), for x[k] on ∂ΩE. Ergo these weights arenot unknown. Assumingk is the counter
running over the nodes on∂ΩE and j runs over the nodes inΩ∪∂ΩN, we have

û(x) = ∑
k

ukNk(x)+∑
j

u jNj(x).

In view of the finite element interpretation of the weights{u j}, a clean way to handle the
essential boundary condition is to simply merge the sums into one, and use the essential
boundary condition to explicitly set{uk} in the resulting linear system (2.7). In other words,
we continue to use ˆu(x) = ∑ j u jNj(x), and replace the entry(

−
Z

Ω
∇Nj ·∇Ni dΩ

)
u j =

Z
Ω

f Ni dΩ−
Z

∂ΩN

Ni g(x) dΓ

3Also quoted from [8, 2.3.1]
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with

u j = h(x[ j])

for all x[ j] on ∂ΩE.
To make FEM a flexible tool for handling complex shapes ofΩ, it operates in an

element–by–element fashion, and lets each element be mapped onto a standard (uniform)
reference element with local coordinate system and node numbering. The uniform element
shape is designed to make the calculation of the integral expressionsidentical for each ele-
ment, and so beindependentof any complexities in the global domain. This makes generic
frameworks for finite elements such as Diffpack feasible. To achieve this, letA(e) denote
a n×n matrix where all entries are zero, except a cluster of those representing the contri-
butions from the integral expressions in elemente, and letb(e) be interpreted in a similar
fashion for the right hand side of the global system (2.7). The Galerkin equations in (2.7)
can then be written as

Au= b whereA =
m

∑
e=1

A(e), b =
m

∑
e=1

b(e).

Where elements share a node, contributions from both elements will be added to the appro-
priate entries ofA andb corresponding to said node. We then collect the block of non–zero

entries ofA(e) andb(e) in element matrices and vectors,Ã(e) andb̃
(e)

, and let the integrals
be defined over a local coordinate system. Naturally, there must be some means to perform
a mapping to/from the local/global coordinate system, in addition to mapping between local
and global node numbering. Changing coordinate system will affect both the integral and
the derivative expressions.

Diffpack hides the details of derivative transformation, the shape of the reference ele-
ment in addition to concealing the mapping between local and global views and the assem-
blage of the global system based on element contributions. We write the expressions for the
element matrices and vectors in Diffpack in accordance with (2.7) as

ne

∑
j=1

(
−
Z

Ω̃
∇Nj ·∇Ni detJ dξ

)
u j =

Z
Ω̃

f Ni detJ dξ, i = 1, . . . ,ne,

assuming a Dirichlet conditiong(x) = 0. Here,Ω̃ is the reference element, the local coor-
dinate systemξ is related tox through the mappingx(e)(ξ), detJ is the determinant of the
Jacobean matrix4, andne is the number of nodes in the element. This is the Diffpack nota-
tion. In the “correct” mathematical expression you would also use the Jacobean to transform
the derivatives. This concludes our discussion of discretization in the space domain, and we
proceed to present a framework for discretizing the temporal domain.

4Ji j = ∂x j/∂ξi
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2.2 Temporal discretization – theθ-rule

Temporal discretization of PDEs use the same techniques as those used to discretize ordinary
differential equations (ODEs). An ODE is an equation that involves the derivatives of an
unknown function of one variable, as opposed to PDEs which are equations that involve
partial derivatives of an unknown function of several variables. A general initial value ODE
has the form

∂u
∂t

= f (t,u), t ≥ 0, u(t0) = u0.

To use ODE techniques to handle temporal discretization of PDEs is not unreasonable. A
PDE that is only discretized in space (i.e it is semi–discretized) become a set of ordinary
differential equations, which we can show conceptually for the heat equation by

∂u
∂t

= ∇2u⇒ ∂u
∂t

= f (t,u), f (t,u) = Dhu(t)

whereDh is a matrix representing the discretization of the partial differential operator∇2,
andu is a vector where each entry is a time–dependent function. Semi–discretizing in space
and then solving the resulting initial value problem (IVP) is often referred to as themethod
of lines, and the technique is typically suitable forparabolicPDEs [1]. As we will work with
parabolic PDEs in this thesis, it is appropriate to discuss this technique here.Dh andu can
be found by for example using the finite difference method, where we would approximate
the unknownu(x, t) by

u(x, t)≈ û(x, t) =
n

∑
j=1

u j(t)Nj(x),

such that the vectoru is comprised of the entriesu j(t). Dh will then be the stiffness matrix,
as we will see in chapter 3 on page 15.

Note that we could just as well have discretized the time derivative before handling the
spatial domain, to create a set PDEs which could in turn be discretized using FEM – the
fully discretized system at the end is independent of which domain is handled first. In the
case where the time derivative is discretized prior to the spatial domain the right–hand side
would be continuous (∇2u(t,x)) and not discrete (Dhu(t)). Indeed, this approach is what we
will be use in the latter chapters, but we show the reverse order here because we want to
utilize some of the analytic tools available for ODEs.

There are many different techniques for discretizing time derivatives on the form∂u/∂t
in ODE theory, although we shall only employ the simpler methods for this thesis, and
consider methods such asRunge–Kuttaand multistepschemes beyond the scope of this
work. Common techniques for solving the time derivatives for PDEs seem to be theforward,
backwardandcentereddifferences, which is often referred to as theExplicit/Implicit Euler
and theCrank-Nicolsonschemes, respectively. Theθ-rule unifies these three discretization
methods into a general discretization scheme, making it possible to easily alternate between
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the methods. This is particularly useful from an implementational point of view, as the same
code can be used to generate the different discretization techniques by changing the value
of a variable.

The idea is that we sample the derivative at the temporal pointt = t`−1+θ, θ ∈ [0,1], and
use5

∂
∂t

u(x, t`−1+θ)≈
u`−u`−1

∆t
.

The notationu` implies u(t = t`), wheret` = `∆t and∆t the length of the time–step. The
right–hand sidef at the time pointt`−1+θ is then approximated with a linear interpolation
between the values off at time pointst` and att`−1. Thus the we have (2.9):

θ-rule.
u`−u`−1

∆t
= θ f ` +(1−θ) f `−1, θ ∈ [0,1]. (2.9)

For the semi–discretized heat equation in the previous example, we would havef ` = f (t`,u)=
Dhu`, whereu` = {u j(t`)}. Settingθ = 0 we recapture the Explicit Euler scheme,θ = 1/2
gives the Crank-Nicolson scheme, andθ = 1 will produce the implicit Euler scheme.

2.2.1 Stiff ODEs and stability

The Explicit and Implicit Euler and Crank–Nicolson methods all show different stability
traits, which suggests that stability is dependent onθ. Stabilityof a numerical discretization
scheme refers to the numerical scheme’s ability to mirror the qualitative properties of the
true solution. A stable scheme will not introduce excessive amplification of components
in the numerical solution that strongly deviates from the true solution, and thus turning
the numerical results into nonsense. It will also recover the behaviour of the true solution
of the ODE regardless of the size of∆t, though naturally the quality in terms of accuracy
deteriorates as∆t increases.

The stability of the Parareal algorithm is closely linked with the stability of the numerical
scheme(s) used to discretize the time derivative. The algorithm operates with a coarse and a
fine discretization, and though they do not have to be based on the same scheme, i.e. use the
sameθ–value, they must both be stable for their chosen time steps in order for the algorithm
itself to be stable. In addition the coarse coarse discretization must introduce damping.
During testing it is likely practical if both the fine and coarse solvers are unconditionally
stable – ergo be invariant of the time step – as we can then use arbitrary time step sizes
without having to consider possible instabilities in the discretizations. For further details on
the Parareal algorithm, see chapter 5 on page 54.

In the following, we will briefly study the cause for instabilities in the numerical schemes,
which will lead to the notion ofstiff ODEs andstability functions. From this we will be able

5Theθ–rule as presented here is based on sections 1.7.6 and 2.2.2 in [8]
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to see how we should chooseθ in order to (theoretically) avoid instabilities in the discretiza-
tion, and therefore also in the Parareal algorithm when it is used to solve the heat and Stokes
equations. The following discussion is based on [7, chapters 4.1–4.2], unless otherwise
stated.

A model problem and the unique solution

For our discussion of the concepts of stability and what stiff ODEs are, we will use a simple
model problem and present an expression for its unique solution. The unique solution (or at
least the knowledge on how the unique solution behaves) is essential for showing how well a
numerical method approximates the true solution. We will study the simple model problem

du
dt

= Au, u(0) = u0, whereA =
[
−100 1

0 − 1
10

]
, (2.10)

which is originally presented in [7, chapter 4.1]. The parallel to the semi–discrete heat
equation presented earlier in this chapter should be clear. By Proposition 2.2.1 the unique

Proposition 2.2.1.Let vj be an eigenvector of the n×n matrix C with eigenvalueλ j , and
α j a scalar constant determined by the initial condition x0. Then

x(t) =
n

∑
j=1

v je
λ j tα j = VeDtα, V = (v1 | v2 | · · · | vn)

D = diag(λ1,λ2, . . . ,λn)

(2.11)

is ageneralsolution to the system of differential equations
dx
dt

= Cx.

[6, Theorem 4.7.3]
[6, Principle of superposition,pg.155]

The vectorα is determined by the initial condition

x(0) = Vα ⇒ α = V−1x0,

such that, with[6, Theorem 6.3.1],

x(t) = VeDtV−1x0 = etCx0 (2.12)

is theuniquesolution to the system
dx
dt

= Cx, x(0) = x0.
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solution to (2.10) is

u(t) = eAtu0 = VeDtV−1u0 or, alternatively, u(t) =
n

∑
j=1

eλ j ty j = eDty j , (2.13)

wherey j is a vector dependent onα j andv j
6. As long as Reλ j < 0, it is clear that the

solution of (2.10) behaves in an asymptotic manner. Solutions where Reλ j > 0 is of lim-
ited interest since the solution would rapidly become very large. We will assume that we
have eigenvalues where the real components are negative; Reλ j < 0, because we only dis-
cuss stability for a stable solution. For our model problem we have the following pairs of
eigenvalues and eigenvectors:

λ1 =−100, v1 =
[

1
0

]
λ2 =− 1

10
, v2 =

[
1

999
10

]
Stiffness

The aim is to produce numerical methods that recapture the asymptotic behaviour of the
exact solution. Discretizing (2.10) by theθ–rule, we have7

u`−∆tθAu` = u`−1 +∆t(1−θ)Au`−1

u` =
(

I +∆t(1−θ)A
I −∆tθA

)
u`−1

which can be written as

u1 =
(

I +∆t(1−θ)A
I −∆tθA

)
u0

u2 =
(

I +∆t(1−θ)A
I −∆tθA

)
u1 =

(
I +∆t(1−θ)A

I −∆tθA

)2

u0

...

u` =
(

I +∆t(1−θ)A
I −∆tθA

)`

u0, (2.14)

whereI is the identity matrix. Since we want (2.14) to approximate (2.13) att = t` = `∆t,
we should have (

I +∆t(1−θ)A
I −∆tθA

)`

≈ eAt̀ .

6For our discussion we assume that the diagonalizationA = VDV−1 is always possible.
7This should really be written as

(
(I −∆tθA)−1 (I +∆t(1−θ)A)

)
, but for the sake of a more compact

expression we follow the notation used in [7]
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A reasonable conjecture would then be that, based on (2.13), we can write the above as(
I +∆t(1−θ)D

I −∆tθD

)`

≈ eDt`

⇓(
1+∆t(1−θ)λ j

1−∆tθλ j

)`

≈ eλ j t`

such that (2.14) reads

u` = V

(
I +∆t(1−θ)D

I −∆tθD

)`

V−1u0 =
n

∑
j=1

(
1+∆t(1−θ)λ j

1−∆tθλ j

)`

y j .

In order for (2.14) to have the asymptotic behaviour of the exact solution we must have∣∣∣∣1+∆t(1−θ)λ j

1−∆tθλ j

∣∣∣∣< 1,

or else the solution will rapidly blow up and become very large, i.e it becomes unstable.
Let us look at how this influences the choice of suitableθ–values. Settingθ = 0 causes

the discretization method to be explicit euler, and unless
∣∣1+∆tλ j

∣∣< 1 for all eigenvalues,
the solution will be unstable (it becomes arbitrarily large). Asλ1 =−100 andλ2 =−1/10,
we see thatλ1 places severe restraints on∆t compared toλ2 (λ1 force∆t < 1/50). If, on the
other hand, we chooseθ = 1, we have an implicit euler scheme and the inequality that must
be satisfied for all eigenvalues become∣∣∣∣ 1

1−∆tλ j

∣∣∣∣< 1,

which is unconditionally true because 0< ∆t and Reλ j < 0, rendering
∣∣1−∆tλ j

∣∣> 1, such
that we can choose any non–negative∆t as our time–step.

For θ = 0 we pointed out howλ1 enforced a much smaller∆t compared to the demands
set byλ2 in order for the system to remain stable: widely different scales on the eigenvectors
forced us to crawl when we could leap toward the solution. Our model problem is therefore
an example of a so–calledstiff ODE. [7, pg. 56] defines an ODE as stiff if “. . . its numerical
solution by some methods requires a significant depression of the step–size to avoid insta-
bility.”. The mechanism that usually induces stiffness is systems that have eigenvalues with
very different scales, which implies that the “lifetime” of the differentv jeλ j tα j components
of the solution varies greatly.
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Stability

As earlier stated, we want methods that are unconditionally stable in order for the Parareal
algorithm to function properly under testing where it would be desirable to take larger time
steps in order to reduce the execution time. In our preceding discussion of stability we
pointed out that, for theθ–rule discretization of our model problem, the factor

I +∆t(1−θ)A
I −∆tθA

was the crux for establishing stability. We call this thestability functionfor theθ–rule, and
write

R(z) =
I +(1−θ)z

I −θz
, z= ∆tA.

We can also write the stability function in terms of the eigenvalues

R(zi) =
1+(1−θ)zi

1−θzi
, zi = ∆tλi , ∀ λi ∈ A

The stability domainD of a method is the set of allzi for which the asymptotic behaviour
of the ODEs is recovered, provided that the latter equation is stable (Reλi < 0). Strong A–
stability is a way to restrainR(z) to prevent the numerical method to blow up and produce
nonsense solutions. A method that satisfies

lim
z→−∞

R(z) = a, where 0< |a|< 1

is said to be strong A–stable. See Definition 4 in [20]. By way ofL’Hôpital’s rule one finds
that theθ–method is strong A–stable for1

2 < θ < 1. In [20, Theorem 3] it is stated that if, for
stiff ODEs, the stability function of the coarse propagator of the Parareal algorithm satisfies

lim
z→−∞

|R(z)| ≤ 1
2
,

then the predictor–corrector scheme on which the Parareal algorithm is built will be stable.
This implies that the Parareal algorithm will be stable for2

3 ≤ θ ≤ 1 – provided that the
underlying ODEs are stiff. Semi–discretization ofparabolicPDEs give rise to a system of
stiff ODEs, regardless of the elected method of discretization for the spatial domain [5]. As
both the heat and the Stokes equations are parabolic PDEs we will be using Parareal to solve
stiff systems, which justifies our discussion of stability for such systems.

This concludes our preliminary chapter. The next two chapters uses the spatial and tem-
poral discretization techniques discussed here on the heat and Stokes equations, respectively,
to arrive at fully discretized systems. Their implementation will also be discussed, before
we move on to the Parareal equation. The stability concepts we have established will play
a key role in studying how Parareal functions on the Stokes equations, which is covered in
chapter 6 on page 70.



Chapter 3

The Heat Equation

We will in the following give an introduction to the heat equation, and briefly describe the
methods applied for discretization in space and time. The heat equation is also referred to as
the diffusion equation, since it models how heat propagates through a medium over time. As
a matter of fact, you can use the heat (diffusion) equation to describe any unit that spreads
out over a defined region in space and time in a manner consistent with heat dispersion.

The heat equation will be used extensively throughout this thesis. From a PDE point of
view it is a simple and well studied parabolic equation, and as such it is an excellent test
problem for this group of PDEs. Here, we will use the equation to establish discretization
principles before moving on to the more complex Stokes equations. In addition, the Parareal
algorithm is known to be well behaved when it is used to solve the heat equation – it was
for instance one of the model problems applied in the study of the algorithm’s convergence
and stability properties in [20]. This implies that we can use the heat equation both as a
reference point for how we expect the algorithm to perform with the time dependent Stokes
equationsandas a means for testing the Parareal implementation itself. Assuming that the
model problem is correctly implemented, any deviations from the expected behaviour will
be due to errors in the Parareal source code. “Correct” Parareal behaviour will be covered
in later chapters.

3.1 Mathematical Model

The heat equation describes the variation of temperature in a given region over time, i.e how
heat diffuses in a conductor. For heat propagation in a homogeneous medium our initial-

15
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boundary value problem (IBVP) reads

∂u
∂t

= ∇ · (κ∇u)+ f in Ω, 0 < t, (3.1)

u(x, t) = g(x, t) on ΩE, 0 < t, (3.2)

∇u·η = 0 onΩN, 0 < t, (3.3)

u(x, t) = u0 in Ω, t = 0, (3.4)

whereu(x, t) is the unknown temperature,κ is a material-specific constant describing the
conductive properties of the medium andf (x) is a (constant in time) heat source.u0 is the
initial state of the system,g(x, t) is Dirichlet type boundary conditions andx∈ Rd.

3.1.1 Temporal discretization

In chapter 2.2 on page 9 we established theθ–rule as a discretization method for the time
domain, and we will employ it here to semi–discretize the heat equation. When previously
discussing theθ–rule, we merely presented the technique, and briefly discussed its general
stability properties. We pointed out how stability influence the range of possibleθ values
when discretizing a stiff problem that is to be used with Parareal in a meaningful way.
This restrictedθ such that we must haveθ ∈ [2/3,1]. The stability and convergence of the
Parareal algorithm were studied in [2] and [20], and it was found that as long as the time
discretizations are stable, the algorithm shows distinct, exponential convergence toward the
serial computation based on the fine propagator1. Naturally, the algorithm will no longer
show the characteristic exponential decay in error ifθ /∈ [2/3,1]. By using theθ–method
to discretize, adjusting theθ is easily done, and it is simple to verify that the convergence
of the algorithm is behaving as expected [for the heat equation]. As the heat equation was
one of the model problems in [20], we know that Parareal will behave just as expected when
solving the initial–boundary value problem (3.1)-(3.4) – which incidentally also makes it an
excellent test case for the Parareal implementation itself.

The overall goal of this thesis is to study the behaviour of Parareal when run on the un-
steady Stokes equations compared to running it on our blue–print model, the heat equation.
It it is therefore of interest to discretize the Stokes equations such that it is possible to study
the performance of Parareal under the different temporal discretization techniques induced
by varyingθ. By doingθ–discretization of the heat equation, we have a reference for how
the Pararareal algorithm should behave, and also the means to establish the principles of
θ–discretization on a simpler problem.

1Central properties and typical convergence rate of the algorithm are reviewed in chapters 5.1.1 on page 58
and 5.1.3 on page 61
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Applying (2.9) to (3.1) we have

u`−u`−1

∆t
= θ

(
∇·(κ∇u`)+ f

)
+(1−θ)

(
∇·(κ∇u`−1)+ f

)
u`−∆t ∇·(κ∇u`) = ∆tθ f +u`−1 +∆t(1−θ)∇ · (κ∇u`−1), (3.5)

which leaves us with a semi-discrete system of equations with initial and boundary condi-
tions given by (3.2)–(3.4).

3.1.2 Spatial discretization

We will discretize the spatial domain of the the semi-discrete equations (3.5) by using the
Finite Element Method(FEM) as described in chapter 2 on page 3. By approximatingu as
a sum over weighted basis functions,

u` ≈ û` =
nu

∑
j=1

u`
jNj(x),

and integrating to minimize the residual, we have
Z

Ω

[
û`−∆tθ∇·(κ∇û`)

]
Ni dΩ =

Z
Ω

[
∆tθ f + û`−1+

∆t(1−θ)∇ · (κ∇û`−1)
]
Ni dΩ,

(3.6)

for i = 1, . . . ,nu. Using Green’s lemma to integrate by parts ( 2.1.1 on page 6), and the
natural boundary condition (3.3) to eliminate the integral over the boundary∂ΩN, we get

Z
Ω

[
û`Ni +∆tθκ∇û` ·∇Ni

]
dΩ = c`

i , i = 1, . . . ,nu

nu

∑
j=1

u`
j

(Z
Ω

[
NjNi +∆tθκ∇Nj ·∇Ni

]
dΩ
)

= c`
i , i = 1, . . . ,nu,

wherec`
i is the right–hand side of (3.6). We must also do integration by parts on the

∇·(κ∇û`−1) term inc`
i , or else we will still demand that the basis functions are twice differ-

entiable. As was pointed out in chapter 2.1.1 on page 5, this is not desirable since it restricts
the pool of possible basis functions. Applying the same procedure as above onc`

i , we arrive
at the linear system

nu

∑
j=1

(Mi j +Ki j )u`
j = c`

i , i = 1, . . . ,nu, (3.7)
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where

Mi j =
Z

Ω
NjNi dΩ

Ki j =
Z

Ω
∆tθκ∇Nj ·∇Ni dΩ

c`
i =

Z
Ω

[(
∆tθ f + û`−1

)
Ni −∆t(1−θ)κ ∇û`−1 ·∇Ni

]
dΩ.

M is often referred to as themass matrixwhereasK is usually called thestiffness matrix.
Mapping the integral expressions for each element to the local coordinate system, we have

M̃(e)
i j =

Z
Ω̃

NiNj detJ dξ1 · · ·dξd

K̃(e)
i j =

Z
Ω̃

∆tθκJ−1∇Ni ·J−1∇Nj detJ dξ1 · · ·dξd

c̃(e)`
i =

Z
Ω̃

[(
∆tθ f + û`−1

)
Ni −∆t(1−θ)κ ∇û`−1 ·∇Ni

]
detJ dξ1 · · ·dξd

whereξ = (ξ1 · · ·ξd) are the local coordinates in reference elementΩ̃. The parallel to Diff-
pack should be easy to perceive; the element expressions can be found in Listing 3.1 on
page 26.

3.2 Iterative solver

By the discretizations done in the previous section, we now have a linear system that must be
solved in order to create a numeric solution to our model problem. The next step is therefore
to choose an appropriatelinear solver. In the following discussion we will write the linear
system (3.7) as

Mu+Ku = (M +K)u = c.

In choosing the iterative solver, the properties of the matrixA = M +K play a central role.
We will discuss the properties ofM andK separately, and from this discussion draw con-
clusions on the overall properties ofA. As we will show, both the mass and the stiffness
matrices aresymmetric, positive–definite(SPD) matrices, and thereforeA is also SPD. This
is significant for our choice of solver. The Conjugate Gradient (CG) method is one of the
more prominent and well–known iterative methods for solving SPD systems of linear equa-
tions, and thepreconditionedalgorithm is an efficient de facto standard for such systems.
Indeed, the preconditioned CG will be our choice of iterative solver for the heat equation.

For our study ofM andK we will only consider real vectors, i.ex∈ Rn, as the solution
to (3.1)–(3.4) will be real. The object of the current section is not to present why the matrix
must be SPD in order to use CG as the iterative solver, but merely show that it is, and
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that CG can indeed be used to solve the current problem. For a good introduction to the
conjugate gradient method and why it requires symmetric, positive–definite matrices, see
[17] and [19].

A matrix ispositive–definiteif it satisfies

xTAx> 0, ∀ x 6= 0,

andsymmetricif it is its own transpose, i.eA = AT , which means that although the diagonal
itself is arbitrary, all other entries occur in pairs on opposite sides of the main diagonal. A
symmetric matrix is necessarily square. For further details, see [13]. We also have that ifA
andB are positive–definite, then the matricesA+B andABwill be positive–definite.

We first consider the mass matrix

M =
Z

Ω
NNT dΩ,

whereN = [N1 N2 · · ·Nnu]. As each componentMi j in M relies onNjNi , it is clear that
M must be symmetric; the entries will repeat themselves across the diagonal sinceNiNj

is commutative (NiNj ≡ NjNi). To determine whetherM is positive–definite we need to
consider the matrixB = NNT . If B is positive–definite,M will clearly also be positive–
definite. We have

uTBu= uTNNTu = (u1N1 + · · ·+unuNnu)(u1N1 + · · ·+unuNnu)

=

(
nu

∑
j=1

u jNj

)2

,

which implies
uTNNTu > 0 ∀ u 6= 0,

and henceM is symmetric, positive–definite.
We then turn our attention to the stiffness matrix,K. The following discussion is based

on [16]. Let

B = ∇N =


∂N1
∂x1

· · · ∂Nnu
∂x1

...
...

...
∂N1
∂xd

· · · ∂Nnu
∂xd

 ,

such that we can writeK as
K =

Z
Ω

∆tθκ BTB dΩ.

Also, we may express entry(i, j) in the matrix productBTB as

d

∑
r=1

Bri Br j .
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Following the same argument as forM, BTB is clearly symmetric because the productBri Br j

is commutative, and thusK must be symmetric. To ascertain whetherK is positive–definite,
we consider the productuTKu. Recall that the solution to the heat equation is approximated
asû(x) = uN(x), and thusuB= u∇N = ∇û, and we can writeuTKu as2

uTKu =
Z

Ω
∆tθκ uTBTBu dΩ =

Z
Ω

∆tθκ∇û·∇û dΩ≥ 0, (3.8)

because∇û·∇û≥ 0. This implies thatK is at the very least positive–semidefinite. However,
from (3.8) we see thatuTKu = 0 if and only if the temperature gradient∇û is zero for all
x∈ Ω, which would also imply that all components (nodal values) inu are equal. To study
this prerequisite, we splitu into two logical blocks,

u =
[

uE

ũ

]
.

uE denotes all the nodes on the essential boundary∂ΩE determined by the Dirichlet bound-
ary conditionu(x = a, t) = g(a, t), a on ∂ΩE, and ũ is the vector of remaining nodes in
Ω∪ ∂ΩN. As uE is prescribed, all components in ˜u would also have to be given byg(a, t)
in order for∇û to be zero. However,x is obviously not restricted to∂ΩE, and sog(x = a, t)
is clearly not a solution to (3.1). We therefore have∇û 6= 0 when the solution must satisfy
Dirichlet boundary conditions. Thus

uTKu > 0 ∀ u 6= 0,

andK is symmetric, positive–definite.
We conclude thatM + K is SPD, and we can use the conjugate gradient as an iterative

solver for the system.

3.2.1 Preconditioning

We will take a brief look at preconditioning of the linear system, as it is a necessary tool for
ensuring convergence within a limited number of iterations, and so guarantees that a solution
is found within a reasonable amount of computation time. Preconditioners for the Conjugate
Gradient method is available as library routines in both Diffpack and Pysparse, and only
limited consideration of its basic shape is necessary here. Preconditioning the linear system
arising from discretizing the Stokes equations is (naturally) more complex. Neither Diffpack
nor Pysparse have any immediate functionality to precondition the system, and so we must
construct it from more general library preconditioning tools. As a natural consequence, the
details of the preconditioner will receive more attention in the Stokes chapter, whereas we

2Here,u is the vector representing the weights{u j} from chapter 3.1.2 on page 17, not to be confused with
the exact solutionu(x, t).



Chapter 3. The Heat Equation 21

present more general concepts of preconditioning here. Also, by introducing preconditioners
here, we once again underline the similarities between solving the (in PDE terms) simple
heat equation and the more complex Stokes equations.

Preconditioning is a way to manipulate a linear systemAx = b before applying an iter-
ative solver, with the aim of making the system better suited for the particular solver. By
making the linear system better suited we mean that by applying the preconditioner before
solving the linear system, the number of iterations before the iterative solver converges is
significantly reduced. In other words, we increase the efficiency, as long as applying the
preconditioner is significantly cheaper than the total cost of the avoided iterations.

The efficiency of the conjugate gradient method depend on well conditioned matrices.
This is for that matter true for all the methods of the same family – theKrylov subspace
methods. The condition number ofA , κ(A), is a measure of how well-posed the system
is. For a singular matrixκ → ∞, whereas the identity matrix hasκ = 1. This indicates that
the smaller the condition number, the more amenable the linear system will be to digital
computation. We would like to find a preconditionerB, such thatκ(BA)<<κ(A), with the
logical consequence thatB should in some way be close toA−1;

BAx = Bb ≈ I x = A−1b.

To use with the conjugate gradient method,B must be symmetric, positive–definite, in order
for BA to be SPD. Of course,B must also be much cheaper to find thanA−1 – if not we
could just as well have run the iterative solver without preconditioning. For the precondi-
tioned conjugate gradient method we remark that one does not actually buildB, but one
must be able to compute the effect of applyingB to a given vectorr. For preconditioning
to be cost–effective, the improvement of the convergence rate must outweigh the cost of
computingBr once per CG iteration. Further information on the CG algorithm and how it
is preconditioned can, as for other details on the method, be found in [8], [17] and [19].

The preconditioner options listed in the aforementioned literature classifies naturally
into two categories; those preconditioners based onclassical iterative methodsor those
based onincomplete factorization. We will not detail all the different methods that fall into
each category, only point out the possible choices, based on our implementation platform
(Diffpack or Pysparse).

Symmetric Successive Over–Relaxation (SSOR)

Of the classic iterative methods we may only use Jacobi iterations or Symmetric Successive
Over–Relaxation (SSOR) iterations, as they both ensure that the matrix of the precondi-
tioned system continues to be symmetric positive–definite. The merits of these two methods
as preconditioners are briefly discussed in [8, C.3.2], and based on this we see SSOR as
the preferred classic iterative preconditioner. When the classic iterative methods are used
as preconditioners, one usually does exactly one (SSOR) iteration and use the resulting ma-
trix as the preconditionerB. Theprecon module in Pysparse only offer classic iterative
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methods as preconditioners, so SSOR will be used when solving the equation in a Pysparse
setting (see chapter 3.4 on the facing page).

Relaxed Incomplete LU Factorization (RILU)

Of the incomplete factorization methods, the conclusion in [8, C.3.3] lean towardRelaxed
Incomplete LU Factorization(RILU) as the preferred preconditioner for the conjugate gra-
dient method. RILU is not available in the Pysparse module, so this preconditioner will
only be used when Diffpack also provides the iterative solver. The basic idea is that we
setB = A and use Gaussian elimination to splitB into an upper and lower triangle. To
avoid destroying the sparsity pattern inA by fill–ins from the factorization, we multiply all
candidate fill-ins with a relaxation parameterω ∈ [0,1], and add them to the main diagonal
instead. RILU usually performs well as a preconditioner, although adjustments in the choice
of ω must probably be done for each initial-boundary value problem.

3.3 The heat equation and Parareal algorithm

The heat equation is aparabolicPDE, and the Parareal algorithm is unconditionally stable
for most time discretizations of parabolic equations [2]. It is also a stiff problem as was
discussed in chapter 2.2.1 on page 10, and hence we have from [20] that the algorithm
should be stable for any choice of coarse propagator with the property

lim
z→−∞

R(z) =
1+θz

1− (1−θ)z
≤ 1

2
,

whereR(z) is the stability function. As previously mentioned the above criteria leads to
θ ∈ [2/3,1]. Needless to say, the algorithm will not be stable if the the discretization for the
fine propagator is unstable. Based on chapter 2.2 on page 9 we find thatz= ∆tK, whereK
is the stiffness matrix defined in chapter 3.1.2 on page 17.

Figure 3.1 and Figure 3.2 show how the error compared to the solution from a serial
computation using the fine propagator develops as the number of Parareal iterations increase.
The significance of the plots will become clearer after chapter 5 on page 54. In Figure 3.1 the
Crank–Nicolson scheme (θ = 1/2) is used for the coarse solver, and in Figure 3.2θ = 2/3.
The fine solvers in both plots use Implicit Euler, which implies that they will be stable for
any chosen time step. The Crank–Nicolson scheme clearly generates a form of instability,
as is expected from the analysis. We remark that solving the heat equation using Crank–
Nicolson and the coarse propagator (i.e. not using Parareal) is stable. Therefore it is not
any instability in the coarse solver itself that prevents the algorithm from converging like it
should.

You may also note that even though we claim Figure 3.1 to be unstable, it does actually
converge as long as you run the maximum number of iterations. This is a property of the
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Figure 3.1: Parareal is not stable
when Crank–Nicolson is used for
the coarse solver. The fine solver
is stable, as it uses Implicit Euler.

Figure 3.2: Parareal shows ex-
ponential convergence toward ma-
chine precision atθ = 2/3. The fine
solver is Implicit Euler.

instability in the Parareal algorithm that deviates from the traditional definition of instability,
where taking one more time step only causes the numerical solution to be further removed
from the analytical solution. The instability properties of Parareal will be discussed further
in chapter 5 on page 54 and chapter 6 on page 70.

3.4 Implementation

Following our implementation strategy, a combination of Python and Diffpack programming
was used to implement the heat equation, in order to use Parareal to solve the heat equation.
Our reasons for implementing Parareal in Python will be discussed in chapter 8.1 on page 98.

The implementation phase of the heat equation served as a testing ground for the later
implementation of Stokes equations, and as such the usage of the heat equation as a test
model permeates most aspects of the work on this thesis. The heat equation was central
during the initial scrutiny of the possibility to smoothly combineMicrosoft Visual Studio,
Python andSWIGduring development, though naturally new techniques were discovered
during the whole development phase. The results are described in chapter 7 on page 87.
The heat equation also played a role during the development of thePysparse↔Diffpack
filter, which is discussed in appendix A on page 107. In the current section we will present
a class hierarchy that support the interface requirements set by the Parareal implementation
(see chapter 5.2 on page 63 for details). To summarize, the implementation of the heat
equation served several purposes, by being a basis for

- testing Windows development tools

- finding and testing techniques that allow Diffpack to be a pure matrix generator, letting
Python handle control of program flow.
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- testing the Parareal algorithm implementation

3.4.1 Defining the model problem

For this thesis implementation we solved the heat equation over the domainΩ ∈ [0,1]×
[0,1], x∈ Rd, d = 2, and used the following boundary and initial conditions

g(x, t) = 0, x on ∂ΩE

u0 =
d

∏
r=1

sin(πxr), x in (Ω∪∂Ω)

and set the forcing termf (x) to

f (x) = 0.

The exact solution of (3.1) is then

u(x, t) = e−dπ2κt
d

∏
r=1

sin(πxr), x∈ Rd, d = 2, (3.9)

where the subscriptr indicates space dimensionr of x, and κ is a variable that can be
changed by program input. By knowing the exact solution to your particular test problem
during implementation obviously allows you to measure the totalerror of your discrete
solution. You can then use this to verify that the discrete solution is not unreasonable, and
that the error is within the bounds suggested by error analysis. These factors will then
indicate whether the implementation is correct. We will not discuss error analysis here, but
suffice it to say that any discretization method introduces a certain error which is dependent
on the spatial grid resolution and the time–step∆t, and by studying this error one can find
how the error depends on these parameters. Error analysis is discussed in for example [8,
A.4].

3.4.2 The heat class hierarchy

The heat class hierarchy is split into two groups; simulator classes that inherit from the
fundamental Diffpack heat implementation, and a set offactory objects that conform to a
interface requirements set by the Parareal Python implementation. The hierarchy is outlined
in Figure 3.3, though we will discuss the hierarchy to some extent in the following.

The Diffpack Heat1 implementation and Python interface class

The core of the heat equation hierarchy is based on the existingHeat1 implementation
that ships with Diffpack. The class is a standard (simple) time dependent Diffpack finite
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Heat1 [DP]

Heat1 [PY]

SWIG

Heat1AnalSol [DP]exact solution

Heat1LinEq [PY] Heat1ML[PY]Heat [PY]

Heat1 Python
extn. module

Heat1FactoryBase [PY]

Heat1FactoryLinEq [PY] HeatFactory [PY] Heat1FactoryML [PY]

initMenu4Heat1 [PY]

Heat1LinEq [PY] Heat [PY] Heat1ML[PY]

DP menu settings for
Heat1 descendants

Implements the Parareal solver
interface requirements

Implements the Parareal
factory requirements

inheritance

dependency

Figure 3.3: The heat class hierarchy ([DP] and [PY] refer to implementation in Diffpack or
Python, respectively).

element simulator, though a fairly detailed documentation can be found in [8, chapter 3.10].
Heat1AnalSol is a functor class that implements the exact solution in (3.9), andHeat1 uses
it to set the initial condition plus to produce error estimates if necessary. In [11], a SWIG
interface file3 for Heat1 was fashioned to create theHeat1 Python extension moduleof the
simulator. We therefore have twoHeat1 implementations; one done by use of Diffpack
and one is a Python interface class. For clarity we will useHeat1[DP] andHeat1[PY] to
distinguish between which level of abstraction we are discussing.

The main change to theHeat1[DP] is adding support of theθ–rule to theintegrands()
function as shown in Listing 3.1 on the following page. It is mainly the construction of the
right hand side of the linear equation –elmat.b(i)+=· · · – that has seen any noteworthy
changes. This is natural, as it is the right hand side that is most affected when one goes
from implicit euler (θ = 1), which was the original implementation, to adding support for
θ≤ 1. That the right hand side is markedly changed whenθ 6= 1 should be clear by studying

3See chapter 7.3.2 on page 94 for further details on SWIG and interface files
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the final discrete equations at the end of chapter 3.1.2 on page 17. A very minor change
that deviates somewhat from the Diffpack coding standard promoted by [8], which will sim-
plify Parareal adaption, is moving the call tosetIC() from thetimeLoop() function to
solveProblem(). This is merely to accommodate the extensions done for Parareal (chap-
ter 5.2.1 on page 67), since one must then be able to provide a separate “initial condition”
depending on which sub domain in time the solver is called for.

Listing 3.1: TheHeat1::integrands() function withθ-rule discretization

vo id Heat1 : : i n t e g r a n d s ( ElmMatVec& elmat ,
cons t F i n i t e E l e m e n t& f e ) {

cons t r e a l detJxW = f e . detJxW ( ) ;
cons t i n t nsd = f e . getNoSpaceDim ( ) ;
cons t i n t nbf = f e . ge tNoBas isFunc ( ) ;
cons t r e a l d t = t i p−>D e l t a ( ) ;
cons t r e a l t = t i p−>t ime ( ) ;
r e a l g radNi_gradNj = 0 . 0 ;
r e a l g radNi_gradup = 0 . 0 ;
cons t r e a l d tThetaK = d t∗ t h e t a∗k ( fe , t ) ;
cons t r e a l dtThetaMk= d t∗(1.0− t h e t a )∗ k ( fe , t ) ;
cons t r e a l fD tThe ta = f ( fe , t ) ∗ d t ∗ t h e t a ;

r e a l up_pt = u_prev−>valueFEM ( f e ) ;/ / u_prev a t t h i s i t g . p t
Ptv (NUMT) g radup_p t ( nsd ) ; / / grad u_prev
u_prev−>der iva t i veFEM ( gradup_pt , f e ) ;

f o r ( i n t i = 1 ; i <= nbf ; i ++) {
f o r ( i n t j = 1 ; j <= nbf ; j ++) {

g radNi_gradNj = 0 . 0 ;
f o r ( i n t s = 1 ; s <= nsd ; s ++)

g radNi_gradNj += f e . dN( i , s )∗ f e . dN( j , s ) ;

e lma t .A( i , j ) += ( f e .N( i )∗ f e .N( j ) + \
d tThetaK∗ gradNi_gradNj )∗ detJxW ;

}
g radNi_gradup = 0 . 0 ;
f o r ( i n t s = 1 ; s <= nsd ; s++ )

g radNi_gradup += dtThetaMk∗ g radup_p t ( s )∗ f e . dN( i , s ) ;

e lma t . b ( i )+= f e .N( i )∗ ( fD tThe ta + up_pt )∗ detJxW −\
g radNi_gradup∗detJxW ;

}
}
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The SWIG interface file was extended so thatHeat1[PY] would support the simulator
requirements set by the Parareal Python implementation. It was also extended in such a way
that Heat1[PY] would be equipped with the means to be alinear system providerat any
given time point. Our implementation strategy for the Stokes equations is to use the finite
element aspect of the Diffpack library to build the linear system at each time step, and by
filtering the Diffpack data into Python, use Python modules to solve the (sparse) linear sys-
tem arising from the discretization. More specifically, we want to filter the Diffpack classes
into the sparse matrix environment provided by Pysparse (a Python package), and use the
linear solvers in Pysparse to solve the ensuing system. The extensions to the Python version
of the Heat1 class interface will be a means of piloting this strategy. We will not detail
all the extensions done to the class through SWIG here, only those relevant to the linear
system provider strategy. Extensions done to match Parareal requirements are covered in
chapter 5.2.1 on page 67. The central extensions for providing the linear system is sketched
in Listing 3.2 on the following page.

ThegetMatrix() function need only be called once, as the matrix is static for all time
points. The returned matrix is the global matrix assembled from all theelmat.A(i,j)
entries in theHeat1::integrands() function. The matrix is returned as aMatrix_double
pointer. It can be filtered to Pysparse using theDp2Pysparse extension module.getRHS()
returns the right hand side vector of the linear equation system, and filtering can be done
using theDp2Numeric extension module. The Pysparse package only offers its own matrix
format, and uses thearray object in the well–known Numeric (NumPy) module4 to handle
vectors. BothDp2Pysparse andDp2Numeric are described in appendix A on page 107.

As the right hand side is, through theintegrands() function inHeat1[DP], dependent
on the current and previous solutions, the SWIG interface must offer a mechanism for updat-
ing these with new values. If the current and previous solutions do not change, we practically
have a steady–sate problem as the linear system will no longer change over time. Hence we
havesetSolution() which accepts a standard Diffpack vector object. Said vector object
can be created out of a Numericarray object through the filter options inDp2Numeric. The
current solution in the Diffpack solver can be copied into the object holding the solution
at previous time step usingshiftSolution(). Typically you would, in Python, first call
shiftSolution() and thensetSolution().

To trigger the creation of the linear system at a particular time step you would call
makeSystem(). The boolean is a flag indicating whether you want the system matrix to be
built as well as creating a new right hand side. You should only need to build the matrix
once, before looping over the time steps.

4Numeric and other relevant open–source Python modules are discussed in chapter 7.1 on page 88
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Listing 3.2: Excerpts from SWIG interface file forHeat1

%module Heat1
%{
# inc lude " Heat1 . h "
%}

c l a s s Heat1 : p u b l i c FEM{
/∗
SWIG d e f i n i t i o n o f Heat1 i s i d e n t i c a l t o D i f f p a c k
d e f i n i t i o n , bu t a l l Handle macros must be expanded ,
i . e . we have v a r i a b l e s on t h e form
Handle_Fie ldFE u ;
∗ /

} ;

%ex tend Heat1 {

/ / Ma t r i x g e n e r a t o r f o r l i n e a r sys tem p r o v i d e r
Mat r i x_doub le∗ g e t M a t r i x ( ) ;

/ / RHS g e n e r a t o r f o r l i n e a r sys tem p r o v i d e r
Vec_double& getRHS ( ) ;

/ / S e t s c u r r e n t s o l u t i o n t o newSol
vo id s e t S o l u t i o n ( Vec_double& newSol ) ;

/ / S h i f t s u i n t u_prev
vo id s h i f t S o l u t i o n ( ) ;

/ / B u i l d s l i n . s y s . compute_A = f a l s e−> on l y b u i l d RHS
vo id makeSystem ( boo l compute_A ) ;

}
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The Python subclasses

In the process of developing and testing possibilities, three subclasses ofHeat1[PY] were
created, although only one follows the scheme wanted for the Stokes implementation. All
three subclasses are depicted in the class hierarchy in Figure 3.3 on page 25. When creating
these classes it was not only a goal to be able to solve the heat equation through Python, but
also to have the classes implement the interface demands set on any solver to be used by the
Parareal algorithm.

Heat1LinEq was the first solver adapted for Parareal, and was actually developed more
for testing the Parareal implementation itself. As most of the adaptation is done at SWIG
interface file level, it offers a very minimal extension toHeat1[PY]. The class name refers
to how the Diffpack classLinEqAdmFE handles the iterative solver used to solve the linear
system – which is set to the preconditioned conjugate gradient method viainitMenu4Heat1
as discussed below. Since the skeleton of the SWIG interface file was available at the very
beginning, this class existed early in the development phase, and as such it was also at one
point a matrix provider for testing theDiffpack2Pysparse filters and any other C++–to–
Diffpack related topic presented in chapter 7 on page 87. Because of its role in testing the
Parareal equation this class is quite adequately documented in chapter 5.2.1 on page 67.
The reasoning behind the constructor is however not covered in 5.2.1, as it is not rele-
vant for the discussion there. As the same strategy concerning theMenuSystem object has
been used for all Python simulators in this thesis, both forheatt and Stokes, we will pro-
vide some of the background for the chosen solution here. Different options in a Diffpack
simulator are set through aMenuSystem object. Every Diffpack simulator has adefine()
function that associates theMenuSystem object to the simulator and determines the possible
menu options for the simulator.scan() is used to set the chosen options for the simulator.
define() can be called only once perMenuSystem instance, whereasscan() can be called
an arbitrary number of times. This implies that several instances of the same simulator
may share aMenuSystem object, but instances ofdifferentsimulators may not. To change
a particular default option set bydefine() in a menu object through program code one
uses theset() method.initMenu4Heat1 is a Python class provided as a means to change
the default options and “groom” theHeat1[DP] solver to function with the Python classes.
initMenu4Heat1 is a callable object that accepts a Python wrapped5 MenuSystem instance
and sets the desired options in the menu.

A clean way to handle theMenuSystem would be to equip each solver instance with a
uniqueMenuSystem object, and then useinitMenu4Heat1 to set the options. However,
there is some trouble when creating and using newMenuSystem objects that cause the Diff-
pack engine to shut down. Theglobal_menu object is however available, and can be used
instead. As it was not overly important to make theMenuSystem issue work in an ideal

5See appendix A on page 107
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Listing 3.3: The Heat1LinEq constructor

import Heat1
import Di f fpack2Py thon

c l a s s Heat1LinEq ( Heat1 . Heat1 ) :
" " "
C l a ss a d j u s t s t h e i n t e r f a c e t o f i t t h e P a r a r e a l a l g .
Uses t h e D i f f p ac k LinEqAdmFE t o s o l v e t h e l i n e a r sys tem .
" " "
def _ _ i n i t _ _ ( s e l f , m e n u I n i t i a l i z e r ,

ve rbose = Fa lse , save = F a l s e ) :
" " "
m e n u I n i t i a l i z e r i s c a l l a b l e ; a c c e p t s MenuSystem
and uses i t t o s e t d e s i r e d ( non−d e f a u l t ) o p t i o n s .
" " "
Heat1 . _ _ i n i t _ _ ( s e l f )
s e l f . menu = Heat1 . g loba l_menu
i f not i s i n s t a n c e ( s e l f . menu , D i f f pack2Py thon . MenuSystem ) :

#wrap t h e o b j e c t
s e l f . menu = D i f f pack2Py thon . MenuSystemPtr ( s e l f . menu )

# i f no t menu . d e f i n e d :
i f menu . empty ( ) :

s e l f . d e f i n e ( s e l f . menu )
e l s e: s e l f . a t tachMenu ( s e l f . menu )
m e n u I n i t i a l i z e r ( s e l f . menu )
s e l f . scan ( )
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way in order to study the interaction between Parareal/Heat and Parareal/Stokes, we opted
for the less satisfactory solution shown in the constructor in Listing 3.3 on the preceding
page. All objects in theHeat1 extension module can use the sameMenuSystem object, and
this structure will therefore not create any conflicts, as long as you do not pass theHeat1
global menu to objects outside the extension module. The functionattachMenu() called
as an alternative todefine() is a SWIG created extension similar to those in Listing 3.2
on page 28 that associates theMenuSystem object to the simulator without defining menu
items.

Heat1ML had a single purpose, which was to test the Python version of the ML algebraic
multigrid (AMG) package, and make sure that we were able to use it on Windows. As such,
the class is a “proof of concept” in that the module could indeed be used to solve a linear
system in the given Python setting. Theml extension module is not officially available6,
and had not been tested on Windows, so the class was designed to test the module and fix
possible Unix related issues. It was also a means to study and document the Python interface
of the module. The results from this testing is documented in appendix C on page 115.
Heat1ML uses algebraic multigrid to solve the linear system at each time step, which, unless
you have a large number of nodes, will be very inefficient compared to the solvers employed
by Heat1LinEq or Heat.

The Python ML module uses the matrix formats in the Pysparse package, and inHeat1ML
Diffpack functions as a pure linear system provider: a Python module independent of Diff-
pack solves the linear system after the Diffpack data has been filtered into Python objects.
Multigrid is well suited to solvingelliptic problems, and does so efficiently – provided
that the linear system is large enough. This is actually the reason for our interest in the
module, though we have only discussed parabolic PDEs so far. As will become clear in
chapter 4.2.1 on page 42, the Stokes preconditioner is composed of blocks of theinverse of
elliptic operators, with the consequence that one must apply a linear solverin order to find
the preconditioner. Based on the ML module’s close link with Pysparse and its proficiency
in handling elliptic operators it is a natural tool to employ for calculating each block in the
preconditioner. The implementation ofHeat1ML is too large to show in its entirety here, but
the class interface is displayed in Listing 3.4 on the next page to give an inkling of how it
has been done.

Heat is the full test example of the Diffpack↔Python implementation of Stokes prob-
lem. Like Hea1tML it takes full use of the linear system providing functions outlined in
Listing 3.2 on page 28 to create or refresh the linear system for each time step, but it uses
the iterative solvers initsolvers module of the Pysparse package to solve the system. One
of the iterative methods accompanying the module is the preconditioned conjugate gradient

6The author, Roman Geus, wrote the module for his own work, and has of yet no immediate plans of
making it publicly available.
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Listing 3.4: The Heat1ML class interface

from Heat1 import ∗
import Di f fpack2Py thon , ml
from NumWrap import NumWrap

c l a s s Heat1ML ( Heat1 ) :
" " "
C l a ss a d j u s t s t h e i n t e r f a c e t o f i t t h e P a r a r e a l a l g .
Uses ML and P ysp a rs e t o s o l v e t h e l i n e a r sys tem .
" " "

def _ _ i n i t _ _ ( s e l f , m e n u I n i t i a l i z e r , MLTolerance =1.0 e−8,
ve rbose = Fa lse , save = F a l s e ) :

def _ f i l l E s s B C ( s e l f ) :
def _ i n i t L i n e a r S y s t e m ( s e l f ) :
def _solveTimeDomain ( s e l f , s t a r t S o l u t i o n ) :
def g e t S o l u t i o n ( s e l f ) :
def ge t IC ( s e l f ) :

def solveTimeDomain ( s e l f ,∗ a r g s ) :
" " "
So l ves t h e Heat1 e q u a t i o n u s in g c u r r e n t t i m e s t e p
and s t a r t S o l u t i o n as i n i t i a l cond . 3 o v e r l o a d s :

solveTimeDomain ( s t a r t S o l u t i o n )
So l ves Heat e q u a t i o n i n c u r r e n t t imedomain

solveTimeDomain ( t S t a r t , tS top , s t a r t S o l u t i o n )
So l ves Heat e q u a t i o n i n [ t S t a r t , t S t o p ] .

solveTimeDomain ( t S t a r t , t S t o p )
So l ves i n [ t S t a r t , t S t o p ] u s i n g t h e sys tem IC .

" " "

def _so lveAtTh isT imeStep ( s e l f ) :
" " "
L ike so lveA tTh isT imeStep ( ) i n D i f fpack , bu t uses ML
t o s o l v e t h e l i n e a r e q u a t i o n sys tem .
" " "
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method, which is, as concluded in chapter 3.2.1 on page 20, our preferred iterative solver for
this particular problem. The Pysparse package also has a precondition moduleprecon with
preconditioners that merge seamlessly with functions fromitsolvers. The module only
implements the classic iterative methods Jacobi and SSOR, and based on the earlier conclu-
sions we use SSOR to precondition the system inHeat. The class interface is identical to
that ofHeat1ML as listed in Listing 3.4 on the facing page, and it involves the same filtering
back and forth between Python and Diffpack at each time step to update the linear system.

The factory classes

The Parareal module usesfactory classesto present a generic interface for creating new
coarse and fine solver instances which it will use when running the algorithm. We once again
refer to the Parareal chapter for further details. The factory hierarchy presented in Figure 3.3
on page 25 is very simple; we have a factory base class that implements the expected public
interface, whereas the subclasses specify the class type of the returned solver instance, i.e.
Heat1LinEq, Heat1ML or Heat.

The Parareal algorithm opens for using different simulators for the fine and coarse
solvers, and the factory classes accommodates this by giving you the option of using distinct
θ–values for the fine and coarse solvers. The class interface for the base class and one sub-
class (the subclasses are all similar) is displayed in Listing 3.5 on the following page. This
concludes the chapter on the heat equation. The following chapter uses the same basic tech-
niques as we have discussed here, but just as the Stokes equations are more complex than
the heat equation, there are an increased number of factors to consider when discretizing and
implementing them. As the implementation for the heat equation has been covered in such
detail here, the Stokes chapter will merely give an overview over the elements that strongly
differ from the strategies used for hte heat implementation. It is also assumed that with the
details of this chapter it will be relatively straight forward to explore the actual source code.
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Listing 3.5: The Heat1FactoryBase and HeatFactory interfaces

c l a s s Heat1Fac to ryBase :
" " "
∗ g r i d R e s o l u t i o n i s t h e number o f unknowns i n each
s p a t i a l d i r e c t i o n , x [ , y , z ] .
" " "

def g e t F i n e S o l v e r ( s e l f , t S t a r t , tS top ,
t imeStep , ∗ g r i d R e s o l u t i o n ) :

def g e t C o a r s e S o l v e r ( s e l f , t S t a r t , tS top ,
t imeStep , ∗ g r i d R e s o l u t i o n ) :

# ====================================================== #

c l a s s Hea tFa c to r y ( Hea t1Fac to ryBase ) :
" " "
F a c t o r y c l a s s f o r t h e Heat1 s i m u l a t o r , u s i ng Pys pa r se
modules as s o l v e r .∗ g r i d R e s o l u t i o n i s assumed t o be
[ xNodes , yNodes ] .
" " "
def _ _ i n i t _ _ ( s e l f , m e n u I n i t i a l i z e r , t h e t a ,

f i n e T h e t a =None , ve rbose = Fa lse , save = F a l s e ) :

def _ g e t F i n e S o l v e r ( s e l f ,∗ a r g s ) :
def _ g e t C o a r s e S o l v e r ( s e l f ,∗ a r g s ) :

def _ g e t S o l v e r ( s e l f , t S t a r t , tS top , t imeStep ,
xNodes , yNodes ) :

" " "
R e s e t s m e n u I n i t i a l i z e r s e t t i n g s a c c o r d i n g t o i n p u t
v a r i a b l e s and uses i t t o c r e a t e a Heat ( ) i n s t a n c e .
" " "



Chapter 4

The Time Dependent Stokes Equations

The following chapter introduces the time dependent Stokes equations with the associated
discretization and implementation. It is largely based on the material on the steady–state
Stokes problem discussed in [9] and [12]. Particularly, we will build the implementation of
the unsteady Stokes equation on the steady–state class hierarchy developed for [9]. Note
that we often will skip the “unsteady” and “time–dependent” identifiers for brevity when
discussing the equations in this chapter, and will rather take care to use the terminology
“steady–state” when needed.

To accentuate the similarities and differences between the techniques employed for the
heat equation and those used for the Stokes equations, we will to the extent possible use the
same structure as chapter 3. Due to the more complex nature of the Stokes equations com-
pared to the heat equation, the topics introduced in the previous chapter will be somewhat
expanded as we progress. Increased complexity introduces new issues that must be handled.
The principal intent of this chapter is to arrive at a solver that can be used with the Parareal
algorithm, just as we did for the heat equation.

4.1 Mathematical Model

The unsteady Stokes equations describe creeping flow, typically very viscous liquids or
liquids with low velocity. The equations are a subset of the renown Navier–Stokes equations
for incompressible fluid flow,

∂v
∂t

+v·∇v−ν∇2v+
1
ρ

∇p = f (4.1)

∇ ·v = 0. (4.2)

Here the velocity,v(x, t), and the pressure,p(x, t), are the unknowns. Due to high viscidity
or very low velocity, the convection termv ·∇v is close to zero, and we may ignore it. We

35
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are then left with (after scaling) the time–dependent Stokes equations (4.3)–(4.4). The full
initial–boundary value problem can be formulated as

∂v
∂t
−∇2v+∇p = f , in Ω, 0 < t (4.3)

∇ ·v = 0, in Ω, 0 < t (4.4)

v = h, on ∂ΩE, 0≤ t (4.5)

−∇v·η+ pη = 0, on ∂ΩN, 0≤ t (4.6)

v(x,0) = v0, in Ω, t = 0 (4.7)

p(x,0) = p0, in Ω, t = 0, (4.8)

wherex∈ Rd andd is the number of dimensions.f (x, t) represent body forces andη is the
unit normal vector pointing out ofΩ. The boundary∂Ω = ∂ΩN ∪ ∂ΩE is made up of the
natural and essential boundary conditions ((4.6)–(4.5)), respectively, and the initial state of
the system is given byv0 andp0.

Theequation of motion(4.3), is avectorequation ofd dimensions, whereas (4.4), which
governsmass conservation, is ascalarequation. (4.4) is also often referred to as the incom-
pressibility or continuity constraint. Consequently, the Stokes equations are a set ofd + 1
equations withd + 1 unknowns, as opposed to the heat equation which is a single, scalar
equation with a single unknown – the temperatureu. For clarity, we can write the equations
in their component form. For two dimensions this reads

∂vx

∂t
−
(

∂2vx

∂x2 +
∂2vx

∂y2

)
+

∂p
∂x

= fx

∂vy

∂t
−
(

∂2vy

∂x2 +
∂2vy

∂y2

)
+

∂p
∂y

= fy

∂vx

∂x
+

∂vy

∂y
= 0.

(4.9)

4.1.1 Temporal discretization

As was discussed to some length for the heat equation, discretization by use of theθ–rule
makes it trivial to change the the temporal discretization technique by adjustingθ in the
range[0,1]. By doing so, we may study how the stability properties of Parareal respond
to the differentθ values to give us an indication of how Parareal performs on this type of
problem. In practice, on would typically only use either one of the Euler methods, or the
Crank-Nicolson scheme, since these are the only “proper” methods in theθ–rule scheme, but
for our purposes it makes sense to provide the whole range ofθ–values. This is particularly
true, since the analysis of Parareal suggests that it is well behaved (stable) when solving
parabolic equations – as long sθ ∈ [2/3,1]. The interesting question is whether thisθ–
range is valid for the Stokes equations, or if ODE aspects that are not present for the heat
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equation will force extra considerations into the stability analysis. A possible new factor in
the stability analysis could be that the Stokes equations are a set of Differential Algebraic
Equations (DAE)1 when they are semi–discretized in space.

We apply theθ–rule to (4.3)–(4.4), and have

v`−∆tθ
(

∇2v`−∇p`
)

= ∆tθ f ` +v`−1 +∆t(1−θ) f `−1+

∆t(1−θ)
(

∇2v`−1−∇p`−1
) (4.10)

∇ ·v` = 0. (4.11)

As for the heat equation, we are now in possession of a system of semi–discretized equations
that have the same boundary and initial conditions as the continuous system.

To make the upcoming spatial discretization expressions clearer, we will do a slight
modification to the notation of the semi–discrete equation (4.10). Sincev` and f ` are vectors,
we can express them as

v` =
d

∑
r=1

v`,r , f ` =
d

∑
r=1

f `,r ,

where the superscriptr denotes ther-th component inv` and f `. Note that it will also
indicate ther-th component of the vector equation (4.3)2, and we can then write (4.10) as

v`,r −∆tθ
(

∇2v`,r − ∂p`

∂xr

)
= ∆tθ f `,r +v`−1,r +∆t(1−θ) f `−1,r+

∆t(1−θ)
(

∇2v`−1,r − ∂p`−1

∂xr

) (4.12)

∇ ·v` = 0, (4.13)

for r = 1, . . . ,d. With this notation, it is easy to separate the vector equations from the scalar
equation, and the parallel to (4.9) should be clear. In the following sections we will usev`

when referring to the unknown velocity in general, andv`,r when discussing operations on
the separate components ofv`. Note that we can write (4.13) as

∇ ·v` =
d

∑
r=1

∂vr/∂xr ,

which corresponds to (4.9).

1Differential Algebraic Equations will be discussed in chapter 4.3 on page 46
2Comma in the superscripts merely separate indices and are not related to Einstein’s summation convention

or compact notation for differentiation ([8, A.3]).
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4.1.2 Spatial discretization

Once more, we will use the finite element method described in Chapter 2 to discretize the
spatial domain. Using the straightforward approach to spatial discretization that was used
for the heat equation will however give non-physical oscillations in pressure, and one must
look for strategies to overcome this problem. The details of why the solution produces
oscillations are beyond the scope of this thesis, but it is related to how the pressure is not
uniquely determined, which gives ambiguity to the system. In addition, it is only determined
up to a constant, c.f. [9], [12].

A technique to correct the oscillation problem is to use so calledmixed elements, where
different basis functions are used for the different unknowns. One has, for example, the
Taylor-Hood element, which uses quadratic basis functions for the velocity and linear basis
functions for pressure. Mixed elements were used in the simulators developed for [9], which
we shall use to form the base classes for our time dependent implementation. We will
therefore use use mixed elements in our spatial discretization, in order to use the predefined
steady–state solvers, and consequently this section is principally based on [9].

Another group of common techniques for handling the pressure oscillations employs
perturbations of (4.4), such that it reads∇ ·v = z(p), wherez 6= 0 and dependent onp, say
via z= ∇2p. Naturally, by using a different strategy for handling the pressure oscillations,
one would employ discretization strategies that differ from the one we present below, but
the basic shape of the resulting linear system is nevertheless the same. In fact, they will all
be saddle point problems. When formulating the finite element expressions for the Stokes
equations, we will end up with a saddle point problem due to the continuity constraint [3,
ch. 3.5]. A quick introduction to the different techniques as used on the Navier–Stokes and
steady Stokes equations can be found in [12] and [9], respectively.

To proceed, we approximate the unknowns as sums over weighted basis functions:

v` ≈ v̂` =
d

∑
r=1

v̂`,r =
d

∑
r=1

nv

∑
j=1

v`,r
j Nj

p` ≈ p̂` =
np

∑
j=1

p`
jL j .

For our mixed element formulation, we have usedNi andLi as the basis functions for the
discrete formulations of (4.12) and (4.13), respectively. The unknowns{v`,r

j } and{p`
j} are

represented as vectors,

v̄` = {v̄`,r} =
[
v`,1

1 ,v`,1
2 , . . . ,v`,1

nv
,v`,2

1 , . . . ,v`,2
nv

, . . . ,v`,d
1 , . . . ,v`,d

nv

]T

p̄` =
[
p`

1, p`
2, . . . , p`

np

]T
.

(4.14)

Note the distinction between ¯v`, which represents a “vector of vectors” and ¯p`, which is a
standard vector.
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The Galerkin equations for (4.10)–(4.11) are given by
Z

Ω

[
v̂`,r −∆tθ

(
∇2v̂`,r − ∂p̂`

∂xr

)]
Ni dΩ =

Z
Ω

ĝ`,r
i dΩ, i = 1, . . . ,nv

Z
Ω

∇ · v̂`Li dΩ = 0, i = 1, . . . ,np,

for r = 1, . . . ,d. To make the expressions more compact, we have used

ĝ`,r
i =

[
∆tθ f `,r + v̂`−1,r +∆t(1−θ)

(
f `−1,r +∇2v̂`−1,r − ∂p̂`−1

∂xr

)]
Ni .

Using Green’s Lemma as defined in (2.1.1) on the integral arising from the equation of
motion, we lessen the smoothness criterions on the basis functions associated with ˆv` and
p̂`. The resulting integral expression reduces to

Z
Ω

[
v̂`,rNi +∆tθ∇v̂`,r ·∇Ni −∆tθ p̂` ∂Ni

∂xr

]
dΩ =

Z
Ω

ĝ`,r
i dΩ,

since the integrands over the boundary cancel each other due to the open boundary condition
(4.6): Z

∂Ω
∆tθ
(
−∇v̂`,r ·ηr + p̂`ηr

)
Ni dΓ = 0.

A similar treatment of ˆg`
i reduces∇2v`−1 and ∇p`−1 in a correspondingly, such that the

components of ˆg`
i read

ĝ`,r
i =

[(
∆tθ f `,r + v̂`−1,r

)
Ni +

∆t(1−θ)
(

f `−1,rNi −∇v̂`−1,r ·∇Ni + p̂`−1∂Ni

∂xr

)]
.

(4.15)

We see thatN is now only required to be once differentiable, whereasL does not need to be
differentiable at all. Note that we can multiply (4.13) with a factor−∆tθ without changing
the overall solution to the system, such that we have

Z
Ω

∇ · v̂`Li dΩ =−
Z

Ω
∆tθ∇ · v̂`Li dΩ =−

d

∑
r=1

Z
Ω

∆tθ∇ · v̂`,rLi dΩ = 0.

Replacing ˆv` and p̂` with their respective weighted sums we have a linear system:

nv

∑
j=1

(
Mi j +Ki j

)
v`,r

j +
np

∑
j=1

Ar
i j p`

j = c`,r
i , i = 1, . . . ,nv, r = 1, . . . ,d, (4.16)

d

∑
r=1

nv

∑
j=1

Br
i j v`,r

j = 0, i = 1, . . . ,np, (4.17)
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where

Mi j =
Z

Ω
NjNi dΩ

Ki j =
Z

Ω
∆tθ∇Nj ·∇Ni dΩ =

Z
Ω

∆tθ

(
d

∑
k=1

∂Nj

∂xk

∂Ni

∂xk

)
dΩ

Ar
i j = −

Z
Ω

∆tθ
∂Ni

∂xr L j dΩ

Br
i j = −

Z
Ω

∆tθ
∂Nj

∂xr Li dΩ

cr,`
i =

Z
Ω

ĝ`,r
i dΩ

M andK are the mass and stiffness matrices for velocity, respectively, and ˆg`,r
i is defined

by (4.15). Observe thatAr
i j =

(
Br

i j

)T
= Br

ji . The integrands at element level are trivial to

express, and follow the exact same pattern as those given for the heat equation.
As for the heat equation we can write the linear system (4.16)–(4.17) as a matrix equa-

tion, but it takes a block form

A
[

v̄`

p̄`

]
=
[

(M +K) BT

B 0

][
v̄`

p̄`

]
=
[

c`

0

]
(4.18)

where(M + K) is a dnv× dnv matrix andB is np× dnv, which makesA a (dnv + np)×
(dnv +np) matrix. This is a saddle point problem.

Because this is a saddle point problem, we must ensure that the solution exists and is
unique. This boils down to choosing the right combination of elements, which are those el-
ements that satisfy theBabuška–Brezzi(BB) condition. Further details on the BB condition
is beyond the scope of this thesis, but suffice it to say that of the two conditions contained in
the BB condition, only the infsup criteria is critical for fluid mechanics [3]. As an alterna-
tive to enforcing the Babuška–Brezzi condition on the mixed elements, one can do different
perturbations of (4.4), as mentioned earlier in this chapter, c.f. [12]. Stability issues pertain-
ing to the spatial discretization is otherwise beyond the scope of this thesis, and it is merely
mentioned here because it is a crucial part of successfully solving the equations. We refer to
for instance [3] for discussion of stability of saddle point problems. For the Parareal algo-
rithm we only need the spatial discretization to be stable for the chosen time discretization,
and we will just assume that good choices are made for the spatial discretization at each
time step, such as using valid mixed elements.
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4.2 Iterative solver

Like we did for the heat equation we will consider the properties ofA to decide on the type
of iterative solver we should use to solve the linear block system in (4.18). Our starting point
is once again the symmetric properties ofA , i.e we wish to determine whetherA = AT . We
have

AT =
[

(M +K)T
(
BT
)T

BT 0

]T

=
[

(M +K)T BT

B 0

]
,

and soA is clearly symmetric ifM + K is symmetric. M + K is the matrix arising from
the discretization of the heat equation, and in 3.2 on page 18 we showed that this matrix is
both symmetric and positive–definite. ThusA must be symmetric. As we did for the heat
equation, we turn our attention to the quadratic form ofA , which reads

xTAx =
[

v̄T p̄T
][ (M +K) BT

B 0

][
v̄
p̄

]

= v̄T(M +K)v̄+ p̄TBv̄+ v̄TBT p̄,

(4.19)

wherev̄ = {v̄r}= {vr
j} and p̄ = {p j} are the solution vectors from (4.14) at some arbitrary

point in time. We have all ready determined that(M +K) is positive–definite, and we turn
our attention to ¯pTBv̂ andv̄TBT p̄. For clarity we consider the components ¯vr separately, and
we omit the factor−∆tθ. We see that

p̄TBr v̄r =
Z

Ω
p̄TL

∂NT

∂xr v̄rdΩ, r = 1, · · · ,d,

whereN andL are vector representations of the basis functions,

N = [N1, . . . ,Nnv]
T , L = [L1, . . . ,Lnp]

T .

Writing out the vector products in the integral expression we have

(
p̄TL

)(∂NT

∂xr v̄r
)

=

(
np

∑
k=1

pkLk

)(
nv

∑
l=1

∂Nl

∂xr vr
l

)
. (4.20)

Recall that we approximate each component of the unknown velocity as a vector, ¯vr = {vr
j},

such that we have

v̄ =
d

∑
r=1

v̄r =
d

∑
r=1

nv

∑
j=1

vr
jNj

∇ · v̄ =
d

∑
r=1

∂v̄r

∂xr =
d

∑
r=1

nv

∑
j=1

vr
j
∂Nj

∂xr ,
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and we see from (4.20) that

p̄TBv̄ =
Z

Ω

(
np

∑
k=1

pkLk

)
∇ · v̄ dΩ.

Following the same pattern for ¯vTBT p̄ we end up with

v̄TBT p̄ =
Z

Ω
v̄T ∂N

∂x
LT p̄ dΩ =

Z
Ω

∇ · v̄

(
np

∑
k=1

Lkpk

)
dΩ.

From the expanded expressions of ¯pTBv̂ and v̄TBT p̂ we see that even though(M + K) is
positive–definite, we can make no such assumption for the quadratic form ofA in (4.19)
whenx 6= 0. In fact, we cannot even determine whether

xTAx≥ 0 or xTAx≤ 0,

and soA is symmetricbut indefinite. The iterative solver calledMinimal Residual Method
(MINRES) is very suitable for such problems, and in the Python–Diffpack implementation
(4.18) is solved using MINRES at each time step. Actually, the Python implementation uses
MINRES whereas the pure Diffpack implementation uses symmetric MINRES, which is not
available in thePysparse package.

4.2.1 Block preconditioning

The saddle point problem for the Stokes equations is computationally intensive to solve,
and it is essential to precondition the system beforehand to speed up the convergence rate.
This section covers both preconditioning of the steady state and the unsteady Stokes equa-
tions. Since the implementation of the unsteady Stokes equations is based on the steady
state implementation done for [9] and [10], the time dependent preconditioner will be built
on existing preconditioners. By presenting both types of preconditioners, we motivate the
extensions done to the existing steady state code, as discussed in 4.4 on page 46. A more
thorough discussion of block preconditioners for the steady Stokes problem can be found
in [10] and preconditioning of block systems for unsteady Stokes are handled in [15]. This
section is based on both of these papers, though only the results that are of immediate inter-
est are presented. In other words, we only present the final shape of the preconditioner as
this is what we must implement, and are not overly concerned with the detailed reasoning
behind each preconditioner.

The discrete representations of both the steady and unsteady Stokes equations produce
a block structure on the form

A
[

v̄
p̄

]
=
[

A BT

B 0

][
v̄
p̄

]
=
[

c
0

]
, (4.21)
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where

A = K =
Z

Ω
∇Nj ·∇Ni dΩ, {i, j}= 1, · · · ,nv

B =
Z

Ω
∇·Nj Li dΩ, {i, j}= 1, · · · ,nv

c =
Z

Ω
f Ni dΩ, i = 1, · · · ,nv

for the steady state problem, and

A = M +K =
Z

Ω
NjNi dΩ+∆tθ

Z
Ω

∇Nj ·∇Ni dΩ, {i, j}= 1, · · · ,nv

B = ∆tθ
Z

Ω
∇·Nj Li dΩ, {i, j}= 1, · · · ,nv

c =
Z

Ω
ĝ`

i dΩ, i = 1, · · · ,nv

for the time dependent equations. The components of ˆg`
i are given by (4.15). Depending on

whether the appear in the steady or unsteady equations, the vectors ¯v and p̄ may or may not
be time dependent. Spatially, they will still be determined by (4.14).

The steady state preconditioner

As remarked earlier, (4.21) is a saddle point problem. As stated in [10], the best such
problem we can hope to solve in terms of efficiency is a saddle point problem with a block
matrix,A , on the form

A =
[

I QT

Q 0

]
, where QQT ∼ I .

A preconditioner that will causeA to be similar toA is on the formB = diag(C,D), such
that we have

BA =
[

C 0
0 D

][
A BT

B 0

]
=
[

CA CBT

DB 0

]
,

where

CA∼ I

DBCBT ∼ I .

Here,I is the identity matrix. For the current block system, this means choosingC as close
to A−1 as possible;C = Ã−1, which leads toDBCBT = DBÃ−1BT . BÃ−1BT is close to the
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pressure Schur complement of the system,BA−1BT , which is already well conditioned –
and thus similar toI – due to the Babuška–Brezzi condition. Therefore we do not needD
to further ensure that we haveQQT ∼ I , and we setD similar to I . As we can see in the
discussion of time dependent preconditioner in the subsequent section, the identity matrix
of the continuous system will be represented by the mass matrix in a finite element context.
We therefore use the mass matrix associated with pressure,Mp, to setD. Thus we have, for
the steady state problem, a preconditioner given by

B =
[

K̃−1
v 0
0 M̃−1

p

]
,

where the subscriptsv and p indicate whether the matrices useN or L as basis functions.
This is the form of the preconditioner used byStokesBlocks, which was developed as part
of [10], and used as a base class for the time dependent Stokes implementation. Note that
K is the discrete representation of∇2, which is a so–calledelliptic operator, and one can
therefore use for example multigrid to efficiently findK̃−1

v . An efficient way to findM̃−1
p is

to lump the mass matrix3 to create a diagonal matrix for which one can easily and efficiently
find the exact inverse.

The time dependent preconditioner

As previously stated, the time dependent preconditioner is based on the uniform precondi-
tioner presented in [15]. We will here establish the results as they relate to our needs, i.e.
the resulting shape of the preconditioner. The goal of the aforementioned paper is to create
a well–conditioned linear system, where the condition number of the preconditioned matrix
is uniformly bounded by∆tθ and the spatial discretization parameterh. The derived precon-
ditioner is motivated by one constructed for the continuous (in space) equation system. The
reasoning behind the continuous preconditioner is beyond the scope of this text, and we will
only present the conclusions.

From the temporal discretization of the stokes equations we have a semi–discrete system,
given by (4.10)–(4.11), that is continuous in space. We can rewrite this as(

I − ε2∇2
)

v` + ε2∇p` = ε2 f ` +v`−1 +β2 f `−1+

β2
(

∇2v`−1−∇p`−1
) (4.22)

−ε2∇ ·v` = 0 (4.23)

whereI is the identity matrix (vector),ε =
√

∆tθ andβ =
√

∆t(1−θ). Alternatively we can
write this as

Aε

[
v`

p`

]
=

[ (
I − ε2∇2

)
grad

div 0

][
v`

p`

]
=
[

g`

0

]
,

3Two possible lumping strategies are presented in chapter 2.4.2 in [8]
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whereg` is the right hand side of (4.22). From the discretization, it should be clear that the
discrete version ofAε, Aεh, is given by (4.18), such that

Aεh =
[

Mv + ε2Kv ε2BT

ε2B 0

]
.

Since(I−ε2∇2) will discretize as(Mv+εK
v ), we see how the mass matrix is analogous to the

identity matrix in a finite element context, which we used for the steady state preconditioner.
As is stated in [15], we will assume thatε ∈ (0,1]. This is not an unreasonable assump-

tion. From the definition of theθ–rule we have thatθ ∈ [0,1] and∆t 6= 0. In addition,∆t
would always be positive, and for most practical uses one would choose∆t < 1. Further, it
is pointed out in [15] thatε influences the properties of the equation system (4.22)–(4.23),
such that whenε goes to zero we have a system that approaches the mixed Poisson prob-
lem, whereas whenε increases we move toward a steady–state Stokes problem. We will not
explore these equation systems here, except to note that they do require different precondi-
tioners, since they are two distinct problems. This implies that the preconditioner presented
for the steady–state equations will not unconditionally be a good choice of preconditioner
for the unsteady Stokes equations. A uniform preconditioner is therefore found for the
problem that is independent of bothε and the spatial discretization steph. The continuous
preconditioner is presented as

Bε =

 (I − ε2∇2
)−1

0

0 ε2I−1 +
(
ε2∇2

)−1

 ,

which has its discrete equivalent given by

Bεh =

[
(Mv + ε2Kv)−1 0

0 ε2M−1
p +

(
ε2Kp

)−1

]
.

We see that the preconditioner for the time dependent equations is similar to the steady
state preconditioner, and only the expression forD has changed, by introducing the stiffness
matrix for pressure as a result of the∇2 operator in the continuous preconditioner. In terms
of implementation, we then only need to do slight modifications for the pressure component
in the existing steady–state preconditioner, whereas the velocity component may remain
unchanged. As for the steady–state preconditioner, each block inBε is is composed of an
elliptic operator, such that one can use for example multigrid to find an approximate to
the inverse. This is done for our Python implementation presented in chapter 4.4 on the
following page, where the algebraic multigrid moduleML was used to find approximates to
(Mv + ε2Kv)−1, ε2M−1

p and
(
ε2Kp

)−1
. The Diffpack version uses the exact inverse of the

lumped mass matrix and one SSOR iteration to approximateKp
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4.3 Stokes equations and Parareal algorithm

In chapter 4.1.1 on page 36 we argued for using theθ–rule to discretize the time derivate.
The gist of the argument was that it gives one the opportunity to study the stability range for
the Parareal algorithm when used on the Stokes equations compared to using it on the heat
equation. We expect the Parareal algorithm to be able to handle Stokes, as it is a parabolic
PDE [4, 1.7.4]. The interesting question is whether aspects of the Stokes equations that are
not present in the heat equation will influence the range ofθ–values for which Parareal is
stable. For the heat equation, the analysis done in [2] and [20], holds, and the algorithm is
stable in the rangeθ ∈ [2/3,1].

When semi–discretized in space, the Stokes equations become a set ofdifferential al-
gebraic equations(DAE), as opposed to semi–discretizing the heat equation, which only
transforms into a common ODE. Writing out the semi–discretized system of (4.3)–(4.4), we
have

∂v(t)
∂t

= Kv̄(t)−BT p̄(t)+c(t)

0 = Bv̄,

where the vector notation from (4.14) is used onv andp, and

K =
Z

Ω
∇Nj ·∇Ni dΩ

B =
Z

Ω
∇ ·NjLi dΩ

c = f Ni .

We see that the system is a DAE, since the first equation is a differential equation, whereas
the second is a pure algebraic constraint. DAE may influence the ODE stability assumptions
the Parareal analysis is based on. We postpone further discussion of DAE, as it will only be
interesting to explore the DAE theory if convergence and stability of the algorithm deviates
strongly from the blue–print set by the heat equation.

4.4 Implementation

Based on the discretizations done the previous chapter, the Stokes equations are now ready to
be implemented. As for the heat equation, a mix of Python and Diffpack was used to create
a class hierarchy that can be processed by the Parareal algorithm. We will commence by
defining our model problem, before moving on to outlining the class hierarchies developed
for the Stokes problem.
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4.4.1 Defining the model problem

For the Stokes equations in this thesis we constructed an initial–boundary value problem for
which the analytical solution is known. The model problem will likely be removed form
any real–life scenario, but as we only need to have some arbitrary Stokes IVBP to solve
with the Parareal algorithm, it is more practical to have an analytical solution. Access to
an analytical solution during development is always useful, as you always have a reference
to the solution your simulator programshouldproduce. This gives you the opportunity to
verify your code as you develop it. As a starting point we therefore need to construct an
initial–boundary value problem for which the analytical solution is known.

Constructing an IBVP with known analytical solution

We define our domain identically to the one used for the heat equation, and set

Ω ∈ [0,1][0,1] for x∈ Rd, d = 2.

To construct an analytical solution to a IVBP, we simply decide on the functionsv(x, t) and
p(x, t) that will construct our analytic solution, and then base our initial condition, boundary
values and source term on the chosen functions. Naturally, it is important that one chooses
the functions such that they actually satisfy (4.3)–(4.4). For this thesis we solved a 2D
problem, and used

vx(x, t) = vx(x,y, t) = −cos(xyt)x
vy(x, t) = vy(x,y, t) = cos(xyt)y
p(x, t) = p(x,y, t) = sin(xy)−at,

wherea is a constant. For our implementation,a is hard coded toa = 0.9460830704. Note
thatv(x, t) also satisfy the continuity constraint (4.4), and not only (4.3). The initial condi-
tion for our system will then be given by

v0 =
{

v1(x,y,0) = x
v2(x,y,0) = y

, (x,y) ∈ [0,1],

p0 = p(x,y,0) = sin(xy), (x,y) ∈ [0,1],

and the essential boundary condition forv on component form become

v(0,y, t) =
{

vx = 0
vy = y

, v(1,y, t) =
{

vx = −cos(yt)
vy = cos(yt)y , y∈ [0,1]

v(x,0, t) =
{

vx = −x
vy = 0

, v(x,1, t) =
{

vx = −cos(xt)x
vy = cos(xt) , x∈ [0,1].



48 4.4. Implementation

By plugging the analytical solutions into (4.3)–(4.4), we obtain an expression for the
source termf . A simple and quick way of doing this is usingMaple, which will produce the
symbolic solution rather than the numerical. You can also set it to produce the equivalent C
code for your mathematical expressions, which is highly practical. By using Maple, we end
up with a source termf where each component is given by

fx = −cos(xyt)y2t2x−2sin(xyt)yt−cos(xyt)x3t +cos(xy)y+sin(xyt)x2y

fy = cos(xyt)y3t +cos(xyt)x2t2y+2sin(xyt)xt+cos(xy)x−sin(xyt)xy2.

We now have a complete initial–boundary value problem which we can implement using
the discretizations from the previous chapters and Diffpack. On top of the Diffpack code
we may place Python classes, that utilize our Diffpack implementation to solve the Stokes
equations using Parareal.

4.4.2 The Stokes class hierarchy

The Stokes class hierarchy is split into two logical blocks: the class hierarchy in Diffpack
and the class hierarchy in Python. We will in the following aim to give an overview of the
Diffpack and Python classes. It is not intended as a full documentation of the implementa-
tion, but only as a complement to the source code and chapter 3.4 on page 23, which covers
the implementation of the heat equation. As the Stokes classes follow the same structure as
the heat equation classes, though the class hierarchy itself is larger. 3.4 together with the
following section, should give a good, basic understanding of the Stokes implementation.

The Diffpack hierarchy

The core implementation of the Stokes equations, where mixed finite elements are used to
cerate the linear system, is done through use of the Diffpack library. The Diffpack simulators
are also designed to solve the linear system if requested, although the idea is that we will
use Python to solve the linear system produced by Diffpack. The Diffpack implementation
of the unsteady Stokes equations is based on the class hierarchy written for the Mixed Finite
Elements paper [9]. Originally, this class hierarchy consisted of a Stokes solver that used
a single merged linear system to solve the equations, and then a block solver was built
on this general solver. The class hierarchy has been further expanded here by adding time
dependency. The full Diffpack class hierarchy is presented in Figure 4.1. All classes marked
Time were added to the hierarchy for this thesis, though some minor functionality in the base
classes were adjusted in order to make extension to time dependent code cleaner and simpler.

The hierarchy divides into two groups; the functor classes that are elements used to
fill the block structure and finding the for the implement the analytical solution, and the
classes in the governing solver hierarchy. Focusing on the time–dependent elements of the
hierarchy,*AnalTime classes are the Diffpack functor classes implementing the analytical
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inheritance

dependency Stokes

StokesAnalytic

StokesBlocks

vAnal

pAnal

uSource

StokesTime

IntegrandLaplaceV

IntegrandGradP

IntegrandDivV

PressurePrec

Blocks in precond.

Blocks in A

PressurePrec

IntegrandMassLaplaceVTime

IntegrandGradPTime

IntegrandDivVTime

PressurePrecTime

Blocks in precond.

Blocks in A

vAnalTime

pAnalTime

uSourceTime

Figure 4.1: The Diffpack class hierarchy for steady and unsteady Stokes.

solution and source terms defined above. A second group of functor classes are those used to
construct the separate blocks in the linear system matrixA ; IntegrandMassLaplaceVTime,
IntegrandGradPTime and IntegrandDivVTime. As their names indicate, they respec-
tively implement the blocks(M + K), BT andB. IntegrandMassLaplaceVTime is also
used to construct the velocity component of the block preconditioner,(Mv + ε2Kv)−1.
PressurePrecTime creates the pressure block of the preconditioner, and must necessar-
ily solve the componentsε2M−1

p and
(
ε2Kp

)−1
. To do so it uses another set of functor

classes which were not added to the schematic class diagram, namelyIntegrandMassP and
IntegrandLaplaceP, respectively.

StokesTime expandsStokes to support time integration, but uses the functionality in
its base class to build and manage the block linear system. There is really very little extra
for theStokesTime class itself to do in terms of key functionality, except manage the time
derivative. It must necessarily ensure that the time dependent version of the functor classes
is used, but it is the base class and functor classes that handle the bulk of the logic. For
instance willIntegrandMassLaplaceVTime not only buildM+K, but it will also construct
the dynamic right–hand side of the linear system. The integrands function that does this is
shown in Listing 4.1 on the next page, although the actual construction of the right–hand
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side was omitted as it is fairly extensive. The elements of the integrands in (4.16) should be
relatively easy to perceive.

Listing 4.1: TheIntegrandMassLaplaceVTime::integrandsMx() function with θ-rule
discretization

vo id In tegrandMassLap laceVTime : : i n teg randsMx ( ElmMatVec& elmat ,
cons t MxFin i teE lement& mfe ) {

cons t r e a l detJxW = mfe . detJxW ( ) ;
cons t i n t nsd = mfe . getNoSpaceDim ( ) ;
cons t i n t nvxbf = mfe ( 1 ) . ge tNoBas isFunc ( ) ;

r e a l d t T h e t a = data−>t i p −>D e l t a ( ) ∗ data−> t h e t a ;
r e a l s t i f f n e s s ;
r e a l mass ;

f o r ( i n t d = 1 ; d <= nsd ; d++ ) {
f o r ( i n t i = 1 ; i <= nvxbf ; i ++ ) {

i n t i g = ( d−1)∗ nvxbf+ i ;

/ / f i l l e lma t . A
f o r ( i n t j = 1 ; j <= nvxbf ; j ++ ) {

i n t j g = ( d−1)∗ nvxbf+ j ;
s t i f f n e s s = 0 ;
mass = mfe ( d ) . N( i )∗mfe ( d ) . N( j ) ;
f o r ( i n t k = 1 ; k <= nsd ; k++ )

s t i f f n e s s += mfe ( d ) . dN( i , k ) ∗ mfe ( d ) . dN( j , k ) ;
e lma t .A( ig , j g ) += ( mass + s t i f f n e s s∗ d t T h e t a )∗ detJxW ;

}
}

}
f i l lRHS ( elmat , mfe ) ;

}

The Python hierarchy

A Python class of Stokes solvers hierarchy that supports the Parareal Python implementa-
tion interface requirements was constructed to utilize the Diffpack classes. For the Python
implementation, there are are two principal hierarchies. One that inherits directly from the
Diffpack class and only adds the minimal required Parareal interface –StokesPureDp, and
a slightly more extensive hierarchy based onStokesDpProvider that use Diffpack primar-
ily as a linear system generator. See Figure 4.2.StokesDpProvider handles all logic in
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obtaining and updating the linear system provided by Diffpack, whereas its subclasses im-
plement different strategies for solving the linear system. Specifically,StokesDpItSolver
expects the underlying Diffpack class to provide a means to solve the linear system, whereas
StokesPysparseItSolver uses the iterative solvers in thePysparse package. As was
mentioned at the conclusion of chapter 4.2 on page 41, the Diffpack iterative solver will
be Symmetric MINRES, whereas thePysparse version must use theitsolvers module
which only has support for MINRES.

inheritance

dependency

StokesTime[DP]

StokesTime[PY]

SWIG

StokesSolvers ext. module

StokesPureDp[PY]

StokesDpProvider[PY]

StokesDpItolver[PY] StokesPysparseItSolver[PY]

initMenu4StokesTime[PY]

Implements the Parareal solver
interface requirements

StokesFactoryBase[PY]

StokesFactoryDpSolver[PY] StokesFactoryPysparseSolver[PY] StokesFactoryPureDp[PY]

StokesDpItSolver[PY] StokesPysparseItSolver[PY] StokesPureDp[PY]

Implements the Parareal
factory requirements

StokesPrecon[PY]

Figure 4.2: The Python class hierarchy for unsteady Stokes ([DP] and [PY] refer to imple-
mentation in Diffpack or Python, respectively).

The class interfaces and structure follow the same pattern as was done for the heat im-
plementation, and we will therefore not focus as much on their inner structure as we did in
the heat implementation chapter. Our aim here is to highlight the different aspects of the
implementation to give the reader an overview of the structure. For further details we refer
to the source code. The similarities to the heat implementation are particularly true for the
factory classes, and we will not discuss them further.
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Preconditioning

When Diffpack is used to solve the linear equation system, it will also handle its own pre-
conditioner (as defined in Figure 4.1) and so we only need to consider the preconditioner for
StokesPysparseItSolver. When Diffpack is used as a linear system provider, it is clear
that this must also include providing the preconditioner for the system, as Diffpack has all
the tools for creating a matrix from a integral expression. We therefore haveStokesPrecon,
which is intended to work as the connector between a Diffpack preconditioner and a pre-
conditioner for theitsolvers module. It will do this simply by defining the preconditioner
interface theitsolvers functions expect, and act as preconditioner. It will obtain the ma-
trices on which the preconditioner is based on from Diffpack, and(Mv + ε2Kv), ε2Mp and(
ε2Kp

)
will be filtered intoPysparse matrices. StokesPrecon must define a function,

def precon( self , x, y ):, which will calculate the effect of applying the preconditioner to
x and store the result iny, in order to become a preconditioner. It must therefore calculate

yv = (Mv + ε2Kv)−1xv

yp = ε2M−1
p xp +

(
ε2Kp

)−1
xp,

where the subscripts denote thev andp components of the solution. As has been previously
mentioned, these matrices represent elliptic operators, and we can usealgebraic multigrid
through theml module to solve the linear systems

(Mv + ε2Kv)yv = xv

ε2Mpyp1 = xp

ε2Kpyp2 = xp

}
yp1 +yp2 = yp,

instead of finding the their inverse. We will merely employ multigrid as a black box solver
that functions well on elliptic operators.

The block structure

The block structure in the Stokes classes are not supported by Python. Specifically, if the
Pysparse and ML modules are to be used one must remove the block structure, as they
expect to work withll_mat objects andNumeric arrays. These do not directly support
the block structure used in Diffpack. Therefore, theStokesTime object has been expanded
with functionality to fold out the block structure into plain vectors and matrices, and to
reduce plain vectors to block vectors, all in order for it to be a linear system provider for
Python. This machinery creates quite an extension to the class interface that do not directly
relate to solving the Stokes equations. TheStokesDpProvider uses these classes to filter
solutions between Python and Diffpack for each time step, such that both representations
have valid values to work with when they either update the time dependent right–hand side
of the linear system (Diffpack) or when they solve the linear system (Python). Incidentally
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this means that for theStokesDpItSolver class for solving the linear system, one creates
a bit of unnecessary overhead as you filter vectors up and down that will only ever be used
in Diffpack. It was nevertheless done this way to show that you can easily make Python
module based and create relative easy support for switching the linear solver. Since we only
had access to one truly external linear solver (Pysparse), we “created” one by having a base
class trigger the linear solver stored in StokesTime.

Because there was substantial extra logic connected to turningStokesTime into a linear
system provider, all the extra functionality needed was added directly in the class source
code and not through small extension functions in the SWIG interface file like it was done
for the heat implementation.

This concludes our discussion of the Stokes problem. In the next section we will explore
the Parareal algorithm, and prepare the implementation that will be used to test the algorithm
on the Stokes problem.



Chapter 5

The Parareal Algorithm

Parallel computation is a strategy to speed up the computational process in order to for
example solve the problem over a larger time–space domain using the less computation
time than a sequential process, or to use a finer discretization (and thereby reach a better
estimate) without drastic increase of computation time. And it is of course a means to solve
large systems within a feasible time period, such as weather–forecasting.

To parallelize the finite element method, for example, one has thedomain decomposition
methodto create relatively decoupled subproblems of the finite element mesh that become
more amenable to parallel computation. There are also methods to parallelize the iterative
solvers which must run to solve the linear systemat each time step. These methods focus on
speeding up the spatial aspect of the problem discretization, and leaves a largely sequential
discretization. This is clear in domain–decomposition methods whose sole focus is to de-
compose the spatial domain and make the problem more parallelizable. In the second case,
where parallel computation is introduced with the linear solver and not at domain level, the
statement still has merit. Even though time and space discretization is closely linked in the
final discrete linear system, a the larger part of the system is due to spatial discretization (see
the discretizations of heat and Stokes). Since the time stepping is still a serial procedure,
one can view the parallel linear solver as more of aspatialparallel process1.

The Parareal algorithmis a tool to overcome the sequential nature of time–stepping.
This chapter introduces the algorithm which solve differential equations parallel in time,
and also gives an overview of the accompanying Python implementation. Since the thesis
focuses on solving the heat and Stokes equations, the algorithm is discussed in terms of
solving partial differential equations. The aim is to give an easy description of how the
algorithm operates. Chapter 5.1 on the next page is mainly based on the description given
in [20].

1Observations based on Xing Cai’s course INF5640 autumn 2004 at IFI

54
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5.1 The Parareal Algorithm

The Parareal algorithm operates on time dependent (unsteady) PDEs that must be integrated
over the time domaint ∈ [t0,T] in order to find a solution. Time is naturally sequential, which
is likely to account for the scarcity of parallel-in-time schemes compared to the mature
field of spatial–oriented parallel calculation. Regardless of the reason, the result is that the
integration process of time tends to be time consuming in the overall computational scheme,
and it is a bottleneck that can be hard to avoid. The essence of the Parareal algorithm is to try
to remove the sequential obstacle, and construct a new problem with increased parallelism.
Once increased parallelism is achieved, the next step is to utilize it and create a parallel-in-
time scheme for solving the PDE in question.

Consider an initial–boundary value problem where we seek the unknown functionu(x, t)
on the sequential time line. If we could divide it into subdomains in time, while somehow
have an initial value for each subdomain, we would have a set of subproblems that mir-
ror the structure of the global problem – and a problem that is very amenable for parallel
computation.

Ideally, we would like to have a situation where a set of solutions,{u(x, ti)}, of the PDE
is known ati = 1· · · ,N points in time prior to calculation. This would allow us to create
N independent initial-boundary valuesubproblems – see Figure 5.1 – instead of the typical
IBVP defined over the time domaint ∈ [t0,T], with a single initial condition att = t0. This
is for example the structure we have seen for the heat and Stokes equations. Because we can
handle these independent subproblems in parallel, we could efficiently solve the PDE over
the entire time domain using a much finer time step compared to what would be feasible
in a single process situation, where such fine grained computation is likely to be too time
consuming. This is particularly the case for real–time simulations, which was the type of
simulations the Parareal algorithm was originally intended for – thus the name Parareal.
If you are not concerned about real–time, the increased efficiency gives the possibility to
widen the time–domain without increasing the computation time.

t= t0 t= t1 t= tN−1 t= tN =T

u(x, t0) u(x, t1) u(x, tN−1) u(x, tN )
known solutions

time points

Figure 5.1: Ideal situation for increased parallelism
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Decomposing the time line

To achieve a scenario approaching Figure 5.1 we begin by decomposing the time interval
t ∈ [t0,T] into

t0 = T0 < T1 < · · ·< Ti = i∆T < Ti+1 < TN = T,

where∆T = T/N for some integerN. This gives rise to a natural division intoN subdo-
mains in time,Si = [Ti−1,Ti ], i = 1, . . . ,N, as shown in Figure 5.2. In a parallel setting,N
will typically be the number of processes running in parallel, as it is natural to assign one
subdomain per process.

t= t0 T1 T2

∆T

SN

TN−1 t = TN = T

S2S1

Figure 5.2: Time decomposition intoSN subdomains

As mentioned above, we would like the solution of the PDE to somehow be known at
the start of each subdomain, i.e to haveu(x,Ti−1), i = 1, . . . ,N in advance. This is not
the case for initial–boundary value problems, and therefore the Parareal algorithm tries to
give a decentpredictionof what the solution will be at these points in time. To achieve
this we introduce acoarse solver, G , suited to solve the underlying PDE with a coarse time
discretization parameter, i.e suited to use∆T as its time step. UsingG we can find a solution
for each time step in the decomposed time domain in Figure 5.2. We denote these solutions
asλi , i = 0, . . . ,N−1, whereλ0 represent the initial condition of the original initial-boundary
value problem. We can then useλ0 to λN−1 can be used as initial values for the subdomains
S1 to SN.

A first parallel scheme

Finding theλi values is, as illustrated in Figure 5.3, just a standard serial pass over the time
domain, usingG as the solver and previously computed solutions as start value. As will
become evident from the Parareal algorithm, this pass will be done several times. Since the
overall goal of the Parareal algorithm is to save computation time, it is important that the
coarse solver isefficient, to ensure that such a pass is relatively cheap to compute. Naturally,

t= t0 T1

λ1 = G(λ0)

TN−1 T = TN

λN−1 =G(λN−2)λ0 = u0 λN =G(λN−1)

Figure 5.3: Initializing theλ values
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the set{λi} also represent the numerical solution to the system at given time intervals, and
in the algorithm we will use them both as initial values and solution objects.

By use ofG we now have a set of problems approximating the scenario in Figure 5.1, and
we can efficiently find a more accurate set ofλ solutions by runningfine stepping solvers,
F (λi−1), in parallel over each subdomain. Each fine solver will produce a solution for the
end of its time domain,λi , which should be more accurate, and we can them to replace the
previousλ-values. We will denote the original set of solution values as{λ0

i } and the new,
improved set as{λ1

i }.

Improving the scheme with Parareal

Since we only made a rough estimate of the values used as initial conditions for the fine
solvers, we must expect the solution represented by{λ1

i } to have an inherent error. This will
make it different to the solution we would have found if we had run a single fine solver over
the global domain[t0,Ti ]2. In this light our scheme is inherently flawed – when introducing
parallel computation we are obviously not interested in producing a result that is clearly
inferior to the serial solution.

The Parareal algorithm tries to compensate for this by iteratively finding new coarse
solutions using the most recentλ–values (in a similar fashion to Figure 5.3), and then apply-
ing a corrector to adjust the estimates. The corrector is based on the difference between the
coarse and fine solutions from the previous iterations. This is is not a wholly unreasonable
approach. The corrective term should give an indication of how far removed the previous
coarse estimate was to the exact (serial) solution. The reasoning is then that this is likely
to be similar to how far removed the current coarse estimate is to the corresponding fine
estimate. The idea is summed up in (5.1).

λk
0 = u0

λ0
i = G

(
λ0

i−1

)
, i = 1, . . . ,N

λk
i = G

(
λk

i−1

)
+F

(
λk−1

i−1

)
−G

(
λk−1

i−1

)
︸ ︷︷ ︸

δG(λk−1
i−1) (corrector)

, i = 1, . . . ,N, 0 < k, (5.1)

wherek is the iteration number. The equivalent Parareal pseudo code is presented in Al-
gorithm 1 on the following page, which might give a more intuitive understanding of the
algorithm. One continues to iterate until some convergence criteria has been reached. The
common practice is to choose some reasonable way to compare{λk−1

i } and{λk
i }, say by

computing the difference norm. Further discussion of handling the convergence criteria
follows in section 5.1.3.

2In a Parareal setting this is referred to as the exact solution. It is the best possible solution a parallel
computation can hope to find – it will never be more accurate than its equivalent serial estimate
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Algorithm 1 Parareal Algorithm

λ0
0 = u0 //Setλ0 to the initial condition

for i = 1 toN do
λ0

i = G
(
λ0

i−1

)
//initialize using coarse time step solution

end for
Solve subdomainsF

(
λ0

i−1

)
in parallel oni = 1. . .N processes

k=1
while truedo

for i = 1 toN do
solveG

(
λk+1

i

)
λk

i = G
(
λk

i−1

)
+F

(
λk−1

i−1

)
−G

(
λk−1

i−1

)
end for
if convergencethen

break loop
end if
Solve subdomainsFi

(
λk

i−1

)
in parallel oni = 1. . .N processes

k = k+1
end while

As F always operate on the previously known valuesλk−1
i−1 , the fine solvers can be exe-

cuted in parallel.G
(
λk

i−1

)
is, on the other hand, strictly sequential, since we constantly use

λ–values from the current iteration. Thus we see thatG must be efficient, because we need
to run it once for each calculation.

5.1.1 Noteworthy properties of the algorithm

There are some properties one should be aware of when working with the Parareal algorithm.
A more complete list can be found in [20].

Strictly parallel. Our first, simple observation is that the algorithm is strictly parallel,
meaning that if you run a serial computation (i.eN = 1) it will involve more work, and thus
run slower, than if you had done one, fine serial pass over the entire time domain.

The number of processes. The number of processes,N, must be chosen such that∆t is a
factor of∆T.

Exact solution. The exact solution is the solution found by doing a serial pass over the en-
tire time domain, with a solver using the same temporal and spatial discretization parameters
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asF . Therefore,

λ0 = u0

λi = F (λi−1) , i = 1, . . . ,N,

is identical to the solution we would find if we did a serial pass over the entire time domain
using the fine solver. Note that a lack of iteration counterk indicates the exact solution. It
is a fact that all values in the time domain[t0,k∆T] will be exact, and allλk

i for i ≤ k will be
equal to the serial solution. This implies that

λk
0 = u0

λk
i = G

(
λk

i−1

)
+F

(
λk−1

i−1

)
−G

(
λk−1

i−1

)
, i = 1k+1, . . . ,N, 0 < k

λk
i ≡ λi = F (λi−1), i = 1, . . . ,k

Therefore, the algorithm will converge toward the exact solution, because the direct influ-
ence ofλ0 will propagate further up through theλ–values with each iteration. Atk = N we
have

λ0 = u0

λN
i = G

(
λN

i−1

)
+F

(
λN−1

i−1

)
−G

(
λN−1

i−1

)
, i = k+1, . . . ,N

λN
i ≡ F (λi−1) , i = 1, . . . ,k.

This implies that the solution will never be more accurate than the serial computation, even
though thealgorithmitself converges toward machine accuracy: the change betweenλk and
λk−1 is as small as can possibly be measured with machine accuracy.

Maximum number of iterations and speedup. In th exact serial solution, one expects
a certain error compared to the analytical solution. When the same order of error is found
in the parallel computation as is expected in the exact solution, further predictor-corrector
passes will be superfluous. When determining convergence one should try to take this into
account. It also means that there exists some maximum number of iterations before the
algorithm starts doing unnecessary iterations, which is naturally unwanted when you are
trying to achieve as much increase of computation time as possible.

If we let tG denote the cost of computingG(λi−1) for i = 1, . . . ,N, and tF the time
to computeF (λi−1) for one subdomain, we can set bounds on the maximum number of
iterations we can possibly have before the algorithm converges and still achieve speedup
compared to a serial computation. Each pass through the main loop of the algorithm has a
cost oftG + tF . We do not need to calculateG(λk−1) or F (λk−1) since they were found
in the previous iteration. The initialization phase of the algorithm has the same cost as one
iteration. To achieve a speedup over serial computation we must therefore have

(k+1)(tG + tF ) < NtF ,
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which indicates that convergence must be reached for

k <
NtF

tG + tF
−1, 0 < k

in order to achieve speedup. If we assume thattG = tF we must reach convergence while
k < N

2 −1. Looking at the speedup possibilities we see that the algorithm is obviously not
useful for schemes with less than 3 processes running in parallel.N = 3 would require im-
mediate convergence, whereas 10 processes running in parallel would, for example, require
convergence whilek≤ 4 to achieve speedup.

Flexible choice ofG and F . Note that the algorithm does not requireG andF to solve
the same equation, nor use the same spatial grid size or discretization scheme, as long as
the sum of the returned solutions can be done in a consistent way. This means that you
are free to letG solve some perturbed equation that could, for example, remove highly
oscillating terms that are under sampled because of the coarse time step, or use a coarser
spatial discretization to better match the coarse temporal discretization. This last feature
can be useful as there is little point in doing a very fine discretization in space if the total
numerical error dominated by the error from your coarse time discretization.

5.1.2 Strategies for determining convergence

The Parareal algorithm does not explicitly dictate how you should handle convergence. Two
immediate strategies would be to either look for convergence by comparing a selection of
entries inλk andλk−1, or you could use some suitable norm of the difference (i.e. a dif-
ference norm) betweenλk andλk−1. The latter would be more time consuming, but can
potentially give a better average estimate of the global convergence of theλ values.

In the former alternative one would do a point wise check for convergence betweenλk
i

andλk−1
i , but one must then make sure thatk < i. Remember that the valuesλk

j , 1≤ j < k
are as accurate as they can be, and comparing old and new values at indexj is meaningless
as the conclusion will always be that convergence has been reached. Based on the shrinking
pool of λ–values to use for comparison as the number of iterations increase, one might
decide to compare the values ati = N only, but by choosing a single point of comparison
you could, however, risk that under the right circumstances the estimateλk

i mimics the exact
serial solution and thus cause premature convergence.

For this thesis we opted for using the norm between the old and newλ–values in a global
space–time norm,

e=

√√√√ N

∑
i=k

‖λk
i −λk−1

i ‖2∆t,
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as a measurement of the error. The algorithm is then terminated whene< ε. We have not
found any literature that verifies whether this is a good reflection of the error in the current
solution set, and we will therefore do numerical tests of the quality of this stop criteria in
chapter 6 on page 70.

Once convergence has been determined, a returning issue is the final step of the algo-
rithm. What is the last step? Should one say that theλk values used to determine conver-
gence is the solution, or should one say that they are the best possible set of initial conditions
and useλk to do a last “sweep” with the fine solver? Algorithm 1 on page 58 uses the for-
mer option. As long as you do not run the maximum number of iterations,k = N, λk

i−1 will
always be more accurate thanλk

i , due to the way influence byλ0 moves over the set ofλ
values. By doing a last fine sweep we would push this “accuracy boundary” one step further
to the right – at the cost of increased an computation timetF . The alternative scenario for
wrapping up the algorithm could be done as shown in Algorithm 2. Which strategy one
should choose really depends on the stop criteriaε – if the former termination scheme is
chosen, a more severe stop criteria must be passed to the algorithm in order to achieve the
same degree of error.

Algorithm 2 Alternative termination of the algorithm
...
Solve subdomainsFi

(
λk

i−1

)
in parallel oni = 1. . .N processes

if convergencethen
Solve subdomainsFi

(
λk

i−1

)
in parallel oni = 1. . .N processes

for i = 1 toN do
λk

i = Fi
(
λk

i−1

)
end for
break outer loop

end if
...

In the Python implementation outlined in chapter 5.2 on page 63, the termination strategy
from algorithm Algorithm 1 on page 58 is used, and the global difference norme is used to
determine convergence.

5.1.3 Stability and typical convergence rate

In [2] it was found that the Parareal algorithm was unconditionally stable for most time
discretizations of parabolic PDEs, though it is not so for hyperbolic equations. Both the heat
equation and the Stokes equations are parabolic, so we should expect the Parareal algorithm
to perform well for these problems. This is naturally connected to the preliminary section
on stability on page 14, which concludes with how Parareal works well withstiff problems
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and how we, by semi–discretizing parabolic PDEs, end up with systems of stiff ordinary
differential equations. That Parareal can be used to solve the heat equation was demonstrated
in [20], but the test results from attempting to run Parareal on the Stokes equations are
described in chapter 6 on page 70.

By [2, Theorem 3], the convergence rate of the Parareal algorithm converges exponen-
tially when the number of iterations increase, such that the difference norm between the
exact solution and the solution found by Parareal has an exponential decay toward machine
accuracy. The exact solution is here the serial solution found using the same solver and dis-
cretization in time (and space) asF . Naturally, convergence will only occur as long as the
underlying solvers are stable for the respective fine and coarse time steps. Actually, Theo-
rem 3 describes the convergence of‖λ j −λk

j‖α, whereλ j is the exact solution at time step

j andλk
j the solution from iterationk at j. ‖ · ‖α is the norm of the Hilbert spaceHα(R),

though we shall not discuss this further here.
The Parareal stability function for stiff problems,

|λk
i |=

∣∣∣∣(−1)k
(

i−1
k

)
(R(z))iλ0

∣∣∣∣ ,
was found in [20, Theorem 3]. Here,R(z) is the stability function for the coarse propagator.
To bound the error, we must not only demand|R(z)| ≤ 1 asz→ −∞ to bound(R(z))i ,
but we must also ensure that the binomial coefficient is restricted. As bothi and k are
determined by the number of subdomains and iterations, the coarse stability function is the
only remaining degree of freedom. One must therefore chooseR(z) so that it also binds the
binomial coefficient. Based on the growth of the binomial coefficient, it was found that the
stability function of the coarse propagator must fulfill

lim
z→−∞

|R(x)| ≤ 1
2
.

The restrictions onR(z) was previously stated in chapter 2 on page 3, where we used it to
determine the bound onθ,

θ ∈ [2/3,1] ,

that has received so much attention in this thesis. The authors in [20] points out that this is
a conservative estimate. Fork� N, the demands on the damping properties of the coarse
solver are milder. Consequently, we may use smallerθ values in practice than what the
analysis states. Thus the Crank–Nicolson method is not wholly inappropriate to use for the
coarse solver, as long as care is taken to ensure that convergence is determined whilek is
still small compared toN. Ergo, a smallerθ value will only restrict the number of iterations,
in a similar fashion to how a largek boundsθ.
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5.2 Implementation

In this section an outline of the Parareal implementation is presented. Refer to the source
code for the full implementational details. The algorithm was not written to actually run in
parallel, and the part of the algorithm that should have run in parallel is realized through use
of constructs like “for i in range( noFineSolvers ):”. This was mainly done because it is
more efficient to develop serial code, and for our testing purposes it was not really necessary
to have a fully parallel implementation running.

5.2.1 Implementational Overview

We here give a brief overview of the Python implementation and sketch the interface re-
quirements on the fine and coarse solvers grain to make it easy to adjust solvers to future
use with the algorithm.

The Parareal implementation done for this thesis is a sequential version – one process
loops over all the fine subdomains instead of distributing them out to separate processes.
This does of course result in a highly inefficient program, but it is, as previously mentioned,
efficient from an implementational point of view. Parallel programming tends to be time
consuming, even though the high level Python MPI interface hopefully would make it sim-
pler. As the goal was to study how well the Parareal algorithm performs on a time dependent
Stokes problem, it was not essential to have an efficient, parallel implementation, but rather
have a functioning Parareal simulator up and running as quick as possible. If the serial algo-
rithm performs well on the time dependent Stokes problem, it will obviously show the same
traits when ported to a true parallel implementation.

To use the Parareal implementation you need to provide a set of classes implementing a
small set of interfaces. The implementation does not require you to inherit from a provided
set of base classes, or implement particular interface objects, such as one would do in other
object oriented languages. It merely assumes that the required functionality is present. For
our purposes, this is one of the nice features of Python – there is no need to create an
extensive set of solver base classes, unless you would like to organize your code in this way.
The goal of the implementation was to keep it as generic as possible, giving flexibility in
the choice of fine and coarse solvers. It should also be easy to adapt previously developed
solvers with only minor modifications.

The SolverFactory class

To instantiate an instance of theParareal class you must provide asolver factory class,
which is a class used to produce instances of coarse and fine solvers. Any Python class
implementing the interface requirements shown below can be used as a solver factory.

c l a s s S o l v e r F a c t o r y :
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def g e t F i n e S o l v e r ( s e l f , t S t a r t , tS top , t imeStep ,
∗noUnknowns )

def g e t C o a r s e S o l v e r ( s e l f , t S t a r t , tS top , t imeStep ,
∗noUnknowns )

The functions should return an instance of a coarse or fine solver, respectively, designed to
solve the PDE in the time domain [tStart, tStop] using the given time step. The anonymous
parameters*noUnknowns are assumed to set the number of unknowns (number of nodes)
in each spatial dimension. The Parareal implementation will pass*noUnknowns untouched
to theSolverFactory (see the description of the Parareal implementation), and you are
therefore free to set the format of the parameters. You could for example use this to specify
different spatial resolution for fine and coarse solvers. As previously mentioned, the returned
coarse and fine solvers can be either instances of the same class, or represent an all together
different implementational scheme.

The Solver classes

The CoarseSolver returned bygetCoarseSolver(· · · ) should implement the following
interface

c l a s s C o a r s e S o l v e r :
solveTimeDomain ( s e l f , t S t a r t , tS top , s t a r t S o l u t i o n )
ge t IC ( s e l f )
g e t S o l u t i o n ( s e l f )

TheFineSolver interface is of similar nature:

c l a s s F i n e S o l v e r :
solveTimeDomain ( s e l f , s t a r t S o l u t i o n )
g e t S o l u t i o n ( s e l f )

The solveTimeDomain() functions solve the PDE in the given time domain, and must
accept an instance of asolution object– startSolution – representing the initial condition
for the subdomain. The coarse version should also reset the size of the time domain using
tStart andtStop before solving the domain.

This last feature is due to a small optimization done in the Parareal algorithm to speed
up the serial computation. We know that allλk

i values fori < k are as accurate as they
can be, since the initial conditionλk

0 has directly influenced all fine solvers up toi = k (cf.
previous discussion on the exact solution). To calculateλk

i for i < k is therefore superfluous
workload in the algorithm, and we can use “for i = k to N” on the inner loop of the algorithm
instead of running it fromi = 1. For the efficiency to have any effect, the coarse solver must
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then be able to reset its time domain. The algorithm also utilizes this functionality to only
calculate small sections of the time domain and then saving the solution to the appropriate
λ, before proceeding to the next time domain. For a parallel computation optimization may
not be necessary unless you have other work for the processes freed by this change in the
algorithm.

getSolution() is expected to return the most recently calculated solution of the time
domain in the solver (i.e the solution attStop) andgetIC() in CoarseSolver should return
a solution object representing the the initial condition for the time dependent PDE.

The Solution class

Considering the Parareal algorithm in Algorithm 1 on page 58, it should be fairly clear what
the interface to theSolution returned bygetSolution() andgetIC() object should be:

c l a s s S o l u t i o n :
__add__ ( s e l f , o t h e r )
__sub__ ( s e l f , o t h e r )
__copy__ ( s e l f )
norm ( )

The__add__ and__sub__ functions must of course return a new object instance containing
the result ofself±other. Even though the Parareal algorithm works well with coarse
and fine solvers that use different discretization techniques or solvers working on different
perturbations of the original model problem (see chapter 5.1.1 on page 58), we must still
expect the objects representing the spatial solution at any time point to be able to interact
with other solution objects, regardless of their origin is a coarse or fine solver. This is
after all the basis for creating the newλ values. You therefore need to make sure that
addition and subtraction with a mix of fine and coarse solutions is meaningful, such that
Python expressions resulting in function calls of typecoarseSol.__add__(fineSol) or
fineSol.__sub__(coarseSol) are valid.

__copy__ must be present to make the objects work well with Python’scopy module.
Parareal uses this function to keep copies of the oldλ–values.norm() should return some
suitable norm of the solution object. This is used during the convergence check. Actually,
what the Parareal algorithm does is to compute the difference norm between solution ob-
jects, and use this to estimate the error as a global space–time norm. This was discussed in
chapter 5.1.2 on page 60. As the difference between to solution objects is a new solution
object, these objects must be able to produce a norm.

The Parareal class

We now turn our attention to theParareal interface: To create aParareal instance you
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Listing 5.1: Parareal Interface

c l a s s P a r a r e a l :
def _ _ i n i t _ _ ( s e l f , noProcs , t S t a r t , tS top , dt ,

convTol , s o l v e r F a c t o r y ,∗noUnknowns )

def run ( s e l f , convTol =1.0 e−8 )
def r u n E r r E s t i m a t e ( s e l f )
def runConvTest ( s e l f )

def getLambdaValues ( s e l f )
def getF ina lNorm ( )

must pass aSolverFactory instance as described above. It also expects the number of
processes and the global time domain parameters in order to initialize the solvers.dt is
the fine time step passed to theF solvers; the coarse time step is calculated by the algo-
rithm. There is also a possibility to send in anonymous parameters intended to describe the
number of unknowns in each spatial dimension.*noUnknowns is passed untouched to the
SolverFactory functions, so they can describe an arbitrary discretization format. In fact,
you can use it to send any extra information to your factory class, as the Parareal algorithm
does not use it in any way, though its assumed intention is reflected in the variable name.

run() executes the body of the Parareal algorithm, and terminates when convergence is
reached based on the input parameter.runErrEstimate() andrunConvTest() are func-
tions that support the extra calculations needed to perform the tests described in chapter 6
on page 70. They both run the algorithm with the convergence tolerance set to exactly zero,
which forces it to run maximum number of iterations. They respectively return arrays with
the error and convergence quality estimates for eachλ. For runErrEstimate(), an exact
solution using the fine solver (see chapter 5.1.1 on page 58) will be calculated prior to the
run of the main iterative loop. Then, for each update ofλk, the error compared to the exact
solution is calculated and stored in a list that will be returned after the algorithm has exe-
cuted. This functionality is useful when checking the convergence rate of the algorithm for
a particular PDE, or when testing the algorithm implementation itself. For example, using
the heat equation the algorithm should display the distinct exponential decay in error as the
number of iterations increase, and the heat equation solvers were used as a test to check our
algorithm implementation.

Note that the objects in the error estimate list are determined by the type returned from
thenorm() function of theSolution objects.
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Example: Adapting Heat1 to use with the Python implementation of Parareal

As has been explained to some length in previous chapters, particularly, the heat equation
has been the test model problem for most of the work done on this thesis. As was shown
in [20], the Parareal algorithm behave beautifully when solving the heat equation as long as
the solvers are stable for the particular time step the solver operates under.

As the solver is ultimately based on theHeat1 solver that ships with Diffpack, it is rea-
sonably safe to assume that our solver is correct and bug–free. This makes it ideal for testing
the Parareal implementation, because if the algorithm does not show the proper convergence
traits it is most likely due to the actual algorithmic implementation and not the PDE solver.
To show how you could adapt a Diffpack solver for use with the Parareal implementation,
the necessary modifications to the DiffpackHeat1 implementation are shown here. The
following adaptation of the solver to match the interface requirements set above was created
early in the development process in order to test the Parareal implementation. It does not
necessarily show the final heat implementation. The full heat class hierarchy is described in
chapter 3.4.2 on page 24.

In chapter 7.3.2 on page 94, we will show how to create SWIG interface files for a Diff-
pack simulator. Once you have the basic interface file for theHeat1 implementation, it is
straight forward to extend it to fit the Parareal algorithm. We will here extendHeat1 so
that it can be used as both fine and coarse solver. The necessary extensions to the SWIG
interface file are shown in 5.2 on the next page. ThegetSolution() returns a reference
to a DiffpackVec_double object. Python will only interpret this as a C/C++ reference and
not a Python object instance, and since it is not a valid object instance you cannot treat it as
such from your Python code. This will cause all operations done on the solution objects in
Parareal.run() to fail, regardless of whether the Diffpack object implements the interface
requirements or not. A Python interface toVec_double is located in theDiffpack2Python
module developed for this thesis3. The interfaceDiffpack2Python.Vec_double has been
extended to meet the interface reuirements of theSolution objects, and you can combine
the extension code from Listing 5.2 with Python logic for wrapping the returned vector ref-
erences to give you a fairly clean solution. You could do this by inheriting fromHeat1,
and then shadow thegetSolution() function from the base class as shown in Listing 5.3
on page 69. Incidentally, 5.3 also shows the class interface toHeat1LinEq, which is part
of the Heat class hierarchy discussed in chapter 3.4.2 on page 24. TheHeat1LinEq con-
structor is also discussed there, and is not shown in greater detail here. This concludes the
introductory chapters on model problems, discretization techniques, algorithms and source
code documentation. The following chapter is dedicated to the test results from funning the
Parareal algorithm on the heat and Stokes solvers developed through chapters 3–5.

3Diffpack2Python is documented in appendix A on page 107.
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Listing 5.2: Parareal extensions to theHeat1.i SWIG interface

%ex tend Heat1 {
/ / Make Heat1 s u p p o r t i n t e r f a c e f o r Pa ra rea l s o l v e r s

vo id solveTimeDomain ( Vec_double& s t a r t S o l u t i o n ) {
s e l f−>dof−>v e c 2 f i e l d ( s t a r t S o l u t i o n , ∗ ( s e l f−>u ) ) ;
s e l f−>dof−>v e c 2 f i e l d ( s t a r t S o l u t i o n , ∗ ( s e l f−>u_prev ) ) ;
s e l f−>f i l l E s s B C ( ) ;
s e l f−>t imeLoop ( ) ;

}

vo id solveTimeDomain ( double t S t a r t , double tS top ,
Vec_double& s t a r t S o l u t i o n {

s e l f−>t i p −>scan ( oform ( " d t=%f , t i n [%f ,% f ] \ 0 " ,
s e l f−>t i p −>D e l t a ( ) , t S t a r t , t S t o p ) ) ;

Heat1_solveTimeDomain__SWIG_0 ( s e l f , s t a r t S o l u t i o n ) ;
}

Vec_double& g e t S o l u t i o n ( ) {
Vec_double∗ vec = new Vec_double ( ) ;
s e l f−>dof−> f i e l d 2 v e c (∗ ( s e l f−>u ) , ∗ vec ) ;
re turn ∗ vec ;

}

/ / ge t IC ( ) w i l l be done i n Python

} / / end %e x t e n d Heat1
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Listing 5.3: Heat1LinEq class interface: Parareal extensions to Heat1

from Heat1 import ∗
import Di f fpack2Py thon

c l a s s Heat1LinEq ( Heat1 ) :
def _ _ i n i t _ _ ( s e l f , m e n u I n i t i a l i z e r ,

ve rbose = Fa lse , save = F a l s e ) :

def g e t S o l u t i o n ( s e l f ) :
" " " Re tu rn Python wrapped D i f f p ac k p o i n t e r " " "
dpVecClass = D i f f pack2Py thon . Vec_doub leP t r
re turn dpVecClass ( Heat1 . g e t S o l u t i o n ( s e l f ) )

def ge t IC ( s e l f ) :
s e l f . s e t I C ( )
re turn s e l f . g e t S o l u t i o n ( )



Chapter 6

Running Parareal on the Stokes
equations: Test results

Using the results from all the preceding chapters and the technical details of programming
covered in subsequent chapters and appendices, we are in a position where we can examine
the some of the possible similarities and differences between running the Parareal algorithm
on the heat equation versus using it to solve the Stokes equations. This chapter is divided into
two main sections: in the first we will study the behaviour of the algorithm whenθ varies in
the Parareal stability rangeθ ∈ [2/3,1]. This test will be based on how the error compared
to theserial solution (i.e. the Parareal exact solution) develops as the number of iterations
increases. In the second section we will try to determine if the convergence strategy we have
chosen to use in Parareal mirrors the true error compared to the serial solution, i.e. see if
the convergence strategy seems valid. The second test will be particularly interesting, as we
have not seen any previous tests on whether the norm over theλ–values actually is a good
reflection of the error. All tests will be done numerically.

6.1 Experimenting with θ–stability

Throughout this report, we have advocated Parareal stability if the coarse solver is based on
a discretization whereθ ∈ [2/3,1], and where theθ–value for the fine solver is chosen such
that the solver is stable for the given fine time step∆t. The coarse solver must of course also
be stable for its time step,∆T. We remark, as has been stated earlier, that the exact solution
for Parareal is the solution found by theserial computation based on the fine propagator
over the entire time domain. Convergence and error of of the algorithm is measured against
this serial solution.

For our (parabolic) equations, we expect the Parareal algorithm to have an exponential
decay in error as the number of iterations,k, increase. This was established in chapter 5.1.3
on page 61. As the error is an exponential function ofk, we would expect thelogarithmof

70



Chapter 6. Running Parareal on the Stokes equations: Test results 71

the error to decrease in a linear fashion ask goes toN (number of processes), until it reaches
machine accuracy,am. It will then become become asymptotic witham. A typical example
of this behaviour is shown in Figure 6.1

Before we proceed to study the stability function for our model problems, we need to
look a bit closer at the slightly paradoxical nature of Parareal stability, which separates it
from the traditional notion of stability. Usually, when one speaks of instability, performing
one more step in whatever algorithm one is using will only worsen the situation, and cause
your numerical solution to deviate further form the true solution. Not so for the Parareal
algorithm. The number of iterations is bounded byN, and the algorithm willalwayscon-
verge to its exact solution given that we have infinite precision. This does not conform to
the typical notion of instability. On the other hand, if it usesN iterations to converge, the
algorithm itself becomes pointless; you have then in essence performed a serial computation
with the added factor of communication overhead. Note that the error in in the algorithm
may still become arbitrarily large before dying out atk = N, and by that it shows typical
signs of instability.

6.1.1 The test parameters

We will look at the effect on the Parareal convergence rate on our two model problems
whenθ is varied around the stability thresholdθ = 2/3. We will run the maximum number
of iterations, and compute the global space–time error ofλk compared to the serial solution,
such that we have an error function

e(k) =

√
N

∑
i=1
‖λi −λk

i ‖2∆t.

From the analysis we know that the turning point in terms of stability should occur atθ =
2/3, and the logarithm ofe(k) should show a linear plot. As the properties of the Parareal
algorithm are known to be evident when used to solve the heat equation we will present
the the plots of the error function from the heat experiments as blue prints to the expected
behaviour of the Stokes error.

For the Stokes equations we solve for two unknowns in each Parareal iteration, and we
must decide on how to handle the definition of the norms used in the error function. Because
we only solve the pressure up to a constant whereas velocity is solved exact, the norms used
to determine error and convergence on the Stokes problem will be based on velocity only.

In the following tests, common settings has been used for Parareal and the time dis-
cretization to ensure that the comparisons are as valid as possible. The number of processes,
N, has been set to 40, such that we are certain that the error plots have a fairly high res-
olution and will show as much of their respective properties as possible. The algorithm
will be forced to run the maximum number of iterations as the stop criteria is set to exactly
zero, which will only happen whenk = N, asλN

N− λN−1
N = 0. The time domain will be
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Figure 6.1: The logarithmic development of the Parareal error ask goes toN = 40 for the
heat equation.θ = 2/3 for the coarse solver andθ = 1.0 for the fine solver.

t ∈ [0.0,3.6], and the fine time step set to∆t = 0.01. These settings will give us∆T = 0.09,
such that we have 9 fine time steps per subdomain in time. The algorithm will be run for
θ = {2/3−1/10, 2/3, 2/3+1/10, 1}.

6.1.2 Parareal error for the heat equation: “blue–prints”

As depicted in Figure 6.1, the algorithm is clearly stable usingθ = 2/3 for the coarse solver;
the plot shows a consistent convergence as the number of iterations increase. In Figure 6.1,
the discretization of the fine solvers useθ = 1.0, which is Implicit Euler. As the only criteria
for the fine solver is that it should be stable, we could use other values as well, for example
have fine solvers withθ = 1/2 or θ = 2/3, without actually affecting the stability. We can
see this property in Figure 6.2 and Figure 6.3, where the fine theta value is alternately set
to equal the coarse solver’sθ–value and to 1/2. We see that the choice of fineθ value have
very little influence on how many iterations you need before the algorithm converges, which
is in agreement with the convergence analysis. In the latter case the discretization method of
the time derivate is Crank–Nicolson, which is a second–order in time discretization method,
although that has no influence on theParareal error, only on the error compared to the
analyticalsolution.

You should also be able to run the fine solver with Explicit Euler (θ = 0), as long as you
make sure that the time step is small enough. For the tests done here we will not use Explicit



Chapter 6. Running Parareal on the Stokes equations: Test results 73

Figure 6.2: Error for heat ask→ N
usingθ = 2/3 for both coarse and
fine solvers.

Figure 6.3: Error for heat ask →
N using θ = 2/3 andθ = 1/2 for
coarse and fine solvers, resp..

Euler, simply because it is too inefficient due to the time step restrictions. As the Parareal
implementation is actually not implemented in parallel, it has a far longer execution time
than the equivalent serial solver. To be forced to further reduce the fine time step would
cause the tests to use far too much computation time compared to the relative little new
insight the results would add to the existing tests. The computation time is particularly
important for the Stokes equations, which, due to the increased complexity, has in itself a
much longer execution time than the heat equation.

For the coming tests we will mostly let the fine and coarse solvers use equivalentθ
values, as the fine solver will always be stable if the coarse solver is stable. This choice is
merely for convenience, as it slightly reduces the number of parameters we must handle to
fully describe the test cases. We will only introduce separateθ values if tests show a sudden
influence from the fineθ value.

6.1.3 Unstableθ values

We begin our stability tests by settingθ = (2/3−1/10). As expected, the algorithm show
classic Parareal instability for both the heat and the Stokes equations, where the error begin
to increase after a certain number of iterations, though neither model problem show instabil-
ities of any drastic scale under these particular circumstances. The respective error functions
are shown in Figure 6.4 and Figure 6.5.

Having noted that there is indeed an instability for the heat equation here, we must point
out that for this particular case, the error increase does not happen until after roughly 10
iterations, when the error is below 10−12. For the heat equation we can clearly see the
conservativeness of the‖R(z)‖ ≤ 1/2 restriction, as the instability is not pronounced until
after the algorithm has run enough iterations to make the error very small. Depending on
your stop criteria, the algorithm will likely have converged before the instabilities occur.
Neither does the error have time increase by much before the convergence properties of the
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Figure 6.4: Error for heat ask →
N using θ = 2/3− 1/10 for both
coarse and fine solvers.

Figure 6.5: Error for Stokes ask→
N using θ = 2/3− 1/10 for both
coarse and fine solvers.

algorithm take effect, but it is no longer exponential when it resumes its descent atk = 20. If
the algorithm did not converge at 10−12, it is likely that it will not converge untilk∈ 〈30,35〉,
which implies that you have gained very little of the potential speedup the algorithm can
give. We must also emphasize that by using a different discretization, changing the number
of processes or otherwise changing the settings, this error could have become much larger,
and it could also have occurred at a much earlier stage.

For the Stokes problem, the error show the same basic behaviour as for the heat equa-
tion, but here the instability has more effect as it appears long before the error has had any
possibility of decreasing to an acceptable level. It clearly influences the number of iterations
needed before the algorithm converges, which would probably not be before we were close
to the maximum number of iterations. This does not necessarily imply that the algorithm
cannot be used on the Stokes equations. Forθ = 2/3 we do after all expect the algorithm
to be unstable, which it clearly is here. The instabilities actually make Parareal equations
conform to the expected behaviour. We also note that the error becomes much larger than
the equivalent run of the heat equation, and we will not reach machine accuracy at all before
k = N. The differences we observe compared to the heat equation could be due to different
eigenvalues, since the equations will discretize differently in the spatial domain. Different
eigenvalues will again influence the stability function, c.f. chapter 2.2.1 on page 10, and
thus account for the differences between the error functions. The differences in error could
thus simply be due to how the two systems respond to the current settings, both spatial
and temporal, rather than any potential trouble running the Parareal equation on the Stokes
problem.

Most of theθ values used in this chapter are solely of interest in studying the Parareal
error. In a real–life situation, you would normally choose between using Explicit or Implicit
Euler, or Crank–Nicolson, to discretize your time derivatives. Merely to show that Crank–
Nicolson is not an unconditionally good choice to use under Parareal, even though it is a
second–order in time method, error plots for the heat and the Stokes model problem are
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Figure 6.6: Error for heat ask →
N using Crank–Nicolson for the
coarse and Implicit Euler for the
fine solvers.

Figure 6.7: Error for Stokes as
k → N using Crank–Nicolson for
the coarse and Implicit Euler for the
fine solvers.

shown in Figure 6.6 and Figure 6.7, respectively. The similarities toθ = (2/3−1/10) are
clear, and the only difference for heat is that the instability makes itself known at a slightly
earlier iteration, while the error grows larger and will not fully die out untilk= N. The same
observations apply to Stokes, but when you use Crank–Nicolson with the current variable
settings on Stokes, the error grows very large compared to other tests we have seen.

With these preliminary observations done, it should also be clear that we for heat again
see that the restrictions onθ are very cautious. Depending on how you set your error tol-
erance, you could very well use Crank–Nicolson as the coarse solver under these circum-
stances. It is stable up to about 10 iterations, when the error is reduced to about 10−9. As
long as the algorithm converges before this, nothing will seem amiss. The observations
from chapter 5.1.3 on page 61 therefore holds true: as long ask� N, which in this case is
equivalent to 10� 40, the algorithm will appear stable. For the Stokes equations however,
the error is barely below 10−2 before the solution becomes unstable for this particular test
case.

6.1.4 Stableθ values

The threshold of the stability domain: θ =
2
3

For θ = 2/3 we expect the algorithm to be stable and exponentially convergent. By Figures
6.1–6.3 we already know this to be the case for the heat equation. The matching test for the
Stokes equations is presented in Figure 6.1.4. The algorithm is stable in the global sense, as
we have consistent convergence ask goes toN. The error never begin to increase as it would
for the classic definition of stability. Neither does it show the smooth exponential decay in
time like the algorithm shows for heat equation.

Remember that the plots of log(e(k)) show the error overall λ–values compared to
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the values you would have from a serial computation. The “bump” in convergence shows
shows echoes of the shape of the instability plots forθ = (2/3−1/10). It is likely due to
small instabilities insomeof the λ–values for a given iteration, which will be damped by
the overall reduction of the global errore(k). As the global error consistently decreases
toward machine precision, if not in a completely exponential manner, one could see this
small local instability more as a precision problem rather than an instability issue. In this
view, a selection of yourλ–values could be slightly further from the serial solution than
others, depending on your convergence criteria.

We only do numerical tests here, so we can only propose conjectures. A possible influ-
ence to the local instability problem could be caused by Stokes classifying as a differential
algebraic equation (DAE), as we have briefly mentioned earlier. DAE adds restraints to the
type of temporal solver we may use and require so–calledstiffly accuratemethods to work,
c.f. [1]. This could possibly influence the range ofθ–values, as they must produce coarse
solvers that have enough damping to keep the Parareal error bounded. We were not able to
verify with full certainty that discretizations usingθ ∈ [2/3,1] are stiffly accurate, although
both the Crank–Nicolson and Implicit Euler are stiffly accurate methods. We are fairly con-
fident that usingθ ∈ [1/2,1] will give stiffly accurate methods, but this still leaves room for
doubt as to wetherθ = 2/3 is an appropiate method for DAE problems.

Nevertheless, numerically, the algorithm appears to be stable, which is all we can con-
clude with here. The error does not grow, and you would be able to converge beforek = N,
although not as fast as for the heat equation.

Stability at
2
3

< θ and Implicit Euler

As there was clearly something influencing convergence for the Stokes equations whenθ =
2/3, we examine the error function asθ = (2/3+1/10). For a complete reference the test
result for heat will also be presented, although it is, as expected, fully stable. We will also
present the results from using Implicit Euler to discretize both our model problems.

From Figure 6.10, we see that the Stokes error show identical behaviour to the equivalent
heat test; the numerical results show the algorithm as stable without any of the uncertainties
from θ = 2/3. It therefore seems as though whatever source to the instabilities disappear
asθ moves away from 2/3. The Stokes model problem has a slightly lower convergence
rate than the heat equation which, analogous to the differences in instability that we pointed
out for θ = (2/3− 1/10), probably only indicates that the factor governing convergence
is problem dependent, relying on for example the eigenvalues. As a last comment, further
experiments indicated that all traces of the local instability/precision problem disappears
betweenθ = (2/3+0.05) andθ = (2/3+0.06).

Moving on to using Implicit Euler, i.e.θ = 1.0, we see by figures 6.11 and 6.12 that
we have fully convergent error functions for both the heat and the Stokes equations. We
can note that for the heat equation, the convergence rate increases as we move away from
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Figure 6.8: Error for Stokes ask→ N usingθ = 2/3 for both coarse and fine solvers.

Figure 6.9: Error for heat ask →
N using θ = 2/3+ 1/10 for both
coarse and fine solvers.

Figure 6.10: Error for Stokes as
k → N using θ = 2/3 + 1/10 for
both coarse and fine solvers.
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Figure 6.11: Error for heat ask→N
using θ = 1.0 for both coarse and
fine solvers.

Figure 6.12: Error for Stokes as
k→N usingθ = 1.0 for both coarse
and fine solvers.

θ = 2/3 and toward Implicit Euler. This could possibly be because the closerθ is to 2/3,
the closer the coarse propagator is to a Crank–Nicolson scheme, which is the only second–
order in time scheme of all the possible choices ofθ. For the Crank–Nicolson scheme, the
second–order error constant is zero, leaving the third–order constant to describe the error.
As θ goes to 1/2, the second–order error constant approaches zero accordingly. A scheme
usingθ = 2/3 will thus be closer to a second–order in time scheme than schemes where
θ goes to 1. Therefore, an increased convergence rate could be caused by moving further
and further away fromθ = 1/2, such that the coarse estimates of the solution for each time
step will not be of as good quality as those found by a solver closer to the second order
Crank–Nicolson. Once again, this is simply conjecture.

Conversely, the opposite is true for the Stokes equations: the closer you are to using
Implicit Euler, the better the convergence rate will be. We will not try to explicate the
the reasons for the separate behaviours on this point here, and merely point this out as an
interesting numeric fact that should be studied further. It can also be used as a tentative
practical guideline showing that for the Stokes equations one should use Implicit Euler for
best possible convergence, whereasθ = 2/3 (or θ = 1/2) will be most efficient for the heat
equation.

6.1.5 Stability for the Stokes equations

To conclude, we see that Parareal seem to be stable for the Stokes equations based on our
numerical experiments, but caution that there are finer points that must be delved into before
one can state this with certainty. One should particularly examine the cause for traces of
instability for θ = 2/3.
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6.2 Convergence tolerance quality

In this chapter we will try to determine whether the stop criteria we opted for in chapter 5.1.3
on page 61 was a good choice. Ideally, one would like the stop criteria to reflect the true
error, i.e. the error compared to the exact solution for Parareal. We have not found any
references to testing this stop–criteria in the Parareal literature, and it seems that it is just
generally assumed to appropriately reflect the true error in the algorithm at iterationk. Of
course, the best convergence check we could possibly have would be to compare it to the
exact serial solution, but if we had the exact serial solution there would naturally be no point
in running Parareal. In choosing to base the stop criteria on the space–time norm

ep(k) =

√√√√ N

∑
i=k

‖λk
i −λk−1

i ‖2∆t,

we therefore hoping that it will reflect the corresponding difference norm to the serial solu-
tion,

es(k) =

√√√√ N

∑
i=k

‖λi −λk−1
i ‖2∆t,

whereλi is the exact solution at time stepi. To terminate the algorithm you would do the
comparison

ep(k) < εp,

which is a substitute for what we actually want to express: the error introduced by the
Parareal algorithm that we are willing to accept, i.e.

es(k) < εs.

As it stands, we have no knowledge on how we should choose our stop criteriaεp such that
we actually end up withεs as the global error of our solution compared to the serial solution.

If ep(k) mirrorses(k), the ratio
ep(k)
es(k)

= a,

wherea is a constant, should exist. Numerically, we will assume that all values close toa
really isa. If a exists it would give us an idea of how we must setep in order for our chosen
stop–criteria to reflect the actual error, as we could just use

εp = aεs.

For this test we have used the same settings as for the stability tests, but instead of
letting θ be the main variable, we changeN for each test. We will force the algorithm to
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run maximum number of iterations to make sure that we do not miss information due to
premature convergence. As we will compareep(k)/es(k), we must expect this fraction to
produce nonsense when the Parareal algorithm reaches machine precision, as we will then
have division between very small numbers. This is usually not a good idea, but as will not be
interested in what happens after we reach machine precision we will ignore any irregularities
occurring after the algorithm would clearly have converged.

We will combine the following parameters in order to try to numerically verify our stop
criterion

θ =
{

2/3
1.0

, N =


9
18
24
40

6.2.1 Convergence test results

Running Parareal on heat and Stokes with the specified settings, we end up with a series
of of ratios that we can represent by plots to visualize the (hopefully) constant parts of the
ratio. The tables 6.1–6.4 show the approximate ratioa for each combination ofN andθ. The
plots on which the data in these tables are based can be found in figures 6.13–6.28 on page
82. As we can see from the summaries in each table, we are able to find an approximate
a for all our test runs, which indicates that there is indeed possible to adjustεs throughεp.
As expected, the plots show irregularities once they go beyond a certaink, due to division
by very small numbers, but this is of no consequence, as one would reach and determine
convergence before this. Some of the plots also show jumps between the initial iterations,
but they stabilize quickly ata.

There will always be uncertainties connected to such numerical results, and for some
of our test runs the listeda is perhaps a bit more dubious than others. All in all, the plots
show a consistent behaviour in that there is always possible to finda, which is far better
than expected. The area where the constanta is defined seems to follow the convergence
plots fairly well, and there is usually a match between when machine precision is reached
and whena is no longer present. As an example one can use Figure 6.24 wherea disappears
at k≈ 17, and compare it to the convergence plot in Figure 6.12 which shows convergence
at roughly the same iteration. This connection does by no means seem to be guaranteed;
in the equivalent situation for Heat convergence is reached at aboutk = 25, whereasa is
only visible whilek < 15. Admittedly, the error displayed in the convergence plot is very
small atk = 15. In future work it would be interesting to determine when and whya exist
– provided that these numerical tests are correct. Our tests merely indicate that there is a
possible connection betweenes andep, and further work that analyze how this stop–criteria
operates under Parareal should be done before one can confirm our numerical results with
any certainty.

The ratios listed in the tables vary, although they seem be fairly invariant to the number
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of processes used, and if anything, they seem to rather cluster around the combination of
model problem andθ value. The very obvious exception to this behaviour is shown for the
heat tests whereθ = 2/3. Here,a vary betweena≈ 2 anda≈ 18. Why this happens, and
whether it is of any practical importance, should also be studied further.

Since the size ofa does not seem to follow any discernible pattern at this point, one
should probably adapt the same strategy as one uses for linear solvers: provide a good
measure for variations in the ratio by choosing, for example,a = 26, as our largest value is
18. a would then hopefully stay inside this bound as one adjustsN, θ, ∆t etc. etc.

N = 9 Constant ratio fork < 6 Ratio:a≈ 9
N = 18 Constant ratio fork < 14 Ratio:a≈ 5.6
N = 24 Constant ratio fork < 17 Ratio:a≈ 5
N = 40 Constant ratio fork < 25 Ratio:a≈ 5

Table 6.1: Convergence ratio for when running heat withθ = 1.0

N = 9 Constant ratio fork < 5 Ratio:a≈ 3.8
N = 18 Constant ratio fork < 15 Ratio:a≈ 9
N = 24 Constant ratio fork < 8 Ratio:≈ 18.3
N = 40 Constant ratio fork < 15 Ratio:a≈ 2

Table 6.2: Convergence ratio for when running heat withθ = 2/3

N = 9 Constant ratio fork < 4 Ratio:a≈ 5
N = 18 Constant ratio fork < 11 Ratio:a≈ 4
N = 24 Constant ratio fork < 15 Ratio:a≈ 3.5
N = 40 Constant ratio fork < 17 Ratio:a≈ 3

Table 6.3: Convergence ratio for when running Stokes withθ = 1.0

N = 9 Constant ratio fork < 7 Ratio:a≈ 2.5
N = 18 Constant ratio fork < 8 Ratio:a≈ 2
N = 24 Constant ratio fork < 10 Ratio:a≈ 2.5
N = 40 Constant ratio fork < 20 Ratio:a≈ 2

Table 6.4: Convergence ratio for when running Stokes withθ = 2/3
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Figure 6.13: Convergence ratio for
heat usingN = 9 andθ = 1.0.

Figure 6.14: Convergence ratio for
heat usingN = 18 andθ = 1.0.

Figure 6.15: Convergence ratio for
heat usingN = 24 andθ = 1.0.

Figure 6.16: Convergence ratio for
heat usingN = 40 andθ = 1.0.
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Figure 6.17: Convergence ratio for
heat usingN = 9 andθ = 2/3.

Figure 6.18: Convergence ratio for
heat usingN = 18 andθ = 2/3.

Figure 6.19: Convergence ratio for
heat usingN = 24 andθ = 2/3.

Figure 6.20: Convergence ratio for
heat usingN = 40 andθ = 2/3.
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Figure 6.21: Convergence ratio for
Stokes usingN = 9 andθ = 1.0.

Figure 6.22: Convergence ratio for
Stokes usingN = 18 andθ = 1.0.

Figure 6.23: Convergence ratio for
Stokes usingN = 24 andθ = 1.0.

Figure 6.24: Convergence ratio for
Stokes usingN = 40 andθ = 1.0.
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Figure 6.25: Convergence ratio for
Stokes usingN = 9 andθ = 2/3.

Figure 6.26: Convergence ratio for
Stokes usingN = 18 andθ = 2/3.

Figure 6.27: Convergence ratio for
Stokes usingN = 24 andθ = 2/3.

Figure 6.28: Convergence ratio for
Stokes usingN = 40 andθ = 2/3.
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6.3 Summary

The numerical tests indicate that the Stokes equations generally operate well under Parareal.
There are some uncertain factors that must be resolved, which we have pinned as possibly
relating to the DAE aspect of the Stokes equations. This is particularly the case in the lower
bound ofθ. As θ → 1.0 the algorithm seems to be as stable and convergent for the Stokes
equations as it is for the Heat equation. This is a numerical result only, and should be verified
with a thorough analysis.

Our initial tests of the convergence criteria indicate that

ep =

√√√√ N

∑
i=k

‖λk
i −λk−1

i ‖∆t

is a good estimate of the actual error inλk, as it seems to be only removed from the true
error by a constanta. So far, this verifies that the stop criteriaep is indeed a good choice,
which seems to have only been assumed in the literature on Parareal.



Chapter 7

Working in the Microsoft Windows
Environment

The scientific community seems to favor Unix based platforms, but most of the tools found
in the Linux world has an equivalent on a Windows system. The Python interpreter has, of
course, a Windows build, and tools like SWIG for automatically creating the wrapper code
between C/C++ and Python use the same interface as the Linux version. Python modules
such as Numeric and Pysparse work just as well in Windows. Diffpack also ships with a
Windows version.

When we began our work, there was no clear documentation for using the scientific
tools required for the thesis on the Windows platform. Our colleagues and tutors felt un-
comfortable using Windows, and we therefore wished to create a guide for using Windows
as en environment for scientific computing. This chapter is meant as a practical guide on
how to employ the central tools used under this thesis, and is primarily based on product
documentation and personal experiences. Hopefully this will be of use for later students
and researchers that need to use the same set of tools in a Windows based environment.
The main topics are how to set Python up on a Windows system, how to install new Python
modules, and how to use Diffpack and SWIG through Visual Studio 6.0. The idea is that
one can combine Diffpack, Python module code and SWIG in Visual Studio projects, which
can be compiled and linked in one operation. This renders development of Python extension
modules a smooth and efficient operation.

This chapter assumes that you are not a novice Windows user, and that you have knowl-
edge of the Python environment and how you would write Python extension modules in
C/C++, albeit not necessarily from a Windows viewpoint. Some familiarity with program-
ming C/C++ in Visual Studio 6.0 is expected, so you should, for example, know how to
create new projects and compile and link your source code. It is not assumed that you have
written extension modules for Python through Visual Studio, or that you have used either
Diffpack or SWIG in this setting.

The descriptions found here are based on the tools used when working on this thesis.

87
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Our setup was as following:

Micrososft Windows XP Professional version 2002, w/Service Pack 2.0

Visual C++ 6.0 with Service Pack 6.0 installed for Visual Studio 6.0

ActiveState Komodo Professionalversion 3.1.0

ActivePython version 2.3.5 (#62, Feb 9 2005, 16:17:08), build 236

SWIG version 1.3.25 for Windows (swigwin-1.3.25.zip)

Numeric (Python module) version 23.8, often referred to as NumPy

Pysparse (Python module)version 0.33.029 and 0.34.032

Intel Math Kernel Library (MKL) version 7.0

Diffpack Mini Distribution for Windows version 4.0

7.1 Python in Windows

This section provides a brief overview of how to set Python up on a Windows system, and
how to make both the release and debug versions available for development purposes. We
will start with the one of the standard distributions of Python for Windows developed by
Active State, and then look at installing Numeric and Pysparse.

7.1.1 The Active State Python distribution

The Python distribution used on Windows will usually be either the one provided for down-
load fromwww.python.org (open source distribution), or ActivePython developed by Ac-
tive State. Although it is free to download and use, ActivePython is a commercial product.
On the download site atwww.python.org, you can find Python Windows installers that do
all the necessary work for setting up Python on your Windows machine, and Active State’s
home pages give easy access to their Python distribution installer. We prefer to use the Ac-
tivePython distribution, mostly because they also give easy access to, and installation of, the
debug build of Python, which we could not find for the open source version. Active State
also develops a nice IDE calledKomodofor dynamic languages that support several script-
ing languages, like Python, Perl and PHP. Komodo runs on both Windows and Linux, but is
a commercial product, and you will need to purchase a lisence to download the software.

Both Python distributions are straight forward to install once the installers are down-
loaded. Note that all Python distributions must be installed directly on the root of your
drive atC:\PythonXX\, and not in “Program Files” or some other folder. Once installed,
you should be able to usepython.exe from theCommand Prompt(cmd.exe), just like you
would in a Linux environment.
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For development purposes it is practical to have access to a debug build of the Python
libraries, to use with debug builds of your extension modules. We have not found a pre–
built debug version of the open source version of Python, and it only seems to be available
through building it yourself from the source code, which, although probably not difficult,
is more work than the simple and easy procedure for installing the Active State debug ver-
sion. The Active State debug release of ActivePython is available for download through
their FTP site,ftp.activestate.com/ActivePython/etc/. You should be able to find
a *.debug.zip matching your Python release there. For this thesisActivePython-2.3.
5-236-win32-ix86.debug.zip was used to match the2.3.5-236-win32-ix86 installa-
tion. To install the debug version of ActivePython, simply unzip to a temporary directory,
and run theinstall.py script. To use the debug version of your extension module in some
Python script, usepython_d.exe and notpython.exe as the interpreter of your Python
scripts. The Python environment will load the correct build of modules, provided that they
follow the naming conventionmoduleName_d.dll for debug modules. More details on
creating and naming release and debug versions your extension modules are given in chap-
ter 7.3.1 on page 93.

7.1.2 Downloading and Installing new Python Modules

Each release of a Python module is usually provided for download onwww.sourceforge.
net in several differenttypes(software bundles/packages) to satisfy different needs and
platforms. In general, the package types divide into two categories: bundles with or without
the source code included. In other words, you either will or will not have to take compiling
and linking into consideration. The.rpm andsrc.rpm types are intended for use withRPM
Package Manager(RPM), which is a tool for installing, verifying, querying and updating
software packages. RPM is a Linux tool and the*.rpm types need not be considered further.
The remaining package types are usually the.win32-pyX.X.exe type, which is a 32-bit
Windows installer, and the.tar.gz and.zip packages, which include the source code.
X.X refers to the Python version.

Python is open source, but the Windows version is built (bizarrely) using Visual C++
6.0, which is a commercial product with fairly expensive software licenses. When building
or installing extension modules for Python in Windows using the source code packages.
You are therefore principally required to use the Visual Studio 6.0 C/C++ compiler, because
extension modules must be created with the same compiler and linker that was used to build
the Python environment. Ergo, to compile and install a free, open source product, you are
actually required to buy an expensive license.

However, most Python packages and modules for Windows come as a self-installing
binary .exe build, which turns installation into a black-box procedure. Using the self-
installers, you are not required to have Visual Studio installed to handle building of possible
C/C++ code. The binary installers also give Windows users a nice, conform way to install
extra Python packages, as the package is installed like any other software on a Windows
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machine. The.exe build is provided for most extension modules. Some smaller modules
do not provide the self-installing build for Windows, and avoiding purchase of a (possi-
bly) expensive lisence for Visual Studio to in order to use free software might be a lucra-
tive alternative. There are internet sites describing how to work around the Visual Studio
obstacle if you need to build the extension module manually, by using free, open source
compilers. You could for example useMinGW, which is a variant of thegcc compiler.
http://sebsauvage.net/python/mingw.html seems to offer a good description of such
an alternative.

The disadvantage of using the.exe build of a module is that it only modifies therelease
build of your Python library installation. The result is that you cannot use the new extension
module with a debug version of your own extension module during your development phase.
If the .exe build is not provided, or you need access to the debug version of the module,
you will need to use the Sourcetar.gz or Source.zip distributions. You then run the
setup.py script to build and install the package, like you would in a Linux environment.
Again, this requires a compiler installed on your system. See chapter 7.1.3 for further details
on building and installing Python modules throughsetup.py.

If you are using the Visual Studio C++ compiler as the default on your system when
building and installing Source distributions, you must make sure that the that the Visual
Studio IDE is run on your systemat least onceafter installation before you runsetup.py.
This is because certain entries in the Registry are not set until the IDE is run, your system is
prevented from finding the compiler and linker, and thus causesetup.py to fail.

7.1.3 The Numeric (NumPy) module

Numerical Python (Numpy) adds a fast multidimensional array facility to Python, and allows
Python programmers to efficiently manipulate large sets of objects organized in grid-like
fashion [From The Numeric Manual].

The NumPy module comes in several different builds, which can be downloaded from
www.sourceforge.net. However, if you want to have the debug build available on your
system, you must build and install the package through the providedsetup.py script. For
Windows builds you can use either the.zip or .tar.gz bundles. TheREADMEs provided
with the releases claims Window users should use.zip sources when installing on a Win-
dows platform. However, it does not seem that.zip builds are released quite so frequently
as the.exe and.tar.gz types. We have successfully built and installed Source.tar.gz
releases on Windows, and there seems to be no problem, nor any discernible difference in
contents to the.zip distributions. The reason the.zip type is recommended for Windows
could be because.zip archives are more widely used on Windows systems compared to
the.tar.gz format. Windows has built–in support for the zip–format, whereas programs
for handlingtar.gz packaged files must be downloaded separately . However, shareware
programs likeWinRARhandles.tar.gz just as well as.zip archives.

To install the debug version of Numeric together with the standard release version, unzip
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the Source to some temporary directory, and throughcmd run setup.py, first with argu-
mentsbuild -g and theninstall, i.e entersetup.py build -g | setup.py install
on the command line. The script will provide more information on how to run the setup by
using command line argument-h.

7.1.4 The Python Sparse Matrix (Pysparse) package

The Pysparse module extends Python by a set of sparse matrix types, iterative solvers for
systems of linear equations, standard preconditioners and an interface to a direct solver for
sparse linear systems of equations (SuperLU). As with Numeric, you can download Pys-
parse fromwww.sourceforge.net. The author of Pysparse also provides a site describing
the module athttp://people.web.psi.ch/geus/pyfemax/index.html. The module is
only offered as a Source.tar.gz type.

Pysparse depends on Numeric in addition to the LINPACK and BLAS libraries, so you
must install these prior to installing Pysparse. How to install Numeric was described in 7.1.3
on the preceding page. The installation notes for Pysparse suggests using the LINPACK and
BLAS implementation that accompanies the Intel Math Kernel Library (MKL), which is
what the author of Pysparse used under testing of the package on the Windows platform.
MKL is a commercial product, and is offered as a free, non-commercial download for the
Linux platform only. They do however have a evaluation copy available for download for
Windows users. Once you have installed Numeric and MKL you must modify thesetup.py
script to match the setup on your system. Use the setup under “Rivendell” as a blueprint
for a Windows system. You must also make sure that the path to the MKL DLL directory,
i.e C:\...\MKL\ia32\bin, is in your PATH environment variable to avoid runtime errors
when importing Pysparse modules. The MKL installer offers to do this, which saves you
from editing it yourself.

Originally, version 0.33.029 of Pysparse was used for this thesis. In this early setup
script, the gcc math library “m” was included in the list of libraries the module should link
with. This library does not exist on Windows and running the script as it will give linking
errors due to non-existent library “m.lib”. The necessary math library is however included
by default by Visual C++ compiler, so it is safe to remove this reference in the setup script.
In later releases of Pysparse, like version 0.34.032, the reference to the math library has been
removed. If this is not the case with the version you are using, you you can add the following
code after the default settings: will give linking errors due to non-existent library “m.lib”.
The necessary math library is however included by default by Visual C++ compiler, so it is
safe to remove this reference in the setup script. In later releases of Pysparse, like version
0.34.032, the reference to the math library has been removed. If this is not the case with the
version you are using, you you can add the following code after the default settings:
or just remove the reference all together if you are not concerned about generality.
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# m. l i b does no t e x i s t on Windows ,
# and math i s a u t o m a t i c a l l y i n c l u d e d
i f sys . p l a t f o r m i n [ ’ win32 ’ ] :

i f ’m’ i n u m f p a c k _ l i b r a r i e s :
de l u m f p a c k _ l i b r a r i e s [ u m f p a c k _ l i b r a r i e s . i ndex ( ’m’ ) ]

7.2 Diffpack in Visual Studio 6.0 projects

Diffpack for Windows sets up all necessary environment variables during installation, as-
suming you have installed Visual Studio 6.0 prior to installing Diffpack. If this is not the
case, you can run theDpSetup.bat file located in your Diffpack folder after you have
installed Visual Studio 6.0. TheReadMe.html in the root directory of your Diffpack instal-
lation, i.e the path pointed to by theNOR system variable, together with the sectionDiffpack
Topicsin [8, B.2.2], describe the appropriate settings for projects of typeWin32 Console
Applicationor Win32 Application. This section briefly summarizes the settings that apply
when using Diffpack in aWin32 Dynamic-Link Libraryproject (DLL project), which is what
you will be working with when creating Python extensions, as described in chapter 7.3 on
the facing page.

After you have created an empty DLL project, you must modify the project settings.
As you will not be interested in producing a graphical user interface (GUI), the modifica-
tions largely follow the settings forWin32 Console Applications. If you right-click on your
Diffpack project and choose settings, or go toProject→Settings(hot keys Alt+F7), you
open the settings dialogue for the projects in the current Workspace. SelectAll Configura-
tions in theSettings for:drop down menu, and under theC/C++ tab, add the preprocessor
directiveNUMT=double to indicate that the Diffpack typereal should be interpreted as a
double in your program. To set up your debugging environment, selectWin32 Debugun-
derSettings for:, choose categoryCode Generationunder theC/C++ tab, and selectDebug
Multithreaded DLLas the run-time library. For theWin32 Releaseversion you should use
Multithreaded DLL.

In addition to this, you must include the header fileLibsDP.h in your source code to give
instructions for the linking process of the project. The documentation forConsole Applica-
tion setup states that it is sufficient to only includeLibsDP.h in the source file containing
themain(· · · ) function. When creating Python extensions the equivalent would be to include
it in the source file implementing the module’sinit function. If you are using SWIG, it
would make sense to let the interface file that defines the initialization block (%init{ · · · })
includeLibsDP.h.

Diffpack Mini does not have a debug build. You will therefore have linking trouble
when_DEBUG is defined. A quick fix is just to temporarily turn off the flag while includ-
ing LibsDP.h. To make a slightly more general solution, and make the source code more
portable, a header file,Win32DpLink.h was written that handles theLibsDP.h logic under



Chapter 7. Working in the Microsoft Windows Environment 93

Windows. If Diffpack Mini is used, all linking trouble is resolved by defining the preproces-
sor macroDP_MINI=1 and includingWin32DpLink.h.

The steps described in this section is essentially all you need to set up a Diffpack project
from scratch, as long as you are not interested in creating GUI interfaces. All other pre-
processor macros mentioned in the documentation are automatically set when you create
your project, except theNUMT macro, which we have dealt with here.

7.3 Creating Python Extension Modules in Windows using
Visual Studio 6.0

The common approach when writing extension modules for Python is to compile your
C/C++ code into aDynamic Linked Library(DLL) file that can be loaded into Python as
a module. There are two common approaches to achieve this: you can either manually write
the necessarywrapper codebetween your C/C++ code and Python by using thePython C
API, or you can useSWIGto automatically create the wrapper code through processing in-
terface files. Either way you will have to create aWin32 Dynamic-Link Libraryproject. This
chapter does not aim to describe the details of wrapper code generation for Python extension
modules, only how to handle it through Visual Studio 6.0.

If you are planning to create several projects accessing the Python C API, you might
want to add the Python include and library paths permanently to yourinclude andlib
environment variables, so you do not have to set them specifically for every project you
create. You can either do this the standard way by manipulating your environment variables
through theSystem Propertiesdialogue, or you can do it through the Visual Studio IDE. In
Visual Studio, you go toTools→ Options→ Directoriesand you add the Python include
path and library path underInclude filesandLibrary files, respectively. Typically, the paths
will be something likeC:\Python23\include andC:\Python23\libs. If you do not want
to modify your include and library paths, you must specify these paths as extra include and
library paths through your Project dialogue forevery projectyou use the Python C API. To
do this you choose categoryPreprocessorunder theC/C++ tab in your project settings and
enter the extra include directory. Under theLink tab choose theInput category and enter the
additional library path. See chapter 7.2 on the preceding page for details on adjusting your
project settings.

7.3.1 Visual Studio and manually created wrapper code

When you create the wrapper code for your extension module manually, there are only a
few settings that must be added to yourDLL project in order to produce a working Python
extension module. As when setting up a Diffpack DLL project, you must set theCode
Generation: to Debug Multithreaded DLLandMultithreaded DLLunder the settings for
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Win32 DebugandWin32 Releasemode, respectively. See chapter 7.2 on page 92 for further
details. Under theLink tab in your project settings dialogue, set theOutput file name:to
moduleName_d.dll in Debug mode, andmoduleName.dll in Release mode. The naming
convention is necessary in order forpython or python_d to find and load your module.
Assuming that you have your wrapper code as part of your project files, add a new project
file to your project and call itmoduleName.def, i.e the same base name as the DLL output
file. The only entry you need in this file is “EXPORTS initmymoduleName”, which states
that theinit function of your module should be made accessible outside the module. This
is necessary in order for the Python interpreter to have access to it when you import it into
the Python interpreter.

7.3.2 SWIG in Visual Studio 6.0 projects

The Simple Wrapper and Interface Generator (SWIG) is a development tool for building
scripting language interfaces to C/C++ programs. As a Python extension module developer
you only need to write a simple interface file specifying how your C/C++ code should inter-
act with Python instead of a large amount of tedious wrapper code. SWIG will interpret the
interface file, and use it to automatically generate the wrapper code. You have to include the
interface files as part of your Visual Studio project. By setting up your project properly, you
can make Visual Studio call SWIG with the appropriate arguments to generate the wrapper
code, include the newly generated wrapper code in the compilation process, and link your
source code and the wrapper code into a library file in one smooth operation. Thus, with a
single command,Build, you generate the wrapper code, compile, link and build your mod-
ule, instead of having to go through several steps manually every time you need to build
your module for testing in Python.

The first step is to make sure SWIG is in your path of executable programs. The process
is equivalent to registering the include and library paths of your Python installation, de-
scribed in chapter 7.3 on the previous page. As before, you can register SWIG as an exe-
cutable through either theSystem Propertiesdialogue or using the Visual Studio IDE. In the
IDE you enter the path to the SWIG executable in the list underExecutable files, causing
the system variablePATH to be modified.

The manual that ships with SWIG is extensive and will probably cover everything you
need to know when using SWIG. Chapter 26,SWIG and Python, is particularly useful when
working with SWIG to create the wrapper files for a Python extension module. The current
section is largely based on chapter26.2.9 Building Python Extensions under Windows. The
information is included here to give a complete reference to the tools you are most likely
work with.

As mentioned earlier, you must add SWIG interface files to your project. You should
also add a reference in your project to a (possibly non exiting) file in the root folder of your
project. You should follow SWIG’s naming convention in order for this to work, i.e add a
reference tomyModule_wrap.c if you are using C, ormyModule_wrap.cxx if your module
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is written in C++. The file will probably not exist at this point, but Visual Studio will still
keep a reference to it after issuing a warning. After SWIG has executed, the file will contain
the generated wrapper code, and Visual Studio will include it in the build process. In the
Project Settings dialogue, select the interface file SWIG should use, and open theCustom
Build tab. ChooseAll Configurationsto fill in for both theWin32 DebugandWin32 Release
modes in one step. In theDescriptionfield enter “SWIG”. Depending on whether you are
using C or C++, enter the following in theCommandsandOutputsfields:

Field: Commands
swig -python -o $(ProjDir)$(InputName)_wrap.c $(InputPath)
swig -python -c++ -o $(ProjDir)$(InputName)_wrap.cxx $(InputPath)

Field: Outputs
$(ProjDir)$(InputName)_wrap.c
$(ProjDir)$(InputName)_wrap.cxx

There are also some settings for the project itself that must be set for SWIG to work prop-
erly. The output file underLink must be set to combine the name of your Python module and
the naming conventions SWIG expects of the DLL output files, i.e_moduleName_d.dll for
the Debug build and_moduleName.dll for the Release build. These must of course match
the module name given in your SWIG interface file. Note that the output files shouldnot go
int the Debug and Release directories. You must also add the__WIN32__ preprocessor defi-
nition under theC/C++ tab. Depending on whether you have registered the Python include
and library paths in your environment variables or not, you might also need to set these for
your project before you can successfully build your solution. See chapter 7.3 on page 93 for
further details.

Diffpack ships with a set of Perl scripts for facilitating the creation of SWIG interfaces
for Diffpack code –MkDpSWIGMakefile andMkDpSWIGInterface. See [11] for details on
creating Python SWIG interfaces for Diffpack programs. These scripts are based on a GNU
environment relying on GNUMake, GCC and the typical project structure of a Diffpack
project on a Linux environment to function properly. Microsoft users will either have to
download something like MinGW (Minimalist GNU for Windows) or just transfer the source
files to a Linux host in order to run the scripts.

You should now be able to combine Python, Diffpack and SWIG in order to more effi-
ciently develop Diffpack extension modules for Python.

7.3.3 Debugging Python Module Extensions

When you are working with Python extensions, your source code is located in a DLL library
and called from some Python script. This prevents you from using the standard debugging
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procedure of your C/C++ code in Visual Studio (i.e by inserting a breakpoint and run the
debugger).

To debug your extension code, you would typically use a debug version of the Python
interpreter, like thepython_d.exe mentioned in chapter 7.1.1. You will need to attach
the python_d process to a debugging environment. Here you have two options: either
attachpython_d to the debuggerbeforerunning the script, or enableJust-in-time debugging
(JITD) and let the process attach itself once a breakpoint is reached. In the latter case,
python_d.exe will report that it has encountered a problem or a fatal error when it reaches
a breakpoint in the code. If you choose the debug option in the ensuing warning dialogue,
it activates the debugger and positions you at the breakpoint that triggered the “fatal error”.
JITD is a nice feature to enable even though you have not inserted any breakpoints, because
you can then choose to debug whenever your module crashes, which will hopefully giving
you an idea as to where the program fails and why. To enable JITD, go toTools→ Options
→ Debugin Visual Studio, and tickJust-in-time debugging.

If you would rather debug using the first option, you startpython_d.exe, and before
you execute your script, in Visual Studio go toBuild→ Start Debug→ Attach to Process
and selectpython_d. When you run your script, the debugger will halt execution at the first
breakpoint.

When debugging, you usually insert a breakpoint in your code by either hittingF9 or
using the menu in the IDE. When debugging through an attached process likepython_
d or by JITD, these breakpoints are no longer visible (to the debugger). You can hard
code a breakpoint in your code that will still be visible however, by entering_asm int 3;
wherever you would like your code to have a breakpoint. Note that this breakpoint will
alwaystrigger, even if you are running in release mode, though in release mode it will only
cause the program to break in assembly code._asm int 3 causes the program to break in
the source code rather than the kernel code (on Intel platforms), which is what we want it to
do.

Hard coding breakpoints can be tedious, and if you forget to remove them, your program
will seem to crash. This is particularly true if you are running a release build and cannot see
that it was merely a forgotten breakpoint that caused your program to fail. However, once
you have attached thepython_d process to a debugger, you can open the source file you
with to debug in the Visual Studio environment and use F9 to debug as usual.

If you use Komodo for developing Python code, you can choose which Python inter-
preter it should run as default in thePreferencesdialogue. Setting it topython_d.exe you
can do a full, continuous debug session of both your Python code and C/C++ code. The
same principles for attachingpython_d to the Visual Debugger apply as described above.
In other words, you usepython_d.exe as the interpreter in Komodo, and run your script
to some breakpointin your script set by Komodo. When you reach the breakpoint, you
can attach thepython_d process to the Visual Studio debugger. Now, breakpoints in your
C/C++ level code will trigger as you step through your script.
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7.4 Summary

In this chapter we have described all the principal tools used to develop the extension mod-
ules necessary to turn Diffpack into a linear system generator for Python. The chapter was
the outcome of deciding to combine Python and Diffpack to produce simulators that could
be used in combination with a Python implementation of the Parareal algorithm. In the fol-
lowing chapter we will present the reasons for using such a cross–language combination,
and outline the results.

All the tools and techniques described in this chapter were used during the development
phase of this thesis. By succeeding in creating a complete Python distribution module, we
have illustrated that Windows may very well be used for scientific computing.



Chapter 8

Combining Python, SWIG and Diffpack

In this thesis we opted for using a combination of Python and Diffpack, which also intro-
duced SWIG. All governing code such as the Parareal algorithm, handling of time iterations
and solving the linear system would be written in Python. Diffpack would merely be seen as
a linear system generator and apossiblesource for iterative solvers. In this section we will
present our arguments for using such a combination, and our experiences from structuring
the solution strategy to our problem in this way.

8.1 Why use Python and Diffpack?

The decision to use a combination of Python and Diffpack for this thesis originates in several
factors. It is particularly linked to the nature of the Parareal algorithm, and the encourage-
ment of the supervisors of this thesis.

In itself, the Parareal algorithm is completely generic. It can work with fine and coarse
solvers that employ different temporal discretization techniques, the coarse propagator could
use a coarser or different spatial grid, or one could let it solve a different (simpler) PDE
altogether. Neither does it matter how theλ–values are defined. The only request from the
algorithm is that the objects it uses satisfies a minimal interface, like requiring that the sum
over the solution objects exist. Such flexibility is naturally reflected in Python, which is
an object oriented, typeless scripting language. As you do not have to make the algorithm
conscious of any kind of variable typing, it will also be possible to keep the implementation
as clean and as close to its definition as desired. In Python, you would not have to construct
a hierarchy of formal interfaces and descendants to reflect the generality of the algorithm,
which you would have to do for a strongly typed language like C++. The Python version
would just assume that certain properties were fulfilled by the objects involved, and let the
caller ensure that all necessary operations are well defined. There would be no need to
inherit from predefined interfaces.

Due to the generality of Python, one would be free to utilize Python, C/C++ or Fortran
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libraries, depending on ones preferences, to implement the actual solver for each time step.
The algorithm is designed to be agoverningalgorithm. Its essence is to initiate a coarse

estimate of theλ–values, pass these values out as initial conditions toN fine solvers working
in parallel, and then handle the results. The governing algorithm is not compelled to be
efficient – it is the spatial solvers inG andF that require the carefully considered algorithms
in terms of speed, accuracy and memory utilization. This structure coincides with one of the
more traditional uses for scripting languages, which is to create governing programs that call
other, more complex modules in order to perform a given task. Speed is usually not a crucial
factor for scripting languages, as the efficiency of a governing process is not important in
the overall computation time. As Python is an interpreted language its far less efficient than
compiled languages like C or C++.

Yet another reason for using Python was the possibility that the algorithm would be
ported to a true parallel platform, although this was by no means a certainty at the time when
we decided to use Python. A quick study indicated that Python has a nice, clean interface to
the MPI (message passing interface) standard for parallel programming. It was hoped that
at a possible, future porting to MPI, it would be an advantage to have the algorithm written
in Python and not in some comparatively low–level language like C++.

In addition, one has all the usual advantages of using Python compared to C++. There
is the automatic garbage collection, you have increased expressiveness per statement, and
a rich default library. Python a popular choice in the scientific community, and several
scientific libraries provide Python interfaces, such as the AMG (algebraic multigrid) and
Pysparse modules used in this thesis. This could give a richer pool of possible solvers to
seamlessly plug into the algorithm.

8.2 Initial implementation

After initial research and once we had gained a good understanding of the various mod-
ules and tools suggested for implementing the framework around the Parareal algorithm,
we managed to develop a successful implementation combining Parareal and the heat and
Stokes solvers. Several successful tests were run using the initial implementation of the
algorithm. Toward the end, there was a need to extend the implementation to support fur-
ther tests. During this process a bug was introduced that prevented us from completing the
remaining tests until it was resolved. The bug would become evident through a series of
seemingly mysterious and fatal runtime errors within Diffpack.

Somewhere in the process of letting Python administrate the tests and calling our exten-
sion modules, which again use the Diffpack library, the simulation would randomly crash.
There were situations where small, seemingly Diffpack unrelated changes in the Python
script would cause previously functioning Diffpack code to break within its library. The bug
would always become evident through calls to Diffpack.

The randomness of when the program would crash, and how adding or removing code
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at unrelated places would affect the error, could indicate that memory was being corrupted,
either by being overwritten or through resource management conflicts with Python.

In hindsight another cause for the error could be how each of the three separate ex-
tension modules developed (Diffpack2Python, Heat1, StokesSolvers) all initialize Diffpack
separately. Although no documentation was found that discourages this practice, it could in-
duce communication between modules to fail, depending on how Diffpack is implemented.

8.3 Debugging

Debugging across programming languages made locating the bug difficult. The many pro-
gramming languages (C++, Python), libraries (Diffpack, Pysparse, ML) and tools (SWIG)
required to develop the initial implementation strategy made it impossible within the avail-
able time to gain expert knowledge within any of these areas. An example is the SWIG layer
between the Python code and our Diffpack simulator that introduces uncertainty when one
does not have complete understanding of how SWIG generates the the wrapper code.

None of our debugging tools were sufficient to resolve the type of bug we were expe-
riencing. The fact that Diffpack was only available to us as a closed library prevented our
tools from tracing the bug back to its origin. One has to take into consideration that the
error could originate in any of the many layers of languages and libraries used. This made
it impossible to systematically track and eliminate the error.

8.4 Resolving the problem

The initial implementation strategy and open design is complex, and makes debugging the
kind of error we were experiencing extremely challenging. We eventually decided that no
more time would be spent on investigating the source of the error, and that focus should
be kept on Parareal and Stokes. As a consequence, the decision was made to simplify the
approach used to implement Parareal, in order for testing to proceed. The decision was
made for two reasons:

- The remaining project schedule did not allow for extensive time to debug and correct
the bug. It was concluded that the remaining test results were of greater importance to
the completion of this thesis than fulfilling the project with the initial implementation
strategy. In terms of studying the performance of Parareal on the Stokes equations,
the choice of implementation strategy is invariant.

- The initial implementation strategy had already proved successful with the first set of
tests. We were able to verify that one can indeed use Python as the central solver and
only see Diffpack generated matrices and vectors as modules that merely plug into the
overall solution. It was therefore not deemed necessary to complete the project with
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the current implementation strategy. There is no reason why the initial implementation
should not work with the final set of tests, it is merely a question of development time.

All existing code was thus ported to a pure C++ solution, which would simplify and reduce
the possibilities for errors to occur. Once the implementation was successfully ported, the
bug no longer appeared.

The knowledge gained from developing the initial solution made rewriting and simpli-
fying the implementation to a single–language solution quick and easy. The process of
rewriting the code to C++ was of markedly shorter duration than the time already spent on
trying to locate the bug. Both implementations are available for download at the author’s
website as described in chapter 1 on page 1.



Chapter 9

Conclusions and future work

We will draw some conclusions primarily based on the Parareal test results in chapter 6
on page 70 and on the experience from using a cross–language implementation strategy to
implement the framework around using Parareal. We will also point out some unresolved
issues that should receive further attention.

9.1 Parareal

All conclusions for the Parareal algorithm are of numerical nature only, and can merely
be viewed as guidelines to the behaviour of the algorithm. For the Parareal algorithm, we
investigated its stability and the quality of the chosen stop criteria.

9.1.1 Stability

The original instigator to this thesis was to investigate the relation between the unsteady
Stokes equations and the Parareal algorithm. It was believed that the algorithm would be
able to handle such a problem, but there was a sufficient amount of uncertainty associated
with the assumption to justify a numeric investigation. It was found that a model problem
shows its amenability to computation by Parareal through its influence on the convergence
rate and stability of the Parareal algorithm.

Particularly, if Parareal is used to solve a system of stiff ODEs, the stability function of
the Parareal algorithm can be expressed through a dependency on the stability function for
the coarsepropagator. This was discussed in section 5.1.3. Because the Stokes and heat
equations are parabolic PDEs, they will transform into systems of stiff ODEs when semi–
discretized in space. The bounds on the stability function for the coarse solver in order to
maintain Parareal stability was discussed in sections 2.2.1 and 5.1.3, and we concluded that
if θ–rule discretization is employed, theθ–parameter for the coarse propagator is bounded
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by
θ ∈ [2/3,1] .

Tests were performed in section 6.1 on page 70 that aimed to give an indication of
the appropriateness of using Parareal to solve the Stokes equations. The convergence and
stability traits displayed for Stokes were compared to the corresponding convergence and
stability properties exhibited when the algorithm was used to solve the heat equation. Earlier
studies of the algorithm verified that the heat equation is suitable for use with Parareal, and
it would therefore give an appropriateblue–printof the expected behaviour. The tests were
conducted by varyingθ for the coarse propagator both inside and outside the bound set by
the stability function.

Based on the behaviour displayed by the algorithm when run with the heat equation, it
was found that the Parareal appears to follow the same stability pattern as we move outside
θ∈ [2/3,1] as the heat equation. We therefore concluded that the algorithm was stable when
run with the Stokes equations.

However, the numerical tests also indicate that the algorithm deviates slightly from its
expected behaviour at the lower end of the bound onθ. For the employed test cases, it
enters a fully exponential convergence rate somewhere in the range〈2/3, 2/3+1/10]. We
proposed that the reason for this slight deviation in behaviourmay be due to the Stokes
equations classifying as adifferential algebraic equation(DAE) when semi–discretized in
space. This could possibly cause some of the stability restrictions on the coarse propagator to
change. As the numerical oddities only appear at the lower bound ofθ and only influence the
convergence rate, we concluded that the numerical tests indicate that the algorithm is stable
and convergent for the Stokes equations, but that further numerical analysis is necessary to
determine the full impact of the Stokes equations on the algorithm.

We also observed that for the Stokes equations the convergence seemed to improve as
θ→ 1, which is the opposite behaviour of the heat equation, which shows increased conver-
gence rate asθ→ 2/3.

9.1.2 The algorithmic stop criteria

In section 5.1.2, a strategy for determining convergence based on the global space–time
norm

ep =

√√√√ N

∑
i=k

‖λk
i −λk−1

i ‖2∆t

was proposed, as it is generally assumed to give a good reflection of the true error in the
algorithm. In section 6.2 a numerical test was suggested to give an indication of the actual
quality ofep. a was defined as the ratio betweenep and the equivalent space–time norm,es,
based on‖λi −λk

i ‖. λi is the exact, serial solution. With this ratio it is possible to give an
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estimate of how one must scale the the stop–criteria,εp, used by the algorithm, to properly
reflect the error compared to the exact solution one is willing to accept.

The numerical tests conducted indicates that for a particular execution of the algorithm,
the ratioep/es appear constant until machine accuracy is reached. The conclusion based on
these results is therefore thatep accurately mirrorses, such that one can useεp = aεs to have
an error ofεs in the solution produced by the algorithm. Further research should be done to
verify thata does indeed exist for most or all model problems, and also to determine a good
value fora. The tests done for this thesis produceda–values in the range[2,18].

9.2 Implementation strategy

The implementation strategy in this thesis was originally structured around using Diffpack,
SWIG, Python and the Python module Pysparse in combination to solve the PDEs in ques-
tion. This behaved as expected and can thus be seen as a proof–of–concept: one can indeed
use Python as the solver and just see Diffpack as another module that can be plugged into the
solver. In our case, we used Python, Diffpack, SWIG and Pysparse to build, precondition
and solve the linear system at each time iteration.

9.3 Future work

9.3.1 Verifying the numerical tests

As has been pointed out, a deeper insight to the numerical tests performed on Parareal
is in order. The minor stability issues aroundθ = 2/3 for the Stokes equations must be
investigated and analyzed. It would also be interesting to see whether theincreasein the
convergence rate asθ→ 1 for Stokes has an analytical explanation, as it is the exact opposite
behaviour to the heat equation.

The possibilities surrounding the algorithmic stop criteria should also be studied in order
to be able to give better estimates of how one should setεp to reflect the true error in the
solution.

9.3.2 Parallel implementation

The Parareal algorithm was implemented as a serial (and therefore highly inefficient) solver.
The topmost priority was to check the Stokes equations’ amenability to parallel computation
through Parareal. To achieve this it is not necessary to actually implement the algorithm in
parallel. By omitting the parallel factor, we would be able to keep the focus on the Stokes–
Parareal combination and not on time consuming technicalities arising from a fully parallel
implementation.
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However, based on the conclusions in 9.1.1, it would be appropriate to view parallel
implementation as the the next logical step in order to fully utilize the speedup possibilities.
As the uncertainties atθ = 2/3 for Stokes is likely to cause further testing, it will be an
obvious advantage to be able to do the tests in parallel. The serial version is very slow to
execute, which comes on top of the computationally intensive Stokes discretization. This
turns testing into a very slow process.





Appendix A

The Python-Diffpack Interface

When using Diffpack from Python as a provider of services, such as creating linear sys-
tems, it is practical to have access to both a system for filtering from native Diffpack vectors
and matrices to their Python equivalent, as well as Python interfaces to common Diffpack
administrative classes, such as the MenuSystem class.Diffpack2Pythn is a Python exten-
sion module that was written in order facilitate the process of using Diffpack as a matrix and
linear system provider. Its origin is based on theDP module written for [11]. The module of-
fers two filter classes – one for filtering vectors and one for matrices – in addition to a small
set of classes that provide a Python interface to some of the most commonly encountered
classes when Diffpack is accessed from Python. The module is not constructed to handle
the smart pointers in Diffpack (Handle(Type)). Python is based on references and it would
be unnatural from a Python point of view to use such handles. The module contains the
following classes:

Dp2Numeric Diffpack to Numeric to Diffpack filter for vectors

Dp2Pysparse Diffpack to Pysparse to Diffpack filter for matrices

MenuSystem wraps the Diffpack classMenuSystem

Vec_double wraps the Diffpack classVec_double

TimePrm wraps the Diffpack classTimePrm (handling time integration)

LinEqAdm wraps the Diffpack classLinEqAdm (linear solvers access)

LinEqAdmFe wraps the Diffpack classLinEqAdmFe (linear solvers access)

A.1 The Dp2Numeric filter class

Dp2Numeric is a filter class for converting between references to DiffpackVec_double
instances and one-dimensional instances of the Numeric classarray. The class interface is
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simple and only has two groups of functions; one for converting from Diffpack to Python,
and one for the reverse action.

py2dp( dpVec_double, numpyArray ) fills the entries of the one-dimensionalNumeric
arraynumpyArray into dpVec_double, which should be a reference to a Diffpack
Vec_double object.Diffpack2Python provides a wrapper class for theVec_double
which can be used to manipulate the Diffpack objects from Python.

py2dp( numpyArray ) aspy2dp(dpVec_double, numpyArray), but will create and re-
turn anewVec_double instance and return the C++ pointer to Python. The wrapper
code does not keep track of this newly created object, and you should probably use the
functionality offered by SWIG for flagging objects as the responsibility of the Python
garbage collection. See chapter A.3 on the facing page.

dp2py( dpVec_double ) creates and returns an instance of a one-dimensionalNumeric
array filled with the values fromdpVec_double which should be an instance of
Vec_double.

A.2 The Dp2Pysparse filter class

TheDp2Pysparse does conversion between Diffpack and Pysparse, with much of the same
interface asDp2Numeric. It accepts and returnsLLMatType objects, the basic matrix in the
spmatrix module from thePysparse package. Even though the filter interface accepts
the base classMatrix_double, the it only supports the subclassesMatSparse_double,
MatBand_double andMatDiag_doublewhen filtering from Diffpack to Python. This is due
to the design of Diffpack, where the subclasses ofMatrix_double have different schemes
for efficiently accessing its non-zero values. The matrix implementations will issue warn-
ings when non-zero values are read unless the “--nowarnings” directive is applied to Diff-
pack. The Diffpack simulator will terminate if too many warnings are raised. To avoid this
one must provide separate filter functions in the C++ implementation ofDp2Pysparse for
each type of matrix. Therefore, the filter class does not support any arbitrary subclass of
Matrix_double. The class interface accepts the common base classMatrix_double, and
will automatically determine the type of subclass passed. Extending the filter to support
other subclasses ofMatrix_double in the future should thus be easy, and it will merge
seamlessly with existing code. The Python interface has one function for translating from
Diffpack to Pysparse, and two functions for the reverse action.

py2dp( dpMatrix_double, llMatObject ) Accepts a reference to an existing
Matrix_double instance , clears the previous contents, and fills it with the the non-
zero entries ofllMatObject. llMatObject should be of typeLLMatType defined
in spmatrix. Because the same sparsity pattern is assumed indpMatrix_double
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andllMatObject, any subclass ofMatrix_double shouldwork as long as this as-
sumption holds true. If the sparsity pattern between the entries inllMatObject and
dpMatrix_double does not match, Diffpack will issue warnings for attempting to
write to entries outside the pattern, and will eventually shut down.

py2dp( llMatObject ) Creates anewMatSparse_double object, which is returned as a
C++ pointer. The matrix is filled with the non-zero values ofllMatObject. The
same caution as was mentioned for the equivalentDiffpack2Python.py2dp must be
shown here.

dp2py( dpMatrix_double ) Creates and returns an object of typeLLMatType filled with
the non-zero values in the input matrix. The input matrix should be a reference to one
of the subclassesMatSparse_double, MatBand_double or MatDiag_double.

A.3 The Python wrapped Diffpack classes

The module also provides Python wraps of several Diffpack classes. As all of these classes
have been wrapped using SWIG, each class has a an associated wrapper class for C++
pointers, which has identical identical interface to the standard class. For each class you
have aclassNamePtr class whose constructor accepts a C++ pointer to an instance of the
native C++ class. If, for example, aVec_double pointer was returned from Diffpack, it
could be accessed as any normal object in Python by wrapping it inVec_doublePtr.

Diffpack2Python module itself offers access to the the global variables for standard in, out
and error in Diffpack, i.es_i, s_o ands_e, plus access to theglobal_menu instance.
The standard input/output/error objects can be accessed as usual throughs_i, s_o
ands_e, and hold pure C++ references that can, for example, be sent to all the native
Diffpack print functions that requireIs or Os. global_menu is pre-wrapped in a
PythonMenuSystem interface.

MenuSystem Python interface to DiffpackMenuSystem class. The class is provided to give
an easy way to manipulate the initialization phase of your Diffpack simulators inter-
faced from Python, and gives you the possibility to utilize Diffpack’s menu system
through your Python script. The interface was for example used to manipulate the
settings for the simulators used during this thesis. The manual for the class can be
found in the Diffpack documentation.

Vec_double Python interface to DiffpackVec_double class.__add__(self,other),
__sub__(self,other) and__copy__(self) has been added to match the interface
requirements of the Parareal implementation. See 5.2 on page 63.

TimePrm wraps the equivalent Diffpack class, which offers functionality for administrat-
ing time integration. For any unsteady solver this interface should be useful as it gives
easy access to all the current time information in the simulator.
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LinEqAdm and LinEqAdmFe wraps the Diffpack linear system managers to provide easy
access to the different linear solvers defined in Diffpack through manipulating its
menu settings.

The public methods and attributes of the underlying Diffpack class are available for all
wrapped classes, and refer to the Diffpack manual for documentation of these functions.

As the classes in this extension module are SWIG generated, they all havethisown
attribute that can be used to flag whether the object should be garbage collected by Python
or not. Setting the flag to true will cause Python’s resource manager to remove the object
when no further Python objects refer to it. This is useful when using the filter class functions
that create new Diffpack instances, but care must be taken to avoid resource conflicts with
Diffpack. Note that theClassNamePtr classes set thethisown flag to false by default, and
you must specify if Python is to be responsible for the new object. More information on this
can be found in the SWIG manual for Python.

We conclude by remarking that using statements likefrom Diffpack2Pythonimport ∗ seem
to cause Diffpack to fail, whereasimport Diffpack2Pythondoes not seem to cause these er-
rors. This is possibly related to the problems described in chapter 8 on page 98.
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The pararealStokes package

ThepararealStokes is a Python distribution packed withdistutils. It contains the ex-
tension modules with the Diffpack simulators for the heat and Stokes equations, Pure Python
modules and packages that utilize or inherit from the classes in the extension modules. The
package also provides some utility scripts for administering the execution of the Parareal al-
gorithm with either heat or Stokes and a set of scripts for plotting test results returned from
the Parareal algorithm.

Due to the trouble in combining Diffpack and Python as described in chapter 8 on
page 98, thepararealStokes package is incomplete with regards to the tests done in chap-
ter 6 on page 70. All the tests done on combining Parareal and Stokes was done in the pure
C++ implementation of the Python scripts and modules in this distribution. The distrib-
ution is available for download athttp://heim.ifi.uio.no/~erical/masterThesis/,
together with its equivalent pure C++ version. A short review of the central classes will
be provided here, and we refer to the documentation accompanying the package for further
details.

The only test case from chapter 6 supported by the Python scripts is the error conver-
gence test – for any other test result refer to the C++ implementation. When running the
installation, the extension modules, Pure Python modules and packages will be installed to
your default installation directory for Python modules, or to another specified directory. The
scripts contained in the Script directory will, however, not be installed.

B.1 Python extension modules

pararealStokes provides three extension modules:

- Diffpack2Numeric

- Heat1

- StokesSolvers
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Diffpack2Numeric implements filtering and wrapping functionality between objects native
to Diffpack and to Python. The documentation of the module can be found in chapter A on
page 107. The remaining modules will be discussed here.

B.1.1 Heat1

Heat1 implements the Diffpack simulator for heat in accordance with the discretizations
presented in chapter 3 on page 15. The only class made available through the module is
Heat1, although there is also a functor class for providing the exact solution. The class
supports the Parareal interface requirements.

B.1.2 StokesSolvers

The extension module encompasses the classes listed in Figure 4.1 on page 49. All the
Stokes solver classes and preconditioners are available in Python, as they have correspond-
ing SWIG interface files. The central classes used by the Pure Python modules for this thesis
areStokesTime implemented inStokesTime.cpp andStokesTime.hpp, andPressure-
PrecTime implemented inPressurePrec.cpp andPressurePrec.hpp. These two classes
have been extended such that they can be used as a linear system provider and preconditioner
for the pressure component.

ThePressurePrecTime class merely makes its mass and stiffness matrices available,
whereas theStokesTime class has a fairly extended interface compared to standard Diffpack
simulators. The extension to the class is done directly in the class definition and not through
the SWIG interface file, which was the principal way of extending the class interface for the
heat equation. It was not done for the Stokes equations, due to the greater complexity of the
internal block structuring. As Python has no concept of the Diffpack block structure, the
class must be structured in such a way as makes the block structure invisible to the callee.
The block structure must be stretched out before it can be returned, and in a likewise manner,
it must be mapped onto a block structure when a continuous vector is sent into the simulator.
The interfaceStokesTime offers as a linear system provider is detailed in Listing B.1.

Listing B.1: Excerpt fromStokesTime covering the functions offered as a linear system
provider

bool l i n S y s I n i t i a l i z e d ( ) ;
bool l i n P r e c I n i t i a l i z e d ( ) ;
vo id b u i l d L i n e a r S y s t e m ( ) ;
vo id r e f r e s h L i n e a r S y s t e m ( ) ;
vo id b u i l d P r e c o n d i t i o n e r s ( ) ;
cons t Mat r i x (NUMT)& g e t M a t r i x ( ) ;
cons t Vec (NUMT)& getRHS ( ) ;
cons t Vec (NUMT)& g e t S o l u t i o n ( ) ;
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TimePrm& getTimePrm ( ) ;
vo id setCur rSo lFromVec (cons t Vec (NUMT)& vec ) ;
vo id s h i f t S o l u t i o n ( ) ;
vo id f i l l E s s B C ( Vec (NUMT)& contVec ) ;
P ressu rePrecT ime∗ g e t P r e s s u r e P r e c ( ) ;
Mat r i x (NUMT) ∗ g e t V e l o c i t y P r e c ( ) ;

vo id assmeb leB lockVec to r ( L inEqVector& blockVec ,
Vec (NUMT)& vec ) ;

Vec (NUMT)∗ g e t V e l o c i t y S o l u t i o n ( ) ;
Vec (NUMT)∗ g e t P r e s s u r e S o l u t i o n ( ) ;

B.2 Pure Python packages and modules

The pure Python implementation can be found in thepyModules directory. The Python
classes will either inherit directly from the classes in the extension modules, or use them
as linear system providers. The Python implementation of the heat and Stokes solvers in
Python were covered in chapter 3.4 on page 23 and and in 4.4 on page 46. The python
modules their associated factory–and menu classes have been gathered in two separate
package structures; theHeat package and theStokes package. In addition, the modules
Parareal.py, VecWraps.py and NumWrap.py are defined. TheParareal class is de-
scribed in chapter 5.2 on page 63. The remaining modules,VecWraps.py andNumWrap.py,
are helper classes for handling the transition from Diffpack vectors to Python representation.

VecWraps.py contains two alternative wrapper classes for theVector_double class:
VecWrap andVecExposeWrap. Both classes support the Parareal interface requirements.
Their main intent is to facilitate Python garbage collection, by properly setting the “thisown”
flag on newly created objects when for example summation or copy operations are per-
formed. vecExposeWrap is only used with the Stokes equations, and creates support for
only calculating the norm of either the velocity or the pressure component of the solution
when thenorm() function is called from Parareal.

NumWrap.py contains a wrapper classNumWrap that works around the fact that it is not
possible to inherit from Numeric arrays. As the existing interface of Numeric arrays do
not conform to our Parareal implementation, we handle this by creating a wrapper class
whose sole member is a Numericarray object, and define the necessary functions, such
as__add__, __copy__ etc. Numeric arrays are used as the vector class in the Pysparse
package, and by using this wrapper code one easily facilitates a combination of Parareal and
Pysparse, where Diffpack is purely a linear system generator.
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B.3 Python scripts

pararealStokes contains several scripts, which, for instance, run the Parareal algorithm on
either the heat equation or on the Stokes equations. The scripts will not be installed to your
Python package depository, but they do assume that the extension and pure Python modules
have been installed to your Python module installation directory (i.e. that they exist in one
of the directories pointed to by thePYTHONPATH environment variable).

There are two main groups of scripts in thepararealStokes distribution: those that
run the Parareal algorithm on either the heat or the Stokes equations, and those who plot the
results produced by running the Parareal algorithm.runPararealHeat1.py andrunPara-
realStokes.py have a rich command line interface that states the possibilities of the scripts,
but they are mainly intended to run the Parareal algorithm to produce error convergence data
that will be written to data files. One can then runplotPararealError.py to get logarith-
mic plots of the error. This is parallel to what was done during testing of the stability of the
Parareal when it was run on the Stokes equations. The plotting scripts require Matlab and
the Python Matlab extension module,pymat, to be installed. For further requirements, we
refer to the source code distribution.

The command line functionality ofrunPararealHeat1 and runPararealStokes is
maintained by the modulecmdLineParsers. Strictly speaking, it is not a script and should
reside in thepyModules directory, but as its sole purpose is to handle the command line
options for the respective run–scripts it was not deemed necessary to include it with the
installed modules.



Appendix C

The Python interface to ML

For the work on this thesis the author of thepysparse package for Python, Mr. Roman
Geus, kindly made his multigrid extension moduleml available for use withpysparse. ml
is a Python extension that wraps theML package distributed throughSandia National Lab-
oratories. ML is a C library that provides multigrid preconditioning for linear solvers. The
package can also be used as an independent solver of linear systems on the formAx= b. It
uses Algebraic Multigrid (AMG), which makes it more efficient on large distributed systems
than multigrid solvers that must construct a grid hierarchy before running the algorithm.ML
is intended for use on large sparse linear systems arising from PDE discretizations, and does
not perform well on small grids.ML naturally works well on systems that are well suited
for use with multigrid, such as those based onelliptic PDEs [18].

The Python extension ofML is intended for use with thepysparse package. It expects
the input matrixA to be all_mat object defined in thespmatrix module, and it implements
the preconditioner interface expected by the iterative solvers initsolvers. The following
documentation is extracted from thedoc stringsassociated with the different objects and
functions in theml module, and is included here mainly to gather the information in one
single document.

The basic object in the module is the AMG solver objectAMGObject. ml.setup(· · ·)
creates anAMGObject instance, and all further interaction withML is done through this
object. The moule had only been tested and used on Linux by the author, and minor mod-
ifications were required in order for it to run on Windows. Thechanges.txt file sent to
Roman Geus to notify him of the changes are available with the rest of the source code for
this project, athttp://heim.ifi.uio.no/~erical/masterThesis/
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Creating an AMGObject The following is reported by theml.setup doc string on cre-
ating a newAMGObject:

Kamg = ml . s e t u p ( A,
maxLevels =25 , maxCoarseSize = 32 ,
maxCycles = 1000 , t o l =1e−8,
useSuperLU =0 , p r i n t L e v e l =10 ,
p r i n t F r e q u e n c y =1 , smoother =" GaussSe ide l " ,
smoo the rS teps =1 , smootherOmega = 1 . 0 )

P a r a m e t e r s :
A: i n p u t m a t r i x as s p m a t r i x . l l _ m a t o b j e c t
maxLevels : maximum number o f M u l t i g r i d l e v e l s t o be

b u i l t
maxCoarseSize : maximum s i z e o f t h e sys tem m a t r i x on t h e

c o a r s e s t l e v e l
maxCycles : maximum number o f m u l t i g r i d V−c y c l e s

per formed , when t h e s o l v e ( ) , t h e c y c l e ( )
o r t h e i t e r a t e ( ) method i s c a l l e d

t o l : t o l e r a n c e used i n t h e s t o p p i n g c r i t e r i o n o f
t h e s o l v e ( ) , t h e c y c l e ( ) o r t h e i t e r a t e ( )
methods

Of the smoothing options listed in [18], “Jacobi”, “GaussSeidel” and “SymGaussSeidel”
seem to be supported.

AMGObject interface TheAMGObject has the following properties and functions:

P r o p e r t i e s : { comp lex i t y , debugLevel , maxCoarseSize ,
maxCoarseSize , maxCycles , maxLevels ,
numLevels , p r i n t F r e q u e n c y , p r i n t L e v e l
shape , smoother , smootherOmega , t o l
smoo therS teps , t o t a l C y c l e s , useSuperLU }

Methods :
p recon ( b , x ) s o l v e s a l i n e a r sys tem us i n g a MG i t e r a t i o n

s t a r t i n g w i th a ze ro i n i t i a l guess .
The r i g h t−hand s i d e i s s t o r e d i n b . The
s o l u t i o n i s s t o r e d i n x .
x and b a r e 1D NumPy a r r a y o f a p p r o p r i a t e
shape and type . The precon method i s
i d e n t i c a l t o t h e s o l v e method .

s o l v e ( b , x ) s o l v e s a l i n e a r sys tem u s i ng a MG i t e r a t i o n
s t a r t i n g w i th a ze ro i n i t i a l guess .
The r i g h t−hand s i d e i s s t o r e d i n b . The
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s o l u t i o n i s s t o r e d i n x .
x and b a r e 1D NumPy a r r a y o f a p p r o p r i a t e
shape and type . The s o l v e method i s
i d e n t i c a l t o t h e precon method .

c y c l e ( x , y ) pe r fo rms one MGV c y c l e on x and s t o r e s
r e s u l t i n y .

i t e r a t e ( b , x ) s o l v e s a l i n e a r sys tem us i n g a MG i t e r a t i o n
On inpu t , b c o n t a i n s t h e r i g h t−hand s i d e
and x c o n t a i n s t h e i n i t i a l guess . On o u t p u t
t h e s o l u t i o n i s s t o r e d i n x .
x and b a r e 1D NumPy a r r a y o f a p p r o p r i a t e
shape and type .

i t e r a t e ( b , x ) s o l v e s a l i n e a r sys tem us i n g a MG i t e r a t i o n
The i t e r a t e method i s i d e n t i c a l t o t h e
precon method .
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The Pysparse C API

The Pysparse module ships with no explicit documentation of the Pysparse C API, and this
chapter endavours to present the most essential of the API for future users. It is based on our
exploration of the source and header files for version 0.33.029, and helpful discussions with
its author, Roman Geus. API The Pysparse C API is largely based on the API provided with
the Numeric module and we have found it useful to search for solution to related problems
and fixes forNumeric. There is an abundance of information and discussion groups to be
found on the internet written by programmers working with the Numeric module.

After installing the Pysparse module the necessary include files should be located in
your Python include path. See 7.3 on page 93. In version 0.33.029 of the Pysparse package
most of the functionality is accessed throughpysparse/spmatrix_api.h. Other possible
header files of interest, depending on which objects you are working with, arepysparse/
ll_mat.h, pysparse/csr_mat.h and pysparse/sss_mat.h giving the declaration for
LLMatObject, CSRMatObject andSSSMatObject, respectively.

D.1 pysparse/spmatrix_api.h

In the manner of Numeric,pysparse/spmatrix_api.h mainly holds a collection of macro
definitions declaring function pointers to other sections of the module implementation. One
of the effects of this is that one must keep in mind that

SpMatrix_LLMatSetItem( this->llMat, i-1, j-1, entry );

would, for example, not necessarily produce the same results as

SpMatrix_LLMatSetItem( this->llMat, (i-1), (j-1), entry );.

A fair share of the descriptions here are gathered from comments in the source code, but
we have attempted to make it all available in one document. The documentation also lists
the source file each function is defined in to make it easier to study the restrictions the
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functions operate under. The functions appear here in the same order as they are listed in
pysparse/spmatrix_api.h

SpMatrix_ParseVecOpArgs

int SpMatrix_ParseVecOpArgs( PyObject *args, double **x_data,
double **y_data, int n )

Parses the arguments of Python functions that expect two one-dimensional Py_Array ob-
jects. The return value is 0 if the operation was successful, or -1 after setting the Python
error indicator if an error occurred. According to the documentation in the source code, use
of this function is not recommended as it does not free the created objects. The documen-
tation suggests instead the use of the macroSPMATRIX_PARSE_ARGS_ARR_ARR defined in
pysparse/spmatrix.h.

Source file:spmatrixmodule.c

SpMatrix_GetShape

int SpMatrix_GetShape( PyObject *op, int dim[] )

wheredim[] has minimum length 2. Queries the shape attribute of an object and stores the
result indim. It should be used to get the number of rows and columns in a sparse matrix
or a preconditioner pointed to byop. Returns 0 if the operation was successful, or -1 after
setting the Python error indicator if an exception occurred.

Source file:spmatrixmodule.c

SpMatrix_GetOrder

int SpMatrix_GetOrder( PyObject *op, int *n )

Has much of the same functionality asSpMatrix_GetShape, but it will fail if the shape
of the sparse matrix or preconditioner is not square. Assumes thatn points to allocated
memory of minimum sizesizeof(int)*2. Like SpMatrix_GetShape, the function returns
0 if the operation was successful, or -1 after setting the Python error indicator if an exception
occurred.

Source file:spmatrixmodule.c

SpMatrix_GetItem

double SpMatrix_GetItem( PyObject *op, int i, int j )

Accesses matrix entry(i,j) and returns the entryop[i,j] as a double.
Source file:spmatrixmodule.c
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SpMatrix_Matvec

int SpMatrix_Matvec( PyObject *matrix, int nx,
double *x, int ny, double *y )

Invokes matrix-vector multiplication, by calling thematvec-method associated withmatrix
to computey = matrix*x. The vectorsx andy are given as arrays of double. Function
returns 0 if the operation was successful, or -1 if an error occurred. Depending on the type
of matrix, i.e whether it is aLLMatObject, CSRMatObject or aCorrEqObject, thematvec
method called will be eitherLLMat_matvec(· · · ) defined inll_mat.c, CSRMat_matvec(· · · )
defined incsr_mat.c or CorrEq_matvec(· · · ) defined incorreq.c.

Source file:spmatrixmodule.c

SpMatrix_Precon

int SpMatrix_Precon( PyObject *prec, int n,
double *x, double *y )

Applies the preconditionerprec on the vectorx and stores the result in vectory. This is done
by calling theprecon method ofprec. The vectorsx andy are given as arrays of double
with lengthn. The return value is 0 if the operation was successful, or -1 if an error occurred.
Like in SpMatrix_Matvec, the type ofprec governs whichprecon method will be called.
The called preconditioner will be eitherJacobi_precon(· · · ) or SSOR_precon(· · · ), both
defined inpreconmodule.c, or CorrEq_precon(· · · ) defined incorreq.c, depending on
whetherprec is aJacobiObject, SSORObject or aCorrEqObject.

Source file:spmatrixmodule.c

SpMatrix_NewLLMatObject

PyObject* SpMatrix_NewLLMatObject( int dim[], int sym,
int sizeHint )

Creates a Python object of typeLLMatObject representing adim[0]×dim[1] sparse ma-
trix. sym indicates whether the matrix is symmetric or not (i.e. should evaluate totrue or
false), andsizeHint give an approximate to the number of non-zeros in the matrix. Sets
the Python error indicator and returnsNULL on failure.

Source file:ll_mat.c

SpMatrix_LLMatGetItem

double SpMatrix_LLMatGetItem( LLMatObject *a, int i, int j )
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Returns the matrix entrya[i,j] as a double value.
When you do try to useSpMatrix_LLMatGetItem or the subsequent macros, you might

have compilation errors on the formsyntax error : ’)’. SpMatrix_LLMatGetItem is
the first function that accepts aLLMatObject as a function parameter. You must either mod-
ify spmatrix_api.h to includell_mat.h or make sure you includell_mat.h in your own
source file to make the definition ofLLMatObject available to prevent the macro expansion
from failing.

Source file:ll_mat.c

SpMatrix_LLMatSetItem

int SpMatrix_LLMatSetItem( LLMatObject *a, int i, int j,
double x )

Sets the matrix entrya[i,j] = x. Returns 0 if the operation was successful, or -1 after
setting the Python error indicator if an exception occurred.

Source file:ll_mat.c

SpMatrix_LLMatUpdateItemAdd

int SpMatrix_LLMatUpdateItemAdd( LLMatObject *a, int i, int j,
double x )

Performs the operationa[i,j] += x on the matrix entry. Returns 0 if the operation was
successful, or -1 after setting the Python error indicator if an error occurred.

Source file:ll_mat.c

SpMatrix_LLMatBuildColIndex

int SpMatrix_LLMatBuildColIndex( struct llColIndex **idx,
LLMatObject *self,
int includeDiagonal )

Builds data structure for column-wise traversal. Builds a linked-list data structure, which
links the entries of each column in the object pointed to byself. If includeDiagonal is
zero the diagonal elements ofself are not included in the linked-list data structure. Returns
0 if the operation was successful, or -1 after setting the Python error indicator if an exception
occurred.llColIndex is defined inll_mat.h, and is a list data structure which links the
entries of each column of a LLMat matrix.

Source file:ll_mat.c
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SpMatrix_LLMatDestroyColIndex

void SpMatrix_LLMatDestroyColIndex( struct llColIndex **idx )

Frees the memory allocated by callingSpMatrix_LLMatBuildColIndex.
Source file:ll_mat.c

ItSolvers_Solve

int ItSolvers_Solve( PyObject *linsolver, PyObject *A, int n,
double *b, double *x, double tol,
int itmax, PyObject *K, int *info,
int *iter, double *relres )

Invokes the iterative linear solverlinsolver (callable Python object), to (approximately)
solve the linear system

A∗x = b

to an accuracy oftol. The maximum number of iteration steps taken isitmax. The vectors
x and y are given as arrays of double and have lengthn. The function returns 0 if the
operation was successful, or -1 if an error occurred.

Source file:spmatrixmodule.c

import_spmatrix

import_spmatrix()

Similarly to creating extension modules using the Numeric C API,import_spmatrix()
must be called in the initialization function of your module. This macro assures that the
spmatrix module is loaded and that the pointer arraySpMatrix_API is initialized. If
SpMatrix_API is not initialized the macros inpysparse/spmatrix_api.h described above
break down and will give runtime errors in your module.

If the extension module spans several source files make sure that
SPMATRIX_UNIQUE_SYMBOL uniqueLabel_spmatrix is defined in each file to make
spmatrix handle theSpMatrix_API function pointer array correctly. If you do not do this
the array will be declared multiple times, becausespmatrix_api.h will be included in
several source files and you will have compilation and/or linking problems. This means that
for every source file where you include the API header, you must declare

One fix we did to the Pysparse C API when working on this thesis was to borrow a
feature from Numeric’s C API. If this is the case for your installation, you should also
defineNO_IMPORT_SPMATRIX together withSPMATRIX_UNIQUE_SYMBOL in every other file
than the file where the module initialization function is located (i.e. in every file where



Chapter D. The Pysparse C API 123

import_spmatrix is not called). If this does not seem to help you must probably add
support forSPMATRIX_UNIQUE_SYMBOL to your spmatrix module yourself by modifying
yourpysparse/spmatrix_api.h header file. Replace the existing code around
SPMATRIX_UNIQUE_SYMBOL with the following:

/∗ C API add ress p o i n t e r ∗ /
# i f d e f i n e d (NO_IMPORT_SPMATRIX) /∗Mimic Numeric f i x∗ /
ex te rn vo id ∗∗SpMatr ix_API ;
# e l s e
# i f d e f i n e d (SPMATRIX_UNIQUE_SYMBOL)
vo id ∗∗SpMatr ix_API ;
# e l s e
s t a t i c vo id ∗∗SpMatr ix_API ;
# e n d i f
# e n d i f

As we can see, by usingNO_IMPORT_SPMATRIX we declareSpMatrix_API to beextern in
all other files than the file whereimport_spmatrix() is called, and thus fixing the com-
pilation/linking errors. This fix was reported to the author, and it is included from versoin
0.34.031.

Source file:spmatrix_api.h
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