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1 Introduction  
This thesis will examine a method for efficient rendering of realistic water surfaces in a 3D 

terrain visualization engine, using modern graphics hardware and state-of-the-arts rendering 

techniques. The method produces a water visualization model that will be implemented in a 

real-time terrain visualization engine named GeoGFX [12].   

 

The demand for realism in real-time visualization terrain engines is increasing rapidly with 

the development of faster and better computers. To meet this demand modern computer 

games have added more realistic elements to their simulated worlds, providing a greatly 

enhanced user experience. One important detail is the appearance of water. In older games 

water was often treated as planar surfaces with an artist generated texture applied on them, 

ignoring important properties that give water its characteristic look. With the introduction of 

new and better hardware, developers are starting to pay more attention to these properties, and 

many games have impressive, realistic looking water effects. Having realistic water effects 

often tend to impress the user, and significantly raise the overall impression of the simulated 

world. However, even if hardware is improving rapidly and the introduction of programmable 

GPUs have made graphical processing a lot faster, the physics and optics of water is 

immensely complex and needs to be simplified in real-time visualization. A common way of 

simplifying water visualization is by using high-resolution height fields which provides a non-

planar approximation of the water surface. This technique, combined with a “Level-of-Detail” 

(LOD) method for spatial scalability and a vertex disturbance algorithm for simulating waves, 

produces a realistic, but costly polygonal representation of the water surface. 

 

 
 

Figure 1.1 – Realistic 3D water surfaces. 

 

Figure 1.1 displays a realistic water surface implemented into GeoGFX. The surface 

possesses the characteristic water features such as reflections and wave rippling, and greatly 

increases the realism of the scene.    

 

In this thesis we will present an alternative water visualization technique called “texture 

Level-Of-Detail with bump mapping”. The intent of this technique is to combine advanced, 
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formerly developed, texture rendering methods in a hierarchical LOD arrangement to gain a 

result that simulates realistic water surfaces without the cost of detailed polygonal 

representations. “Bump mapping” contributes to this technique by using textures to simulate 

high-resolution height fields composed as a raster of plane normals. Disturbing the raster with 

an algorithm provides a wave-model without polygonal representation. This wave-model, 

combined with a Level-Of-Detail management system and other water features, is proposed as 

a method for scalable, dynamic, real-time rendering of a large number of realistic looking 

water surfaces in GeoGFX. Figure 1.1 presents an outline of the components utilized in the 

texture LOD with bump mapping technique. 

 

 
 

Figure 1.2 – texture LOD with bump mapping 

 

The texture LOD management component invokes different states on water surface 

textures such as animation/no animation on the wave model, or reflection/no reflection on 

the water surface. These states are depending on parameters fed to the component by the 

application or the end-user. The LOD management component can be adjusted to behave 

differently depending on user defined parameters such as highest and lowest desired detail 

level and hardware defined parameters like supported OpenGL extensions, video graphic 

memory, etc. In chapter 6 we will present different performance and visual results gained 

from adjusting parameters in this component. 

 

Hopefully, by introducing texture based, low polygonal count water model to GeoGFX, we 

are able to maintain acceptable frame-rates in the real-time visualization while keeping a high 

detail level on the visualized scenes.  
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2 Terrain engine - GeoGFX 
This chapter introduces the basic concepts of the GeoGFX terrain visualization engine. It 

explains the construction and functionality of the system, along with its intended use. 

2.1 General 

GeoGFX is object-oriented terrain-visualization tool built on top of a graphics engine named 

“GraphicsNGine”. GraphicsNGine utilizes OpenGL as means for visualization of 3D objects. 

Both GeoGFX and GraphicsNGine make use of utility components for purposes such as 

vector operations, matrix transform, text handling, importing 3D models etc. Figure 2.1 

shows a simple diagram illustrating the collaboration of GeoGFX (Gg) components, 

GraphicsNGine (Gng) components and the utility components. These components are 

composed of several packages containing classes programmed in C++.  

 

 
Figure 2.1 – GeoGFX component collaboration 

 

Gg components employ, as figure 2.1 illustrate, a window handling system for visualizing the 

terrain model, (any system capable of visualizing OpenGL). 

2.2 Gg components 

Gg components main tasks are to build 3D objects and deploy them as nodes in a scene graph 

(see section 2.3.1) using suitable classes from the Gng components. 3D objects references the 

triangulated terrain (described in section 2.5), the sky, light sources (sun) and other objects 

(planes, houses, etc.). The Gg components are also responsible for handling user input, 

drawing the scene graph on a window system, and updating scene graph transforms. Figure 

2.2 shows the packages forming the Gg components.  
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Figure 2.2 - The packages forming the Gg components 

 

2.3 Gng components 

The Gng components consist of four packages. Two of which are designed to handle basic 

OpenGL features such as extension support, states, different types of arrays (vertexes, 

indexes, normals, etc.), light and materials, blending, textures etc. Another package handles 

image loading and manipulation, and one package provides a hierarchic mean of visualizing 

and traversing 3D objects called a scene graph. These packages constitute a graphics engine 

capable of managing 3D objects with OpenGL. Figure 2.3 shows the packages forming the 

Gng components. 

 

 
Figure 2.3 - The packages forming the Gng components 
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2.3.1 Scene graph  

A scene graph is a hierarchical tree structure, consisting of nodes bound together in a 

parent/child relationship. The characteristic of a scene graph is that if a state or transform is 

applied to a node, this state or transform also pass for all its child nodes (unless a child node is 

applied some other state or transform). The tree is parsed top to bottom. Figure 2.4 illustrates 

a basic scene graph where a transform has been applied to the top nodes right child.  

 

 
Figure 2.4 - A scene graph with a transform/state applied on the roots right child. 

2.3.2 GeoGFX scene graph  

The GeoGFX scene graph uses GngTransform classes as the nodes responsible for 

transformations. Figure 2.5 illustrates a basic GeoGFX scene graph consisting of three 

GngTransform nodes; surface transform, sky transform and geocentric transform.   

Transformations set on these nodes apply to all their child nodes. These children may either 

be other GngTransform’s or GngRenderNode objects. Sun, Sky and Terrain are such 

objects, which inherit from the GngRenderNode class. By rotating the surface transform all 

objects in the scene graph is rotated since surface transform is the top node, while rotating 

geocentric transform rotates only the Terrain object.  

 

 
Figure 2.5 - Basic GeoGFX scene graph 
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Basic GngRenderNode objects 

The three GngRenderNode objects Sun, Sky and Terrain are the basic nodes in GeoGFX 

scene graph.  

 

- Sun is a GngLightSource object that is not actually rendered; it only contains basic 

information about the direction and color of the sun.  

 

- Sky is a GgSky object that is responsible for visualizing the sky including the sun. GgSky 

needs to be told which longitude and latitude together with what time of day the visualization 

pass for. Based on that information it draws a sky dome relative to the view camera in such 

way that the dome covers the horizon with the view camera always inside. Only the sky colors 

are drawn, other sky features like clouds and weather behavior are left out. GgSky also hands 

information about the sun position to the Sun node.  

 

- Terrain is a GgTerrain object that is responsible for visualizing the ground. This object 

manages the triangulation described in section 2.5 together with scaling of textures such that 

they fit relative to the triangulation. GgTerrain also includes a function for checking the 

ground elevation on a given longitude/latitude, a function for creating ground shadows, a 

function for setting triangulation detail level, etc. 

2.4 Utility components 

The utility components provide the Gng components and the Gg components with tools to 

simplify and reuse certain operations commonly needed. This includes vector operations, 

matrix transforms, file reading, font reading, etc.  

 

 
Figure 2.6 - The packages forming Utility components 

 

2.5 The triangulation structure 

The terrain triangulation structure in GeoGFX is based on a hierarchical (or “Level-Of-

Detail”) representation of height-fields [12]. The purpose of this structure is to render as few 

triangles as possible, with as high accuracy as possible, for each frame in the fly-through 

sequence. Without going into too many details, the basis of the hierarchical structure is that 

the coarsest triangulation is the root node, and the further down the branches in the 

hierarchical tree we traverse, the more fine-grained the triangulations become. To be able to 

visualize large terrain areas we split the full triangulation into rectangular triangulated subsets 

(tiles) and assign a hierarchical structure to each subset. (The subsets are rectangular because 
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it makes it easier to add texture on the surface). The number of levels in the tree depends on 

the size of the entire triangulation area (larger areas � more levels). 

In GeoGFX the coarsest triangulation levels are basic regular triangulations, while the fine 

grain triangulation levels are precompiled (constrained) Delaunay. These triangulations are 

also known as TIN’s (Triangular Irregular Networks). The rendered level of each subset is 

determined by the camera’s distance from the tile and the topography of the tile. Thus, 

neighboring tiles can be at different levels, which may lead to glitches and artifacts in the 

triangulation. This problem is dealt with by precompiled transition skirts (triangulations), 

connecting neighboring tiles at different levels to ensure that the entire triangulation is valid. 

 

The tiles in the triangulation are also evaluated with a method called “frustum culling”. 

Frustum culling ensures that only tiles inside the cameras frustum (view area) are rendered. 

This efficiently saves a lot of graphical computations since most of the terrain is normally 

outside the frustum. 

2.6 The coordinate system  

The GeoGFX engine is designed with the purpose to visualize huge real-world terrain models 

in 3D. The model data fed to the engine are samples of real terrain measures given in world 

coordinates (longitude, latitude and elevation). Translating the world coordinates into 

OpenGL coordinates yields huge numbers, which may cause numerical instability when 

projecting to screen. Hence, GeoGFX contains methods to convert the world coordinate 

system to a local coordinate system to ensure numerical stability. 

 

 
 

Figure 2.7 - World and local coordinate system. 

 

Figure 2.7 illustrates the conversion from a world coordinate system to a local coordinate 

system. EO is the earth center and the origin of the world coordinate system. The z-axis 

intersects with the Poles and is positive with latitudes north of the equator and negative with 

latitudes south of the equator. The x-axis is positive with longitudes less than 90 degrees west 

and 90 degrees east and negative with longitudes greater than 90 degrees west and 90 degrees 
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east. The x-axis intersects the earth surface on longitude 0 (and 180) when y=0. The y-axis 

intersects the surface at longitude 90 west and east when x=0, and is positive between 

longitudes 0 and 180 degrees west and negative between 0 and 180 degrees east. The local 

coordinate system has its origin, LO, measured as EO + the earth radius, ER. The axes in this 

coordinate system are rotated relative to the surface point of LO with the z-axis always 

pointing upwards, the x-axis always in the longitude direction and the y-axis in the latitude 

direction. 

 

The fact that the earth is slightly elliptic causing the world radius to differ at the Poles is 

overlooked since it does not affect the visual presentation of the terrain model. 

 

The GgTools class contains functions for translating coordinates between 

latitude/longitude/altitude and XYZ coordinates, and between world and local coordinate 

systems.    

2.7 A GeoGFX application  

GeoGFX is designed to be a foundation for basically any type of 3D application that uses a 

real world model as the base of its visualization. However, because of its ability to visualize 

huge terrain models it is especially capable for use in flight simulators. This has led to a 

computer game named “Silent Wings” [13], which is a very realistic sailplane simulator with 

an authentic physics and weather model.  

 

Together with the basic GeoGFX nodes described in section 2.3.2, Silent Wings consists of 

different features (nodes) such as LightWave models of sailplanes and pilots, sky elements 

such as clouds, a weather model simulating wind and lifts, and a flight physics model 

simulating the behavior of the sailplanes.  

 

 
 

Figure 2.8 – Screenshot from Silent Wings 
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As stated in chapter 1 the present version of GeoGFX does not have realistic visualization of 

water. Water surfaces are integrated as part of terrain triangulation and are visualized with 

bluish textures that are either computer generated or derived from satellite/aerial photos. The 

water surfaces possess none of the realistic physics of water described in section 3.1 and the 

contribution of these surfaces actually lowers the realism of the visualization as figure 2.9 

illustrates.  

 

 
 

Figure 2.9 Water surface in GeoGFX – Lake Tahoe 
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3 Water visualization 
This chapter describes the theory and tools we are using to create the visual characteristics of 

the water surfaces. Section 3.1 and 3.2 introduces the basic theory for creating water surface 

textures described in figure 1.1, while section 3.3 describes the tool used to apply these 

textures on the surface.  

3.1 Theory of water 

According to Premoze and Ashikhmin [1] “creating and rendering realistic water is one of 

the most daunting tasks in computer graphics”. In order to accurately simulate the realistic 

physics of water we need large mathematical and numerical models. These models are based 

on several parameters such as sunlight and skylight illumination, wind speed and direction, 

light transport within the water body, etc. The appearance of water can vary significantly 

according to the compound of these factors. Because of the size and complexity of the 

mathematical and numerical models, the required time to calculate and visualize realistic 

water models is heavily dependent of software and computing power used in the rendering 

process. The process of rendering water is described in figure 3.1. Computing a fully realistic 

model may take an immensely long time, which is totally unacceptable in a real-time 

rendering environment such as GeoGFX. In order to obtain a water model that is applicable in 

a real-time environment we need to do some large simplifications of the mathematical and 

numerical model.  

 
Figure 3.1 – the process of rendering simulated water 

 

To create realistic water models Premoze and Ashikhmin [1] addresses three main 

components: Atmospheric conditions, wave generation and light transport. In the next 

sections of this chapter we will present a simplification of these three components based on 

previous work on real-time visualization of water. This simplification will be used in chapter 

5 as the model for implementing the visual presentation of the water surfaces in GeoGFX.  

3.1.1 Wave generation 

The appearance and shape of waves on water surfaces are based on several factors. They 

emerge from the winds influence on the surface, by its direction and speed. However, they 

also emerge and are shaped from other factors such as their impact on each other, the 

Physics of water 

Mathematical model /  

Numerical model 

Software 

Visualization / Computing 
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influence of natural water flows and the characteristics of their surroundings, typically the 

shallowness of the water. Waves may often appear to be randomly scattered, but research has 

proven that they in fact are behaving according to a pattern and that the motion can be defined 

and described with a set of differential equations. A well-known mathematical model for 

simulating wave patterns is the Navier-Stokes Equations (NSE) [2]. The NSE is the 

cornerstone in the field of Fluid Mechanics and describes the motion of incompressible fluids. 

In their basic form the NSE are immensely complex and require a lot of computation, but they 

can be simplified for use in less computational water models. However, even though they are 

extremely realistic they do not suite our intended use. In [2] NSE is suggested implemented as 

a rectangular grid of columns representing the water body. For every column, a set of virtual 

pipes is used to describe the flow of fluids between itself and the adjacent columns as shown 

in figure 3.2.  

 

 
Figure 3.2 – Approximation of the NSE. The images are copied from [2] 

 

The NSE also requires the previous state of the surface to be known. In our model we want to 

use a simulated rectangular grid, so called normal map textures (see section 3.2). Using NSE 

to create normal map textures would be a very complex and difficult task to handle, since the 

textures would have to be updated every frame. It would also require very large textures, 

covering the whole surface since it would be practically impossible to tile the textures on the 

surface. Using textures on moving surfaces also requires mipmapping to avoid aliasing 

(section 3.2 – mipmapping), which creates scalability problems when applying the NSE on the 

textures. As suggested in [2] NSE can be used in combination with other wave models, 

applying it only on limited areas of water surface. This way the NSE can handle water 

response to objects intersecting it.  

 

Another approach for wave generation suggested in [2] is a statistical model rather than 

simulating the entire process of the waves being built up. Oceanographers have developed 

models that describe the wave spectrum in frequency domain depending on the weather 

conditions. By employing a Fourier transform we can use these spectrums to filter a block of 

2D-noise. This method can be a computationally efficient way to generate a two-dimensional 

height-map, which can be transformed into a normal map texture using a normal map 

generation algorithm [3].   

 

A common and simplified way to generate simulated wave patterns is by using a technique 

called Perlin Noise, named after Ken Perlin which invented a way to generate continuous 

noise. The Perlin Noise technique is described more detailed in [2], [8] and [9]. In short Perlin 

Noise is an algorithm for creating seemingly random noise. However, given the same input to 

the algorithm, the same noise is produced each time. By varying the Perlin Noise frequency 
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and amplitude we get different octaves of the noise, high amplitude values give rougher 

looking noise, while low values makes the noise look smoother. High frequencies yield dense 

noise, while low frequencies yield less noise. By layering the octaves of noise we get fractal 

noise, as shown in figure 3.3. 

 
Figure 3.3 – Different octaves of Perlin Noise summed up to a fractal noise. Images are copied from [2]. 

 

The noise can be 1 dimensional, producing noisy line textures, 2 dimensional, making static 

noise textures, or 3 dimensional or higher, making dynamic, animated noise textures. By 

filtering the noise through a normal map algorithm [3] we get interesting wave-patterned 

normal maps (see section 3.2) for use on the water surfaces in our model.  

 

The Perlin Noise technique does not provide visually correct waves. There are no way of 

applying parameters like the wind speed and direction to the generation of the noise. 

However, for use in a real-time visualization the technique provides a pretty satisfactorily 

result as shown in figure 3.4. 

 

 
 

Figure 3.4 Screenshot of waves on a water surface generated with Perlin Noise and Per-Pixel Lighting 

bump mapping technique. 

3.1.2 Water optics 

One of the most important properties of water is its ability to act as reflector. The reflectivity 

of water varies between five and one hundred percent [1] dependent on the angle between the 

view vector and the surface normal. For angles where the reflectivity is high the refraction 

will be low, meaning that most of the incoming light will be reflected of the surface and it will 

act much like a mirror reflecting its surroundings with little loss of intensity. For angles where 

the reflectivity is low the refraction of the water will be high, and most of the incoming light 

will be transmitted through the surface. On areas where the refraction is high the light coming 
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from below is visible to the viewer. This light can be reflected from the water bottom if the 

water is shallow, or from the water volume itself. The impurities of the water determine the 

scattering of the light and its color, thus the brown color of muddy waters, greenish color of 

tropical waters and dark, almost black color of deep ocean water. 

Fresnel reflection  

The property of water that causes it to reflect light at certain angles and refract it at other 

angles is described in [4] and called Fresnel reflection. Fresnel reflection occurs commonly in 

nature and is most visible in semi-transparent materials such as water and glass. But the effect 

also occurs when viewing opaque materials such as paper and metal. Fresnel reflection is 

expressed by a formula which describes how much light reflects at the material boundary, and 

is called a Fresnel factor denoted R(θ). Figure 3.5 illustrates a case of Fresnel reflection 

where a ray of light from material i incident at the surface of material t. The materials i and t 

have a given index of refraction, which is the probability that a photon of light will be 

transmitted into the material. The index of refraction for air is close to 1 (vacuum is 1), while 

the index of refraction for water is approximately 1.33.  

 

 
 
Figure 3.5 – Ray of light traveling through material i, striking a denser material t. Images copied from [4]. 

 

The amount of reflection depends on the angle of incident θ, the polarization of the light, the 

ratio of the indices of refraction nt/ni and the lights wavelength. Figure 3.6 shows the amount 

of reflection, R(θ), on a water surface dependent on the angle θ.  
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Figure 3.6 – Fresnel reflection for an angle θ on a water surface. 

 

The Fresnel factor equations: 

 
Equation 1.1  R(θ) = ½((g-c)/(g+c))2(1+[(c(g+c)-(ni/nt)

2)/(c(g-c)+(ni/nt)
2)]2) 

 
Equation 1.2  c = cos(θ) ni/nt 

 
Equation 1.3  g = sqrt(1 + c2 – (ni/nt)

2) 
 

Computing the exact Fresnel factor is not very efficient due to the required number of 

instructions as shown in equations 1.1 through 1.3. However, we can approximate the factor 

to yield a pretty close result with a lot less computation. The most simplistic approach is 1-

cos(θ) which is compared to R(θ) for water in figure 3.7. As you can see, this approximation 

gives a curve that is a little to steep measured up to R(θ).  
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Figure 3.7 – 1-cos(θ) approximation of R(θ). 

 

A more accurate approximation is shown in figure 3.8 as the red line. This approximation 

yields a curve that very close to R(θ) and is denoted Ra(θ). 

 

 
Figure 3.8 - Ra(θ) approximation of R(θ). 

 
Equation 1.4  R(θ) ≈ Ra(θ) = R(0) + (1-R(0))(1-cos(θ))

5 

 

Equation 1.5  R(0) = (1.0-nt)
2/(1.0+nt)

2 
 

Equation 1.4 shows the simplification of R(θ) into Ra(θ). R(0) is a constant that denotes the 

reflectivity percent of material at a given angle θ [8]. For water this constant is ≈ 2%. 
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However, by choosing this value the surface might look less reflective than real water because 

the refractive index is essentially a complex value entity [8]. By adjusting R(0), other effects 

like dispersing minerals or other particles may be simulated. 

 

The Fresnel factor can either be computed directly per pixel or vertex using equation 1.4 and 

1.5, or obtained by doing a lookup on a pre-generated 1D texture using the dot product 

between the reflection vector and the surface normal. The lookup returns a shade of color 

which equals R(θ) if the texture is generated using equation 1.4. 

 

Figure 3.9 shows computer-generated water with and without a Fresnel factor. 

 

                
 

Figure 3.9 – Left: Computer generated water with Fresnel factor. Right: Without Fresnel factor 

Reflections  

Reflection is probably the effect that gives water its most distinct appearance and is a subject 

that is described in a lot articles written about realistic water rendering. The most correct and 

realistic way of creating water reflections is by using ray tracing. However, this is virtually 

impossible to do real-time with today’s hardware. Consequently, a lot of simplified ways to 

create water reflections has been proposed. In this thesis we will focus on techniques 

described by Yann Lombard [5] and Claes Johanson [2]. They suggest that water reflections 

are divided in to 3 separate types of reflections, global, local and sunlight reflections.  

 

- Global reflections are the reflection of objects that “infinitely” far away. An example of 

such an object is the sky, even though it is not actually infinitely far away, we can consider it 

to be. What part of the sky that is reflected of the surface is only dependent on the reflection 

vector and the position of the reflecting surface has no influence. These types of reflections 

are usually implemented as cube maps [6].  

 

- Local reflections are reflections of objects that are not infinitely far away. This is typically 

objects that are part of the environment such as mountains, trees, houses, planes, etc. The 

difference between global and local reflections is that the location of the reflecting surface 

does matter with local reflections, and not just the angle and direction of the reflection vector. 

Local reflections should be done with ray tracing in order to be visually correct. However, the 

common way to treat local reflections is by using the mirroring concept [5]. If we consider 

water surfaces to be flat planes they will act just like mirrors. By flipping the local objects 

along the desired plane, and cut away everything that is on the backside of this plane, we get a 

mirrored scene of the environment. Subsequently, we render this scene to a texture, and apply 
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the texture to the surface using projective texturing (see section 5.4.1). This approach yields a 

pretty good approximation of the local reflection as shown in figure 3.10. By using the 

textures alpha channel we can mark of the sections of the local reflection that we want to 

replace with global reflections. 

 

Since a water surface is not really a flat plane the local reflections needs to be disturbed to 

obtain a water-ripple looking effect. By offsetting the texture coordinates with the surface 

normals, which in our case are the wave-patterned normal maps, we can approximate this 

effect. Figure 3.10 illustrates approximation of local reflection ripples with different offset 

variables. 

 

 
 

 
Figure 3.10 – Local reflections using the mirroring concept. 

Top: No offset variable. 

Left: small offset variable. Right: large offset variable. 
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- Sunlight reflections are the direct reflections of the sun. Since the sun is also “infinitely” far 

away it could be part of the cube map in the global reflections. But this could make the sun 

reflection look bleak and washed out, since the amplitude of the sun has to be saturated in 

order to fit the dynamic range of the texture. It is instead usually better to use classic Phong or 

Blinn lightning to add specular highlights. 

Refractions  

Water refraction is the effect gained from Fresnel reflection described earlier. Claes Johanson 

[2] proposes an approximation technique that is pretty similar to the local reflection effect. 

Instead of flipping the environment, the scene is scaled by 1/1.33 in the height direction due 

to the difference of index-of-refraction across the boundary, making the water look shallower 

when seen from above the surface. Subsequently everything above the surface is removed, 

and the scene is rendered to texture. The texture is then applied to the surface with projective 

texturing, as the refractions seen on steep view angles. The refraction is rippled the same way 

as the local reflection to make it look more realistic. If we do not want refractions, or if the 

water is very deep, we just set the refraction to be a constant color.  

3.2 Bump mapping 

In a real world environment we often recognize the shape of an object based on its large-scale 

geometry, even if its small-scale geometry might differ considerably from this shape. Walls, 

tables, paper, golf balls, etc. are examples of such objects that we may think of as round or 

flat, but in most cases their surface contain small bumps and irregularities. The eye percept 

these irregularities because of the variation in the light reflections, and we subconsciously 

register that the objects surface is not completely flat or rounded. However, since these 

irregularities normally are quite small relative to the objects overall geometry, we recognize 

the object according to its large-scale shape.  

 

The significance of these irregularities, or lack of them, becomes quite obvious when 

modeling objects with computer graphics. If we where to model a brick wall, and just 

rendered a rectangular polygon with a brick texture attached to it, we would get a rather flat 

and unrealistic looking object. Instead, we could render the entire perturbed geometry of the 

wall with lit polygons. However, this would be a very computationally expensive and data 

intensive operation. A more efficient approach to model surface irregularities is by using a 

bump mapping technique. Bump mapping was invented in 1978 by Blinn, and decouples 

texture-based description of small-scale irregularities per-pixel, from the per-vertex 

description of the large-scale geometry. Mark J. Kilgard [3] describes bump mapping as “…a 

normal-perturbation rendering technique for simulating lighting effects caused by patterned 

irregularities on otherwise locally smooth surfaces.” In other words; bump mapping is a way 

of fooling the eye to believe that a smooth surface is actually bumpy.  

Per-pixel lighting 

Bump mapping is not the name of a single technique. There are several methods that formerly 

have been used to bump map surfaces such as the “Offset Vector Bump maps” technique [3] 

and “Emboss bump mapping” technique [3]. The most common bump mapping method in 

today’s computer graphic is the “Normal mapping” technique [3], also known as “Per-Pixel 

Lighting”, which currently also is the most advanced technique. This is the technique we are 

using in this thesis.  
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As the name implies, Per-Pixel Lighting is a technique where the surface lighting intensity is 

computed per-pixel, instead of the standard per-vertex lighting commonly used in 3D 

modeling.  

 
Equation 1.6 – Blinn light model for a single point light source per-vertex 
I = Ambient + Diffuse*max(0, L·N) + Specular*max(0, H·N)shininess 

 

Equation 1.7 – Phong light model for a single point light source per-vertex 
I = Ambient + Diffuse*max(0, L·N) + Specular*max(0, L·R)shininess 

 

Equation 1.6 and 1.7 describes two single point light source models commonly used in 3D 

graphics. L is the normalized light vector per-vertex, N is the normalized plane vector per-

vertex, H is the normalized half-angle vector and R is the normalized reflection vector. By 

computing the light intensity (I) at each vertex, and interpolate the result across the surface, 

we get an object lit by a single point light source. Per-pixel lighting uses the exact same 

equations, but with the vectors given per-pixel instead of per-vertex. This yields the modified 

light models described in equation 1.8 and 1.9.  
 

Equation 1.8 – Blinn light model for a single point light source per-pixel 
I = Ambient + Diffuse*max(0, L’·N’) + Specular*max(0, H’·N’)shininess 

 
Equation 1.9 – Phong light model for a single point light source per-pixel 
I = Ambient + Diffuse*max(0, L’·N’) + Specular*max(0, L’·R’)shininess 

 

L’, N’, H’ and R’ are the light, normal, half-angle and reflection vector given per-pixel.  

 

There are three typical ways of computing per-pixel lighting, by using the Dot3ARB technique 

[11], by using the Register Combiners technique [3] or by using Vertex and Pixel shaders [9]. 

What is common for all three methods is that they describe the surface’s small scale geometry 

with as raster of perturbed normals composed as a texture map, thus the name “Normal 

mapping”. Each texture texels RGB value corresponds to a XYZ value, and describes a 

directional normal vector of a single pixel. Since direction vectors has a XYZ range of -1 to 1 

they have to be remapped to 0 to 1 in order to be stored as RGB values (we cannot have 

negative RGB values). The remapping is done by adding 1 and dividing by 2 on each XYZ 

value. Since normal vectors with direction straight up tends to be the most common vector on 

a surface, normal maps usually has a distinct bluish color, as shown in figure 3.11. This is 

because the up direction vector [0,0,1], remapped to RGB, is [0.5, 0.5, 1.0].  
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Figure 3.11 – Normal map showing the distinct bluish color 

 

Another common factor for the Dot3ARB technique and the Register Combiners technique 

(but not Vertex and Pixel shaders) is the need for a normalization cube map [3]. A 

normalization cube map returns a texture composed of normalized vectors based on the 

direction of the vector handed to the cube. The Dot3ARB technique and the Register 

Combiners technique use the normalization cube map to normalize the L’ and the H’ vector 

or the L’ and the R’ vector. The normal map and the cube map normalized vectors are then 

combined according to either equation 1.8 or equations 1.9 in order to obtain per-pixel lit 

surfaces. Vertex and Pixel shaders do not need a normalization cube map because the 

normalization can be done directly in the pixel shader (see section 3.3).  

 

A great advantage of Vertex and Pixel shaders is that the Per-Pixel Lighting can be done in 

one rendering pass. The other two techniques have to perform a rendering pass for each light 

contribution, ambient, diffuse and specular, and blend the passes together. An additional 

advantage of Vertex and Pixel shaders is that they do not have the limitation on the shininess 

component in equation 1.8 and 1.9 as the two other techniques have. The implementation of 

the Register Combiners technique is normally limited to have a shininess component of 

maximum 8, while the Dot3ARB technique generally limits the component to be maximum 2 

(but this might be increased by more advanced programming). The only obvious advantage of 

the Register Combiners and Dot3ARB bump mapping techniques, are that older graphic cards 

that do not support Vertex and Pixel shaders usually support them.  

 

Since Per-Pixel Lighting is a technique where the small scale geometry is described with 

textures that are decoupled from large scale geometry, the vectors used in equation 1.8 and 

1.9 has to be rotated into texture space before applied to the equations. This is done by first 

computing the L’, H’ and R’ vectors in object space and then multiply them with a matrix 

consisting of the surface’s tangent, binormal and normal. Another possible solution is to 

instead rotate the normal map vectors into object space. Either way, the vectors used in 

equation 1.8 and 1.9 have to be in the same coordinate system.  

 

A problem with Per-Pixel Lighting is the occurrence of so called self-shadowing. This state is 

shown in figure 3.12, and occurs when a pixel should be lit according to the perturbed normal, 

but shadowed according to the surface normal. This problem is handled by adding a self 
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shadowing term, sself , to equation 1.8 and 1.9 as shown in equation 1.11. The value of sself is 

specified in equation 1.10.  

 

         L · N’ > 0 

           L · N  < 0 

 

Self-shadowed due to N but not N’ 

  
 

 

 

 

 

 

 

Figure 3.12 – Occurrence of self-shadowing. Image copied from [3] 

 
Equation 1.10 – Self-shadowing term. 

 

Sself = 1   �  L · N > c 

Sself = 1/c (L · N)  �  0 < L · N <= c 

Sself = 0  � L · N <= 0  

 
Equation 1.11 – Self-shadowing term added to equation 1.8 and 1.9 

 
I = Ambient + Diffuse*Sself*max(0, L’·N’) + Specular*Self*max(0, H’·N’)

shininess 

 
I = Ambient + Diffuse*Sself*max(0, L’·N’) + Specular*Self*max(0, L’·R’)

shininess 

Mipmapping 

In order to avoid aliasing and artifacts on textured objects in a dynamic scene, OpenGL built-

in mipmapping-functions [10] may be used. Aliasing and artifacts on textured objects appear 

when an object is moving away the viewpoint. This is because the pixel-count of this object is 

decreasing. If a high-resolution texture is applied to the moving object the texture may seem 

to change abruptly at certain transition points. To avoid this problem, down-sampled versions 

of the texture are stored in memory, and the texture with the appropriate size according to the 

object is determined and applied to the object by OpenGL. However, using mipmapping with 

normal maps requires the down-sampled textures to be renormalized [3]. Consequently, the 

built-in mipmapping-functions do not work with these textures. Kilgard [3] suggests a 

filtering algorithm used for mipmapping normal maps. 

3.3 Shading languages  

Pixel and vertex shading languages, or just shaders, is a relatively new generic term referring 

to high-level programming languages that are used to send instructions directly to the 

Graphical Processing Unit, the GPU. By sending the instructions directly to the GPU the CPU 

get offloaded, which yields much faster processing of graphical rendering. The introduction of 

shaders have made it possible to produce real-time, high-detailed graphics that until now only 

where seen in pre-rendered animations. The most common shaders are the OpenGL Shading 

Language (GLSL [9]), the High Level Shading Language (HLSL) and C for Graphics (Cg), 

but a lot of other languages exist as well. GLSL is, as the name implies, a shader designed 

especially for OpenGL, HLSL work only with DirectX, while Cg is a portable language that 

work with both OpenGL and DirectX.  
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GLSL 

Since GeoGFX is based upon OpenGL we have chosen to utilize GLSL [9] as the shader 

language used to implement rendering of the water effects described in this thesis. 

 

GLSL is a C/C++ like language, which as of OpenGL version 2.0 is supported directly 

through the extensions GL_ARB_vertex_program, GL_ARB_fragment_program and 

GL_ARB_shader_objects. The language includes support for scalar, vector and matrix types, 

structures and arrays, texture lookup through sampler types, data type qualifiers, constructors 

and type conversion, and operators and flow control statements. Variables can be passed from 

OpenGL as uniforms (which do not change during the execution of the code), or as attributes 

that can vary on each vertex.  When a GLSL program is enabled it fully controls the OpenGL 

processing pipeline meaning that the program affects every vertex drawn until the program is 

disabled. For each vertex a vertex program is executed, which is responsible for transforming 

and rotating the vertex. The final vertex position is set by the built-in variable gl_Position. A 

vertex program may also be used to interpolate vertex attributes and pass them to the pixel 

program, an example is the vertex normal which can be obtained with the built in variable 

gl_Normal.  These attributes are sent to the pixel program as varying variables. A pixel 

program cannot exist without a vertex program (but the other way around is okay). For every 

execution of a vertex program, a pixel program is executed once per pixel.  A pixel program is 

used to set the pixels final color. The color is set to the built-in variable gl_FragColor. GLSL 

code is written in a separate file, but sent to OpenGL as a string and OpenGL is responsible 

for compiling the code during runtime.  
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4 Model building 
This chapter presents an outline of the implementation of the texture Level-Of-Detail with 

bump mapping technique in GeoGFX. The actual implementation of the model is discussed in 

chapter 5. Section 4.1 describes how to acquire the Water Surfaces from figure 1.1. Section 

4.2 describes two different models for implementing the LOD management component. 

Section 4.3 outlines an object model based on the texture Level-Of-Detail with bump mapping 

technique.  

4.1 Acquiring water surfaces 

4.1.1 Concept 

As stated earlier GeoGFX is designed to visualize huge real world models fed to the engine as 

samples of real terrain measures. These samples contain information about specified ground 

areas. In addition to ground elevation on a given longitude/latitude the information often 

includes data like ground conditions (rock, soil, water, etc.), vegetation, power lines, matching 

satellite/aerial photos, etc. A separate GeoGFX application is able to read many different file 

formats containing this type of sample information. The application filters out the desired 

information from the samples, and stores it in a file format that can be read and triangulated 

by GeoGFX.     

 

A simple method for acquiring water surfaces can be done with a similar approach. 

Information about water location and elevation (lakes can have elevation different from 0) is 

read from the samples by a separate application, and stored in a file which can be read by 

GeoGFX. Subsequently, the application reads the terrain triangulation sample file and 

removes the points that coincide with the water surfaces. The new ground triangulation now 

contains irregular holes, so called boundaries. The triangulation technique described in section 

2.5 is capable of handling these boundaries. 

4.1.2 The water surfaces file  

In its simplest form we can think of water as a rectangular, planar surface. If we do so, we 

only need to know the longitude and latitude of each corner, plus the elevation above ocean 

water level. Another approach is to use a lot more point samples from the water surface, 

especially around the shoreline, treating the water surfaces as complex, polygonal non-planar 

surfaces (water surfaces are non-planar because of the curvature of the earth). The latter 

approach creates a much larger and complex water surface sample file, and also requires more 

sophisticated and demanding tools for visualization. We have chosen to use the simple 

approach, which can be “faked” to look like a complex polygon without high-detailed 

triangulations (see section 5.5). But there are also some limitations that arise using this 

method, which will be discussed later in this thesis.  

4.2 Surfaces in scene graph  

As described in section 2.3.2, objects rendered with GeoGFX are added as nodes in a scene 

graph and we can consider water surfaces to be separate objects. However, water surfaces are 

essentially part of the terrain, and it might make sense to let the Terrain node act as the water 

render control node (LOD management component). This is illustrated in figure 4.1.  
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Figure 4.1 – Terrain water surface render node 

 

However, we have chosen not to use this solution because Terrain (GgTerrain) is already a 

large class file composed of a huge amount of code. Adding even more code to this class 

would make further work in GeoGFX a lot more complex. 

 

Instead we are considering water as separate objects, treating them like nodes in the scene 

graph. We have looked at of two sensible implementations of this scene graph: 

 

• Model 1 - add each water surface as an object node in the scene graph. 

• Model 2 - add one node in the tree that controls the rendering of the water surfaces. 

 

With both model 1 and 2 we attach the nodes under the geocentric transform in the scene 

graph. This makes sense because even if we think of water as a separate object, they are still 

part of the terrain and needs to do all the same rotations and translations as the Terrain node. 

The Terrain node is attached to the geocentric transform, meaning that all actions applied to 

this transform also will affect all other nodes attached to it.  
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4.2.1 Model 1 – surfaces as nodes 

 

 
Figure 4.2 - Model 1. Water surface objects as nodes 

 

Model 1 looks correct compared to reality if we think of water surfaces as entirely separate 

objects with different behavior. Behavior denoting features like wave models and colors. Each 

object is responsible for handling its own features like textures and frustum culling. A 

drawback with this model is that the water surface objects do not know anything about each 

other, and are rendered only according to their own properties. Implementing the Level-Of-

Detail management will require some sort of separate controlling object, and the final code 

could end up being quite complex. Instead of implementing this model in GeoGFX, we have 

chosen model 2 as the basis for the texture Level-Of-Detail with bump mapping technique. 

4.2.2 Model 2 – control object as node 

 

 
Figure 4.3 - Model 2. Water control object as node 

 

In model 2 the Water control object is the only node added to the scene graph. This node is 

responsible for rendering all water surfaces, and acts as the LOD management component. 

The advantage of having a dedicated scene graph node that handles rendering of all water 

surfaces, is that this node can act as a tool for handling optimization and controlling of the 
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rendering process. This tool may check properties such as each surfaces distance from the 

camera, and invoke different states from the “Level-Of-Detail” hierarchy. In addition the 

object may handle the texture loading and distribution, etc. This way we separate all handling 

of water surfaces from higher levels in the scene graph, or from separate objects. Further work 

in this thesis will be based on this model. 

4.3 Object Model 

Section 4.2 gave an overview on the integration of water surface nodes in the GeoGFX scene 

graph. Figure 4.4 shows an outline of the object model. This model will be the basis of the 

implementation of the code in the final work. The structure of the object model is based on 

model 2 (section 4.2.2). 

 

 
Figure 4.4 - Object model outline 

 

The following list gives a brief description of the classes used in the object model. 

GgWater  

GgWater can be linked back to model 2, described in section 4.2.2, as the render control 

node added to the scene graph. This class handles the rendering of the water surfaces 
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(GgWaterBody objects) and manages the LOD controlling. Since scene graph nodes 

are GngRenderNode objects, GgWater inherits from this class. 

GgWaterBody 

GgWaterBody are the water surface objects. This class handles the actual vertex 

rendering and applies the textures handed from GgWater on the surface. A 

GgWaterBody object knows nothing about the other GgWaterBody surfaces.  

GngCubeMap 

GngCubeMap is a class that already exists in GeoGFX but need to be modified to 

support Pbuffer texture rendering. This class is used to handle the global reflection 

textures acquired with the SceneWaterGlobalReflections. 

GngTexture2D 

GngTexture2D is also a class that already exists in GeoGFX but needs to be modified to 

support Pbuffer texture rendering and normal map filtering. GngTexture2D is used to 

handle the local reflections acquired with SceneWaterLocalReflections, and the static 

wave-pattern textures. 

GngTexture3D 

GngTexture3D is used to handle the animated wave-pattern textures. This class does 

also already exist in GeoGFX but needs modification in order to support filtering of 3D 

normal maps.  

GngGLSL 

GngGLSL is the implementation of the binding between the OpenGL Shading Language 

and GeoGFX. 

GgPerlinNoise 

GgPerlinNoise implements an algorithm for generation of Perlin Noise raster. 

SceneWaterGlobalReflections 

SceneWaterGlobalReflections handles the creation of dynamic global reflection 

GngCubeMap textures.  

SceneWaterLocalReflections 

SceneWaterLocalReflections creates the local reflections used on the GgWaterBody 

objects. 

SceneWidget 

SceneWidget is responsible for invoking SceneWaterGlobalReflections and 

SceneWaterLocalReflections. This class already exists in GeoGFX. 
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5 Water visualization in GeoGFX 
This chapter explains the techniques used for the implementation of the water model 

described in chapter 4. The actual code implemented in GeoGFX can be viewed in Appendix 

B.  

5.1 Implementing shaders  

A binding between GeoGFX and the OpenGL Shading Language, GLSL, is implemented 

through the GngGLSL class as part of the GngState package. The implementation includes 

simplified loading of GLSL code files and easy handling of uniform, attribute and texture 

variable exchange between GeoGFX and GLSL. 

 

GLSL vertex and pixel programs can either be loaded simultaneously with the function 

setShaders(pixel_file, vertex_file) or separately with the functions 

setFragmentShader(pixel_file) and setVertexShader(vertex_file). 

 

Uniform and attribute variables can be handed to the GLSL code with the functions 

setUniform[1-4](name, [xyzw]) and setAttrib[1-4](name, [xyzw]). These variables 

can have 1, 2, 3 or 4 parameters depending on what type they are (vector, single variables, 

etc.). The name parameter in the functions is simply the name of the variable in the GLSL 

code. Uniform and attribute matrices can similarly be exchanged with the 

setUniformMatrix[1-4]() and setAttribMatrix[1-4]() where [1-4] implies whether it 

is a 1x1, 2x2, etc. matrix.  Attribute arrays can be set with the setAttribArray() function, 

and enabled and disabled with the enableAttribArray() and disableAttribArray() 

functions. Textures can be passed with the setTexture(name, number) function. The 

texture handed to name is the texture stored in the current state number. GngGLSL objects 

are enabled and disabled with the enable() and disable() functions. 

5.2 Simulating wave patterns   

Section 3.2.2 describes three different methods for simulating wave-patterns, The Navier-

Stokes equations, Fourier Transforms and the Perlin Noise algorithm. As stated, Perlin Noise 

is the less accurate method, but is fairly easy to compute and yields a pretty good visual result. 

It is commonly used in real-time rendering of water and is the method we have chosen to 

simulate wave patterns in GeoGFX. Since the wave pattern is used as a normal map with Per-

Pixel Lighting, the Perlin Noise texture (which is grey-scale) has to be run through a normal 

map filter. We have implemented two methods of acquiring Perlin Noise normal maps in 

GeoGFX. 

 

The first method is by using a pre-generated grey-scale Perlin Noise texture map, either a 2D 

map for static wave-patterns or a 3D map for animated wave-patterns. An Adobe Photoshop 

Nvidia normal map filter [14] is applied on the texture as shown in figure 5.1, and the texture 

is loaded into standard GngTexture2D or GngTexture3D state objects in GeoGFX. 
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Figure 5.1 – Left: Perlin Noise texture. Right: Texture filtered with Nvidia Normal Map filter 

 

The other method is by using an algorithm to create a Perlin Noise raster during runtime, and 

filter it through a normal map creation algorithm. Creating the Perlin Noise raster is based on 

the algorithm described in [9] and implemented in the GgPerlinNoise class. The normal map 

filtering algorithm is based on the algorithm described in [3] and implemented in the 

GngTexture2D and GngTexture3D classes. In GngTexture3D the algorithm is modified to 

support filtering of 3D textures instead of 2D textures. 

 

The Perlin Noise algorithm [9] produces as 32-bit RGBA image where each color channel 

consists of a Perlin Noise raster at a given frequency. Since the normal map algorithm is 

designed to filter 8 bit mono images, we must either use one of the channels as the normal 

map wave pattern, or add all the color channels together to form a normal map that is the sum 

of four Perlin Noise frequencies. Exploiting the GngImage class in GeoGFX can obtain the 

color channels of an RGBA image. By generating the Perlin Noise raster as a GngImage 

object, we get access to the function decompose() which splits a 32 bit RGBA GngImage 

into four 8 bit mono GngImage objects. Either one of these GngImage’s can be filtered 

through the normal map algorithm and be used as a wave pattern. However, using a single 

frequency Perlin Noise texture yields a visual result that does not look very realistic. Instead 

the four channels should be added together to form an 8-bit mono image which creates a more 

random feel to the wave pattern. The function composeSUM(r,g,b,a), which performs this 

operation, has been implemented into GngImage. Additionally this function may manipulate 

the final look of the wave pattern by performing different computations on the channels. 

Figure 5.2 illustrate the difference between using one Perlin Noise frequency, and using the 

sum of four frequencies as the wave pattern. 
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Figure 5.2 – Difference between one frequency wave pattern and sum of four frequencies 

Left: 1 frequency. Right: four frequencies 

 

An essential advantage of the latter method compared to the first is its ability to set the size of 

the texture at runtime. This gives us the possibility to create textures with size relative to the 

present amount of memory on the computer graphic card. Since 3D textures are nothing but 

an animated sequence of textures, and the textures need to be tiled to cover a surface. Long 

sequences and large sized texture tiles will look more realistic that short sequences and small 

texture tiles. However, these large textures also consume more texture memory.  

 

Another advantage of runtime-generated textures is, as stated earlier, the possibility to 

perform computation on the different Perlin Noise frequency layers. This can be used to 

achieve more realistic appearances on the wave pattern. Unfortunately runtime generated 

textures are quite expensive to compute, so we have to generate them when loading the 

application. Consequently we are not able to alter the textures during runtime.  

 

Using Per-Pixel Lighting to simulate wave-patterns looks convincing as long as the viewer is 

further away then a few meters from the surface. The fact that the waves are nothing but a flat 

texture is revealed when the viewer is to close to the surface (figure 5.3). This makes the 

technique best suited for flight-simulators such as Silent-Wings [13] (section 2.7.1).  

 

  
 
Figure 5.3 – Left: Too close to the surface ruins the illusion. Right: The illusion looks convincing when 

viewed from a distance 
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5.3 Visualization vectors  

In order to implement the simplified water visualization described in 3.2 we need to acquire 

various fundamental vectors from GeoGFX. The two most important vectors are the view 

vector and the light vector (the sun vector). By combining these two vectors and the surface 

normal (either per pixel or per vertex), we are able to create the different effects we need to 

simulate water looking surfaces. It is essential that all vectors are expressed in the same 

coordinate system in order to get a correct result. For reasons explained in the section 5.4.2 

we have chosen to express the vectors in a local coordinate system, also referred to as object 

space. 

5.3.1 The view vector 

The view vector is usually obtained by acquiring the view position from the inverted 

modelview matrix, and subtracts it from the vertex position. However, because of the 

GeoGFX structure and coordinate system, there is a better way to obtain the vector. As 

described in section 2.3, GeoGFX has component named GgNavigator. This component has 

a class called SceneWidget which is responsible for drawing all 3D objects, and handle user 

input such as mouse movement. SceneWidget passes this input to a class named Observer 

whose main task is to update the rotation and transformation transforms in the scene graph as 

described in section 2.3.2. The Observer class has functions named getLatitude(), 

getLongitude() and getAltitude(). These functions can be used to acquire to position of 

the view camera in a global coordinate system. Converting the coordinates to a XYZ 

coordinate system can then be done with the class GgTools’ function geoToXYZ(). The 

coordinates are then passed on to the GgWater class described in section 4.4, and subtracted 

from the vertices in each GgWaterBody object. The procedure is illustrated in figure 5.4. 

 

 
Figure 5.4 – The process of acquiring the view vector 

 

The vertices in GgWaterBody are accumulated in a vertex array handling class named 

GngVertexArray3f. They are stored as coordinates in the same XYZ coordinate system as 

the camera position, but the coordinates are the original position (denoted vertex_position) 
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minus the origin of the water surface (denoted water_origin). This is because the surfaces are 

drawn relative to the origin of the terrain. Thus, to get the view vector per vertex we subtract 

the sum of vertex_position and water_origin from the camera position as described in 

equation 1.12. 

 
Equation 1.12   
view_vector = camera_position – (vertex_position + water_origin) 

 

As stated, the view vector is expressed in global coordinates and need to be transformed into 

local coordinates. This is done with the earth_to_local transform obtained with the 

GgTools function calcEarthToLocal() as shown in code 1. 

 
Code 1 – transforming global view vector to local view vector 

 
//Get local transform relative to lat/lon 
MtkTransform3f earth_to_local; 
GgTools::calcEarthToLocal(centerGEO_.x(), centerGEO_.y(), earth_to_local); 
//Transform from local to global direction 
view_vector_local = earth_to_local.transform(view_vector);  

 

The view vector also needs to be normalized, but this is done in the pixel shader since we are 

doing per-pixel operations.  

5.3.2 The light vector 

The light vector is used for the sun contribution on the water surfaces. The GgSky class is, as 

described in section 2.3.2, responsible for visualizing the sky dome. The sun is drawn as part 

of the dome relative to the parameters longitude, latitude and time of day handed to the 

function setTimePos(). Its position can be gained with the function getSunPosition() 

which returns an MtkVector from the utility components. This vector is added to a 

GngLightSource class, which is appended to the GeoGFX scene graph as explained in 

section 2.3.2. By handing the GngLightSource to GgWater, the light vector can easily be 

acquired by using the GngLightSource function getDirection(), which returns a 

normalized direction vector for a light object. The whole process is described in figure 5.5.  

 

 
Figure 5.5 – The process of acquiring the light vector 
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Since the sun can be considered to be “infinitely” far away, the light vectors will be parallel 

when striking the surface and the angle between the vector and the normal will be the same at 

each vertex if the surface is planar. This is one reason why we in section 4.2.2 chose the 

simple representation of the water surfaces. The light vector is expressed in the local 

coordinate system relative to the surfaces, and do not need to be transformed. 

5.3.3 The reflection vector 

The reflection vector is the view vector mirrored against the plane defined by the surface 

normal (either per-vertex or per-pixel). It tells us from which direction the light that is 

reflected of the surface originates. The reflection vector can be used for reflection cube map 

lookups, Phong shading and Fresnel texture lookups. Equation 1.13 describes the vector. 

 
Equation 1.13  R = V – 2.0 * (N·V) * N  

 

R is the reflection vector expressed in the same coordinate system as V and N, V is the view 

vector and N is the surface normal. It is important that V and N is oriented in the same 

coordinate system 

5.3.4 The surface normal vector 

The surface normals are either the vertex normals or the perturbed normal map normals 

described in section 3.2. We have chosen to simulate the wave pattern using normal maps 

(section 5.2). These normals are expressed in a texture coordinate system (usually referred to 

as tangent space) and need to be rotated into the local coordinate system. To do so we need to 

multiply the normals per pixel with a suitable transformation matrix. Such a matrix can be 

expressed as the inverse of a local space to tangent space transformation matrix, shown as the 

right matrix in equation 1.14. This is a 3x3 matrix where the first row is the tangent vector of 

a vertex, the second row is the vertex binormal vector, and the third row is the vertex 

normal vector. The tangent vector is a vector that is parallel to the texture coordinates on 

the given vertex. Since our surfaces are plane this vector equals the vector from origin of the 

surface to the opposite corner The normal vector is the standard vector perpendicular to the 

plane, and the binormal is the vector perpendicular to the normal and the tangent vector 

(expressed as the cross product of the tangent and the normal vector). All these vectors must 

of course be expressed in a local coordinate system, subsequently the normal vector and 

tangent vector in GeoGFX has to be transformed the same way as the view vector shown in 

code 1. 

 

Tx Bx Nx 

Ty By Ny 

Tz Bz Nz 

 
Equation 1.14 Left: Object to tangent space matrix. Right: Inverse matrix: Tangent to object space 

5.4 Creating water optics  

Reflections and refractions where described in section 3.1.2, and the implementation of the 

reflection handling classes SceneWaterGlobalReflections and SceneWaterLocal-

Reflections where outlined in chapter 4. This section describes the actual implementation of 

these classes into GeoGFX.  

Tx Ty Tz 

Bx By Bz 

Nx Ny Nz 
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5.4.1 Local reflections  

Section 3.1.2 describes local reflections as the reflection of objects that are not infinitely far 

away from the reflecting surface. These types of reflection should ultimately be visualized 

using ray tracing, but in today’s hardware that is not possible to do in real-time. Instead Yann 

Lombard [5] proposes a so-called mirroring technique where the local objects are flipped 

around the planar surface, everything behind the surface is clipped and the scene is captured 

to a texture. The texture is then attached to the reflecting surface using projective texturing 

and the texture coordinates are offset by the surface normals to create a rippling effect on the 

reflections.  

 

In this thesis we are using this technique with some modifications to create local reflections 

on the water surfaces in GeoGFX. The class SceneWaterLocalReflections is responsible for 

setting up the mirrored scene, capture it to a texture and pass the texture to GgWater class. 

GgWater then passes the texture on to the correct GgWaterBody object and renders the 

surface with the reflection texture using projective texturing. Figure 5.6 illustrates the 

collaboration between the different classes involved in the process of acquiring the reflective 

textures, while the code 2 describes with pseudo code the process done in 

SceneWaterLocalReflections to capture a mirrored scene to a texture. 

 

 
Figure 5.6 – Outline of local reflection process 

 

Code 2 – Create reflection texture in SceneWaterReflections 

 
Step 1 Mirror scene 
Step 2 Remove objects behind the reflective water surface 
Step 3 Set up camera matrices 
Step 4 Hide water surfaces 
Step 5  Hide sky cone 
Step 6  Render mirrored scene 
Step 7 Capture mirrored scene to texture 
Step 8 Hand reflection texture to GgWater 
Step 9 Attach reflection texture to GgWaterBody with projective 

texturing 

 

The 9 steps of code 2 are explained in detail in the following sections. 
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Step 1 – Mirroring a scene in GeoGFX 

Yann [5] proposes a transformation matrix for flipping the local objects. This matrix is 

described in equation 1.15 and is called the reflection matrix.  

  
Equation 1.15 – Reflection matrix 

 

 

 

 

 

 

When applying the matrix to local objects they are transformed by flipping them around the z-

axis. If the reflecting surface does not cross the origin, the height of the surface above the 

origin has to be applied to matrix as the h parameter.  

 

In theory this matrix could also be used to flip local objects in GeoGFX, but because of the 

rendering techniques used in this engine we encounter some problems when trying to apply 

this matrix directly. The main problem is the LOD technique described in section 2.5, which 

used on the ground visualization in GeoGFX. When using the reflection matrix to flip the 

environment, strange artifacts like glitches in the terrain and unmatched textures appear. This 

forces us to find some other way to mirror the scene. An approach is instead to mirror the 

view camera around the surface. Exploiting some of the already existing classes in GeoGFX 

can do this fairly easy.  

 

The first thing we need to do is mirror the position of the camera around the surface. This 

means finding the viewpoint (the camera) coordinates in longitude, latitude and height above 

ocean water level, altitude. As described in section 5.4.1 these positions are stored in the 

Observer class and can be acquired with the functions getLongitude(), getLatitude() 

and getAltitude(). If the rendered surface where ocean water, the only thing we have to do 

was mirroring the cameras altitude by setting it to –altitude since the all the water surfaces 

would have elevation equal to zero. However, lakes have elevation different from zero, which 

has to be considered when mirroring the viewpoint. This introduces another problem if we 

take into account the earths curvature. If so, we have to mirror the viewpoint relative to the 

position of its closest vertex, meaning a lot more computation than if the whole surface is in 

the same plane. This is another reason why we in section 4.2.2 chose to store the water 

surfaces data as simple files with equal elevation for the whole surface. The mirroring of the 

viewpoint around a water surface is illustrated in figure 5.7. The position of the mirrored 

viewpoint is described with equation 1.16. Only the altitude of the viewpoint is mirrored, the 

longitude and latitude stays unaltered. 

  

1   0 0 0 

0 1 0 0 

0 0 -1 2h 

0 0 0 1 
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Figure 5.7 – Mirroring of viewpoint position and pitch. 

 

Equation 1.16 
mirrored_alt = surface_elevation – (viewpoint_alt– surface_elevation) 

 
Equation 1.17  
mirrored_pitch = -viewpoint_pitch  

 
Equation 1.18  
if (viewpoint_roll = 0) 
 mirrored_roll = 180 
if (viewpoint_roll > 0) 
 mirrored_roll = (180 – viewpoint_roll) 
if (viewpoint_roll < 0) 
 mirrored_roll = -180 + abs(viewpoint_roll) 

 

The next thing we need to do is mirror the viewpoints orientation which is the yaw, pitch and 

roll. These variables can be obtained with the Observer functions getYaw(), getPitch() 

and getRoll(). We don not want to change the direction of the view vector so the yaw of the 

viewpoint is left unchanged. The pitch of the viewpoint as illustrated in figure 5.7 defines the 

angle of the view vector that intersects the surface. Mirroring the pitch is as simple as flipping 

the viewpoint around the z-axis setting the pitch to –pitch as described in equation 1.17. The 

roll of the viewpoint defines its orientation relative to the xy-axis. This orientation has to be 

mirrored when working with objects in 3D. Flipping it upside down relative to its initial roll 

does mirroring of the viewpoint roll. Since “no roll” is defined as 0 degrees, the mirrored roll 

of no roll is 180 degrees. A right roll is defined as -1 degree to -180 degrees, and a left roll is 
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defined as +1 degree to +180 degrees. The mirroring of viewpoint roll is illustrated in figure 

5.8, and described in equation 1.18. 
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Figure 5.8 – Mirroring viewpoint roll 

 

The mirrored viewpoint position is then set by the Observer function 

setPosition(lon,lat,alt), and the mirrored orientation of the viewpoint is set with the 

functions setPitch() and setRoll().  To update scene graph transforms we use the 

Observer function updateTransforms().  

Step 2 – Remove objects behind the reflective water surface 

Testing has shown that using clip planes to remove objects behind the reflective surfaces in 

GeoGFX are unnecessary as long as no objects exist underneath the water surfaces. GeoGFX 

has, as stated in section 5.4.4, no seafloor triangulation, and the parts of the triangulated 

terrain that have elevation lower than the mirrored surface inflicts no visible errors on the 

mirrored image. Subsequently we have decided to omit clip planes in this thesis.  

Step 3 – Setting the camera matrices  

After the mirrored transformation matrices has been set up we need to create camera matrices 

(modelview and projection matrices), which has the proper values for rendering the scene to 

texture and for using projective texturing to apply it on the surface. GeoGFX has a class 

GngCamera that handles these matrices. In order to get a reflection texture that is correct for 

projective texturing, we need to set the viewport of the camera to be the same size as the size 

of the reflection texture we are creating. The perspective of the mirrored camera, the field-of-

view and the aspect ratio, has to be the same as the perspective of the camera we are viewing 

the final scene with.  

Step 4, 5 and 6 – hiding water objects, sky cone and render scene 

Before we draw the mirrored scene we need to hide the GgWaterBody surfaces since they 

are not part of the reflected environment. GgWater is a scene graph node which inherits the 

GngRenderNode properties and can be set invisible by handing a true Boolean variable to 
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the setInvisible(bool) function. The same property applies to the sky dome node, which 

needs to be hid since its part of the global reflections, and not the local reflections. Instead of 

rendering the sky as part of the local reflection texture, we want to replace it with a global 

reflection texture. Since the sky dome is always the object furthest from camera, the only 

thing visible when hiding it becomes the background color. By setting the alpha value 

parameter of the glClearColor() to 0.0 the reflection texture gets parts where its alpha value 

is 0.0. These parts can be replaced in the final rendering stage with the global reflection 

texture. When the water surfaces and sky dome is hid, the mirrored scene is drawn with the 

function scene graph function redraw(GngCamera), where the GngCamera parameter is the 

camera set up in step 2. 

Step 7 – Capturing the mirrored scene as a texture 

As of today there are 3 ways of capturing an OpenGL scene to a texture, one slow way and 

two faster ways. The slow way is by using glPixelRead(), this function reads the screen 

pixels one by one, and stores them in a byte array. The array can be used to create the local 

reflection textures. However, this method is far from optimal. A better way is to use the 

glCopyTexImage2D() function that captures the frame-buffer directly to texture. The 

GngTexture2D class in GeoGFX has implemented direct support for this functionality, 

which also automatically creates mipmaps of the generated texture. Another way of capturing 

OpenGL scenes as textures is to render the scene to an off-screen frame-buffer, a Pbuffer, and 

then transfer the content of the Pbuffer to texture. Pbuffer rendering is in theory supposed to 

be the fastest way of capturing scenes to texture, but there are some of drawbacks with this 

method: 

 

- Switching between off-screen and on-screen frame-buffers are a demanding process, which 

may cause us to lose the advantage of the Pbuffer to texture transfer. The frame-rate 

difference between glCopyTexImage2D() and PBuffer rendering will be tested in chapter 6.  

 

- The implementation of Pbuffers seems to be unstable; on some graphic cards we got errors 

with Pbuffer code that worked on other graphic cards. This can be a problem with the Pbuffer 

implementation in the graphic driver. 

 

- Rendering Pbuffers to texture is in this thesis done by using the OpenGL extensions 

WGL_ARB_pbuffer and WGL_ARB_render_texture. (Use of glCopyImage() from the PBuffer 

is possible, but this is less efficient). WGL extensions are Windows platform specific meaning 

that the pbuffer-to-texture method will only work on computers with the Windows platform. 

Fortunately, a new extension, EXT_frame_buffer_object, which is supposed to handle 

Pbuffers on all platforms, has just been released. However, the code produced in this thesis 

might have to be changed in order to support this extension. 

 

GeoGFX has implemented support for Pbuffers with the class GngPBuffer, however, this 

class needs to be modified in order to gain support for rendering the Pbuffer directly to 

texture. 

Step 8 – Transferring the texture to GgWater  

Since the water surfaces all have different elevation, the reflection scene has to be rendered to 

texture once for each surface. This is a very demanding task, which has to be optimized. This 

optimization process is described in section 5.6, and is an essential factor in achieving 

acceptable frame-rates. In short, the LOD management object GgWater described in section 

4.3 passes information to the SceneWaterLocalReflections object about which 
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GgWaterBody surface that needs a reflection texture, and SceneWaterLocalReflections 

passes the texture back to GgWater. 

Step 9 – Attach reflection texture with Projective texturing 

Projective texturing is a texture coordinate generation technique where the coordinates are 

projected on an object relative to a projection camera. The projection camera can be position 

virtually anywhere in a scene. In GeoGFX the technique is already used with object shadow 

casting. With planar reflections the use of projective texturing is a pretty straightforward and 

simplified case. The projection camera used is the same as the viewpoint camera, meaning 

that the viewpoint projection and modelview matrices can be reused with the projective 

texturing. Yann [5] describes a common way of creating the projected texture coordinates. 

The vertex position is multiplied by the projection and modelview matrices, transforming it 

into clip space (eye space). A clip space has a defined range of [-1 < c < +1] in the x and y 

direction and has to be remapped to the 0 to 1 range, since the transformed vertex position is 

used as texture lookup coordinates. The remapping can be done with a 4x4 remapping matrix 

Mr described in equation 1.19. 

 
Equation 1.19 – Remapping matrix Mr 

 

 

 

 

 

 

Equation 1.20 describes the matrix (Mprojtex) that is multiplied with the vertex position in 

order to get the projective texture lookup coordinates. 

 
Equation 1.20  Mprojtex = Mr * Mp * Mv 

 

Mp is the projection matrix and Mv is the modelview matrix. The resulting conventional 

texture lookup coordinates [s,t] is in projective texturing divided by the homogenous 

coordinate q in order to get the projective texture access coordinates [s/q, t/q].  

5.4.2 Global reflections  

Global reflections where described in section 3.1.2 as the reflection of objects that are 

“infinitely” far away. The technique suggested is by using reflection cube map texturing. A 

reflection cube map is in short a cube where each side has a texture that together form a 360-

degree view of an environment from the perspective of the reflecting surface. By handing the 

reflection vector described in section 5.3.3 to the cube map, the proper reflection texture is 

automatically picked for display. This texture then replaces the parts of the local reflection 

texture where the alpha value equals 0.0 as explained in section 5.4.1, step 4, 5 and 6. 

 

0.5 0 0 0.5 

0 0.5 0 0.5 

0 0 0.5 0.5 

0 0 0 1 
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Figure 5.9 – Textures in a reflection cube map 

 

Figure 5.9 illustrates the six textures that constitute a cube map, top, bottom, left, right, front 

and back. As we can see the lower part of this cube map represents the refractive part of the 

environment and the upper part represents the reflective part. Since we are only interested in 

the reflections we need to force the reflection vector to the upper hemisphere by remapping on 

the vector component that fetches the upper part of the cube map. In GeoGFX this is the z-

component since the z-axis is pointing upwards. The remapping is described in equation 1.21. 

 

Equation 1.21 R.z = 0.5 * R.z + 0.5  

 

The most realistic way of creating cube map reflections is by using dynamic cube maps where 

all or some of the textures are updated regularly. This is a method that is very computationally 

demanding. A less demanding technique is to instead use a static cube map where the textures 

never are updated. The latter technique will not yield a correct visual display because of the 

continuous change in the global reflections, but is a way to gain better frame-rates. The 

optimization of global reflections is described in section 5.6. The following section proposes a 

technique to acquire global reflection textures in GeoGFX, for use in a dynamic reflection 

cube map. The acquisition and creation of global reflection cube maps is described in code 3 

and is handled by the SceneWaterGlobalReflections class.   
 

Code 3 – Acquiring reflection cube map textures in SceneWaterGlobalReflections 
 
Step 1 Set viewpoint position to the water surface center 
Step 2 Set the camera matrices 
Step 3 Hide all local objects 
Step 4  Set the camera direction in on of the 6 major axis directions 
Step 5  Render the global reflection scene 
Step 6 Capture the rendered scene to one of the cube map textures 
Step 7 Go to step 4 and repeat step 5 and 6 until all 6 directions has 

been captured to a cube map texture 
Step 8 Hand reflection cube map texture to GgWater 
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Code 3 has to be repeated once for each GgWaterBody surface. GgWater is responsible for 

handing SceneWaterGlobalReflections information about which surface to render global 

reflections for.  

Step 1 – Set viewpoint position to water surface center 

The Observer function setPosition() is used to set the viewpoint at the water surface 

center. The center of the surface is pre-calculated in GgWater and handed to 

SceneWaterGlobalReflections. 

 

The center coordinate x of a GgWaterBody surface is calculated by adding the minimum and 

maximum latitude of the surface corners, and divide by 2. The center coordinate y is 

calculated by adding the minimum and maximum longitude and divide by 2. The z coordinate 

is just set to the elevation of the surface since it is the same for the entire surface as described 

in section 4.1.2. This is another example of why choosing a simple representation of the 

surface samples can be more practical than a complex representation.   

Step 2 – set the camera matrices 

Since the cube map is a 360 degree representation of the environment we need to capture 6 

scenes to textures that are displayed with a 90 degree field-of-view. The scenes also have to 

be rendered in a resolution that is equal to the wanted texture size. Setting up a GngCamera 

with the correct modelview and projection matrices does this. The scene resolution is set by 

using the function setViewport(x,y,w,h) where x,y is the upper left corner and w,h is the 

resolution of the camera, and the 90 degree field-of-view is set by the function setFOV(fov). 

Step 3 – hide all local objects 

In order to only capture the global objects of the scene to texture we need to hide all local 

objects before rendering the scene. Since all local objects are attached to the Geocentric 

transform scene graph node described in section 2.4.2, the only thing we need to do is hand a 

true Boolean variable to the transforms function setInvisible(bool). This causes all the 

attached nodes to become invisible. When now rendering the scene the only visible objects 

are the one attached to the sky transform which are the global reflection objects.   

Step 4 – set camera direction  

The viewpoint of each the 6 different scenes rendered around the surface center has to have 

direction along the one of the major axis. In GeoGFX we control this direction with the 

Observer functions setYaw() and setPitch(). Figure 5.10 illustrates the relation between the 

x, y and z axes and yaw and pitch.  
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Figure 5.10 – Yaw and pitch in an x, y, z coordinate system 

Step 5 – render the global reflection scene 

The scene is rendered from the given viewpoint with the camera set up in step 2 as parameter 

to the redraw() function.  

Step 6 and 7 – capture scenes to cube map textures 

Rendering the scene to a Pbuffer is the only way to create dynamic cube maps with the 

current OpenGL implementation. The glCopyTexImage2D() function described in 5.5.1 does 

not support copying of the frame buffer directly to a cube map. This also means that in order 

to create dynamic cube maps we get the drawbacks with Pbuffers as explained in 5.5.1.  

 

The way a dynamic cube map is created is that a Pbuffer that renders directly to a texture is 

activated and step 4 and 5 is repeated 6 times, once for each axis direction. Before each 

rendering pass the Pbuffer function wglSetPbufferAttribARB() with the cube map side as 

parameter is invoked. When all 6 sides are rendered the Pbuffer is deactivated and the cube 

map is created. 

 

The GngPBuffer class in GeoGFX needs modification to support Pbuffer to cube map 

rendering. 

Step 8 – transferring the cube map to GgWater 

As with local reflections GgWater is the class that controls which GgWaterBody surface 

needs the global reflection cube map from SceneWaterGlobalReflections. GgWater hands 

over the necessary information about the surface, SceneWaterGlobalReflections passes back 

the cube map. 

 

The cube map created with this technique is oriented in a local coordinate system since the 

Observer functions setYaw() and setPitch() rotates the view camera in local coordinates. 

In order to gain a visual correct result the reflection vector used for lookups also has to be 

oriented in local coordinates. This is the reason why we chose to orient all vectors from 

section 5.3 into local coordinates.  

5.4.3 Sunlight reflections 

In section 3.2.3 it is suggested to render sunlight reflections with either Blinn or Phong 

lighting instead of encoding the sunlight into to global reflection textures. This is because 

textures have to be mapped to the range 0 to 1, and the sun might seem bleak and washed out. 

The Blinn [3] and Phong [3] equations are described in equation 1.22 and 1.23. 
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Equation 1.22 – Blinn specular lighting 
Sun_specular = sun_color * sun_strength * max(0, H · N)shininess 

 

Equation 1.23 – Phong specular lighting 
Sun_specular = sun_color * sun_strength * max(0, L · R)shininess 

 

These equations are the specular contribution of the single point lighting equations described 

in equation 1.6 and 1.7. N is the plane’s normal, either per-vertex or per-pixel. In our case, we 

are using normal maps to compute the surface wave-patterns, so the normals are provided per-

pixel. As discussed in section 3.3 the specular contribution can computed with different per-

pixel lighting techniques such as vertex and pixel shaders or Register Combiners/Dot3ARB 

with normalization cube maps. However, we are using shaders since they are a faster and 

more flexible than the other methods. Blinn specular lighting requires less computation that 

Phong since H is the half angle vector defined as L+V where L is the light vector defined in 

section 5.3.2 and V is the view vector described in section 5.3.1.  However, we are using the 

reflection vector R described in equation 1.13 for global cube map reflection lookups, so it is 

more reasonable to reuse this vector to compute Phong sunlight contribution, rather than 

calculating both the R and H vector. As displayed in figure 5.11 Blinn yields a longer, 

skinnier specular contribution then Phong, which yields a more bulb-shaped specular 

highlight when the sun is low on the horizon. 

 

   
 

Figure 5.11 – Screenshot of Blinn (left) and Phong (right) sunlight contribution 

 

The light model does not take into account the light refractions of clouds, haze and other 

environmental conditions in GeoGFX. Using different values for the variables sun_color, 

sun_strength and shininess may approximate these factors.  
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5.4.4 Refractions 

Because of the limited access on actual data about ground conditions underneath water 

surfaces, GeoGFX does not have rendering of these areas built in to the engine. This means 

that removing the water regions described in section 2.7 leaves nothing but holes in the 

triangulated surface. If we want to use the refraction model explained in section 3.1.2, we 

have to approximate water floors by rendering a textured plane a given distance underneath 

the water areas. These planes can be simple polygons with the same size as water surfaces, 

since they only are visible, according to the Fresnel reflection model, when looking close to 

straight down at the water surface. This is illustrated in figure 5.12. 

 
Figure 5.12 – Rendering simple refractions 

 

In order to get the refractions to look right [2] we need to make another rendering pass, 

removing everything above the surface, capture the scene to a texture and apply the texture 

with projective texturing as with local reflections. Since creating refractions this way are just 

approximations, we have instead chosen to set them to a single color assuming that most lakes 

are so deep that we do not see the bottom. This saves a lot of computation since we do not 

need the additional rendering pass and the projective texturing lookup.  

5.4.5 Combining reflections and refractions 

The final visual result of the reflective surfaces is obtained by interpolating between 

reflections and refractions using the Fresnel value, and between the local and global 

reflections using the alpha value as suggested in [5]. The operation is done per-pixel and the 

final value is described in equation 1.24. 

 
Equation 1.24 – Computing the final pixel value for reflective surfaces 
Result = (1-fresnel)*refraction + fresnel*(refl_local.rgb*refl_local.a) + 
(refl_local.a)*(refl_global + refl_sun)) 

5.5 Rendering surfaces  

5.5.1 GgWater 

GgWater is the class responsible for drawing the water surfaces, the GgWaterBody objects. 

The GgWaterBody objects are drawn with render() in GgWater’s redraw() function. 

Redraw() also invokes the GngCamera function frustumTest() to check whether the 

surfaces are inside the frustum of the view camera. Only surfaces inside the frustum are 

drawn on screen. 
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Another “trick” performed GgWater is making the water surfaces look like complex 

polygons even if they are just rectangular, simple polygons as described in section 4.1.2. This 

is done making the triangulated surfaces a little bigger than the holes which come into being 

when the water samples are removed from the terrain triangulation, as described in section 

4.1.1. Then, before the GgWaterBody objects are drawn, the z-buffer is disabled by invoking 

glDepthMask() with the parameter GL_FALSE and the objects are drawn on screen without 

writing values to the depth buffer. When all the visible water surfaces are drawn, the z-buffer 

is enabled and the terrain triangulation is drawn on top of water surfaces. Since the z-buffer 

contains no values when the terrain triangulation is rendered, the water surface edges will 

intersect with, and stay underneath the terrain without creating any glitches or artifacts (so-

called z-buffer fighting). The water surfaces now look like they have a complex shape, equal 

to the hole in the terrain triangulation. Figure 5.13 illustrates how rendering the water 

surfaces with depth buffers turned off are used to “fake” the complex polygonal shape of the 

water boundaries. 

 

 
Figure 5.13 – Faking complex polygons with depth buffers. 1. show how the water surface looks from a 

top view, with the contours of the whole polygon. 2. show how the surface look from a side view, cutting 

through the terrain triangulation. 

  

The drawback with using this method to obtain complex shapes on the water surfaces is that 

finding the points on the surface that intersects with the terrain is very difficult. Thus, adding 

extra features on the water such as foam where the waves hit the shoreline are a quite 

challenging and are therefore left out of the thesis due to the workload. 

 

Code 4 explains the process which is done in the redraw() function. 

 
Code 4 – The GgWater redraw() function 

 
Step 1 Disable depth buffers 
Step 2 For all GgWaterBody objects: 
Step 3   Compute surface frustum sphere 
Step 4   If sphere is inside camera frustum: 
Step 5    Draw GgWaterBody objects 
Step 6 Enable depth buffers 

5.5.2 GgWaterBody 

GgWaterBody is the class that actually draws the water surface vertices on screen. Objects of 

this class know nothing about other GgWaterBody objects and is just responsible for 

drawing its own vertices on screen when the render() function is invoked. The render() 

function translates the starting point of the drawing operation to the water surface origin 
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relative to the terrain origin, computes the view vector, applies the different OpenGL states, 

enables the shaders and draws the surface vertices. The states applied depend on Level-Of-

Detail parameters passed from GgWater. Code 5 explains the process of the render() 

function. 
 

Code 5 – The GgWaterBody render() function 

 
Step 1 Translate drawing start point to surface origin relative to 

terrain triangulation origin 
Step 2 Calculate view vector 
Step 3  Update timer variable used to animate waves 
Step 4  Enable shaders 
Step 5  Pass uniforms and attributes to shader (view-vector, sun-

vector, timer variable, surface colors, etc.) 
Step 6 Set states (reflection/no reflection, etc) 
Step 7 Draw vertices, set client normal and texture arrays 
Step 8 Remove states 
Step 9 Disable shaders 

5.6 Optimizing 

As stated in chapter 3 rendering fully realistic water surfaces is an extremely computationally 

demanding task. The techniques described in the previous sections are formerly developed 

methods for simplifying the task, in order to gain surfaces with realistic looking water optics, 

which can be rendered real-time. In addition to implementing these techniques in GeoGFX, it 

is necessary to optimize them in order to maintain acceptable frame rates in a real-time 

rendering sequence. This chapter proposes methods for further optimization of the rendering 

process. Chapter 6 presents a comparison between a collection of the suggested methods 

based on visual quality and frame-rate performance. The result of this comparison is the 

foundation for selecting the Level-Of-Detail parameters in the texture LOD management 

component described in figure 1.1.  

Optimizing wave generation 

As described in section 5.2 the wave-pattern used in this water model are Perlin Noise normal 

map textures that are tiled on the surfaces. In order to get a pattern that does not look to 

repetitive we should use as large textures as possible. 3D Perlin Noise textures consist of 

several layers of images at different octaves. This means that a 3D texture width same height 

and width as a 2D texture, consumes texture memory equal to the 2D texture amount times its 

number of layers. Thus, using 3D textures limits the possible width and height of the texture 

considerably. Chapter 6 compares the visual result of using large 2D textures to the visual 

result of using smaller, animated 3D textures.  

Optimizing local reflections 

Creating local reflections is the most computationally expensive operation of the water-render 

process. Even with the mirroring technique described in sections 3.1.2 and 5.4.1, this task is 

the one that steals the most frame-rate because the triangulated terrain has to be rendered an 

additional time per visible surface, per frame. In order to maintain an acceptable frame-rate in 

GeoGFX we have to cut back on some of the visual details on the local reflections.  

 

The optimizing technique that without a doubt buys the most frame-rate is by only showing 

local reflections on the surface closest to the viewpoint. We can accomplish this by measuring 

and comparing the surface’s distance from the camera, and render only the local reflections 

relative to the position of the closest surface. This ensures that the triangulated terrain is only 
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rendered one additional time per frame and not one time per visible surface. As long as the 

reflective surfaces do not lie to close to each other the viewer will not perceive that only the 

closest surface that shows local reflections.  

 

Because of the high complexity of the terrain triangulation in GeoGFX, utilization of this 

optimization technique is necessary to obtain acceptable frame-rates. Consequently, every test 

done in chapter 6 is executed with this method as basis.  

 

An implementation of this technique has been created through the GgWater function 

closest(), which returns GgWaterBody object closest to the camera. The 

SceneWaterLocalReflections class uses this function in order to provide only the closest 

GgWaterBody object with a local reflection texture. Code 6 explains the process of acquiring 

closest GgWaterBody object with the closest() function. 

 
Code 6 – Get closest GgWaterBody object in GeoGFX 

 
Step 1 Send camera position as MtkPoint3f variable to GgWaterBody 
Step 2 Get distance between camera position and all vertex positions 

with the MtkPoint3f dist() function 
Step 3 Compare all distances from step 2 and return the shortest 

distance between camera and vertices 
Step 4  Go to step 1 and repeat step 1 to 3 for all GgWaterBody objects 
Step 5  Compare all distances returned from step 3 
Step 6 Return the GgWaterBody object with the shortest distance 

returned in step 3 

 

Since the alpha value of local reflection texture is used to replace the parts of the texture 

where we want to display global reflections, the local reflection texture on the surface that is 

not closest to the camera has to be replaced with a texture that has alpha value equal to 0 on 

all texels.  

 

However, just rendering local reflections for the closest surface may not be enough to 

maintain an acceptable frame-rate. In addition we have to look at possible methods for 

optimizing the actual rendering process. There are several optimizing methods that may 

increase the frame-rate, but most of them lower the detail level of the reflections, and perhaps 

also the realism of the scene. Chapter 6 compares the different optimization methods on 

frame-rate gain, versus loss in visual appearance.  

 

One possible way of optimizing the local reflections is by creating small reflection textures. 

When we are generating reflections the captured scene has to be rendered with a viewport size 

identical to the size of the reflection texture. This implies that high resolution textures with 

size 256x256, 512x512 or greater, require rendering of high-resolution scenes which is very 

computationally demanding. Instead we could create small reflection textures with size 64x64 

or 128x128. This way rendering the scenes would be a lot less demanding and the frame-rate 

may be increased. The downside with using low-resolution textures is that the reflection 

becomes very pixelated, especially when viewing the surface from a distance since the texture 

then has to be stretched to cover a larger area. Howeveer, the water rippling effect added to 

the texture (see section 3.1.2) may hide most of this pixelation.  

 

Two GeoGFX functions for optimizing the process of rendering the terrain triangulation are 

setPixelScale(scale) and setTexelScale(scale) from the GgTerrain class. The 

setPixelScale() functions uses the scale parameter to indicate the size of the projected 
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pixel in the terrain, given the screen resolution and camera parameter. A large pixel covers 

more error in the terrain, so a large scale value means higher error tolerance and less detail, 

while a small scale value means lower error tolerance and more detail. Setting the scale 

parameter to a large value causes the terrain triangulation to “pop” which is an undesired 

effect where polygons suddenly appear on the screen. In order to keep the “pops” down to a 

minimum the scale parameter should never be greater than 2. However, for use with our 

reflection textures a higher number of “pops” on the triangulation could be acceptable to 

increase the frame-rate, especially since they may not be as obvious when applying the 

rippling effect on the textures. 

 

The setTexelScale() function uses the scale parameter to adjust the detail level of textures 

covering the triangulated areas. The parameter has to be in the range [0, 1.0], with 1.0 being 

the value where the textures have the highest possible detail level, and 0 being the value with 

the lowest texture detail level. Adjusting scale to values lower than 1.0 is not recommended 

for the main triangulation because the realism of scene diminishes rather quickly, but for the 

local reflections lowering this parameter may increase the frame-rate without very obvious 

loss in visual quality.  

 

Another possible optimization technique is adjusting the camera clip planes. By setting the far 

clip plane of the local reflection camera to a much shorter distance than the main view camera 

we limit the size of the triangulation to a much smaller area. This decreases the range on 

where we can see the reflections, and has to be adjusted so that it looks realistic.  

 

An additional method for possible optimization of local reflection rendering is with use of 

Pbuffers instead of the built in function glCopyTexImage2d(). This method is described in 

section 5.4 and is supposed to be the fastest way of capturing screen buffers to texture. 

However, switching between the standard screen buffer and Pbuffers are a demanding 

process, which may cancel out the screen capture frame-rate gain. Whether it actually yields 

any better frame-rate or not is tested in chapter 6.   

Optimizing global reflections  

Section 5.4.2 describes a technique for creating global reflections with dynamic cube maps. 

Generating these cube maps is an extremely computationally demanding task, since they 

require six sky render passes per visible surface, per frame. Rendering just the sky dome for 

global reflections may be achievable because it is not a high-resolution triangulation. But the 

contribution of clouds in the scene may make it virtually impossible to maintain an acceptable 

frame-rate while updating the cube map.  

 

One possible way of optimizing the generation of dynamic cube maps is by lowering the 

texture size. As with local reflections, the viewport of the camera rendering the global 

reflection scene has to be the same size as the size of the texture. This implies that a high-

resolution texture has to be rendered with a large camera viewport, which is a more costly 

process than rendering with a small viewport. By downsizing the viewport and texture 

resolution we might be able to gain some frame-rate, but it also lowers the visual quality of 

the scene since the textures has to be stretched over a larger area.  

 

Another possible optimization technique, in addition to the one previously mentioned, is to 

only update the cube map on the surface closest to the view camera. The other surfaces further 

from the camera uses their old updates for display, while the closest surface’s cube map is 

updated every frame. This way only six addition passes is required per frame no matter how 
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many surfaces are visible. To acquire the closest surface we can reuse the closest() function 

described in code 4. 

 

However, rendering six additional passes per frame could still be a too demanding task for 

most computers. In order to maintain an acceptable frame-rate we may have to use some 

supplementary optimization techniques to the generation of global reflections. First, we do not 

have to update the bottom of the cube since the reflection vector used for lookup never will 

come from underneath the surface; this side needs only to be a static texture. Thus we only 

need five additional rendering passes per frame. Second, the cube maps may not need to be 

updated every frame. Since the appearance and disappearance of clouds is relatively slow 

process, and the sky does not change color dynamically in GeoGFX, the cube maps might not 

need updates more frequently than every few seconds or less without being noticeable to the 

viewer.   

 

If dynamic cube maps are too heavy for the computer to handle, we could instead use static 

cube maps. Either generated at the first frame with Pbuffer rendering, or simply with use of 

pre-generated cloud textures, fitted to match the sky color and an approximated cloud pattern 

in GeoGFX. In order to save some texture memory, these textures can be shared among, and 

applied to all surfaces. This approximation will be most apparent with a calm surface since 

the global reflections will be wrong, but with a rough wave pattern the reflections will not 

very visible, and may be used to increase the frame-rate without to much loss in visual 

quality.  

5.7 The mipmapping problem 

As we explained in section 3.2, mipmapping [10] is necessary to avoid texture artifacts such 

as aliasing on objects. Aliasing occurs when trying to apply textures with high resolution to an 

object with lower resolution than the texture. OpenGL automatically downsizes the resolution 

on objects relative to their distance from the camera, which means that aliasing will occur 

when moving away from an object if the attached texture has high resolution. If mipmapping 

is enabled OpenGL instead applies a pre-generated, downsized texture to the object with 

equal or less resolution than the object, and aliasing is avoided. With regular texturing, built-

in OpenGL mipmapping functions can be used to create the downsized textures, but normal 

maps has to be renormalized when downsized and therefore needs a special downsizing 

algorithm explained in [3]. 

 

However, with our water simulation technique mipmapping creates another problem: Filtering 

the normal map downsizes the perturbed normals since the smallest texture with resolution 

1x1 only has a single normal pointing straight upward. This means the wave pattern 

disappears from the surface in the distance, making the surface looking perfectly calm. In real 

life you do not see the waves after a certain distance, but the water still does not look perfectly 

calm. Figure 5.14 displays two images, one with mipmapping and one without mipmapping. 

Notice the odd pattern in the waves on the left image. This pattern is called a “Moire pattern”. 

The problem is more apparent when actually moving the camera through the application.  
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Figure 5.14 – Left: Without mipmapping. Right: With mipmapping 

 

To attempt to solve this problem we have tried different solutions. One approach was to 

stretch the wave pattern textures over larger areas. This surely decreases the need for 

mipmapping, but the result is that the waves become too wide relative to the other objects as 

figure 5.15 shows. Notice that the waves are a lot bigger than the sailplane located in the 

middle of the picture. 

 

 
 

Figure 5.15 – To wide waves 

 

Another approach was to decrease the height on the waves. This also decreases the need for 

mipmapping, but the waves become less apparent as shown in figure 5.16. On large water 

areas the waves has to be very small in order to avoid aliasing, which is not very ideal. 
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Figure 5.16 – Small waves 

 

The last approach we tried was to control the highest level of the mipmapping. By handing the 

parameter GL_TEXTURE_MAX_LEVEL together with highest level texture to the OpenGL 

function glTexParameteri(), the mipmapping functionality is forced to never use any 

textures with lower resolution then the highest level texture. Thus, the wave pattern will never 

be perfectly calm in the distance (if the full size wave-pattern texture is not totally flat). This 

technique allows us to use higher waves, tiled closer together, but we still need to be careful 

with the wave size in order to avoid aliasing.  
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6 Results 
In this chapter we present a comparison of the optimization techniques described in section 

5.6. These options are tested in a fly-through sequence and a still-photo sequence. Based on 

frame-rate and visual quality they are compared in order to conclude which optimization 

techniques are most suited to use with the water surface rendering in GeoGFX.  

 

The fly-through sequence is animated with linear interpolation between key-frames. These 

key-frames are the centers of all water surfaces in our test-data, a total of 53 surfaces. Using 

the centers as key-frames ensures that all surfaces are visited and included in the visual 

comparison. During the animation the highest, lowest and average frame-rate is recorded. 

Each sequence is run three times and the average of the frame-rates is computed and used in 

the comparison. Before the animation is started we move the viewpoint to the first frame in 

the sequence, ensuring that the recorded frame-rates are representative for the animated path, 

and the frame-rate is stabilized. One fly-through sequence lasts approximately 2.5 minutes. 

 

The still-photo sequence is a frame-rate and visual test executed on five selected locations in 

the test-data. The viewpoint is moved to the different locations, and the upper- and lower-

bound frame-rate is recorded. This test is run 3 times with each option, and the average frame-

rate at all location is computed and used in the comparison. Screenshots of the five locations 

are shown in chapter 8, appendix B. 

 

Before testing begins both the fly-through sequence and the still photo-sequence are run once 

to make sure the GeoGFX engine has stabilized, and that no texture or vertex loading-problem 

occurs. 

 

The test is run on a computer with the following specifications: 

 

Processor: Pentium 3 – 866 MHz 

RAM: 512 Mb 

Hard disk: 30 Gigabyte, 7200 RPM 

Video card: Asus V9999, GeForce 6800 GT, 128 Mb DDR  

 

Notice the relatively weak CPU which probably causes some overhead that steals frame-rate. 

With a better CPU the following tests would most likely yield greater frame-rate differences. 

 

The computer is rebooted before each test in order to run all tests on the same premises.  

 

GeoGFX is run with 800x600 pixel resolution during the tests. The pixel scale of the terrain 

triangulation is set to 2.0, and the texel scale is set to 1.0. Pixel scale and texel scale is 

explained in section 5.6. Local reflections are only visible on the surface closest to the 

camera, and dynamic global reflections are only updated at the closest surface. 

 

Because of wide variety in composition of the optimization options, the specifications of the 

tests have to be limited to a certain number of important factors. We have selected the most 

significant factors to be: 

 

Global reflections:  

- Dynamic or static cube maps.  

- Dynamic cube map update rate. 
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- Texture resolution. 

 

Local reflections: 

- Texture resolution. 

- Terrain pixel scale 

- Pbuffer vs. glCopyTexImage2D() capture of local reflections to texture 

 

Wave pattern: 

- Animated or static wave pattern 

- Texture resolution 

 

Other factors that are not varied in the test are: 

 

Local reflections: 

- Terrain texel scale is set to 1.0 

- Far clip-plane is 5 km 

 

Global reflections: 

- Only the sky dome is rendered, no sky cloud pattern 

 

Refraction: 

- Refractions are set to a constant color 

 

Sunlight reflections: 

- Surfaces are lit with the Phong specular shading equation 

- The shininess component is set to 32. 

 

Wave pattern: 

- Mipmapping is controlled, with highest level of 8x8x(thick/(width/8)) 

 

Fresnel factor: 

- Fresnel factor is approximated using a 1D texture lookup. 

 

Test 1, 2 and 3 compares frame-rate versus texture resolution. Test 4, 5, 6, 7, 8, 9 and 10 uses 

the same texture resolution as test 3 and the frame-rate is compared relative to this test. Test 

10 omits local reflections and is the only test that does not include all the water features: 

global and local reflections, and wave pattern. This is done to test the impact on the frame-

rate when creating local reflections. 

 

All ten tests have screenshots to display the visual quality, but only test 1, 2, 3, 5 and 10 

shows any visible differences. 

 

All frame-rates are measured in frames per second (fps). 
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Test 1 – High texture resolution 
  

Specifications 

Cube map type: Dynamic 

Updated: Each frame Global reflections: 

Texture resolution: 256x256 

Texture resolution: 1024x1024 

Terrain pixel scale: 1.0 Local reflections: 

Rendering type: PBuffer 

Type: 3D animated 
Wave pattern: 

Texture resolution: 256x256x128  

Fly-through frame-rates 

 Min Max Average 

1. Run 16.9  42.5  25.5 

2. Run 17.7  43.4  25.5 

3. Run 16.8  44.4  25.5 

Average 17.1 43.4 25.5 

Still-photo frame-rates 

 Location 1 Location 2 Location 3 Location 4 Location 5 

1. Run (18.8 - 33.3) (24.9 - 32.8) (18.7 - 20.0) (19.8 - 20.6) (25.3 - 32.7) 

2. Run (19.8 - 20.2) (24.9 - 33.3) (18.0 - 20.0) (19.8 - 20.6) (25.3 - 31.7) 

3. Run (19.8 - 20.6) (24.7 - 31.3) (18.8 - 20.4) (17.7 - 20.6) (25.0 - 30.7) 

Average 19.5 – 24.7 24.8 – 32.5 18.5 – 20.1 19.1 – 20.6 25.2 – 31.7 

Visual quality 

- The high resolution on the local reflection textures make the reflections look good even 

when viewed from a distance.  

- The high resolution on wave texture the makes the wave pattern look relatively random 

- Since the terrain pixel scale is set to 1.0 there is no visible popping on the reflection texture. 
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Test 2 – Low texture resolution 
  

Specifications 

Cube map type: Dynamic 

Updated: Each frame Global reflections: 

Texture resolution: 64x64 

Texture resolution: 128x128 

Terrain pixel scale: 1.0 Local reflections: 

Rendering type: PBuffer 

Type: 3D animated 
Wave pattern: 

Texture resolution: 128x128x32  

Fly-through frame-rates 

 Min Max Average 

1. Run 16.4  44.3  26.5 

2. Run 16.0  43.5  27.1 

3. Run 16.9  45.4  26.9 

Average 16.4 44.4 26.8 

Still-photo frame-rates 

 Location 1 Location 2 Location 3 Location 4 Location 5 

1. Run (14.9 - 43.4) (25.3 - 33.3) (19.0 - 20.4) (22.7 - 27.0) (38.5 - 45.5) 

2. Run (19.8 - 20.6) (25.0 - 31.2) (19.2 - 20.6) (24.1 - 28.9) (39.9 - 43.5) 

3. Run (19.8 - 20.6) (25.0 - 32.7) (19.4 - 20.6) (24.0 - 28.1) (40.0 - 42.6) 

Average 18.2 – 28.2 25.1 – 32.4 19.2 – 20.5 23.6 – 28.0 39.5 – 43.9 

Visual quality 

- The low resolution on the local reflection textures makes the reflections look very pixelated, 

especially on a distance when the texture has to cover more of the surface. 

- The low resolution on the wave texture reveals that the wave-pattern is repetitive, and looks 

unrealistic. 

- The low resolution on the global reflections does not affect the visual quality, at least when 

there are no clouds in the sky. 
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Test 3 – Medium texture resolution 
  

Specifications 

Cube map type: Dynamic 

Updated: Each frame Global reflections: 

Texture resolution: 128x128 

Texture resolution: 512x512 

Terrain pixel scale: 1.0 Local reflections: 

Rendering type: PBuffer 

Type: 3D animated 
Wave pattern: 

Texture resolution: 256x256x64  

Fly-through frame-rates 

 Min Max Average 

1. Run 15.8  42.5  25.5 

2. Run 15.8  45.5  25.5 

3. Run 15.8  43.4  26.0 

Average 15.8 43.8 25.7 

Still-photo frame-rates 

 Location 1 Location 2 Location 3 Location 4 Location 5 

1. Run (17.7 - 32.8) (24.7 - 29.8) (17.7 - 19.2) (19.8 - 21.0)  (25.0 - 30.7) 

2. Run (19.8 - 20.8) (24.9 - 31.7) (17.2 - 19.0) (19.8 - 20.6) (27.4 - 34.5) 

3. Run  (19.8 - 20.6) (24.6 - 33.3) (17.1 - 19.0) (19.4 - 20.8) (25.0 - 30.3) 

Average 19.1 – 24.7 24.7 – 31.6 17.3 – 19.1 19.7 – 20.8 25.8 – 31.8 

Visual quality 

- The local reflections look good with this texture resolution. 

- The animation on the wave pattern is to repetitive. 
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Test 4 – Medium texture resolution – No Pbuffer 
  

Specifications 

Cube map type: Dynamic 

Updated: Each frame Global reflections: 

Texture resolution: 128x128 

Texture resolution: 512x512 

Terrain pixel scale: 1.0 Local reflections: 

Rendering type: glCopyTexImage2D() 

Type: 3D animated 
Wave pattern: 

Texture resolution: 256x256x64  

Fly-through frame-rates 

 Min Max Average 

1. Run 15.4  32.3  22.6 

2. Run 15.5  32.2  22.4 

3. Run 15.4  34.4  22.8 

Average 15.4 33.0 22.6 

Still-photo frame-rates 

 Location 1 Location 2 Location 3 Location 4 Location 5 

1. Run (15.6 - 32.7) (20.0 - 20.8) (15.7 - 16.2) (19.4 - 20.8) (25.0 - 32.7) 

2. Run (19.2 - 20.2) (19.6 - 21.0) (15.6 - 16.1) (19.8 - 20.4) (25.0 - 32.7) 

3. Run (19.4 - 20.2) (19.8 - 20.6) (15.6 - 16.2) (16.2 - 20.4) (25.0 - 32.2) 

Average 18.1 – 24.4 19.8 – 20.8 15.6 – 16.2 18.5 – 20.5 25.0 – 32.5 

Visual quality 

- There are no visual differences between this test and test 3 
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Test 5 – Medium texture resolution – Static Cube Map 
  

Specifications 

Cube map type: Static 

Updated: Never Global reflections: 

Texture resolution: 512x512 

Texture resolution: 512x512 

Terrain pixel scale: 1.0 Local reflections: 

Rendering type: PBuffer 

Type: 3D animated 
Wave pattern: 

Texture resolution: 256x256x64  

Fly-through frame-rates 

 Min Max Average 

1. Run 19.6  44.4  32.6 

2. Run 20.0  46.4  33.0 

3. Run 20.0  47.6  33.2 

Average 19.9 46.1 33.0 

Still-photo frame-rates 

 Location 1 Location 2 Location 3 Location 4 Location 5 

1. Run (19.8 - 44.3) (24.9 - 33.2) (19.8 - 20.4) (24.9 - 25.6) (41.6 - 44.3) 

2. Run (25.0 - 33.3) (24.9 - 33.3)  (19.8 - 20.4) (25.6 - 32.7) (40.8 - 44.4) 

3. Run   (24.9 - 27.4) (25.0 - 32.7) (20.0 - 20.4) (25.0 - 32.8) (40.7 - 46.4) 

Average 23.2 – 35.0 24.9 – 33.1 19.9 – 20.4 25.2 – 30.4 41.0  - 45.0 

Visual quality 

- This approach looks pretty good as long as the static global reflection texture colors match 

the sky colors. The clouds encoded into the textures will not be consistent with the actual sky 

clouds.  
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Test 6 – Medium texture resolution – Dynamic Cube Map – less updates 
  

Specifications 

Cube map type: Dynamic 

Updated: Every 100
th
 frame Global reflections: 

Texture resolution: 128x128 

Texture resolution: 512x512 

Terrain pixel scale: 1.0 Local reflections: 

Rendering type: PBuffer 

Type: 3D animated 
Wave pattern: 

Texture resolution:  256x256x64  

Fly-through frame-rates 

 Min Max Average 

1. Run 18.3  45.4  30.3 

2. Run 17.1  45.4  30.4 

3. Run 18.1  44.3  30.4 

Average 17.8 45.0 30.4 

Still-photo frame-rates 

 Location 1 Location 2 Location 3 Location 4 Location 5 

1. Run (18.5 - 43.5) (24.9 - 33.3) (19.2 - 20.8) (25.0 - 33.2) (39.9 - 45.4) 

2. Run (24.6 - 33.3) (24.9 - 33.3) (19.2 - 20.4) (25.0 - 32.7) (41.7 - 45.5) 

3. Run (24.6 - 30.3) (25.0 - 32.8) (19.2 - 20.4) (24.7 - 32.8) (40.7 - 47.6) 

Average 22.6 – 35.7 24.9 – 33.1 19.2 – 20.5 24.9 – 32.9 40.8 – 46.2 

Visual quality 

- In our test data there are no changing global reflections so there are no visible differences 

between this test and test 3. 
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Test 7 – Medium texture resolution – Medium Terrain Pixel Scale 
  

Specifications 

Cube map type: Dynamic 

Updated: Each frame Global reflections: 

Texture resolution: 128x128 

Texture resolution: 512x512 

Terrain pixel scale: 4.0 Local reflections: 

Rendering type: PBuffer 

Type: 3D animated 
Wave pattern: 

Texture resolution: 256x256x64  

Fly-through frame-rates 

 Min Max Average 

1. Run 15.5  44.3  26.7 

2. Run 16.1  44.3  26.8 

3. Run 16.0  47.6  26.5 

Average 15.9 45.4 26.7 

Still-photo frame-rates 

 Location 1 Location 2 Location 3 Location 4 Location 5 

1. Run (19.0 - 44.3) (24.7 - 32.7) (19.4 - 20.6) (24.1 - 29.8) (39.1 - 44.3) 

2. Run (19.6 - 20.4) (25.6 - 33.3) (19.0 - 20.2) (24.0 - 28.5) (37.7 - 44.4) 

3. Run (20.0 - 20.6) (24.9 - 33.3) (19.2 - 20.4) (24.7 - 31.2) (37.7 - 43.4) 

Average 19.5 – 28.4 25.1 – 33.1 19.2 – 20.4 24.3 – 29.8 38.2 – 44.0 

Visual quality 

- The higher pixel scale on the terrain local reflections leads to some popping on the local 

reflections, but the popping is minimal and does not have very much effect on the visual 

quality. 
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Test 8 – Medium texture resolution – High Terrain Pixel Scale  
  

Specifications 

Cube map type: Dynamic 

Updated: Each frame Global reflections: 

Texture resolution: 128x128 

Texture resolution: 512x512 

Terrain pixel scale: 8.0 Local reflections: 

Rendering type: PBuffer 

Type: 3D animated 
Wave pattern: 

Texture resolution: 256x256x64  

Fly-through frame-rates 

 Min Max Average 

1. Run 15.6  45.4  27.0 

2. Run 16.0  45.4  26.8 

3. Run 16.1  44.3  27.1 

Average 15.9 45.1 27.0 

Still-photo frame-rates 

 Location 1 Location 2 Location 3 Location 4 Location 5 

1. Run (16.5 - 45.5) (24.9 - 32.7) (19.0 - 20.2) (24.7 - 31.7) (39.2 - 44.4) 

2. Run (20.0 - 20.6) (25.0 - 32.3) (19.4 - 20.2) (23.5 - 28.5) (39.9 - 43.4) 

3. Run (19.4 - 20.6) (25.3 - 32.2) (19.2 - 20.2) (24.4 - 31.7) (39.1 - 44.4) 

Average 18.6 – 28.9 25.1 – 32.4 19.2 – 20.2 24.2 – 30.6 39.4 – 44.1 

Visual quality 

- Even with the pixel scale set 8.0 the popping of the local reflections are not particularly 

distinctive 
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Test 9 – Medium texture resolution – Static Wave Pattern 
  

Specifications 

Cube map type: Dynamic 

Updated: Each frame Global reflections: 

Texture resolution: 128x128 

Texture resolution: 512x512 

Terrain pixel scale: 1.0 Local reflections: 

Rendering type: PBuffer 

Type: Static 
Wave pattern: 

Texture resolution: 512x512  

Fly-through frame-rates 

 Min Max Average 

1. Run 15.0  44.4  25.3 

2. Run 15.9   43.5 25.6 

3. Run 15.6  43.4  25.6 

Average 15.5 43.8 25.5 

Still-photo frame-rates 

 Location 1 Location 2 Location 3 Location 4 Location 5 

1. Run (18.0 - 30.8) (24.7 - 33.2) (18.2 - 19.6) (19.8 - 20.6) (26.3 - 33.9) 

2. Run (19.4 - 20.6) (24.9 - 30.3) (18.3 - 19.6) (19.6 - 20.6) (25.0 - 33.8) 

3. Run (19.8 - 20.4) (25.3 - 33.3)  (17.4 - 18.8) (19.6 - 21.0) (25.0 - 32.7) 

Average 19.1 – 23.9 25.0 – 32.3 18.0 – 19.3 19.7 – 20.7 25.4 – 33.5 

Visual quality 

- The fact that there is no animation on the wave pattern is very obvious when viewed up 

close. When viewed from a distance there are no visual differences between this test and test 

3. 
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Test 10 – Medium texture resolution – No local reflections 
  

Specifications 

Cube map type: Static 

Updated: Never Global reflections: 

Texture resolution: 512x512 

Texture resolution: None 

Terrain pixel scale: None Local reflections: 

Rendering type: None 

Type: 3D animated 
Wave pattern: 

Texture resolution: 256x256x64  

Fly-through frame-rates 

 Min Max Average 

1. Run 22.4  166.7 61.2 

2. Run 26.6  166.7 62.8 

3. Run 27.7  181.8 61.7 

Average 25.6 171.8 61.9 

Still-photo frame-rates 

 Location 1 Location 2 Location 3 Location 4 Location 5 

1. Run (29.4 - 133.3) (49.9 - 100.0) (29.8 - 31.7) (37.7 - 40.8) (95.2 - 125.0) 

2. Run (40.0 - 44.3) (49.9 - 99.5) (29.8 - 31.2) (38.4 - 43.5) (90.9 - 125.0) 

3. Run (40.8 - 43.5) (49.9 - 73.8) (29.4 - 31.3) (38.4 - 42.6) (95.2 - 142.9) 

Average 36.7 – 73.7 49.9 – 91.1 29.7 – 31.4 38.2 – 42.3 93.8 – 131.0 

Visual quality 

- The lack of local reflections becomes more obvious with a calmer wave-pattern. 
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Summarize 

Average fly-through frame-rates 
Test # - specifications  Min  Max Average 

Test 1 – high texture res. 17.1 43.4 25.5 

Test 2 – low texture res. 16.4 44.4 26.8 

Test 3 – medium texture res. 15.8 43.8 25.7 

Test 4 – medium texture res. no Pbuffer  15.4 33.0 22.6 

Test 5 – medium texture res. static cube map 19.9 46.1 33.0 

Test 6 – medium texture res. less updates 17.8 45.0 30.4 

Test 7 – medium texture res. medium pixel scale 15.9 45.4 26.7 

Test 8 – medium texture res. high pixel scale  15.9 45.1 27.0 

Test 9 – medium texture res. static wave pattern 15.5 43.8 25.5 

Test 10 - medium texture res. no local reflections 25.6 171.8 61.9 

 

Average fly-through frame-rates 
Test # - specifications  1. 2. 3. 4. 5. 

Test 1 – high texture res. 19.5 

– 

24.7 

24.8 

– 

32.5 

18.5 

– 

20.1 

19.1 

– 

20.6 

25.2 

– 

31.7 

Test 2 – low texture res. 18.2 

– 

28.2 

25.1 

– 

32.4 

19.2 

– 

20.5 

23.6 

– 

28.0 

39.5 

– 

43.9 

Test 3 – medium texture res. 19.1 

– 

24.7 

24.7 

– 

31.6 

17.3 

– 

19.1 

19.7 

– 

20.8 

25.8 

– 

31.8 

Test 4 – medium texture res. no Pbuffer  18.1 

– 

24.4 

19.8 

– 

20.8 

15.6 

– 

16.2 

18.5 

– 

20.5 

25.0 

– 

32.5 

Test 5 – medium texture res. static cube map 23.2 

– 

35.0 

24.9 

– 

33.1 

19.9 

– 

20.4 

25.2 

– 

30.4 

41.0  

- 

45.0 

Test 6 – medium texture res. less updates 22.6 

– 

35.7 

24.9 

– 

33.1 

19.2 

– 

20.5 

24.9 

– 

32.9 

40.8 

– 

46.2 

Test 7 – medium texture res. medium pixel scale 19.5 

– 

28.4 

25.1 

– 

33.1 

19.2 

– 

20.4 

24.3 

– 

29.8 

38.2 

– 

44.0 

Test 8 – medium texture res. high pixel scale  18.6 

– 

28.9 

25.1 

– 

32.4 

19.2 

– 

20.2 

24.2 

– 

30.6 

39.4 

– 

44.1 

Test 9 – medium texture res. static wave pattern 19.1 

– 

23.9 

25.0 

– 

32.3 

18.0 

– 

19.3 

19.7 

– 

20.7 

25.4 

– 

33.5 

Test 10 – medium texture res. no local reflections 36.7 

– 

73.7 

49.9 

– 

91.1 

29.7 

– 

31.4 

38.2 

– 

42.3 

93.8 

– 

131 
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Test 1, 2 and 3 shows that there is not much frame-rate gain by lowering the texture 

resolution. An average increase of 1.3 frames per second is gained in the fly-through sequence 

by setting the texture resolution to low in test 2, compared to using high resolution textures in 

test 1.  The still-photo sequence only shows noticeable gain in location 1, 3 and 5. However, 

the low-resolution textures in test 2 significantly decrease the visual quality of the scene, 

subsequently reducing the water realism to an unacceptable level. Test 3 shows that there is 

practically no frame-rate difference between a medium texture resolution level and a high 

resolution level, and the visual quality is not significantly worse in test 3 even though the 

fewer layers in the Perlin Noise texture makes the wave-animation look more repetitive. 

 

The small differences in frame-rate between test 1, 2 and 3 is probably due too the relative 

high amount of video memory on the video card. This makes it possible to store most of the 

textures in the video memory, which enables quick lookups without affecting the CPU. The 

noticeable frame-rate gain between test 2 and test 1 and 3 can most likely be linked back to a 

smaller viewport used to create the local and global reflections (section 5.4). 

 

Test 4 shows that not using Pbuffers affects the frame-rate negatively. A relative high frame-

rate difference of 3.1 frames in the average fly-through frame-rate compared to test 3 has been 

recorded. This verifies that Pbuffers are a faster method for capturing the local reflections to 

texture than the glCopyTexImage2D() method. Since using Pbuffers does not have an effect 

on the visual quality of the water simulation; the only reason not to use Pbuffers are the 

drawbacks described in section 5.4. 

 

Test 5 has highest recorded average fly-through frame-rate and the highest frame-rate in most 

locations in the still photo-sequence, of the nine first tests which has all water features 

enabled. The average fly-through frame-rate in test 5 is 7.3 frames higher than test 3, which is 

a fairly significant difference. This confirms that creating dynamic cube maps are a 

computationally demanding task that steals a lot of frame-rate. The visual quality of using 

static cube map is the same as using dynamic cube maps as long as the texture colors are 

fitted to match the sky colors, except that the cloud pattern does not match the true cloud 

pattern generated by GeoGFX. This mismatching is most obvious when the water is calm. A 

rough wave-pattern obscures the global reflections and conceals the mismatching better. Test 

6 is an alternative to using static cube maps. By only updating the dynamic cube map every 

100
th
 frame (approximately every 3 second) we gain 5.7 frames per second in the average fly-

through sequence compared to test 3. We also notice a frame-rate gain in most of the locations 

in the still-photo sequence in this test compared to test 3. The visual quality of test 5 is 

approximately the same as test 3 as long as the global reflections do not change to rapidly.  

 

Setting the terrain pixel scale to 4.0 in test 7 only buys us 1.0 frame per second in the average 

fly-through sequence compared to test 3. Location 4 and 5 in the still photo sequence reveals 

some frame-rate gain, but the visual quality is reduced since the pixel scale leads to “popping” 

in the local reflections. Test 8 shows that increasing the pixel scale gains a minimal amount of 

frames (only 0.3 compared to test 7), and reduces the visual quality on the scene by making 

local reflections “pop” more.  

 

Test 9 reveals that there is no frame-rate gain with using a static wave-pattern instead of an 

animated wave pattern. This is probably due to the issue discussed earlier, with the video card 

used in the tests having a relative high amount of video memory. The visual quality of the 

scene is severely reduced when the viewer is close to the water surfaces because of the lack of 
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wave-movement. When viewing the surfaces from a distance there are no differences in the 

visual quality because the eye does not percept the wave-movement.  

 

Test 10 shows not surprisingly that by omitting the local reflections and by using a static cube 

map we get a drastic frame-rate improvement. The average frame-rate in the fly-through 

sequence is almost twice as high as in test 5 with a gain of 28.9 frames per second. This is of 

course due to the reason that omitting local reflections saves one triangulated terrain-

rendering pass per frame, which is the most demanding task in GeoGFX. Visually we loose 

some realism in the scene, but if the wave-pattern is very rough local reflections are scarcely 

visible, and the lack of the reflections are not that evident. With a calm wave-pattern the 

missing reflections become very obvious and the water surfaces do not look very realistic.   

Conclusion  

Test 4 and test 5 is the only two of the nine first tests that have an acceptable average frame-

rate above 30 frames per second in the fly-through sequence. This indicates that in order to 

use the water visualization technique with local reflections presented in this thesis we must 

either use a static global reflection cube map, or use a dynamic cube map with less updates. 

Test 5 updates the cube map approximately every 3 second, but we can probably have less 

frequent updates if the global reflections such as the cloud pattern do not change too rapidly. 

Another issue is that the tests performed does not include a rendering of cloud patterns in 

GeoGFX, introducing cloud pattern rendering to the global reflections might be such a heavy 

task that using static cube maps are the only realistic rendering alternative.   

 

We notice that all nine first tests have frame-rate drops well below 30, which lead to 

discontinuity in the fly-through sequence. This indicates that the water visualization technique 

is not ideal for use with computers that does not have hardware better then the test computers. 

Even if we set all the options varied in the tests to the optimal level with regards to frame-rate 

we most likely will not maintain a stable frame-rate above 30.  

 

If this is the case we might have to leave out local reflections as done in test 10. Even if this 

test also has frame-rate drops under 30, the average frame-rates are so high and the minimal 

frame-rates are above 24 that indicate that the discontinuities are barely visible. Leaving out 

the local reflections are not ideal, but a good alternative if we want to maintain a high frame-

rate and still have visually good looking water surfaces on low-end computers. 
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7 Concluding remarks 
- The water visualization technique presented in this thesis does not take into account the 

shorelines and reeves of the water areas. Future work should include wave-braking when 

water hits these regions. 

 

- It is impossible to visualize waves that brake with foam because of the structure of normal 

maps. This is illustrated in figure 7.1 where the red arrows are each point normal. Future work 

should include some sort of “fake” wave braking, for example adding foam to the waves 

when they are larger then a certain size. 

 

 

 
Figure 7.1 – Braking waves. Not possible with normal maps. 

 

- Perlin Noise is an efficient, but not very realistic way of creating wave-patterns. Instead 

other wave algorithms like the Fourier transform should be used in order to create more 

realistic looking waves.  

 

- The weather conditions such as wind and rain should have direct impact on wave pattern. 

 

- The sun reflections should be computed relative to the amount of cloud and haze in the sky.  

 

- Interaction between objects (such as boats) and the water should be implemented. 

 

- The closest() function described in code 6 is dependant on water areas composed of 

several vertices in order to locate the closest surface. This function should be modified so 

surfaces could be composed of only four vertices (each corner).  

 

- Refractions of water floors should be implemented on shallow lakes.  

 

- The mipmapping problem should be solved in order to use the water visualization technique 

on larger surfaces. 

 

- Clip planes should be used to create local reflection if the seafloor or objects that are below 

the water surfaces are introduced. 
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- The problem with repetitive wave-patterns should be solved. Three probable solutions to this 

problem are: 

 

- Use large, high resolution textures that cover the whole surface. However, this 

solution requires a lot of texture memory on the video card. 

- Use a relatively small, seamless tile able texture, but apply some perturbation 

algorithm to the inner section of the texture. This produces tile able textures without 

looking repetitive. However, this solution also requires a lot of texture memory since 

each texture has to be treated independently. 

- Use a large, coarse resolution texture as an underlying statistical model in addition to 

the seamless, tile able wave-pattern texture. Use a texture lookup to obtain values from 

the coarse texture and perturb the wave-pattern texture using these values.  

 

We where able to implement a low polygonal count water rendering technique in GeoGFX by 

using and modifying existing tools and classes, and introducing new tools like the OpenGL 

Shading Language binding GngGLSL and wave pattern generator GgPerlinNoise. The 

technique presented in this thesis is very well suited for simulating small to medium sized 

lakes. Because of the mipmapping problem described in section 5.7 the technique is not very 

well suited for large surfaces. Section 5.2 concludes that the generating wave pattern using 

“Per-Pixel Lighting” is most suited for use with flight-simulators since the “illusion” is 

revealed when the viewer is to close to the surface. 

 

The texture Level-Of-Detail with bump mapping technique where implemented through the 

GgWater class which controls the rendering of the water surfaces. Chapter 6 tested different 

options which can be adjusted in GgWater, and compared the frame-rate gain versus the 

visual quality. It was concluded that adjusting the texture detail level does not affect the 

frame-rate much, which enables us to keep a high level of detail on the local reflections and 

the wave-pattern. What mainly affects the frame-rate is the technique used for generating 

global reflections, and whether to display local reflections or not. These are the main two 

factors that GgWater have to adjust with respect to the graphic power on the utilized 

computer. More computer power makes it possible to produce even more realistic water 

simulations. 
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8 Appendix 

Appendix A - Images 

Still-photo test 

     
Location 1            Location 2 

 

       
Location 3             Location 4 

 

 
Location 5 



 - 74 - 

Other screenshots 

 
Viking ship at night, medium rough wave-pattern, deep sea Fresnel color 
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Sailplane at night, calm wave pattern, deep sea Fresnel color 

 
Sailplane at daytime, medium rough wave-pattern, deep sea Fresnel color 
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Two ships at evening, medium rough wave-pattern, deep sea Fresnel color  

 
Propeller aircraft at evening, medium rough wave-pattern, deep sea Fresnel color 



 - 77 - 

 
Evening, medium rough wave-pattern, pacific Fresnel color 

 
Evening, medium rough wave-pattern, muddy Fresnel color 
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Appendix B – Implementation 

The following code shows the most important parts of implementation of the object model 

described in figure 4.4. Section 4.3 explains which classes are new and which classes that 

exists in GeoGFX and therefore only has been modified. Only implemented code is shown, 

unaltered code has been left out and marked with /* ……………… Clipped code ………… */.  

GeoGFX code 

//=========================================================================                                                                          
// File: GgWater.cpp                                                                            
//========================================================================= 
 
#define PERLIN_WIDTH 256 
#define PERLIN_HEIGHT 256 
#define PERLIN_THICK 64 
 
//========================================================================= 
GgWater::GgWater(GngScene* scene) : GngRenderNode(scene) 
{scene_ = scene;} 
//========================================================================= 
 
bool GgWater::initialize(const char* filename) 
{ 
  
 FILE* fp = fopen(filename, "rb"); 
 if(!fp) 
    return false; 
 
//==== Pre-generated Perlin Noise Normal maps ============================ 
// Used instead of runtime generated normal maps 
 /*GngImage img; 
 GngImageIO* loader = 
GngImageIO::create("c:/projects/dynamic_bumps/NoiseVolumeBump.tif"); 
 img.load(*loader); 
 GngImage3D waves_3d_(img.getData(), 128,128,128, GngImage::RGBA_32); 
 GngTexture3D::Ref waves = new GngTexture3D(&scene_->getTextureManager()); 
 waves->setImage(waves_3d_); 
 waves->setMinFilter(GL_LINEAR); 
 img.setDataPtr(NULL);*/ 
// ======================================================================== 
 
 // ============== Static wave pattern texture ============================ 
 // Used instead of 3D animated normal maps 
 /*GngTexture2D::Ref waves_2d_ = (scene_->getTextureManager()) 
.getImageTexture("c:/projects/static_bumps/oceanBump.tif"); 
 waves_2d_->setMinFilter(GL_LINEAR);*/ 
// ======================================================================== 
 
// === Create Perlin Noise texture on runtime ============================= 
 perlin_noise = new GgPerlinNoise(PERLIN_WIDTH, PERLIN_HEIGHT,  
PERLIN_THICK);  
 noise3DTexPtr = perlin_noise->get3DPerlinNoise(); 
// ======================================================================== 
 
// === Create Normal map of Perlin Noise texture ========================== 
 GngImage perlin_wave(noise3DTexPtr, PERLIN_WIDTH, 
PERLIN_HEIGHT*PERLIN_THICK, GngImage::RGBA_32); 
  
 // Get the four frequency channels 
 GngImage red_bump, blue_bump, green_bump, alpha_bump; 
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 perlin_wave.decompose(red_bump, green_bump, blue_bump, alpha_bump); 
  
 // Compose texture as sum of the four frequencies 
 perlin_wave.composeSUM(red_bump, green_bump, blue_bump, alpha_bump); 
 GngImage3D waves_3d_(perlin_wave.getData(),PERLIN_WIDTH, 
PERLIN_HEIGHT,PERLIN_THICK, GngImage::MONO_8); 
 
 // Filter texture through Normal map creation algorithm 
 GngTexture3D::Ref waves = new GngTexture3D(&scene_->getTextureManager()); 
 waves->setMinFilter(GL_LINEAR); 
 waves->initializeNormalMap(waves_3d_); 
  
 perlin_wave.setDataPtr(NULL); 
// ======================================================================== 
 
 // ============= Blank texture with alpha = 0.0f ========================= 
 GngTexture2D::Ref blank = (scene_-
>getTextureManager()).getImageTexture("c:/projects/blank.tga"); 
 // ======================================================================= 
 
// ============== Fresnel texture ========================================= 
 GngTexture2D::Ref fresnel = (scene_-
>getTextureManager()).getImageTexture("c:/projects/static_bumps/fresnel_wat
er_sRGB.bmp"); 
 fresnel->setMinFilter(GL_LINEAR); 
// ======================================================================== 
 
// =============== Static global reflections ==============================  
 GngCubeMap* enviroment_ = new GngCubeMap(&scene_-
>getTextureManager(),GngImage::RGBA_32); 
 
 GngImageIO* front_loader  = 
GngImageIO::create("c:/projects/cubemaps/clouds_front3.tif"); 
 GngImageIO* back_loader   = 
GngImageIO::create("c:/projects/cubemaps/clouds_back3.tif"); 
 GngImageIO* right_loader  = 
GngImageIO::create("c:/projects/cubemaps/clouds_right3.tif"); 
 GngImageIO* left_loader   = 
GngImageIO::create("c:/projects/cubemaps/clouds_left3.tif"); 
 GngImageIO* top_loader    = 
GngImageIO::create("c:/projects/cubemaps/clouds_top3.tif"); 
 GngImageIO* bottom_loader = 
GngImageIO::create("c:/projects/cubemaps/clouds_bottom3.tif"); 
 
 enviroment_->setLoader(left_loader, GngCubeMap::POSITIVE_X); 
 enviroment_->setLoader(right_loader, GngCubeMap::NEGATIVE_X); 
  
 enviroment_->setLoader(bottom_loader, GngCubeMap::POSITIVE_Y); 
 enviroment_->setLoader(top_loader, GngCubeMap::NEGATIVE_Y); 
 
 enviroment_->setLoader(front_loader, GngCubeMap::POSITIVE_Z); 
 enviroment_->setLoader(back_loader, GngCubeMap::NEGATIVE_Z); 
 
 
 enviroment_->setMinFilter(GL_LINEAR); 
 enviroment_->setMagFilter(GL_LINEAR); 
// ======================================================================== 
 
// =================== Local reflection texture =========================== 
 GngTexture2D::Ref water_reflection_ = new GngTexture2D(&scene_-
>getTextureManager(), GngImage::RGBA_32);  
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 water_reflection_->setMinFilter(GL_LINEAR); 
// ======================================================================== 
 
// ==== Load all GgWaterBody surfaces ===================================== 
 int num_lakes = 0; 
 fread(&num_lakes, sizeof(int), 1, fp); 
 for(int i = 0; i < num_lakes; i++) 
    { 
    GgWaterBody::Ref lake = new GgWaterBody(); 
 lake->setSun(sun_); 
 //Load lake 
    if(!lake->load(fp, waves, enviroment_, blank, water_reflection_, 
fresnel)) 
       { 
       cerr << "failed to load lake " << i << endl; 
       continue; 
       } 
    water_bodies_.push_back(lake); 
 // Get geographical centers from lakes 
 centers_.push_back(lake->centerGEO_);  
    } 
 fclose(fp); 
// ======================================================================== 
  
 return true; 
}  
 
// ======================================================================== 
// Set GgWater's bsphere to infinitely large 
void GgWater::recalcBSphere() 
{ 
 bsphere_.setRadius(MAXDOUBLE); 
 bsphere_dirty_ = false; 
} 
 
// ======================================================================== 
// Calculate closest GgWaterBody object 
int GgWater::closest()  
{ 
 MtkPoint3f cam_pos_ = GgTools::geoToXYZ(lat_, lon_, alt_); //Camera 
position 
  
 //First objects distance 
 int wbClosest = 0; 
 float dist0 = water_bodies_[0]->distance(cam_pos_); 
    
 //Compare other surface distances 
 for(int i = 1; i < (int)water_bodies_.size(); i++) 
 { 

    //Get objects distance from camera 
      float dist = water_bodies_[i]->distance(cam_pos_);  
    
                if (dist < dist0) // Closer than previously checked object 
   { 
    dist0 = dist; 
    wbClosest = i; 
   } 
   
 } 
 return wbClosest; //Closest object 
} 
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// ======================================================================== 
// Scene graph function that redraws object 
void GgWater::redraw(const GngCamera& cam, const MtkTransform3f& m) 
{ 
 // Render surfaces without writing to depth buffer 
 glDepthMask(GL_FALSE); 
 GngContext* ctx = GngContext::getCurrent(); 
 ctx->pushState(); 
 campos_ = GgTools::geoToXYZ(lat_, lon_, alt_); //Calculate camera position 
  
 // Go through all GgWaterBody objects 
 for(int i = 0; i < (int)water_bodies_.size(); i++) 
 { 
 // ------------ Compute GgWaterBody objects frustum sphere ----------
- 
 GngBSphere b; 
 MtkPoint3f t = GgTerrain::getCurrOrigin(); 
 MtkPoint3f ce = water_bodies_[i]->center_; 
 MtkPoint3f ce2 = MtkPoint3f(ce.x()-t.x(), ce.y()-t.y(), ce.z()-
t.z()); 
  
    MtkPoint3f p = m.transform(ce2); 
 b.setCenter(p); 
 b.setRadius(water_bodies_[i]->radius_); 
 //-------------------------------------------------------------------
- 
 
 if (cam.frustumTest(b)) // If GgWaterBody inside frustum 
 {  
  water_bodies_[i]->setCampos(campos_); //Set camera position 
  water_bodies_[i]->render(cam,m); //Render GgWaterBody object 
 } 
  
 } 
 // Clean up states 
 ctx->popState(); 
 
 ctx = GngContext::getCurrent(); 
 ctx->applyVertexArray(NULL); 
 ctx->applyNormalArray(NULL); 
 ctx->applyColorArray(NULL); 
 ctx->applyTexCoordArray(NULL); 
 
 //Turn depth buffer back on 
 glDepthMask(GL_TRUE); 
}  
//========================================================================= 
 
// Get local reflection texture from GgWaterBody object i 
GngTexture2D::Ref GgWater::getRefTex(int i)  
{ 
 //Show local reflections on selected GgWaterBody object i 
 water_bodies_[i]->showRefl(true); 
 
 return water_bodies_[i]->getRefTex(); 
} 
//========================================================================= 
 
// Get global reflection cube map from GgWaterBody object i 
GngCubeMap* GgWater::getEnvCube(int i)  
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{ 
 return water_bodies_[i]->getEnvCube(); 
} 
 
//========================================================================= 
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//=========================================================================                                                                          
// File: GgWaterBody.cpp                                                                                                                                  
//========================================================================= 
 
#define MAX_CELL_SIZE 5000.0 
 
//========================================================================= 
 
bool GgWaterBody::load(FILE* fp, GngTexture3D::Ref waves, GngCubeMap* 
enviroment2_, GngTexture2D::Ref blank, GngTexture2D::Ref reflect_, 
GngTexture2D::Ref waves_2d_) 
{ 
 //Read surface samples from file 
 fread(&elev_,    sizeof(double), 1, fp); 
 fread(&lat_min_, sizeof(double), 1, fp); 
 fread(&lon_min_, sizeof(double), 1, fp); 
 fread(&lat_max_, sizeof(double), 1, fp); 
 fread(&lon_max_, sizeof(double), 1, fp); 
  
 //Surface origin 
 origin_ = GgTools::geoToXYZ(lat_min_, lon_min_, elev_);  
 //Surface south east corner 
 MtkPoint3d se = GgTools::geoToXYZ(lat_min_, lon_max_, elev_);  
 //Surface north west corner 
 MtkPoint3d nw = GgTools::geoToXYZ(lat_max_, lon_min_, elev_);  
 
 double width  = (se - origin_).length(); //Surface width 
 double height = (nw - origin_).length(); //Surface height 
 rows = 1 + (int)(height/MAX_CELL_SIZE); //Number of rows  
 cols = 1 + (int)(width/MAX_CELL_SIZE); //Number of columns  
 
 double d_lat = (lat_max_ - lat_min_) / rows; //Latitude steps per row 
 double d_lon = (lon_max_ - lon_min_) / cols; //Longitude steps per column 
 
 //Surface radius, used with frustum sphere 
 radius_ = sqrt(pow(width, 2) + pow(height,2)); 
  
 //Calculate XYZ center coordinates 
 float x = ((se.x()+nw.x())/2); 
 float y = ((se.y()+nw.y())/2); 
 float z = nw.z(); 
 center_ = MtkPoint3f(x,y,z); 
 
 //Calculate geographic center coordinates 
 float x2 = ((lat_min_+lat_max_)/2); 
 float y2 = ((lon_max_+lon_min_)/2); 
 float z2 = elev_; 
 centerGEO_ = MtkPoint3f(x2, y2, z2); 
 
 //Calculate surface tangent vector 
 tan_ = nw - origin_; 
 MtkTransform3f earth_to_local2; 
 GgTools::calcEarthToLocal(centerGEO_.x(), centerGEO_.y(), 
earth_to_local2); 
 tan_ = earth_to_local2.transform(tan_); 
  
 //Triangulate surface, regular triangulation 
 for(int i = 0; i <= rows; i++) 
 { 
   GngIndexArray16* index = new GngIndexArray16(GL_TRIANGLE_STRIP);  
   double lat = lat_min_ + i*d_lat; 
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    for(int j = 0; j <= cols; j++) 
    { 
    //Calculate vertices  
       double lon = lon_min_ + j*d_lon; 
       MtkPoint3d  p = GgTools::geoToXYZ(lat, lon, elev_); 
       MtkVector3d d = p - origin_; 
  vertex_.append(d.x(), d.y(), d.z()); 
     
  //Calculate surface normal 
  MtkVector3f n = (GgTools::geoToXYZ(lat, lon, elev_ + 100.0) - p);   
  //Transform normal to local coordinates 
  MtkTransform3f earth_to_local; 
  GgTools::calcEarthToLocal(centerGEO_.x(), centerGEO_.y(), 
earth_to_local); 
  MtkVector3f n_local = earth_to_local.transform(n); 
  n_local.normalize();  
       normal_.append(n_local.x(), n_local.y(), n_local.z()); 
 
  //Texture coordinates 
  texture_.append(j,i); 
  if(i < rows) 
       { 

    //Set index arrays 
          index->append((i + 1)*(cols + 1) + j); 
          index->append(i*(cols + 1) + j); 
       } 
    }  
     
  indices_.push_back(index); 
 } 
 
 //Set local and global reflection textures 
 enviroment_ = enviroment2_; 
 water_reflection_ = reflect_; 
 
 //Texture states 
 bump_state_.enableTexture(GL_TEXTURE_2D, 0); 
 bump_state_.enableTexture(GL_TEXTURE_3D, 1); 
 bump_state_.enableTexture(GL_TEXTURE_CUBE_MAP, 2); 
 bump_state_.enableTexture(GL_TEXTURE_2D, 3); 
 
 bump_state_.setTexture(waves.getPtr(), 1);  
 bump_state_.setTexture(enviroment_, 2); 
 bump_state_.setTexture(waves_2d_.getPtr(), 3);  
 
 //No local reflection state - load texture with alpha = 0.0 
 refl_state_.setTexture(water_reflection_.getPtr(), 0); 
  
 //Local reflection state 
 no_refl_state_.setTexture(blank.getPtr(), 0); 
 
 // Clean up states 
 pass1_.disableTexture(GL_TEXTURE_CUBE_MAP, 2); 
 pass1_.disableTexture(GL_TEXTURE_3D, 1); 
 pass1_.disableTexture(GL_TEXTURE_2D, 0); 
 pass1_.disableTexture(GL_TEXTURE_2D, 3); 
 
 //Load shaders 
 shader.setShaders("c:/projects/shaders/fs.frag", 
"c:/projects/shaders/vs.vert"); 
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 //Calculate sun 
 calculateSunGlobalPosition(); 
 calculateSunGlobalColors(); //hack 
 
 return true; 
}  
 
//========================================================================= 
// Calculate distance from camera 
float GgWaterBody::distance(MtkPoint3f camera) 
{ 
  //Get first vertex distance 
  MtkPoint3f v0 = MtkPoint3f(vertex_.getPoint(0).x() + origin_.x(), 
vertex_.getPoint(0).y() + origin_.y(), vertex_.getPoint(0).z() + 
origin_.z()); 
  float dist0 = MtkPoint3f::dist(camera, v0); 
 
  for(int i = 1; i < vertex_.getSize(); i++) 
  { 
    MtkPoint3f v = MtkPoint3f(vertex_.getPoint(i).x() + origin_.x(),  
vertex_.getPoint(i).y() + origin_.y(), vertex_.getPoint(i).z() + 
origin_.z()); 
    // Vertex distance from camera 
    float dist = MtkPoint3f::dist(camera, v);  
    //Test if last checked distance is shorter than previous checked 
    if (dist < dist0)  
    { 
 dist0 = dist; 
    }   
  } 
  return dist0; //Distance of closest vertex to camera 
} 
// ======================================================================== 
 
void GgWaterBody::render(const GngCamera& cam, const MtkTransform3f& m) 
{ 
 //Draw vertices relative to terrain origin 
 MtkVector3f t = origin_ - GgTerrain::getCurrOrigin(); 
 glMatrixMode(GL_MODELVIEW); 
 glPushMatrix(); 
 glTranslatef(t.x(), t.y(), t.z()); 
 
 updateObjectSpaceVectors(); //Calculate eye vector 
  
 //Update animation timer 
 time += 0.009f; 
 if (time > 120) 
  time = 0.0f; 
 
 //Enable and set shader variables 
 shader.enable(); 
 setShaderValues(); 
  
 glDisableClientState(GL_NORMAL_ARRAY); 
 glDisableClientState(GL_COLOR_ARRAY); 
 GngContext* ctx2 = GngContext::getCurrent(); 
 ctx2->pushState(); 
  
 //Set water states 
 ctx2->apply(bump_state_); 
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 //Set reflection state 
 if (show_refl_) 
 ctx2->apply(refl_state_); 
 else 
 ctx2->apply(no_refl_state_); 
 
 drawWater(); 
 
 show_refl_ = false; 
 
 //Release pbuffer textures 
 water_reflection_->release(); 
 enviroment_->release(); 
  
 // Clean up states 
 ctx2->apply(pass1_); 
 ctx2->popState(); 
 
 glPopMatrix(); 
 shader.disable(); 
}  
//========================================================================= 
 
void GgWaterBody::setShaderValues() 
{ 
  //Get material and sun colors 
  GngColor4f specular = global_sun_->getSpecular(); 
  GngColor4f refr_color = global_sun_refr->getDiffuse(); 
     
  //Uniform variables 
  shader.setUniform3("light_vector", global_sun_->getDirection().x(), 
global_sun_->getDirection().y(), global_sun_->getDirection().z()); 
  shader.setUniform3("tangent_vector", tan_.x(), tan_.y(), tan_.z()); 
  shader.setUniform4("refr_color", refr_color.r(), refr_color.g(), 
refr_color.b(), refr_color.a()); 
  shader.setUniform4("specular",  specular.r(), specular.g(), specular.b(), 
specular.a()); 
  shader.setUniform1("specular_power", 32.0f); 
 
  shader.setUniform1("time_0_X", time); 
  shader.setUniform1("noiseSpeed", 0.34f); 
 
  //Attribute arrays 
  shader.setAttribArray("eye_vector", 3, GL_FLOAT, GL_FALSE, 0, e_.begin()-
>v()); 
  shader.enableAttribArray("eye_vector"); 
 
  //Textures 
  shader.setTexture("reflection", 0); //Local reflections 
  shader.setTexture("Noise", 1); //Waves 
  shader.setTexture("enviroment", 2); //Global reflections cube map 
  shader.setTexture("fresnel", 3); //Global reflections cube map 
} 
 
//========================================================================= 
 
void GgWaterBody::drawWater() 
{ 
  glClientActiveTexture(GL_TEXTURE0); 
  glEnableClientState(GL_VERTEX_ARRAY); 
  glEnableClientState(GL_NORMAL_ARRAY); 



 - 87 - 

  glEnableClientState(GL_TEXTURE_COORD_ARRAY); 
 
  vertex_.apply(); 
  texture_.apply(); 
  normal_.apply(); 
 
  //Draw index arrays 
  for(int i = 0; i < (int)indices_.size(); i++) 
  { 
 indices_[i]->drawElements(); 
  } 
 
  glDisableClientState(GL_TEXTURE_COORD_ARRAY); 
  glDisableClientState(GL_NORMAL_ARRAY); 
  glDisableClientState(GL_VERTEX_ARRAY); 
 
}  
 
//========================================================================= 
 
void GgWaterBody::calculateSunGlobalColors() 
{ 
  //Set refraction surface refraction color 
  global_sun_refr = new GngLight(); 
  global_sun_refr->setDiffuse(GngColor4f(0.1078f,0.9762f,0.8218f, 1.0f)); 
 
  //calculate angle between waternormal and sunvector 
  float angle = Mtk::rad_to_deg * MtkVector3f::angle(normal_.getVector(0), 
global_sun_->getDirection()); 
  // Hack: setting specular color dependent on sunposition, colors are  
precomputed 
  if (angle < 20) 
 global_sun_->setSpecular(GngColor4f(1.0f,1.0f,1.0f, 1.0f)); 
  if (angle <= 70 && angle >= 20) 
 global_sun_->setSpecular(GngColor4f(1.1f,1.0f,0.9412f, 1.0f)); 
  if (angle > 70) 
 global_sun_->setSpecular(GngColor4f(1.2f,0.4f,0.1f, 1.0f)); 
} 
// ======================================================================== 
 
void GgWaterBody::calculateSunGlobalPosition() 
{ 
  global_sun_ = new GngLight(); 
  // Find vector from vertex to lightsource  
  // - Lightsource (Sun) is "infinitely" far away, so all vectors are 
parallel on vertices 
  //Sun direction is normalized and stored in local coordinates  
  MtkVector3f light_pos_ = sun_->getDirection();   
  global_sun_->setDirection(light_pos_); 
} 
 
//========================================================================= 
 
void GgWaterBody::updateObjectSpaceVectors() 
{ 
  // Clear vector array 
  e_.clear(); 
 
  // For all vertices... 
  for(int i = 0; i < vertex_.getSize(); i++) 
  { 
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 // ...find vector from vertex to eye position 
 MtkVector3f vertex_position = vertex_.getPoint(i).createVector(); 
 MtkVector3f water_origin = origin_.createVector(); 
 MtkVector3f camera_position = campos_.createVector(); 
  

// Vector from vertex to eye 
 MtkVector3f eye = camera_position - (vertex_position+water_origin);   
  
 //...Rotate eye vector into local coordinate system 
 MtkTransform3f earth_to_local; 
 GgTools::calcEarthToLocal(centerGEO_.x(), centerGEO_.y(), 
earth_to_local); 
 e_.push_back(earth_to_local.transform(eye)); 
 
 } 
 
}  
 
//========================================================================= 
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//=========================================================================                                                                          
// File: SceneWaterGlobalReflections.cpp                                                                                                                                                 
//========================================================================= 
 
SceneWaterGlobalReflections::SceneWaterGlobalReflections(GgWater::Ref ws_, 
GngTransform::Ref geocentric_t_, GngScene* s_, MouseControl* cam_c) 
{ 
  cam_control = cam_c; 
  scene_ = s_; 
  geocentric_trans_ = geocentric_t_; 
  water_surfaces_ = ws_;  
} 
 
void SceneWaterGlobalReflections::redraw(GngCamera::Ref cam_, int w, int h, 
int o_w, int o_h, double o_fovy) 
{ 
  //Get viewpoint controller class 
  const Observer* observer_ = cam_control->getObserver(); 
  //Save original camera position 
  double viewpoint_longitude = observer_->getLongitude(); 
  double viewpoint_latitude = observer_->getLatitude(); 
  double viewpoint_altitude = observer_->getAltitude(); 
  //... and orientation 
  double viewpoint_roll = observer_->getRoll(); 
  double viewpoint_pitch = observer_->getPitch(); 
  double viewpoint_yaw = observer_->getYaw(); 
  
  //Hand camera position to GgWater 
  water_surfaces_->setCamPos(viewpoint_latitude, viewpoint_longitude, 
viewpoint_altitude); 
 
  //Get global reflection cube map texture from the GgWaterBody object 
closest to the camera 
  int closest = water_surfaces_->closest(); 
  GngCubeMap* env_ = water_surfaces_->getEnvCube(closest); 
   
  //=========== Step 1 - set viewpoint position to water surface center === 
 cam_control->setPosition(water_surfaces_->centers_[closest].x(), 
water_surfaces_->centers_[closest].y(), water_surfaces_-
>centers_[closest].z()); 
  //======================================================================= 
  
  //===== Step 2 - set camera matrices ==================================== 
  cam_->setViewport(0, 0, w, h);  
  cam_->setPerspective(90.0, (double)w/h); 
  //======================================================================= 
 
  //========== Step 3 - hide local objects ================================ 
  geocentric_trans_->setInvisible(true); 
  //======================================================================= 
 
  //=== Step 4, 5, 6, 7 - Render 6 cube map sides ========================= 
  pb_->enable(); 
 
  //Left 
  env_->setPbufCube(pb_); 
  env_->setOffscreenImageCube(1); 
  cam_control->setOrientation(90, 0, 0); 
  scene_->redraw(cam_()); 
 
  //Right 
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  env_->setOffscreenImageCube(2); 
  cam_control->setOrientation(270, 0, 0); 
  scene_->redraw(cam_()); 
 
  //Bottom 
  env_->setOffscreenImageCube(3); 
  cam_control->setOrientation(0, -90, 0); 
  scene_->redraw(cam_()); 
  
 
  //Top 
  env_->setOffscreenImageCube(4); 
  cam_control->setOrientation(0,90, 0); 
  scene_->redraw(cam_()); 
  
  //Front 
  env_->setOffscreenImageCube(5); 
  cam_control->setOrientation(0, 0, 0); 
  scene_->redraw(cam_()); 
 
  //Back 
  env_->setOffscreenImageCube(6); 
  cam_control->setOrientation(180, 0, 0); 
  scene_->redraw(cam_()); 
  
  pb_->disable(); 
  //======================================================================= 
  
  //===== Step 8 - Hand reflection cube map texture to GgWater ============ 
  /* env_ cube map is a pointer and do need to be handed back to GgWater */ 
  //======================================================================= 
  
  //Restore viewpoint to original position and orientation 
  cam_control->setPosition(viewpoint_latitude, viewpoint_longitude, 
viewpoint_altitude); 
  cam_control->setOrientation(viewpoint_yaw, viewpoint_pitch, 
viewpoint_roll); 
 
  cam_->setViewport(0, 0, o_w, o_h);  
  cam_->setPerspective(o_fovy, (double)o_w/o_h); 
  
  //Unhide local objects 
  geocentric_trans_->setInvisible(false); 
 
} 
 
//======================================================================= 
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//=========================================================================                                                                        
// File: SceneWaterLocalReflections.cpp                                                                                           
//========================================================================= 
 
SceneWaterLocalReflections::SceneWaterLocalReflections(GgWater::Ref ws_, 
GgTerrain::Ref t_, GngTransform::Ref sky_t_, GngScene* s_, MouseControl* 
cam_c) 
{ 
  water_surfaces_ = ws_; 
  terrain_ = t_; 
  sky_trans_ = sky_t_; 
  scene_ = s_; 
  cam_control = cam_c; 
  pix_scale = 2.5;  //Default pixel scale 
  tex_scale = 1;  //Default texel scale 
} 
 
void SceneWaterLocalReflections::redraw(GngCamera::Ref cam_, int w, int h, 
int o_w, int o_h) 
{ 
  pb_->enable(); //Enable PBuffer 
 
  //======Step 1 - Mirror scene =========================================== 
  const Observer* observer_ = cam_control->getObserver(); 
  //Save original camera position 
  double viewpoint_longitude = observer_->getLongitude(); 
  double viewpoint_latitude = observer_->getLatitude(); 
  double viewpoint_altitude = observer_->getAltitude(); 
  //... and orientation 
  double viewpoint_roll = observer_->getRoll(); 
  double viewpoint_pitch = observer_->getPitch(); 
  
  //Hand camera position to GgWater 
  water_surfaces_->setCamPos(viewpoint_latitude, viewpoint_longitude, 
viewpoint_altitude); 
 
  //Get local reflection texture from the closest GgWaterBody object  
  int closest = water_surfaces_->closest(); 
  GngTexture2D::Ref water_reflection = water_surfaces_->getRefTex(closest); 
 
  //Get closest surface elevation 
  double surface_elevation =  water_surfaces_->centers_[closest].z(); 
  
  //Mirror altitude 
  double mirrored_altitude = surface_elevation - (viewpoint_altitude - 
surface_elevation); 
  
  //Mirror pitch  
  double mirrored_pitch = -viewpoint_pitch; 
  
  //Mirror roll 
  double mirrored_roll = 0; 
  if (viewpoint_roll == 0) 
 mirrored_roll = 180; 
  if (viewpoint_roll > 0) 
 mirrored_roll = (180-viewpoint_roll); 
  if (viewpoint_roll < 0) 
 mirrored_roll = -180+abs(viewpoint_roll); 
  
  //Set mirrored camera 
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  cam_control->setLocalReflPos(viewpoint_latitude, viewpoint_longitude, 
mirrored_altitude, mirrored_pitch, mirrored_roll, 0.1, 5000); 
  //======================================================================= 
  
  // == Step 2 Remove objects behind the reflective water surface ========= 
  /* Testing has shown that using clip planes to remove objects behind the 
reflective surfaces in GeoGFX are unnecessary as long as no objects exists 
underneath the water surfaces. GeoGFX has, as stated in section 5.4.4, no 
seafloor triangulation, and the parts of the triangulated terrain which 
have elevation lower than the mirrored surface inflicts no visible errors 
on the mirrored image. Subsequently we have decided to omit clip planes in 
this thesis.  

   */ 
  // ====================================================================== 
 
  //====== Step 3 - Set camera viewport =================================== 
  cam_->setViewport(0, 0, w, h); 
  //======================================================================= 
 
  //======== Step 4 and 5 - Hide water surfaces and sky cone ============== 
  water_surfaces_->setInvisible(true); 
  sky_trans_->setInvisible(true); 
  //======================================================================= 
 
  //Store original terrain pixel and texel scale 
  double org_terrain_pixel_scale = terrain_->getPixelScale(); 
  double org_terrain_texel_scale = terrain_->getPixelScale(); 
 
  //Set new pixel and texel scale 
  terrain_->setPixelScale(pix_scale); 
  terrain_->setTexelScale(tex_scale); 
 
  glClearColor(1.0f, 1.0f, 1.0f, 0.0); 
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 
  //========== Step 6 - Render mirrored scene ============================= 
  scene_->redraw(cam_()); 
  //======================================================================= 
 
  pb_->disable(); // Disable Pbuffer 
 
  //======= Step 7 - Capture mirrored scene to texture ==================== 
  //water_reflection->setOffscreenImage(0,0,w, h); //No Pbuffer solution 
  //Pbuffer solution   
  water_reflection->setOffscreenImageWGL(pb_, 0, 0, w, h);  
  //======================================================================= 
 
  //============ Step 8 - Hand reflection texture to GgWater ============== 
  /* water_reflection texture is a pointer and do need to be handed back to 
GgWater */ 
  //======================================================================= 
 
  //Set viewpoint back to original position 
  cam_control->setLocalReflPos(viewpoint_latitude, viewpoint_longitude, 
viewpoint_altitude, viewpoint_pitch, viewpoint_roll, 0.1, 30000); 
 
  //Set water surfaces and sky cone visible 
  water_surfaces_->setInvisible(false); 
  sky_trans_->setInvisible(false); 
 
  //Set camera viewport to original size 
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  cam_->setViewport(0, 0, o_w, o_h); 
  
  //Restore terrain pixel and texel scale 
  terrain_->setPixelScale(org_terrain_pixel_scale); 
  terrain_->setTexelScale(org_terrain_texel_scale); 
 
}  
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//=========================================================================                                                                          
// File: SceneWindow.cpp                                                                                                                                                                       
//========================================================================= 
 
/* ……………… Clipped code ………… */ 
 
void SceneWindow::buildScene(GgTerrain* terrain) 
{ 
 /* ……………… Clipped code ………… */ 
 
 // Set up transformation nodes 
 water_trans_      = new GngTransform(scene_);  
 
 water_ = new GgWater(scene_); 
 
 // Initialize sky 
 sky_.initialize(scene_, 64, 32); 
 sky_.setLuminanceFactor(1.3); 
 sky_.setTurbidity(4.0); 
 sky_.setTimePos(39.0965, -119.996, 180, 17.50); 
 
 // Light source 
 sun_ = new GngLightSource(scene_); 
 MtkVector3f vec_sun = sky_.getSunPosition(); 
  
 sun_->setPosition(MtkPoint3f(vec_sun.x(), vec_sun.y(), vec_sun.z())); 
  
  water_->setSun(sun_()); 
 if(!water_->initialize("c:/projects/LakeTahoe/lakes.dat")) 
 { 
   cerr << "couldn't find lake file!\n"; 
 } 
  
 /* ……………… Clipped code ………… */ 
 
 surface_trans_    -> addChild(geocentric_trans_()); 
 geocentric_trans_      ->addChild(water_()); 
 
 //Create local and global reflections object 
 scene_local_refl_ = new SceneWaterLocalReflections(water_, 
terrain_,sky_trans_, scene_, curr_nav_ ); 
 scene_local_refl_->setPixelScale(1.0); //Local reflection pixel scale 
 scene_global_refl_ = new SceneWaterGlobalReflections(water_, 
geocentric_trans_, scene_, curr_nav_); 
 
 
 //Send local and global object pointers to SceneWidget 
 scene_w_->setSceneWLReflections(scene_local_refl_); 
 scene_w_->setSceneWGReflections(scene_global_refl_); 
 scene_w_->setWGRPbuffer(); //Initialize global reflection PBuffer 
 scene_w_->setWLRPbuffer(); //Initialize local reflection PBuffer 
 
} 
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//=========================================================================                                                                          
// File: SceneWidget.cpp                                                                                                                                                                      
//========================================================================= 

 
/* ……………… Clipped code ………… */ 

 
void SceneWidget::paintGL() 
{ 
 
/* ……………… Clipped code ………… */ 
 
  //Create dynamic global reflections 
  scene_global_refl_->redraw(cam_, GLOB_WIDTH, GLOB_HEIGHT, width(),    
height(), 60.0); 
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 
  //Create local reflections 
  scene_local_refl_->redraw(cam_, LOC_WIDTH, LOC_HEIGHT, width(), 
height()); 
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); 
 
  //Draw whole scene 
  scene_.redraw(cam_()); 
 
/* ……………… Clipped code ………… */ 
 
} 
 
/* ……………… Clipped code ………… */ 
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//=========================================================================                                                              
// File: GgPerlinNoise.cpp                                                                                                                                                                       
//========================================================================= 

 
/* Creates Perlin Noise rasters 
Code copied from http://www.texturingandmodeling.com//CODE/PERLIN/PERLIN.C 
and restructured by Fredrik Danielsen to fit in GeoGFX */ 
 
#define MAXB 0x100 
#define N 0x1000 
#define NP 12   // 2^N 
#define NM 0xfff 
 
#define s_curve(t) ( t * t * (3. - 2. * t) ) 
#define lerp(t, a, b) ( a + t * (b - a) ) 
#define setup(i, b0, b1, r0, r1)\ 
        t = vec[i] + N;\ 
        b0 = ((int)t) & BM;\ 
        b1 = (b0+1) & BM;\ 
        r0 = t - (int)t;\ 
        r1 = r0 - 1.; 
 
#define at3(rx, ry, rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) 
 
static int p[MAXB + MAXB + 2]; 
static double g3[MAXB + MAXB + 2][3]; 
 
int start; 
int B; 
int BM; 
 
// ======================================================================== 
// Constructor 
GgPerlinNoise::GgPerlinNoise(int w, int h, int t) 
{ 
  make3DNoiseTexture(w, h, t); 
} 
// ======================================================================== 
 
// Makes noise textures tile able 
void GgPerlinNoise::SetNoiseFrequency(int frequency) 
{ 
  start = 1; 
  B = frequency; 
  BM = B-1; 
} 
//======================================================================== 
 
//Normalize vectors used to create noise 
void GgPerlinNoise::normalize3(double v[3]) 
{ 
  double s; 
 
  s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); 
  v[0] = v[0] / s; 
  v[1] = v[1] / s; 
  v[2] = v[2] / s; 
} 
// ======================================================================= 
 
//Starts noise generation algorithm 



 - 97 - 

void GgPerlinNoise::startNoise() 
{ 
  int i, j, k; 
 
  srand(30757); 
  for (i = 0; i < B; i++) 
  { 
 p[i] = i; 
 
 for (j = 0; j < 3; j++) 
  g3[i][j] = (double)((rand() % (B + B)) - B) / B; 
 normalize3(g3[i]); 
  } 
 
  while (--i) 
  { 
 k = p[i]; 
 p[i] = p[j = rand() % B]; 
 p[j] = k; 
  } 
 
  for (i = 0; i < B + 2; i++) 
  { 
 p[B + i] = p[i]; 
 for (j = 0; j < 3; j++) 
  g3[B + i][j] = g3[i][j]; 
  } 
} 
//========================================================================= 
 
//3D noise algorithm 
double GgPerlinNoise::noise3(double vec[3]) 
{ 
  int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11; 
  double rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v; 
  int i, j; 
 
  if (start) 
  { 
 start = 0; 
 startNoise(); 
  } 
 
  setup(0, bx0, bx1, rx0, rx1); 
  setup(1, by0, by1, ry0, ry1); 
  setup(2, bz0, bz1, rz0, rz1); 
 
  i = p[bx0]; 
  j = p[bx1]; 
 
  b00 = p[i + by0]; 
  b10 = p[j + by0]; 
  b01 = p[i + by1]; 
  b11 = p[j + by1]; 
 
  t  = s_curve(rx0); 
  sy = s_curve(ry0); 
  sz = s_curve(rz0); 
 
  q = g3[b00 + bz0]; u = at3(rx0, ry0, rz0); 
  q = g3[b10 + bz0]; v = at3(rx1, ry0, rz0); 
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  a = lerp(t, u, v); 
 
  q = g3[b01 + bz0]; u = at3(rx0, ry1, rz0); 
  q = g3[b11 + bz0]; v = at3(rx1, ry1, rz0); 
  b = lerp(t, u, v); 
 
  c = lerp(sy, a, b); 
 
  q = g3[b00 + bz1]; u = at3(rx0, ry0, rz1); 
  q = g3[b10 + bz1]; v = at3(rx1, ry0, rz1); 
  a = lerp(t, u, v); 
 
  q = g3[b01 + bz1]; u = at3(rx0, ry1, rz1); 
  q = g3[b11 + bz1]; v = at3(rx1, ry1, rz1); 
  b = lerp(t, u, v); 
 
  d = lerp(sy, a, b); 
 
  return lerp(sz, c, d); 
} 
//====================================================================== 
 
//Make width*height*thick Perlin Noise texture 
void GgPerlinNoise::make3DNoiseTexture(int width, int height, int thick) 
{ 
  int f, i, j, k, inc; 
  int startFrequency = 4; 
  int numOctaves = 4; 
  double ni[3]; 
  double inci, incj, inck; 
  int frequency = startFrequency; 
  GLubyte* ptr; 
  double amp = 0.5; 
 
  if ((noise3DTexPtr = (GLubyte*) malloc(width * height * thick * 4)) == 
NULL) 
  { 
 cerr << "Couldn't not allocate 3d Perlin Noise texture\n"; 
  }   
  for (f = 0, inc = 0; f < numOctaves; ++f, frequency *= 2, ++inc, amp *= 
0.5) 
  { 
 SetNoiseFrequency(frequency); 
 ptr = noise3DTexPtr; 
 ni[0] = ni[1] = ni[2] = 0; 
 
 inci = 1.0 / (width / frequency); 
 for (i = 0; i < width; ++i, ni[0] += inci) 
 { 
  incj = 1.0 / (height / frequency); 
  for (j = 0; j < height; ++j, ni[1] += incj) 
  { 
   inck = 1.0 / (thick / frequency); 
   for (k = 0; k < thick; ++k, ni[2] += inck, ptr += 4) 
    *(ptr + inc) = (GLubyte) (((noise3(ni) + 1.0) * 
amp) * 128.0); 
    
  } 
 } 
  }  
} 
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//=========================================================================                                                                          
// File: GngGLSL.cpp                                                                                                                                                       
//========================================================================= 
 
 
// ======================================================================== 
//Enable shader 
void GngGLSL::enable() 
{ 
 
 if (prog != 3452816845) 
  glUseProgramObjectARB(prog); 
 else 
  cout << "Shaders not enabled"; 
 
} 
// ======================================================================== 
//Disable shader 
void GngGLSL::disable() 
{ 
  glUseProgramObjectARB(0); 
} 
// ======================================================================== 
// Get uniform location by string 
GLint GngGLSL::getUniLoc(const GLcharARB *name) 
{ 
 GLint loc; 
 
 loc = glGetUniformLocationARB(prog, name); 
 
 if (loc == -1) 
  cout << "No such uniform named " << name; 
 
 return loc; 
} 
// ======================================================================== 
//Get Attribute location by string 
GLint GngGLSL::getAttLoc(const GLcharARB *name) 
{ 
 GLint loc; 
 
 loc = glGetAttribLocationARB(prog, name); 
 
 if (loc == -1) 
  cout << "No such uniform named " << name; 
 
 return loc; 
} 
// ======================================================================== 
// Read shader code from file 
GLcharARB* GngGLSL::readShader(const char * filename, int shaderType) 
{ 
 char name[100]; 
    strcpy(name, filename); 
 
 switch (shaderType)  
    { 
        case 1: 
            strcat(name, ".vert"); 
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            break; 
        case 2: 
            strcat(name, ".frag"); 
            break; 
        default: 
            printf("ERROR: unknown shader file type\n"); 
            exit(1); 
            break; 
    } 
 
  FILE * pFile; 
  long lSize; 
  GLcharARB * buffer; 
 
  pFile = fopen ( filename , "rb" ); 
  if (pFile==NULL) exit (1); 
 
  // obtain file size. 
  fseek (pFile , 0 , SEEK_END); 
  lSize = ftell (pFile); 
  rewind (pFile); 
 
  // allocate memory to contain the whole file. 
  buffer = (char*) malloc (lSize); 
  if (buffer == NULL) exit (2); 
 
  // copy the file into the buffer. 
  fread (buffer,1,lSize,pFile); 
 
  /*** the whole file is loaded in the buffer. ***/ 
 
  // terminate 
  fclose (pFile); 
  //free (buffer); 
  return buffer;  
 
} 
// ======================================================================== 
// Link shader program to OpenGL 
bool GngGLSL::link() 
{ 
 glGetObjectParameterivARB(prog, GL_OBJECT_LINK_STATUS_ARB, &linked); 
 
 if (!linked) 
  glLinkProgramARB(prog); 
 
 glGetObjectParameterivARB(prog, GL_OBJECT_LINK_STATUS_ARB, &linked); 
  
 if (!linked) 
  return false; 
} 
// ======================================================================== 
// Initialize shaders 
bool GngGLSL::initShaders(const GLcharARB * fragShader, const GLcharARB * 
vertShader) 
{ 
if (initShader(vertShader, 1) && initShader(fragShader, 2)) 
{ 
 link(); 
 return true; 
} 
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return false; 
 
} 
// ======================================================================== 
// Read and compile shaders 
bool GngGLSL::initShader(const GLcharARB * shader, int shaderType) 
{ 
 GLint compiled; 
  
 if (prog == 3452816845) 
  prog = glCreateProgramObjectARB(); 
 
 switch (shaderType) 
 { 
 case 1: 
  vs = glCreateShaderObjectARB(GL_VERTEX_SHADER_ARB); 
  glShaderSourceARB(vs, 1, &shader, NULL); 
  glCompileShaderARB(vs); 
  glGetObjectParameterivARB(vs, GL_OBJECT_COMPILE_STATUS_ARB, 
&compiled); 
  if (!compiled) 
  { 
   cout << "Vertex shader not compiled"; 
   return false; 
  } 
  glAttachObjectARB(prog, vs); 
  break; 
 case 2: 
  fs = glCreateShaderObjectARB(GL_FRAGMENT_SHADER_ARB); 
  glShaderSourceARB(fs, 1, &shader, NULL); 
  glCompileShaderARB(fs); 
  glGetObjectParameterivARB(fs, GL_OBJECT_COMPILE_STATUS_ARB, 
&compiled); 
  if (!compiled) 
  { 
   cout << "Fragment shader not compiled"; 
   return false; 
  } 
  glAttachObjectARB(prog, fs); 
  break; 
 } 
 
 return true; 
} 
// ======================================================================== 
//Initialize Fragment shader 
void GngGLSL::setFragmentShader(const char *filename) 
{ 
 initShader(readShader(filename, 2), 2); 
 link(); 
} 
// ======================================================================== 
// Initialize vertex shaders 
void GngGLSL::setVertexShader(const char *filename) 
{ 
 initShader(readShader(filename, 1), 1); 
 link(); 
} 
// ======================================================================== 
//Set shaders in GngGLSL object 
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void GngGLSL::setShaders(const char *fragmentfile, const char *vertexfile) 
{ 
 initShaders(readShader(fragmentfile, 2), readShader(vertexfile, 1)); 
} 
 
//Shader variables 
//========================================================================= 
// Float uniform variables 
void GngGLSL::setUniform1(const GLcharARB *name, float x) 
{ 
 glUniform1fARB(getUniLoc(name), x); 
} 
void GngGLSL::setUniform2(const GLcharARB *name, float x, float y) 
{ 
 glUniform2fARB(getUniLoc(name), x, y); 
} 
/* ……………… Clipped code ………… */ 
//========================================================================= 
// Integer uniform variables 
void GngGLSL::setUniform1(const GLcharARB *name, int x) 
{ 
 glUniform1iARB(getUniLoc(name), x); 
} 
void GngGLSL::setUniform2(const GLcharARB *name, int x, int y) 
{ 
 glUniform2iARB(getUniLoc(name), x, y); 
} 
/* ……………… Clipped code ………… */ 
 
//4x4 Uniform matrix 
void GngGLSL::setUniformMatrix4(const GLcharARB *name, GLuint count, 
GLboolean transpose, const GLfloat *v) 
{ 
 glUniformMatrix4fvARB(getUniLoc(name), count, transpose, v); 
} 
//========================================================================= 
// Uniform textures 
void GngGLSL::setTexture(const GLcharARB *name, int number) 
{ 
 glUniform1iARB(getUniLoc(name), number); 
} 
//========================================================================= 
//Float atttributes 
void GngGLSL::setAttrib1(const GLcharARB *name, float x) 
{ 
 glVertexAttrib1fARB(getAttLoc(name), x); 
} 
void GngGLSL::setAttrib2(const GLcharARB *name, float x, float y) 
{ 
 glVertexAttrib2fARB(getAttLoc(name), x, y); 
} 
/* ……………… Clipped code ………… */ 
//========================================================================= 
// Integer attributes 
void GngGLSL::setAttrib1(const GLcharARB *name, int x) 
{ 
 glVertexAttrib1fARB(getAttLoc(name), x); 
} 
void GngGLSL::setAttrib2(const GLcharARB *name, int x, int y) 
{ 
 glVertexAttrib2fARB(getAttLoc(name), x, y); 



 - 103 - 

} 
/* ……………… Clipped code ………… */ 
//========================================================================= 
//Short attributes 
void GngGLSL::setAttrib1(const GLcharARB *name, short x) 
{ 
 glVertexAttrib1fARB(getAttLoc(name), x); 
} 
 
void GngGLSL::setAttrib2(const GLcharARB *name, short x, short y) 
{ 
 glVertexAttrib2fARB(getAttLoc(name), x, y); 
} 
/* ……………… Clipped code ………… */ 
//========================================================================= 
//Attribute arrays 
void GngGLSL::setAttribArray(const GLcharARB *name, GLint size, GLenum 
type, GLboolean normalized, GLsizei stride, const GLvoid *pointer) 
{ 
 glVertexAttribPointerARB(getAttLoc(name), size, type, normalized, 
stride, pointer); 
} 
 
void GngGLSL::enableAttribArray(const GLcharARB *name) 
{ 
 glEnableVertexAttribArrayARB(getAttLoc(name)); 
} 
void GngGLSL::disableAttribArray(const GLcharARB *name) 
{ 
 glDisableVertexAttribArrayARB(getAttLoc(name)); 
} 
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//=========================================================================                                                
// File: GngTexture3D.cpp                                                                                                                                                                       
//========================================================================= 
 
/* ……………… Clipped code ………… */ 
 
//========================================================================= 
/* 3D texture version of Normal map downsampling fucntion described in [3] 
and used in GngTexture2D */ 
GngTexture3D::Normal* 
GngTexture3D::downSampleNormalMap(GngTexture3D::Normal *old, 
                                                  int w2, int h2, int t2, 
int w, int h, int t) 
{ 
  /* ……………… Clipped code ………… */ 
} 
 
// ======================================================================== 
/* 3D version of height field to normal map function described in [3] and 
used in GngTexture2D */ 
GngTexture3D::Normal* GngTexture3D::convertHeightFieldToNormalMap(GLubyte 
*pixels, int w, int h, int t, int wr, int hr, float scale) 
{ 
 /* ……………… Clipped code ………… */ 
} 
 
// ======================================================================== 
/* 3D version on normal map initialization function decribed in [3] and 
used in GngTexture2D */ 
bool GngTexture3D::initializeNormalMap(const GngImage3D& img, int unit) 
{ 
  /* ……………… Clipped code ………… */ 
} 
 
/* ……………… Clipped code ………… */ 
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//=========================================================================                                                                          
// File: GngTexture2D.cpp                                                                                                                                                                       
//========================================================================= 
 
/* ……………… Clipped code ………… */ 
 
void GngTexture2D::apply(GngTextureUnit& curr_tex_unit) 
{ 
  /* ……………… Clipped code ………… */  
  if (pbuf_rend) 
  { 
 //Bind PBuffer to texture 
 if( !wglBindTexImageARB(pbuf_->pbuffer_, WGL_FRONT_LEFT_ARB ) ) 
 { 
  MessageBox(NULL,"Could not bind p-buffer to render texture!", 
    "ERROR",MB_OK|MB_ICONEXCLAMATION); 
  exit(-1); 
 } 
  } 
  /* ……………… Clipped code ………… */  
} 
 
//========================================================================= 
//PBuffer texture release function 
void GngTexture2D::release() 
{ 
  if (pbuf_rend) 
  { 

if( !wglReleaseTexImageARB(pbuf_->pbuffer_, WGL_FRONT_LEFT_ARB ) ) 
     { 
        MessageBox(NULL,"Could not release p-buffer from render texture!", 
            "ERROR",MB_OK|MB_ICONEXCLAMATION); 
        exit(-1); 
      } 
  } 
} 
 
//========================================================================= 
//PBuffer version of GngTexture2D::setOffscreenImage() 
void GngTexture2D::setOffscreenImageWGL(const GngPBuffer* pbuffer_, int x, 
int y, int w, int h, int unit) 
{ 
  /* ……………… Clipped code ………… */ 
  pbuf_rend = true; 
  /* ……………… Clipped code ………… */ 
}  
/* ……………… Clipped code ………… */ 
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//=========================================================================                                            
// File: GngCubeMap.cpp                                                                                                                                                                       
//========================================================================= 

 
/* ……………… Clipped code ………… */ 

 
// ======================================================================= 
//Initialize Pbuffer 
void GngCubeMap::setPbufCube(const GngPBuffer* pbuffer_, int unit) 
{ 
 setLock(false); 
 unload(); 
 
 pbuf_  = pbuffer_;  
pbuf_rend = true; 
 
 GngContext::getCurrent()->setActiveTextureUnit(unit); 
 glGenTextures(1, &handle_); 
 glBindTexture(target_, handle_); 
 applyTexParameters(target_); 
 setMinFilter(GL_LINEAR); 
 
 img_dirty_ = false; 
  
 // Can't let texture manager handle this texture when 
 // we don't have a dynamic image source. 
 setLock(true); 
 
} 
// ======================================================================== 
//Cube map version of GngTexture2D::setOffscreenImage() function 
void GngCubeMap::setOffscreenImageCube(int face) 
{ 
 int attr[] = {WGL_CUBE_MAP_FACE_ARB, 
WGL_TEXTURE_CUBE_MAP_POSITIVE_X_ARB+(face-1), 0}; 
 wglSetPbufferAttribARB(pbuf_->pbuffer_, attr); 
  
} 
 
/* ……………… Clipped code ………… */ 
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//=========================================================================                                                                          
// File: GngPBuffer.cpp                                                                                                                       
//========================================================================= 

 
/* ……………… Clipped code ………… */ 

 
bool GngPBuffer::initialize(bool sharecontexts, bool sharelists) 
{ 
 // If we want to use PBuffer to render to texture set 
WGL_BIN_TO_TEXTURE_RGBA_ARB = true 
  int pf_attr[] = 
  { 
   WGL_SUPPORT_OPENGL_ARB, TRUE,       //P-buffer will be used with OpenGL 
   WGL_DRAW_TO_PBUFFER_ARB, TRUE,      //Enable render to p-buffer 
   WGL_BIND_TO_TEXTURE_RGBA_ARB, TRUE, //P-buffer will be used as a texture 
   WGL_RED_BITS_ARB, 8,                // At least 8 bits for RED channel 
   WGL_GREEN_BITS_ARB, 8,              // At least 8 bits for GREEN channel 
   WGL_BLUE_BITS_ARB, 8,               // At least 8 bits for BLUE channel 
   WGL_ALPHA_BITS_ARB, 8,              // At least 8 bits for ALPHA channel 
   WGL_DEPTH_BITS_ARB, 16,             // At least 16 bits for depth buffer 
   WGL_DOUBLE_BUFFER_ARB, FALSE,       // We don't require double buffering 
   0                                   // Zero terminates the list 
 }; 
 
// if PBuffer is set to render to a 2D texture use this properties array 
  int properties[] = 
  { 
   // Our p-buffer will have a texture format of RGBA     
   WGL_TEXTURE_FORMAT_ARB, WGL_TEXTURE_RGBA_ARB,    
   // Our texture target will be GL_TEXTURE_2D 
    WGL_TEXTURE_TARGET_ARB, WGL_TEXTURE_2D_ARB,  
    0                                           // Zero terminates the list 
  }; 
// else if Pbuffer set to render cubemap textures set texture target to 
WGL_TEXTURE_CUBE_MAP_ARB 
  if (cube_tex) 
  { 
   properties[3] = WGL_TEXTURE_CUBE_MAP_ARB; 
  } 
} 
 
/* ……………… Clipped code ………… */ 
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//=========================================================================                                                   
// File: GngImage.cpp                                                                                                                                                                       
//========================================================================= 

 
/* ……………… Clipped code ………… */ 

 
//========================================================================= 
//Add four image colors together 
void GngImage::composeSUM(const GngImage& r, const GngImage& g, 
         const GngImage& b, const GngImage& a)  
{ 
 copyHeader(r);  
 setFormat(MONO_8); 
 allocMem(); 
 
 unsigned char* r_ptr = r.getData(); 
 unsigned char* g_ptr = g.getData(); 
 unsigned char* b_ptr = b.getData(); 
 unsigned char* a_ptr = a.getData(); 
  
 int j = 0; 
 for(int i = 0; i < npix_; i++) 
 { 
   data_[j++] = (r_ptr[i] + g_ptr[i] + b_ptr[i] + a_ptr[i] + 8) * 1.5; 
 } 
} 
/* ……………… Clipped code ………… */ 
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Vertex and pixel shader code 

//=========================================================================                   
// File: Vertex shader                                                                                                                                                                       
//========================================================================= 

 

varying vec3 vEyeVector; //Object Space 

 

attribute vec3 eye_vector; //Object Space 

uniform vec3 tangent_vector; //Object Space 

 

varying vec4 vTexCoordProj; 

varying vec3 vTexCoord; 

varying mat3 obj2tan; 

 

void main(void) 

{ 

    

   vEyeVector = eye_vector;  

    

   // Tangent space conversion matrix -------------------------------------------------------------------- 

   obj2tan[0] = normalize(tangent_vector); 

   obj2tan[1] = normalize(cross(normalize(tangent_vector), normalize(gl_Normal))); 

   obj2tan[2] = normalize(gl_Normal); 

 

 

  // Texture coordinates ------------------------------------------------------------------------------------ 

  vTexCoord = gl_Vertex*0.05; 

   

   // Projective texture coordinates ------------------------------------------------------------------------ 

   mat4 Mr; 

   Mr[0] = vec4(0.5, 0.0, 0.0, 0.0); 

   Mr[1] = vec4(0.0, 0.5, 0.0, 0.0); 

   Mr[2] = vec4(0.0, 0.0, 0.5, 0.0); 

   Mr[3] = vec4(0.5, 0.5, 0.5, 1.0); 

    

  

   mat4 Mprojtex = Mr * gl_ModelViewProjectionMatrix; 

    

   vTexCoordProj = mul(Mprojtex, gl_Vertex); 

   vTexCoordProj.s = -vTexCoordProj.s; 

    

   gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 

} 
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//=========================================================================                                                                          
// File: Fragment shader                                                                                                                                         
//========================================================================= 

 

uniform vec4 specular; 

uniform vec4 refr_color; 

 

uniform float specular_power; 

 

uniform float noiseSpeed; 

uniform float time_0_X; 

 

uniform sampler3D Noise; 

uniform sampler2D reflection; 

uniform samplerCube enviroment; 

uniform sampler2D fresnel; 

 

varying vec3 vTexCoord; 

uniform vec3 light_vector; 

varying vec3 vEyeVector; 

 

varying vec4 vTexCoordProj; 

 

varying mat3 obj2tan; 

 

void main(void) 

{ 

    vEyeVector = normalize(vEyeVector); 

   vec3 vLightVector = normalize(light_vector); 

 

   //Tangent to object space matrix, inverse of object to tangent space 

   mat3 tan2obj; 

   tan2obj[0] = vec3(obj2tan[0].x, obj2tan[1].x, obj2tan[2].x); 

   tan2obj[1] = vec3(obj2tan[0].y, obj2tan[1].y, obj2tan[2].y); 

   tan2obj[2] = vec3(obj2tan[0].z, obj2tan[1].z, obj2tan[2].z); 

    

   // Make 3d texture animate 

   vTexCoord.z += 0.15 * time_0_X; 

   vTexCoord.x += (noiseSpeed/8) * time_0_X; 

 

   //Wave pattern     

   vec3 noisy = texture3D( Noise, vTexCoord.xyz).xyz; 

   vec3 smooth = vec3(0.5, 0.5, 1.0); 

   vec3 bump = mix(smooth, noisy, 0.05); 

 

   //Normalize normal map 

   bump = normalize((bump * 2) - 1); 

   //Rotate bump map normals to object space 

   vec3 bump_obj = normalize(mul(bump, tan2obj)); 

    

   // Texture projection of local water reflections 
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   float offset = 7; 

   vTexCoordProj.xy += offset * bump.xy;   //Disturb local reflection with wave pattern 

   vec4 refl_ = texture2DProj(reflection, vTexCoordProj); 

 

     /* Specular dotproduct with surface normal, used to avoid self-shadowing */ 

      float ndotl = dot( vLightVector, tan2obj[2]); 

    

      float self_spec = 1; 

      float c = 0.125; 

  

     if (ndotl > c) 

           self_spec = 1; 

     if (ndotl > 0 && ndotl <= c) 

      self_spec = (1/c)*ndotl; 

     if (ndotl <= 0) 

         self_spec = 0; 

       

     //Reflection vector 

     vec3 R = normalize(reflect(vEyeVector, bump_obj)); 

       

    //Half angle 

    // vec3 H = normalize(vEyeVector + vLightVector); 

 

      // Phong specular lighting 

      vec3 sun =  pow((vec3(specular) * 2 * self_spec * pow(max( vec3(0.0), dot(-

R,vLightVector)), vec3(specular_power) )), 1/2.2); 

 

      //Blinn specular lighting 

      //vec3 sun =  vec3(specular) * 2 * self_spec * pow(max( vec3(0.0), dot(H,bump_obj)), 

vec3(specular_power) ); 

       

   // Fresnel lookup – setting value to max 0.99 since 1 will be mapped back to 0 

   vec3 f = texture2D(fresnel, vec2(min(0.99,dot(-R,bump_obj)), 0.0));   

    

     R.z = 0.5*R.z+0.5; 

     vec3 env_ = textureCube(enviroment, -R.yzx); 

 

     // Mixing local and global reflections using local reflection alpha value 

     vec3 reflect_ = mix(env_+sun, refl_.rgb, refl_.a); 

     

    // Mixing refraction and reflection using fresnel factor 

    float fr = mix(0.0, f.r, dot(vEyeVector, tan2obj[2])); 

    gl_FragColor = mix(vec4(reflect_, 1.0),refr_color, fr); 

 

} 
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