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We use the phase-field crystal model to study nucleation of edge dislocations in two dimensions under an
applied stress field. A dislocation dipole nucleates under the applied stress, consistent with Burgers vector
conservation. The phase field correctly accounts for elastic energy storage prior to nucleation and for dissipative
relaxation during the nucleation event. We show that a lattice incompatibility field is a sensitive diagnostic
of the location of the nucleation event and of the Burgers vector and slip direction of the dislocations that
will be nucleated above threshold. A direct calculation of the phase-field energy accurately correlates with the
nucleation event, as signaled by the lattice incompatibility field. We show that a Schmid-like criterion concerning
the resolved stress at the nucleation site correctly predicts the critical nucleation stress. Finally, we present
preliminary results for a three-dimensional, bee lattice. The phase field allows direct computation of the lattice
incompatibility tensor for both dislocation lines and loops.
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I. INTRODUCTION

Unlike the spontaneous homogeneous nucleation of topo-
logical defects in a symmetry-breaking phase transition [1-3],
the formation of dislocation lines in a material is typically
studied as an athermal process largely driven by local stresses
[4]. Since the existence and mobility of such defects are
essential contributors to the strength and ductility of crys-
talline materials, understanding the mechanisms behind their
creation and motion is a fundamental goal of material sci-
ence in general and of plasticity theory in particular. Along
parallel developments in the continuum theory of crystal plas-
ticity, a number of empirical criteria have been introduced
to predict dislocation nucleation thresholds, the resulting
Burgers vector distribution, and line direction [5-8]. These
macroscopic criteria have been extensively compared with mi-
croscopic results from molecular dynamics (MD) simulations
of model crystalline solids in a variety of configurations and
imposed stresses [8—11]. However, the details of the mechan-
ical conditions that lead to dislocation nucleation still remain
poorly understood, with criteria from continuum mechanics
approaches and numerical simulations often yielding conflict-
ing phenomenology. The two main reasons why a precise
comparison between the two is difficult include the disparity
in length scales between crystal plasticity theory and molec-
ular simulation and the necessity in the latter to thermally
average phase space trajectories that take place over character-
istic energy scales which are much higher than thermal scales.
Fundamental questions such as whether the nucleation event
is local or nonlocal remain unresolved [8]. We bridge here
microscopic and continuum scales by introducing a phase-
field crystal model [12,13] of dislocation nucleation and show
that the nucleation event is well captured at the mesoscale by a
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continuum lattice incompatibility field. Our numerical results
for the nucleation of edge dislocations in a two-dimensional
(2D), hexagonal lattice indicate that the nucleation event is
governed by a local balance between the resolved stresses
along lattice slip planes and the force acting between the nu-
cleating dislocation pair and that a lattice incompatibility field
derived from the phase field predicts the Burgers vector of
the nucleating defect pair. The simplest dislocation nucleation
criterion is based on the Schmid stress decomposition [5,7,14—
17]. When an appropriate projection of an atomic level shear
stress exceeds a material-dependent threshold, a dislocation
loop is predicted to be nucleated. On the one hand, while
fce lattices generally obey the Schmid criterion, there exist
entire classes on “non-Schmid” lattices, including bce crystals
[18]. Furthermore, a recent, careful MD study of nucleation
in a nanoindentation configuration for a model Lennard-Jones
solid shows that the Schmid criterion not only fails to account
for the site of the nucleation event but nucleation, in fact, oc-
curs in regions in which the resolved shear stress is relatively
small [8]. A second class of criteria associates the nucleation
event to a buckling or phonon instability of the lattice (the
Hill or A criteria based on mechanical stability arguments
[7,16]). Molecular dynamics simulations and experiments in
different crystal indentation configurations, however, have re-
vealed very complex nucleation processes in which the lattice
is locally quite distorted and therefore far from the conditions
of applicability of such a phonon stability analysis. Large
regions of partial dislocations and extended stacking faults
have been argued to be present at nucleation [9], as well as
extended and complex networks involving surfaces and grain
boundaries [11]. More recently, the stability of the perfect lat-
tice against homogeneous nucleation was formulated in terms
of the kinematic equation that governs the temporal evolution
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of the dislocation density tensor. This approach is sensitive
to the creation of nontrivial local topology [8] and yields
predictions that are qualitatively different than the Schmid
criterion. To contribute to the elucidation of the criteria for
nucleation, we examine here a simple, prototypical config-
uration: a 2D hexagonal lattice in which nucleation occurs
through the formation of a dislocation dipole of zero net
Burgers vector. In this idealized configuration, we show that
the incompatibility field directly computed from the phase
field identifies the nucleation event and that it can be used to
predict the Burgers vector at nucleation. The critical stress for
nucleation is seen to be in quantitative agreement with that of
the Schmid criterion in this 2D lattice.

II. THE PHASE-FIELD CRYSTAL

The phase-field crystal (PFC) model is a mesoscale de-
scription of a crystalline solid in which vibrational degrees
of freedom have been averaged out, in the same spirit as
density functional theory [13,19]. The crystalline phase is
described by a scalar order parameter field ¥ (r), which obeys
a phenomenological free energy given, in dimensionless
form, by

. l 2, o 14
f[w]—/dr[z[ﬁw] FoY v } (1)

where £ = 1+ V2 and r is a dimensionless parameter repre-
senting the deviation from the liquid-solid phase boundary.

We further assume that v is a conserved variable, with its
spatial average v being constant [19]. The two constants r
and v completely define the model. In two dimensions, for
a range of values of 1 and r < 0, a triangular Bravais lattice
¥®(r) is the equilibrium phase, which we consider here.

Upon deformation of the equilibrium state ¥ by a dis-
placement field u(x), it is possible to define the equilibrium
stress tensor as the variation of the free energy with respect to
the displacement gradient [20],

G = —0ulY o LY18; + 200:LYIHY]. ()

where X;Y;) refers to symmetrization of indices i, j [21]. This
quantity still shows spatial variations within a unit cell due
to the variation of ¢r. We therefore further define an averaged
stress field as ai‘;’ = (6;;’), where (-) refers to averaging over
an area approximately equal to a unit lattice cell.

For small distortions, the hexagonal lattice is elastically

isotropic. We define a symmetric strain as

1
el = —M(oi'j.' — Kéijak‘[,’{), 3)
where u is the shear modulus and « = A/[2(A + )], where
A is the standard Lamé coefficient. In our dimensionless vari-
ables, we have A = u = 3A(2), where Ag is the amplitude of
¥ea [20].

Dislocations lead to lattice incompatibility [4,22]. In two
dimensions and given a Burgers vector density B(r), the
incompatibility field is n = €ik€ji a,'jekl = eija,-Bj. A key as-
sumption of our analysis is that the configuration of
contains the complete strain incompatibility [23,24]. Thus,

from Eq. (3) we find

n’ = ﬂ(e,-kej,a,-jak‘ﬁ — KVzak‘i). “)

The dissipative evolution of ¥ is diffusive,

2

Y =V 5y )
with a constant kinetic mobility coefficient, which we set to 1
in our study and which sets the unit of time. As discussed in
Refs. [23,25], lattice distortion needs to be treated separately
from diffusive relaxation of ¥ in order to incorporate elastic
response into the phase field and to maintain elastic equilib-
rium at all times. In addition, in order to induce nucleation,
we consider an externally imposed bulk stress ai‘}’“(r). In

elastic equilibrium 3;0[’,”- = 9,0/, Following Ref. [23], for a
nonequilibrium configuration of ¥, we solve E)i(cri'f- - (7,-‘}"‘ +
o) =0, where o} = Aej, +2ue}; and ¢, is a compatible
strain, efj = (a,»uf} + E)juf)/ 2. Diffusion of ¢ is supplemented
at each time by distortion ¥/ (r) — ¥ (r — u’).

In two dimensions, the condition for elastic equilibrium
means that the stress tensor difference can be written in terms
of an Airy potential x, ai'é' - oi‘}’“ + ai‘} = €ix€j; 0 X - For each
instantaneous configuration of ¢ we solve [23]

1—«
2p

Vix =¥ =™, (6)

where 7% accounts for the fact that the imposed stress does
not necessarily derive from a compatible displacement. The
solution allows the computation of efj and, from it, of the

displacement u?.

III. NUMERICAL METHOD

A square computational domain is considered with pe-
riodic boundary conditions, with 100 x 100 hexagonal unit
cells of length ag = % and grid spacings Ax = ag/7 and
Ay = ag~/3/12. The model parameters used are r = —1 and
Y = —0.45. The initial condition of v is a periodic, undis-
torted hexagonal lattice. For our choice of model parameters,
the corresponding Lamé coefficients are u = A = 0.227.

Calibrating the parameter values to experiments is a
difficult task due to a lack of high-resolution data and cor-
responding measurable quantities. Since the PFC free energy
is an effective coarse graining of the intermolecular po-
tential related to high-order density gradients, a substantial
amount of fitting is required, beginning with energy scales,
but also relaxation timescales [13]). Hence, the strength of
the PFC model is not in modeling with specific dimensional
units, but rather in modeling generic behavior described by
rescaled units. To this end, the shear modulus u sets the
unit for measuring stress, while strain and incompatibility
fields are dimensionless. For instance, the critical stress of
0.081 in Fig. 2 would correspond in physical units to o) =
0.081/0.2271 ~ 0.36.

We impose a shear stress o' =o' =0 and o) =

_Irx? . . . . .
ope 2? , with ry being an arbitrary center. Nucleation is

induced by a sequence of steps of increasing value of oy.
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FIG. 1. Central region of the computational domain with (a) the
PFC configuration in equilibrium at ¢y = 0.080 prior to nucleation
and (b) the equilibrium configuration at oy = 0.081 after nucleation.

A given configuration is allowed to relax to equilibrium for
constant oy. After equilibration has been achieved, the config-
uration is used as the initial condition for another relaxation
step in which the value of oy is increased. The details are as
follows: Diffusive relaxation of v is allowed for 100 steps by
using an exponential time differencing method, with a time
step of Ar = 0.1 [26]. After these 100 steps, i is brought
to mechanical equilibrium by a compatible displacement as
described above and in Refs. [23,27]. Diffusive relaxation and
elastic distortion cycles are continued until the largest change
in ¥ between two such cycles is less than 0.01. We then
increase oy by an increment Aoy = 0.001 and repeat the re-
laxation procedure. The external stress amplitude considered
ranges from zero to oy = 0.086. Figure 1 shows the equili-
brated field v for some amplitude of oy prior to (op = 0.080)
and after a nucleation event (op = 0.081) for w = 4ay. The
nucleation event gives rise to two edge dislocations with oppo-
site Burgers vectors agpe, and —ape,. When the configuration
comprising two defects is allowed to evolve, the defects move
away from each other along the x direction. Note that since a
dislocation in a hexagonal lattice has two extra half planes,
we represent the location of the dislocation by the symbol
V. This is in contrast to the conventional symbol representing
an edge dislocation (L), which indicates the directions of the
slip and extra inserted half plane. A video animation of the
nucleation event sequence can be found in the Supplemental
Material [28].

IV. TWO-DIMENSIONAL DISLOCATION NUCLEATION

The incompatibility field n¥ from Eq. (4) accurately indi-
cates where dislocations form. Figures 2(a) and 2(b) show the
n¥ field corresponding to the ¥ density field in Fig. 1, before
and after the nucleation event. The extremes in the value of n¥
identify the location of the defect cores. Also, the quadrupolar
structure of Fig. 2(a) prior to nucleation reflects the Burgers
vectors of the dislocation pair to be nucleated. More quanti-
tatively, Fig. 2(c) shows the evolution of the maximal value
of n¥ in time and upon increasing o, quasistatically (shown
by the left y axis). The point at which oy attains the critical
value for nucleation is marked by the vertical dashed line at
t = 2050, and the dislocations become distinct at ¢ ~ 2300.
We observe that max(n¥) rises before the dislocations become
distinct. Prior to nucleation, the crystal lattice is elastically
loaded with a quasistatic increase of oy. After nucleation, the
external stress o remains constant (corresponding to a plateau
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FIG. 2. Incompatibility field n¥ (a) at t = 2050 (o = 0.080),
before the nucleation event, and (b) atr = 12170 (op = 0.081), after
nucleation. (c) Maximum of n¥ as a function of time ¢. The dashed
line at r = 2050 marks where o has attained the critical value for
nucleation. The dislocations become distinct at ¢ & 2300. The right
axis shows the value of oy for the corresponding times. The plateaus
in time indicate nonequilibrium relaxation at constant external stress.

in the o curve), while the crystal lattice evolves diffusively in
time.

Figure 3 further shows the corresponding change in the
PFC free energy F upon increasing oy, together with the elas-
tic energy defined as E,; = % [d roi'j.’ e;/’j. Note that despite the
purely diffusive dynamics obeyed by , the lattice is capable
of storing (reversible) elastic energy upon increasing the value
of 0y, as seen previously in Fig. 2(c). This reversible evolution
is enabled through the compatible distortion added to the field
Y to preserve elastic equilibrium. As the nucleation event is
reached, the phase-field energy exhibits a large discontinuity
at the value of oy that corresponds to the dashed line in
Fig. 2(c).

For this simple 2D setup, it is possible to predict the
critical stress for nucleation from the value of the resolved
shear stress along each slip plane, in analogy with the
classical Schmid criterion. For a given stress o;;, the resolved
shear stress 7, , on a slip plane defined by the normal unit
vector n along a direction in the slip plane given by the
unit vector a is T, = g;0;;n;. In two dimensions, n is
determined up to a sign by n; = €;;a;, and for the hexagonal
symmetry, there are three slip planes defined by lattice vectors
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FIG. 3. Total free energy F and elastic energy E,; as a function
of oy.

a; =[1,0],a, = [1/2,+/3/2], and a3 = [—1/2, +/3/2]. One
thus considers three different scalar fields 7, 1, and 73,
which are the resolved shear stresses along the slip directions
corresponding to a;, a,, and a3, respectively. Figures 4(a)—4(f)
show the fields 7y, 75, 73 right before and after nucleation.
The resolved shear stress is largest along the a; direction,
the slip plane along which the dislocation pair nucleates,
and is centered at the origin, the nucleation site. The other
two resolved stresses remain small during nucleation. The
change in the largest resolved stress 7| is shown in Fig. 4(g),
using the same coordinates as in Fig. 2(c). Nucleation
initiates (vertical dashed line) when the resolved shear stress
approaches the critical value of |z.| = 0.046, followed by
a small drop and then a slow rise as the newly nucleated
dislocation dipole moves away from the center region. Notice
that this value of 7. at the moment of nucleation is smaller
than the external shear stress o' = 0.080. This is because
at mechanical equilibrium, the two stresses are equal only up
to a divergence-free term. The critical value of the resolved
stress 7. can be estimated as follows: Consider an otherwise
perfect lattice with a bound dislocation pair of opposite
Burgers vectors. The force acting on the dislocations (in
opposite directions) because of the external stress is the
Peach-Koehler force projected on the slip plane defined
by a; and is FX = bty = +apte for dislocations with
Burgers vectors b = +apa;. As the two dislocations in
the dipole separate at nucleation to become distinct, their
mutual elastic interaction results in an attractive force. If
both dislocations are on the x axis, this force is [29,30]
|fe| = Yob?/(4md), where Yo = 4u(h + )/ (A + 2u) is the
2D Young’s modulus and d is the dislocation separation.
We estimate 7, as the applied stress for which the resulting
Peach-Koehler force on one dislocation equals the force

FIG. 4. The resolved shear stresses just prior to and after the
nucleation event. (a)-(c) 1y, 7o, and 73 at t = 2050 (o = 0.080),
respectively, and (d)—(f) 7, 72, and 73 atr = 12170 (op = 0.081), re-
spectively. (g) max(|7;|) as a function of time ¢ during the nucleation
event.

from the other dislocation when the separation is one lattice
constant. We find that 7, = Y,/(4m). Using the numerical

values of wu=A=02271, Y,/(4w)=0.048, which
is in close agreement with the observed value of
|| = 0.046.

In order to further test the nucleation criterion, we have
performed additional calculations in which the imposed stress
Ufj’“ is rotated relative to the lattice, afj’“(G) = R,(g)o,fl’“R;?),
where REJG.) is the standard rotation matrix in two dimensions
and 0 is the rotation angle. Figure 5 shows the maximal
resolved stress at nucleation along the three lattice directions
as a function of ¢. Since o7 is invariant under a rotation
of 7, aiej’“(x) = afj’“(n + x), we show only values ranging
from 6 =0 to w. Figure 5 shows that the resolved stress
consistently predicts the type of dislocation dipole to nucleate,
but the value of the critical resolved stress depends on 6 and is,
in general, lower than Y, /(4m). The discrepancy is likely due
to anisotropic contributions to lattice distortions at the length
scale of the core which are not described by isotropic linear
elasticity.

V. THREE-DIMENSIONAL INCOMPATIBILITY FIELD

The simplest example of a 2D hexagonal lattice has only
point edge dislocations and is described by isotropic elasticity.
However, more realistic crystal lattices have more complex
loop defects and lattice anisotropy, where the Schimd-like
criterion might not readily apply. Therefore, it is important
to understand how the incompatibility field applies to three
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FIG. 5. The value of |z.| at nucleation as a function of the rotation angle 6 of the externally imposed stress o(6). The top row shows
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the type of dislocation dipole that nucleates. The resolved stress along the slip plane with the largest value determines the type of dislocation

dipole to nucleate.

dimensions and behaves near a nucleation event. Here we
derive the incompatibility field from the y density field cor-
responding to a bcec lattice in three dimensions and visualize
it for a dislocation that is seeded into an otherwise perfect
crystal. Since the incompatibility field is determined by the
topology of the system, it accurately locates the disloca-
tion strings and provides a powerful tool to visualize mixed
edge/screw dislocation loops.

For a suitable range of parameters ¥ and r, the equilibrium
state that minimizes the free energy functional in Eq. (1)
is given by a bcc lattice in three dimensions. The corre-
sponding reciprocal lattice vectors lie on a fcc lattice with a
lattice constant of unity. We choose as parameter values v =
—0.371, r = —0.4 for the results presented below. The ampli-
tude of the reciprocal modes in equilibrium is Ay = —%lﬁ +

%5\/ —5r — 11y = 0.2139 [31]. The orientation of the lattice
is chosen by defining the following set of reciprocal lattice
vectors of unit length: q; = [1, 1, 0]/+/2, q2 = [1,0, 11/+/2,
G=001,11/V2, ¢4=q — a3, ¢s=q — q3, g6 = q1 —
q2- A cubic computational domain is considered with 30 x
30 x 30 bec unit cells of length ap = 27 with grid spacings
Ax = Ay = Az = ap/4.

We first examine a configuration with two dislocation
lines added to the phase field by multiplying the initially
constant amplitudes A4, of the PFC by phase factors esi?
corresponding to (i) a pure edge dislocation with Burgers
vector b; = e, and constant tangent line I, = e, at [x;, y|] =
[20ag, 15a¢] and (ii) a pure edge dislocation with Burgers
vector b, = —e, and constant tangent linel; = e, at [x;, y;] =
[10ag, 15a¢]. Here 6 is the angle in the xy plane relative to the
x plane, and s, is the charge of the dislocation, calculated as in
Ref. [20]. The PFC is subsequently prepared, in the one-mode
approximation, as ¥ = o + Y.0_,[Aq, (1)e/¥™ 4 c.c.] and is
allowed to evolve diffusively for few time steps to regularize
the dislocation core. The stress tensor is calculated according

to Eq. (2), and the strain e;/; is found by inverting the stress

tensor according to linear elasticity, using the (anisotropic)
elastic constants of the bec lattice given in Ref. [31].

The incompatibility is now a rank-2 tensor with compo-
nents given by nfb = eac,»ebdjacde:/’j [22]. Figure 6(a) shows 2D
slices of the PFC after relaxation, with the complex amplitude
Ag, determined by amplitude demodulation of the phase field
[23] in Fig. 6(b) and the largest component ng’z of the incom-
patibility tensor in Fig. 6(c). Figure 6 demonstrates how the
core of the dislocation lines becomes zeros of the complex
amplitudes, with a phase discontinuity of 27 going around
a dislocation line. The incompatibility tensor in terms of the
dislocation density tensor «;; is given by ny = (€;p0p0 +
€xp10p0y) [32]. For a straight dislocation line with Burgers
vector b = ape, and tangential vector 1 = e, [as illustrated
in Fig. 6(b) by black lines], the dislocation density tensor is
given by its only nonzero component «;,, which gives 71,, =
Ny = Nxy = Nxz = Ny, = 0 and n,; = —0d,0,, which is shown
in Fig. 6(c). Thus, in this case, —1,; is the y component of the
gradient of the dislocation density, which explains its dipole
structure. The spatial extent of 1, around the dislocation line
gives a measure of the spatial smoothing of the dislocation
core [27]. This configuration is the straightforward extension
of the 2D edge dislocations of Fig. 1(b) to three dimensions.
This explains the similarity between the 2D slice of Fig. 6(c)
to Fig. 2(b).

In order to demonstrate the intrinsic capability of the phase
field and its associated incompatibility field to identify dislo-
cations of mixed edge/screw character, we prepare an initial
configuration with a dislocation loop. The Burgers vector of
the dislocation line is constant and equal to ape,, while the tan-
gent vector I rotates in the xy plane. Since 1 switches between
being parallel to b and perpendicular, this leads to a mixed
edge/screw dislocation. Figure 7(a) shows 2D slices of the
PFC, including the defect after relaxation, and the amplitude
Aq, of the first reciprocal lattice vector is shown in Fig. 7(b).
For an ideal dislocation loop with Burgers vector b = agpe,
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ponent of the dislocation density tensor. We get 1y, = 9.0y,
the z component of the gradient of the dislocation density,
and an identical dipole structure as in Fig. 6(c) appears, this
time in the z direction. Similarly, at r = [15, 5, 15] [red dot in
Fig. 7(d)], the nonzero component of the dislocation density
tensor is oy, with which n,, = 9.0,,/2, and we recover the
dipole structure of Figs. 6(c) and 7(c), its magnitude halved
due to the factor of 1/2 in n,,.

We have exemplified here how the phase field i and its
associated incompatibility tensor can correctly describe any
dislocation string or loop in a given bcc lattice. In further
studies, this formalism can be further generalized to other
lattice symmetries and also coupled with the evolution of the
Y field to study the dynamics and nucleation of dislocation
strings.

VI. CONCLUSION

We have shown for the case of a 2D hexagonal lattice that
the incompatibility field n¥ derived from the phase field is
a very sensitive diagnostic of the nucleation of a dislocation
dipole and that it signals the nucleation event prior to the
formation of a stable topological dipole. The symmetry of
the field ¥ prior to nucleation also gives the direction of the
Burgers vectors of the defect pair about to nucleate. By ex-
amining the distribution of the resolved stress for a hexagonal
lattice, we have also found it to be a good indicator of nu-
cleation. Furthermore, a balance between the Peach-Koehler
force on either one of the defects of the dipole and their mutual
elastic interaction force allows a prediction of the resolved
critical stress at nucleation that agrees well with the numerical
results.

While our results serve to extend those of macroscopic
plasticity by allowing the direct observation of the incom-
patibility field and its evolution under an applied stress, the
conclusion that a Schimd-like criterion identifies the nu-
cleation event is in contrast to several existing molecular

dynamics simulations. Some of these simulations show that
the resolved stress does not predict the location or type of
dislocations to nucleate. Instead, it is generally observed that
the nominal extent of the nucleation region is very large, with
a complex network of stacking faults, partial dislocations, and
other significant sources of lattice distortion. These results
would imply that the nucleation path in three-dimensional
(3D) configuration space can be much more complex than in
our 2D configuration, with possibly multiple competing tra-
jectories that depend on details such as boundaries or applied
stress protocols.

Our results indicate that the phase-field crystal model
provides adequate control over configurations and applied
stresses around the nucleation threshold and hence is a suit-
able platform for testing nucleation criteria. The model offers
the necessary separation between length scales, eliminates
fluctuations of thermal origin, and allows the computation of
internally generated stress that contributes to lattice incompat-
ibility and, ultimately, to nucleation. This bypasses the need
for extensive averaging of molecular dynamics trajectories
along paths in configuration space in which fluctuations are
very small.

Finally, we presented results for a 3D bcc lattice to show
that the phase field can be used to describe dislocations in this
lattice and that it offers the possibility of computing the in-
compatibility tensor directly from the phase field for arbitrary,
nonequilibrium configurations.
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