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Abstract 11 

The number of publications on deep learning for cancer diagnostics is rapidly increasing, and systems are 12 

frequently claimed to perform comparable to or better than clinicians. However, few systems have yet 13 

demonstrated real-world medical utility. In this Perspective, we discuss reasons for the moderate progress, and 14 

describe remedies designed to facilitate transition to the clinic. Recent, presumably influential deep learning 15 

studies in cancer diagnostics, of which the vast majority used images as input to the system, are reviewed to 16 

reveal the status of the field. By manipulating real data, we then exemplify that much and varied training data 17 

facilitates the generalisability of neural networks, and thus the ability to use them clinically. To reduce the risk of 18 

biased performance estimation of deep learning systems, we advocate evaluation in external cohorts, and 19 

strongly advise that the planned analyses, including a predefined primary analysis, are described in a protocol 20 

preferentially stored in an online repository. Recommended protocol items should be established for the field, 21 

and we present our suggestions. 22 

23 
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[H1] Introduction 24 

Deep learning [G] facilitates utilisation of large datasets through direct learning of correlations between raw 25 

input data and target output, providing systems that may use intricate structures in high-dimensional input data to 26 

accurately model the association with the target output1,2. A number of studies have reported on the applicability 27 

of deep learning in cancer diagnostics, including prediction of diagnosis, prognosis and treatment response3-5. 28 

While a large number of these tools are claimed to perform comparably or better than clinicians, few have yet 29 

demonstrated real-world medical utility6. This is partly a natural consequence of the time needed for evaluating 30 

and adapting systems affecting patient treatment. However, many studies evaluating apparently well-functioning 31 

systems are at high risk of bias6. Of particular concern is the frequent lack of stringent evaluation on external 32 

data7,8 and that some systems are developed or evaluated on data that are too narrow or inappropriate for the 33 

intended medical setting9-12. Thus, the lack of a well-established sequence of evaluation steps for converting 34 

promising prototypes into properly evaluated medical systems clearly limits the medical utilisation of deep 35 

learning systems [G]. 36 

 37 

While supervised machine learning [G] techniques traditionally utilised carefully selected representations of the 38 

input data to predict the target output, modern deep learning techniques use highly flexible artificial neural 39 

networks [G] to correlate input data directly to the target outputs1,2,13. The relations learned by such direct 40 

correlation will often be true but may sometimes be spurious phenomena exclusive to the data utilised for 41 

learning. In fact, the millions of adjustable parameters make deep neural networks capable of performing 42 

perfectly in training [G] sets even when the target outputs are randomly generated and therefore utterly 43 

meaningless14. Thus, the high capacity [G] of neural networks induces serious challenges on how to design and 44 

develop deep learning systems, and on how to validate that such a system performs adequately in the intended 45 

medical setting15. Adequate clinical performance will only be possible if the system has good generalisability 46 

[G] to subjects not included in the training data16,17. 47 

 48 

The design challenge involves issues related to selection of appropriate training data, such as representativeness 49 

of the target population (BOX 1), as well as modelling questions such as how the variation of training data may 50 

be artificially increased without jeopardising the relationship between input data and target outputs in the 51 
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training data18,19. The validation challenge includes verifying that the system generalises well, e.g. performs 52 

satisfactorily when evaluated on relevant patient populations at new locations and when input data are obtained 53 

using differing laboratory procedures or alternative equipment15,16. Moreover, deep learning systems are 54 

typically developed iteratively, with repeated testing and often including various selection processes that may 55 

bias results20. Similar selection issues have been recognised as a general concern for the medical literature for 56 

many years21,22. Thus, when selecting design and validation processes for diagnostic deep learning systems, one 57 

will have to focus both on the generalisation challenges and on preventing ‘classical’ pitfalls in data analysis. We 58 

will, however, argue that both sets of challenges may be diminished by adopting certain fairly simple principles 59 

partly borrowed from the drug clinical trial field. 60 

 61 

In this Perspective, we first describe the validation challenges with focus on the use of external cohorts [G]. An 62 

evaluation of presumably influential deep learning studies is used to reveal the status of the field particularly 63 

with respect to validation procedures. We then consider generalisation issues, especially looking at the 64 

importance of both natural and artificially induced variations in training datasets. In the last part, we highlight 65 

the importance of evaluating an external cohort according to a predefined primary analysis to reduce selection 66 

bias, and we outline a suggested sequence of evaluation steps for deep learning studies in cancer diagnostics, 67 

including the use of protocols with predefined analysis plans. 68 

 69 

[H1] External cohort evaluation 70 

Rigorous performance evaluation is particularly important due to the inherent high complexity of deep neural 71 

networks, as seemingly well-performing deep learning systems might utilise unintentional and possibly false 72 

features10-12 and respond unexpectedly to apparently irrelevant changes of the input data23. Failure to properly 73 

evaluate systems might have far-reaching consequences, including misdirection of further research, diminished 74 

credibility of research findings and, most importantly, being worthless or even harmful to patients if used to 75 

influence treatment24,25. 76 

 77 

[H2] The importance of an external cohort evaluation 78 
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As an initial evaluation step, the cohort used for development of a deep learning system is often partitioned 79 

randomly into three distinct subsets hereunder referred to as ‘training’, ‘tuning’ [G] and ‘test’ [G], where the 80 

training subset is applied to learn candidate deep learning models [G], the tuning subset to select the deep 81 

learning system that appears to perform best, and the test subset to evaluate the performance of the selected 82 

system8. The evaluation on the test subset may provide unbiased estimation of the performance in the 83 

development cohort [G]. It may also provide some information on the system’s ability to perform well in other 84 

populations by considering the extent to which the system performs better on the training subset than on the test 85 

subset, as this indicates the level of overfitting [G] to the training data. Systems that are highly overfitted to the 86 

training data are likely not to perform well on other populations as the noise utilised to improve the performance 87 

on the training subset may negatively influence the performance on other populations. However, even a system 88 

that performs similarly in training and test subsets might perform far from acceptably on cohorts distinct from 89 

the development cohort26,27. As discussed below and in BOX 1, this may be caused by the system utilising data 90 

features that correlate with the target outcome only in the development cohort, which could be viewed as 91 

overfitting to the entire development cohort, or it might also be caused by important predictive features not being 92 

adequately represented in the development cohort. Thus, using a random subset of the development cohort for 93 

testing does not imply that the results have external validity, i.e. the performance of the system observed in the 94 

test subset may not generalise to patients external to the development cohort. 95 

 96 

For example, Zech, Badgeley and colleagues11 investigated a deep learning system for detection of pneumonia in 97 

chest X-rays, and found that it was not able to uphold the high discrimination performance achieved in the 98 

development cohort when applied to cohorts from different institutions. In this case there was a substantially 99 

higher disease prevalence in one of the training cohorts, and it appears that the poor generalisation was in part 100 

caused by utilisation of cohort-specific characteristics. In particular, the system utilised metallic tokens that 101 

radiology technicians placed on patients to indicate laterality, as these often appeared differently in different 102 

cohorts. The authors further point out that the system might not even generalise well to other patients from the 103 

same institution as the development cohort, because some correlations between input data and target outcome in 104 

the development cohort may not be present in new cohorts from the same institution. Winkler and colleagues12 105 

found that for their system, visible surgical skin markings present in the image were associated with higher 106 

prediction score for melanoma. Similarly, Narla and colleagues10 reported that the presence of a ruler beside a 107 

lesion in an image was associated with a higher malignancy score. Of course, neither skin markings nor rulers 108 
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are causing the skin disease, but the apparent correlation present in the development cohort is sufficient for the 109 

deep learning system to make use of these associations. It could be argued that a more thorough quality control 110 

on the training data could mitigate this, but it is highly unlikely that one is able to detect and control for all 111 

potential confounding factors present in the training set. 112 

 113 

Thus, unbiased performance estimation in a real-world application of a deep learning system requires external 114 

cohorts representative for a target population22,28-30. In an external validation [G], no information from the 115 

external cohort should have influenced the design of the system or the estimation of any model parameter. 116 

Additionally, the external cohorts will implicitly define the patient population for which we have estimated the 117 

performance of the system. Thus, to know whether or not the results may be generalised to the entire target 118 

population, we need a broad validation where the cohorts may be regarded as representative of this desired target 119 

population, e.g. with respect to age, sex, ethnicity, geographical differences and disease prevalence31,32. Other 120 

types of evaluations may also be warranted prior to introducing the system in medical practice, including so-121 

called domain validation to evaluate whether the system performs consistently across a range of laboratories and 122 

technical equipment (BOX 2). 123 

 124 

Objective, non-random separation of patients from the same hospital or subjects from the same country, e.g. 125 

distinguishing between patients treated before and after a certain date, allows using one cohort for training and 126 

tuning and the other for what has been denoted ‘narrow validation’ (BOX 2)22. Such evaluation might provide 127 

unbiased performance estimation for a particular hospital. However, the two cohorts should not simply be a non-128 

random separation of an originally larger cohort but instead be processed separately when acquiring data and 129 

ascertaining target output33. Narrow validation is sometimes considered a limited type of external validation22. 130 

 131 

[H2] Prevalence in recent studies 132 

In order to investigate the prevalence of external cohort evaluation and other characteristics of recent studies on 133 

deep learning and cancer diagnostics, we searched PubMed on 21st of April 2020 for original research articles 134 

published in 2015 or later (Supplementary Methods). The search provided 3,578 results, and the number of 135 
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publications roughly doubled each year since 2016. To explore the use of external cohort evaluation and other 136 

characteristics in some of the most prominent and perhaps best studies, we restricted our evaluation to those with 137 

at least 20 citations per year or published in a journal with impact factor 10 or larger. Although studies satisfying 138 

either of these criteria are presumably quite influential, we acknowledge that some of the other studies might be 139 

equally good. In particular, recent studies may not have had time to accrue 20 citations even if they are currently 140 

of great interest, and such studies would only be included if published in a journal with impact factor 10 or 141 

larger. This will exclude most studies published in new journals that are expected to receive impact factors 10 or 142 

larger when this becomes available. However, we consider the selected papers to be sufficient for the purposes of 143 

this discussion, as they show that some aspects of study design could be better even in some of the presumably 144 

best studies. Only 257 (7%) of the 3,578 search results satisfied at least one of these selection criteria, and 145 

another 43 search results were excluded because the document type in Web of Science indicated that these were 146 

not original research articles. The remaining 214 studies were manually evaluated (Supplementary Table 1). We 147 

further excluded 6 studies that were not original research articles and 102 studies where deep learning was not 148 

used to predict or classify features relevant for cancer diagnosis, prognosis or treatment response, or such 149 

potential utility of the deep learning system was not evaluated. After also excluding 14 studies without human 150 

subjects or only pertaining cell biology, we ended up with 92 eligible studies34-125, of which 85 (92%) used 151 

images as input to the deep learning system34-57,59-64,66,67,69-93,95-99,101-121,123,125. 152 

 153 

Among 516 original research articles on artificial intelligence for diagnostic analysis of medical images 154 

published in 2018, Kim, Jang and colleagues7 found only 31 (6%) studies that evaluated an external cohort. In 155 

contrast, 50 (54%) of our 92 eligible studies evaluated the performance of the deep learning system on an 156 

external cohort37,40,48,49,51,53,55,60,62,63,65,70,73-75,78-80,82-87,90,92,93,95,96,98,100-102,104-116,120,121,123,125. This discrepancy is most 157 

likely mainly attributed to our selection of presumably influential studies, and partly attributed to the increasing 158 

usage of external cohorts (FIG. 1a); 34 (72%) of the 47 eligible studies published in 2019 and 2020 evaluated an 159 

external cohort compared to 9 (39%) of the 23 eligible studies published in 2018 and 7 (32%) of the 22 eligible 160 

studies published before 2018. 161 

 162 

Among studies satisfying both our selection criteria, 79% (11 of 14) evaluated an external cohort, compared to 163 

68% (25 of 37) for studies that satisfied only the impact factor criterion and 34% (14 of 41) for studies that 164 
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satisfied only the citation frequency criterion. It thus appears that journals with high impact factor have a 165 

preference for studies evaluating external cohorts. This is consistent with the call by editors of leading scientific 166 

journals for rigorous evaluation of artificial intelligence tools126,127 and explicit prioritisation of biomarker 167 

studies that evaluate external cohorts by some journals, e.g. the Journal of Clinical Oncology 168 

(https://ascopubs.org/jco/authors/journal-policies). 169 

 170 

[H1] Generalisability 171 

While increased use of external cohorts is an important step towards proper validation of deep learning systems, 172 

one is still left with the challenge of ensuring that the results obtained on such a population provides a 173 

satisfactory measure of the performance within the entire intended target population. This target population may 174 

typically be patients who have a specific cancer type, and although often restricted e.g. to certain stages of the 175 

disease, the target population is normally broad. Although some studies may use more than one external cohort 176 

and some use trials with many centres distributed over several countries, it is difficult to obtain external cohorts 177 

that entirely cover the target population. Thus, successful application of a deep learning system will depend on 178 

good generalisation properties, so that good performance on one population also indicate satisfactory 179 

performance on populations differing with respect to some properties. Fortunately, exploring generalisation in 180 

deep learning is an active research area128, and by utilising certain design principles, deep learning systems have 181 

shown remarkably good generalisation performance on a number of tasks2-5. 182 

 183 

One way of increasing generalisation is to control the neural network’s capacity to express complex mappings, 184 

e.g. by limiting the number of adjustable parameters in the network, imposing various constraints on the network 185 

or regularising the optimisation129,130. Transfer learning could also increase generalisation, particularly when 186 

training data for the task at hand is scarce131,132. In transfer learning, the network is initialised with parameters 187 

optimised using data for a different task, typically using large datasets such as ImageNet133,134, which may 188 

mitigate overfitting at the possible cost of introducing biases135-137. Making the training dataset more diverse and 189 

more representative of the target population is another way of increasing generalisation138. Of particular 190 

importance is to ensure adequate and unbiased representation across demographic characteristics such as sex, 191 

race and ethnicity (BOX 1). In addition to expanding the natural training dataset, i.e. the set of training data 192 

https://ascopubs.org/jco/authors/journal-policies
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acquired from a range of patient samples with associated target outcome, one may artificially augment the 193 

training dataset by applying smaller transformations on the inputs while maintaining their relationship to the 194 

target output18,139. This can reduce the network’s ability to memorise details of the training data and thereby 195 

increase generalisation, especially in situations where the availability of training data is limited. The transforms 196 

can randomly change, often called ‘distort’, the input data by e.g. adding noise, erasing parts, shifting and scaling 197 

colours or altering the image geometry19. Artificially diversifying the training data may increase generalisation 198 

by enabling the resulting system to ignore vagaries of the measurement process and even become applicable to 199 

multiple data acquisition procedures, e.g. different acquisition equipment140,141. Other augmentation techniques 200 

include those that generate artificial input data, e.g. by mixing multiple data inputs19. The value of augmentation 201 

techniques has been observed in various application domains19, including the use on images obtained in 202 

radiology38,142-144 and histopathology141,145. 203 

 204 

To illustrate the importance of the amount and variation in training data, and more specifically show how data 205 

distortion may work to improve deep learning systems in cancer diagnostics, we show this type of analysis here 206 

using data from a previously published study113. This previous study applied deep learning to predict colorectal 207 

cancer-specific survival directly from conventional haematoxylin and eosin stained sections, with training and 208 

tuning data derived from 2,473 patients from four cohorts. The performance was evaluated on an external cohort 209 

consisting of 1,122 patients from a randomised controlled trial on a drug that was observed to not affect 210 

survival146. We applied the convolutional neural network called Inception-v3147, which is a commonly used 211 

network in medical image diagnostics8, in both the previously published analyses and the new analyses presented 212 

here. 213 

 214 

Initially, we applied the same distortion process as in our published analyses113. This process artificially 215 

increased the variation of the training images by randomly distorting their colours, which is an augmentation 216 

technique that appears crucial when training deep learning systems in histopathology145. Initially, the maximum 217 

amount of distortion we allowed was quite modest (FIG. 2a). To illustrate the effect of reducing the number of 218 

patients while keeping the patient heterogeneity implied by having data from four cohorts, we randomly sampled 219 

979 patients in such a manner that the data had the same number of training and tuning patients with and without 220 

cancer-specific death as in the cohort from the Gloucester Colorectal Cancer Study, UK (the largest of the four 221 
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training and tuning cohorts). The decreased performance of the resulting deep learning system when evaluated 222 

on the external cohort (FIG. 2b) exemplifies the importance of a large natural training dataset and its intrinsic 223 

variation138. Further reduction of the number of patients decreased the performance further; training and tuning 224 

on a quarter of the 979 patients or less (that is, less than 250 patients) provided systems that did not perform 225 

substantially better than random guessing (FIG. 2b). 226 

 227 

We then showed that modifying the distortion process may mitigate for the performance loss observed when 228 

reducing the number of patients in training and tuning. Compared to using all 2,473 patients for training and 229 

tuning, using 979 randomly selected patients and four times the original amount of colour distortion provided 230 

similar performance on the external cohort (FIG. 2c). For this modified distortion process we allowed quite 231 

substantial colour distortions (FIG. 2d), and the results showed that artificial augmentation may in some cases 232 

compensate for limited natural training and tuning data. However, increasing the amount of colour distortion 233 

further provided worse performance (FIG. 2c), illustrating the trade-off between preventing overfitting through 234 

random distortions and occluding relevant information for the prediction task. 235 

 236 

Randomly sampling 979 patients from all four cohorts maintained much of the variation in the natural training 237 

and tuning data. If we instead used only the Gloucester cohort, which contained the same number of training and 238 

tuning patients with and without cancer-specific death as in the random sample, we obtained worse performance 239 

on the external cohort, most clearly when including more colour distortion in training (FIG. 2e). This underlines 240 

the importance of designing studies such that the natural training data is diverse, and FIG. 2e additionally 241 

illustrates that natural and artificial variation works well together to increase generalisability. 242 

 243 

In general, the most suitable distortion process will depend on the particular medical prediction task because the 244 

involved data will tolerate different amounts of the various types of distortions before true correlations between 245 

input and target output are occluded. For instance, deep learning systems that classify based on images of skin 246 

lesions or tumour sections are likely to benefit from being invariant to rotations, while systems aimed at 247 

supporting radiology might rely on the orientation in images of larger organ structures and thereby perform 248 

worse if forced to be rotation invariant. Thus, the distortion process needs to be fine-tuned to the particular 249 
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application, as findings about which distortion process appears most beneficial in one scenario, e.g. findings 250 

from the example presented in FIG. 2, are not necessarily directly applicable to other scenarios. However, the 251 

general principle is that including much and varied training data is important. As the importance of artificial 252 

augmentation decreases with the amount and diversity in the natural training data, prediction tasks where the true 253 

correlations between input data and target output are easily obscured by distortion warrants a more 254 

comprehensive natural training dataset. 255 

 256 

[H1] Predefined primary analysis 257 

In the development of a deep learning system, researchers will often evaluate different systems sequentially, 258 

each time having the possibility to learn from interpreting the previous evaluations and adapt the system to the 259 

specific data used for evaluation. Such repeated evaluations will bias the estimates, and their dependence on 260 

previous evaluations makes established statistical approaches for adjusting for multiple comparisons not 261 

applicable148,149. Similar re-analysis issues may arise if the initial analysis of a specific deep learning system 262 

reveals issues that are then corrected and the performance is re-evaluated. Such problems of repeated or multiple 263 

evaluations are well-known from examinations of the data analysis in various types of published medical studies, 264 

and have been identified as important contributors to biased inference and irreproducible results20,150. 265 

 266 

As discussed above, evaluation on an external cohort is required for unbiased performance estimation in a real-267 

world application of the deep learning system, but it is only a prerequisite as multiple or repeated evaluations 268 

may cause bias even if evaluating an external cohort. Great caution would therefore be needed when interpreting 269 

studies that report multiple analyses without specifying which was initially planned to be the primary analysis, if 270 

any. 271 

 272 

[H2] Prevalence of predefined primary analysis 273 

In our evaluation of recent, presumably influential deep learning studies in cancer diagnostics, all studies 274 

performed multiple analyses of the external cohort in the form of either evaluating multiple systems, analysing 275 

multiple subpopulations or using various analysis methods. Only 3 (6%) of the 50 eligible studies that evaluated 276 
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an external cohort used one of the well-established methods for adjustment for multiple comparisons51,62,114, e.g. 277 

Bonferroni correction. This implies that most studies should have specified which analysis was considered the 278 

primary analysis prior to evaluation of the external cohort, if such a decision was made, in order to inform the 279 

reader which analysis was not affected by selection bias and to help distinguish studies with a predefined 280 

primary analysis from those that repeatedly evaluated the external cohort and might have ended up reporting 281 

severely biased performance estimates. Although the principle of using an external dataset only once to evaluate 282 

the final hypothesis should be well-known in the machine learning community151,152, it seems currently that there 283 

is no tradition for specifying the predefined primary analysis in deep learning publications other than those 284 

reporting on clinical trials. In our evaluation, 20 (40%) of the 50 studies evaluating an external cohort specified 285 

one or more primary performance metrics (FIG. 1b)55,60,73,82,83,85,86,93,98,102,105,108-110,113,115,116,120,121,125, but only 8 286 

(16%) of the 50 studies specified a predefined primary analysis (FIG. 1c)73,83,102,105,109,113,120,121. 287 

 288 

Prespecification of the primary analysis has previously been advocated in diagnostic and prognostic 289 

research153,154, but this is unfortunately still not common practise despite being the only direct protection against 290 

selection bias20. To ensure unbiased estimation, the primary analysis should be unequivocally specified prior to 291 

all investigations that could reveal correlations between input data and target output in the external cohort. This 292 

would require the researchers to define all relevant aspects of the validation prior to analysing the cohort, 293 

including the deep learning system, target output, and patient and input data in the external cohort. Predefining 294 

the primary analysis will entail a commitment to the main analysis, which implies that the analysis should be 295 

carefully planned in advance and that researchers will be discouraged from performing creative data dredging155. 296 

 297 

[H2] Choosing the primary metric 298 

Many medical questions are categorical in nature, e.g. whether tumour or not, whether mutated or not, and 299 

whether to offer treatment or not. However, deep learning models often output continuous values reflecting the 300 

predicted probability of each possible outcome. In such cases, the predefined primary analysis should preferably 301 

evaluate a categorisation of the model output aimed at answering the medical question. The primary analysis will 302 

then be comparing predicted and target outcome in the external cohort, e.g. by measuring the so-called balanced 303 

accuracy [G]156. Measuring the performance using categorical outputs often provides more conservative 304 
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estimates157 and avoids issues with metrics frequently applied to measure the performance using continuous 305 

outputs. For instance, the area under the receiver operating characteristic curve [G] (AUC)158 and concordance 306 

index [G] (c-index)159 are only affected by the ranking of the continuous outputs, not the prediction scores 307 

themselves160. Thus, such metrics may indicate that a deep learning system performs well even if it predicts 308 

markedly too high probabilities for all patients in a specific cohort, provided that the continuous outputs of the 309 

system rank the patients in a fairly correct order. In another cohort, the same system may similarly appear to 310 

perform well even if it predicts markedly too low probabilities for all those patients. The generalisability of such 311 

a system is poor, yet this would not be evident from the AUC and c-index of the continuous outputs, but it would 312 

be evident from the AUC and c-index of a categorisation defined irrespective of the external cohorts. The 313 

categorisation may be defined by e.g. determining suitable thresholds during tuning or selecting the outcome 314 

with highest prediction score as the predicted outcome. Defining the categorisation using the external cohort, 315 

even at predefined levels of e.g. sensitivity, adapts the categorical marker to the specific external cohort and may 316 

occlude shifts in the prediction scores as with the AUC and c-index of the continuous outputs. 317 

 318 

In our evaluation of recent, presumably influential deep learning studies in cancer diagnostics, we found that 34 319 

(68%) of the 50 studies evaluating an external cohort reported the estimated performance of a categorical marker 320 

on the external cohort, with a categorisation defined irrespective of the external cohort48,49,53,55,60,62,63,65,73,75,78-321 

80,82,85,87,90,98,100,102,104-106,108-111,113-116,120,121,125. The proportion was lower for studies reporting on deep learning 322 

systems that used histopathology section images as input, with only 6 (40%) of 15 studies evaluating a fixed 323 

categorical marker on the external cohort48,55,82,111,113,114, which is surprising since most histopathological 324 

evaluations provide categorical values. 325 

 326 

For certain deep learning systems, the intended medical application directly utilises the system’s continuous 327 

output, e.g. to triage patients for further examinations, and in such cases the continuous output should be 328 

evaluated in the primary analysis. This may warrant additional analyses to reveal generalisation issues that might 329 

be occluded by the selected performance metric, e.g. to consider a calibration plot in addition to the c-index 330 

when evaluating a clinical decision support system for predicting patient outcome22,26. 331 

 332 
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[H1] From conception to application 333 

All research with the potential to influence patient treatment should undergo careful evaluation sequences and be 334 

driven by protocols with a predefined statistical analysis plan153. FIG. 3 illustrates what we consider as natural 335 

and important steps in the development and evaluation of deep learning systems for medical applications. 336 

 337 

The initial exploratory studies aim to answer whether deep learning appears suitable for the task at hand or 338 

whether further investigations based on deep learning are not warranted at this time, usually because the 339 

hypothesis seems ill-founded or the available data is not expected to provide a system with adequate 340 

performance. The performance estimates obtained in such pilot studies are frequently inflated by the use of a 341 

limited development cohort, but promising findings may motivate further investigations. After a series of 342 

explorations and possibly expansions of the development cohort, the development should conclude by deciding 343 

which system appears to perform best on the intended medical task, considering also the sensitivity to vagaries 344 

of the measurement process. Of particular importance to prevent selection of a system that performs much worse 345 

on patients outside the development cohort, the study could include sufficient amount and variation in the natural 346 

training dataset and use techniques like data distortion to increase the variation artificially. 347 

 348 

There is a growing interest in explainable deep learning systems161-163, including the creation of inherently more 349 

explainable systems and post-hoc explanations of existing systems164. For image classification tasks in particular, 350 

so-called saliency maps visualise the contribution of each pixel to the final prediction score and can be created 351 

using a number of different techniques165-167. By increasing the transparency, the more explained systems might 352 

have more predictable generalising abilities. This may be used to identify target populations within which the 353 

system is expected to generalise well or settings where the system is prone to fail. For example, Winkler and 354 

colleagues12 used such a technique to support their finding that surgical skin markings unduly increased the 355 

system’s prediction score for melanoma. While current explainability techniques might suggest generalisability 356 

and thereby suggest suitable target populations or influence the selection of which system to evaluate further, 357 

they will only provide indications and thus not reduce the need for proper validation. 358 

 359 
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While efficacy studies of pharmaceutical products are usually preceded by prospective trials to estimate basic 360 

features such as safety and dosing168, deep learning systems for diagnostic purposes can to a larger extent utilise 361 

retrospective cohorts, e.g. from earlier clinical trials or medical practice. Given the risks, timeframe and costs of 362 

interventional research168-170, we recommend rigorous, retrospective analyses to evaluate the medical validity of 363 

a deep learning system by conducting an external validation according to a predefined primary analysis. The 364 

results of such studies provide valuable information to direct further research, thus warranting publication 365 

regardless of the significance of the findings, which would also mitigate publication bias. 366 

 367 

Rigorous, retrospective analyses of a deep learning system might warrant conducting a prospective, randomised 368 

phase III clinical trial where the system directly intervenes with the current standard of care in order to evaluate 369 

the system’s medical utility in a specific real-world application, considering both benefits and harms for patients 370 

in the target population30,171. Systems demonstrated to have medical utility and approved by necessary 371 

governmental agencies can be applied in medical practice while monitoring the long-term benefits, harms and 372 

costs for each specific real-world medical application in phase IV clinical trials. Such surveillances might 373 

eventually indicate that the system needs to be updated because of changes in medical practice or data 374 

acquisition172. 375 

 376 

The levels of deep learning studies depicted in FIG. 3 and the phases of clinical trials were used to categorise 377 

recent, presumably influential deep learning studies in cancer diagnostics in relation to the reliability of the 378 

performance estimation approach and the demonstrated applicability of the system in medical practice. Although 379 

some group sizes are very small, there appears to be notable differences between research fields defined by the 380 

input to the deep learning system (FIG. 4). The proportion of studies evaluating an external cohort was lowest 381 

for the 7 studies with only non-image inputs such as omics data (29%; 2 of 7 studies), while highest for 22 382 

studies with images other than histopathology section and radiology images as input, e.g. from gastrointestinal 383 

endoscopic examinations or dermoscopic images (64%; 14 of 22 studies). Five (23%) of the 22 studies with 384 

other images as input even had a predefined primary analysis of the external cohort73,102,105,109,121, which included 385 

the 3 studies reporting on a randomised clinical trial, all of which evaluated a deep learning system to aid 386 

gastrointestinal examinations102,105,121. 387 
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 388 

[H2] Recommended protocol items 389 

When planning to evaluate the medical validity of a deep learning system through rigorous, retrospective 390 

analyses, we recommend the unequivocal specification of the predefined primary analysis to be documented in a 391 

study protocol. Relevant items in such protocols would differ from clinical trial protocols, which are the target of 392 

guidelines such as SPIRIT (Standard Protocol Items: Recommendations for Interventional Trials)173 and its 393 

extension to artificial intelligence174. Protocols should be developed before conducting the validation, and 394 

relevant items would therefore also differ from those in original research articles, which are the target of many 395 

reporting guidelines such as CONSORT (Consolidated Standards of Reporting Trials)175 and TRIPOD 396 

(Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis)22 as well as 397 

their extension or anticipated adaption to machine learning176,177. It is therefore a need to establish guidelines 398 

dedicated to study protocols describing validations of deep learning systems. We propose a non-exhaustive list 399 

of items that we consider essential in such protocols, termed Protocol Items for External Cohort Evaluation of a 400 

deep learning System (PIECES) in cancer diagnostics. 401 

 402 

In order to be sufficiently concrete about the predefined primary analysis, the protocol needs to describe the deep 403 

learning system and how it will be assayed, define the external cohort, including its origin, what it represents in 404 

terms of medical setting and target population, input data and target output, and clearly specify the performance 405 

evaluation. These three parts of the protocol form the basis of our PIECES recommendations together with a 406 

declaration of status (BOX 3). The status declaration should scrupulously elucidate any investigations performed 407 

before finalising the protocol that could reveal correlations between input data and target output in the external 408 

cohort, or state that no such investigations were performed. 409 

 410 

The PIECES recommendations are designed to facilitate identification of ambiguities and disagreements 411 

between the researchers planning to conduct an external validation as well as to provide a clear description of the 412 

predefined primary analysis as reference for all readers, which may aid medical professionals in identifying well-413 

designed studies and their applicability to their own clinical practice. The thought and work that should go into 414 

making such a protocol could also allow the researchers to make appropriate changes prior to performing the 415 
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external validation. For instance, considering what the external cohort is intended to represent and how the deep 416 

learning system is envisioned to be applied in practice, could affect the inclusion and exclusion criteria for 417 

patients and samples as well as the metric or statistical test applied in the primary analysis. 418 

 419 

Researchers conducting an external validation would often like to perform multiple, related analyses to elucidate 420 

the performance of the deep learning system. To separate preplanned analyses from exploratory, post hoc 421 

analyses, the PIECES recommendation encourages specification of predefined secondary analyses that the 422 

researchers would like to commit themselves to report on publication of their findings. Such secondary analyses 423 

would be affected by the multiple comparisons problem but predefining and reporting all secondary analyses 424 

would provide a transparency that would substantially increase the credibility of the results. Importantly, the 425 

specification of predefined secondary analyses does not diminish the validity of the predefined primary analysis. 426 

Any analyses the researchers consider reporting, but do not wish to commit themselves to report, should not be 427 

specified as secondary analyses in the protocol and therefore should be reported as exploratory analyses, even 428 

though they might be thought of prior to analysing the external cohort. 429 

 430 

[H2] Study registration 431 

We recommend registration of the study protocol in an online repository before analysing the external cohort. 432 

Most major trial registries, e.g. ClinicalTrials.gov (https://www.clinicaltrials.gov) and the International Standard 433 

Randomised Controlled Trial Number (ISRCTN) registry (https://www.isrctn.com), accept registration of 434 

diagnostic accuracy studies154. These registries can be used to record external validation studies in deep learning, 435 

but some items will not be relevant, while some important items such as defining the deep learning system will 436 

not be encouraged. A dedicated repository to register the study protocol describing the external validation of a 437 

deep learning system is therefore warranted. We recognise that it may be undesirable to publish a detailed study 438 

protocol in an online repository prior to conclusion of the study as it would reveal novel work prior to 439 

publication of the results and perhaps in some rare cases jeopardise publication. In a dedicated repository, a 440 

submission could be partially or completely invisible to the public and the protocol encrypted until the authors 441 

choose to reveal the submission and provide the required decryption key, thus facilitating preregistration of study 442 

protocols without requiring authors to reveal novel ideas prematurely. 443 

https://www.clinicaltrials.gov/
https://www.isrctn.com/
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 444 

Registration of observational studies has been advocated by editors of major clinical journals178,179, many 445 

editorial board members180 and researchers181,182, and the criticism it has received from epidemiologists in 446 

relation to the exploratory nature of epidemiology183-185 does not apply to external validation studies. For 447 

diagnostic and prognostic biomarker studies in particular, the registration of a study protocol with a predefined 448 

analysis plan has been recommended by several researchers153,154,186-188, provided that it precedes the onset of the 449 

study189. This would facilitate a more balanced evaluation of the proposed marker, identification and prevention 450 

of selective reporting, increased transparency, reduced proportion of false positive findings, mitigation of 451 

publication bias through identification of unpublished studies, and prevention of unnecessary duplication of 452 

research while facilitating collaboration between researchers and identification of research gaps. Consequently, 453 

widespread preregistration of detailed study protocols for deep learning systems might translate into more rapid 454 

identification of promising systems and thereby expedite progression of the research field. It would also 455 

communicate a study to peers without disclosing the findings and interpretations prior to editorial and peer 456 

review, thus providing some of the benefits of preprint archiving while allowing critical appraisal of the findings 457 

and interpretations before publication. 458 

 459 

Amendments of clinical trial protocols are common but should be tracked and dated173. While clinical trials often 460 

take years to conduct due to patient recruitment and follow-up, most external validations of deep learning 461 

systems use retrospective data and the analysis part of the validation may be performed in a matter of days. 462 

Consequently, it should rarely be necessary to modify the study protocol describing the external validation of a 463 

deep learning system after initiating the validation. We therefore generally discourage protocol amendments, but 464 

if found necessary for a particular study, we recommend amendments to be included as postscripts to the study 465 

protocol, leaving the original protocol unaltered. Both the postscript and disseminations of the validation results 466 

should concretely specify what was changed as well as describe the motivation and rationale for the change. 467 

 468 

[H1] Conclusions 469 

Including much natural and artificial data variation when training rigorous deep learning systems appears 470 

pivotal, as analyses indicate its instrumental role in increasing the performance and generalisability of systems. 471 
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Utilising multiple sets of patients, samples and data acquisition procedures will diversify the training data, while 472 

augmentation techniques artificially enhance the variation further. The resulting systems may be capable of 473 

handling the diversity in routine medical practice and in some cases even generalise to completely new settings. 474 

 475 

Going forward, the medical validity of a deep learning system should be evaluated according to a preregistered 476 

study protocol specifying the primary analysis and using an external cohort representative of the intended 477 

medical setting and target population. This facilitates balanced performance evaluations by reducing selection 478 

bias and increasing transparency, and helps medical professionals distinguish rigorous, retrospective validation 479 

studies from studies that repeatedly evaluated the external cohort and might end up reporting severely biased 480 

performance estimates. It would therefore assist in identifying deep learning systems that warrant prospective 481 

evaluations in randomised clinical trials and ultimately drive the development of systems that could transform 482 

current medical practice. 483 

 484 
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Glossary 920 

Artificial neural networks 921 

Mathematical functions mapping input data to output representations, structured as a directed graph of nodes and 922 

edges. 923 

Deep learning 924 

A class of machine learning methods that make use of successively more abstract representations of the input 925 

data to perform a specific task, typically implemented using artificial neural networks. They also consist of an 926 

objective function that compares the final output with a target output as well as an optimisation method that is 927 

used to optimise the objective function. 928 

Deep learning models 929 

Computational models obtained by training deep neural networks. Note that a single training of a neural network 930 

produces a sequence of models since each new optimisation iteration produces a model slightly different from 931 

the previous one. A tuning dataset may be used to select among these models. 932 

Deep learning systems 933 

Systems utilising one or more deep learning models to make predictions. A system’s output may be a function of 934 

the outputs of the models, e.g. by averaging and thresholding the model outputs. 935 

Supervised machine learning 936 

A methodology in which learning occurs by mimicking the mapping of input data to target output labels. In 937 

contrast, the input data are not associated with any output labels in unsupervised learning. 938 

Capacity 939 

The ability of a model class, e.g. a particular network architecture, to express complicated correlations between 940 

input data and target output. Model classes with high capacity have the potential to produce models that are able 941 

to map training data to target outputs with a high degree of accuracy, but are also more prone to overfitting. 942 

Development cohort 943 
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A cohort used for training and sometimes tuning and internal validation of a system. 944 

External cohorts 945 

Also known as independent cohorts, these differ non-randomly from the development cohort. In cancer 946 

diagnostics, the external cohorts will often contain patients suspected of having the same disease or disease 947 

attribute, at risk of developing the same event or suspected to respond to the same treatment as patients in the 948 

development cohort. However, external cohorts may be intentionally more different from the development 949 

cohort. 950 

Training 951 

Optimisation of model parameters based on data. 952 

Tuning 953 

Informed selection of hyperparameter values (parameters not optimised during training) based on data. Examples 954 

include network architecture, optimisation method and threshold for a model’s continuous output. The 955 

nomenclature in machine learning is to use ‘validation’ instead of ‘tuning’. 956 

Test 957 

While frequently used by the machine learning community to refer to an evaluation of a system’s performance, 958 

we use ‘test’ to refer to evaluations other than external validations, e.g. internal validations. 959 

External validation 960 

An evaluation of a system’s performance on an external cohort that did not influence the development of the 961 

system. 962 

Overfitting 963 

Utilising noise or features in the training data that are not generally relevant for the prediction task but cause the 964 

system to perform better on the training sample. 965 

Generalisability 966 
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The ability of a system to perform similarly on subjects not included in training as on those included in the 967 

training. Poor generalisability can be caused by overfitting to the training data or by the lack of generally 968 

relevant features in the training data. 969 

Balanced accuracy 970 

A classification performance metric calculated by averaging the proportion of true predicted outcomes across all 971 

possible outcomes. For dichotomous outcomes, this reduces to the average between the sensitivity and 972 

specificity. 973 

Area under the receiver operating characteristic curve (AUC) 974 

A performance metric measuring the concordance between a dichotomous outcome and the ranking of subjects 975 

provided by a continuous or categorical marker. An AUC of 50% indicates random guessing and 100% indicates 976 

perfect prediction. For dichotomous markers, AUC and balanced accuracy are equivalent. 977 

Concordance index (c-index) 978 

A performance metric measuring the concordance between a target outcome, usually defined by time-to-event 979 

data, and the ranking of subjects provided by a continuous or categorical marker. A c-index of 50% indicates 980 

random guessing and 100% indicates perfect prediction. For dichotomous outcomes, c-index and AUC are 981 

equivalent.982 
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Figure legends 983 

 984 

Fig. 1 | Characteristics of recent, presumably influential deep learning studies in cancer diagnostics. a | 985 

Percentage of studies reporting on the evaluation of a broad or narrow cohort (BOX 2) by year of publication, for 986 

all 92 eligible studies. b | Percentage of studies specifying one, multiple or no primary performance metrics in 987 

the analysis of the external cohort, for the 50 eligible studies that reported on the evaluation of an external 988 

cohort. c | Percentage of studies specifying a predefined analysis of the external cohort, for the 50 eligible studies 989 

that reported on the evaluation of an external cohort. Studies that specified predefined analyses of external 990 

cohorts without defining which one was the primary, if any, were categorised as ‘Predefined analyses’. Studies 991 

with a predefined primary analysis were categorised according to whether the primary analysis was prespecified 992 

in a protocol or not. 993 

 994 

Fig. 2 | Effect of data variation when training deep learning systems. For each analysis setup, 20 individual 995 

deep learning systems were trained and tuned for prediction of colorectal cancer-specific survival using images 996 

of haematoxylin and eosin stained sections acquired by both Aperio AT2 (Leica Biosystems, Germany) and 997 

NanoZoomer XR (Hamamatsu Photonics, Japan), as in the previously published analyses113. The individual 998 

systems were applied to evaluate the external cohort using NanoZoomer XR slide images, and the c-index of the 999 

system’s binary output was computed. Standard box plots were made using Stata/SE 16.1 (StataCorp, TX). The 1000 

matched random subset contained the same number of training and tuning patients with and without cancer-1001 

specific death as in the Gloucester cohort, in total 979 patients. a | An example image from the training dataset 1002 

and the results of applying the maximum possible amount of colour distortion at each step in the random 1003 

distortion process used in the published Inception-v3 analyses113. Generally, the distortion process applies 1004 

random colour distortions to an image by: 1) converting the image to HSV colour space, 2) adding a random 1005 

value between -0.05 and 0.05 to the hue, 3) scaling the saturation by a random value between 1/1.1 and 1.1, 4) 1006 

adding a random value between -0.1 and 0.1 to the saturation, 5) scaling the brightness (or technically the value 1007 

channel in the HSV colour space) by a random value between 1/1.1 and 1.1, 6) adding a random value between -1008 

0.1 and 0.1 to the brightness, and 7) converting back to RGB colour space. Intuitively, the leftmost and rightmost 1009 

images represent the range of the random colour distortion, i.e. the minimum and maximum possible amount of 1010 

colour distortion for the applied distortion process, where the minimum is no colour distortion. Scale bar, 100 1011 
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µm. b | Effect of changing the number of patients in training and tuning when using the original amount of 1012 

colour distortion, as depicted in figure part a. c | Effect of changing the amount of colour distortion when 1013 

training and tuning using the matched random subset. Label ‘0’ on the horizontal axis identifies deep learning 1014 

systems trained without any colour distortion, label ‘1’ identifies systems trained with the colour distortion 1015 

process depicted in figure part a, and label ‘4’ identifies systems trained with the colour distortion process 1016 

depicted in figure part d. d | Similar to figure part a, but four times the amount of colour distortion was used at 1017 

each step in the distortion process. Scale bar, 100 µm. e | Effect of changing the amount of colour distortion and 1018 

the number of patients and cohorts in training and tuning. 1019 

 1020 

Fig. 3 | Development and evaluation of deep learning systems. A deep learning project often begins with 1021 

testing a conceptual idea using a pilot software based on a related open source implementation and data easily 1022 

available to the researchers. Successful level I studies will typically evolve into explorative testing of different 1023 

modelling options that might be more suitable for the particular task. The system that appears to perform best 1024 

should be determined in a level II study that includes sufficient amount and variation in the natural training 1025 

dataset. Although performance estimates obtained in such studies are often inflated by the use of a subset that 1026 

closely resembles the training subset, level II is an important step in the evaluation sequence that could motivate 1027 

investigators to pursue evaluation on external cohorts and attract collaborators. As the lack of predefined primary 1028 

analysis often entails post hoc adjustments influenced by the performance in the external cohort, we distinguish 1029 

between studies without (level III) and with (level IV) a primary analysis unequivocally specified prior to all 1030 

investigations that could reveal correlations between input data and target output in the external cohort. If the 1031 

medical validity of a deep learning system is established in level IV studies, the indicated medical utility should 1032 

be prospectively evaluated in randomised phase III clinical trials where the system directly intervenes with the 1033 

current standard of care. If medical utility is demonstrated and necessary governmental agencies approve routine 1034 

medical application, the system can be applied in medical practice while monitoring the long-term benefits, 1035 

harms and costs of its application. 1036 

 1037 

Fig. 4 | Reliability of performance estimations in recent, presumably influential deep learning studies in 1038 

cancer diagnostics. Percentage of studies categorised in the different levels of deep learning studies or phases of 1039 

clinical trials depicted in FIG. 3, for all 92 eligible studies separated by type of input to the neural network. The 1040 
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input was histopathology section images in 23 (25%) of the studies (a), radiology images in 40 (43%) of the 1041 

studies (b), other images in 22 (24%) of the studies (c) and other types of input in 7 (8%) of the studies (d). 1042 

1043 
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Boxes 1044 

 1045 

Box 1 | Representation and biases in training data 1046 

As deep learning systems are developed by learning correlations between input data and target outcome directly 1047 

from the training data, it is essential that the training data adequately represents the target population31,190. 1048 

Otherwise, the system might learn correlations exclusive to the subpopulation represented in the training data 1049 

and consequently perform worse on those not represented in the training data to a sufficient extent. Despite this, 1050 

systems are often trained on datasets with prominent biases in demographic characteristics such as sex, race or 1051 

ethnicity, with the consequence that many systems exhibit substantial discriminatory biases32,191,192. Restricting 1052 

the target population to a particular sex, race or ethnicity would be appalling, and the medical application of any 1053 

such deep learning system would systematically increase health care disparities. It is therefore pivotal to utilise 1054 

truly representative and unbiased data for training deep learning systems in cancer diagnostics. This extends 1055 

beyond ensuring representative distributions of relevant demographics in the training dataset. Racial bias may 1056 

also be encoded into systems if the target outcome used in the training is affected by histories of unequal 1057 

treatment of patients based on race or ethnicity193 or is a proxy such as health care cost instead of health needs, 1058 

which has been shown to be the reason why a widely used health care prediction algorithm exhibited significant 1059 

racial bias194. Researchers should strive to identify and compensate for any such biases in their datasets, as 1060 

failure to do so might reinforce health inequities if the deep learning systems are applied in clinical 1061 

practice195,196. Deficient deep learning systems might be identified through rigorous evaluations in external 1062 

datasets truly representative of the target population, or representative of minority populations, as well as 1063 

through comprehensive analyses of system explainability across different demographic characteristics. 1064 

1065 
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Box 2 | Approaches for evaluating a deep learning system 1066 

Different approaches for estimating the performance of a deep learning system provide indications of the 1067 

system’s ability to make accurate predictions in different scenarios. Even if successful, internal and narrow 1068 

validations do not indicate a general medical validity in themselves. Successful broad or domain validations 1069 

might warrant assessment of the system’s medical utility in prospective, randomised phase III clinical trials. 1070 

[bH1] Internal validation 1071 

Internal validation is evaluation of a deep learning system’s performance in the development cohort. This can be 1072 

done by evaluating the performance in a randomly sampled subset of the development cohort disjoint from the 1073 

training and tuning subsets, or by using resampling techniques such as cross-validation or bootstrapping22. 1074 

[bH1] Narrow validation 1075 

Narrow validation is evaluation of a deep learning system’s performance based on a cohort that is similar but 1076 

differs non-randomly from the development cohort, e.g. on a cohort from the same hospital as the development 1077 

cohort, but sampled in a time interval disjoint from the time interval where the development cohort was sampled. 1078 

No information from the narrow cohort should have influenced the development of the system, including that it 1079 

should be collected and handled separately from the development cohort. 1080 

[bH1] Broad validation 1081 

Broad validation is evaluation of a deep learning system’s performance based on a cohort geographically 1082 

separate from the development cohort, e.g. from a different hospital or country22. No information from the broad 1083 

cohort should have influenced the development of the system. 1084 

[bH1] Domain validation 1085 

Domain validation is evaluation of a deep learning system’s performance in a setting that is very different from 1086 

the one where the system was developed197. This includes validation in a cohort with characteristics not 1087 

represented by the development cohort, e.g. developing a method on one type and stage of cancer and validating 1088 

it on another type or stage of cancer. Other examples are when the validation data are obtained by equipment not 1089 

used in the development such as imaging systems from different vendors, or by sample preparation procedures 1090 

intentionally different from the ones used for the development cohort. Domain validations should also be narrow 1091 

or broad validations, and are typically performed after successful narrow or broad validations. 1092 
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Box 3 | Recommended Protocol Items for External Cohort Evaluation of a deep learning System 1094 

(PIECES) in cancer diagnostics 1095 

[bH1] Status 1096 

[b1] Specify the date the protocol was last modified. 1097 

[b1] Scrupulously elucidate any investigations performed before finalising the protocol that could reveal 1098 

correlations between input data and target output in the external cohort, or state that no such investigations were 1099 

performed. 1100 

[bH1] System 1101 

[b1] Describe the development of the deep learning system, including utilised cohorts, network architecture, 1102 

hyperparameters and any categorisation of the neural network model’s output. 1103 

[b1] Unequivocally specify how to assay the deep learning system in a blinded fashion for a single, new subject, 1104 

including what the system receives as input and what it directly outputs. 1105 

[bH1] External cohort 1106 

[b1] Describe the origin of the cohort, and explain why it should be regarded as external to the development 1107 

cohort. 1108 

[b1] Precisely define criteria for inclusion and exclusion of subjects and samples, preferably starting from a 1109 

consecutive series of subjects. 1110 

[b1] Clearly state the medical setting and target population that the cohort represents. 1111 

[b1] Specify the acquisition of input data, including whether it was acquired blinded to the deep learning system 1112 

and target output. Note the expertise of any humans involved in the process, e.g. that a pathologist annotated the 1113 

regions of interest in slide images. 1114 

[b1] Specify the ascertainment of target output, including whether it was ascertained blinded to the deep learning 1115 

system. 1116 

[b1] If multiple external cohorts are planned to be analysed as a pooled cohort, then the preceding five protocol 1117 

items should be completed for the pooled cohort and differences between the individual cohorts should be stated. 1118 
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If multiple external cohorts are to be analysed independently, the five preceding protocol items should be 1119 

completed for each cohort, as well as subsequent protocol items if the predefined analyses differ between 1120 

cohorts. 1121 

[bH1] Analyses 1122 

[b1] Unequivocally specify the primary analysis, including the target output and the performance metric and/or 1123 

statistical test with interpretation. 1124 

[b1] If the chosen metric or statistical test depends on other markers, describe how these markers were assayed 1125 

and whether done blinded to the deep learning system and target output, and specify how missing values will be 1126 

handled. 1127 

[b1] If the deep learning system was designed to evolve upon usage, e.g. by learning from unlabelled data or 1128 

adapting to a cohort, specify that this will not be done when evaluating the external cohort. The system’s 1129 

prediction should thus not depend on the order in which a set of patients is evaluated and also be identical if the 1130 

same patient is evaluated multiple times. 1131 

[b1] If additional analyses will be performed and reported in disseminations, e.g. of other deep learning systems, 1132 

target outputs, metrics or statistical tests or in specific patient subgroups, specify these analyses in the same 1133 

manner as the primary analysis and identify them as secondary analyses. 1134 

 1135 

Table of Contents Summary 1136 

The number of publications on deep learning for cancer diagnostics is rapidly increasing, but clinical translation 1137 

is slow. This Perspective advocates performance estimation in external cohorts, and strongly advises that a 1138 

primary analysis is predefined in a standardised protocol preferentially stored in an online repository.1139 
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Figure 3. 1147 

1148 



49 

 1149 
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