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Abstract: Satellite-retrieved and atmospheric reanalysis precipitation can bridge the 15 

spatiotemporal gaps of in-situ gauging networks, but estimation biases can limit their 16 

reliable applications in hydrological monitoring and modelling. To correct 17 

precipitation occurrence and intensity simultaneously, this study develops a 18 

three-stage blending approach to integrate three multi-satellite precipitation datasets 19 

(IMERG Final, TMPA 3B42V7 and PERSIANN-CDR), the ERA5 atmospheric 20 

reanalysis product and a gauge dataset within a dynamic framework. Firstly, the 21 

systematic biases of the four members were individually corrected by combining the 22 
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local intensity scaling and ratio bias correction methods. Then, the “state weights” 23 

used for determining wet/dry events were optimized by evaluating a score function of 24 

the four bias-corrected members. Thirdly, the “intensity weights” were optimized 25 

using the cuckoo search (CS) algorithm and the Bayesian Model Averaging (BMA) 26 

method, respectively. The three-stage blending approach produced dynamic weights 27 

varying both spatially and temporally, and the performance was thoroughly evaluated 28 

over mainland China. Results show that the three-stage dynamic scheme performs 29 

better than individual datasets and two-stage blending methods in terms of all eight 30 

statistical metrics, and the CS algorithm outperforms the BMA method in the third 31 

stage. By randomly sampling validation sites using K-fold experiments, the developed 32 

algorithm also demonstrates a superior performance in ungauged regions. After 33 

interpolating and normalizing blending parameters of all gauges to entire domain 34 

using ordinary kriging, a new blended precipitation dataset with a daily 0.25° scale 35 

was produced. Four hydrological models are forced by blended and primary 36 

precipitations in 238 catchments over China, further confirming that the developed 37 

approach can facilitate hydrological modelling demonstrated by improving the 38 

Kling-Gupta efficiency of simulated streamflow by 12-35%. 39 

Keywords: Satellite precipitation; Atmospheric reanalysis; Bias correction; Data 40 

fusion; Hydrological modelling; China 41 

1. Introduction 42 

As precipitation is a key element in global water cycle and a fundamental forcing 43 

in hydrological processes, its accurate observation is of immense importance for 44 
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decision-making and planning across diverse fields such as hydrology, meteorology, 45 

climate and agriculture (Amjad et al., 2020; Yang et al., 2020). The in-situ gauge 46 

instrumentation and radar networks might document precipitation with a high 47 

accuracy; however, these networks are usually unevenly and sparsely distributed, 48 

failing to capture the spatiotemporal heterogeneity of precipitation patterns (Tang et 49 

al., 2016), particularly in economically underdeveloped regions such as the western 50 

China. With rapid advances in remote sensing technologies and climate system 51 

modelling in recent decades, spaceborne sensors and state-of-the-art numerical 52 

weather models have produced vast precipitation datasets with a near-global coverage 53 

and an unprecedented spatiotemporal resolution (Sunilkumar et al., 2016; Prakash et 54 

al., 2018). For example, the Integrated Multi-satellitE Retrievals for GPM (IMERG) 55 

product is now available at 0.1° spatial and 30-minute temporal resolutions, and is 56 

anticipated to play a growing role in hydrological and meteorological monitoring 57 

(Beria et al., 2017; Massari et al., 2020). One of the latest global atmospheric 58 

reanalysis products, ERA5 provides hourly estimates for a large number of 59 

atmospheric, land and oceanic climate variables, and exhibits substantial 60 

improvements comparing to its predecessor in many regions of the globe (Graham et 61 

al., 2019; Tang et al., 2020; Tarek et al., 2020). 62 

Although these satellite-based and atmospheric reanalysis precipitation estimates 63 

have been widely used in a broad range of applications, their performances are highly 64 

constrained by errors and remain an area for further improvements (Bharti and Singh, 65 

2015; Wright et al., 2017; Luo et al., 2019). Ensemble-based approaches, enabling to 66 
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synthesize multi-source information, generally produce merging precipitations with a 67 

better performance than individual members (Beck et al., 2019). While these 68 

approaches differ in statistical tools and data sources, they could be classified into two 69 

types in terms of one stage or more stages used in data processing. The first type of 70 

approach directly combines different multi-source precipitations by optimizing 71 

weights based on gauging observations to reduce estimate errors. For example, 72 

Massari (2019) developed a Bayesian inversion approach to integrate the TRMM 73 

3B42RT product with the soil moisture-based rainfall dataset SM2RAIN-CCI, and 74 

verified its performance in Italy. Among the one-stage blending type, the inverse error 75 

variance weighting (Huffman et al., 1997), simple model averaging (SMA) method 76 

(Raftery et al., 2005), one-outlier removed method (Shen et al., 2014), Bayesian 77 

model averaging (Chao et al., 2018), paired sample t-test and principal component 78 

analysis method (Rahman et al., 2018), as well as the machine learning techniques 79 

(Bhuiyan et al., 2019) can also achieve better skills than the individual members. A 80 

second type of blending approach is emerging following a general concept, i.e., 81 

eliminating biases in individual datasets and then merging the bias-adjusted estimates 82 

with point-wise gauge observations. For instance, Li et al. (2015) removed the 83 

systematic errors in the CMORPH satellite estimates using a bias correction procedure, 84 

and then employed a two-dimensional variational analysis scheme to combine the 85 

adjusted satellite data with gauging observations. 86 

Due to the spatiotemporal heterogeneity of precipitation, the merging weights of 87 

multi-source data might dynamically vary in space and time. To account for such 88 
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dynamic property of the weights used in integration schemes, Ma et al. (2018a) 89 

proposed a dynamic Bayesian model averaging (BMA) algorithm for blending 90 

satellite precipitation data from TMPA 3B42RT, 3B42V7, CMORPH and 91 

PERSIANN-CDR, and the validation results in the Tibetan plateau verified that the 92 

dynamic BMA algorithm outperformed traditional ensemble methods. Rahman et al. 93 

(2020) developed a dynamic clustered BMA method and verified that it can 94 

accommodate the spatiotemporal differences of diverse satellite products, thus 95 

improving precipitation estimation quality even in regions with complex climate and 96 

topography patterns. However, these efforts might be insufficient for blending 97 

multi-source precipitation in meteorological and hydrological applications. Although 98 

the errors in individual members have received substantial attention in some blending 99 

techniques (e.g., Li et al., 2015; Beck et al., 2019), some recent dynamic blending 100 

approaches neglect this issue (Ma et al., 2018a, b; Rahman et al., 2020). More 101 

importantly, satellite/reanalysis products are plagued by problems associated with a 102 

lack of precipitation detection, false detection and bias (Maggioni et al., 2016). 103 

Existing merging studies usually focused on correcting precipitation magnitude, but 104 

failed to minimize bias and eliminate the lack of detection and false alarms 105 

simultaneously. For example, the dynamic blending method is only applicable in cases 106 

where a rain event hits (Ma et al., 2018a, b; Rahman et al., 2020), which may result in 107 

many un-avoided problems. It would be difficult to define a ‘true’ precipitation event 108 

if no preprocessing is used to improve the precipitation detection capacity of 109 

individual products. Moreover, neglecting the capacity of detecting a wet/dry event 110 
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not only results in over-estimated or under-estimated rainy days, but also affects the 111 

quantitative estimation of precipitation intensity (Tobin and Bennett, 2010), thus 112 

inhibiting potential applications in hydrological monitoring and modelling.  113 

To address such concerns, this study developed a three-stage approach to integrate 114 

three multi-satellite precipitation products (IMERG Final, TMPA 3B42V7 and 115 

PERSIANN-CDR), the ERA5 atmospheric reanalysis product and a gauge dataset. To 116 

accommodate the spatiotemporal variations of different members’ performances, this 117 

scheme was implemented within a dynamic framework to produce dynamic weights 118 

varying both spatially and temporally. We utilized a range of evaluation metrics to 119 

ascertain the estimation skills in capturing precipitation of the developed method, and 120 

also evaluated their potential utility in ungauged regions by randomly sampling 121 

validation sites by using K-fold experiments. The dynamic parameters were 122 

interpolated and normalized with ordinary kriging (OK) approach, and a new blended 123 

precipitation dataset over mainland China with a daily and 0.25° spatiotemporal 124 

resolution was produced. We finally evaluated the hydrological performance of our 125 

dataset and four individuals by driving four hydrological models over 238 catchments 126 

varying in size and climate. 127 

2. Study area and data 128 

2.1. Study area 129 

In meteorological and hydrological assessments, mainland China is usually 130 

divided into eight sub-regions (Fig. 1) based on monsoon climate characteristics, 131 

administrative divisions, topography, water resources and agricultural geographical 132 
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distribution (Shi and Xu, 2007; Li et al., 2015). This division is adopted in this study to 133 

better illustrate the regional evaluation statistics. Precipitation over southeastern China 134 

is mainly dominated by organized deep convection, while northeastern China is more 135 

associated with large-scale synoptic weather systems (Chen et al., 2009). In western 136 

inland regions, precipitation is usually governed by clouds with shallow depth and 137 

limited atmospheric moisture (Shi and Xu, 2007); while in Tibetan plateau and the 138 

semiarid northwestern China, precipitation is highly determined by scattered cloud 139 

systems (Tong et al., 2013; Li et al., 2015). To evaluate the feasibility of using 140 

satellite/reanalysis products and their merging estimates in hydrological simulation, 141 

238 catchments across climatically and topographically diverse regions are selected 142 

(Fig. 1), with their watershed boundaries delineated by the Hydro-BASINS product of 143 

the HydroSHEDS database (Lehner and Grill, 2013). 144 

[Insert Fig. 1 about here] 145 

2.2. In-situ observation datasets 146 

A ground network of 838 in-situ gauges over mainland China is used as reference, 147 

which provides daily precipitation observations and is maintained by the China 148 

Meteorological Administration. Most of these stations are densely grouped over eastern 149 

China, while gauge stations are much sparser over western China (Fig. 1). Daily air 150 

temperature data (including maximum, minimum and average temperature) at a 151 

0.5°×0.5° resolution is obtained from the China Climatic Data Service Center 152 

(http://data.cma.cn/en). This gridded dataset was produced based on 2472 in-situ 153 

observation gauge stations across China using a spline interpolation method and a 154 
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GTOPO30 data sampling algorithm, and is usually considered as an observation 155 

reference (Zhang et al., 2015). The daily streamflow data of 238 catchments are 156 

obtained from the nine water resources management agencies affiliated to the Ministry 157 

of Water Resources of China (http://xxfb.mwr.cn/). These different datasets spanning 158 

2004-2018 are used in this study for two purposes: evaluating satellite precipitation 159 

estimates and forcing hydrological models. 160 

2.3 Satellite-based and reanalysis precipitation products 161 

Three multi-satellite precipitation datasets retrieved by integrating infrared and 162 

passive microwave sensors were used in this study. The GPM Core Observatory 163 

carries the first space-borne Ku/Ka-band dual-frequency radar and a multi-channel 164 

microwave imager, thus improving the ability in monitoring both light and solid 165 

precipitations (Zubieta et al., 2017). Since the first release of IMERG products in 166 

2015, it has undergone many improvements and the latest version V06B has been 167 

reprocessed retrospectively to include TRMM-era data from June 2000 afterwards 168 

(Huffman et al., 2019). Owing to the infusion of the Global Precipitation Climatology 169 

Centre (GPCC) rain gauge data, the IMERG Final run provides more accurate 170 

estimates and is therefore adopted in this study. In addition, the TMPA product 171 

3B42V7 was used, which was also corrected with gauge data and available at 0.25° 172 

spatial and 3-hourly temporal resolutions covering 50°N to 50°S for the period of 173 

1998-2019 (Huffman et al., 2010). Moreover, a long-term global precipitation dataset, 174 

PERSIANN-CDR, is also used in this study. It is generated from the PERSIANN 175 

algorithm using GridSat-B1 infrared data and adjusted by data from the Global 176 
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Precipitation Climatology Project (Ashouri et al., 2015). The PERSIANN-CDR 177 

dataset provides daily precipitation estimates at 0.25° spatial resolution at a 178 

near-global (60°S-60°N) coverage over the period from 1983 to present. 179 

A global atmospheric reanalysis precipitation dataset developed by ECMWF, the 180 

ERA5, is used as a final precipitation product in this study. ERA5 provides real-time 181 

global hourly precipitation records from 1979 to present on 137 vertical levels from 182 

the surface up to 0.1 hPa (Nogueira 2020). ERA5 data are produced by combining 183 

model simulations and observations using the laws of physics, which are based on 184 

data assimilation by the Integrated Forecasting System (IFS Cy31r2). This 185 

assimilation system includes a four-dimensional variational (4D-Var) analysis method 186 

and considers the exact timing of observations and model evolution within the 187 

assimilation window, enabling to estimate biases between observations and to sift 188 

good-quality data from poor data (Nogueira, 2020). The hourly output resolution 189 

available at 0.25°×0.25° is an improvement with respect to its predecessor 190 

ERA-Interim, and thus provides a more sophisticated simulation of weather processes. 191 

All the sub-daily satellite/reanalysis data covering 2004-2018 are aggregated into a 192 

daily scale, and the IMERG Final data is also mapped into a 0.25° spatial resolution in 193 

the same spatial extent of the remaining products. 194 

3. Methodology 195 

The flowchart of the developed blending approach consists of three steps and is 196 

illustrated in Fig. 2. The three steps are implemented to correct biases of primary data 197 

and blended precipitation occurrence and intensity. 198 
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[Insert Fig. 2 about here] 199 

3.1 Stage 1: Bias correction of satellite/reanalysis products 200 

The precipitation occurrence and intensity of four primary products are 201 

individually adjusted with the gauging observations by a hybrid approach with 202 

incorporation of the local intensity scaling (LOCI) and Ratio Bias Correction (RBC) 203 

techniques. The LOCI method (Schmidli et al., 2006), which has been widely 204 

employed in correcting climate model outputs (e.g., Yin et al., 2020), is introduced 205 

here to initially correct the precipitation occurrence of satellite/reanalysis estimates. 206 

To implement the LOCI method, a wet threshold is defined as 1 mm/day following 207 

Dinku et al. (2008) and Jiang et al. (2019), and then the wet-day occurrence for each 208 

gauge is estimated. It is informative to note that for those grids which contain two or 209 

more gauges, the observational precipitation series are represented by averaging those 210 

gauge records. For the sake of having the same rainy events as observation data, a 211 

new wet-day threshold is estimated from the satellite/reanalysis products for each 212 

gauge. If the new wet-day threshold is larger than 1mm/day, the intensity of those 213 

events lower than the estimated wet-day threshold was rescaled to below 1 mm/day. If 214 

the new wet-day threshold is smaller than 1 mm/day, those events with intensity 215 

ranging between the new wet-day threshold and 1 mm/day were all rescaled to 216 

1mm/day. More details about the LOCI method can be found in Schmidli et al. (2006) 217 

and Yin et al. (2020). The LOCI method is implemented in different months for each 218 

gauge, and therefore each satellite/reanalysis dataset is guaranteed to have the same 219 

monthly precipitation occurrence as observations at all gauges.  220 
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The RBC method (Bhatti et al., 2016) is then employed to cope with the 221 

systematic biases of precipitation intensity in a monthly moving window. The 222 

correction factor 
,

s

j m for each gauge j and month m for the s
th

 ( 1,2,3,4s  ) 223 

satellite/reanalysis precipitation dataset is calculated by dividing the accumulated 224 

gauging observations with estimates in the corresponding grid cell: 225 

, , , , ,

1 1

N N
s g s

j m j d m j d m

i i

P P
 

                            (1)  226 

where the subscript d and N refer to a specific day and total number of measurements 227 

in the m month, respectively; the 
, ,

g

j d mP  and 
, ,

s

j d mP  are gauging observation and 228 

estimate of the s
th

 satellite/reanalysis products after LOCI adjustment, respectively. 229 

The bias-corrected precipitation outputs for each product are calculated by 230 

multiplication of the primary estimates by the correction factor
,

s

j m  as follows: 231 

*

, , ,

s s s

j d j m j dP P                                 (2)  232 

where *

,

s

j dP  denotes the adjusted daily precipitation series by the RBC method. 233 

3.2 Stage 2: Merging precipitation occurrence 234 

The primary goal of the 2
nd

 stage is to blend the four bias-corrected products to 235 

eliminate missing or false detection of precipitation, which is achieved by optimizing 236 

weights that enable to measure the wet/dry event detection capacity of individual 237 

members. The “state weights” used for blending wet/dry condition for each day are 238 

defined in this stage, which are estimated by measuring the state detection capacity of 239 

different products by comparing with observational gauging references. For each 240 

gauge j, a score function
,

s

j dF at the d
th

 day for the s
th

 bias-corrected satellite/reanalysis 241 

product is defined as follows: 242 
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o o

* *

, , , o o, ,  ) ) ) )( ( ( (s s g s g

j d j d j d j d j dF RP PRP L R L RP    +               (3)  243 

where
oR denotes the precipitation threshold, 1 mm/day in this study; ( )L u is an 244 

indicator function, if 0u  , ( ) 1L u  ; otherwise ( ) 0L u  . 245 

Then, the state weights could be estimated as follows: 246 

4 4

, , ,

1 1

1, 4

,

1

( ) ( ) , if ( ) 0

( )

0.25 ,if ( ) 0

s s s

j d j d j d

s s

s

s

j d

s

H F H F H F

d

H F


 







 
 


 

           

             (4)  247 

where
1, ( )s d denotes the weights of the s

th
 bias-corrected satellite/reanalysis 248 

precipitation product at day d; 
,( )s

j dH F is an indicator function, if
, 0s

j dF  ,249 

,( ) 1s

j dH F  ;otherwise
,( ) 0s

j dH F  ; the sum of all the weights
1, ( )s d in Eq. (4) is 250 

equal to 1. 251 

Finally, the precipitation 
,j dI at day d in this stage could be estimated as: 252 

4
*

, 1, ,

1

( ) s

j d s j d

s

I d P


                          (5)  253 

After obtaining the 
,j dI  in blending schemes, we can identify the day d as a wet 254 

or dry condition by comparing the estimate with the wet threshold. This blending 255 

method is implemented for each gauge in a daily moving window in consideration of 256 

spatiotemporal variations. 257 

3.3 Stage 3: Merging precipitation intensity 258 

After determining a wet/dry state in the 2
nd

 stage, we define the “intensity 259 

weights” in the 3
rd

 stage for estimating precipitation intensity. In this stage, a heuristic 260 

blending algorithm based on the CS is developed, and the dynamic BMA method is 261 

also employed for the purpose of a comparison. The choice of appropriate training 262 
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data for calculating dynamic weights is highly dependent upon specifics of algorithms 263 

and regions (Sloughter et al., 2007). Unlike previous studies (Ma et al., 2018 a,b; 264 

Rahman et al., 2020) selecting the previous 40 days (and the same time from the 265 

previous two years) as training period, we find that using data during the previous 55 266 

days and subsequent 55 days for calibration leads to a better estimation accuracy (Fig. 267 

S1). Therefore, 110 days in total, are selected to optimize the “intensity weights” for 268 

each day, and this optimization procedure is implemented by shifting the training 269 

windows day by day at each gauge. In the 3
rd

 stage, the intensity blending is only 270 

performed when the estimated precipitation 
,j dI  at the 2

nd
 stage outweighs 1mm/day, 271 

and we only select data in wet days (determined by gauging information) in the 272 

algorithm for calibration. 273 

3.3.1 Heuristic blending algorithm based on cuckoo search 274 

To optimize the weights at gauge j for blending precipitation intensity, the sum of 275 

square error (SSE) is selected as an objective function and minimized at each day as 276 

follows: 277 

2
4

*

, , ,

1

4

1

( )

. ( ) 1

0 ( ) 1, 1,2,3,4

d N
s g

j d s j day j day

day d N s

s

s

s

min SSE w d P P

st w d

w d s



  



  
    

  



  

 



   

                            

 

            (6)  278 

where ( )sw d denotes the “intensity weights” of the s
th

 product at day d, and the 279 

merging precipitation intensity at day d is estimated by 
4

* *

, ,

1

( ) s

j d s j d

s

I w d P


  ; N 280 

denotes the data size before (or after) day d used for calibration (in the case of 55). 281 

The CS algorithm, a powerful and versatile tool for solving nonlinear global 282 



 

14 

optimization problems, is adopted to optimize the ( )s s  in Eq. (6). The CS 283 

algorithm developed by Yang and Deb (2009) is a bio-inspired metaheuristic 284 

algorithm, which has been proved to be more efficient than particle swarm 285 

optimization and genetic algorithms in parameter optimizations. The CS was inspired 286 

by the obligate brood parasitism of some cuckoo species by laying their eggs in the 287 

nests of host birds (Valian et al., 2013). Some cuckoos have evolved in such a way 288 

that female parasitic cuckoos can imitate the colors and patterns of the eggs of a few 289 

chosen host species, which reduce the probability of the eggs being abandoned and 290 

thus increase their re-productivity (Yang and Deb, 2018). For simplicity in 291 

implementing the CS, we follow three idealized rules: (1) each cuckoo lays one egg at 292 

a time and dumps it in a random nest; (2) the best nests with high quality eggs will be 293 

carried over to the next generations; (3) the number of available host nests is fixed, 294 

and each host has a randomly generating probability ( (0,1))a aP P   to discover an 295 

alien egg. In this case, the host bird can either get rid of the egg, or simply abandon 296 

the nest and build a completely new nest at a new location. 297 

The CS algorithm uses a balanced combination of a local random walk and the 298 

global explorative random walk, controlled by the switching parameter aP . The local 299 

random walk can be expressed as: 300 

1 ( ) ( )t t t t

k k a l mx x z H p x x                           (7) 301 

where t

lx and t

mx  randomly disturb a sequence of numbers; ( )H  denotes a Heaviside 302 

function;  is a random number drawn from a uniform distribution; z and  represent 303 

the step size and scaling factor, respectively;  is an entry-wise operation. 304 
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Host k of a global random walk is carried out by using Lévy flights as follows:  305 

    
      

                                     (8) 306 

            
         

  

 
 

 
 

 

    
                      (9) 307 

where the ‘~’ indicates that the random numbers            should be drawn from 308 

the Lévy distribution that is approximated by a fat-tailed distribution such as a 309 

power-law distribution with an exponent  . The parameter 0  is the step size 310 

scaling factor determined by the scales or bound ranges. 311 

3.3.2 Dynamic Bayesian model averaging scheme 312 

The dynamic BMA scheme was also performed to blend multi-source 313 

precipitation estimates by adjusting the posterior probability density function (PDF) to 314 

obtain a good fit to the gauging measurements. The PDF of posterior distribution in 315 

BMA is represented as: 316 

1

( | ) ( | ) ( | , )
S

s s s

s

p I G p f G p I f G


                     (10) 317 

where I and G denote the blended precipitation intensity and observation, respectively; 318 

S is the number of satellite/reanalysis products; ( | )sp f G is the posterior probability 319 

of bias-corrected satellite/reanalysis precipitation estimates, also known as the 320 

likelihood of ensemble members, with sf  denoting the precipitation estimates of s
th

 321 

member; ( | , )s sp I f G  is the posterior distribution of I given estimated sf  and 322 

observed G.  323 

The ( | )sp f G measures the capacity of bias-corrected satellite/reanalysis 324 

products in capturing observed data. After substituting by the weights sw , Eq. (10) 325 

could be expressed as: 326 
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1

( | ) ( | , )
S

s s s

s

p I G w p I f G


                         (11) 327 

The posterior mean ( | )E I G  and variance ( | )Var I G of the BMA estimation 328 

could be expressed as follows: 329 

1

( | )
S

s s

s

E I G w f


                              (12) 330 

 
2 2

1 1

( | ) ( | )
S S

s s s s

s s

Var I G w f E I G w 
 

                   (13) 331 

where 2

s  is the variance associated with satellite/reanalysis estimates
sf  with 332 

respect to observation G.  333 

The Box-Cox transformation is employed before calibrating the BMA model to 334 

follow the Gaussian assumption of the conditional probability distribution 335 

( | , )s sp I f G . To achieve a more efficient computation, the log likelihood function is 336 

preferred and expressed as follows: 337 

2

1 1

( , , 1,2, , ) log ( | , ) log ( | )
S S

s s s s s s s s

s s

LL w s S w p I f G w g I f 
 

   
         

   
     (14) 338 

where ( )g  denotes Gaussian distribution. The Expectation-Maximization algorithm 339 

(McLachlan and Krishnan, 2007) is employed to optimize the BMA parameters by 340 

maximizing the log likelihood function. 341 

3.4 Precipitation mapping and cross-validation experiments 342 

The important role of blending multi-source precipitation products is to provide 343 

useful information in data-sparse or ungauged regions, which is also the primary 344 

motivation of this study. The correction factors and optimal dynamic weights in three 345 

stages of all gauges were interpolated to the entire mainland China using the OK 346 
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method at a daily scale. The interpolated weights of the ensemble members were 347 

normalized to ensure that their sum is equal to 1. Finally, the blended precipitation 348 

estimates were calculated for each grid cell based on the individual data and 349 

corresponding correction factors in LOCI and RBC methods as well as optimal grid 350 

weights over mainland China. 351 

The performance of the developed blending algorithms for mapping precipitation 352 

in ungauged areas is systematically evaluated using a cross validation experiment, i.e., 353 

K-fold, implemented separately in eight sub-regions (Fig. 1). In the K-fold (K=10 in 354 

this study) experiment, all the gauges were randomly split into ten partitions, and 90% 355 

of sites are selected as training and the remaining 10% gauges are used for validation. 356 

To fully consider the variations of gauge distributions, the K-fold experiment was 357 

repeated 100 times. For each experiment, the parameters of training gauges were 358 

extracted and interpolated to the validation sites by the OK method. After normalizing 359 

the transferred weights, the blended precipitation over those validation gauges could 360 

be estimated. In this way, the validation sites could be considered as independent sites 361 

to evaluate the precipitation estimation accuracy of the blending algorithms in 362 

ungauged regions.  363 

3.5 Hydrological modelling and performance evaluation 364 

After mapping precipitation over mainland China by blending algorithms, 365 

different gridded precipitation products were forced in hydrological models to 366 

evaluate their performance in streamflow simulations. Given that the 238 studied 367 

catchments differ in climate patterns and underlying surface conditions, we employed 368 
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four different lumped conceptual hydrological models as candidates: the HMETS 369 

model (Martel et al. 2017), GR4J model (Perrin et al., 2003), HBV model (Bergström 370 

and Forsman, 1973), and Xinanjiang model (Zhao et al., 1992). These four models 371 

have varying numbers of parameters, model structures and runoff yielding 372 

mechanisms in modelling rainfall-runoff processes. After generating daily basin 373 

average meteorological series from gridded precipitation (primary and blended 374 

products) and observational temperature data using the Thiessen polygons method, 375 

they were forced to drive the hydrological models for each catchment. A 376 

cross-validation approach (Arsenault et al., 2017) was employed for model evaluation, 377 

in which the model is calibrated on odd years, whereas it is validated based on even 378 

years. As many studied catchments over China are located at data-scarce regions, this 379 

study followed numerous previous studies (e.g., Tobin and Bennett, 2010; Ma et al., 380 

2018b), and recalibrated models by using different primary and blended precipitation 381 

datasets. All setups use the same model forcing except precipitation, and thus 382 

differences between the model efficiency can represent the differences in precipitation 383 

datasets (Jiang et al., 2019). 384 

We optimized the parameters of the four hydrological models by using the 385 

Shuffled Complex Evolution (SCE-UA) method developed at the University of 386 

Arizona (Duan et al., 1992). The SCE-UA algorithm integrates the advantages of 387 

several effective global optimization medthods. This method employs both 388 

deterministic search strategies and random schemes to achieve a relatively efficient 389 

search capacity. The Kling-Gupta efficiency (KGE) is selected as the objective 390 
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function and is maximized during calibration (Gupta et al., 2009): 391 

 
2 2 21 ( 1) ( 1) ( 1)KGE r                        （15） 392 

where r and   (or  ) refer to the Pearson’s correlation coefficient and ratio of standard 393 

deviation (or mean index) of observation and simulations, respectively.  394 

4. Results 395 

4.1 Bias correction performance 396 

To assess the bias correction performance in the 1
st
 stage, eight statistical metrics 397 

are used to evaluate estimation accuracy of precipitation intensity (RMSE, MAE, CC 398 

and KGE) and occurrence (POD, FAR, CSI and HSS), respectively. These metrics are 399 

expressed in Table 1, and the last four indices are calculated from a 2×2 contingency 400 

matrix composed of four parameters, of which a is the number of rainfall events 401 

successfully detected; b is the number of dry events erroneously identified as rain 402 

events (false alarms); c is the number of missing events; and d is the sum of events 403 

that are neither detected nor observed. HSS measures the accuracy of the estimates 404 

accounting for matches due to random chance, and is different from the POD, FAR 405 

and CSI, which are highly affected by the climatology of different study regions. 406 

[Insert Table 1 about here] 407 

The primary precipitation products show substantial biases over mainland China 408 

(Table 2). For instance, the daily statistical metrics range from 7.17-8.69 mm, 409 

0.25-0.49 and 0.24-0.44, in terms of RMSE, CC and HSS, respectively. The TMPA 410 

3B42V7 generally performs worst with the highest RMSE at 8.69 mm and the lowest 411 

CC of 0.25, while the ERA5 exhibits the preferable performance in terms of the 412 
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lowest RMSE (and MAE, FAR) at 7.17 mm (and 2.78 mm, 0.52) and the highest CC 413 

at 0.49. It is difficult to determine a best precipitation product in terms of all 414 

evaluation metrics. For example, the IMERG Final exhibits highest KGE among the 415 

four products while it performs worse than the ERA5 in terms of other metrics. After 416 

bias correction by combining the LOCI and RBC methods, the adjusted products 417 

show great improvements. For example, the RMSE and MAE of the bias-corrected 418 

products correspondingly decrease to 6.61-7.92 mm (by 2.8-7.8%) and 2.40-3.11 mm 419 

(by 1.3-13.7%), respectively. Moreover, the CC index of the four products improves 420 

to 0.28-0.55.  421 

[Insert Table 2 about here] 422 

To systematically validate the seasonal performance of the bias correction 423 

method, the seasonal average statistical results of RMSE and CC (MSE and HSS) 424 

metrics for primary and adjusted precipitation products are presented in Fig. 3 (Fig. 425 

S2). After bias correction, the seasonal statistical metrics exhibit substantial 426 

improvement in all seasons over mainland China. We also examined the potential 427 

heterogeneity of bias-correction performance for eight sub-regions over China (Fig. 4). 428 

South China generally shows a poorer performance in terms of the evaluation metrics, 429 

whereas most products achieve well estimation scores in Northwest China. More 430 

importantly, the statistical metrics in all sub-regions have been generally improved 431 

after bias correction for the four precipitation products. All the above results 432 

demonstrate a good bias correction performance in the 1
st
 phase, verifying its 433 

suitability and reliability in reducing estimation errors of four involved products over 434 
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mainland China. 435 

[Insert Fig. 3 about here] 436 

[Insert Fig. 4 about here] 437 

4.2 Spatiotemporal distribution of dynamic weights 438 

The four bias-corrected precipitation products are employed to train the flexible 439 

three-stage dynamic blending schemes, and both the CS algorithm and BMA method 440 

are considered in the last phase. Fig. 5 shows the spatial distribution of average annual 441 

weights for the 2
nd

 and 3
rd

 stages over mainland China, revealing that the weights of 442 

different members significantly vary from stages and algorithms. Particularly, the 443 

weights used for determining a wet/dry day and for estimating precipitation intensity 444 

show substantial differences. The weights of four bias-corrected products in 2
nd

 stage 445 

generally range from 20-35% across China, while in the 3
rd

 stage the weights of some 446 

members can dominate over 50% and the TMPA 3B42V7 might account for below 10% 447 

across the majority of landmasses (Fig. 5). This significant discrepancy also highlights 448 

the necessity of determining wet/dry state and precipitation intensity in different 449 

stages. Beside the differences in two stages, the weights of three-stage CS algorithm 450 

and dynamic BMA method also show substantial variations over most regions. For 451 

instance, the ERA5 dataset accounts for over 45% in most areas under the CS-based 452 

blending scheme, while the weights are generally 20-35% for the dynamic BMA 453 

method. Moreover, the weights are accompanied by certain spatial heterogeneity. For 454 

instance, the weights of PERSIANN-CDR in Northwest China vary from 10-15%, 455 

which are far lower than those in other regions (generally accounting for 20-25%).  456 
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[Insert Fig. 5 about here] 457 

To further investigate the temporal distribution of weights, the spatial average 458 

weights in eight sub-regions are plotted against the day of year (DOY). Comparing 459 

with the 3
rd

 blending stage (Figs. 6 and S3), the 2
nd

 stage shows less seasonal 460 

variability in dynamic weights (Fig. S4). In the three-stage CS blending scheme, the 461 

eight sub-regions are typically dominated by EAR5, and they are accompanied by 462 

considerable spatial and temporal variabilities. For example, the relative weights in 463 

different seasons did not change much in North China, while a strong seasonal 464 

variability is detected in South China, i.e., the ERA5 accounts for almost 60 percent in 465 

winter and the weights decline to 40 percent in summer (Fig. 6). The TMPA 3B42V7 466 

consistently shows weaker skills and thus receives lower weighting scores (around 467 

10%) throughout the year, which holds true in all sub-regions. It implies that the 468 

TMPA algorithm needs to be updated with an effective ground observation network. 469 

Surveying the existence of the relationship between satellite/reanalysis precipitation 470 

with regard to higher weights and the specific type of climate pattern would be 471 

beneficial. However, the temporal distribution of weights might be not directly related 472 

to climate dynamics across mainland China, as the weights are more highly governed 473 

by different precipitation members. 474 

[Insert Fig. 6 about here] 475 

4.3 Performance assessments of different blending schemes 476 

The developed three-stage CS algorithm and dynamic BMA schemes are 477 

employed to reorganize the precipitation regimes by merging the bias-corrected 478 
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members at all gauges over mainland China, respectively. To test the benefits of the 479 

three stages, we also compared their performance with two blending schemes without 480 

the 2
nd

 stage, i.e., omitting the wet/dry event detection procedure. Table 2 summarizes 481 

the average daily metrics of the individuals and four ensemble methods over mainland 482 

China. The four blended data generally perform better than both primary and 483 

bias-corrected members in terms of evaluation metrics. For instance, the MAE of the 484 

four blended ensembles ranges from 2.05-2.63 mm, decreased by 26.3-36.7% 485 

(14.5-31.9%) compared with the original (adjusted) datasets (Table 2). Comparing the 486 

two-stage and three-stage schemes, it is informative to notice that the three-stage 487 

blending approaches achieve better scores than the two-stage methods in terms of all 488 

eight metrics. For example, the CC and POD value of the two-stage methods 489 

(0.47-0.53 and 0.74-0.76) is improved to 0.51-0.61 and 0.86 in the three-stage 490 

schemes, respectively. The CSI and HSS increase by 92% and 100%, and the FAR 491 

shows a substantial reduction to 0.15 comparing with the 0.55 of the two-stage 492 

approaches. These results further highlight the necessity of carefully incorporating the 493 

wet/dry event detection phase into the precipitation blending schemes. 494 

The spatial distributions of eight statistical error metrics for different products 495 

are presented in Figs. 7-8 and Figs. S5-S10. In the three-stage framework, as the 496 

precipitation occurrences are determined in the second stages, the CS algorithm and 497 

dynamic BMA method perform equally in detecting event states in terms of POD, 498 

FAR, CSI and HSS. The three-stage CS algorithm generally achieve superior scores 499 

than the dynamic BMA method in terms of RMSE, MAE, CC and KGE. To further 500 



 

24 

investigate impacts of time scales on precipitation estimate accuracy, focusing on four 501 

sub-regions as examples, density scatters of estimated and observed areal precipitation 502 

are plotted at both ten-day and monthly scales (Figs. 9 and S11-13). Clearly, all 503 

products show stronger correlation with rain gauges at longer time scales. Moreover, 504 

the blended precipitation under three-stage CS algorithm consistently shows the 505 

highest CC and lowest RMSE metrics, and its estimates agree well with the 506 

gauge-based observations with a correlation coefficient over 0.98. Overall, the 507 

three-stage CS algorithm demonstrates the best scores in terms of all eight metrics at 508 

the calibrated gauges, highlighting the feasibility of using heuristic three-stage 509 

schemes to merge multi-source precipitation data over mainland China. 510 

[Insert Fig. 7 about here] 511 

[Insert Fig. 8 about here] 512 

[Insert Fig. 9 about here] 513 

To further evaluate the potential benefits of the blended precipitation products in 514 

ungauged regions, the K-fold experiment is used to randomly select gauges for model 515 

calibration and validation. After randomly splitting all the gauges into 10 groups for 516 

each sub-region, the sites of nine groups are organized to train the blending schemes 517 

while the remaining sites are treated as validation. The parameters of trained sites are 518 

interpolated by the OK method to the validated gauges. After normalization of 519 

transferred weights, the blended precipitation series under different schemes are 520 

estimated for those sites. The random sampling is repeated 100 times to guarantee 521 

robustness of the results, and the average results of daily metrics of the primary and 522 
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four blended precipitation products over random validated gauges are presented in 523 

Table 3. As for the blended results over verified gauges in Table 3, the precipitation 524 

estimate skills are slightly worse than those obtained in Table 2. This is reasonable as 525 

the blended precipitation at randomly chosen validation gauges are estimated by 526 

transferred parameters from surrounding calibrated sites, rather than fitting the 527 

ensemble model with their located data. 528 

 [Insert Table 3 about here] 529 

In Table 3, the four blended estimates all show better performance compared to 530 

the raw multi-satellite/reanalysis products. Statistically, the averaged values of RMSE, 531 

MAE and CC for the four primary datasets range from 6.51-9.59 mm, 2.49-3.36 and 532 

0.25-0.48, respectively, while the blended products improve the estimating scores by 533 

10-43% (Table 3). The four blended products also show better scores than primary 534 

precipitations in terms of the other evaluation indexes. Moreover, the three-stage CS 535 

scheme shows best performance among the four blending schemes. For instance, the 536 

CC and HSS under such three-stage heuristic algorithm are 0.50 and 0.54, respectively, 537 

while the two-stage schemes yield these metrics as 0.44-0.47 and 0.40-0.42, 538 

respectively. Fig. 10 presents the evaluation results over eight sub-regions in terms of 539 

all metrics, which consistently prove the best performance of the three-stage CS 540 

blending algorithm in comparison with four primary datasets. These comparisons 541 

highlight the superiority of using the blending method to merge 542 

multi-satellite/reanalysis precipitation data and prove that the three-stage CS scheme 543 

outperforms both two-stage methods and dynamic BMA for multiple data fusion over 544 
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mainland China. 545 

[Insert Fig. 10 about here] 546 

4.4 Precipitation mapping and hydrological performance assessment 547 

Based on the bias correction parameters and dynamic weights under the 548 

three-stage CS algorithm, a new blended dataset covering 2004-2018 is produced by 549 

interpolation and normalization with information of all gauges at a daily 0.25° scale 550 

over mainland China. To consider the different climatic pattern and underlying surface 551 

conditions for different catchments, the HMETS, GR4J, HBV and Xinanjiang models 552 

are forced by the blended data over the 238 studied catchments, and the model with 553 

the largest KGE value is selected for hydrological simulations in each basin (Fig. S14). 554 

The Xinanjiang model performs best over a majority of China’s catchments, while the 555 

GR4J model exhibits best simulation performance in 25 percent of basins.  556 

[Insert Fig. 11 about here] 557 

The best performing hydrological model at each catchment is also forced by four 558 

primary multi-satellite/reanalysis members, and the KGE values of different forcing 559 

schemes during calibration and validation periods are presented in Fig. 11 and Fig. 560 

S15, respectively. Among the four primary precipitation datasets, the hydrological 561 

models achieve a relatively better performance when forcing by the EAR5 and 562 

IMERG-Final precipitation estimates during calibration period, with the KGE ranging 563 

from 0.4-0.6 in most catchments. The 3B42V7 and PERSIANN-CDR exhibit 564 

relatively worse hydrological skill in terms of a lower KGE value, with only 27% and 565 

30% catchments exhibiting a satisfactory KGE (>0.5). Comparing the primary and 566 
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blended datasets, the mapped blended precipitation estimates could significantly 567 

improve the hydrological performance, which is supported by a higher KGE values 568 

over the majority of catchments. Particularly over humid and semi-humid regions, the 569 

blended product could generally improve the KGE from 0.3-0.6 to about 0.6-0.9, with 570 

an increasing rate of 12-35%. When forced by the blended data, almost all studied 571 

catchments exhibit a KGE value larger than 0.6 during calibration period, and 62 572 

percent of catchments yielded a KGE higher than 0.8 (Fig. 11). Although we observe 573 

relatively low KGE values in a few basins during the validation period, most 574 

measured basins still had satisfactory KGE (>0.6) and 43% of catchments yielded a 575 

KGE higher than 0.75 (Fig. S15). Overall, the new blended precipitation datasets 576 

could substantially facilitate hydrological modelling, implying its important role to 577 

serve as an alternative in representing hydro-climatic transferability over mainland 578 

China, particularly in those data-sparse regions. 579 

4.5 Performance comparison with MSWEP V2 dataset 580 

In order to comprehensively understand the strengths and weaknesses of the new 581 

blended precipitation dataset, a state-of-the-art high-quality merged precipitation 582 

product, Multi-Source Weighted Ensemble Precipitation Version 2 (MSWEP V2), was 583 

used for comparison. MSWEP is developed to provide globally 3-hour precipitation 584 

data at 0.25° spatial resolution from 1979 to 2017, and the latest Version 2 was 585 

released by Beck et al. (2019). The spatial distribution of eight evaluation metrics for 586 

MSWEP V2 product is presented in Fig. 12, and the average daily metrics over 587 

mainland China is also summarized in Table 2. Results show that MSWEP V2 588 
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generally achieves better skills than primary four satellite/reanalysis datasets. 589 

MSWEP V2 also exhibits higher estimation scores than the four bias-corrected 590 

members except for the adjusted ERA5 dataset. However, when comparing with our 591 

new blended dataset, MSWEP V2 generally perform worse in terms of all evaluation 592 

metrics. For instance, the HSS of MSWEP V2 (0.47) is much lower than that of the 593 

blended dataset (0.82). We also compared the performance of MSWEP V2 and 594 

blended datasets at different sub-regions and seasons (see Figs. 3-4 and Fig. S2), 595 

further confirming the superior performance of our blended dataset to MSWEP V2. In 596 

order to compare the performance of streamflow simulation, MSWEP V2 dataset is 597 

used to force the best-performing hydrological model for each basin. The KGE values 598 

of streamflow simulation during calibration and validation periods are also 599 

demonstrated in Fig. 11 and Fig. S15, respectively. When forced by MSWEP V2 600 

dataset, about 70 percent of catchments have KGE values lower than 0.55, and only 601 

very few catchments achieve KGE as high as 0.7 in calibration period. MSWEP V2 602 

may show better hydrological performance than ERA5 in limited catchments, but it is 603 

far worse than the blended product over a majority of China’s catchments. Ma et al. 604 

(2018b) also supported our finding that MSWEP V2 usually shows substantial biases 605 

in precipitation estimation and hydrological utilization in a plateau region of China. 606 

This can be partly attributed to the differences of the employed bias correction and 607 

blending methods. More importantly, MSWEP V2 focused on the globally gridded 608 

precipitation reconstruction, and only a small portion of in-situ gauges were used for 609 

MSWEP V2 data over China due to the data constraint (Beck et al., 2019). This study 610 
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fully takes advantage of the gauge data from China Meteorological Administration, 611 

which is important for improving precipitation estimation quality of multi-source data 612 

blending. 613 

5. Discussion 614 

In spite of superior performance of the merging algorithms, some work still 615 

needs to be further investigated. Future investigations might be devoted to produce 616 

higher-resolution datasets by incorporating the underlying physical mechanisms of 617 

precipitation generation in the multi-source data fusion frameworks. For instance, 618 

precipitation intensity is highly determined by atmospheric temperatures and relative 619 

humidity as governed by the Clausius-Clapeyron relationship (Yin et al., 2018). As the 620 

atmospheric reanalysis dataset (e.g., the ERA5 used in this study) can provide hourly 621 

climate variables representing both energy and water flux states, the daily 622 

precipitation intensity may be temporally distributed into a sub-daily scale by utilizing 623 

information from hourly temperature and humidity variables. To provide precipitation 624 

reference in ungauged region over China, this study aims to produce a high-quality 625 

retrospective dataset, thus employing a best-training scheme for calibrating the 626 

dynamic blending approach (Fig. S1). In such training scheme, the daily weights are 627 

calculated using data before and after the specific day, which only works for blending 628 

retrospective datasets. To test potential usefulness of the dynamic blending approach, 629 

taking the 2018-year as an example period, we also used the previous 40 days (and the 630 

same time from the previous two years) as training period following Rahman et al. 631 

(2020). The average daily metrics of the primary and the blended precipitation dataset 632 
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in 2018-year over mainland China is presented in Table S1. Results show that the 633 

dynamic blending method can still substantially reduce the biases of primary 634 

precipitation dataset when trained by only using past observations. This study did not 635 

take near-real time precipitation datasets as blending candidates, which may limit 636 

potential application in monitoring and forecasting. However, comprehensive 637 

assessments suggest that the three-stage blending method provides a useful 638 

precipitation dataset for data-sparse regions, which is important for water resources 639 

management and planning over China.  640 

The developed three-stage blending algorithm is a statistical-based method, 641 

which is accompanied by estimation uncertainty sourced from primary data, model 642 

structure and parameter estimations. Although we attempted to correct systematic bias 643 

of four individual products, only one hybrid approach incorporating LOCI and RBC 644 

methods is employed. Considering the further transferability of correction factors by 645 

OK interpolation, we did not examine more sophisticated bias-correction algorithms. 646 

However, numerous approaches may work such as daily translation (Yin et al., 2020), 647 

cumulative distribution function matching (Mastrantonas et al., 2019), copula-based 648 

correction (Sharifi et al., 2019) and stepwise regression method (Lu et al., 2019). 649 

Future work should be focused on further comparing and evaluating the adjusting 650 

performance of different bias correction methods in reducing errors of primary 651 

datasets. While this study employed a dynamic blending method to produce a 652 

deterministic dataset (i.e. a single "best guess" realization of precipitation), there is 653 

parallel research that focuses on developing probabilistic precipitation estimates. A 654 
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probabilistic design of satellite/reanalysis precipitation products is also important for 655 

hydrological application, because it provides the possible range of estimates. For 656 

example, Kirstetter et al. (2018) proposed a new method, PIRSO (Probabilistic 657 

Precipitation Estimation using InfraRed Satellite Observations), to estimate 658 

probabilistic precipitation rates with space-based infrared sensors. Although it is 659 

challenging for this study to release a probabilistic dataset at a national scale, we still 660 

attempt to characterize the hydrological simulation uncertainties when forced by 661 

satellite/reanalysis precipitation. Following the general concept of a probabilistic 662 

estimation framework, four primary precipitation datasets were individually run 663 

through the Xinanjiang model. The precipitation is treated as a 4-member ensemble 664 

process rather than a deterministic one, and then the four simulated streamflow 665 

members is blended by the dynamic BMA method. The streamflow simulation 666 

performances of different schemes are presented in Fig. 13 and Fig. S16. When 667 

treating the precipitation as a 4-member ensemble, most catchments show higher 668 

KGE values than those schemes when forced by individual primary datasets. This 669 

finding supports that the ensemble-based approach may provide more reliable 670 

information for hydrological simulation. Among all the considered six calibration 671 

schemes, the model forced by blended precipitation dataset usually shows best 672 

performance in almost all catchments. As a result, it is better to reduce the 673 

precipitation biases before driving hydrological models, which also suggests the 674 

potential usefulness of our blended precipitation dataset in streamflow simulation. 675 

Here, it is difficult to detect and systematically eliminate different uncertainty 676 
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components; therefore, removing the integrated uncertainty and further improving 677 

precipitation blending accuracy have to be further researched. 678 

6. Conclusions 679 

This study develops a three-stage framework to integrate three multi-satellite 680 

precipitation datasets (IMERG Final, TMPA 3B42V7 and PERSIANN-CDR), a latest 681 

atmospheric reanalysis product ERA5 and gauge dataset, particularly to provide 682 

blended precipitation estimates in data-sparse or ungauged regions. This framework 683 

can simultaneously correct precipitation occurrence and intensity, and is performed to 684 

produce a new precipitation dataset at a daily 0.25° grid scale over mainland China. 685 

The developed method is systematically evaluated in terms of eight statistical metrics 686 

in both gauged sites, and is also evaluated at randomly sampled sites by K-fold 687 

experiments. The hydrological performance of blended and primary 688 

multi-satellite/reanalysis members are also evaluated by forcing four hydrological 689 

models in 238 catchments. The main conclusions are summarized as follows. 690 

(1) The four primary precipitation products show substantial biases over 691 

mainland China, and ERA5 exhibits the best performance in terms of most error 692 

evaluation metrics. After bias correction by combining the LOCI and RBC methods, 693 

the adjusted products show significant improvements in both capturing precipitation 694 

occurrence and intensity, generally with an improving rate of 2.8-13.7% after 695 

adjustment.  696 

(2) The three-stage blending approaches achieve better scores than the two-stage 697 

methods and individual members, and the CS algorithm generally performs superior 698 
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estimation skills than the dynamic BMA method. The K-fold experiments also proved 699 

that blended products can improve the estimating scores by 10-43%, implying 700 

substantial benefits of precipitation blending in ungauged regions. 701 

(3) The mapped blended precipitation estimates could significantly improve the 702 

hydrological performance in comparison with primary members, with improvement of 703 

the KGE values of simulated streamflow by 12-35% in most catchments over 704 

mainland China. Overall, the developed three-stage heuristic method enables 705 

facilitating hydrological modelling, and therefore may play an important role in 706 

hydro-climatological applications over data-sparse regions in mainland China. 707 
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List of Tables 

Table 1: Summary of the statistical metrics for evaluating the performance of 

precipitation products. 

ID Metric Abbreviation Expression 
Perfect 

score 
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Root mean square 

error 
RMSE(mm) 
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Kling-Gupta 

efficiency 
KGE(-) Eq. (15) 1 
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Probability of 

detection 
POD(-) 
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a c
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6 False alarm ratio FAR(-) 
b

a b
 0 
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Critical success 
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Note: 
jG (

jS )indicates gauge observation (estimates); j and N represent time step and total 

length, respectively; G ( S )is the mean value of gauge observations(estimates).5 
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Table 2: The average daily metrics of the primary, adjusted precipitation 

products, blended ensembles and MSWEP V2 dataset over mainland China. 

ID Products RMSE(mm) MAE(mm) CC KGE POD FAR CSI HSS 

1 ERA5 7.17 2.78 0.49 0.23 0.69 0.52 0.42 0.44 

2 IMERG Final 8.07 2.93 0.39 0.29 0.57 0.53 0.35 0.37 

3 TMPA 3B42V7 8.69 3.05 0.25 0.13 0.31 0.54 0.22 0.24 

4 PERSIANN-CDR 7.87 3.18 0.33 0.15 0.62 0.63 0.3 0.27 

5 ERA5_cor 6.61 2.40 0.55 0.44 0.65 0.44 0.43 0.49 

6 IMERG Final_cor 7.8 2.77 0.42 0.41 0.53 0.5 0.36 0.38 

7 TMPA 3B42V7_cor 7.92 3.01 0.28 0.25 0.57 0.65 0.28 0.26 

8 PERSIANN-CDR_cor 7.65 2.97 0.37 0.32 0.53 0.6 0.31 0.29 

9 Two-stage CS 6.53 2.59 0.53 0.35 0.76 0.55 0.39 0.41 

10 Two-stage BMA 6.87 2.63 0.47 0.29 0.74 0.55 0.39 0.41 

11 Three-stage CS 6.18 2.05 0.61 0.49 0.86 0.15 0.75 0.82 

12 Three-stage BMA 6.68 2.21 0.51 0.34 0.86 0.15 0.75 0.82 

13 MSWEP V2 7.17 2.51 0.48 0.34 0.66 0.46 0.42 0.47 

Note: The bold text stands for the best score for the comparing members.  
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Table 3: The average daily metrics of the primary and four blended precipitation 

products in randomly sampled validation gauges. 

ID Products RMSE(mm) MAE(mm) CC KGE POD FAR CSI HSS 

1 ERA5 6.51 2.49 0.48 0.23 0.68 0.56 0.39 0.41 

2 IMERG Final 7.88 2.50 0.37 0.21 0.55 0.55 0.33 0.36 

3 TMPA 3B42V7 9.59 3.36 0.25 0.12 0.48 0.61 0.27 0.28 

4 PERSIANN-CDR 6.69 2.70 0.31 0.06 0.60 0.65 0.28 0.26 

5 Two-stage CS 6.63 2.62 0.47 0.21 0.66 0.57 0.38 0.42 

6 Two-stage BMA 6.92 2.69 0.44 0.21 0.65 0.58 0.38 0.40 

7 Three-stage CS 6.21 2.09 0.50 0.40 0.70 0.40 0.43 0.54 

8 Three-stage BMA 6.76 2.23 0.45 0.22 0.70 0.40 0.43 0.54 
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Figure 1: Spatial distribution of meteorological stations over China. The eight 

geographical sub-regions are plotted (S1-Northeast China, S2-North China, 

S3-Jiang-Huai Region, S4-South China, S5-Southwest China, S6-Eastern of Tibetan 

Plateau, S7-Western of Northwest China, and S8-Eastern of Northwest China). 
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Figure 2: The diagram of the developed three-stage blending framework and its 

performance validation procedures. 
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Figure 3: Seasonal average statistical results of RMSE and CC metrics for 

primary, bias-corrected and three-stage CS blended precipitation products over 

mainland China. The whiskers denote standard deviation. 
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Figure 4: Average statistical metrics of primary, bias-corrected and blended 

precipitation products in eight sub-regions over China. In the figure, the numbers 

on the y-axis correspond to eight sub-regions, whereas the numbers on the x-axis 

correspond to the products identified in Table 2.   
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Figure 5: Spatial distributions of average weights of four bias-corrected 

precipitation members in different blending schemes over mainland China.  
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Figure 6: Temporal distribution of average weights in three-stage CS blending 

scheme for eight sub-regions over mainland China.  
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Figure 7: Spatial distributions of statistical metric CC values for primary 

individuals and four blended ensembles over mainland China. 
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Figure 8: Spatial distributions of statistical metric HSS values for primary 

individuals and four blended ensembles over mainland China.  
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Figure 9: Scatter plots of ten-days and monthly areal precipitation from primary 

and blended products against gauge-based precipitation in South China.  
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Figure 10: Average statistical metrics of primary and three-stage CS blended 

precipitation products in random calibration sites over eight sub-regions. 
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Figure 11: The KGE value of hydrological simulations forcing by primary, 

three-stage CS blended and MSWEP V2 precipitation datasets during 

calibration period over 238 catchments. The KGE values correspond to the model 

that best performed in each catchment.
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Figure 12: Spatial distributions of eight statistical metric values for MSWEP V2 

dataset over mainland China. 
 



 

57 

Figure 13: The KGE value of Xinanjiang model when forced by individual 

precipitation datasets and 4-member ensemble during calibration period over 

238 catchments. The “4-member ensemble” denotes that the model is forced by four 

precipitation datasets and then the simulated streamflow is blended by dynamic BMA 

method. 
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Abstract: Satellite-retrieved and atmospheric reanalysis precipitation can bridge the 

spatiotemporal gaps of in-situ gauging networks, but estimation biases can limit their 

reliable applications in hydrological monitoring and modelling. To correct 

precipitation occurrence and intensity simultaneously, this study develops a 

three-stage blending approach to integrate three multi-satellite precipitation datasets 

(IMERG Final, TMPA 3B42V7 and PERSIANN-CDR), the ERA5 atmospheric 

reanalysis product and a gauge dataset within a dynamic framework. Firstly, the 

systematic biases of the four members were individually corrected by combining the 

local intensity scaling and ratio bias correction methods. Then, the “state weights” 

used for determining wet/dry events were optimized by evaluating a score function of 

the four bias-corrected members. Thirdly, the “intensity weights” were optimized 

using the cuckoo search (CS) algorithm and the Bayesian Model Averaging (BMA) 

method, respectively. The three-stage blending approach produced dynamic weights 

varying both spatially and temporally, and the performance was thoroughly evaluated 

over mainland China. Results show that the three-stage dynamic scheme performs 

better than individual datasets and two-stage blending methods in terms of all eight 

statistical metrics, and the CS algorithm outperforms the BMA method in the third 

stage. By randomly sampling validation sites using K-fold experiments, the developed 

algorithm also demonstrates a superior performance in ungauged regions. After 

interpolating and normalizing blending parameters of all gauges to entire domain 

using ordinary kriging, a new blended precipitation dataset with a daily 0.25° scale 

was produced. Four hydrological models are forced by blended and primary 
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precipitations in 238 catchments over China, further confirming that the developed 

approach can facilitate hydrological modelling demonstrated by improving the 

Kling-Gupta efficiency of simulated streamflow by 12-35%. 




