University of Oslo
Department of Informatics

Compiling Creol
Safely

Jorgen Hermanrud
Fjeld

Master Thesis

2nd May 2005

ii

Abstract

This thesis provides contributions to the research programming language Creol
(Concurrent REflective Object-oriented Language). The first contribution is the
EBNF grammar for Creol. The second contribution suggests how to extend the
Creol language with functional constructs. The third and major contribution
is the design of a type system for the Creol language, as well as some molding
of the Creol language, such that static type safety is achieved. The fourth
contribution is a prototype implementation of a compiler for Creol.

The Creol language has until now provided static type safety and separation
between inheritance and subtyping by assumption only. The creation of the
Creol type system investigates this assumption for the Creol language. During
the process there has also been a clarification of the Creol language from a type
system point of view. The type system designed for Creol is a hybrid between a
structural and nominal type system, and is a step towards a novel hybrid type
system, that facilitates a separation between inheritance and subtyping, while
enforcing nominal constraints, when desireable.

The prototype compiler implemented for Creol is crafted with tools that
operate on a higher level than traditional compiler tools. These high level
approaches include combinator parsing and attribute grammars.

il

v

Acknowledgement

First of all, I would like to thank my supervisors Einar B. Johnsen and Bjarte
M. @stvold. Johnsen for accepting me as a master student, greatly raising my
textual standards and pulling my mindset in a formal direction. @stvold has
relentlessly provided quick and accurate feedback, which as been invaluable. His
demand for “horizontal lines” sparked the theoretical aspects of this thesis. Our
conversations where of great inspiration, while his focus helped bring the thesis
to a closure.

I'm in debt to my family and friends that supported me during the work. My
girlfriend Sigrun for her support, patience and push for a laptop, it has proved
very convenient and productive. My mother Tove for proofreading my English.
My brother Matias for helping me understand my own thoughts. My father
Inge for insisting on silly competitions with the sole purpose of my progression
as well as providing a non-back-breaking chair. My friend Halvor for providing
ego-boosting moral support.

The enthusiastic encouragement of Anders Moen inspired me to pursue my
own ideas and focus on research as a joyful activity.

Finally, to all those I have not mentioned here, I'm grateful for all the support
I have received, and for the general encouragement.

vi

Contents

1 Introduction 1
1.1 The Creol Language 1
1.2 Creol Virtual Machine and Maude 2
1.3 Creol Compiler and Type System Incentive 3
1.4 Type Checking o 4
1.5 Haskell. e 5
1.6 Combinator Parsers 5
1.7 Attribute Grammars L 6
1.8 Thesis Overview 7

2 The Creol Language 9
2.1 Essential Creol Concepts 9

2.1.1 Processor Release Points 9
2.1.2 Separation of Behaviour and Code Reuse 11
2.1.3 Compositional Program Analysis 12
2.1.4 Cointerface L Lo 14
2.1.5 Sample Translation to Creol from Java 14
2.2 Creol Grammar and Syntax Examples 14
2.2.1 Identifiers 16
222 Comments. v v i e e e 17
2.2.3 Programso 17
2.2.4 Interface Declarations 17
2.2.5 Class Declarations 18
2.2.6 Statements o 19
2.2.7 Predefined Constants 21
2.2.8 EXpressionso 21
2.3 Syntax Proposals for Creol Extensions 22
2.3.1 Local Declarations 22
2.3.2 Expressions as Statementso 22
2.3.3 Label Check as Expression 23
2.3.4 Procedures e 23
2.3.5 Algebraic Data Types 24
2.3.6 Parametrisation. oo oL 27
2.3.7 Enumeration o0 oo 28
2.3.8 Tuples 29
2.3.9 Lists oL 30

vii

viii CONTENTS
3 The Functional Creol Compiler 31
3.1 Rationale and Design Goals 32
3.1.1 Separate Semantics and Syntax 32
3.1.2 Reuse of Existing Solutions 32
3.1.3 Modularity Through Expressiveness 33

3.2 Attribute Grammar System 33
3.2.1 Overview e e 33
3.2.2 Details. e 34

3.3 Abstract Syntax Trees 36
3.3.1 Example Abstract Syntax Tree 37

3.4 Scanner e 42
3.4.1 University of Utrecht Scanner 42

3.0 Parser e 43
3.5.1 UUAG Combinator Parser Library 44
3.5.2 Parsing Example o000 46

3.6 Type Checking, 48
3.7 Code Generator 49
3.7.1 Creol to CMC Example 50

4 Object-Oriented Type Analysis 51
4.1 Static Type Safety 51
4.2 Essential Type Terminology 52
4.2.1 Subtyping e 52
4.2.2 Object Type 52
4.2.3 this,selfandSelf 53
4.2.4 Matching 53
425 Record. 53
4.2.6 Variant 53
4.2.7 Conformance 53
4.2.8 Nominal Conformance Constraints 54
4.2.9 Behaviour Lo 54
4.2.10 Variance oL Lo 54
4.2.11 Contravariance o v v v v v i 54
4.2.12 Covariance i i e e 54
4.2.13 Invariance Lo e e 54
4.2.14 Virtual Binding oo 54
4.2.15 Static Binding 54

4.3 The Problem of Inheritance and Subtyping 55
4.4 Possible Approaches o0 55
4.5 Matching with MyType 57
4.6 Matching with Rows 58
4.7 MyTypeversus Rows o 58
5 Approaching Creol Typing 61
5.1 Classes and Interfaces 61
5.2 Instance Privacy o 62
5.3 Namespaces L e 63
5.4 Classes and Object Types 64
5.5 Information Flow and Conformance 69

5.5.1 Information Flow, Variance and Conformance 69

CONTENTS

5.5.2
59.5.3
5.5.4
5.5.5
5.5.6

Function Conformance
Reference Conformance
Method Override and Conformance
From Object to Method Conformance
Conformance by Source and Sink

5.6 Structural and Nominal Type Systems

5.6.1

Concerning Creol L.

7 Nominal Conformance Constraints
5.8 Interfaces and Virtual Methods
5.9

.9 Imheritance Lo
5.10 Statically Bound Instance Variables
5.11 Typing Cointerfaces
5.12 Explicit Type Language References
5.13 Static and Virtual Method Binding
5.14 Recursive Types o o e

5.14.1

Mutual Recursion 0.

5.14.2 Iso-recursion
5.14.3 Implicit Iso-recursion.
5.15 Termination of Inheritance Checking

5.16 Polymorphism L oo

5.17 Iso-recursion and Conformance

5.17.1

Subtyping

5.17.2 Matching o
5.17.3 Decidability oo

Creol Type System

6.1 Desugaring oo
6.2 Meta Notation for the Creol Type System
6.3 Creol Type Language
6.4 Object-Oriented Expressions and Statements
6.5 Object-Oriented Declarations
6.6 Conformance

6.6.1

Subsumption Lo

6.7 Inheritanceo
6.8 Deriving Object Types

7 Viability

7.1 Function Creol Compiler

7.1.1
7.1.2
7.1.3
714
7.1.5
7.1.6
7.1.7

Syntax Errors
Simple Type Errors
Inheritance Error L.
Inheritance with Variances
Subsumption Lo
Recursive Types o oo
Code Generator.

7.2 Creol Type System

7.2.1
7.2.2

Inheritance and Binary Methods
Mutual Parametrisation and Refinement

ix

70
70
71
72
72
73
73
74
75
78
79
79
80
81
81
82
83
83
85
86
88
88
89
90

93
93
94
96
98
100
104
105
106
107

X CONTENTS
8 Further Work and Research 119
8.1 Null Pointers and Type Safety 119
8.2 Compound Object Types 120
8.3 Virtual Classes 121
8.4 Pattern Matching Compilation 121
8.5 Kind Checking 122
8.6 Analysis and Modularity 0oL 122
8.7 Overloading L 124
8.7.1 Procedureso 124

8.7.2 Methods 125

8.8 Modules 126

9 Conclusion 127
9.1 Contributions 127
9.2 Critique e e e 128
9.3 Experience Lo e 128
9.4 Related Worko o 129
Bibliography 131
A Creol Grammar 139
B Functional Subset of Creol Type System 141
B.1 Expressions 141
B.2 Statements 142
B.3 Algebraic Datatype Expressions 143
B.4 Declarations 146

C Creol to CMC Comparison 151
D Implementation Remarks 153
D.1 Type Checking 153
D.1.1 Building Environments. 153

D.1.2 Current State 154

D.1.3 Type Checking Order 154

D.2 Creol Language Evolution 154
D.2.1 Contributed 154

D.2.2 Experiencedo oo 155

E Code 157
E.1 Literate Programming 157
E.2 Reading Literate Code 157
E.3 Main Module and CreolCompiler Library 158
E.3.1 The Main Module 159

E.3.2 Creol Compiler Library Module 161

E.4 Abstract Syntax Tree 162
E.5 Scanner 165
E.6 Parser e 167
E.7 Type Analysis 175
E.7.1 Type Definitions 175

E.7.2 Typechecker Attributes 179

CONTENTS xi

E.7.3 Typechecker Semantic Functions 181
E.7.4 Symbol Table Definitions 200
E.7.5 Symbol Table Attributes 204
E.7.6 Symbol Table Semantic Functions 205
E.8 Code Machine Code Generation 209
E.8.1 Creol Machine Code Attributes 209
E.8.2 Creol Machine Code Semantic functions 210
E.8.3 Unique Labels 215
E.9 Auxiliary Functions oL 216

F Code Macros 219

xii CONTENTS

List of Figures

1.1 Attribute Grammar Flow of Attributes 7
2.1 Waiting with synchronous and asynchronous communication. . . 10
2.2 Example problem and solution with static binding. 13
2.3 Method search path diamond with static binding as lower bound 14
2.4 Java to Creol sample translation 15
3.1 Semantic Function 00000 35
3.2 Translation from UUAG code to corresponding Haskell code . . . 35

xiii

xiv LIST OF FIGURES

Chapter 1

Introduction

Creol is an object-oriented research language with novel approaches to concur-
rency, program analysis and formal semantics. Other areas of the language
have not yet received much attention, but are accounted by intent or assump-
tion, of which the following are of interest to this thesis, the assumed presence
of static type checking, the choice of interfaces and classes as central and dis-
tinct concepts that facilitate a separation of inheritance and subtyping, the use
of interfaces to type all object interaction, and the integration of functional
and object-oriented programming in the same language. In light of these ideas,
the goal of this thesis, is to contribute to the Creol language by answering the
following questions.

e Is it possible to design a formal type system for Creol, which precisely
describes type checking, with particular focus on object-orientation.

e Is it feasible to design a compiler for Creol, using high level tools, to easily
facilitate language and compiler development?

1.1 The Creol Language

The language Creol [24] is an object-oriented research language with emphasis
on distributed concurrent objects. The syntax and semantics of Creol is pre-
sented informally in Section 2, and partially in articles [55,52,56, 54] produced
by the Creol research.

The Creol language research has contributed synchronous and asynchronous
method invocation in a uniform manner within the same semantic framework.
The choice of synchronous or asynchronous method invocation is entirely de-
cided by the caller through annotation. The Creol language introduces concur-
rency by giving each object a separate thread. The Creol framework for method
invocation where the caller decides synchronicity is a new twist in comparison
to languages that offer either synchronous remote procedure calls (RPC), asyn-
chronous events, or a combination of both, which leads to very complicated
semantics. Processor release points are places in the code where the object may
switch safely between different tasks. Processor release points facilitate reason-
ing about class invariants, and class invariants form a basis for analysing the
behaviour of concurrent programs, hence processor release points are crucial to

2 CHAPTER 1. INTRODUCTION

the behaviour analysis of concurrent programs. It is safe to switch when class
invariants are valid, therefore a processor release point must maintain the in-
variant. Thus an object may switch to other code in the object at a processor
release point, while trusting the invariant. Invariants are not enforced by the
type system, but rather by separate analysis of the code. The integration of
invariants with the type system by a notion of behavioural subtyping requires
theorem proving in the general case. The combined effect of one thread of
control for each object with thread switch only on processor release points, is
thread-safety in a concurrent and distributed environment. Although the actual
implementation details of processor release points are unspecified, an implemen-
tation would necessarily resort to low level synchronisation primitives, such as
those described by Andrews [5], but notice that given processor release points,
it would be possible to model other concurrency models, such as concurrent
access to a shared variable.

In order to understand the features of Creol, we place Creol on the language
map by listing the major properties.

Object Oriented Objects provide an intuitive abstraction of the real world
around us.

Class Based A class is a successful abstraction that allows programmers to
comprehend and manage objects, demonstrated by the general success of
object-oriented programming with class-based languages.

Functional Creol provides programmers with the right tool for the right job by
additionally offering algebraic datatypes and functional constructs, which
provide the programmer with a tool that is both object-oriented and func-
tional.

Safe The guaranteed absence of untrapped errors. Untrapped errors are further
explained in Section 4.

Statically Typed All type errors are caught at compile time. The definition
of type errors is left to Section 4.

Interfaces Interfaces provide behavioural abstraction.

Inheritance Maximised code reuse and behaviour reuse provided through mul-
tiple inheritance for both classes and interfaces.

1.2 Creol Virtual Machine and Maude

The operational semantics of the Creol language are defined in rewriting logic,
and give a high level specification of how Creol programs execute. The Creol
operational semantics is executable by the rewriting logic tool Maude [66], which
may be used as a language interpreter. This language interpreter is named the
Creol Virtual Machine. The original interpreter was developed in the master
thesis of Arnestad [8]. The direct execution of operational semantics, permits
semantic changes to be tried out immediately, which gives a very short develop-
ment cycle. This short development cycle enables rapid research results on the
Creol language through experimentation with new ideas and different paradigms

1.3. CREOL COMPILER AND TYPE SYSTEM INCENTIVE 3

from other languages. Consider for instance different evaluation strategies or
scheduling strategies. The high level Creol Virtual Machine has greatly simpli-
fied code generation in the compiler. A low level virtual machine would require
the generation of machine instructions, which in itself is a large and complex
part of compiler construction. Since the Creol Virtual Machine is written as a
rewriting logic module, the Creol Virtual Machine can itself be analyzed with
the Maude framework. Furthermore Maude itself may be altered through Meta-
Maude that allows advanced experiments with the Creol Virtual Machine. An
example of such ongoing research is the use of predicates on communication
history to guide the order of execution in the Creol Virtual Machine.

1.3 Creol Compiler and Type System Incentive

This section looks at incentives for the development of a Creol compiler. The
Creol language has reached a maturity where it was deemed convenient to im-
plement a compiler as a frontend to the Creol Virtual Machine. The reasons for
creating a Creol compiler were as follows:

1. Creol machine code is assumed to be type safe and does not contain type
information, hence the Creol Virtual Machine will not operate correctly if
type errors are present in the code. Consequently type checking is needed
and a Creol compiler must perform type checking. There is however no
formal type system for the Creol language, hence it is unclear how type
checking should be done. To successfully implement type checking, it is
necessary to create a type system for the Creol language. There are no
other languages with all the features of the Creol language, therefore it is
unknown exactly how the Creol language can be statically type checked.
This requires the careful investigation of how static type checking can be
achieved for each of the features in the Creol language. Such investigation
requires a formally defined type system.

2. There is presently no developed support for algebraic data types in neither
the Creol language nor in the Creol virtual machine. The Creol language
should provide algebraic data types.

3. Creol Machine Code was targeted to syntactically resemble Creol within
the limits of Maude, and Creol was adapted to Creol Machine Code, mak-
ing it feasible to hand-translate from Creol to Creol Machine Code. There
are some problems with this:

(a) The Creol Machine Code syntax is not machine generator friendly in
the sense that there is a uniform syntax and that information is lo-
calised. As aresult the Creol compiler is burdened with syntactic con-
cerns in the Creol machine code that actually reflect user-friendliness
for programmers using Creol machine code directly.

(b) The Creol syntax has been adapted towards the Creol Machine Code,
which further increases the language barrier for people with experi-
ence from other programming languages. A syntax closer to common
object-oriented languages is more programmer friendly.

4 CHAPTER 1. INTRODUCTION

(¢) The Creol Machine Code contains syntactic sugar that complicates
the specification, although syntactic sugar isn’t a part of the Creol
semantics. A compiler can handle syntactic sugar to simplify the
Creol Virtual Machine.

4. There is a gap of abstraction between Creol programs and their Creol Ma-
chine Code representation. This creates the need for a compiler from Creol
to CMC. Due to the active development of both Creol and its interpreter,
the compiler should emphasize modularity and flexibility at both language
and machine code levels and easily facilitate modifications of both Creol
and CMC.

In summary this led to the need of a compiler to further research on Creol. This
compiler should do parsing, type checking and generation of CMC. Furthermore
it should be written using high level tools. Since Creol is for research, and not
for production usage, neither the speed of the compiler nor the speed of compiled
programs are essential, and pose little influence on the choice of tools.

1.4 Type Checking

Type checking improves the reliability of programs, by checking for consistency
between information and operations on information. A static type checker anal-
yses the program when it is compiled, and rejects the program if there is incon-
sistency, so the programmer is confronted with potential errors. This places the
consequence of errors with responsible party. The exact definition of consistency
is difficult. On one hand, one would like to prove that a program does its job
and finishes. On the other hand, it is impossible to create a program that checks
if any given program finishes, known as the halting problem [38, Sect. 8] [61,
Sect. 5.3] [34].

Static type checking is concerned with those consistency checks that are de-
cidable and can be solved mechanically, in a reasonable amount of time. Within
these limits, static type checking can provide safety from untrapped errors, and
a compile time guarantee that no type errors may occur at run-time. An un-
trapped error is an error that is not noticed by the program. A type error is an
error decided just by looking at the types.

A type checked program is no more reliable than the type checker, so errors
in the type checker is worse than errors in arbitrary programs. Type systems are
used to formally describe type checking, such that the correctness of both the
type system and the type checker, can be inspected and verified. A type system
consists of a type language and type rules. The type language corresponds to
information and operations on information. Type rules describe how to assign
types, with the type language, to programs, as well as how to check if the
assigned types are valid.

A type system bridges the gap between our understanding of consistency
and the type checker, so the type system should be understandable for humans
as well as possible to implement faithfully. This gap is narrowed by identifying
good abstractions, which allows the type language and the type rules to be
understandable as well as implementable.

1.5. HASKELL)

1.5 Haskell

We chose to develop the prototype compiler, the Functional Creol Compiler,
in Haskell [39], a statically typed non-strict functional programming language.
The importance of such languages to rapid development is well documented [43].
Statically typed functional languages have a strong track record with respect to
symbol manipulation [7], which is important for writing compilers. A non-strict
language evaluates expressions only when needed, which avoids unnecessary
computations, and facilitates techniques such as combinator parsing in a natural
manner. Combinator parsing is heavily used in the Functional Creol Compiler.

Haskell is the default non-strict statically typed functional language, and is
used in research environments throughout the world. The popularity of Haskell
has fueled language research both on Haskell language itself, and in general with
an implementation in Haskell. The research and work has contributed both
traditional and new compiler tools written in Haskell, allowing this thesis to use
a relatively novel approach. The other non-strict statically typed languages one
might consider are Miranda [90] and Clean [21], but these languages have much
smaller user communities and much less research associated with them, therefore
there are less tools to choose from, less support to get from the community, and
less people who may read the code of the Functional Creol Compiler. One
might also consider a strict language from the ML family, such as SML [84]
or O’Caml [73]; the latter has stable implementation and a decent community,
but the documented benefits of non-strictness for rapid prototyping suggests
otherwise [13].

Throughout this thesis the reader is assumed to have some basic familiar-
ity with Haskell, including the practical use of monads to structure input and
output. A monad is a construct that, from a practical perspective, allows func-
tional code to be structured such that input and output can be expressed in an
intuitive manner, which corresponds to how input and output are expressed in
imperative languages. A gentle introduction to Haskell, including practical use
of monads, may be found in a tutorial [41].

1.6 Combinator Parsers

The Functional Creol Compiler makes use of combinator parsing [45], which is
an approach that differs from the traditional parser generator methods found in
popular tools such as Yacc [101] and Bison [9]. The general idea of combinator
parsing is to build parsers for small subsets of the language, and combine these
parsers, forming a parser for a larger subset of the language. This process
recursively defines a parser for the whole language. Combinators are different
strategies for how parsers can work together. To get an intuition, imagine h is a
parser for the word hello and w is a parser for the word world. Then we have
the sequence combinator <*> and the parallel combinator <|>. We can now
create a parser for helloworld by combining h and w with <*> to get h <*>
w. To create a parser for either hello or world we use h <|> w. Notice how
these combinations themselves are new parsers that can be combined further to
stepwise create a complete and complex parser. This stepwise combination is
the key to the simplicity of combinator parsers.

This thesis uses the specific combinator parsing approach described in the

6 CHAPTER 1. INTRODUCTION

introductory lectures notes [30] used at the University of Utrecht and in the cor-
responding library [88], which implements those parser combinators. The choice
of combinator parsing was based on the author’s experience with Lex and Yacc
where the grammar for the compiler quickly becomes cluttered with code, ham-
pering the readability. The error messages from Yacc/Bison when parsing fails
does not suggest possibly correct alternatives, and the specification of custom
error messages when parsing fails is difficult in Yacc/Bison. The University
of Utrecht parser library generates standard error messages with information
about possible further parses, thereby helping the programmer and alleviating
the need for specifying such messages in detail, although the specification of
custom error messages is straightforward. Furthermore the chosen combinator
parser library also offers an attribute grammar such as those often found in
the compiler literature [63,97]. These, combined with the curiosity for trying a
modern approach to crafting a compiler, were the decisive factors in choosing
the University of Utrecht combinator parser and attribute grammar system.

1.7 Attribute Grammars

The Functional Creol Compiler uses attribute grammars to describe calculations
on the internal representation of Creol programs. An attribute grammar is a
language for specification of how to generate information from a tree structure.
The generated information is a set of attributes, and attributes are pieces of
information that correspond to a node in the tree. Attributes are either inher-
ited, synthesized or chained. An inherited attribute collects information from
the parent node attributes. A synthesized attribute collects information from
child node attributes. A chained attribute is both inherited and synthesised.
The University of Utrecht (UU) Attribute Grammar (AG), which is written in
and integrated with the Haskell programming language, is the concrete attribute
grammar used in this thesis. UU-AG is extended with chained attributes, which
are both inherited and synthesized. The data structures from which the Func-
tional Creol Compiler generates attributes, are the abstract syntax trees (AST)
of Creol programs. An abstract syntax tree is a data structure that contains a
program. The information flow between attributes is illustrated in Figure 1.1,
that incidentally is the actual information flow to the topmost node of the Creol
compiler AST. Notice that information in chained attributes flows directly be-
tween siblings. In the actual implementation the information travels unaltered
through the parent node, as if it went directly between sibling nodes.

Some attribute grammars allow different attributes to be specified separately,
and the attribute grammar weaves together these separate specifications. This
separate specification and weaving is similar to that of aspect-oriented program-
ming [59]. The UU-AG system facilitates separate attribute specifications along
with a compiler that weaves the specifications together, and produces Haskell
code. The Functional Creol Compiler is written as attribute grammar spec-
ifications, which are weaved together to form the Haskell code for the Creol
compiler, which is further compiled by a Haskell compiler.

1.8. THESIS OVERVIEW 7

Ast_Ast .
Inherited

Chained
Synthesized

Interfaces Classes

Figure 1.1: Attribute Grammar Flow of Attributes

1.8 Thesis Overview

There are several interwoven threads of information in this thesis. The Creol
language is introduced in Section 1.1 with a detailed explanation of language
features in Section 2.1 and syntax in Section 2.2. The Functional Creol Com-
piler is motivated in Section 1.3 and the other subsections in Section 1 provide
introductory information. A detailed explanation of the Functional Creol Com-
piler is in Section 3, and the code in Appendix E. The Creol type system starts
with an investigation of type checking issues, such as inheritance and subtyping,
in Section 4, then type checking of the object-oriented part of Creol is investi-
gated, in detail and by example, in Section 5, and the resulting type language
and type rules are presented in Section 6. The type rules for the functional part
of Creol is presented in Appendix B. The viability of both the Functional Creol
Compiler and the Creol type system is argued for in Section 7. Suggestions for
further work and research is provided in Section 8, and Section 9 provides a
conclusion for the thesis.

CHAPTER 1. INTRODUCTION

Chapter 2

The Creol Language

This section is an introduction to the Creol language. The presentation starts
with important concepts in the Creol language in Section 2.1. To provide some
intuition a sample translation of a small Java program into Creol is given in
Figure 2.4. Then the formal grammar is presented piecemeal, interspersed with
example syntax and some semantic explanations in Section 2.2. The concept
section is an important preliminary to understand both the Creol language
semantics and the type analysis in Section 4. The contributions, or suggestions,
that have resulted from the work in this thesis are in Section 2.3. The separation
of these contributions provides an insight in the Creol syntax development,
and makes it easier to evaluate the contributions for integration into the Creol
language.

Note that Section 2.3 was entirely decided by this thesis, while Section 2.1
and Section 2.2 where largely decided by prior work on the Creol language.

2.1 Essential Creol Concepts

This section introduces and motivates the concepts that are essential for the
semantic and syntactic presentation of the Creol language. The concepts are
presented independently from type checking. The type checking of Creol in the
Functional Creol Compiler is covered entirely in Section 4.

2.1.1 Processor Release Points

This section investigates how concurrency is expressed in Creol, and specifically
the required language constructs. The realisation of concurrency in Creol intro-
duces asynchronous method invocation, along with processor release points and
labels.

The Creol language integrates concurrency into the programming language,
as opposed to programming languages that provide concurrency constructs as
separate libraries. To establish language integration is beneficial, it suffices to
examine the motivation for the integration. The current resarch focus for the
Creol language is invariant analysis of concurrent programs. Since Creol is a
class-based object-oriented language, it is natural to reason about object invari-
ants on a class level. When objects interact concurrently with synchronous com-

10 CHAPTER 2. THE CREOL LANGUAGE

Waiting Brokg ariant Safe concurre;cy

y

\J \J

Safe synchronous Unsafe asynchronous Safe asynchronous
Figure 2.1: Waiting with synchronous and asynchronous communication.

munication, the objects may not perform anything while waiting for an answer.
Asynchronous communication is then introduced to eliminate waiting. A naive
approach of merely providing a library of asynchronous primitives eliminates
the waiting, but requires some sort of synchronisation, otherwise the number of
possible code interactions with non-deterministic results make invariant analysis
extremely difficult. To remedy this, Creol introduces asynchronous communi-
cation into the language with certain restrictions, this combination eliminates
waiting while facilitating invariant analysis. The different situations are illus-
trated in 2.1, where it is shown that with synchronous behaviour, object a must
wait for object b to reply, while with concurrent and asynchronous behaviour,
object a does not have to wait, but the invariant may be broken because the
computations of objects a and b interleave unpredictably, while with one thread
per object and asynchronous behaviour, object a may continue while waiting,
and the invariant in object b is safe. The restriction of one thread per object is
crucial to safe concurrency with asynchronous behaviour. There are other tech-
niques that reduce waiting, such as futures [69], that allow an object to continue
until the values are first used, and then wait. This allows further related com-
putations, but arbitrary tasks may not be interleaved, because it is not known
if the invariant is valid when the waiting occurs, which, in the case of futures, is
solved by using a linear type system which imposes relatively strong restrictions
on the use of mutability. The Creol language reduces waiting by introduction
of explicit processor release points, where the invariant must be valid.

A processor release point is a place in the code of an object where the object
can switch between tasks, under the assumption that the invariant is valid. This
allows an object to engage in another unrelated computation, safely assuming
that the invariant is valid. The Creol framework thus provides asynchronous
communication and explicit processor release points, with the restriction that
one object may not have more than one thread, at any given time.

It is the programmers responsibility to write code that respects the invariant.
The Creol language then guarantees that no broken invariant may occur due to
unsafe interaction. This is in contrast to a solution where each code block in

2.1. ESSENTIAL CREOL CONCEPTS 11

an object maintains an invariant, but when the object switches between code
blocks at arbitrary points the resulting interaction can break the invariant. To
establish the invariant the code may be analysed by hand or with proof assisting
programs [28]. The interaction between asynchronicity and processor release
points give rise to active and passive waiting. Active waiting occurs when the
object must wait for a result without respecting the invariant, and therefore
the object may not switch to another task. Thus active waiting intuitively
corresponds to the object being busy while waiting. Passive waiting occurs
when the processor is released at a point where the invariant in respected.

The notions of active and passive waiting allow the programmer to decide
if waiting should release the processor. However with multiple asynchronous
method invocations,, the programmer needs to chose which reply to wait for.
The replies of asynchronous method invocations are given a label, therefore
every asynchronous method invocation has a distinct label. The label allows
the programmer to decide which invocation to wait for, and the waiting can be
either active or passive.

The only asynchronous concurrency restriction that is necessary to realise
the invariant analysis of Creol programs, is that at most one part of the object
is active at any time. The simplest realisation of this is to model each object
as a separate process, thus a one-to-one correspondence between objects and
processes. Objects are envisioned more as autonomous agents than as data
containers, but by that definition each Creol object, regardless of being active
or passive, has its own process. In systems with huge quantities of objects,
that would be a scalability problem, as each object incurs the overhead of an
extra process. Therefore notice that a process in the Creol context is different
from that of operating systems, and that the Creol process can be realised by
either operating system processes, which are isolated by the operating system,
kernel-level threads, which are in the same address space but preempted by
the operating system, or user-level fibers, which are light weight with volun-
tary task-switch. The choice of underlying implementation strategy for object
threads can be made freely as the semantics of Creol processes place few restric-
tions on possible implementation strategies. The Creol language promotes both
object-oriented and functional programming. With both types of programming
each concept is used where it has merit, hence objects are not abused for data
containment where algebraic data types are more appropriate. Hence it is rea-
sonable to expect that the number of objects will be less compared to languages
such as Java or C# where almost everything is an object.

2.1.2 Separation of Behaviour and Code Reuse

This section documents that the Creol language research intends to separate
behaviour and code reuse by having both interfaces and classes in the Creol
language, along with mechanisms for multiple inheritance.

The realisation that behaviour and code reuse are separate aspects and there-
fore deserve separate treatments [54,52] is designed to help the Creol language
to capture visible object behaviour with interfaces and at the same time facil-
itate code reuse with classes. This separation allows two different notions of
inheritance:

e Inheritance between interfaces.

12 CHAPTER 2. THE CREOL LANGUAGE

e Inheritance between classes.

Interfaces are connected to classes by explicit declarations. This separation
between inheritance hierarchies is intended to allow different inheritance re-
strictions on interfaces and classes, so the Creol language can express behaviour
inheritance differently than class inheritance.

The notion of behaviour captured by interfaces corresponds to object be-
haviour through viewpoints as formulated by Johnsen and Owe [51,53].

The suitability of interfaces and classes for the separation of inheritance and
subtyping is discussed in Section 4.3. The suitability of interfaces to capture
behavioural restrictions is discussed later in Section 5.7. Multiple inheritance
for both interfaces and classes has been added to the Creol language to provide
increased behavioural reuse for interfaces and code reuse for classes.

2.1.3 Compositional Program Analysis

This section investigates how compositional invariant analysis necessitates static
binding in addition to dynamic binding in a programming language with class
inheritance.

The Creol language facilitates compositional program analysis through a
language construct for static binding. Static binding is a manner of method
invocation on self, where self is the current object. Static binding is a call site
annotation that prevents subclass method overrides from affecting the call site.
Dynamic binding is the algorithm used in conventional languages such has Java,
C++ and C#, where a method invocation binds to the most specialized method
body. The discussion of type system implications of static binding is postponed
until Section 8.6.

To see why compositional analysis of invariants requires static binding, con-
sider a class A with methods m and n where the class has the invariant I and the
method m has an additional invariant so I A P is a precondition and I A @ is a
postcondition and the method n has I A R as precondition and I A S as post-
condition. Now suppose that m calls n so the logical dependencies P — R and
S — @ appear. This is the intuitive situation where somehow the precondition
of n depends on the precondition of m and the postcondition of m depends on the
postcondition of n. Since both m and n are in the same class, only the current
class needs to be analysed to establish that the pre- and post-conditions hold.
Then assume that there is a class B that extends A and overridesn withn’. Since
the postcondition of m in the subclass depends on n’ instead of n, the previous
analysis about invariants in class A is invalidated in the subclass B. The analysis
of m must be done again with n’. This situation makes the analysis of method
m depend on method overrides, which makes compositional analysis impossible.
It is then necessary to introduce a mechanism that prevents method override
from affecting compositional analysis. Static binding is one such mechanism.
Static binding protects the call site from method overrides, so the analysis of m
is independent of method overrides. The problems with dynamic binding and
the solution with static binding are illustrated by pseudo Creol code in Figure
2.2 where invariants, post- and preconditions are specified as comments at the

relevant places. The notation 4 designates a problematic assumption while —
is a valid assumption.

2.1. ESSENTIAL CREOL CONCEPTS 13

class A // class invariant [
begin
// precondition I AR
op n() == ...
// postcondition I A S
// precondition IAP
op m() == ...
// postcondition I AQ
// dynamic binding problem P — R and S - Q
...nQ)...
// static binding solution P — R and S — Q
...neAQ) ...
end

class B inherits A // class invariant I’

/15T
begin
// n’ precondition I’ AR’
op n() == ...

// postcondition I’ A S’

// dynamic binding problem P — R’ and S’ — Q
// Problem avoided with static binding!
end

Figure 2.2: Example problem and solution with static binding.

Static binding facilitates compositional analysis, so given a superclass with
an analysis, the code can be reused and the analysis can be plugged into the
analysis of the subclass. Static binding solves the problem because the method
may be overridden in a subclass, but the invocation is bound to a specific class
and is untouched by the overriding. Compositional analysis is especially impor-
tant in the case of code reuse where the super-class implementation is hidden.
In the example code in the method m the invocation n@A () would statically bind
the call to method n to class A, with the call n@A, efficiently preventing B from
overriding the call site understanding of n. If the subclass B would like to over-
ride n then it must also override m, which is exactly what is required, because the
analysis of m depends on n. Consider the inheritance hierarchy of the example
code, then the possible search paths for a method n has an upper bound in the
class A, and the static binding n@A represents a lower bound, a starting point for
the search. In the case of multiple inheritance and static binding these bounds
determine a diamond which constrains the search path for a method. Notice
that since static binding represents a lower bound, it is not necessary for the
target class to implement the statically bound method, as long as the method
is available by inheritance. The method search path diamonds example classes
are illustrated in Figure 2.3, where static binding is illustrated for n@B in B and
for n@C for code in C.

14 CHAPTER 2. THE CREOL LANGUAGE

A

+ n() : void
+ mi() : void

+ n{) : void

Figure 2.3: Method search path diamond with static binding as lower bound

2.1.4 Cointerface

This section explains the Creol language construct called cointerface.

A cointerface is a caller interface requirement, so the caller of a method must
implement the given interface. The notion of cointerface comes from prior Creol
research [53,51,75] and is used in formal specifications of external behaviour. A
cointerface can be modeled as an input parameter, but a cointerface is a stronger
requirement. The caller itself must implement the cointerface. Therefore coin-
terfaces are both an interface requirement and an object identity requirement.
This object requirement of a cointerface is essential for object viewpoints [51],
and is a subject for future Creol language research which aims to facilitate secu-
rity in the sense of guaranteed object identity. By guaranteeing object identity
it is envisioned possible to state extra security properties for programs [50].
Cointerfaces in Creol extend the language with a special syntax.

2.1.5 Sample Translation to Creol from Java

This section translates a small Java program into the equivalent Creol program,
to give the Java and C+# familiar readers an intuitive idea of the Creol syntax.

The sample code in Figure 2.4 declares an interface AI and a class A that
implements the interface.

2.2 Creol Grammar and Syntax Examples

This section presents the grammar for the Creol language.
The grammar for the Creol language is presented gradually through exam-
ples and the corresponding EBNF grammar productions. EBNF is shorthand

2.2. CREOL GRAMMAR AND SYNTAX EXAMPLES

// Java Code
public interface AI {
public int getset(int newx);
}
public class A implements AI {
private int x;
public int getset(int newx) {
int y = newx;
X = newx;
return y;

// Creol Code
interface AI
begin
with Any op getset(in newx:Int out oldx:Int)
end

class A implements AI
begin
var x:int;
with Any
op getset(in newx:Int out oldx:Int) ==
oldx := x;
X = newx;
end

Figure 2.4: Java to Creol sample translation

16 CHAPTER 2. THE CREOL LANGUAGE

for extended Backus-Naur form [35, Sec. 2.1.1] and is a metalanguage for ex-
pressing programming language grammars. The complete EBNF is shown in
Appendix A. Although EBNF grammars express context free languages, the
Creol language is not restricted to being context free. The EBNF presentation
is merely used for presentation purposes because it is a common way of describ-
ing languages. A more thorough discussion on parsers and the languages they
can parse, is given in Section 3.5. There existed no prior syntax oriented EBNF
grammars for the Creol language, therefore the EBNF grammar presented is
based on example code, discussions and semantic language descriptions found
in previous work [51,55,53,52,506,54, 8].

A grammar consists of non-terminals and terminals. A grammar has one
non-terminal as a start symbol. A production connects a non-terminal to a
composition of terminals and non-terminals. Terminals are literate symbols in
a program. A program is syntactically valid if it is possible to derive it by
starting with the non-terminal start symbol and replace non-terminals by their
productions in a manner that generates the given program, which consists only
of terminals. The composition of non-terminals and terminals in this grammar
are those available in EBNF, but with syntax influenced by GNU extended
regular expressions as defined by POSIX 1003.2. The rules for composition
are explained when they are first used in the presentation. Verbatim text is
presented by typewriter and productions are presented as italics. Parentheses
are used for grouping.

The grammar presentation starts with identifiers and the starting production
program, then the other productions are explained and exemplified by Creol
code.

2.2.1 Identifiers

Case is significant for Creol identifiers. There are variable identifiers and type
identifiers. A variable identifier varid begins with a lower case letter, while a
type identifier typeid begins with an upper case letter. Brackets [| are used
to denote either of the characters inside the brackets, with the exception of
— which is used for character ranges. The productions use the notation [a —
zA — Z] to denote any character in lower or upper case ranges. Although these
productions only allow letters in the English alphabet, they are sufficient for
the Creol grammar, as the treatment of UTF and other encodings are beyond
the scope of this thesis. The Functional Creol Compiler uses library provided
functions to parse varid and typeid productions, and these libraries can easily
be replaced with UTF aware versions when necessary. As an example consider
a variable foo and a type Bar. These productions are therefore simplified and
sufficient.

varid == [a—z][la—zA— Z]x
typeid = [A—Z][a—zA—Z]x

The typexpr refers to the name of a type where the type is used while typedecl
refers to the name of a type where the type is defined. Although typexpr and
typedecl are identical the distinction is necessary for the type parametrisation
that is introduced later in Section 2.3.6.

typexpr = typeid
typdecl = typeid

2.2. CREOL GRAMMAR AND SYNTAX EXAMPLES 17

2.2.2 Comments

The Creol language has adopted the same syntax for comments as found in C,
C++, Cf, and Java, as shown in this example:

// This is a comment to the end of the line

/* This is a block comment
that can span several lines

*/

The grammar for comments is somewhat simplified, because an accurate EBNF
grammar for block comments is quite complicated, and the EBNF presentation
for comments is an illustration of the actual comments in Creol, which support
nested comment blocks. The comment production may appear anywhere in the
Creol code. The symbol \n denotes the end of the line, and symbol . denotes any
character except the end of the line, and the symbol * is a prefix that repeats
any number of times, also zero. The part . * \n means any number of characters
and an end of line. The bracket [| denotes a range of characters, and the [.\n]x*
denotes any number of characters or newlines.

comment = //.x\n

| /%[\n] +*/

2.2.3 Programs

A Creol program is a series of class and interface declarations, and there must
at least be one declaration.

program = (interface|class)

Notice that program is the starting non-terminal for any Creol program. The
| chooses between either interface or class. The parentheses group together
interface|class so the overline affects (interface|class). The content below the
overline must have at least one occurrence, but can be repeated any number of
times.

2.2.4 Interface Declarations

A Creol interface describes visible object behaviour. The visible object be-
haviour consists of the method signatures that an object understands. Interface
inheritance allows reuse of method signatures. The new EBNF syntax intro-
duced in the interface production is the suffix 7, which denotes that the previous
construction is optional. Notice that an overline ended with a symbol, such as
typexpr, is one or more repetitions of typexpr, where the symbol , is used as a
separator.

interface := interface typedecl
(inherits typexpr,)?
begin
stgnature
end

18 CHAPTER 2. THE CREOL LANGUAGE

The interface contains several method signatures. FEach signature describes
how a method may be used. A method signature starts with the previously
mentioned cointerface, then it denotes the name of the method and then the
input and output parameters. Notice how cointerface, with typexpr, and both
intput and output parameters are optional, and that overlines can be nested.

signature = (with typezpr)?

op wvarid((in warid : typexpr,)?(out wvarid: typezpr,)?)

The following example code declares an interface AT with a method getset that
has one integer newx as in parameter and another integer oldx as out parameter.
The cointerface with Any means that there are no caller interface restrictions,
because Any is a special interface that all interfaces inherit from.

interface AI
begin

with Any op getset(in newx:Int out oldx:Int)
end

2.2.5 Class Declarations

The class is a template for how objects are created. Since interfaces describe
object behaviour, classes may implement interfaces, which means that the ob-
jects created from the class will behave according to the implemented interfaces.
A class may also inherit code from another class, to facilitate code reuse. The
class contains both instance variables and methods, which consist of a signa-
ture and a body. The class itself optionally accepts parameters, which are used
as initialisation values for an object. The instance variables allow an optional
expression that describes the initial value of the variable.

class = class typedecl((varid,))?
(inherits typexpr,)?
(implements typexpr,)?
begin
var?
method?
end

var = var varid(=ezpression)?,:typezpr, ;
method ::= signature == wvar! ; statement ;

The war? declaration in the class production optionally declares instance vari-
ables for objects, while the war? declaration in the method production optionally
declares variables local to the method body, as variables can not be declared
inside a statement.

As an example class we create class A that implements the interface AI.
To provide a class we use some simple statements. Although statements are not
presented yet the code should intuitively be readable. The body of the getset
method updates the instance variable x and returns the previous value.Notice
that methods do not have a return statement, instead all the out parameters
are sent back when the method finishes, hence the value of 0ldx is sent back
when the method ends, hence a method invocation returns values by implicit
assignment, and the method invocation itself doesn’t return anything.

2.2. CREOL GRAMMAR AND SYNTAX EXAMPLES 19

class A implements AI
begin
var x:int;
with Any
op getset(in newx:Int out oldx:Int) ==
oldx := x;
X = newx;
end

2.2.6 Statements

Statements express imperative programming with side-effects. Creol is a con-
current language which requires additional statements in comparison to other
imperative languages. The production for statement is presented stepwise, and
each production is commented. Statements can be grouped by parentheses.

statement ::= (statement)

Statements can be composed serially, but since Creol is a concurrent language
statements are not just composed serially. The statement operators are se-
quence, merge and choice. The sequence operator ; composes statements seri-
ally. The merge operator ||| executes two statements in arbitrary sequence.
For instance x := 1 ||| x := 2 will set x to either 1 or 2. The choice opera-
tor [] executes either one or the other statement. Statements composed with
merge can be translated into the more primitive choice, such as the statement
x :=1 ||| x := 2whichisequivalentto (x := 1 ; x :=2) [1 (x := 2 ;
x := 1). This translation is in fact done by the Creol Virtual Machine. Recent
development of the Creol Virtual Machine does not use this translation, but
offers a more fine-grained merge. The sequence ; has higher precedence than
merge | || and choice [].

| statement (|I11|[1) statement

Assignment uses the symbol :=, such as in this example x := 1, where the
variable x is assigned the value 1. The Creol language also supports multiple
assignments such as (x,y,z) := (1,2,3), but since the Creol language does
not support tuples the multiple assignment is a specific construct where there
is syntactically the same number of elements on each side of :=. The Creol
Virtual Machine executes multiple assignments one variable at the time from
left to right, such that (x,y) :=(y,x) becomes x:=y;y:=x, according to the rule
rl [assign] the Creol Virtual Machine. A more general version of the multiple
assignment is possible with tuples, which is outlined in Section 2.3.8.

| varid := expression
| (varid,) :=(expression,)

The conditional if statement has a closing £i to avoid the dangling else prob-
lem. An example statement is if True then x := 1 else x := 0 fi.

| if expression then statement else statement fi

The conditional while statement does conditional repetition, as for instance
while x < 10 do x := x + 1 od.

20 CHAPTER 2. THE CREOL LANGUAGE

| while exzpression do statement od

The Creol language is imperative to the degree that method invocations are
statements and not expressions, which allows method invocations to return mul-
tiple values. This applies both to synchronous and asynchronous method invoca-
tion. To demonstrate a synchronous method invocation, consider a.addget (10;r)
where the variable a contains an object of interface AI, from the running inter-
face example, then the variable r will be altered by the method invocation to
contain the result. The general form for method invocation has an optional
object expression, optional input and output parameters. Notice that both in-
put parameters and output parameters are separated by the symbol , while the
symbol ; separates input parameters from output parameters.

| (expression.)?varid Cexpression , ; varid,)

The concurrency in Creol introduces asynchronous method invocations, that
are facilitated by labels. A labels identifies an asynchronous method invo-
cation so the reply can be waited for. The caller decides if the method in-
vocation is synchronous or asynchronous. The previous synchronous state-
ment a.addget (10;r) can be written asynchronously as label!a.addget (10)
; label?(r). Notice that any number of statements could occur between the
asynchronous method invocation and the request for the reply. The production
varid describes the valid syntax for labels.

| varid! (expression .)?varid Cexpression ,)
| varid? (varid ,)

As discussed the Creol concurrency also introduces processor release points
with the await and wait statements. The wait statement releases control
until scheduling returns control at a later time, which is similar to yield in
for instance the Java Application Programming Interface thread library [87,
Sec. Java.lang.Thread]. The await statement releases control until scheduling
returns control and the await condition is true. The example statement await
x < 42 releases control, which is returned at a later time when the condition
x < 42 is met. The await also allows to wait for a method reply, and the
previous asynchronous example can be extended to label!a.addget (10);...;
await label?;...; label?(r) so other computations can take place before
the method return is used.

| await expression
| await varid?
| wait

To facilitate invariant analysis the Creol language has static binding, as dis-
cussed in Section 2.1.3. Static binding uses a special syntax at method invo-
cation. Let use change the previous examples to use static binding. The syn-
chronous method invocation is written addget®@A (10;r) while the asynchronous
is written label'!addget@A(10);label?(r), given that the code is inside a
class A. Static binding requires special syntax for synchronous and asynchronous
method invocation.

| wvarid@typeid Cezpression , ; varid ,)
| warid!varid@typeid (expression ,)

2.2. CREOL GRAMMAR AND SYNTAX EXAMPLES 21

2.2.7 Predefined Constants

The constants of Creol are numbers, Boolean values, and strings. The produc-
tions use some new EBNF syntax, [1 — 9] denotes either of the characters in
the range 1 to 9, while [0 — 9]x uses the prefix * star to denote zero or more
occurrences of characters in the range 0 to 9. The pattern "[*"]*" can be read as
begin with a double quotation, then repeat zero or more times characters that
are not a double quotation, and end with a double quotation. Notice that the
Creol language allows double quotations to be embedded into a string by the
prefix \, but this is difficult to express with EBNF, therefore a simpler definition
of str is given. The productions are:

int = [1—09][0—9]*
bool ::= True|False
stroou= "[""]x"

To demonstrate 123 is a number, True is a Boolean value, and "Hello world"
is a string.

2.2.8 Expressions

Expressions become values when evaluated. The simple parts of the expression
production contain either identifiers, constants, grouping with parenthesis, along
with both unary and binary operators on expressions. These expressions are
simple, therefore no examples are provided.

expression = warid | int | bool | str
| C expression)
| (-|not) expression
| expression ([+-*/=<>]|<=|>=|!=|or|and) ezpression

The operator precedence for the binary operators is shown in Table 2.1. The ex-
pression 1 + 2 * 3 < 4 and True or False is parsed as ((((1 + (2 * 3))
< 4) and True) or False).

| Highest precedence first |
*/
+, -
<’ <=7 >’ >=? =7 !=
or,and

Table 2.1: Operator precedence for Creol

The new keyword creates an object from a class. The expression new A()
creates an object of the class A.

| new typexpr (varid,)

The labels used in asynchronous method invocation can be used to test if a
method reply has arrived. The label from our running example is used in this ex-
ample if label? then label?(r) else x := 5 fi. where the label check

22 CHAPTER 2. THE CREOL LANGUAGE

label? evaluates to False or True depending on whether or not the reply to
label!a.addget (10) has arrived. The label check is always used in conjunction
with asynchronous method invocation.

| varid?

2.3 Syntax Proposals for Creol Extensions

This section introduces changes and extensions this thesis proposes for the Creol
language.

Recall from Section 1.1 that the Creol language already is targeted to cater
for functional programming, however the presence of functional programming in
Creol has never been accounted for. This section mainly accounts for the syntax
of functional programming in the Creol language by changes to and extensions of
the EBNF grammar defined in Section 2.2. The grammar productions for these
changes and extensions are given. Functional programming is supported through
the declaration and use of wvariant, tuple, list, record, procedure, typedecl and
typexpr. The data type declaration production introduces tuple, list, record
and wvariant. The program production is extended with data and procedure.
The typedecl and typexpr are distinguished to facilitate declaration and use of
parametrisation. The new production for program permit data type declarations
and procedure definitions:

program = (interface|class|data|procedure)

2.3.1 Local Declarations

This section suggests changes to allow local declarations in Creol.

The Creol syntax requires all declarations prior to statements. To have a
more uniform framework we suggest that the statement production is extended
with a declaration that scopes over later statements. This allows a simplification
of the method production. The extended statement and the new definition for
method are:

statement =
| var;statement

method := signature == statement;

The introduction of declarations into the statement production allows variable
declarations to be close to the point where they are needed.

2.3.2 Expressions as Statements

The section motivates and suggests that an expression can be regarded as a
statement in the Creol language.

The Creol language considers the conditional if as a statement, which only
permits imperative programming with if statements. To support functional
programming the conditional if is considered as an expression that evaluates to
a value. To pursue the goal of imperative and functional programming in Creol

2.3. SYNTAX PROPOSALS FOR CREOL EXTENSIONS 23

we wish to consider if as an expression where the branches are statements and
consider expressions as statements. The functional and imperative usage of if
is demonstrated by:

// Imperative
if True then x := 1 else x := 0 fi

// Functional
x := if True then 1 else 0 fi

To remove a production we use the syntax —| and get the necessary changes to
the grammar:

statement 1=
—| if expression then statement else statement fi
| expression

expression = ...
| if expression then statement else statement fi

Intuitively the if statement is now an expression, and but since any expression
can be a statement, if can now be used both as a statement and an expres-
sion. Also notice that the branches in the if are still statements, but since any
expression can be used as a statement, it is possible to use expressions in the
branches.

2.3.3 Label Check as Expression

This section motivates and suggests that label check is regarded as an expression.

The label from an asynchronous method invocation can only be used by
await to wait for a method reply. Since the result of label check is a boolean
value, one could let objects react to the absence of a reply, as well as the presence.
If no reply has arrived upon reaching the corresponding label check, a false is
returned, otherwise true is returned. This would be possible if the label check
is regarded as an expression. To do this requires to alter the statement and
expression productions.

statement 1=
—| await wvarid?

expression = ...
| varid?

2.3.4 Procedures

This section demonstrates how to extend the Creol language grammar with
procedures.

The procedure production facilitates function declarations. The production
is called procedure rather than function to reflect that functions in Creol can
have side-effects, whereas mathematical functions do not have side effects. For
instance the procedure add that sums two integers and return the result:

proc add(left,right:Int):Int == return left + right ;

24 CHAPTER 2. THE CREOL LANGUAGE

The procedure add is used in the expression add(2,3), thus the expression
production must be extended with procedure calls. Notice that procedures are
expressions with only input parameters, which is different from methods that
are statements that may contain output parameters. The keyword return is
introduced as a statement that returns an expression, therefore the statement
production is extended. To facilitate procedures that do not return anything,
the return expression is optional. The grammar for procedure and the extensions
to expression and statement are:

procedure = proc varid (varid, : typexpr) : typexpr == statement

expression = .

| varid Cezpression ,)
statement =

| return exzpression?

Notice that the procedure production provides declarations by the local dec-
laration extension to the statement production. Furthermore the type Void
is introduced to denote the return value when return is used without an ex-
pression, and the expression void that has type Void, so a return without an
expression is the same as return void.

2.3.5 Algebraic Data Types

This section demonstrates how to extend the Creol language with algebraic data
types.

Support for algebraic data types are realised by a data production that can
declare algebraic data types, and by extensions to the expression production
that can construct and deconstruct an algebraic data type.

Although the Creol language is object-oriented, there is still good reason to
support algebraic data types and the functional tools to manipulate them. In
contrast to later languages such as SmallTalk, already the developers of the first
object-oriented language Simula made a clear distinction between mutable and
immutable data values [25], which leads to the concepts of class and abstract
data type respectively, where both are equally important tools for different tasks.

The most general notion of algebraic data types is realised by records [77,
Sec. 11.8] and variants [77, Sec. 11.10]. Records can further encode tuples,
and variants can encode enumerations. Together records and variants can also
encode options and lists. As a quick reminder, a record is a collection of values
distinguished by a label, a variant is a heterogeneous collection of values, a tuple
is a record where the labels are natural numbers, an enumeration is a variant
where all values are empty, an option is a variant with two alternatives where
one is empty, and a list is a polymorphic recursive data type with a collection
of values of the same type. This section will only focus on records and variants,
as they constitute a general basis.

Deconstruction for records is facilitated by projection, and deconstruction
of variants is facilitated by case expressions. Case expressions use a general
form of pattern matching, that provides variable binding, guards and value
patterns. Variable binding allows a case branch to introduce new bindings. A
guard is a condition that must hold in addition to the pattern match. Value
patterns are patterns with values, where the pattern matches if the values match.

2.3. SYNTAX PROPOSALS FOR CREOL EXTENSIONS 25

To provide the reader with an intuition we demonstrate each of the concepts
variable binding, guard and value patterns alone and in combination. Both
syntax suggestions and examples are provided for tuples, enumerations and
lists, along with the encoding into records and variants.

The following code declares a Person record that contains two elements
labeled name and age. Next we create a procedure test that creates a variable
p of type Person, then we extract the information from the variable with dot-
notation. Although it is feasible to extend records such that labels can be used
for insertion and not only for extraction, this is not done by suggestion from
professor Owe [74].

data Person = (name:Str, age:Int) ;

proc test():Void ==
var p:Person ;
p := (°’John Doe’’,37) ;
print (p.name) ;
return ;

The symbol | is used to distinguish variants. The variant name declares a con-
structor that creates the variant. The constructors are used in case expressions.
A case expression inspects a variant type and selects different branches depend-
ing on the variant. The symbol _ is a wildcard pattern that match any variant.
Each variant contains a type. Consider a variant type Angle with two vari-
ants. The variant Degrees contains an Int and the variant Radians contains a
Float. The value of a variant can be extracted by case pattern with a variable
binding, so Degrees d binds the variable d to the value in the variant Degrees.
Variables bound by case patterns can be used in the corresponding case branch.

data Angle = Degrees Int
| Radians Float

proc test():Void ==
var a:Angle ;
a := Degrees 90 ;
case a of Degrees d then print(‘‘Degree variant’’)
| _ then print(‘‘Wildcard variant’’)
fo ;

The variants can contain any type, and are especially useful and intuitive with
records. The next example uses a variant type Employee with variants Manager
and Staff, where the variants contain records. Notice that the case branches
perform variable binding hence the pattern Manager m binds m to the record
(name:Str, salary:Int). Since m is a record dot-notation is used to extract
information. Notice that the wildcard symbol _ can be used instead of a variable
to avoid variable binding.

data Employee = Manager (name:Str, salary:Int)
| Staff (id:Int) ;

proc test():Void ==
var e:Employee ;
e := Manager (‘‘John’’,500) ;

26 CHAPTER 2. THE CREOL LANGUAGE

case e of Manager m then print(m.name)
| Staff _ then print(‘‘A staff member’’)
fo ;

Now we extend the previous case expression example with both guards and
value patterns. We use a guard to distinguish managers by their salary, and the
programmer of the system uses value pattern to give herself special treatment.
The guard is prefixed by the keyword when.

case e of Manager m

when m.salary > 500
then print(‘‘Important ’’ ++ m.name)

| Staff ((id=123) as s)
then print(‘‘The divine programmer‘‘) ;

raise_salary(s)

| Staff _

then print(‘‘A staff member’’)
fo ;

Notice that value patterns use (1d=123) to describe a record where the field id
has value 123, and that ((id=123) as s) binds the variable s to the record that
has a field id with value 123. The value pattern Staff ((id=123) as s) can
be rewritten as a guarded pattern Staff s when s.id = 123, but this rewrite
can be quite lengthy and value patterns provide a compact representation.

The case expression does pattern matching on constructors and values,
which is a well known technique that is present in many programming languages,
and especially in languages of the ML family. Together with dot-notation for
record projection the data and case constructs support construction and de-
construction of algebraic data types in combination with type safety.

The introduction of algebraic data types introduces the data production, as
well as dot-notation for record projection and case to the expression produc-
tion. Notice that the case extension to expression is defined via the pattern
production. The pattern production facilitates variable binding, the binding
with keyword as, wildcard patterns, and nested patterns. Since we already
consider expressions as statements, the case construct features as both an ex-
pression and a statement. The data production uses the typedecl production.
The typedecl production is further extended to handle records and variants. Also
notice that a variant can contain any type, not just records.

data ::= data typedecl = typedef ;
typedef = record

| variant| ;

| typexpr
record = (varid,:typexpr,)
variant = typeid typedef
expression =

| expression . label
| case expression of pattern (when expression)? then statement| fo
label = warid
pattern = _
| varid
| typeid pattern

2.3. SYNTAX PROPOSALS FOR CREOL EXTENSIONS 27

| pattern as wvarid
| (varid=pattern,)

2.3.6 Parametrisation

This section proposes a syntax for parametrisation in the Creol language.
When a type definition uses a type that is undefined, the type definition is
parametrised by that unknown type. If the unknown type can be replaced by
any type, the parametrisation is unconstrained. If there are some restrictions on
which types that can be used to replace the unknown type, the parametrisation
is constrained. When a parametrised type definition is used, the unknown type
must always be replaced with a known type. The production typedecl declares
type parametrisation, and the production typexpr uses parametrized types. The
type interpretations of parametrisation is left to Section 5.16. Consider an
unconstrained interface UI and a constrained interface CI. The interface UI can
be parametrised by any type, and then var n:UI[Int] declares the variable
n to have type UI parametrised by an integer. The interface CI can only be
parametrised by types that are compatible with B, where B is an interface,
therefore var n:CI[Int] is illegal. Let C be a subinterface of B, then var
n:UI[C] is legal. The definition of compatibility between interfaces is decided
by the < relation which is introduced in Section 4. The code for UI and CI is:

interface UI[T]
begin

end

interface CI[T<B]
begin

end

The parametrisation combines well with algebraic data types and permits to
write arbitrary parametrised algebraic data types. The parametrization appears
visually as if the type takes an argument, and the argument happens to be a
type. To illustrate this the type Angle is parametrized by a type called T so the
Degree variant contains a value of type T. Then the procedure test is defined
for Angle parametrised by Str, an arbitrary choice that allows us to print the
value.

data Angle[T] = Degrees T
| Radians Float

proc test(a:Angle[Str]):Void ==
case a of Degrees s then print(s)
| _ then print("Wildcard variant")
fo ;

Now we look at the grammar for parametrisation. The typedecl production de-
clare a non-parametrised type, typeid, a universally quantified type, typeid [typeid,],

or a bounded type, typeid [typeid ,<typexpr,].

28 CHAPTER 2. THE CREOL LANGUAGE

typedecl = typeid
| typeid [typeid,]
| typeid [typeid ,<typezpr,]

The typexpr production use a non-parametrised type, typeid, or a parametrised
type, typeid [typexpr], where type parameters are applied.

typexpr = typeid
| typeid [typezpr,]

Both the typedecl and the typexpr rules could be written more compactly with
EBNF, but this verbose form was chosen to intuitively have one production for
unconstrained and another production for constrained parametrisation, and to
keep the non-parametrised types as a separate production.

2.3.7 Enumeration

This section motivates and provides a customised syntax for enumerations.

An enumeration is a variant that contains no value. This example demon-
strates enumeration with the variant type Color, and shows how cumbersome
the syntax is.

data Color = Red Void
| Green Void
I

Blue Void ;

proc test():Void ==
var c:Color ;
c := Red void ;
case ¢ of Red _ then print(‘‘Red variant’’)
| _ then print(‘‘Not red variant’’)
fo ;

It is superfluous to write and repeat that the variants don’t contain any in-
formation. To achieve this the programmer can omit the type Void and the
corresponding value void. The simplified example becomes:

data Color

proc test():Void ==
var c:Color ;
c := Red;
case ¢ of Red then print(‘‘Red variant’’)
| _ then print(‘‘Not red variant’’)
fo ;

To include simplified variants in the Creol grammar the variant and expression
productions are altered.

variant =

| typeid

expression = ...
| typeid

2.3. SYNTAX PROPOSALS FOR CREOL EXTENSIONS 29

2.3.8 Tuples

This section motivates and provides a customised syntax for tuples.

A tuple organises information according to position, just as a record whose
labels are natural numbers. Such an interpretation is natural since Creol already
facilitates records and variants. The following code creates a tuple and then
extracts the information from the tuple.

proc test():Int ==
var t:(String,Int) ;
t := (‘‘the string’’,42) ;
print t.1 ;
return t.2 + 6 ;

This code is just syntactic sugar for the following

proc test():Int ==
data Tuple2[S,T] = (1:S8,2:T) ;
var t:Tuples [String,Int] ;
t := (‘‘the string’’,42) ;
print t.1 ;
return t.2 + 6 ;

Notice that the translation of (String,Int) is the parametrized Tuples [String,Int].
This means that the following is implicitly defined by the compiler:

data Tuple,[T;] = (1:T1)
data Tup192 [Ty,T2] = (1:T1,2:T2)

data TupleN[Tl,...,TN] = (1:Ty,...,N:Tn)

so for each number of elements in a tuple there is a corresponding data definition,
and for any positive N the following translation is valid:

(Ty,...,TN) ~» Tupley [Ty, ... ,Tn]

Then it is possible to define parallel assignment, such as (x,y) := v assyntactic
sugar for x := v.1 ||| y := v.2, which in general is the translation

(vi,...,vn):i=e ~vy:=e. 1| ||... || |vy:=e.N

where | | | is the previously defined arbitrary statement execution order. This in-
terpretation of multiple assignment replaces the previous non-general approach.

To incorporate tuples in this manner requires compiler support for the trans-
lation. The necessary changes of the Creol grammar affect the statement,
expression and typedef productions:

statement =
—| (warid,) :=Cezpression,)
| (varid,) :=expression
expression = ...
| Cezpression,)
| expression .int
typedef =

| Ctypexpr,)

30 CHAPTER 2. THE CREOL LANGUAGE

Notice that a valid tuple definition must have at least one type, because overline
in the EBNF grammar is at least one element.

2.3.9 Lists

This section motivates and provides a customised syntax for lists.

A list has a fixed type and an arbitrary, but finite, number of values. The
algebraic type list is a linked list that allows deconstruction with case patterns.
Since a list stores values of only one type, a list is parametrized by the type of
values it stores. The next example creates a list of numbers and then extracts
the first number:

var e:[Int] ;
e := [1,2,3,4] ;
case e of [] then print(’’Empty list’’)
| [h::t] then
print (’’First element in list is in h’’)
print(‘ ‘The rest of the list is in t’’)
fo

The compiler translates the example into the following
data List[T] = Nil | List (head:T tail:List[T]) ;

var e:List[Int] ;
e := [1,2,3,4] ;
case e of Nil then print(’’Empty list’’)
| List (head=_ as h,tail=_ as t) then
print (’’First element in list is in h’’) ;
print(‘ ‘The rest of the list is in t’’)
fo

To realise this lightweight support for lists the expression production must allow
lists as expressions, the typerpr production must allow lists as a type specifi-
cation, and the pattern production must allow case expressions with either the
empty list with [] or a head and tail specification with [::] .

expression = .
| Lexpression,]
typexpr = ...
| [typexpr]
pattern = ...
| O

| [pattern: : pattern]

Chapter 3

The Functional Creol
Compiler

This section provides an overview of the prototype Functional Creol Compiler
found in Appendix E by explaining concepts and providing detailed a walk-
through of selected code.

Recall from Section 1 that this thesis provides a prototype implementa-
tion of a Creol compiler, the Functional Creol Compiler. The implementation
does in general adhere to the guidelines provided in Section 3.1. The job of
the Functional Creol Compiler is mainly to read Creol programs, perform type
checking and generate Creol Machine Code. All these operations are however
concerned with how Creol programs are represented internally in the Functional
Creol Compiler. The internal representation of programs in the Functional Creol
Compiler is described by the University of Utrecht Attribute Grammar (UUAG)
system which is discussed in Section 3.2. The internal representation of code
is called an abstract syntax tree and Section 3.3 provides detailed information
about the abstract syntax tree in the Functional Creol Compiler. An attribute
grammar, introduced in Section 1.7, describes the abstract syntax tree that is
built for the Creol program that is being compiled and how to traverse the ab-
stract syntax tree. An abstract syntax tree is a program representation that is
suitable for machine processing. The abstract syntax tree is traversed during
compilation, for instance during type checking and code generation. The scan-
ning phase takes a Creol program and uses a scanner to group characters into
words, called tokens. The Functional Creol Compiler scanner is described in
Section 3.4. The parsing phase takes the tokens produced by the scanner and
uses a parser to build an abstract syntax tree. The parser in the Functional
Creol Compiler is explained in Section 3.5 and is built with combinator parsers.
Recall that combinator parsing was introduced in Section 1.6. The type check-
ing phase traverses the abstract syntax tree and analyses the types to check
if the program is type safe. The type checking is only commented briefly in
Section 3.6 as the type system for Creol is formally presented in Section 4. The
formalisation of the type system facilitates static type checking which greatly as-
sists the programmer. The code generation phase traverses the abstract syntax
tree and creates Creol Machine Code, which is text that conforms to the input
requirements of the Creol Virtual Machine. Code generation for the Functional

31

32 CHAPTER 3. THE FUNCTIONAL CREOL COMPILER

Creol Compiler is described in Section 3.7.

3.1 Rationale and Design Goals

This section accounts for high-level design goals for the Functional Creol Com-
piler.

To make the implementation of the Creol compiler an accomplishable task,
it was necessary to limit the scope of this thesis and to have some design guide-
lines. It is furthermore important that this is recognized as intentional rather
than incidental. The following subsections describe the most important design
decisions along with their rationale.

3.1.1 Separate Semantics and Syntax

Traditional approaches to creating compilers [63] often push semantic knowledge
into the parser, to a degree where it is no longer possible to consider type
checking as a separate aspect of the compiler. This weakens the modularity of
the code and increases the effort required of others to comprehend and further
develop the compiler. To separate between syntactic and semantic domains, the
parser in the Functional Creol Compiler does not provide any semantic checking.
The following tasks have been deemed part of the semantics and placed in the
type checker:

e Existence of the class Main .
The class Main is a special class which is instantiated when the program
is executed.

e Existence of a method run in classes.
The method run is a special method which is responsible for the active
behaviour of the object in question. Without a run method, the object is
strictly reactive, and only responds to external method invocations.

The parser is responsible for syntactical constructs that would otherwise be
handled at a later stage. This desugaring is further described Appendix 6.1,
and includes transformations such:

e Transformation of syntactical sugar to canonical form, such as expanding
id1,...,idN:AType into id1:AType, ...,1idN:AType, that is, allow mul-
tiple declarations to share the same type, without writing the same type
several times.

o Transforming interleaved definitions of classes and interfaces into separate
lists.

3.1.2 Reuse of Existing Solutions

Implementation of software components from the ground up often requires con-
siderably more effort to design, implement, learn and maintain, as compared to
reusing an existing component with a small amount of modifications.

The Creol compiler uses a customised version of the standard scanner that
comes with the University of Utrecht Attribute Grammar library, in contrast

3.2. ATTRIBUTE GRAMMAR SYSTEM 33

to writing a new scanner especially for Creol. The customisation was needed
because the University of Utrecht Attribute Grammar scanner hardcodes the
literals denoting comments, and these literals clash with the Creol syntax. The
appropriate pattern statements were modified to support Creol syntax. The
University of Utrecht Attribute Grammar scanner also contains information
about parsing, and this has been worked around through parametrisation of
the scanner, although some of the parameters are meaningless from a Creol
viewpoint, see Section 3.4.

3.1.3 Modularity Through Expressiveness

The Creol language is actively developed. It is to be expected that language
aspects that have not been the focus of development so far, will be subject to
change at a later time. It is therefore important to develop a compiler that can
handle changes in the language design in a flexible way. Flexibility in the face of
uncertainty with respect to expected changes is handled through the deployment
of high-level tools. High-level tools with a high degree of expressiveness means
that less code needs to change in the face of language evolution.

The work on abstraction of concepts and exploration of the general case has
been pursued to avoid code duplication when possible.

3.2 Attribute Grammar System

This section is an introduction to the attribute grammar system that is used
in the Functional Creol Compiler. It may be necessary to read this chapter to
understand the code found in Appendix E.

The Functional Creol Compiler is programmed in Haskell and uses mainly
the University of Utrecht Attribute Grammar system (UUAG). UUAG is first
and foremost a support tool for the University of Utrecht Haskell Compiler
(UUHC). This section is not an introduction to Haskell, but gives an overview
of the UUAG system and how it is integrated with Haskell. It is recommended
that this part is read briefly to get an overview of the library, and then consulted
as needed when reading the code examples found in this thesis.

A major point in understanding UUAG is the understanding that an at-
tribute denotes information associated with a node in a data structure. Both
the node and the attribute are normal Haskell datatypes. To define the values of
attributes the programmer must define the semantic functions, each attribute
has a semantic function. The separation of concerns is achieved because the
attributes and semantic functions of a node can be specified in separate parts.
Given a node there can be arbitrary many specifications of attributes and seman-
tic functions for these attributes. It is the piecemeal specification of attributes
and semantic functions that realises flexibility and modularity with a separa-
tion of concerns. This form for separation of concerns gives flexibility similar to
aspect-oriented programming [59].

3.2.1 Overview

An UUAG specification is a file with a special syntax that is translated into
valid Haskell code. The special syntax is made up by specification of data,

34 CHAPTER 3. THE FUNCTIONAL CREOL COMPILER

with the DATA keyword, specification of attributes, with the ATTR keyword, and
specification of semantic functions with the SEM keyword. Notice that one ATTR
keyword can define attributes for several different DATA specifications. Each
combination of DATA and ATTR requires a semantic function, some are given by
SEM declarations and others are inferred by UUAG. Each attribute can be either
inherited, chained or synthesised, as described in Section 1.7, and according to
the attribute type, there is a default semantic function. The default semantic
function for an inherited attribute is to copy the same attribute from a parent
node. The default semantic function for a synthesised attribute is to copy the
same attribute from the first child node that has it. A default semantic function
for a chained attribute does both. The SEM declarations can also create local
attributes. A local attribute is associated with a node, but is not visible from
any other nodes, and as such is more a local definition than an attribute in the
attribute grammar sense of the word attribute.

3.2.2 Detalils

The code for the Function Creol Compiler is written both as regular Haskell and
as UUAG modified Haskell. The regular Haskell parts interact with the Haskell
translations of UUAG modified Haskell, therefore it is necessary to know exactly
how the UUAG modified Haskell is translated to regular Haskell, specifically how
DATA, ATTR and SEM declarations are woven together to Haskell code. The DATA
declaration is translated into a data where constructors are renamed to meet
the Haskell requirement of unique constructor names. All the ATTR declarations
that affect one given DATA declaration, are translated into a type declaration
that defines how all relevant attributes flow into and out of the given DATA
declaration. The SEM declarations that are relevant to a given DATA element are
woven together to a semantic function that calculates all relevant attributes for
the given DATA element. In pseudo syntax the type of the semantic function is

DATA -> Inheritedl -> ... -> InheritedX ->
Chainedl -> ... -> ChainedY ->
(Chainedl, ..., ChainedN,Synthesizedl, ..., SynthesizedY)

Intuitively the semantic function takes a DATA element and all the inherited
and chained attributes, and produces the chained and synthesised attributes, as
illustrated in Figure 3.1.

Translation of UUAG modified Haskell to normal Haskell is illustrated graph-
ically in Figure 3.2. The figure also demonstrates how one DATA declaration may
have several ATTR and SEM declarations, allowing an aspect-oriented program-
ming style.

As Figure 3.2 shows, the expressions hexprl to hexpr4 define the semantics
of the attributes. These expressions actually consist of Haskell code and are
woven together as shown on the right side. Some of the code in the figure has
been replaced with ... to hide unnecessary details, and the resulting expression
of sem_Ast_Ast is a simplified version of the code that is actually generated.
The SEM constructs assign arbitrary Haskell expressions to attributes.

The UUAG system has a custom syntax for assigning to and reading from
attributes. The syntax used to assign to attributes occurs on the left hand side
of = and the syntax to read from attributes occurs in the Haskell code on the

3.2. ATTRIBUTE GRAMMAR SYSTEM 35

DATA
Inherited Attributes
Chained Attributes

Chained Attributes
Synthesized Attributes

Figure 3.1: Semantic Function

Attribute Grammar
Code Haskell Code

f—&f&

DATA Ast
| Ast interfaces: Interfaces
contracts: Contracts
classes: Classes

data Ast=Ast_Ast Interfaces
Contracts
Classes

AspectS ATTR Ast s
* [|]cme : String | type T_Ast = (String,String,Pos,SymTable)
SEM Ast
| Ast i

lhs.cmc = hexprl

sem_Ast :: Ast ->T_Ast

ATTR Ast sem_Ast...= ...
[||error : String pos : Pos] =

sem_Ast Ast :: (T Interfaces) ->
(T_Contracts) ->
SEM Ast (T _Classes) ->
| Ast (T_Ast)

lhs.error = hexpr2 sem_Ast_Ast ... = (

lhs.pos = hexpr3 hexprl, hexpr2,
hexpr3, hexpr4
)

ATTR Ast L
[|] symboltable : SymTable]

SEM Ast
| Ast g

lhs.symboltable = hexpr4 V

Attribute Grammar Translation/
Aspect Weaving

Figure 3.2: Translation from UUAG code to corresponding Haskell code

36

CHAPTER 3. THE FUNCTIONAL CREOL COMPILER

right hand side of =. The syntax uses the name of the attribute together with
prefixes. The available prefixes are shown in Table 3.1.

Prefixes on Left Hand Side of =

| Prefix | Meaning
lhs. To an inherited or chained attribute produced by this element.
loc. To an attribute local to this element.
<id>. To an inherited or chained attribute in a sub-element named <id>.

Prefixes on Right Hand Side of =

| Prefix | Meaning
@lhs. From a synthesized or chained attribute given to this element.
@loc. From an attribute local to this element.
@<id>. | From a synthesized or chained element from a sub-element named <id>.

Table 3.1: Attribute prefixes in SEM constructs

More details on the correspondence between UUAG and Haskell is beyond
the scope of this thesis, but the interested reader may look in Chapter 3 of the
UUAG lecture notes [30].

3.3 Abstract Syntax Trees

This section elaborates on the abstract syntax trees used in the Functional Creol

Compiler.

An abstract syntax tree (AST) is a hierarchical representation of source
code. The abstract syntax tree has a structure that is suitable for traversals
of the tree for the purpose of analysis and transformation is practical. Due to
convenience there is a correspondence between types of nodes in the abstract
syntax tree and the productions in the EBNF grammar of the source code
being represented. Although there are tools [6,91,60] that can generate abstract
syntax trees directly from the grammar specification, there are no such available
neither for the combinator parsers used in this thesis nor for combinators parsers

in general.

This section gives an intuitive connection between Creol code and the corre-
sponding abstract syntax tree. The exact structure of the abstract syntax tree
is in the code Appendix E.4. The datatypes constituting the abstract syntax
tree are structured similarly to those found in the University of Utrecht Haskell
Compiler (UUHC) [92]. The University of Utrecht Attribute Grammar (UUAG)
system has been created as part of the work on UUHC. UUHC constitutes the
most practical and large scale deployment of UUAG. During the work with
the Functional Creol Compiler the code from UUHC has been instructive. In
particular the regular Haskell types Option and List are replaced with corre-
sponding attribute grammar aware equivalents. This facilitates attributes on
the equivalent elements, as attributes can only be given for declarations that
are in the UUAG code. The Option type for node N corresponds to a Maybe N
element and the List type for node N corresponds to the Ns element. In the
example this translation is referred to as “UUAG aware Option” and “UUAG
aware List”.

3.3. ABSTRACT SYNTAX TREES 37

3.3.1 Example Abstract Syntax Tree

This section provides the abstract syntax tree for a sample program.
The following Creol program declares a class with one instance variable and
one method that assigns a value to the instance variable.

class Main

begin

var x:Int

op assigntox() == x := 1
end

The abstract syntax tree for this small program is actually quite large. We
shall start with an abbreviated version and explain that, and finally show the
complete abstract syntax tree, just for demonstration. The abstract syntax tree
nodes are described in UUAG but built with Haskell code. The Haskell code
interacts with the UUAG provided Haskell translation of the abstract syntax
tree. Therefore it is unfortunately necessary to know both the UUAG DATA
and TYPE declarations and the corresponding UUAG translated Haskell data
and type declarations. The principle of translation that UUAG provides to
Haskell is explained in Section 1.7 and Section 3.2, and illustrated in Figure 3.2.
The actual DATA and TYPE declarations for the Creol attribute grammar can be
found in Appendix E.4. The relevant DATA and and TYPE declarations are now
explained.

DATA Ast The Ast contains the whole program, which is represented as a list
of classes.

TYPE Classes An UUAG aware List of classes.

DATA Class The name of the class, as well as optional instance variables and
optional methods.

DATA MaybeMethods An UUAG aware Option for an UUAG aware List of
methods.

TYPE Methods An UUAG aware List of methods.

DATA Method A signature and a body statement.

DATA Signature A method name and optionally input and output parameters.
DATA Statement A piece of code.

DATA Expression A piece of code with a value.

DATA MaybeDeclarations An UUAG aware Option for an AG aware List of
declarations.

TYPE Declarations An UUAG aware List of Declarations.
DATA Declaration A variable and the type of the variable.
DATA VarId An identifier that starts with a lower case letter.

DATA TypeId An identifier that starts with an upper case letter.

38 CHAPTER 3. THE FUNCTIONAL CREOL COMPILER

The abbreviated definitions of these declarations are now given.

DATA Ast
| Ast classes: Classes

TYPE Classes = [Class]

DATA Class
| Class
name : Typeld
variables : MaybeDeclarations
methods : MaybeMethods

DATA MaybeMethods
| Nothing
| Just methods : Methods

TYPE Methods = [Method]

DATA Method
| Method
signature : Signature
code : Statement

DATA Signature
| Signature
name : VarId
in : MaybeDeclarations
out : MaybeDeclarations

DATA Statement
| Assign
name : VarId
expr : Expression

DATA Expression

| Int
value : Int
pos : Pos

DATA MaybeDeclarations
| Nothing
| Just declarations : Declarations

TYPE Declarations = [Declaration]
DATA Declaration
| Var
name : VarId

typeid : Typeld

DATA VarId
| VarId varid : String

DATA Typeld

3.3. ABSTRACT SYNTAX TREES 39

| Typeld typeid : String

The translation of these UUAG declarations into Haskell code is done by the
UUAG compiler. The most relevant change is the renaming of constructors,
and that the constructor arguments are without labels. An abbreviated version
of the Haskell translation is now given.

data Ast = Ast_Ast Classes
type Classes = [Class]
data Class = Class_Class Typeld MaybeDeclarations MaybeMethods

data MaybeMethods = MaybeMethods_Nothing
| MaybeMethods_Just Methods

type Methods = [Method]
data Method = Method_Method Signature Statement

data Signature =
Signature_Signature VarId MaybeDeclarations MaybeDeclarations

data Statement = Statement_Assign VarId Expression
data Expression = Expression_Int IntPos

data MaybeDeclarations = MaybeDeclarations_Nothing
| MaybeDeclarations_Just Declarations

type Declarations = [Declaration]
data Declaration = Declaration_Var VarId TypeId
data VarId = VarId_VarId String

data Typeld = Typeld_Typeld String

We are now ready to show what the abstract syntax tree looks like, and we
shall progress in a bottom up fashion and start with the innermost and simplest
parts, and for each step the whole program and the current development of the
abstract syntax tree is shown. Each part of the current development is given the
same color in both the code and in the abstract syntax tree. First we consider
the constant 1, which is an Integer expression.

class Main
begin

var x:Int

op assigntox() == x := 1
end

(Expression_Int 1)

The expression is used in an assignment, and the variable name is contained in
a VarId.

40 CHAPTER 3. THE FUNCTIONAL CREOL COMPILER

class Main
begin

var x:Int

op assigntox == x :=1
end

(Statement_Assign (VarId_VarId "x") (Expression_Int 1))

This assignment is part of the assigntox method, which also has a signa-
ture with no out parameters and no in parameters, denoted by the constructor
MaybeDeclarations_Nothing.

class Main
begin

var x:Int

op assigntox() == =1
end

(Method_Method (Signature_Signature (VarId_VarId "assigntox")
MaybeDeclarations_Nothing

MaybeDeclarations_Nothing
)

(Statement_Assign (VarId_VarId "x") (Expression_Int 1))
)

Then we look at the declaration of the instance variable x, which contains both
the name of the variable and the type of the variable.

class Main

begin
var x:
op assigntox == x := 1
end
(Declaration_Var (VarId_VarId "x"))

(Method_Method (Signature_Signature (VarId_VarId "assigntox")
MaybeDeclarations_Nothing
MaybeDeclarations_Nothing
)
(Statement_Assign (VarId_VarId "x") (Expression_Int 1))
)

The class consists of the name of the class along with the instance variable dec-
larations and the methods, however since declarations and methods are both op-
tional they are wrapped in MaybeDeclarations_Just and MaybeMethods_Just
respectively, and these further contain lists of elements, which is why the dec-
laration and the method are placed in brackets.

class Main
begin

var x:Int

op assigntox == x :=1
end

3.3. ABSTRACT SYNTAX TREES 41

(Class_Class (TypeId_Typeld "Main")
(MaybeDeclarations_Just [
(Declaration_Var (VarId_VarId "x") (TypeId_TypeIld "Int"))
D
(MaybeMethods_Just [
(Method_Method (Signature_Signature (VarId_VarId "assigntox")
MaybeDeclarations_Nothing
MaybeDeclarations_Nothing
)
(Statement_Assign (VarId_VarId "x") (Expression_Int 1))
) ID)

The last part of building the abstract syntax tree is putting the structure for
the class into a list that is contained by the Ast structure.

class Main
begin

var x:Int

op assigntox == x := 1
end

(Ast_Ast [
(Class_Class (Typeld_TypeId "Main")
(MaybeDeclarations_Just [
(Declaration_Var (VarId_VarId "x") (TypeId_TypeId "Int"))
D
(MaybeMethods_Just [
(Method_Method (Signature_Signature (VarId_VarId "assigntox")
MaybeDeclarations_Nothing
MaybeDeclarations_Nothing
)
(Statement_Assign (VarId_VarId "x") (Expression_Int 1))
) ID)

D

Which completes the abstract syntax tree. Notice that this is a simplified ver-
sion, where only the relevant parts are presented. To demonstrate both the

similarities and the added noise of even more information the actual syntax tree
is now shown.

Ast_Ast []

[Class_Class "examples/Sample_Ast.creol"(line 1, column 1)
(TypeId_Typeld "Main" "examples/Sample_Ast.creol"(line 1, column 7))
MaybeTypeDeclarations_Nothing

MaybeDeclarations_Nothing

MaybeTypeDeclarations_Nothing

MaybeTypeDeclarations_Nothing

(MaybeDeclarations_Just

[Declaration_Var

(VarId_VarId "x" "examples/Sample_Ast.creol"(line 3, column 7))
(Typeld_Typeld "Int" "examples/Sample_Ast.creol"(line 3, column 9))
MaybeExpression_Nothing

42 CHAPTER 3. THE FUNCTIONAL CREOL COMPILER

D

(MaybeMethods_Just

[Method_Method

(Signature_Signature "examples/Sample_Ast.creol"(line 4, column 3)
(VarId_VarId "assigntox" "examples/Sample_Ast.creol"(line 4, column 6))
MaybeDeclarations_Nothing

MaybeDeclarations_Nothing

(TypeId_TypeId "Any"))

MaybeDeclarations_Nothing

(Statement_Assign

(VarId_VarId "x" "examples/Sample_Ast.creol"(line 4, column 14))
(Expression_Int 1 "examples/Sample_Ast.creol"(line 4, column 19))

)11

3.4 Scanner

This section presents the scanner used in Functional Creol Compiler.

A scanner is responsible for grouping characters into symbols, so for instance
the word class is returned as a single symbol instead of as 5 distinct charac-
ters. The scanner also separates between keywords and identifiers, so class is
recognised as keyword, and x is recognised as an identifier. The scanning and
parsing process is illustrated in Section 3.5.2 for a part of the sample program
from Section 3.3.1.

Scanners are usually implemented either as a hand written function or as a
grammar that uses a program such as Flex [32] to generate a scanner function.
During the work on the Functional Creol Compiler, it was planned to use a
grammar and generate a scanner, but UUAG provides a hand written scanner
function, and it was easy to base the Creol scanner on the UUAG scanner. The
UUAG scanner is both patched and parametrized to fit the Creol syntax. This
was deemed the fastest and most modular approach to get a working scanner
for the Creol language, and in accordance with the goal of modularity and code
reuse outlined in Section 3.1.2. The interface to the Creol scanner is also simpler
than traditional approaches. Scanner generating tools like Flex assign a special
code for each symbol, and emits the code for the scanned symbol. The Creol
scanner returns the scanned string. The extra work required to create and
maintain the list of scanner codes, makes the approach of the Creol scanner
beneficial.

3.4.1 University of Utrecht Scanner

Altough the combinator parser could do lexical analysis, using a scanner in-
creases the parsing speed and provides a modular approach. The modularity
occurs because the scanner is less likely to change than the grammar, and the
grammar is simpler without the scanner included.

The UUAG system comes with a scanner that is tailored to parse Haskell
syntax. In order to apply the scanner to Creol syntax, it has to be adapted.
This is done by patching the scanner, and the patch is found in Appendix E.5.

The UUAG scanner defines several functions that transfer information from
the scanner to the parser. These functions behave as parsers, and are the

3.5. PARSER 43

simplest parsers available. The following scanner to parser functions are used
by code in this thesis:

pVarid Scan and return an identifier that starts with a lower case character.

pConid Scan and return an identifier that starts with an upper case charac-
ter.

pKey s Scan and return the identifier or operator s, given that the scanner

was parametrised with s.

pSpec ¢ Scan and return the character ¢, given that the scanner was parametrised
with c.

pSucceed e Return the Haskell expression e without doing any scanning. This
is for instance used to insert default information while scanning.

3.5 Parser

This section describes the parser used in the Functional Creol Compiler.

A parser is responsible for validating the sequence of symbols, so for instance
the keyword class must be followed by an identifier that names the class. When
the parser has validated the sequence of symbols, it builds the abstract syntax
tree for the parsed symbols, hence the parser automates the building of an
example abstract syntax tree as demonstrated in Section 3.3.1. The Creol parser
is built using parser combinators [15] as introduced in Section 1.6. Before the
presentation of the Creol parser, the combinator parsing approach is compared
with traditional parsing methods. The combinators used in the Creol parser are
explained in detail. An excerpt of the Creol parser, from code Appendix E.6, is
explained in Section 3.5.2 for an extract of the Creol example from Section 3.3.1.
The Creol parser was an interesting experience in the creation of the Functional
Creol Compiler, because combinator parsing is a novel approach that gives more
readable code and better error messages than Yacc.

The reader is assumed to have knowledge about basic parsing techniques such
as LL(k), which is a top-down method that scans the input from left to right
while conducting a leftmost derivation with at most k symbols of lookahead,
and LALR(1) which is a bottom-up method that scans the input from left to
right while conducting a rightmost derivation, in reverse, with at most 1 symbol
of lookahead. Readers who want a short introduction on the topic of parsing
including LL(k) and LALR(1) are referred to an introductory text [78].

LL(k) parsers, such as those crafted by hand or produced by a tools such
as ANTLR [0], are normally specified in a manner similar to recursive func-
tions, which is a very intuitive and programmer friendly method of specifica-
tion. LALR(1) parsers are specified with a grammar and then translated into
a function by programs such as Yacc [101] or Bison [9], because it is infeasible
to hand write a LALR(1) parser directly. LL(k) parsers are quite popular even
though LALR(1) parsers can parse a larger set of languages and handle left
recursive grammar rules directly. The popularity of LL(k) parsers is due to the
simplicity, as supported by a quotation from the ANTLR [6] documentation:

44 CHAPTER 3. THE FUNCTIONAL CREOL COMPILER

ANTLR is popular because it is easy to understand, powerful,
flexible, generates human-readable output, and comes with complete
source.

The parser combinator approach is superficially similar to the naive method for
specifying LL(k) grammars; top-down and similar to recursive function calls.
Specifically the University of Utrecht combinator parser library [88] combines
decent parsing speed with a relatively simple specification of the grammar and
automatic error reporting and correction. The UUAG parser combinators can
parse languages that are beyond both LL(k) and LALR(1) parsers [89, Sec. 6].
The UUAG parser combinators can parse LALR(k) languages for any k neces-
sary.

The UUAG parsing library allows the use of greedy and non-greedy func-
tions to implicitly control backtracking. Backtracking occurs when a parse that
succeeded must be undone to try out other possible parses. When a parser
fails it can either backtrack and try another parse, or it can correct the input,
hence the term error correcting parsers. The choice of whether to backtrack or
correct is determined by greediness. A greedy parser will correct input, while
a non-greedy parser will backtracked. The UUAG parser combinators allow
the programmer to select combinators with greedy or non-greedy behaviour as
appropriate.

The combinator interface to the parser library facilitates transformations so
the actual parse algorithm uses tables rather than recursive function calls. The
use of tables during parsing is the rule for LALR(1) tools but is also deployed
by the LL(k) tool ANTLR, and is the key to achieve usable combinator parser
efficiency.

3.5.1 UUAG Combinator Parser Library

The parser in the Functional Creol Compiler is built from the parsing library
found in UUAG. The combinators offered by the library are documented by their
Haskell source code, we therefore provide an intuition for the combinators used
by the Functional Creol Compiler parser. The example parsing in Section 3.5.2
shows an excerpt of how these parser combinators are used in the Functional
Creol Compiler parser.

The University of Utrecht library offers a variety of combinators for building
parsers. The combinators relevant to this thesis are now described, where p and
p’ are valid parsers that parse values v and v/, e is a valid Haskell expression
and m is an error message. Notice that the parser p parses text and returns
a value v, and that combinators combine parsers by specifying both how the
parsers are combined and how the values of the parsers are combined.

UUAG Combinators
p <?>m Try to parse p and return v, if that fails give the error message m.

p <I>p’ Choice, try to parse p and return v, if that fails try to parse p’ and
return v’.

p <*>p’ Sequence, parse p and then p’, and return v v’, which is the value
from p applied to the value from p’.

3.5. PARSER 45

p <xp Parse p and p’ in sequence, and return v.
p *>p Parse p and p’ in sequence, and return v’.

e<$>p Parse p and and return the value e v, which is the Haskell expression
e applied to the value v from the parser p.

e<$p Parse p and return e.

p <**>p’ Parse p and p’ in sequence, and return v’ v, which is the value from
p’ applied to the value from p.

p <??>p’ Parse p and try to parse p’. If p’ is parsed return v’ v else return v.

e <$$>p Parse p and return Az.e x v. Intuitively e is a function that takes
two arguments, and the value v is used as the second argument,
while the first argument is left open.

p <+>p’ Parse p and p’ in sequence and return a tuple (v,v’).

p ‘opt‘ e Return v if p could be parsed, else return the Haskell expression e.
If p is parsed it can not be backtracked.

pAny e ¢/ Map the Haskell expression e on the list in the Haskell expression
€', then fold the resulting function with <|> and return this parser.
The pAny combinator function is typically used with pKey such as
pAny pKey [’a’,’b’,’c’] which is equivalent to (pKey ’a’) <[>
(pKey ’b’) <|> (pKey ’c’), thus trying to parse one of the letters
a, b or ¢, returning the first possible parse.

UUAG Iterative Combinators

plList p Repeatedly use the parser p and return a list of the parsed elements.

pFold e p Repeatedly use the parser p to parse the list vy ...v,, then fold
the list with the Haskell expression e and return the folded list

evy (evy (v..(e Vp—1vn)...)).

pChain p p’ Repeatedly use p and p’ to parse the values v; ... v, and the oper-

ators v} ...v.,_y, then return the values chained with the operators,

(W1 .. (v (V) v1 v2) v3) ... Up) .

The combinator functions for iteration are provided with several flavours for
further customisation, the different flavours are formed by adding a suffix to the
combinator function name.

UUAG Iterative Combinator Suffixes
r Fold or Chain from left to right.

1 Fold or Chain from right to left.
-Sep p List of Fold with a separator found by parser p.

1 List with at least one element.

46 CHAPTER 3. THE FUNCTIONAL CREOL COMPILER

_ng Allow backtracking to undo this parse.

_gr Never backtrack this parse.
To parse a list of strings, such as
"One n ’ltwoll l’threell

the function pList pString will produce the correct result. In order to add the
additional requirement that there must be at least one string we use a combi-
nator with the suffix 1, and get pListl pString. Both these parser functions
return a list of the parsed strings.

Contributed Combinators

The creation of the Functional Creol Compiler lead to the creation of new com-
binators. These new combinators make the parser code less verbose. These
contributed combinators are found in Appendix E.9.

p <->p’ Parse p and p’ in sequence and return (A\(z,y).v y) v'. Intuitively
the parser p’ returns a tuple with two values, and the value v from
the parser p is applied to the values from the tuple. The parser p’
is presumably made by the <+> combinator.

e <$->p Parse p and return (A(z,y).e x y) v. Intuitively the parser p returns
a tuple with two values, and the Haskell expression e is applied to
the values from the tuple. The parser p is presumably made by the
<+> combinator.

The contributed combinators complement the existing <+> combinator. Suc-
cessive use of the combinator <+> combines the result of parsers into nested
tuples such as (vy, (ve, ... (Un—1,Vn)...)). Successive use of the combinator <->
applies the result of a parser to to each value in a nested tuple. The combinator
<$-> applies a function, not a parser, to each value in a nested tuple.

3.5.2 Parsing Example

This section provides a walkthrough of a small parsing example.
A small subset of the Creol program from Section 3.3.1 is parsed, specifically
the line

x =1

This might seem like an overly simple example, but the corresponding parsing
functions rapidly become complex due to the compact handling of operator
precedence, although not more complex than with alternative parsing methods.

The body of a method is a Statement element, whose parser is defined
by pStatement. Unfortunately the parser pStatement is complex due to how
statements can be combined. We restrict ourselves to look at a subset of the
more basic pStatement_Nullary, that handles the parsing of a single primitive
statement, primitive in the sense that it consists only of simpler elements and
not combinations of statements. A sketch of pStatement_Nullary is as follows:

3.5. PARSER 47

pStatement_Nullary =

<|> Statement_Assign
<$> pVarld
<x (pKey ":=")
<*> pExpression
<> ...

The <[> combinator designates alternatives, and this code snippet shows that
there are other parsing alternatives to consider as well, which are not shown
here. Now to break this down, each of the code-lines are presented along with
a detailed explanation of how they work. First the combinator operator prece-
dence is made explicit with bracket annotations:

(((Statement_Assign <$> pVarId)<*(pKey ":=")) <*> pExpression)

It is assumed that the reader is familiar with partial application of functions and
Haskell or ML notation for function types. The constructor Statement_Assign
is from the Haskell code produced by the UUAG translation, described in
Section 3.3, of the DATA Statement found in Appendix E.4. The construc-
tor Statement_Assign takes two arguments, a VarId and an Expression and
returns a Statement, it has type

VarId — Expression — Statement
Let us look at the innermost part
(((Statement_Assign <$> pVarId)<*(pKey ":=")) <*> pExpression)

The combinator <$> takes a function, in this case Statement_Assign, and ap-
plies it to the result from pVarId, which again is a parser for a variable identifier.
Thus this part has the resulting type

Expression — Statement
The next part of the code is
(((Statement_Assign <$> pVarId)<*(pKey ":=")) <*> pExpression)

The combinator <* requires the parser pKey ":=" to succeed, but then throws
away the result and keeps the existing function, that still is of type

Expression — Statement

The parser pKey ":=" reads the string := from input, and this must match
a corresponding operator keyword definition as found in Appendix E.5. The
outermost part of the code

(((Statement_Assign <$> pVarId)<*(pKey ":=")) <*> pExpression)

uses the <x> combinator that applies the parsed result on the left to the result
from the pExpression parser on the right. This gives the type Statement and
this is the correct result. Note the distinct difference between <$> and <*>, in
that the left argument of <$> is not required to be a parser, but can be any

48 CHAPTER 3. THE FUNCTIONAL CREOL COMPILER

legal Haskell function, such as the Statement_Assign constructor, while the
left argument of <*> is a parser, which is in accordance with the explanations
for combinator parsers found on page 44.

Note that the final result does in reality not have the type Statement, rather
it has the potential of becoming a Statement, whenever the parser is applied to
some text. Thus it has the type Parser Token Statement which means, that
it is a Parser that accepts some Token and eventually returns a Statement.

As such the combinators build computations that may later be realized.
In our case the computation is the parsing of tokens. This is an important
point in grasping combinator parsing, although from a practical perspective a
person should be able to alter the parser using intuition rather than needing a
formal understanding. Readers interested in building computations might find
a paper on monads interesting [45], and those interested in a generalisation of
the monadic paradigm might also find an article on arrows interesting [44].

3.6 Type Checking

This section gives a rough overview of the type checking process, and motivates
the type analysis in Section 4.

The Creol language was crafted under an assumption of static type safety,
however no such type system was ever devised. The assumption of static type
safety is crucial for Creol. Creol provides program analysis as explained in
Section 2.1.3. Program analysis improves the dependability of running code.
Dependability is only interesting in the absence of those errors prevented by by
static type safety. If a program crashes, by lack of static type safety, then the
result of a verification is of no interest. Therefore the Creol language depends on
static type safety. The work on this thesis started with the initial construction
of the Functional Creol Compiler found in Appendix E. During the work with
the code it became clear that a formal type system foundation was required to
successfully type check the Creol language. The naive algorithmic approaches
to type checking, without a type system foundation, that where first deployed in
the Functional Creol Compiler failed to type check parts of the Creol language.
It became clear that is was unknown if, and how, static type checking could be
performed for the Creol language.

The need for both a Creol type system and for an integration of the central
concepts of the Creol language with a Creol type system, required investigation
of type systems in general. The investigation of type systems, the analysis of
Creol concepts with regard to type systems, and the creation of a Creol type
system is presented as type analysis in Section 4.

Type analysis provides an important foundation that guides the implemen-
tation of static type checking in the Functional Creol Compiler. The Functional
Creol Compiler is however in the middle of a rewrite from an earlier version of
the type system. The rewrite aims to implement the Creol type system pre-
sented in this thesis.

3.7. CODE GENERATOR 49

3.7 Code Generator

This section looks at how Creol Machine Code is generated. Some of the re-
quired operations are outlined and an actually compiled example is demon-
strated. Deficiencies of the Creol Machine Code that affect the code generator
are mentioned.

The process of generating Creol Machine Code is a small part of the Func-
tional Creol Compiler because the Creol Virtual Machine is very sophisticated.
The generated Creol Machine Code looks very much like Creol code, although
with some minor syntactic changes. That is, the classical code generation re-
lated tasks are not necessary [7, Sect. 6-10,13,17-21].

The actual Creol Machine Code is just a string that is built up piecemeal
by attributes on the nodes in the abstract syntax tree. The most complicated
parts of the code generator is the generation of unique labels in a functional
setting, the context dependency of the Creol Machine Code syntax, and type
dependent function translation.

The generation of unique labels can be found in Appendix E.8, and is greatly
simplified by the attribute grammar system, because the attribute grammar
system generates default rules, hence unique attributes are only apparent in the
code where they are used. This is in contrast to the normal functional approach
where the unique attribute would be passed explicitly through every function all
the way down to where it was needed. One could of course use a state monad for
the generation of unique labels, but a state monad could not interact with the
other attributes, that could not be expressed by any state monad. UUAG allows
information to flow in several directions, while the state monad directs the flow
of information, hence a state monad could not be used for label generation.

The context dependent code generation requires extra attributes for flow of
information in the abstract syntax tree. Consider parameters in a method. If
there are no parameters the Creol Machine Code keyword nil is emitted, if there
are parameters they are emitted as a comma separated list. Therefore the code
generation for parameters has a special handling for the absence of parameters.
The code generator would be simplified if the Creol Machine Code accepted
parameters with the same representation regardless of number of elements, such
as () for an empty list and (1,2,3) for a list of three elements, there would be
no special case handling of empty lists. Notice that these lists are internal to
the Creol Machine Code, and are not related to Creol lists.

There is little overloading in Creol, only the + operator is overloaded in the
Creol language. The + operator is not overloaded in the Creol Machine Code,
therefore the code generator uses the type of the arguments to select the correct
Creol Machine Code. This special case of overloading is not handled by the
Creol type system, and is provided in the code generator as a compliance hack,
as there is no support for procedure or operator overloading in the Creol type
system.

The Creol Machine Code is defined by the Creol Virtual Machine by principle
of source inspection, and there is no standard definition of Creol Machine Code.
This is not as bad as it may appear, as the Creol Virtual Machine is the semantic
specification of the Creol language. Although the Creol Virtual Machine is high
level it requires some knowledge of Maude [66] to be read and understood.
The work by Arnestad [8] that defines the first version of the Creol Virtual
Machine provided a stepwise high level translation from Creol to Creol Machine

50 CHAPTER 3. THE FUNCTIONAL CREOL COMPILER

Code, although the translation is now outdated due to further development of
the Creol Virtual Machine. The formal translation provided by Arnestad was
only partially correct when the work on this thesis began. The code generator
for the Functional Creol Compiler was created partially as a transcript of the
translation provided by Arnestad, partially by inspection of the Creol Virtual
Machine, and partially by inspection of existing Creol Machine Code.

3.7.1 Creol to CMC Example

This section provides the Creol Machine Code for an example class.

The Creol Machine code is generated by the Functional Creol Compiler, and
provides an illustration of the close relation between Creol and Creol Machine
Code. Recall the example class from Section 3.3.1, now with color highlighting
to show the correspondence between Creol and Creol Machine Code. The non
colored parts of the Creol Machine Code can be ignored. A detailed explanation
of Creol Machine Code is not the subject of this thesis.

// Creol Class
class Main
begin

op assigntox ==
end

As evident from the translation, Creol Machine Code is similar to Creol code.

// Creol Machine Code
< ’Main : C1 |
Inh: nil,
Mtds: < ’assigntox : Mtdname |
Latt: no,
Code:

Ocnt: 1
>

For an example comparison between earlier hand written and now compiler
generated Creol Machine Code, consult Appendix C.

Chapter 4

Object-Oriented Type
Analysis

This section investigates the meaning of static type safety, introduces the termi-
nology used to discuss object-oriented type checking, and investigate the object-
oriented challenge in separating inheritance from subtyping.

4.1 Static Type Safety

This section clarifies what static type safety entails in general, including the
Creol language.

Creol aims to be a statically type safe language. A static type safe language
must provide a typechecked program with safety from untrapped errors, as well
as guarantee at compile time that no type errors may occur at run-time. An
untrapped error is an error that is not noticed by the program. A type error is
an error decided just by looking at the types. This is in accordance with static
type safety as defined by Bruce [15, Sec. 13.3]. An example of an untrapped
error is accessing past the end of an array. An example of a type error is treating
an object reference as an integer, or an integer as a character.

It is important to avoid untrapped errors and type errors because they yield
programs that do not operate with predictability as to when the program di-
verges or aborts. Type checking is used to avoid type errors. Type checking is
be static when applied at compile time, and dynamic when applied at run-time.
The choice between static and dynamic type checking can not be made freely.
Static type checking can always be replaced by dynamic type checking. Dy-
namic type checking can only be replaced by static type checking withing the
limits of decidability. The prevention of untrapped errors is only partially solved
by typechecking, because there are untrapped errors that are not type errors.
To access beyond the end of an array is not a type error. The untrapped errors
that are not type errors require run-time checks to trap them. The insertion of
such checks are not a part of the formal type system, rather it is part of the
code generator in the compilation process.

Some run-time checks can be avoided by analysis, but due to Richardson’s
theorem [96], which states that it is statically undecidable if an arithmetic ex-
pression of at least a certain complexity will ever become zero, there can be

51

52 CHAPTER 4. OBJECT-ORIENTED TYPE ANALYSIS

no general solution to statically check, for instance, division by zero. To prove
statically that division by zero could not occur for an expression % would
limit the divisor to Presburger arithmetic [95], which is a very restricted form
of arithmetic, containing only the natural numbers and addition, and hence
be usable for general programming. Note that a truth decision for Presburger
arithmetic, such as the question does the divisor become zero, provably requires
more than polynomial run time. The type system for FISh [47] show how an
enriched type language can eliminate certain array bounds checks by means
of static type checking. This approach is taken even further by Xi’s work on
dependent types [100]. These solutions are however both partial and subject
to ongoing research, therefore such solutions are not considered for the Creol
type system, and run-time checks are used to catch errors of, for instance, ar-
ray bounds checks for array indexing, division by zero, and the occurrence of
null-pointers.

In the context of the Creol reseach, the Creol language must provide static
type checking in order to realise the benefit of both invariant analysis of con-
current programs and correctness proofs for programs. Concurrency analysis is
interesting as it guarantees that a concurrent program will maintain an invari-
ant, without having to run the program to check this property. If the program
must be debugged to catch untrapped errors, the whole idea of program anal-
ysis instead of debugging is lost, and therefore static type checking leverages
the benefit of concurrent program analysis. Static type checking also facilitates
run-time efficiency, although run-time efficiency is not at present a research goal
of the Creol language development.

Static type checking of the Creol language forms a foundation for concurrent
program analysis, and therefore the static type checking should catch as many
errors as possible. The ML family of languages, which includes O’Caml [73],
has chosen to pursue static type checking as far as feasible, with respect to de-
cidability, although for different reasons than Creol, and the research in relation
to these languages is re-usable for the Creol language.

4.2 Essential Type Terminology

This section introduces essential terminology that is used to discuss type check-
ing in general and object-oriented type checking in particular.

4.2.1 Subtyping

Subtyping is a relation <: between a subtype and a super type. Subtyping states
that by the principle of safe substitution [77, Sect. 15.1] a value v’ of type 7’ can
be used at any place where a program expects a value v of type 7 when 7/ <: T,
that is, 7/ can subsume 7. The term subsumption denotes the phenomena that
7/ can subsume 7, which intuitively means that 7/ can masquerade as 7. A small
example with subtyping is available in Section 7.1.4.

4.2.2 Object Type

An object type is described by rows. There are different rows for instance
variables, inheritance, methods, virtual methods and so on.

4.2. ESSENTIAL TYPE TERMINOLOGY 53

Object types are either open or closed. An open object type can be refined
by adding more rows at a later point. A closed object type can not be refined.
Technically an object type is open when it has a row variable p. The row variable
p can later be replaced with rows that refine the object type. An object type
without a row variable p is closed.

Intuitively an open object type is a protocol description, as discussed in
Section 4.6. A closed object type corresponds to a physical object, which is
no longer extensible. A closed object type corresponds to an exact type, as
discussed in Section 4.7.

4.2.3 this, self and Self

The type of the object, which the current method executes inside, is denoted
self. The term this is used inside classes to refer to the object instance itself,
and this has type self. Other objects from the same class have type Self.
The type Self is obtained from self by removal of information that is private
to the instance. Both self and Self are open object types because they may
be refined by inheritance.

4.2.4 Matching

Matching is a relation < # between a subobject and an open super object,
such that the subobject at least can handle all the method invocations the
super object can handle. This is a relaxation of subtyping by the removal of
subsumption. Matching captures a notion of protocol requirement, and it is
possible to verify statically that the subobject is a protocol extension of the
protocol described by the open super object. The difference between matching
and subtyping, with respect to recursive types, is apparent in the treatment of
fixpoints. This is discussed later in Section 5.17.1 and Section 5.17.2.

4.2.5 Record

A record is a collection of values. A record type describes the collection of values
where each value is given a name and a type. The name is used to extract values
from a record. The type is used to provide static type safety.

4.2.6 Variant

A variant is a tag and a value. A variant type describes a set of variants. Each
variant has a tag and the type of the contained value. The tags are used to
distinguish variants with respect to the variant type the appear in. Variant
types are also referred to as sum types.

4.2.7 Conformance

Conformance is a relation < between a subtype and a super type. The confor-
mance relation reduces to matching <# when the super type is an open object,
and to subtyping <: for all other super types, therefore the conformance relation
< express both subtyping and matching in the Creol type system. A type 7°
conforms to 7® when 7°<7® holds.

54 CHAPTER 4. OBJECT-ORIENTED TYPE ANALYSIS

4.2.8 Nominal Conformance Constraints

Nominal conformance constraints restrict the conformance relation <, so confor-
mance is only allowed when declared by the programmer. Nominal conformance
constraints correspond to nominal subtyping in other type systems.

4.2.9 Behaviour

Behaviour denotes semantic properties attached to an interface, without re-
gard for the nature of these properties. Conformance preserves behaviour when
nominal conformance constraints are respected, which is denoted behavioral
conformance, or behavioural subtyping.

4.2.10 Variance

Variance is the nature of a type difference between corresponding parts of an
object from a subtype and a super type.

4.2.11 Contravariance

Contravariance is variance where a component in the subtype is a super type
of the corresponding component in the super type. One may see contravari-
ance as contraintuitive because the variance is in the opposite direction of the
inheritance relation of the surrounding types.

4.2.12 Covariance

Covariance is variance where a component in the subtype is a subtype to the
corresponding component in the super type. Intuitively covariance has variance
in the same direction as the inheritance relation of the surrounding types.

4.2.13 Invariance

Invariance is variance that requires both co- and contravariance at the same
time, which in general leads to type equality. That is 7¢<7% and 7¢37° at the

same time which requires 7¢=70.

4.2.14 Virtual Binding

Virtual binding is an algorithm for lookup of methods or variables in objects.
Virtual binding searches for methods or variables at run time, however static
type safety guarantees that virtual binding always finds a method at run-time,
that is, never throws a message not understood error. Since virtual binding
happens at run-time the lookup strategy is part of the Creol semantics.

4.2.15 Static Binding

Static binding is an algorithm for lookup of methods and variables in objects,
where the lookup is confined to those methods available prior to a given point
in the inheritance hierarchy. The type system must record the inheritance hier-
archy to statically prevent message not understood errors.

4.3. THE PROBLEM OF INHERITANCE AND SUBTYPING 55

4.3 The Problem of Inheritance and Subtyping

This section discusses the problem of inheritance and subtyping, with focus on
code reuse with static typing.

Most programming languages with static type checking are such that inheri-
tance implies subtyping, that is, inheritance is restricted by subtyping, which is
necessary to statically ensure type safety. Languages with dynamic type check-
ing does not restrict inheritance by subtyping.

When inheritance implies subtyping, there are lost opportunities for code
reuse. The importance of this code reuse is demonstrated in a study by William
Cook [22] of the libraries in SmallTalk. SmallTalk is a dynamically typed lan-
guage, with no compile time restrictions on inheritance. The study discovered
that the SmallTalk libraries could be statically type checked through a separa-
tion of inheritance from subtyping. The need to distinguish between inheritance
and subtyping is well known. Both America [3] and Cook, Hill and Canning [23]
address the necessity of separating inheritance from subtyping.

We shall call a typing scheme for inheritance simple, whenever inheritance
implies subtyping. Surprisingly, even simple typing schemes [23, Sec. 3.1] based
on very sophisticated type systems, such as System F [77, Sect. 23.3], causes
problems. The problems are prompted by the presence of binary methods. A
binary method, is a method, which has an input parameter, with the type of
the class, that defines the method. The problems occur in any language that
combines subsumption with method override, and subtyping is defined through
subsumption.

In contrast a typing scheme for inheritance is called sophisticated, when
inheritance does not imply subtyping. Intuitively, a sophisticated typing of
inheritance, keeps the type of self open, that is adjustable, in the presence
of inheritance. Even with this knowledge readily available, the most commonly
used object-oriented languages, namely C++ [0, Sec. 12.2], Java [30, Sec. 4.5.6]
and C+# [19, Sec. 17.2.1], have a simple typing.

The simple typing of inheritance should be abandoned for a sophisticated
typing of inheritance, which increases code reuse. However, the exact nature
the sophisticated typing is unsettled, so we must investigate which sophisticated
typing of inheritance to choose.

4.4 Possible Approaches

This section establishes a list of possible approaches to the problem of inheri-
tance and subtyping , by investigation of literature.

To establish some alternative approaches let us start with an article which
compares solutions to the problem of binary methods [16]. The article is incon-
clusive in the sense that no solution is best, each approach has different strengths
and weaknesses. The considered approaches are now briefly mentioned.

The first approaches are not solutions, they avoid binary methods and sug-
gest alternatives that can express something similar, although with code dupli-
cation.

Functions This suggests to write binary methods as functions where each com-
bination of object types is defined by a different function.

56 CHAPTER 4. OBJECT-ORIENTED TYPE ANALYSIS

Pair Class This suggests to create a special class that contains two copies of
all instance variables from the class that needs a binary method. In
general this requires a pair class for binary methods, a triple class
for ternary methods, and so forth.

The next approaches handle allow binary methods through different advanced
type systems.

Multi-Methods Use the run-time type of all arguments to do multiple dispatch.

Precise typings Change the type of binary parameters so they describe exactly
the minimum requirements of the parameter, so the parameter is
simplified and no longer binary.

Matching with MyType Introduce a special ground type, or placeholder type,
called MyType and give special type judgements for classes with My-
Type. These MyType judgements models matching, where matching
is a weaker relation than subtyping.

The set of solutions that are considered by the article does not include fix-
point recursive extensible records with polymorphic row variables [80], which
is the solution to binary methods that is deployed in the programming lan-
guage O’Caml [73]. For the sake of brevity the term rows as a shorthand for
fixpoint recursive extensible records with polymorphic row variables. Rows nat-
urally encode objects, such that type equality between object types expresses
matching. Since rows variables are have a solid track record, both theoreti-
cally [30,81,79,27] and practically [73], we include row variables in our investi-
gation.

Not all of these approaches to binary methods are viable for the Creol lan-
guage. The gained language expressiveness, by allowing binary methods, is im-
portant to the Creol language, as noted in Section 2.1.2, so the the approaches
that avoid binary methods are not viable.

Compositional analysis, which is supported by compositional type checking,
and static type safety, are important properties in the Creol language. Multi-
methods either require a complicated type system [20], that makes compositional
type checking difficult, or loose static type safety [16, Sec .6].

Precise typings require either extensive code annotations, or partial type
inference. Extensive code annotations is very obtrusive, and it is unclear if
partial type inference can be combined with behavioural subtyping.

Other approaches encountered are either variations of those identified, or

unsuitable for some reason. Dependent types [99] appear as a variation of row
variables. Pattern matching on object types [67] appear as a variation of multi-
methods. Nested inheritance [72] does not address the problem.

The problem of overloading, in functional languages, is closely related to
the problem of binary methods, in object-oriented languages, so we consider
solutions to overloading. We have found two theoretical approaches to over-
loading in general, for functional languages, type classes [39,57] and extensional
polymorphism [33].

Type classes, which by definition do not allow subsumption, have successfully
been used to model objects [70], however virtual binding is only provided for
external dispatch, and not for internal dispatch. It is called internal dispatch

4.5. MATCHING WITH MYTYPE 57

when a class invokes a method on itself or one of its super classes, otherwise it
is called external dispatch. This restriction does not sit well, neither with the
Creol language, nor with most other object-oriented languages.

Extensional Polymorphism is a framework for general pattern matching on
types, in combination with static type checking, and generalises type classes.
Both method overloading and multi-methods are limited forms of pattern match-
ing on types, and can be modelled with extensional polymorphism. Extensional
polymorphism and algebraic datatypes does at least have the same expressive-
ness as object-oriented languages, however the notions of classes and objects are
lost.

The approaches to overloading may solve the problem of binary methods,
at the cost of removing features that are conceived as essential to object-
orientation. It is not clear how to express behavioural subtyping, neither with
objects encoded by type classes, nor with extensional polymorphism, and the
Creol language requires behavioral subtyping. We therefore do not consider
these solutions fit for the Creol language.

The approaches to binary methods that are left to consider for the Creol lan-
guage are matching with MyType and matching with rows. Observe that match-

ing preserves behaviour in Creol [51,53], when nominal restrictions posed by in-
terfaces are satisfied, and this is separates the notion of behavior in Creol from
other notions of behaviour [4,62], which we are not concerned with. Matching

with MyType does, by definition [15, Def. 10.2.4,], enforce nominal constraints.
Matching with rows do not enforce nominal constraints, and is therefore not
compatible with behaviour, however, the Creol type system defines, an appar-
ently original, concept of nominal rows, which enforce nominal constraints. This
is discussed further in Section 5.6.

4.5 Matching with MyType

Matching with MyType is covered by Bruce’s textbook [15]. Matching is re-
alised by the introduction of MyType. MyType is a special ground type, that is
interpreted as the current class, by type judgements, so MyType corresponds to
the type of self, and MyType is reinterpreted on inheritance, by type judge-
ments. Matching is generalised to match-bound polymorphism, which unlike
quantified polymorphism in system F [14], provides a sophisticated typing of
inheritance. Abadi and Cardelli compare subtyping with matching as well as
match-bounded polymorphism with quantified polymorphism in system F [1].
They demonstrate that matching separates inheritance from subtyping, hence
a larger set of programs can be statically type checked. The comparison be-
tween match-bounded polymorphism and quantified polymorphism in system
F, is summarized by a quote from Abadi and Cardelli, where higher-order in-
terpretation refers to match-bound polymorphism:

Thus, we believe that the higher-order interpretation is prefer-
able; it should be a guiding principle for programming languages
with matching.

Later Abadi and Cardelli also investigated how the notion of MyType and
match-bounded polymorphism can be encoded into their calculus of objects
Oby«. [2, Sec. 21].

o8 CHAPTER 4. OBJECT-ORIENTED TYPE ANALYSIS

The presentation of MyType and matching [15, Sect. 18] ends with an ex-
perimental language NOOL, where subtyping is replaced by hash types. A
hash type is prefixed by the symbol #. Hash types allow the programmer to
use match-bound polymorphism in a natural manner. This is demonstrated by
the interpretation of a:C and a : #C, where a: C declares a to have the ex-
act type C while a : #C declares a to have a type that is match-bound by C.
The need for this distinction becomes apparent with binary methods. A binary
method requires an exact MyType, while a hash type requires a matching type.
This idea was further pursued by Bruce and Foster [17], by extending Java with
matching, MyType and hash types.

4.6 Matching with Rows

The idea of adjusting the type of self on inheritance was pursued by the
functional language community using extensible records [79] and developed to
create an object-oriented extension [30], which was implemented successfully
in the O’Caml [73] language, in a manner suitable for industrial use. Objects
are encoded as extensible records, and polymorphic row variables capture, in
a precise manner, the concept of protocol extension that matching provides.
The type of self is described as a fixpoint recursive extensible record with
a polymorphic row variable, and the type self is adjusted on inheritance by
instantiation of that polymorphic row variable, with the new information pro-
vided by the subclass, and a new polymorphic row variable, to allow further
refinement by inheritance. Intuitively the type of self is open, for adjustment,
due to the polymorphic row variable. Fixpoint recursive extensible records with
polymorphic row variables allow objects to be compared with respect to the im-
plemented methods, without the restriction of subtyping. Although the type of
self has a polymorphic row variable, the objects produced by the class do not,
inheritance is not possible once an object is created, which provides a closed
object type, obtained by instantiation of the polymorphic row variable, from
the open self, to the absent row, as well as precise adjustment of fixpoints.

4.7 MyType versus Rows

Rows and MyType appear somehow equivalent, as they both express matching.

MyType is a ground type, interpreted by type judgement rules, so MyType
is the same for all classes, however the type rules judge MyType differently
depending on the class MyType occurs in. Note that MyType is, by type rule
judgements only, somehow equivalent to a fixpoint for the class. This is in
contrast to rows, which provides a precise type for self.

Since MyType is a ground type, it is not possible to differentiate between
between MyType from different classes, therefore matching with MyType can
not, express virtual classes and mutual parametrisation, which need to distin-
guish between MyType from different classes. To solve this problem, Bruce and
Vanderwaart introduce a notion of groups of mutually recursive types, where
each MyType in the group is given a distinct ground type [18]. This is, again,
in contrast to rows, which by definition, due to a precise type of self, can dis-
tinguish between the self of different classes, and therefore naturally express

4.7. MYTYPE VERSUS ROWS 59

virtual types [81].
The following quote from Rémy and Vouillon [80, Sec. 11] illustrates the
importance of matching, and the close connection to row variables.

“Open record types are connected to the notion of matching in-
troduced by Kim Bruce. Matching seems to be at least as important
as subtyping in object-oriented languages. Row variables in object
types express matching in a very natural way.”

However, to further decide if rows and MyType have equivalent expressive power
requires a more thorough analysis. Bono and Bugliesi [13] pursues a comparison
between rows, although with a slightly different encoding [31], that express
negative information, through the absence of methods, and MyType, and state
that rows seem more expressive than MyType, as illustrated by the following
quote:

“The result does not generalize to arbitrary expressions and judge-
ments, as we have shown giving examples of typing judgements deriv-
able in [31] that cannot be meaningfully encoded into our system.
In fact, although we have not proved it, we are convinced that the
original system is strictly more expressive than the one we have pre-
sented, if we consider arbitrary judgements. The fundamental reason
for this is that the kinding system of [31] is strictly more informative
than ours, as it conveys information on method absence, a form of
negative information that cannot be accounted for with matching.”

An even more formal analysis was later done by Bono [12] which supports the
first findings.

We have established that it is desireable for the Creol language to separate in-
heritance and subtyping, which is realised by matching, regardless of the choice
between MyType and rows. However, the Creol language requires the Creol
type system to combine objects with some variation of a typed A-calculus, due
to the presence of functional programming. Objects encoded by rows are prac-
tical to combine with a slightly enriched A-calculus, because rows are expressed
directly, with a precise handling of fixpoints. Objects encoded with MyType are
impractical to combine with A-calculus, even system-F. The practicality is here
determined by the gap between abstractions and formal treatment of fixpoints,
so there is a large gap between the MyType abstraction and the A-calculus with
fixpoints, while there is a narrow gap between objects as rows and the A-calculus
with fixpoints. Rows do however not express nominal restrictions, which is a
weakness we have addressed in the Creol type system.

Intuitively, matching with MyType appear simpler, at first glance, however,
rows, with nominal restrictions appear as a much more precise.

60

CHAPTER 4. OBJECT-ORIENTED TYPE ANALYSIS

Chapter 5

Approaching Creol Typing

This section provides insight into type checking of Creol, by investigation of
examples and principles from the object-oriented subset. The goal is to make
assumptions, concerning the Creol type system and the Creol language, explicit.

For the sake of simplicity, let us forget about subtyping, matching, MyType,
type equality for rows, fixpoints, parametrisation, and so on, and start from
scratch.

We wish to type the object-oriented part of the Creol language with as
few concepts as possible. The object-oriented subset of the Creol language is
centered around classes and interfaces, and how these are related. Classes and
interfaces are abstractions for objects. Conformance is a relation that expresses
compatibility between objects.

We introduce an object type O {p}, where p is a row that describes the object
type. Then we introduce a conformance relation < that can decide compatibility
between objects, by looking at rows, so O {pb} <O {p®} is true when O {pb}
is compatible with, or conforms to, O {p®}, which is determined by comparing
TOWS.

Although classes and interfaces are abstractions at a higher level than object
types, they do not facilitate a uniform treatment of type checking issues. Armed
with object types O {p} and a conformance relation <, the Creol type system can
express classes and interfaces in a precise and uniform manner, by introducing
various rows for Creol language concepts, define conformance for these rows,
as well as connect interfaces and classes to objects types, all of which is done
throughout this section.

The section may appear as a series of pieces from a puzzle, and this is to be
expected, however at the end of the section, the pieces should fall together and
form a consistent picture.

5.1 Classes and Interfaces

This section document the connection between the higher level abstractions,
class and interface, and the lower level abstraction, object type. Depending
on the perspective, a class or interface reveals different information about the
objects it describes. Object types reveal, or hide, information about objects,
so for each perspective, there is a corresponding object type, and a class or

61

62 CHAPTER 5. APPROACHING CREOL TYPING

interface is described by the set of object types corresponding to all possible
perspectives. These object types are now presented, although the use is not
demonstrated until examples later in the section.

The type of an object, as seen by the instance itself, the type of self.
The variable this has type self which exposes instance variables and personal
methods. Since inheritance can extend a class, the type of self must be open,
that is, contain a free row variable p. In the type system presentation the type
of self for an unspecified class is written 75¢f and the type of self for a class A
is written 74 s°If,

The type of Self is the type of other objects from the same class, as seen
by the instance. Self is written 75°'f in the type system presentation. The
type 75 is obtained from 7°°f by hiding information which is private for each
instance, such as instance variables and personal methods. Since inheritance
also extends the other objects of the same class the type 75¢f must be open,
that is, contain a free row variable p.

The type of objects of a class, as seen from outside the class, is written 7
The object type 7¢1°%°¢ is obtained from 75°f by removing information which is
private to the class, and by removing the free row variable p, because the type
of objects produced by this class is the same regardless of later inheritance.

The type of objects from this class when the object type is considered as
protocol description, written 7°P°". The type 7°P°" is obtained from 7°1°%¢d by
adding a free row variable p.

An interface is described by the different types of objects that correspond to
the interface, similarly to a class. Since an interface does not have any variables,
there is no code that requires the perspectives expressed by the types 75 and
75t found in classes. However, inheritance requires the perspective expressed
by 75, All the methods in 7°°!f are virtual, as no implementation is provided.
The methods in 7¢1°%°d and 7°P" are not virtual.

closed

5.2 Instance Privacy

This section shows how instance privacy is expressed in the type system. In-
stance privacy is the phenomena where information in an object instance is hid-
den from all other object instances, even from the same class, and the Creol lan-
guage has instance privacy [49]. Note that instance privacy does not correspond
to the visibility declaration private from Java, which express class privacy.
Class privacy implies that information is hidden from object instances from
other classes, however, every object instance of a class has access to private
information inside other object instances of the same class.

Let this be an object instance from a class, and let that be any other object
instance from the same class. Instance privacy, for this, means that some
information inside this is hidden from that. Conversely, instance privacy, for
that, means that some information inside that is hidden from this. Although
all object of a class have the same information, the type of an object reveals, or
hides, that information. When inside this, we need to provide different types
for this and that in order to have instance privacy. Let self be the type of an
object instance, as perceived by the object instance itself, hence this has type
self. Let Self be the type of any other object instance from the same class,
hence, the object instance this perceives that to have type Self. Observe that

5.3. NAMESPACES 63

the type of Self is derived from the type of self, by removal of information
that is private to the instance, so self and Self are different types.

We write 75 the type of self, and 75! for the type of Self, such that
inside a class, the current object instance, this, has type 75, while all other
object instances from the same class, This, has type 75¢f. Observe that 75 is
different from 7°1°%¢d and 7°P°" | because inheritance adjusts both 75¢!f and 75¢!f|
according to the new information available in the subclass, and in a manner
that expresses instance privacy.

By refining the type language and distinguishing between the type of self,
from the type of Self, the Creol type language facilitates instance privacy.

5.3 Namespaces

This section demonstrates how multiple namespaces for identifiers are required.
Intuitively, the type of an identifier depends on the perspective. This is
demonstrated with inheritance and initialisation parameters.

class A(i:Int)
begin

var b:Bool
end

class B inherits A(42)
begin

var s:Str
end

. new A(42); ...
. var o:A; ...

The class A consists of an initialization parameter i and an instance variable b.
The class B inherits from A and declares an instance variable s. The variable
declaration var o:A and the code new A(42) are taken out of some unknown
context.

The object types that describe classes A and B are in the type environment

self .

Self -Z -. .. -.
closed .
new .

self :-:--:
Self .
closea':.:'.

open .

Q.

@

@
T T TS TR T T R
Wwwww e

new .

where the details are hidden as they are not important for this example. The
creation of a type environment is demonstrated in Section 5.4.

The type of the identifier A is different, depending on the use. The different
interpretations of A are:

64 CHAPTER 5. APPROACHING CREOL TYPING

var o:A The identifier A is the closed object type described by class A. Hence
A ’f'A closed.

new A(42) The identifier A is a function from initialisation parameters to the
type of objects produced by class A, which are described by the
closed object type of class A. Therefore A : Int — 74 closed

inherit A(42) The identifier A is a function from initialisation parameters to
the type of self for class A. Therefore A : Int — 72 . This
follows naturally, because inheritance expands the self from the
super class, and initialisation parameters must be provided.

This example demonstrates that the identifier A has a different type, depending
on whether it is used for inheritance, object creation or variable declaration.
The solution to this is the introduction of a separate namespace for each use.
These namespaces are

Fd:ef { A 7'_A closed }
uew déf {A - Int — 7-_A Closed}

i it def .
Flnherlt 1e] {A - Int — ,]_A self}

which provides the correct type for each use in a separate namespace.

5.4 Classes and Object Types

This section demonstrates by example the correspondence between a class and
the object types that describe that class, including the types for self and Self
with respect to inheritance.

A class is described by several object types 7%, 7Self = gclosed " ropen g4
7% Of these object types, the type 75 reveals all available information
about objects from that class, and the other object types are constructed from
75 by transformations.

To provide some substance, let us sketch the object types for the sample
class A.

class A
begin
var x:Int
with Any op eq(in o:This) == ...
op £(in o0:4) == ...
with This op g(out o:#A) == ...
end

The This in eq(in o:This) refers to 75! for class A, written 72 S¢f. The A
in f£(in o:A) refers to 7°1°°d for class A, written 74 °°¢d The #A in g(out
o:#A) refers to 7°P°" for class A, written 74 °P°». The cointerface restriction
Any refers to the any type T. A class method without a declared cointerface, is
given the cointerface Any, and is given a personal row, instead of a method row.
The personal row is only visible to the object instance itself, and not to other
object instances from the same class. Note that the cointerface for a personal

5.4. CLASSES AND OBJECT TYPES 65

row could be either T or 75 it does not matter which, it is the row, not the

cointerface, that denotes visibility, so we use T for simplicity.
The type 72 %! consists of all available information and becomes

variable x : Int
method eq : M(T, 74 Sef ()
FA sl f 5 1 personal £ : M(T, 74 closed (y)

method g : M (74 Self A open ()

pA self
where the empty type () is used, when there are no output parameters. Note
that p? *f is a placeholder for an unknown number of rows. Intuitively this
means that more information can be added at a later time by replacing p* *°!f.
Notice that 74 5! is defined with 74 Self A closed g3q 74 open and these are
defined by 74 % so there is mutual recursion between 72 ¢if and 75elf rclosed
and 7°P°". Tt is generally not possible to write out mutually recursive types, be-
cause they are infinite, without fixpoints to break the infinite recursion, which is
demonstrated later, along with a formal fixpoint interpretation, in Section 5.14.
In this example the types 72 Self 7A closed qpnq 7A open are infinite types. The
introduction of a type environment © with placeholder types and an implicit
fixpoint interpretation, allows placeholder types to be used prior to their defi-
nition. Intuitively, 7 is a placeholder for a type 7, and © can translate from a
placeholder to a type. Given a placeholder type 7 and a © def {(#,7)}, the type
7 can be obtained from 7 by doing ©(7), which produces 7, therefore, in the
presence of ©, placeholder types can be used freely as types. For the example,
the type environment becomes

variable x : Int
method eq : M(T, 4 S¢lf ()

A self . O L personal £: M(T, 74 closed ()

def method g : M (74 Self ;A open ()
0= pA self

7A Self .

7'_A closed —

A open .

where placeholder types 74 Self | 7A closed 5 q 7A open gre Jeft unspecified. Given

this partial O, it is straightforward to derive the unspecified types. The type
A Self js derived from 72 ¢f by removal of information that is private to the
instance, such as instance variables and personal methods. This produces an
updated type environment

method eq : M(T, 74 Self ()

oL #Aselt. 0! method g s M(7A Self A open ()
A Self
P
where the placeholder types 74 ¢1osed and 74 °Pe™ are left unspecified. Note that

pA st i different from p® S| because different rows may replace p® s°!f and

66 CHAPTER 5. APPROACHING CREOL TYPING

pA Sl Intuitively an extension of self with instance variables does not extend

Self.

The type 7 is the type of objects produced from this class, as seen from
outside the class. The types 74 %°!f and 72 S¢If are not visible outside the class.
The type 74 ©1°%¢d is derived from 72 *!f by removing information that is hidden
inside the class, which includes replacing the fixpoints 74 ¢f and 74 Seff by
74 closed " Thig hides the information previously exposed by 74 s¢if and 74 Self |
Once an object is produced, it is not possible to add more information, therefore

there are no open rows in 72 ¢4 This produces the type environment

A closed

[e) déf 7-_A closed . O method €q: M(Tv 7LA closed, ())
: method g: M(i’A closed’7-_A open, ())

where the type 72 °Pe" is left unspecified. The type 7 °P° is the protocol for
objects produced by the class. The separation of inheritance from subtyping,
discussed in Section 4, introduces open and closed object types, where, intu-
itively, an object type describes an object protocol, and a closed object type
describes an object. The type 74 °P° is derived from 72 ¢1°s¢d by the addition
of p® °Pe" which opens the type. This produces the final type environment

variable x : Int
method eq : M(T, 74 Sl ()

A self . O personal £: M(T, 74 closed ()
method g : M (74 Self ;A open ()

pA self
method eq : M(T, 74 Self ()
def
0= { A8 0! method g: M(74 Self +A open (y)
A Self

- A closed . 10 method eq: M(T,%A Closed, ())
T : method g: M(TA Closed’q-_A Open, ())
method eq : M(T, 74 closed ())

7'_A open . () method g: M(TA closed77'_A open, ())
pA open

where a definition is provided for all placeholder types.
Let us expand the example with a subclass B which extends A.

class B inherits A
begin

var y:Bool

with Any op eq(in o:This) == ...

with Any op h(in o:B, out p:#B) == ...
end

The class B adds another instance variable, refines the definition of eq, and
introduces a new method h. The inheritance from class A is captured by a row
for inheritance from 72 %¢4f. Inheritance is always from the type of self for
the super class, because all information from the super class is available to the

5.4. CLASSES AND OBJECT TYPES 67

subclass. The type environment © is extended with the placeholder types for
class B. The type environment becomes

variable x : Int

method eq : M(T, 74 Sl ()

A self . O personal £: M(T, 74 closed ()
method g : M (74 Self ;A open ()

pA self

inherit A : 74 self
variable y : Bool
7B self . 0 method eq: M(T, 7B S ()

method h : M(T, 7B closed 7B open)

B self
P

where the type environment made for the class A is left out, and 7B Self | ;B closed

and 7B °P" are left unspecified, as they can only be created once the row
inherit A : 74 *If has been expanded. The expansion of inheritance must:

e Replace the types of self and Self with updated versions. This change
of fixpoint is discussed later in Section 5.17.2.

e Copy rows from the super type to the subtype.

e Ensure conformance for those rows that are both in the super type and
subtype.

e Add a super row for static binding.
Those rows that can be copied from the self of class A are

variable x : Int
personal f : M(T, 74 closed (y)
method g : M(’/"A Self, A open, ()).,'.A Self, ,+B Self

where 7 means, that the fixpoint 72 S is replaced by 7

because the type of Self is updated on inheritance. Conformance must be
checked for the eq rows.

A Self | ’i'B Self B Self,

method eq : M(T, 7B 5l ())< (method eq : M(T, 74 Self, ()))TA Selfy 2B Selr
This reduces to
method eq : M(T, 7B 5% ())<method eq : M(T,#B Sl ()

which holds trivially because

7-_B Self§7-.B Self
where contravariance for input parameters changes the direction of conformance.
Conformance must also hold for row variables, hence

B self
p

<pA self

68 CHAPTER 5. APPROACHING CREOL TYPING

which holds trivially, because both are open. With the addition of a super row,
the updated type environment becomes

super A : A self

variable x : Int

personal £ : M(T, 74 closed (y)

def) .p it ;) method g: M (7B Self ;A open ()

' variable y : Bool

method eq : M(T, 7B Self ()
method h : M(T, 7B closed 7B open)

B self
p

where the type 78 s°!f is fully described. The types 7B Self| ;B closed 354 7B open

can now be derived, in the same manner as for class A. The super row is removed
when 7B S¢If is derived from 7B *¢ff. Static binding is only meaningful for the
instance itself, but not for other objects from the same class. The type environ-

ment with types for class B now becomes

super A : A self

variable x : Int
personal f : M(T, 74 closed (y)
:B self .) method g : M (7B Self ;A open ()
' variable y : Bool
method eq : M(T, 7B Slf ()
method h : M(T’ 7'-B Closed, 7-_}3 Open)
pB self
CE method g : M (7B Self_+A open ()
7‘-B Self . O method eq: M(T77—B Self, ())
: method h : M(T, 7B closed +B open)

pB Self

method g : /\/l(j—B closed ;A open 0)
#+B closed . O method eq: M(T,TB Closed, ())
method h : M(T, 7B closed 7B open)
method g: M(TB closed, 7~_A Open, ())
method eq : M(T,%B closed7 ())

method h : M (T, 7B closed 7B open)
pB open

7-.B open . (1)

This example also demonstrates that inheritance is separated from subtyp-
ing. Intuitively, this means, that the type of self from class B matches the type
of self from class A, however objects from class B are not subtypes of objects
from class A. Conformance is satisfied for 7B sef &7A slf which guarantees that
inheritance is type safe, however, we can not show this yet, the exact defini-
tion of conformance with respect to open object types and fixpoints is deferred
to Section 5.17.2. Conformance does however not hold for 7B closed & ;A closed
however, we can not show this yet, the exact definition of conformance is de-

5.5. INFORMATION FLOW AND CONFORMANCE 69

ferred to Section 5.17.1, and subsumption, for closed object types, is deferred
to Section 7.1.5.

5.5 Information Flow and Conformance

This section demonstrates how information flow influences conformance for
types. Although variance restrictions are well known from the literature [77,
Sect. 15.2], it is useful to provide some intuition on this topic. A rule with
explanation is provided for functions, references and object types.

Intuitively, variance helps to decide when it is safe to override something.
Consider a class A with a method m and a subclass B that inherits from A and
overrides the method m with a better version. The cointerface, the in parameter
and the out parameter are replaced with types to make reasoning simpler.

class A
begin
in out) =

A A A
with 7 °° op m(in 7™ out 7™

end

class B inherit A
begin

//replace foo from A with something better
in

out) P

B B B
with 7™ “° op m(in 7™ out 7™

end

The inheritance is safe if the override of method m is safe. This can be decided by
looking at variance for the types that describe class A and class B, including those
in the two m methods. Variance is guided by principles, so we must investigate
these principles.

5.5.1 Information Flow, Variance and Conformance

Variance describes the kind of differences that are allowed between types, such
that they still can be considered compatible. Compatibility is captured by
the conformance relation < and variance describes how the direction of the
variance changes between < and >. Variance is decided by looking at the flow of
information. To reason about variance, we adopt the terms source and sink [77,
Page 199]. A source provides information and a sink receives information.

e Information that flows into a sink requires contravariant > conformance.

e Information that flows out from a source requires covariant < confor-
mance.

e Information flows both into 7 and out from 7, when 7 is both a sink and a
source, and requires both covariant and contravariant conformance at the
same time, which is called invariance. Invariance reduces to type equality,
denoted =.

These restrictions occur naturally for all types, not just for method signatures,
instance variables and object types, but also for functions, lists and so on.

70 CHAPTER 5. APPROACHING CREOL TYPING

The variance restrictions preserve static type safety. A statically type safe
language can, by the addition of variance rules, statically type check a larger
set of programs. Variances can be illustrated as follows, contravariance changes
the direction of the conformance,

7_S1Jb§7_su1;)
(.o) < (L)

contravariance

while covariance keeps the direction of conformance.

7.sub%Tsup
(...TS“b...)%(...Tsup...)

covariance

Given a sink or a source, it is perfectly possible, that a program does not
actually write to the sink or read from the source, so the variance restrictions
are unnecessary rigid for just that program. Such cases always require careful
analysis of the code, quickly moving into an area of complex analysis, where
theorem proving may be required. The variance restrictions preserve static
type safety by a general assumption, that does not require careful case by case
analysis. Analysis to determine fine grained variance restrictions on method
overloading is still a research topic. Static type safety, with the general require-
ment of contravariance and covariance, depending on how information flows, is
straightforward.

5.5.2 Function Conformance

Let us consider how variance is analysed in view of a type being a sink, a source
or both. Consider a function f of type 7 ™ — 7f °" and a function g of type
78— 780Ut Can one replace the f with a g? To answer this question we

need to decide if the following conformance is valid.

(Tg in _, 8 out) & (Tf in _, 7_f out)

Both 78 I and 7f I are sinks because information flows into the function. Both
78 out and 7f °out are sources because information flows out from the function.
The resulting variance requirements for functions are illustrated by the following

rule. _)
T8 1n>7_f in g out <7.f out sink = contra

(Tg in _, rg out) < (Tf in _, Tf out) source = co

5.5.3 Reference Conformance

Consider a reference a of type ref 72, and a reference b of type ref 7. Can
one replace an a with a b? Which is possible when the following conformance
is valid.

(ref Tb) < (ref)
A reference may be both assigned to and read from, therefore both 7° and 72
are both a sink and a source. The resulting variance requirement is

TS ra pblga

(ref Tb) < (ref ™)

5.5. INFORMATION FLOW AND CONFORMANCE 71

which is the same as
TbiTa

(T@f 'rb) < (ref)

In general, it is not statically type safe to refine the type of a reference.

5.5.4 Method Override and Conformance

Consider the example classes A and B again. The flow of information is decided
by how the code is used. A method is used by a method invocation m (7 ; 70ut)
where the actual input and output parameters are replaced by their types, 7
and 7°"*. The input parameter of type 7" flows from the point of the invocation,
and into the code of the method body. The output parameter of type 7°'* flows
from the code of the method body, and back to where the method invocation
was performed.

Now, let us focus on, what type safety requires from inside the method body
of method m in class B. Let m® be the method m in class B, and m? be the method
m in class A. It is known that any invocation with input parameter 7 must be
compatible with the input parameter ym® in , that is 72 <&7rm hi . Nothing can
g0 wrong typew1se if the code i in m? at least is prepared for an argurnent of type
ym® in , that is TZ“ <m :<T . Therefore, method override must respect the
requlrement oz ingamTin Cwhich also follows from the flow of information,
the input paramater is a sink, therefore contravariance is used.

Now let us look at the output parameter. Let us assume, that the invoked
method is m?, then the information sent back must fit, that is 70" °utZrout,
Now, con81der that we do not know if the invoked method ism? or mP. All is
wel} as long as the returned parameters from mB are sucl& that the assumption
ym® outZrout polds, which is the case when 7@ outZym® outZzout Therefore,
method override must respect the requirement 7™ ©utZrm® out which follows
from the flow of information, the output paramater is a source, therefore covari-
ance is used.

The cointerface follows the same reasoning as input parameters, and there-

fore the restriction
mB 2 mA [ef0)

T O>r
must be respected, which is the same restriction that follows from the flow of

information, a cointerface is a sink, therefore contravariance is used.
Therefore method override is type safe when the following rule holds.

B . A B . . A . B . A
7m” col m™ co m 1n>7_m in -m out<7_m out

B
co
M (7 o, om

T
. B . A A A
1n’ Tm out) <M (Tm co, Tm m’ Tm out)

B

Note that this rule follows directly from type safety for method override, there-
fore both virtual and static binding, which may return another method body
than expected, is type safe.

However if method override is replaced with method overloading, the picture
changes. The definition of the Creol language, as defined in this thesis, has
method override, but not method overloading, which is mentioned as a possible
future enhancement in Section 8.7.2.

72 CHAPTER 5. APPROACHING CREOL TYPING

5.5.5 From Object to Method Conformance

Let us consider how conformance between objects reduces to conformance be-
tween methods, by looking at conformance between objects produced by class
A and B.

Let O {pA} be the type of an object from class A, and O {pA} be type of
an object from class B. Now, we want to know if an object of class B conforms
to an object of class A, so when does the following relation hold?

0{p”}<0{p"}

Conformance between object types is determined by the rows that describe the
object, which again affects the treatment of fixpoints, which is treated later in
Section 5.14. Variance affects those rows in both p# and in p?, that have the
same name, and because a row is a source, it provides information, covariance
holds for rows. This example is quite simple, as each object type only has one
method m, which is reflected by a method row. Then the conformance

O {method m: M (T’”B co pm? in Lm® Out) } <O {method m: M (TmA co pm®in rm? O“t)}

which reduces covariantly to conformance for the method rows with name m. So
when does

B B

. B . A
M (,rm CO, Tm 11’177_111 out) <M (,rm CO77_II1

A A
t
1n,7_m ou)

hold? Both 7™” i* and 7™" " are sinks because information flows in. Both
7m? out and rm® out are sources because information flows out. The cointerfaces
7m® co and 7m” co provide information about the caller to the callee, hence they
are both sinks because information flows in. Therefore variance for methods is

enforced when the following holds.

B . A B . . A B . A
Tm co>7.m co rm ing m” in -m 0ut<7.m out

. A
1n, Tm out)

B A

M (,rmB co ,m in TmB out) <M (TmA co ,m
Note that this rule is the same as variance requirements for method override,
not by design, but by definition, due to variance analysis.

5.5.6 Conformance by Source and Sink

The conformance relation < is now extended to arbitrary types, such that the
variance requirements determined by source and sink analysis are enforced, such
that a sink respects contravariance, and a source respects covariance. This
includes functions, references and method signatures. In general, the variance
constraints for conformance between any compound types, are described by the
following informal rules.

L. rSubSgsup
(.ol)< (LT

Sink 7 = contravariance

... qsubZgsup
(..)< (L)

Source T = covariance

5.6. STRUCTURAL AND NOMINAL TYPE SYSTEMS 73

5.6 Structural and Nominal Type Systems

This section briefly motivates why the Creol type system is a hybrid between a
structural type system and a nominal type system.

The notion of structural and nominal type system, is that used by Pierce [77,
Sec. 19.3]. As noted by Pierce, the distinctions between nominal and structural
type systems are still being researched. Structural type systems tend to have ex-
plicit fixpoints for recursive types, and decide the subtype relation with respect
to type structure. Nominal type systems tend to have implicit fixpoints through
a one to one correspondence between names and types, and require subtyping
to be declared explicitly. Explicit subtype declarations introduce a nominal re-
striction on possible structural subtyping. Note, that types can have names in
both structural and nominal type systems. Structural type systems can also
be extended to distinguish types that are structurally equivalent, by the intro-
duction of name uniqueness or occurrence equivalence of types [7, Page 350],
or branding [64]. However, structural type systems do not enforce nominal re-
strictions. Structural type systems are commonly used for functional languages,
which usually are based on the A-calculus. Object-oriented languages tend to
choose nominal type systems. It is generally considered easier, in structural
type systems rather than in nominal type systems, to reason about and account
for advanced uses of type abstraction, such as parametric polymorphism, ab-
stract data types and functors [77, Page 254]. Parametric polymorphism in an
object-oriented setting is demonstrated later in Section 7.2.2. Recall from Sec-
tion 4.7, that it is difficult to encode a nominal type system, with MyType and
matching, into the A-calculus, while it is feasible to encode a structural type
system, with objects as extensible records with polymorphic row variables, in a
slightly enriched A-calculus.

5.6.1 Concerning Creol

The presence of procedures, algebraic datatypes and parametrisation, in Creol,
suggests that a structural type system is a good approach. The object-oriented
part of Creol can be type checked, while separating inheritance from subtyping,
with either a nominal or a structural type system. Previously defined struc-
tural type systems do not enforce nominal restrictions, which is unacceptable
for Creol, however, by the introduction of nominal rows, as in Section 5.7, a
structural type system with rows can enforce nominal constraints.

The use of a type environment for sharing of types reduces redundancy,
and can be used as implicit fixpoints, to simplify treatment of recursive and
mutually recursive types. Nominal type systems naturally produce a type en-
vironment, due to a connection between a name and a type. Structural type
systems usually treat fixpoints explicitly. It is desireable for the Creol type
system to reduce redundancy and simplify treatment of recursive and mutually
recursive types, which is obtained by extending a structural type system with a
type environment, with an implicit fixpoint interpretation, as in Section 5.14.

Although the Creol type system is a hybrid type system, with properties
of both nominal and structural type systems, the approach taken is to start
with a structural type system, and add the required properties by extending
the type language of the structural type system, as well as the structural type
system itself, hence the whole type system can be viewed as structural with a

74 CHAPTER 5. APPROACHING CREOL TYPING

few extensions.

5.7 Nominal Conformance Constraints

This section explains how the structural Creol type system is altered to express
nominal conformance constraints.

To model nominal conformance constraints, we need a mechanism for ex-
pressing a nominal constraint, as well as for propagation of nominal constraints.
We enrich object types by introduction of new rows. The row nominal id ex-
presses that an object type can satisfy or require the nominal constraint named
id. Note that id is not connected to any type, it is merely derived from the
name of an interface. The row implement 7 expresses the inheritance of nominal
constraints from 7. This is different from the row inherit 7 which expresses in-
heritance of everything, except nominal constraints. The conformance relation
< is defined for nominal rows. Two rows nominal id® and nominal id* conform
when id? is equal to id*.

Consider the following Creol code, that demonstrates interface inheritance.

interface A

begin

end

interface B inherits A
begin

end

Consider the simplified type of self for each of these objects. The interface A
does not contain any methods, so the type of self is

O {nominal A}

which only contains a nominal row. The type of self for interface B is

nominal B
implement O {nominal A}

where there is one nominal row and one row for inheritance of nominal rows.
When implement is expanded the type of self for B becomes

nominal B
(@) .
nominal A
which contains two nominal rows. The types of self for A and B are conforming

nominal B
nominal A

} <O {nominal A}

because we have
nominal A<nominal A

which demonstrates how nominal constraints are be handled.

5.8. INTERFACES AND VIRTUAL METHODS 75

5.8 Interfaces and Virtual Methods

This section investigates the object types corresponding to interfaces.

The type of self for any interface can be modelled by object types through
the introduction of virtual methods. A method, that does not have a body,
is referred to as virtual [81] or abstract [19,36]. We adopt the term virtual
for a method without implementation, and avoid the term abstract, which has
a different meaning in type theory. The addition of virtual methods to the
Creol type system, does not affect the Creol language, as virtual methods are
introduced provide a uniform treatment of objects and classes in the type system
only.

All method rows, in the type of self for an interface, are virtual. A virtual
method may be overridden by either a virtual method or a regular method.
A regular method may not be overridden by a virtual method. Intuitively, it
is possible to provide the code for a method, but not remove the code for a
method. A class successfully implements an interface, when there are no virtual
methods in the type of self for the class.

To provide some substance consider a simple interface and the corresponding
object types.

interface A
begin

with Any op foo()
end

Interfaces require a type of self and Self for the purpose of type checking
inheritance in a manner uniform for interfaces and classes. Note, that for inter-
faces, the types of self and Self are the same, since interfaces do not provide
instance privacy.

Although the types of self and Self may have virtual methods, the object
types described by the interface may not. Virtual methods are only meaning-
ful for the purpose of type checking inheritance. The closed and open object
types are used for describing object instances, and no actual object instance
can have a virtual method. An object instance provides, by definition, code
for all the supported methods. Recall from Section 5.7, that interfaces also de-
scribe nominal constraints. The interface A is described by the following type
environment.

nominal A

A selt 0 virtual foo : M(T,(),())

pA self

nominal A

A Self . 0 ¢ virtual foo: M(T,(),())

def
o= pA Self

- A closed . nominal A
T ' O{ method foo : M(T,(),()) }

nominal A

A open . 0 ¢ method foo: M(T,(),())
pA open

To demonstrate how interface inheritance operates, the interface B extends
the interface A with an additional method bar.

76 CHAPTER 5. APPROACHING CREOL TYPING

interface B inherit A
begin

with Any op bar()
end

The type environment is enriched with self for interface B becomes

implement 74 self

inherit A ; 74 self
def .

0= Bslf. 0! nominal B
virtual bar : M(T, (), ())
pB self

where the other object types for interface B are unspecified. Notice, that since
interfaces inherit both nominal rows and regular rows, inheritance is represented
by both an implement row and an inherit row. The expansion of inheritance is
straightforward in this example. There are no fixpoints to replace, and since
pB self & pA self “the open row p %! is replaced by pP *°f. The type environment
after expansion of inheritance becomes

nominal A
virtual foo : M(T,(),())
#Bself . 9 ¢ nominal B

virtual bar : M(T, (), ()

B self
P

nominal A
virtual foo : M(T,(),())
7B Self - @ ¢ nominal B
o f virtual bar : M(T, (), ())

B Self
p

nominal A
B closed . () method foo : M(,,)
nominal B
method bar : M(,,)
nominal A
method foo : M(,,)
7B open . ¢ nominal B

method bar : M(,,)
pB open

where the open and closed object types for interface B are revealed.

To demonstrate the interaction between virtual methods and regular meth-
ods, we let a class C implements the interface B. The class C provides bodies for
the virtual methods.

class C implements B
begin

5.8. INTERFACES AND VIRTUAL METHODS 77

with Any op foo() == ...
with Any op bar() == ...
end

The type of self for class C before inheritance is

implement 7B self

method foo : M(T,(),())

method bar : M(T,(),())

pC self

o< 7'_C self:O

where the other object types for class C are unspecified. The expansion of
inheritance must provide a conformance check for overlapping rows. Rows are
overlapping when they have the same name. Both

method foo : M(T, (), ())<virtual foo : M(T,(),())

and
method bar : M(T, (), ())<virtual bar : M(T,(),())

hold, since a virtual method can be replaced by a regular method. The expansion
of implement rows on inheritance, transfers nominal rows, but does not produce
super rows. The implement row was introduced in addition to the inherit row
to capture this difference. The reasons are that super rows are used for static
binding, which may not be provided by interfaces, and interfaces propagate
nominal rows on inheritance, while classes do not. The type of self for class C
after inheritance becomes

nominal A

nominal B

7O self . 0 { method foo : M(T,(),())
M(T

method bar :

C self
p

nominal A
nominal B
7C 8elf . ¢ method foo :

M
o def method bar : M(

C Self
p

nominal A

nominal B

method foo : M(T,(),())
method bar : M(T,(),())
nominal A

nominal B

7Copen . 0 method foo : M(T,(),())

method bar : M(T,(),())
pC open

7-.C closed .

78 CHAPTER 5. APPROACHING CREOL TYPING

where all object types for class C are revealed.

Recall from Section 5.3, that there are several identifier namespaces depend-
ing on the context the identifier is used in. The namespace for inheritance was
populated by functions, from initial parameters to the closed type for the class.
It is not possible to create an object from a class with virtual methods, however
the closed type for a class has by definition no virtual methods, even if the type
of self has. To remedy this, another object type is introduced for classes, the
type of 7%V, The type 7"V preserves virtual rows, and is used to build the
namespace for inheritance.

This demonstrates how interfaces lead to the addition of virtual rows to
object types, so object types for classes and interfaces are treated uniformly.

5.9 Inheritance

This section further clarifies the notions of inheritance. The word inheritance is
used with different meanings in the Creol language. To uncover these meanings,
we consider an informal description of each form of inheritance, and show how
this is reflected in the type language. The different forms of inheritance are:

interface B inherit A Inheritance from an interface A to an interface B al-
lows reuse and refinement of both method signatures and nominal
constraints.

class D inherit C Inheritance from a class A to a class B allows code reuse,
however nominal constraints are not included in the inheritance.

class F implement E A class F can be said to satisfy the nominal constraints
of interface E, when the class F implements all methods specified in
interface E.

To keep the presentation brief, we assume some things, that are not yet intro-
duced, specifically.

e Only interfaces can introduce nominal rows, and inheritance of nominal
rows is represented by the implement row, Section 5.7.

e Method signatures in interfaces are virtual, Section 5.8.

e Regular inheritance is represented by inherit Section 5.4.

The inheritance from interface A to interface B, is represented with both an
inherit row and an implement row, which together account for inheritance of
both signatures and constraints.

T'A:o{s}

@ def inherit A : 74
+B .] implement 74

5.10. STATICALLY BOUND INSTANCE VARIABLES 79

The inheritance from class C to class D is represented with an inherit row, which
disregards nominal constraints with respect to inheritance.

%C:O{i

© def inherit ¢ : 7€
.0 .

The implementation of interface E by class F is expressed with an implement
rOw.

7. (9{ :
o & implement 7%
7F.0{ .

5.10 Statically Bound Instance Variables

In Creol, instance variables are statically bound by the compiler. This section
show how such static binding affects variance and enriches the type system.

Creol binds instance variables statically, so the lookup of an instance vari-
able always starts in the current class, and is unaffected by later inheritance.
Static binding of instance variables is enforced by the compiler. The static bind-
ing avoids overriding of instance variables from the super class point of view.
Hence code from a super class never gains access to any variables introduced
by a subclass. Intuitively, instance variable lookup is never subject to virtual
binding. Recall from Section 5.5, that the variance requirement for methods is
due to virtual binding, hence the absence of virtual binding places no variance
requirements on instance variables.

Static binding for instance variables requires a new type language construct.
Let SB(14,T) be a new type language construct that denotes Static Binding.
All instance variables 7 for a class Id must be inserted into the namespace with
type SB(Id,7) . The type construct SB is ignored by all other rules in the type
system, and the information provided by SB is used by the code generator.

A separate type language construct for static binding of instance variables is
necessary, because the Creol language is designed so it is not possible to syntac-
tically differentiate instance variables from other variables, hence information
about static binding is not available when parsing.

To simplify the treatment of the Creol type system, the type language con-
struct SB is not introduced in Section 6.3, and is not mentioned in the Creol
type system rules.

5.11 Typing Cointerfaces

This section explains how cointerfaces are typed, which is closely related to the
type of self for classes.

A cointerface is an interface requirement on caller of a method [51, Page 9].
A cointerface provides semantic information than is not captured by a callback.
A callback accepts any object, even if not the caller, that has the required
interface. From a type system point of view, a cointerface can be treated like

80 CHAPTER 5. APPROACHING CREOL TYPING

any other input parameter, indistinguishable from a callback, as the type system
does not track object identities. The extra information about object identity
expressed by cointerfaces, is captured by special treatment of cointerfaces in the
type system. The cointerface requirement must be satisfied by the type of self
for the caller of a method. The type of self for the caller is available during
type checking. The this always has type of self.

The Creol language provides a cointerface, if none is specified by the pro-
grammer. The default cointerface T permits any object to invoke the method.
However method signatures in an interface are public by default, while methods
in a class are private, to the instance, by default. Therefore method signa-
tures, in a class without a cointerface, are given a personal row, which prevents
visibility outside the type of self, so the cointerface of a personal row is not
important, and is given the type T.

Note that a method row with self as cointerface is not equivalent to a
personal row, because all object instances of a class have type self, and therefore
trivially satisfy the cointerface self, hence the introduction of personal row is
necessary to provide instance privacy, as was discussed in Section 5.2.

Although cointerfaces play no special role in the type analysis, cointerfaces
are envisioned to support analysis of security properties, that relate to object
identities [50]. The nature of these properties is currently a target for research.

5.12 Explicit Type Language References

The Creol type system distinguishes between references and values, although the
Creol language does not. This section motivates, that references are represented
by a separate type language construct. References provide a type safe model for
the use of mutable storage in programs, and was early recognised as a natural
model for mutability [25].

Recall from Section 5.5, that the flow of information determines variance,
and that conformance between references requires type equality, because the
value contained in a reference may be both stored and retrieved. If every type
is considered a reference, then static type safety does not allow any variance.
The introduction of ref 7 to denote a reference to a value of type 7, assures
that conformance for references satisfy invariance, while contra- and covariance
is possible for other types.

The explicit presence of references in the Creol type language, allows the
rule for references from Section 5.5 to describe variance for references. This has
simplified the other conformance rules, by making the treatment of references
is orthogonally to the other type system rules.

The interaction between mutability and unbounded parametrisation is po-
tentially unsafe, and some care is required to ensure type safety. One conserva-
tive strategy for achieving type safety is the value restriction [77, Page 336].
A more permissive strategy, that can statically type check a larger set of pro-
grams, is known as the relaxed value restriction [46]. The presence of
references in the type system, and in the programming language, is common for
these approaches to type safe combination of unbounded parametrisation and
mutability. The approach taken by the Creol type system is more conservative
than the value restriction, and does not require references in the language, by
not permitting references to free types introduced by unbounded parametrisa-

5.13. STATIC AND VIRTUAL METHOD BINDING 81

tion [46, Sect. 2.2]. This is ensured by the rule

__ L
O,k ref a

where « is a free type defined by unbounded parametrisation. The rule ensures
type safety for parametrisation and references, in a very simple manner. When
the Creol language matures, it is reasonable to use the relaxed value restriction,
that can statically type check a larger set of programs, than the current rule.
The presence of explicit references in the type system, does not mean that
the programmer is burdened with references. The parser can insert reference
annotations where appropriate. The separation of concerns ensures, that the
reference annotations do not affect type safety. The type system ensures type
safety for any use of references, independent of annotations. The presence of
references in the Creol type language ensures, that unbounded parametrisation
and references are handled in a type safe manner in the Creol type system.

5.13 Static and Virtual Method Binding

This section explains how static binding is type checked.

Recall from Section 2.1.3, that the Creol language allows code in a super
class to control method override at the call site, where the method invocation
is made, by using either virtual or static binding. Virtual binding is the default
in Creol. Static binding can be designated internally in a class, with the syntax
m@C, which denotes that lookup of code for method m should start in class C,
where C is a superclass of the class of the caller. This prevents method overrides
below class C in the inheritance hierarchy from affecting the call site.

The static binding m@C requires, that the code for method m can be found
in class C, or in some of the super classes of C. The expansion of inheritance,
between classes, includes super rows with the name of the super class. The class
C is looked up amongst the super rows in the type of self for the current class.
Recall from Section 2.1.2, that the Creol language permits multiple inheritance
for both classes and interfaces, so there can be multiple super rows.

The addition of a super row to make code from super classes available, is
also used by other languages such as O’Caml [73]. The Creol language allows
static binding to the current class, not just super classes. This is realised by
inserting a super row for the type of self. Each class inserts its own super row,
and these are included by inheritance.

Inheritance is always expanded in the Creol type system, because it simplifies
the treatment of rows in type judgements, but there are no theoretical reasons
that require expansion of inheritance, for the type of self, however, inheritance
is an implementation detail, so inheritance must be expanded for all object
types, with the possible exception of the type of self.

Type checking of static binding requires a modest extension to the type
system, and integrates naturally.

5.14 Recursive Types

This section investigates the formal foundation for recursive types in the Creol
type system. The Creol system can express both types that are recursive with

82 CHAPTER 5. APPROACHING CREOL TYPING

respect to themselves, recursive types, and types that are recursive with respect
each other, mutually recursive types. This is achieved by introduction of a
type environment O, along with an implicit recursive interpretation of the type

environment
def

0 = {(i,7)ser }

where 7 is a placeholder type, and fixpoint, for 7, and © F 7 : 7 holds when
(7,7) € {(F1,11) s+, (Tn, Tn) }

5.14.1 Mutual Recursion

Mutual recursion is facilitated by placeholder types. Intuitively, a placeholder
type provides indirection, and given a placeholder type 7 and a type environment
O, the type 7 can be found in ® when necessary. Although recursion between
types in Creol is mainly between objects, classes and interfaces, we shall look at
tuples, to make the presentation simpler. Consider two imaginary tuples a and
b of types 7¢ and 7° , that are mutually recursive, so the type of either tuple is
infinite:

7% € (Int, (Str, (Int, (Str, (Int, (Str,...))))))

7 X (Str, (Int, (Str, (Int, (Str, (Int, ...))))))
To represent these types in a finite manner we need a type environment that
provides indirection for types. Let 7 be a placeholder for 7¢, and 7% be a
placeholder for 7°, then the tuples are described in a finite manner by the type

environment .
.a . .
o def 7 (Int’Ta)
70 (Str,)
because of the indirection introduced by placeholder types. Now we can write
down the types of a and b in the namespace

def a:7?
= { b: 7 }
and by definition of © and I' in Section 6.2, we have
©.I'ra:7" b: 7

but we can neither full expand ©(7¢) nor ©(7?), that would produce the infinite
types we started with. The solution is to do partial expansion, and only when
necessary, so from

O,I'Fa:

we can partial expand to
©,T'+a: (Int,7")

while still having a finite representation. Intuitively this kind of mutual recur-
sion can occur between a producer interface and a consumer interface. Note
that placeholder types also allow sharing, so given © def {(,7)}, the place-
holder type 7 can be used by several other types, rather than having several
copies of 7, which would be necessary without placeholder types.

5.14. RECURSIVE TYPES 83

5.14.2 Iso-recursion

Before we introduce the implicit recursive interpretation, we investigate how re-
cursion is handled explicitly. The implicit recursive interpretation of placeholder
types as fixpoints, is based on the explicit iso-recursive model, as described by
Pierce [77, Sect. 20.2, 21.11] and Bruce [15, Sect. 9.2].

The iso-recursive model expresses recursion through a fixpoint binder u,
and introduces the term iso-equivalent, so a bound fixpoint is iso-equivalent to
its fixpoint expression. This is written pa (7), where « is, by definition, iso-
equivalent to 7, which means that the free type a can occur in 7, and u tells
us that « is the fixpoint of an infinite type 7°° described by 7. Iso-equivalence
states that two entities are iso-equivalent, when the only difference is the level
of (un)folding. To provide some intuition, let us consider a simple example such
as the recursive tuple c, however, since the type 7¢ is recursive, it is also infinite,
and the infinite type 7¢ is approximately

¢ © (Int, (Int, (Int, (Int, (Int, . . .)))))

We can describe the structure of the infinite type 7¢ as pa (Int, @), and use
the keyword Fiz to document, that we interpret the finite representation as an
infinite type. Therefore

7 ¥ pig pa (Int, o)

precisely describes 7¢ in a finite manner. Any required part of an infinite type
is available by the repeated use of unfold, since

unfold Fix pa.(Int,a) ~ Fiz pa.(Int, Fiz po.(Int, «))
where unfold can be used repeatedly as follows.
Fiz pa.(Int, unfold Fix pc.(Int, a)) ~ Fiz po.(Int, Fiz po.(Int, Fiz pa.(Int,)))

Notice that to recover the infinite type, unfold must be used an infinite number
of times.
The fold function can reverse a unfolding, so

fold Fiz po.(Int, Fiz po.(Int,a)) ~ Fiz pa.(Int, «)

There is iso-equivalence between Fiz pa.(Int,) and Fiz pa.(Int, Fiz pa.(Int, «)),
because fold and unfold can turn either into the other

unfold
—

Fiz po.(Int, o) Someawvalence gy (Int, Fiz po(Int, o))

fold
—

5.14.3 Implicit Iso-recursion

With a clear definition of iso-recursion, we can show exactly how placeholder
types implicitly correspond to explicit iso-recursion.
Intuitively, the tuple ¢ with the iso-recursive type

e Y pig o (Int, o)

84 CHAPTER 5. APPROACHING CREOL TYPING

can be expressed, with an implicit iso-recursive interpretation, by the type en-
vironment

0 X {7 : (Int, %)}
which is very similar.

All object types are potentially recursive in Creol, thus they are all subject
to the iso-recursive interpretation. In the type system presentation, this inter-
pretation will be implicit, but it is explicit here in order to show that the use
of a type environment with an implicit recursive interpretation of placeholder
types, correctly implements iso-recursive types.

Generally, for a recursive type 7°°, written with explicit iso-recursion as
Fiz pa.m", the type environment

def

©={r:7}
express 7> , where the placeholder type 7 corresponds to the fixpoint a;, and
7o T ., so 7 is derived from 7/ by replacing the free type a with the

placeholder type 7. This allows 7 and 7 to describe the infinite type 7°°, which
can be illustrated as

and there is now a correspondence
. correspondence def .
Fiz po (T4) = 0= {r:7}

which also holds between unfolding and partial expansion

(f,7) €O

unfold o ~ Fix po (") cormespRdence g T L Okt
Thus .
oL« {r:71}
is implicitly understood as
implicit

—~ =
0 Y Fix w7 (T)

where the bound fixpoint 7 scopes over all types in the program and 7 is iso-
equivalent to 7 by partial expansion

(r,7)€©
OF...7T ~»0OF...T

which is written
OF...7:7T

for convenience. The infinite type 7°° is always available by infinite use of partial
expansion, called full expansion, O (7) = 7.

Neither the Creol language nor the other parts of the Creol type system
is concerned with the use of fold and wunfold, the compiler does folding and

5.15. TERMINATION OF INHERITANCE CHECKING 85

unfolding as necessary, and due to iso-equivalence, the level of (un)folding does
not matter.

Note that since placeholder types are fixpoints, it is possible to give a precise
treatment of fixpoints for the conformance relation, which is done later in Section
5.17.

5.15 Termination of Inheritance Checking

In order to ensure the termination of type checking with inheritance, it is crucial
that inheritance is expressed in the type language.

The problem is that without inheritance in the type system, type checking
will not terminate when the user has made the type error of circular inheritance.
The reason for this is, that expansion of inheritance does not terminate unless
the inheritance tree is a directed acyclic graph (DAG). The introduction of the
row inherit 7 where 7 is not expanded, allows the compiler to check that the
inheritance hierarchy is a DAG in a separate step. The use of a type environ-
ment © with placeholder types 7 and types 7, avoids the expansion of 7 by
introduction of implicit fixpoints. This was described in Section 5.14.

The following example demonstrates a simple case of circular inheritance.

class A inherits B
begin
end

class B inherits A
begin
end

This inheritance does not make sense, and to discover this, we wish to write down
the type of self for A and B prior to inheritance and check if the inheritance
makes sense or not. It is possible to perform the inheritance and terminate when
the inheritance makes sense. This is achieved in a clean and clear manner with a
row for inheritance. The inherit row with a placeholder type 7 can write out the
cyclic inheritance with finite types, thus inheritance cycles can be found. With
a row variable for inheritance, the type of self for A is given the placeholder

type 7* ¢l with the type

(@) {inherit B: 7P Self}

B self

and the type of self for B is given the placeholder type 7 with the type

O {inherit A : 7* Self}
which are both finite types. It is now possible to analyse the type environment

o def [7451 O finherit B : 7% =411}
T\ %M O {inherit A : 74 s}

and give an error message, since the inheritance hierarchy is not a DAG. When
the inheritance hierarchy is a DAG, the traversal of the inheritance hierarchy
will always terminate, such that inheritance can be safely performed.

86 CHAPTER 5. APPROACHING CREOL TYPING

5.16 Polymorphism

This section provides some intuition on polymorphism in the Creol type system.

Recall from Section 2.3.6, that we have suggested to extend the Creol lan-
guage with unconstrained and constrained polymorphism. Unconstrained poly-
morphism is written Vo (7), where the type « is free in 7. Constrained poly-
morphism is written Ya<7%P (1), where the type o must conform to 75"P, and
« is free in 7.

Constrained polymorphism is defined with the conformance relation. By def-
inition, the conformance relation reduces to either matching or subtyping, due to
the handling of fixpoints and object types, which is treated later in Section 5.17.
When conformance reduces to subtyping, the constrained parametrisation is by
definition F-bounded quantification [77, Page 393]. When conformance reduces
to matching, the constrained parametrisation is by definition match-bounded
polymorphism [15, Sect. 17.3].

By definition of conformance, the constrained polymorphism Va<7%"P (1)
reduces to match-bounded polymorphism, when 75"P is an open object type,
and otherwise to F-bounded polymorphism.

Polymorphism represents an abstraction with respect to the free type a.
When a polymorphic type is used, the free type a must be instantiated, that is
given a type. To illustrate how polymorphism and instantiation are represented
in the Creol type system, consider the following example which creates a class
with unconstrained polymorphism.

class A[T] // abstraction with respect to T: «

begin

var t:T ; // Trivial use of «

with Any op assign(in x:T) == =X
end

The type environment for class A becomes

variable t : «

A self - O method assign: M(T,q,())

pA self

o) asar. m:tshe?fd assign: M(T,a,())

7 closed . 0 [method assign: M(T,q,()) }

+A open . 0{ ;‘:ﬂ;‘;ﬂ assign: M(T,a,()) }

where the free type a can be used freely. The parametrisation is not part of the
object descriptions for class A. Intuitively the parametrisation happens outside
the object descriptions. This is important, because of the implicit fixpoint
interpretation of ©, the parametrisation is not part of the fixpoint for an object.
The parametrisation is placed outside the object types in the namespaces for
identifiers. Recall from Section 5.3, that there are several namespaces, and
that the one used, depends on the context where the identifier occurs. The
namespaces for class A are

T def { A Vo (+A closed) }

5.16. POLYMORPHISM 87

hew déf {A - Va (7-_A Closed)}

Finherit déf {A VYo (TA self)}

where the object types are properly contained by parametrisation.

When the class A is used, the parametrised types must be instantiated. Now
consider code, using the class A in different manners, analogous to the examples
from Section 5.3.

var o:A[Bool] The type of A is Vo (%A Closed). The type of o is

.q def /. A closed
a del close
T = (T)a»—»Bool

A closed

which is the type 7 where « is substituted by Bool.

new A[Str] The type of A is Vo (T'A Closed). The type produced by new is

.b def /. A closed
T = (T)w—»Str

which is the type 72 ¢1os¢d where « is substituted by Str.

inherit A[Int] The type of A is Va (7"A Self). The type seen by inherit is

7€ d:ef (TA self)aHInt

,which is the type 74 % where « is substituted by Int.
Neither of these uses of parametrisation may modify the original parametrised
type, rather they create copies of the original type, and perform the substitution
on the copies. The act of doing this is called instantiation. Since object types
are recursive, these copies are represented in O, which produces the following
type environment.

79 : O { method assign: M(T, Bool,()) }
e %) 7 :O{ method assign: M(T,Str,()) }
variable t : Int
7¢: O« method assign: M(T, Int,())
pa

This model is, however, too simple. Recall from Section 5.15, that type
checking does not terminate unless all inheritance hierarchies are directed acyclic
graphs (DAG). Although the instantiation of 7¢ required by inherit A[Int]
terminates, it would not terminate for a cyclic inheritance hierarchy. To ensure,
that inheritance checking terminates, it is necessary to postpone the instantia-
tion. Substitution is made part of the type language, to express future instantia-
tion. A substitution on a placeholder type must always instantiate, that is, first
copy the type of the placeholder, and then perform the substitution on the copy.
Note that instantiation requires a change of fixpoints as well, which is added

88 CHAPTER 5. APPROACHING CREOL TYPING

to the substitution. The type and namespace environments in the previous
example would therefore go through the intermediary type environment

ra . 7-.A closed)

au—»Bool)7'-A closed, ,7a
-b . 7'_A closed)

T

[((j—A self) ar— Str/ 74 closed o 7b

ar—Int) FA self, ,ic

which would allow the inheritance hierarchy to be checked for cycles. Then
inheritance could be expanded, as well as instantiation and substitution per-
formed, to produce the final type environment.

5.17 Iso-recursion and Conformance

This section investigates the conformance relation with respect to iso-recursion,
and shows how conformance expresses both subtyping and matching correctly
with respect to fixpoints.

The conformance relation 7°<7¢ reduces to matching 7% < #7¢, when 7¢
is an open object type, that is, has a free row p, and otherwise to subtyping
7t <: 79, given the following type environment.

o (57
5.17.1 Subtyping

This section investigates how to determine subtyping between iso-recursive types.
This is done by means of the Amber rule, as discussed by Pierce [77, Sec. 21.11].
The same rule is used by Bruce [15, Sec. 9.4], although he does not go into
the details of the Amber rule. The Amber rule states, that two iso-recursive
types Fiz pa’ (T“b) and Fiz pa® (77) are subtypes, if 7#° and 79 are struc-
tural subtypes under the assumption, that the fixpoints a® and a® are subtypes,
where the fixpoints a® and a® are renamed if necessary, so they are different,
as expressed by the following rule.

{ab <:), T F 7Hb < 7Ha
(Fiz pab(rrb)) <: (Fiz pas(m47))

The Amber rule requires fixpoints must to be different. This is realised for
the Creol type system by the implicit iso-recursive interpretation of the type
environment O, as each recursive type has a different placeholder type as its
fixpoint. The type environment must be extended to store assumptions about

fixpoints, so
e def{ (TaT)I }
(7,7),

where (7,7) ; is a set of fixpoint assumptions, as introduced by the Amber rule.

This can also be written
gl [(T:7)
(7<),

5.17. ISO-RECURSION AND CONFORMANCE 89

which is visually more intuitive. Partial expansion of fixpoints for conformance
must be treated specially, to ensure that necessary fixpoint assumptions are
introduced into ©. Note, that subtyping can only consider closed types, because
subsumption is only defined for closed types, hence both 7% and 7¢ must be
closed. This is expressed by the rule

QU {#*<7} T F 7<% closed 7 closed 7°

def | 74T b s
(_):6{ b b },Fl_Tb<Ta
T T

If the fixpoints already have an associated assumption, then the assumption
decides whether the relation holds. When the conformance between fixpoints is
supported by an assumption, the following rule holds.

(", 74)e0 T
O,I' tb&ia

However, when the conformance between fixpoints is falsified by an assumption,
the conformance does not hold, falsified by the following rule.

(7, 7*)e0 L
O,I' tb&ia

This demonstrates how subtyping between iso-recursive types is decided with
the Amber rule in the Creol type system.

5.17.2 Matching

The Creol rule for matching is an adaptation of the definition of type equality
for objects, encoded with extensible row polymorphic records from Rémy and
Vouillon [80, Sect. 2], [79, App. B], [27, Sect. 3.4].

The essence of matching for iso-recursive types is, that matching disregards
fixpoint differences, and, that matching may instantiate a row . Matching allows
the type of self to be refined, which corresponds to a disregard for fixpoint dif-
ferences. Matching requires the super type to have a free row variable p. When
matching is performed, the row p can remember the application, to preserve the
type of the lower bound. This is the same as an instantiation of the free row
variable, where each match introduces an instantiation. The rule for matching
is therefore

(0. Tk pi< (p?)i'a»—ﬂ"b)i,jefﬁ.] png =0

a . Pt
def 7% .0 b . .- .
6 = p } ’F|—Tb<Ta<>®U{TC : ((Ta)ﬂ"aH%C)pH{pJ\I}}7F
#:0{0h)
where

pr\s is the set of rows in pr, that are not present in p;. Is such rows exists,
the conformance does not hold, because the requirements from the super type
is not met by the subtype.

90 CHAPTER 5. APPROACHING CREOL TYPING

py\1 is the set of rows in p; that are not present in p;. These rows are not
important for conformance, however matching remembers those unimportant
rows, by instantiation of the free row variable p.
(coopje<iipin..)z‘,jemJ is the set of conformance restrictions on those rows
that overlap between p; and pjy, where I N J denotes the set of index pairs for
overlapping rows.

An intuition for the different parts of the matching rule is now given.
(p$) +a ;v Disregard fixpoint differences between the subtype and super type,
by replacing the fixpoint of the super type by that of the subtype.
(e,T+ p?% (p?)+“'—>+b)i,jelmJ Conformance must be satisfied for all rows in the
super type.
7¢ The super type instantiated for this particular match. This instantiation
allows the application of a procedure to preserve an exact object type, so the
type 7¢ is made available in the environment.
(7%)1a,c An instantiation of the super type that changes the fixpoint, which
helps to build the type 7¢. Note that instantiation creates a copy, so the super
type itself is unaffected.

(('f“)+a,_,+c)pH{pI\I} Instantiates the row variable p in (7%) such that the

Fasic
type 7¢ remembers those rows that were matched by the row p.

Note that the type 7¢ remembers this particular matching, which is most
usefull to preserve the type of an object after a match, such that transformation
functions can be applied to different objects and preserve the type of the object,
which allows the transformation to be performed in place. With subtyping the
transformer function would change the type of the object, and require a type cast
to recover the original type. Thus matching, with instantiation to remember
the lower bound, allows more programs to be statically type checked, as a type
cast is a workaround when statical type checking is insufficient.

This demonstrates how matching between iso-recursive types is decided, and
how matching instantiates the row variable in the super type.

5.17.3 Decidability

This section identifies the requirements for recursive types and polymorphism,
to achieve decidability for the conformance relation.

Conformance is based on subtyping and matching, therefore conformance is
decidable, if both subtyping and matching are decidable. Subtyping is decid-
able for a recursive type Fixz u7(7), when 7 is contractive [77, Sect. 21.8.2].
Intuitively 7 is contractive, when the fixpoint 7 in 7 is contained in some type
language construct. Thus Fiz u7 (7) is not contractive, however Fiz ut (7 — 7)
is contractive. Matching does not change the fixpoint semantics of the Creol
type system, therefore conformance for recursive types is decidable, when all of
77 from

CE {(7.-7 T)z'el}

are contractive.
Conformance is decidable, when subtyping is decidable for F-bounded poly-
morphism, and matching is decidable for match-bounded polymorphism. Sub-

5.17. ISO-RECURSION AND CONFORMANCE 91

typing for F-bounded polymorphism is undecidable for full F.. with the rule

O,I'+7e37¢ OuU{a: ¢}, T Frb&rd
o,T'kF (Vair“(Tb)) < (VaiTc(Td))

where contravariance is required for the constraint, because a constraint is a
sinks, a receiver of information [77, Sect. 28.5].

Subtyping is decidable for kernel F.. [77, Sect. 28.3], where kernel F.. re-
stricts subtyping somewhat with the rule

O,I'+-re=r¢ OU{a: 7}, T Frb&rd
O,T + (Va<r(rh)) < (Va<re(r?))

where the constraints must be identical.

Subtyping is also decidable without restrictions, when the type system is
limited to the prenex fragment of full F.. [76, Sect. 12]. The prenex fragment
only permits quantification as input parameter, so the prenex fragment for m, —
T — ... only permits 7; to be quantified. However 71 can be a tuple with several
quantified types.

The conformance relation < for unconstrained polymorphism restricts the
type language to the prenex fragment with the following rule.

O,k ro>7¢ prenex 7°
OU{a:7¢}, T Frb&rd prenex 7%

o,I'+ (VaiT“('rb)) < (Vai'rc('rd))

Match-bounded polymorphism does not affect decidability of conformance,
because it is realised in a manner orthogonal to the representation of constrained
polymorphism. That is, match-bounded polymorphism can be expressed with-
out constrained quantification [15, Sect. 17.3,18].

92

CHAPTER 5. APPROACHING CREOL TYPING

Chapter 6

Creol Type System

This section presents the Creol type system, with focus on object-orientation.
The presentation starts with the assumed desugaring, introduces the meta-
syntax, and the type language, which are used in the presentation of type rules.
For a gentle start on type rules it is adviceable to start with Appendix B, which
presents the type rules for the functional part of Creol.

The Creol type rule presentation starts with the simple and obvious cases,
and then progresses towards the advanced. The chapter does not describe how
the rules are applied, which is left for Appendix D.1. The type checking process
is finished, when all parts of a program have been reduced to axioms by type
checking rules. The order of rule application must respect environment update
requirements, but are otherwise unimportant.

The type checking process depends on a properly built symbol table. The
Creol type system specifies how the symbol table is built through environment
updates of I'. The code for environment handling is found in Appendix E.7.4,
Appendix E.7.5 and Appendix E.7.6.

6.1 Desugaring

The type checking rules are given for a kernel language, so syntactic sugar
concerns the type checking as little as possible. The rules for removal of syntactic
sugar use the symbol A ~» B when A is rewritten to B by desugaring. The rules
for removal of syntactic sugar are:

e var idj;=e;,...,id,=e,:T ~» var id;,...,id,:T;id;:=e;1;...;1id, :=e,
Translate the initialisation of variables into separate declaration and as-
signment sentences.

e var idy,...,id,:T~> var id;:T...var id,:T

Expand shorthand notation for several variables of the same type.

e var id;:Ty,...,id,:T,, ~ var id;:Ty...var id,:T,

Expand shorthand notation for several declarations

e class ... opmy ... op m, ~ class ... with this op m; ... op m,

Expand missing with cointerface to with this for classes.

93

94 CHAPTER 6. CREOL TYPE SYSTEM

e interface ... op m; ... op m, ~» interface ... with Any op m; ... op m,

Expand missing with cointerface to with Any for interfaces.

e with Id op m; ... op m, ~» with Id op m;...with Id op m,

Expand shorthand notation for same with Id cointerface to separate coin-
terface declaration for each method.

e data ... = ... | Id ... ~data ... = ... | Id Void ...
Expand empty variant types to have type Void.

e ... Id... ~... Id Void ...

Expand constructors for empty variant types to receive type Void, when
inside an expression or case pattern.

o ... [1... ~Nil
Expand an empty list to the variant Nil

e ... [...::...]... ~ ... List(head=...,tail=...) ...

Expand a list pattern or a list expression into the equivalent List variant.
The symbol :: connects a head element to a tail list, as suggested in
Section 2.3.9.

F

e case...v...when guard ~» case...id” ...when guard and id¥=v

Translate a value pattern v into a guard by using a fresh identifier id” .
Note that this translation takes place in case patterns, and that v is a
value, and not a variable.

The usage of comma or semicolon to separate list items is not specified as this
is readily available in the grammar in Appendix A.

6.2 Meta Notation for the Creol Type System

The notation and meta-variables used in the presentation of typing rules are
presented next.

(...) Information of which order is important is presented as tuples, that is,
contained in parentheses.

{...} Information of which order is not important is presented as sets, that is,
contained in brackets.

some unique description Qypergcripts are used to provide additional description and
intuition to aid the reader as well as distinguish different types. For in-
stance 7™ and 7°" which tells the reader that 7 and 7°" are distinct
and reminds the reader that 7' is used as an input parameter and 7°" is

used as an output parameter.

. . . . f
2f The symbol 4ef is used to introduce shorthand notation. For instance I %

1,...,n which introduces I as a shorthand for 1,...,n.

6.2. META NOTATION FOR THE CREOL TYPE SYSTEM 95

ier The membership subscript is used to describe something about each element

. " def def .
in a set. Intuitively 7ic; = 71,...,7, where I = 1,...,n. Each distinct
f f
upper case letter denotes a separate set [& 1,...,n, J & 1,...,0,
def
K = 1,...,p and so on. Lower and upper case letters correspond so

ie€l,j€J, ke K and so on. The notation 77 is used when the entire set
is in focus, and is defined as 77 def Ticr- The lower case subscript inside
a parentheses relates to the upper case subscript outside the parentheses,
SO

dif(

def
(Tsz)[£ ("'Ti"'Ti"')iEI =

where only items with subscript inside the parentheses are affected.
7 An arbitrary type 7.
p An arbitrary row p. Rows are used for describing object types.
a A free type a. Free types are used for parametrisation.

7 A placeholder type 7. Placeholder types are introduced by the type environ-
ment O, and are fixpoints for recursive types.

o A set of substitutions. That is

def old new
o (M),

SO
def

To = (.. (7—) (Tlold,_m-i]ew) NN) (roldrrrnew) .

© A type environment O is defined by a set of placeholder types 7 and types

T, that is
def .

e = (Tia Ti)ie]}
so one can infer that © + 7 : 7 when (7,7) € ©, where 7 may contain
placeholder types. The judgement © F 7 : 7 is called partial expansion.
Placeholder types can be removed entirely by repeating partial expansion
until all placeholder types have been removed, which is called full expan-
sion. Full expansion does, however, not terminate, for recursive types.
Full expansion of 7 to a, potentially infinite, type is written ©(7), where
O is considered a function from placeholder types to types. Intuitively the
type environment © provides the necessary indirection so recursion can be
described. The formal foundation of this intuition is in Section 5.14. The
notation © {(# : 7);c; } can be used for convenience. When super-

. . superscript
scripts and subscripts are used, the type Teubscript

has the placeholder

. superscript

tYDPe Toubscript which is obtained by adding the symbol "to the type. Note
that in the presence of ©, a placeholder type 7 may be used wherever a
type is expected.

I" An identifier environment I" connects identifiers to types or placeholder types,

that is
def

I' = (idi77_i)i6[}

T e T) ey (T T

96 CHAPTER 6. CREOL TYPE SYSTEM

such that I' - id : 7 when (id,7) € T and ©,T' F id : 7. The notation

& (id; : 7i);c; } can be used for convenience. Note that in the presence

of a type environment ©, the type 7 can also be a placeholder type.
= An equivalence relation between types.

< The conformance relation 75UP<75%P between a subtype 75"° and a super
type 7P, Conformance expresses both subtyping and matching.

¢ Denotes updates to © and I so ©,T' - - - - ¢ ©’, I represents a type judgement
with an updated type ©' and identifier IV environment. The updated
environment can be used directly so ©,T'F --- 00’ T ... is valid.

italics Text written in dtalics is part of the type language
typewriter Text written in typewriter is part of Creol’s syntactic domain.

7% A fresh placeholder type 7 such that ©(7) is undefined.

Type checking rules are written

Q. T"+... O".T"k...
o,rk...

where the judgement below the line holds if all the judgements above the line
hold. Whenever there are environment changes the rules must be applied in an
order that respects environment updates denoted by ¢. Axioms on the form

o,k ...

are rules without conditions.

6.3 Creol Type Language

This section introduces the Creol type language. The type language is used both
in the discussion about typing of Creol concepts, and in the presentation of the
type checking rules. The letters M,O,;R,V and L are used to denote a type
when the extra information provided by the full type language is not needed.

Void The type of statements with side-effect.

() The absence of any type, the tuple with no types.
Bool The type of a boolean value, True or False.

Int The type of a signed integer, unspecified precision.
Str The type of a string of arbitrary length.

ref T The type of a reference to a value of type 7.

70— rout The type of a function from argument of type 7" to a result of type
7_out .

6.3. CREOL TYPE LANGUAGE 97

(7i*) — 7°* Shorthand for (r{",...,72") — 7°" which is the type of a function

r'n
where the in parameter is a tuple of several arguments.

Va(r) Unconstrained parametrisation. The type 7 has a free type a.
Vap(r) Shorthand for Vo (... (Vay,(7))...).

Ya<75"P(7) Constrained parametrisation. The type 7 has a free type a. The
free type « is restricted by the conformance relation <, so o must conform
to T5UP,

Var<7;"P(r) Shorthand for Vo, <m"P(... (Vou, <75 (7)) ...).

old

Trold,_,mmew A substitution where all occurrences of 7°'“ in 7 are replaced by

TI]eW
Trotd,pnew Shorthand for (... (oo, rnew) ...) 7ot rnew.

R ((id,7);) A record type R ((idi,71),...,(idn,Tn)) where a record contains
values of types 7,...,7, which can be extracted by names idi,...,id,
and the value extracted by id; has type 7, and so on. The order of
information in the tuple is important for creation of tuples. The notation
R ((id : 7);) can be used for convenience.

V{(id,7);} A variant type describes a set of names id;c; and types Tie;. A
value of a variant type contains a name and a value. The name id; iden-
tifies the type 7; of the contained value. Each of id;c; also corresponds
to constructors such as

id; 1 — V((id, 7);)

where a constructor is the special name for a function that returns a
variant type. The order of information in a variant type is not important.
The notation V {(id : 7);} can be used for convenience.

L (79"%) A label for the asynchronous reply to an asynchronous method invo-
cation. The reply contains out parameters with the types 79u¢, ... 7out,

r'n
where the order of the types matters.
1(s) The error type, which may contain an error message s.

T Any type, used to unify with anything or to replace an error type L. The
error type L(s) is replaced by T when the error s is reported to the user.
This prevents error messages from being reported several times.

M(TCO,T}H,T.(])M) A method signature with a cointerface requirement 7, in

parameters 7%, ..., 7® and out parameters T{U, ... 7oUt,

O {p} An object type with a free row p. The order of the rows does not matter.
The different rows that can be used for description of an object type are:

tag id : 7 A row that binds the identifier id to the type 7. The identifier
id must be unique with respect to the other rows in the same object
type. The tag is used to distinguish different bindings. Subscripts for
rows are extended to allow selection based on tags, so pprefix icr only
selects those rows whose tags satisfy the prefix, which is a boolean
expression on tags. The possible tags are:

98 CHAPTER 6. CREOL TYPE SYSTEM

method The name id denotes method 7.

personal The name id denotes method 7 that is only available to the
instance itself.

virtual The name id denotes a virtual method 7. A virtual method
can not be invoked.

variable The name id denotes an instance variable of type 7.

inherit Inheritance from class whose type of self is 7. Note that
nominal rows are not inherited.

super The self type 7 of the super class is available by the name
id. This is used to check static binding and to gain access to
methods that were otherwise hidden by overriding.

implement 7 Nominal inheritance from a type 7, where 7 is a valid object
type. Note that nominal inheritance only includes nominal rows.

nominal id A nominal row. Nominal rows represent the fulfillment or
requirement of a nominal restriction id.

p A free row variable. An object type with any unbound rows is open.
An object without any unbound rows is closed. A free row p may
be replaced by a set p; of rows, as long as, at most one of the rows
in py are free. Sets of rows are always flattened so when p in {p} is

replaced by py, written {p},_, , the result is {p7} and not {{pr}}.

6.4 Object-Oriented Expressions and Statements

This section investigate how object-orientation appears in expressions and state-
ments, and assumes that the rules in Appendix B are introduced earlier.

The rule for object creation generates objects from classes. Object creation
is an expression that creates an object according to the type found in I'™°V.
Method invocations in Creol are either asynchronous or synchronous, and ei-
ther use dynamic or static binding, and each case is covered by a separate rule.
The synchronous method invocation rule is uses the asynchronous method in-
vocation rules, to simplify the presentation. The unconditional release and the
conditional release requires this to be defined, to prevent functional code out-
side objects from using release points. Note that it would be just as natural
to regard wait and await as procedures, which is introduced into the scope by
the class declaration, however, that would complicate the class declaration rule
further, so for simplicity the presence of this is checked.

Object Creation

OF7:0{psr}
Pvirtual i€l = @
O, F new id(Ep) : 7

new 23 . 4in -
@,F l_ld.TI — T (@7FFEZTZE)
icl

O,I'+ rf<rin

Objects can only be created if there are no virtual methods. The object
creation requires initial values E; which must conform to 7;".

6.4. OBJECT-ORIENTED EXPRESSIONS AND STATEMENTS 99

Asynchronous Dynamic Invocation

67 {pmethod\/personaIVvirtuaI keK} Fm: M (TCO, T}n, T.(])ut)
O,T'Fe:O0{pr} O, | this : 78e!f pself &pco
(@, I'w;: Tz'vaz'v<Tz'm)i61

O,I'+idle.m(vy) : Voido©, T U{id: L (79"}
where this is the object type of the caller, and

{pmethod\/personaIVvirtuaI keK }

is a namespace built from the method , personal and virtual rows, so the
method is looked up amongst the rows in the callee. The subscript prefix
method V personal V virtual selects those rows that are method, personal
or virtual. The personal tag is only important when deriving object types
and an object can not be created before all virtual methods have an imple-
mentation. The cointerface requirement is checked against the type of the
caller, and the types of the arguments are checked against the required
input parameters of the method. Notice that the label is inserted into the
namespace along with information about the out types, such that this can
be used both to check if a reply has arrived and to type check the receive
statement.

Asynchronous Static Invocation

@, I'F this: ,/:_self 67 {pmethod\/personal ZGL} Fm: M (Tco, T}na Tgut)
O,T F 7 : O {px} ©,T | elf<ree
67 {psuper kEK} FCc:0 {PL} (@, '+ Vi TiV’TiV<Tim)i€I

©,I'+ id!'meC(v;) : Void o ©,T U {id: L (7i")}

where
{psuper keK }

is a namespace built by only considering the super rows, which are found
in the type of self for this class, such that the type of the super class can
be identified. Static binding prevents later method override from affecting
the call-site. The type checking rule is quite similar to asynchronous
method invocation, however the lookup is special, as static binding can
only bind to methods in the current class or a super-class of the current
class. Note that static invocation is unsafe for virtual methods, because an
implementation is not provided at the level in the inheritance hierarchy
where the search starts if the method is virtual.

O,I'+id: L
Receive Check ©,I'F id?: Bool

The receive check decides if a reply is available, thus it extracts a Boolean
value from a label L.

Asynchronous Receive

©,T'Fid: L(r7) (O, out; : 70%, 7 <7t

K2

O, F id?(outy) : Void

)ier

100 CHAPTER 6. CREOL TYPE SYSTEM

An asynchronous receive looks up a label in the namespace and checks
that the received arguments 77 fit in the denoted receive variables out;.
Each returned argument must be subtype of the variable where it will be
stored.

Synchronous Dynamic Invocation

©O,'+idl!e.m(iny) ;id? (out ;)
O,I'+e.m(ins;outy) : Void

where id is a generated unique identifier.

For type checking purposes a synchronous invocation is just translated to
an asynchronous invocation, then the type checking rules for asynchronous
invocation are used.

Synchronous Static Invocation

O,I'F id!'m@C(ins) ;id? (out)
O, meC(iny;outy) : Void

where id is a generated unique identifier.

For type checking purposes a synchronous invocation is just translated to
an asynchronous invocation.

O, this: 7
Release Point O,I' - wait : Void
A release point is only a side-effect but can only be used in a class, which
checked is by the presence of this in the environment.

O,'Fe: Bool,this: 7
Conditional Release Point O,I'} await e : Void

A conditional release point requires a boolean expression to decide when
execution may be resumed and it requires this since it can only be used
in a class. Note that no special handling is necessary for labels, since a
label check produces a boolean expression.

6.5 Object-Oriented Declarations

This section presents the rules for declaration of interfaces and classes.

Recall from Section 5.1, that a class or interface is fully described by the
object types corresponding to all possible perspectives on objects of that class
or interface. A class A is described by 74 self ;A Self A closed = A open 4y
74 mew while an interface B is described by 7B self | 7B closed 34 7B open The
type of self is reveals the most information, so 74 Self A closed ;A open 4y
74 1eW are mechanically built from 74 sff and 7B closed and 7B open gre built
from 7B s°!f . We only need to establish the types of self for classes or interfaces,
as the others are derived. All these are object, types that are described by rows,
that is, O {p}. Thus, an object oriented declaration is a specification of rows

6.5. OBJECT-ORIENTED DECLARATIONS 101

for the type of self. The manner of deriving the other object types is treated
later in Section 6.8. The manner of checking and expanding inheritance is
treated later in Section 6.7. Recall from Section 5.4, that there are actually
three namespaces, the regular I' used for all identifiers except those used for
object creation, which are in I'"*" and those used for inheritance which are in
rinberit - To simplify the rules, the environments ™% and I'"Perit are implicitly
contained in I', and only used and updated when explicitly stated. The I'»herit
namespace records both the type of self and Self, because both are expanded
on inheritance.

The rule for interface specifies, how the type of self is built, while the other
object types, that describe the interface are unspecified. Interfaces introduce
nominal rows, which where discussed in Section 5.7. The type of self and Self
for information from the super class must be updated to the subclass through
a change of fixpoint. This is represented as a substitution of fixpoints for the
implement row. The substitution for change of fixpoint is part of the type
language, and is not done before it is verified that the inheritance hierarchy is
not cyclic. The method signatures are checked in a separate rule, which checks
that all the programmer provided types are defined, and produces a virtual row,
because a method signature may not be invoked, it has no body.

Interface
(evrinherit - Ii . (TZI self, TZI Self))ieI
(@I,FI F Sj . pj)jEJ
; def "
interface Id e=0eus .1d Self
. . This: 79 ®°
(inherit I;),;
;) def Q14 : 7d closed
o,I'+ beSngn o I"ETU 414 . +1d open
ond . . 14 : 7-.Id open
therlt U {Id . (7-_Id self, 7-.Id Self)}
where
nominal Id
(inherit (j-il)a)iel
Fldself . 0 ¢ (implement (7] O_)iel
(% def pPJ
p
7'_Id Self <
7~_Id closed c
fld open . =

and o & {(F] 5ot 1 ld selfy (FISell,, 31d Self) 1 are substitutions that
update the fixpoint for the types of self and Self for inherited rows.
The type of self for an interface is explained throughout Section 5. The
namespace " is enriched with a set of standard names so @Id is the closed
type, and #Id is the open type. The name Id is by default given the open
type, which is the same strategy as chosen by LOOJ [17] for minimal
programmer concern for types.

Signature Row

102 CHAPTER 6. CREOL TYPE SYSTEM

O,T'| Co: 7C°
(@,F FTI, : TiTI)

iel
(@,F F TO; : T]-TO) ©

jeJ

with Co

op m (

in (in;:TI;);c; s
out (out;:T0;),c ;)
A signature requires valid types for input and output parameters, as well
as a valid cointerface. Notice that the signature doesn’t change the en-
vironment; this is because the signature is included in the type of the
interfaces in which it occurs.

e,TF :virtual m : M (TCO,T[TIJ.?O)

The class declaration rule is a bit more complicated, than the interface declara-
tion rule. The complications arise from initialisation parameters and inheritance
from both interfaces and classes. Recall from Section 5.7 and Section 5.4, that
inheritance from a class is represented by an inherit row, and that a class im-
plements an interface is represented by an implement row.

Each kind of information specified inside a class corresponds to a different
row, and these rules are factored out in row rules. The variable row rule checks,
that the type of the declared variable is legal, and produces a variable row. The
method row rule type checks the body of the method in an environment, that
contains both input parameters and output parameters, and produces a method
row that can be used for method invocation. The personal row is just like the
method row, except that a personal row is not visible outside the type of self.

Class
s LTI
inh (?7:[‘ - lnié Tilf)i%ls If
mheri . - se. - €
(6,1". ' FCj: (Tj T))jeJ
(@, Flnhe[‘lt - Ik . (7_]£ self7+]£ Self))kEK
(@’,F’ F Vl . pl)leL
/ / . ~TI .
(@,F U{(lnl.Ti)iel}l_Rm'pm)meM
/ dﬁf "
class 1d((in;:TL),.)~ © — OWo&"
(inherit Cj),, iii: :Id Self
(implement Ik)keK I déf Tu QId : .7'_Id closed
O,I' - begin o ’

#Id : 71d open

Vi 14 : 7'_Id open

R [inberit | | {Id : (7~_Id self +1d Self)}
end Tnew | {Id . T}H N 7'_Id7new}

6.5. OBJECT-ORIENTED DECLARATIONS 103

where
super Id : 71d self
H H . (C
(lnherlt Cj: (Tj)GC)_ ,
. .7 JE
#d self .) (implement (Tk)of)kel
PL
def
0" = PM
7'.Id Self -
7-.Id closed -
#1d open .
fld new . -
and ot
C det - C self -1d self - C Self -Id Self
o = (7 o) (77 P e A9
and

ol def (Tli self | +1d self) (T; Self | -1d Self)}
which are substitutions, that update the fixpoint for the types of self
and Self for inherited rows.

The explanations for each condition to the rule are:

)

e The initialisation parameters are checked to be valid types.
e The placeholder types for the super classes are looked up.
e The placeholder types for the super interfaces are looked up.

e The rows are looked up in an environment where all the object types
introduced by the class declaration are available, but the instance
variables are not available, to avoid non-deterministic initialisation
due to the unknown order of initialisation for instance s.

e The method rows are looked up in an environment with both all
object types produced by the class and all instance variables.

The type of self for a class is described throughout Section 5.

Notice that the type 79 ™% is different from 719 °°*d due to the pres-
ence of virtual rows. Virtual methods are replaced by regular methods
in the type of objects that would have been produced by this class, that
is 714 closed Virtual methods from 719! are kept in 719 % such that

object creation can be prevented if there are any virtual methods.
Variable Row

O,TFT: 7
O,I'F var id:T ; :variable id: 7

The variable row rule checks the validity of the type of an instance vari-
able declaration and creates a variable row that is used by the surrounding
class.

104 CHAPTER 6. CREOL TYPE SYSTEM

Method Row
O,T'+Co: 7%
(0,T+TI; : Tgol)iel
(0, T0; : 7,)jGJ

CRNV {(ini : TiTI)iel} U {(inj :779) } +B: Void

jeJ
with Co
opm (
O,k in (in;:TIL;);c; s : method m: M (7%°, 71, 77©)

out (out;:T0;)..,)

jeJ
The method row is almost identical to the signature row rule, with the
additional condition that the body typechecks to Void under an environ-
ment which includes type information for the in and out parameters of
the method.

Personal Row
(@,F FTI, : TiTI)ieI
.. -TO
(6.0 FT0;: 7))
o,y {(ini : TiTI)ieI} U {(inj : TJTO)JEJ} FB: Void
op m (
in (in;:TI;);c; s

out (out;:T0;),. ;)

O,TF : method m : M (T, 71, 77°)

The personal row rule is similar to the method row rule, but creates a
personal row. The personal row rule is used when no cointerface is spec-
ified, and the default cointerface is 7°f, however, the type of the coint-
erface could just as well be T, as is done throughout the presentation of
the type system. The cointerface is unimportant because a personal row
is not visible outside the type of self, however the type system appears
simpler with only one type of method, instead of introducing a special
type system construct only for methods without cointerface.

6.6 Conformance

This section provides an overview of where the rules for conformance between
different types are found. Most of the rules for conformance were introduced
in Section 5, such as the treatment of fixpoints, variance by source and sink
analysis, decidability due to parametrisation, instance variables methods, virtual
methods, and nominal rows.

The rules for conformance between rows with different tags is only provided
as examples, so we provide the rules here.

e A regular row can conform to a virtual row. This happens when a method

6.6. CONFORMANCE 105

is provided for a virtual row.

O,TF pt<p®
O,T - method id : p®<virtual id : p®

e A personal row can be made public by inheritance.

O,k pb<p®
O, T F method id : p®<personal id : p*

e Nominal rows require identifier equality to accept conformance.

id® = id®
O,T F nominal id®*<nominal id®

e The method, personal, virtual and super rows conform when there is equal-
ity between tag and identifier and conformance holds for the type.

O,TF pt<p®
O, I tag id : p®<tag id : p®

where tag € {method, personal, virtual, super}

e Due to static binding of instance variables as described in Section 5.10,
variable rows do not participate in conformance.

e The rows for inheritance are always resolved before conformance is checked,
hence conformance is not defined for inherit and implement rows.

Conformance is reflexive, a type always conforms to itself.

O,I' rb=re
O,T'+ rb&re

Note that no conformance rules are admissible for labels, records and variants
as these are not subject to conformance.

6.6.1 Subsumption

A general rule for the treatment of fixpoints when conformance reduces to sub-
typing was provided in Section 5.17.1, and by reflexion a closed object type is
always equal to itself, however no rule specifies how rows can be forgotten for
conformance between closed object types. Conformance between two closed ob-
ject types is only possible when subsumption is safe, that is rows can be safely
forgotten. Recall from Section 4.3 that binary methods and subsumption does
not play well together. Therefore subsumption is unsafe when the object type
after the subsumption has a binary method. If the type after subsumption does
not have any binary methods, then subsumption does not affect binary meth-
ods. Note that it is perfectly safe to forget binary methods, by forgetting them
they may no longer be used and the problem of binary methods is avoided. The
problem of binary methods is more precisely the occurrence of the fixpoint in

106 CHAPTER 6. CREOL TYPE SYSTEM

contravariant position, that is as an in parameter to some method. However
the treatment of fixpoints when conformance reduces to subtyping prevents bi-
nary methods from typechecking, therefore no extra checks are necessary. The
rule for subsumption, that is conformance between closed object types there-
fore specifies that conformance must hold for those rows that are not forgotten,
and by the treatment of fixpoints conformance does not hold when the fixpoint
occurs in contravariant position. The following conformance rule allows safe
subsumption between closed object types.

(not free p;)
(not free p;)

PI\NT = 0

. i€l
(@, 't p; <pi)

methodVabstractVpersonal i,j€INJ JjeJ

©,I'-0{ps} <O{ps1}
The conditions are explained as:

e No rows that appear in p; that do not also appear in pj, expressed by
PNJ = 0.

e No row is free in neither p; nor p;.

e For every method that is found in both objects p; jerns , regardless if
personal or abstract, then conformance must hold.

6.7 Inheritance

This section provides the rules for inheritance. The rules for inherit and implement
assumes that fixpoint substitutions have already been performed. Recall from
Section 5.16, that substitutions are part of the type language, so the rules that
initially create object types are responsible for inserting the proper substitu-
tions. These substitutions are expanded before applying the rules for inherit
and implement.

The set notation for rows is now extended. The notation I N J is defined
as the indexes (i,7) of the rows in the intersection between p; and p;, hence
(-ooPivepj-)ijerns repeats (...pi...pj...) with the indices of those rows
that are found in both p; and p;. The notation ppresix icr is used to select
only those rows in p; where the tags satisfy the prefix. The prefix is a boolean
expression on tags. For instance pnominal ics selects those rows from p; that have
a nominal tag. The prefix can use negation —, logical and A and logical or V.
For instance p—nominal ics selects all rows from p; that do not have a nominal
tag.

The rule for inherit is now given.

A0 {pr} Pinherit i€l =
def . . CA _
0= .B . inherit A : 7 Pimplement i€l = 0
™ :0 O ' TF p:<p;
PJ () Pj <p1)ﬁnomina| i,5€INJ
2 A O
o det 4 O0{pr}

+B .o P—nominal ieI\J }
PJ

6.8. DERIVING OBJECT TYPES 107

The rule uses the condition

, .

(O, T'F p;<Pi) nominal i.je1ns

to check that conformance holds for those rows from p; and p; that are in

common. Since each class introduces a super to itself for the purpose of static

binding, the super row for 74 is already in p; and is obtained by inheritance.
The rule for implement is now given.

7'_A . O{Pl} Pinherit ic1 = @
e} def B implement +A Pimplement i€l = 0
.0 Pinherit jeg =0
P O/, #8244
O {pr}
o df .
7-.B . O{ Prominal i€T\J }
Py

The condition
O . THiB&s4

ensures that conformance holds after the transfer of nominal rows.

6.8 Deriving Object Types

This section provides the rule for deriving object types form the type of self.

The type of Self is derived by removing rows that are private to the instance.
The closed type is obtained by replacing the fixpoints for self and Self with
the fixpoint of the closed type. The open type is obtained by taking the rows
form the closed type and add an open row variable.

geelf . (9{ PI }
pself

def

,i_Self o) pPJ= (pﬂvariable/\—\personal iGI) }
: Self

o« p

THEW O{ ((pJ)+sclf,_,+closcd)7-_sclf,_,7~.closcd }

jelosed . O { (((pJ)virtualb—»method)7'-Se”»—>'i-d°sed)"rse]fn—w'-dosed }

~open . () { (((pJ)Virtu3|Hmethod)+se1fH+closed)+SelfH+closed }

F
open
p

The special subscript prefix —variable A —personal selects those rows that satisfies
the prefix, that is, are neither a variable nor a personal row. The substitution
virtual — method replaces virtual rows with regular method rows. The virtual
rows are not removed from 7"°V, because the rule for object creation is only
type safe when no virtual rows exist.

108 CHAPTER 6. CREOL TYPE SYSTEM

Chapter 7
Viability

This section provides examples that demonstrate the viability of the Functional
Creol Compiler and of the Creol type system. The viability of each is pre-
sented in a separate section to reflect that the Functional Creol Compiler used
implements an earlier version of the Creol type system.

7.1 Function Creol Compiler

This section provides examples that demonstrate the viability Function Creol
Compiler by providing actual output from the compiler. The Functional Creol
Compiler used for the compilation uses an earlier version of the Creol type
system, and the code in Appendix E is currently in the middle of a rewrite to
catch up with the Creol type system described in Section 4. Note that there is a
gap between Section 7.1.3 and Section 7.1.4 as no advanced variance errors are
demonstrated. This is because the early type system in the Functional Creol
Compiler does not detect these variance errors. The present Creol type system
does and after a successful rewrite of the Functional Creol Compiler the compiler
will catch such variance errors.

7.1.1 Syntax Errors

This section demonstrates how the Functional Creol Compiler responds to syn-
tax errors.

The combinator parser library proposes alternatives when a syntax error
occurs. This helps the programmer correct the error, and the parser repairs the
error, syntactically. The following erroneous syntax and the FCC error message
demonstrates this:

// Code with syntax error
interface A
begin

op m(in x:Int; out y:Int)
end

// FCC error message
?? Error : at symbol ; at line 3, column 16 of file "syntax_error.creol"

109

110 CHAPTER 7. VIABILITY

7?7 Expecting : symbol) or symbol = or symbol out or (symbol , ...)*

?? Repaired by: deleting: symbol ; at line 3, column 16 of file "syntax_error.creol"

The error message proposes possible corrections, and fixes the error by removing
the erroneous ; in the signature. Without this output, the programmer would
have to consult documentation.

The following code also contains an error:

// Code with syntax error
class B begin

op m(in x:Int out y:Int) =y := x
end

// FCC error message

?? Error : at symbol = at line 2, column 19 of file "syntax_error2.creol"

7?7 Expecting : symbol ==

?? Repaired by: deleting: symbol = at line 2, column 19 of file "syntax_error2.creol"

??7 Error : before lower case identifier y at line 2, column 21 of file "syntax_error

7?7 Expecting : symbol ==
7?7 Repaired by: inserting: symbol ==

Notice that the syntax error results in two error messages, one for each correc-
tion.

These examples demonstrate that the parser combinator library used by the
Functional Creol Compiler provides good programmer feedback in the presence
of syntax errors as argued for in Section 1.6 and Section 3.5.

7.1.2 Simple Type Errors

This section shows how the Functional Creol Compiler responds to simple type
€rrors.

The following code demonstrates a mismatch, where a Bool is assigned to
an Int.

// Code with simple type error
class B begin

op m(in x:Int out y:Int) ==y := True
end

// FCC error message

Errors:

"type_error.creol"(line 2, column 30):

Assignment failure because Bool does not fit in Int

Another simple type error can occur if one uses new on an interface, because
only classes can produce objects.

//Code with simple type error
interface A
begin

op m(in x:Int out y:Int)
end

7.1. FUNCTION CREOL COMPILER 111

class C begin
op create(out 0:A) == o := new AQ)
end

// FCC error message
Errors:
"type_error2.creol" (line 6, column 34): A is not a class.

The definition of static type safety from Section 4.1 ensures that the necessary
methods are present, in contrast to this example:

//Code with simple type error
interface A

begin

op m(in x:Int out y:Int)
end
class C begin

op use(in o0:A4) == o.n(1)
end

// FCC error message
Errors:
"type_error3.creol" (line 6, column 23): Could not find method n in A object.

7.1.3 Inheritance Error

This section demonstrates how type unsafe inheritance is handled by the Func-
tional Creol Compiler.

Consider the following interfaces where the type of an argument is changed,
such that it is no longer type safe.

// Super interface
interface D
begin

op foo(in x:Int)
end

// Type unsafe redefinition of foo
interface E inherits D
begin
op foo(in x:Bool)
end

// FCC error message

Errors:

"unsafe_inheritance.creol"(line 8, column 1):

Inheritance impossible:

interface "E" can not inherit from interface "D":

failed subtyping for method "foo" because Int does not fit in Bool

Notice that static type safety requires contravariance for input parameters, and
there is no conformance between an Int and a Bool.

112 CHAPTER 7. VIABILITY

7.1.4 Inheritance with Variances

This section provides an example program with variance that can be statically
type checked by the Creol type system which allows contravariant refinement
to in parameters and covariant refinement to out parameters. The example is a
bit large, because it requires two inheritance hierarchies.

// Interface hierarchy
interface F
begin

op foo(in x:Int)
end

interface G inherits F
begin

op bar(in y:Bool)
end

// Classes with contravariant and covariant refinement
class H
begin
op test(in 0:G out p:F) == null
end
class I inherits H
begin
// Contravariant refinement of o
// Covariant refinement of p
op test(in o:F out p:G) == null
end

The Functional Creol Compiler successfully type checks the code and provides
the following Creol Machine Code for the classes H and I. Note that the interfaces
F and G only are used in type checking and are not present in the generated code.

< °H : Cl |
Inh: nil,
Att: no,

Mtds: < ’test : Mtdname |
Latt: (o : null), (°p : null),
Code: empty ; end(’p)

> s
Ocnt: 1
>
< T : Cl |
Inh: °H,
Att: no,

Mtds: < ’test : Mtdname |
Latt: (’o : null), (’p : null),
Code: empty ; end(’p)
>
Ocnt: 1

H

7.1. FUNCTION CREOL COMPILER 113

7.1.5 Subsumption

This section demonstrates that the Functional Creol Compiler handles subsump-
tion. Subsumption can occur for subtypes, such as when an object is treated as
one of its declared supertypes. We use the example from Section 7.1.4.

// Interface hierarchy
interface F

begin

end

interface G inherits F
begin

end

// Usage of subsumption

class H
begin
// Requires subsumption to type check
op test(in i:G out o0:F) == o := i
end
The statement o := i uses subsumption to treat a G object as an F object.

The code produced for class H demonstrates the successful compilation of the
program.

<H : Cl |
Inh: nil,
Att: no,

Mtds: < ’test : Mtdname |
Latt: (i : null), (o : null),
Code: (Po := ’i) ; end(’0)
> s
Ocnt: 1

7.1.6 Recursive Types

This section demonstrates that FCC handles recursive types and mutually recur-
sive types, as discussed in Section 5.14. Consider the two recursive and mutually
recursive classes, where type checking terminates, and produces correct types
for both classes.

// Recursion and Mutual Recursion
class M
begin
// Mutual recursion
op foo(in 0:N) == null
end

class N
begin
// Mutual recursion
op bar(in p:M) == null

114 CHAPTER 7. VIABILITY

// Self recursion
op baz(in q:N) == null
end

The code produced for M and N by the Functional Creol Compiler for this example
is now presented to demonstrate that successfull execution of the program.

<M : Cl |
Inh: nil,
Att: no,

Mtds: < ’foo : Mtdname |
Latt: (o : null),
Code: empty ; end(nil)
>
Ocnt: 1
>
<°N : Cl |
Inh: nil,
Att: no,
Mtds: < ’bar : Mtdname |
Latt: (’p : null),
Code: empty ; end(nil)
> %
< ’baz : Mtdname |
Latt: (°q : null),
Code: empty ; end(nil)

H

>
Ocnt: 1

)

7.1.7 Code Generator

This section demonstrates the successful compilation of a program that performs
a faculty calculation. The example program is from earlier work on Creol [8,
Sect. 5.1.1].

class Main()

begin

var £ : IFakultet

op run == f := new Fakultet(5)
end
interface IFakultet
begin

op fac(in n:Int out f:Int)

end
class Fakultet(beregn:Int) implements IFakultet
begin

var fakultet:Int=1

op run == fac(beregn; fakultet)

op fac(in n: Int out f:Int) ==
if (n>2)
then fac(n-1;f); f:= nxf
else f:=n
fi ;

end

7.2. CREOL TYPE SYSTEM

The code produced for the classes is

< ’Main : C1 |

Inh: nil,

Att: Cf : null),

Mtds: < ’run : Mtdname |

Code: (°f := new ’Fakultet(int(5)))

Latt: no,
> H
Ocnt: 1
>
< ’Fakultet : Cl |
Inh: nil,

Att: (’beregn : null), (’fakultet :

Mtds: < ’run : Mtdname |
Latt: no,

Code: (’this . ’fac(’beregn ; ’fakultet)) ;

> %
< ’fac : Mtdname |
Latt: (°n : null),

Code: (if (°n > int(2))

th ((’this .

Ocnt: 1

7.2 Creol Type System

int (1))
(f := (’n * ’£))) el (Cf
fi) ; end(’f)

end(nil)

£))

’1'1)

end(nil)

115

This section provides examples of code that demonstrate the expressiveness of
the Creol type system as defined in Section 4. The Functional Creol Compiler
will be able to handle these examples, when the transition to the latest revision

of the Creol type system is completed.

7.2.1 Inheritance and Binary Methods

This section demonstrates inheritance that does not imply subtyping, by how
binary methods are handled. The example requires a notion of the type of
objects from this class, This, to be expressed, which is available in the Creol

type system.

// Class with reusable code
class Point
begin

var x,y:Int;

op eq(in other:This out same:Bool) ==
if x = other.x and y = other.y

then same := True
else same := False
fi

end

116 CHAPTER 7. VIABILITY

// Inheritance without subtyping
class ColorPoint inherits Point
begin
var color:Str;
op eq(in other:This out same:Bool) ==
if color = other.color
then eq@Point(other;same) // Safe code reuse
else same := False
fi
end

Notice that inside ColorPoint it is possible and safe to invoke the eq method
inherited from Point, and that is because the type of self, This, is kept open
during inheritance, as described in Section 4.3 and Section 5.17.2.

7.2.2 Mutual Parametrisation and Refinement

This section demonstrates how the Creol type system can type check an ad-
vanced example of mutually parametrised interfaces that are refined on inheri-
tance. The example requires both F-bounded quantification and match-bounded
polymorphism, both expressed by polymorphism constrained by conformance.
Intuitively the example provides refinement by inheritance that requires both
parametrisation and refinement of the type of self.

The code is necessarily a bit complicated to demonstrate the powerful ex-
pressiveness. Intuitively there is a relationship between a client and a server,
however the relationship can be refined by inheritance, such that there is a rela-
tionship between the refinements and such that the refinements are not subtypes
of the original classes. This example demonstrates how a Client and a Server
class that are mutually recursive can be refined to a Peer class that is both
a client and a server. The gain of expressiveness in this example allows the
Peer class to reuse code from both the Client and the Server class in a type
safe manner. Note that both the Server and the Client class use constrained
parametrisation which corresponds to the rule for type abstraction in Appendix
B.4. The use of mutually constrained polymorphism between Server and Class
is a relatively standard manner of achieving type safe covariant specialisation
in a contravariant position for the abstract types C and S.

class Server[C <: #Client]
begin

with C op download(in name:Str out file:Str) == ...
end

The Server provides a method download that can be called by any object that
at least has the type C, where C is introduced by bounded polymorphism such
that the type C conforms to the type #Client.

class Client[S <: #Server]
begin

with S op display(message:Str) == ...
end

The Client provides a method display which can be called by any object that
at least has the type S, where S is introduced by bounded polymorphism such
that S conforms to #Server.

7.2. CREOL TYPE SYSTEM 117

These classes can be used to create objects as in the following example
code. The example code demonstrates type application as described by the rule
for type application in Appendix B.3. Type application performs instantiation
and is intuitively like calling a function with a type as an argument, hence
Server [#Client] replace the C in the Server class with #Client. The type
application for constrained polymorphism is safe when conformance holds for
the arguments, which is the case since #Client<#Client trivially holds. Note
that to simplify the example no code is presented to connect Server and Client
objects.

var s:Server[#Client];
var c:Client[#Server];
s := new Server[#Client] ();
¢ := new Client[#Server] ();

Now consider that one wishes to write a Peer class that can serve as both a
client and a server.

class Peer inherit Server[This] inherit Client[This]
begin
with This op download(in name:Str out file:Str) == ...
with This op display(message:Str) == ...
end

The class Peer reuses code from both Server and Client in a type safe manner.
The inheritance from Server [This] is legal because the type of Self for Peer
conforms to #Client, written This<#Client and Client [This] is legal because
This<#Client. The refinement of the cointerface for the methods download
and display appears covariant in a contravariant position, however variance is
checked after parametrisation and both S and C are instantiated to This and
This<This.

Now suppose one wants to create an advanced peer that can perform searches.
Although the search function is only available for SearchPeers the SearchPeer
should interact with old Peers for uploading and downloading.

class SearchPeer inherit Peer
begin
with #Peer op download(in name:Str out file:Str) == ...
with #Peer op display(message:Str) == ...
with This op search(in name:Str out result:Str) == ...
end

The SearchPeer remains compatible with old Peers by performing a contravari-
ant refinement of the cointerface for both download and display, and confor-
mance for methods requires contravariance for cointerfaces as noted in Section
5.5. By inheritance the This from Peer is extended in SearchPeer, such that
the conformance check on inheritance for the method download becomes

M (#Peer, Str, Str) <M (This, Str, Str)
which due to contravariance for cointerfaces requires

#Peer>This

118 CHAPTER 7. VIABILITY

and the type of This is decided by the current class SearchPeer and is, for this
particular example, similar to #SearchPeer, such that the cointerface require-
ment reduces to

#Peer># SearchPeer

which holds because #SearchPeer supports the same protocol as #Peer, or a
little more formally, that without regard for fixpoints the #SearchPeer has at
least the same methods as #Peer.

Note that even though the inheritance is type safe neither Peer nor SearchPeer
conform to either Server[#Client] or Client [#Server] because of the co-
variant change in contravariant position for the cointerface of download and
display, hence inheritance is separate from subtyping.

This little example demonstrates that static type checking can allow quite
expressive programs, however without a general insight into type theory it can
not be expected that ordinary programmers can wield this expressiveness with-
out the help of a compiler.

Chapter 8

Further Work and Research

This section presents suggestions to further work and research on both the
Creol language and the Creol type system. The presentation starts with those
topics that appear straightforward to formalise and implement, to those that
require further research to formalise and where the implementation is unclear
until that research is available. Most of these suggestions are concerned either,
with an increase in language expressiveness, while retaining static type safety,
or, with a strengthening of static type safety, by catching more potential errors
at compile-time.

Further work on the prototype implementation of the Functional Creol Com-
piler is discussed in Appendix D and is not discussed in this section. Note es-
pecially Appendix D.1.2 which specifies where the Functional Creol Compiler is
lacking with respect to the type system described in Section 4.

8.1 Null Pointers and Type Safety

This section provides a brief discussion on null pointers and suggests a strategy
for static type checking that prevents run-time null pointer errors. Type safety
is increased by catching potential null pointer errors at compile time.

Null pointer can be considered both a static typing error and a run-time
error. The languages Java and C# consider null pointers a run-time error, while
the languages O’Caml [73] and O’Haskell [70] consider null pointers a compile
time error. Creol has followed the object-oriented trend of Java, C# and the
research language SOOL [15, Sect. 13.4] that treat null-pointers as run-time
errors. This choice is in conflict with the goal of verifiable programs. The
usefulness of a program that is verified to uphold an invariant is somewhat
lessened when there are run-time errors, especially when those errors could have
been prevented. The natural conclusion would be to alter the Creol language
and Creol type system such that null pointers never occur, but that may come
at the expense of making the language slightly harder to use.

Many simple uses of uninitialized object references can easily be prevented,
but in general such prevention requires alias analysis. Aliasing is the phe-
nomenon that several distinct variables point to the same value, thus they are
aliases. Alias analysis looks at the information flow in the program and deter-
mines possible aliases. Exact alias analysis is undecidable and even may analy-

119

120 CHAPTER 8. FURTHER WORK AND RESEARCH

sis is computationally challenging [93]. May analysis of aliases can determine if
aliasing between two variables may or may not happen, however if aliasing may
happen it is not known if it will happen. May alias analysis requires the source
code, or some suitable representation, and is computationally expensive. Let us
therefore consider simpler approaches to prevent dereferencing of null pointers.

The Cyclone research language focuses on the creation of a safe C language
equivalent [48] and has resulted in a type system that differs between references
that can be null and those that may never be null. This null-pointer prevention
is realised through the use of type inference and lightweight programmer anno-
tations [37]. The main goal for Cyclone is memory management. Compile time
prevention of null pointer errors is merely an added benefit. The approach of
annotations and distinguishing between non-null and possibly null references is
taken further by the research language Nice [10], where null pointer errors are
static type errors [11]. These annotation based approaches avoid dereference of
null pointers by providing different types for references that may be null and
references that can never be null. A similar scheme could be adopted for Creol
and would allow the compiler to guarantee the absence of null pointer exceptions
at run-time by requiring the user to explicitly test for null pointers as necessary
when the pointer may be null.

The prevention of null-pointer errors at run-time is a significant guarantee,
and this guarantee greatly supports the program analysis and verification that
the Creol research group is working to achieve. The changes required would be
relatively unobtrusive:

e Remove the keyword null.
e Declarations require initial values.

e Require var declarations to operate as the let construct, such that vari-
ables that are declared are always initialized at the same time.

e Introduce non-null references in addition to normal maybe null references.

e Extend conformance such that a non-null type can implicitly be treated
as a maybe null reference.

The absence of null-pointer errors is not important for program analysis, but it
is clearly a prerequisite towards safe programs in general.

For a somewhat longer discussion on the possible alternatives of encoding
null-pointers the reader may consult Bruce [15, Sect. 14.1].

8.2 Compound Object Types

This section motivates compound object types and suggests how these can be
added to the Creol type system. Compound object types are unforeseen com-
binations of object types governed by nominal restrictions and correspond to
compound types as described by Weck and Biichi [94]. Compound object types
provide increased language expressiveness while retaining static type checking.
The increased expressiveness eases unforeseen use of classes, which is especially
important for use of third-party code.

8.3. VIRTUAL CLASSES 121

Consider that there are two interfaces A and B that are orthogonal. Consider
that one wants a list of objects that supports both interfaces A and B. This
can currently not be expressed in the Creol type system. As a workaround
a new interface AB is created, and all the classes that implement interfaces A
and B must be changed to also implement interface AB. This workaround does
not add any new functionality, and the procedure must be repeated for all
new combinations of interfaces. The workaround connects interfaces that are
otherwise orthogonal. The workaround is necessary in a nominal type system
where there is a correspondence between names and types. This is not the case
in the Creol type system where nominal restrictions are formalised as nominal
rows. The Creol language can be extended with a keyword and such that one
can declare a compound object type A and B. This compound object type is
explained by the following rule that combines the two object types, given that
type equality holds for the intersection, that is those rows that occur in both
object types.

O.LFAO{pr} () n)
O,TFB:0{ps} Pi=Pjlijerns

©,TF A and B:O{ prg }
pJ

where pr\ ; denotes the rows in py that are not in the intersection prn.

8.3 Virtual Classes

This section motivates and suggests that the Creol language can be extended
with virtual classes. A virtual class can have abstract methods and is therefore a
partial implementation of a class. Since virtual classes are incomplete they can
not produce objects, however they can be extended by inheritance that provides
an implementation of the virtual methods. Virtual classes increase language
expressiveness while retaining static type safety. The increase in expressiveness
allows structural requirements to be expressed precisely.

Virtual classes provide two separate enhancements to the Creol language.
First virtual classes provides a usefull abstraction such that algorithms can be
specified modular to their deployment. A virtual class can provide code for
the algorithm which uses virtual methods. When the algorithm is used, the
programmer must provide bodies for the virtual methods, but can reuse the
default algorithm. Second there is currently no manner of expressing object
requirements without nominal constraints in Creol and since classes do not
produce nominal constraints a virtual class can serve as an object requirement
without nominal constraints.

The introduction of virtual classes requires a small addition to the syntax
and the type system does not need to be extended as virtual methods are used
in describing object types for interfaces.

8.4 Pattern Matching Compilation

The Functional Creol Compiler does currently not generate code for pattern
matching. The work by Sestoft describes an algorithm for compiling pattern

122 CHAPTER 8. FURTHER WORK AND RESEARCH

matching in a simplistic manner [33] and can serve as a starting point for ex-
tending the Functional Creol compiler. Although the implementation of pattern
matching does not affect type safety, type checking must perform compile time
analysis to ensure that pattern matching always succeeds [33, Sect. 7.4].

8.5 Kind Checking

This section motivates and suggests how the Creol type system can be extended
with kind checking. Intuitively kinds are to types what types are to values.
Traditionally kind & checking has been used to ensure type safe use of polymor-
phism [15,77]. Kind checking is important for the confidence in the correctness
of the Creol type system, and hence that static type checking is performed
correctly.

Imagine a polymorphic type Vo (O {variable t : a}) where the free type «
can be instantiated at a later point. Intuitively there are some restrictions
on the instantiation of «. It is reasonable to replace a with Int, however it
is not reasonable to replace a with another polymorphic type Vo (7). This
can be solved by introducing kinds. A non polymorphic type has kind *. A
polymorphic type has kind % — %, as it takes a type and produces a type. Now
Vo (O {variable t : a}) has kind * — % and Int has kind % and the instantiation
of o to Int passes kind checking because * — * applied to * produces * which is
a valid kind. However Vo (7) has kind * — * which prevents it from replacing
a in Vo (O {variable t : a}), because * — * can not be applied to * — x, it is
only possible to apply * — % to something of kind .

Kinds can also be used ensure other properties of the type system. Recall
from Section 6.3 that there are restrictions on how rows can be combined in an
object type. No two rows can bind to the same name. There can be at most
one free row. These properties are stated informally in the type system, but
they can be formalised by kinds and powers [79, App. B], where powers are to
kinds what kinds are to types.

Intuitively, given an object

(9{ }r;ethod foo: T }

the free row variable p can be replaced by any number of rows as long as the
name foo is not introduced again. The name foo is already taken for this
object type. Kinds can help to solve this by keeping track of those names which
may not be used. Let Taken{id;} be a kind that remembers that the names
idy,..., id, are taken. Then the row p from the example has kind Taken {foo},
and it is possible to device rules that prevent the insertion of a row that uses
the name foo [63].

A formalisation of kinds along the lines of these intuitive examples can help
in further formalisation of the Creol type system by providing correct use of
both polymorphism and rows.

8.6 Analysis and Modularity

This section reveals a conflict of interest between compositional analysis and
use of inheritance with respect to modularity. The conflict suggests that fur-

8.6. ANALYSIS AND MODULARITY 123

ther research on a proper combination of these goals is needed. Modularity in
combination with static type checking improves language expressiveness.

Recall from Section 2.1.3 that static binding facilitates compositional invari-
ant analysis through a manner of invoking methods in classes such that subclass
overriding does not affect the call site. The benefit of static binding is realised
on later inheritance. If a class is known to never be inherited from, that is, never
subclassed, there is no need for static binding. The programmer must make a
guess at whether the class will be extended to decide if it is necessary to insert
annotations for static binding. The point of decision for method override affects
modularity. It is not possible to correct the code if the programmer guesses
wrong. The programmer of a base class may not know how the class can be
extended.

If the programmer uses static binding under the assumption that it is never
useful to override the method, and the programmer is wrong, it is not possible
to remove static binding annotations. If the programmer does not use static
binding where it should have been used, it is not possible to insert static binding
annotations.

Static binding is beneficial when future extensions of a class can be predicted
correctly. Since inheritance is a specialisation of a base class, it is natural that
the choice of what to specialise is done at the time of writing the subclass. The
concept of object-orientation is based around inheritance and encapsulation [35].
Inheritance facilitates code reuse and encapsulation increases modularity and a
separation of concerns. The choice of which methods that may be overridden is
not a concern when writing the base class, rather it is a concern when extending
the base class through inheritance. It is first when writing the subclass that the
requirements for specialisation, including method override, are known.

Static binding contradicts the purpose of inheritance. The language C# has
versioning which requires the programmer to explicitly annotate methods in
the subclass with either new or override when the method name is the same
as a virtual method in the super class [19, Sect. 8.13]. Methods can not
be overridden by default, however if they are flagged as virtual they can be
overridden. Recent research on method refinement and specification of method
encapsulation policies [32] also puts the decision of overriding into the subclass,
but allows the super class to specify the least restrictive and several default
encapsulation policies for different usage scenarios. The least restrictive policy
can never be violated, which allows the programmer to protect methods from
overriding. The default policy can be overridden, such that the programmer of
the subclass can specify what to override and not. Encapsulation policies would
allow the programmer to create a least restrictive policy for methods where it
is crucial that overriding must never be done, and postpone the question of
overloading for other methods to the time of inheritance.

Recall from Section 2.1.2 that the Creol language introduced separate in-
heritance hierarchies for classes and interfaces. Recall from Section 5.7 that
inheritance between interfaces governs nominal constraints that express be-
havioural constraints while inheritance for classes does is not concerned with
nominal constraints, such that nominal constraints are not inherited for classes.
Static binding introduces behavioural concerns into class inheritance, which by
separation between interfaces and classes should not be a concern for class in-
heritance. Static binding does this in a manner that contradicts encapsulation
in combination with inheritance.

124 CHAPTER 8. FURTHER WORK AND RESEARCH

Static binding can be replaced with a notion of versions and still allow the
programmer to prevent overloading from affecting code. If more flexibility is
needed static binding can be replaced with encapsulation policies.

8.7 Overloading

This section considers two cases where the Creol language may benefit from
overloading. Overloading denotes the possibility that one identifier can invoke
different code depending on type information. Overloading relieves the program-
mer from inventing unnecessary names and represents an increase in language
expressiveness. The combination of overloading and static type safety is however
a theoretically difficult issue, hence the introduction of overloading should not
be treated lightly. Further research on the Creol language will hopefully deter-
mine a sound theoretical basis for overloading in Creol, and provide overloading
for both procedures and methods.

8.7.1 Procedures

Overloading provides a convenient form of programming where the same name
changes meaning depending on the type. Programmers use an overloaded +
operator that work on both integers and strings, while the machine instructions
for adding integers are different from those for concatenation of strings. There
are however problems with overloading. From a programmer’s perspective the
interaction between overloading and subtyping has proved difficult to apprehend
[15, Sec. 2.5] and from a type theoretical perspective overloading should have a
sound basis.

The Creol language does not allow overloading in general, but provides
overloading for certain operators. The + operator has type Int — Int — Int
or Str — Str — Str. This overloading is implemented in the Functional Creol
Compiler but is not given in the Creol type system. The reason is that there is
currently no foundation for expressing overloading in the Creol language. The
use of overloading in the Creol language is still a research subject.

Overloading in the Functional Creol Compiler is expressed with a notion
similar to intersection types [77, Sect. 15.7], therefore the type of + in FCC can
be view formally as

+: (Int — Int — Int) A (Str — Str — Str)

with the result that + can be used in an overloaded manner. The overloading
of + can be resolved statically, but the addition of algebraic data types and
functional programming with polymorphism of user defined functions requires
a more expressive type system to handle overloading.

Overloading in the Creol language can be expressed with type classes as
known from functional programming [57]. Type classes are found in Haskell
[39,57]. The work on O’Haskell [70] integrates type classes with object oriented
features in a purely functional setting. The operator + can have the type class
signature + : 7 — 7 — 7 with two instances + : Int — Int — Int and + : Str —
Str — Str.

Overloading can also be expressed with extensional polymorphism [33]. The
expressive power offered by extensional polymorphism can facilitate almost ar-

8.7. OVERLOADING 125

bitrary overloading, more so than type classes. The operator + could be given
the type

generic plus = case
| Int — Int — Int = plus_int
| Str — Str — Str = plus_str

The power of extensional polymorphism may not seem necessary for the Creol
language, but since Creol is intended to facilitate both object-oriented and im-
perative programming, extensional polymorphism may be less confusing than
having both classes and type classes in one language. This has yet to be deter-
mined.

The main difference between type-classes and extensional polymorphism is
the use of an open world assumption or a closed world but open recursion as-
sumption [29]. With an open world assumption, it is not known at compile time
how an identifier can possibly be overloaded, that is the set of possible over-
loadings can be extended. In the closed world assumption, the set of possible
overloadings is fixed, and may not be extended. The closed world assumption
is not very usefull by itself, however, when combined with the open recursion
assumption, it facilitates code optimisation with modular static type safety anal-
ysis [33]. The open recursion assumption states, that even in a closed world,
extension is possible for recursive invocations.

8.7.2 Methods

Recent work on the Creol language allows methods to be overloaded on class

inheritance [50]. The Creol type system does not facilitate overloading for meth-
ods, however the suggested form of overloading is expressible with extensional
polymorphism [33]. Note however that Bruce strongly discourages to mix over-

riding and static overloading because it is has proved difficult for programmers
to successfully predict which methods are executed [15, Sect. 2.5]. The approach
taken with extensional polymorphism, provides static type checking and run-
time selection of methods, that is, not static overloading, but rather dynamic
overloading with static type checking.

Consider the following inheritance hierarchy where the method m is over-
loaded with different types.

class A
begin

with Any op m(x:Int) == ...
end

class B inherits A
begin

with Any op m(x:Bool) == ...
end

The generic function that corresponds to m in the class A is

generic m = case

| M(T,Int,()) = meA

The generic function m is extended on inheritance in class B such that it becomes

126 CHAPTER 8. FURTHER WORK AND RESEARCH

generic m = case
| include m
| M (T, Bool,()) = mneB

The invocation of method m is now statically type checked and bound to the
correct class by virtue of extensional polymorphism.

The generic function m is used for type checking but does not occur in object
types. This is important because there is no known algorithm for type equality
between generic functions. The types of m@A and m@B are however just normal
methods and can therefore be checked for equivalence.

8.8 Modules

There are no stated assumptions about neither compilation units nor modules
for the Creol language [51,55,53,52,506,54,8]. Module systems do not directly
contribute to type safety, but rather to modularity and encapsulation in a man-
ner orthogonal to object-orientation, as well as expressiveness through higher
order modules. Modules often serve as compilation units [65] and further re-
search on the Creol language may consider formalising modules to clarify units
of compilation. Modules are also natural for grouping algebraic data types and
procedures as well as for hiding implementation details, that is, packing and
unpacking of existential types [77, Sect. 24], although module systems usually
provide more than existential types through higher ordered modules [26]. The
work by Leroy [98] can serve as a good starting point for modules in Creol.
Recent work on type systems has also demonstrated that modules and mix-
ins can be described by extensible records with some modifications, although
they provide a different abstraction than classes and objects [40]. The Creol
type system describes objects with a variant of extensible records. Extensible
records appear as a suitable type system abstraction that may also play a role
for modules or mixins.

Chapter 9

Conclusion

The main results of this thesis are now reviewed and discussed.

9.1 Contributions

This section emphasises the contributions to the Creol research by this thesis.
Note that, of these contributions, the representation of nominal information,
as rows, in a structural type system, appears to be original, that is, not done
before in any other type systems encountered. The other contributions are
new with respect to Creol research. The contributions are ordered by apparent
importance. The contributions address the issues raised in the introduction.

e The main contribution is a formal type system for the object-oriented
Creol language.

We have introduced a conformance relation that combines matching and
subtyping, both with and without nominal restrictions. This is realised
by introducing nominal rows for structural object types, which provides
a clean and precise type system, which facilitates confidence in a faithful
implementation.

e The creation of a prototype compiler for the Creol language by use of high
level tools.

The Functional Creol Compiler is a prototype compiler for the Creol lan-
guage, and can serve as a platform for further compiler development and
static type checking of Creol, especially so when the current Creol type
system is implemented.

e An analysis of how the Creol type system can separate inheritance from
subtyping.

The Creol language was made with the intent of separating inheritance
from subtyping. We have investigated the actual consequences of this
separation, with respect to the type system and the representation of
object types.

e The creation of an EBNF grammar for the Creol language.

127

128 CHAPTER 9. CONCLUSION

The previous descriptions of the Creol language has not provided a com-
plete syntax. The creation of a compiler required a formalisation of the
syntax, which we have provided.

e Account for the syntax of, and type checking for, functional programming
features in the Creol language. This includes procedures, algebraic data
types, pattern matching and polymorphism.

The Creol language has presumed the possibility of functional program-
ming. This thesis has proposed a syntax for functional programming with
Creol and provided type checking rules for these functional programming
constructs.

e A discussion of possible improvements to the Creol type system.

The suggestions for further work and research provide pointers to improve-
ments to the Creol language and the Creol type system. The improvements
are aimed at static type checking of more programs, and increased confi-
dence in the formal Creol type system.

9.2 Ciritique

This thesis provides a framework for a Creol compiler and type system, which
hopefully will prove to be a valuable contribution to the future development of
the Creol language. However, we have not attempted to prove soundness for
the Creol type system. The Creol type system is profoundly inspired by an
encoding of objects as extensible records [27,79,80] and there are readily proofs
available [80, App. 4] that could be used as a starting point for work on the
Creol type system. We have shown that the Creol type system is expressable
as extensible records with nominal rows. The nominal rows only restrict pos-
sible subtype/matching relations, that is, preserve safety. Therefore a proof of
soundness would most likely, first establish soundness for the structural type
system alone, and then establish that nominal restrictions preserve type safety,
by only restricting possible relations. The most difficult part of the proof, would
be the integration of subtyping, because the proofs only use type equality and
matching.

Although the Functional Creol Compiler is made with high level tools, the
compiler is still quite complex. The special syntax of the University of Utrecht
Attribute Grammar system makes the code less accessible for the common pro-
grammer, even if it represents a 65% saving, determined by comparing the count
of words, lines of code and size, before and after compilation of the attribute
grammar. The increased expressiveness is however beneficial, once the program-
mer is acquainted with the syntax.

9.3 Experience

All in all, there are a few observations that summarise acquired knowledge from
the work with this thesis.

The Functional Creol Compiler is written with high-level tools, and there is
a bit to learn in order to extend it, however a corresponding compiler prototype
written with traditional low-level tools would, according to experience, surely be

9.4. RELATED WORK 129

larger and more inconvenient to develop further. The high-level tools appear as
an important factor for the relatively fast creation of a prototype, so there was
time to pursue the creation of a type system for Creol. However, the chosen
tools would benefit from more intuitive documentation. This thesis provides
quite elaborate explanations in Section 3, to further aid those who wish to alter
the compiler.

Object types appear as an important and very successful abstraction for the
Creol type system. The early versions of the type system did not focus on object
types, but rather on class and interface types. With class and interface types the
type system became very algorithmic, and it was difficult to express properties
with the same rigour as with object types. For object types it is clear how to
handle fixpoints, while for classes and interfaces, it is not clear what a fixpoint
means. Observe from Section 5.4, that classes and interfaces actually describe
many different object types, each with a distinct fixpoint, and it is unclear how
one could merge these fixpoints in a structural type system. The suitability
of objects as an abstraction has been very much appreciated in the work with
the Creol type system. By having object types expressed precisely, it is easy to
regard and account for interfaces and classes as higher level abstractions.

Extensible records with row variable polymorphism, is a simple model that
accounts for objects in a natural manner, where fixpoints are expressed precisely,
and one can distinguish between objects and object protocols, which is crucial
to the separation of inheritance from subtyping.

With regard to nominal and structural type systems it appears that nomi-
nal type systems have lower entry points than structural type systems, however
structural type systems extended with nominal constraints provides more ex-
pressiveness in a concise manner.

9.4 Related Work

We have not found published work on structural type systems, that respect
nominal constraints, by introduction of nominal rows. The work by Bruce com-
bines nominal constraints, with subtyping and matching, in a nominal type
system [15]. The work on extensible records provides subtyping and matching,
without nominal nominal constraints, in a structural type system [80, 79, 27].
Other work that tackles this problem, is usually concerned with extending a
nominal type system with structural elements [77, Page 254] [65].

130 CHAPTER 9. CONCLUSION

Bibliography

1]

Martin Abadi and Luca Cardelli. On Subtyping and Match-
ing. Lecture Notes in Computer Science, 952:145-167, 1995.
http://citeseer.ist.psu.edu/abadi96subtyping.html.

Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag
New York, Inc., 1996. ISBN 0387947752.

Pierre America. Inheritance and subtyping in a parallel object-oriented
language. In Furopean conference on object-oriented programming on
ECOOP ’87, pages 234-242. Springer-Verlag, 1987. ISBN 0-387-18353-
1 http://wuw.ifs.uni-linz.ac.at/~ecoop/cd/papers/0276/02760234 . pdf .

Pierre America and Frank van der Linden. A parallel object-oriented
language with inheritance and subtyping. In OOPSLA/ECOOP ’90:
Proceedings of the Furopean conference on object-oriented program-
ming on Object-oriented programming systems, languages, and ap-
plications, pages 161-168. ACM Press, 1990. ISBN 0-201-52430-X
http://portal.acm.org/citation.cfm?id=97966\&d1=ACM\&col1l=GUIDE.

Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Dis-
tributed Programming. Addison Wesley Longman, Inc., 2000. ISBN 0-
201-35752-6.

ANTLR - ANother Tool for Language Recognition.
http://www.antlr.org/.

Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, 1998.

Marte Arnestad. En abstrakt maskin for Creol i Maude. Master’s the-
sis, Department of Informatics, University of Oslo, November 2003. In
Norwegian. Available from http://heim.ifi.uio.no/~creol.

Bison - The YACC-compatible Parser Generator.
http://www.gnu.org/software/bison/bison.html.
Daniel Bonniot. The Nice programming language.

http://nice.sourceforge.net/.

Daniel Bonniot. @~ Why programs written in Nice have less bugs.
http://nice.sourceforge.net/safety.html.

131

http://citeseer.ist.psu.edu/abadi96subtyping.html
http://www.ifs.uni-linz.ac.at/~ecoop/cd/papers/0276/02760234.pdf
http://portal.acm.org/citation.cfm?id=97966&dl=ACM&coll=GUIDE
http://www.antlr.org/
http://heim.ifi.uio.no/~creol
http://www.gnu.org/software/bison/bison.html
http://nice.sourceforge.net/
http://nice.sourceforge.net/safety.html

132 BIBLIOGRAPHY

[12] Viviana Bono. Type Systems for the Object Oriented Paradigm.
PhD thesis, Universita di Torino, Italy, February 1999.
http://citeseer.ist.psu.edu/bono99type.html.

[13] Viviana Bono and Michele Bugliesi. Matching for the lambda calcu-
lus of objects. Theoretical Computer Science, 212(1-2):101-140, 1999.
http://citeseer.ist.psu.edu/bono98matching.html.

[14] Kim B. Bruce. Understanding Object-Oriented Languages:
Semantics and Types. Lecture Notes, December 1998.
http://www.cs.princeton.edu/courses/archive/fall98/cs441/Lectures/Lec21l.ps.

[15] Kim B. Bruce. Foundations of Object-Oriented Languages. The MIT
Press, Cambridge, Massachusetts, London, England, 2002.

[16] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, Jonathan
Eifrig, Scott F. Smith, Valery Trifonov, Gary T. Leav-
ens, and Benjamin C. Pierce. On Binary Methods. The-
ory and Practice of Object Systems, 1(3):221-242, 1995.
http://citeseer.ist.psu.edu/article/bruce95binary.html.

[17] Kim B. Bruce and J. Nathan Foster. LOOJ: Weaving LOOM into Java.
In Martin Odersky, editor, ECOOP 2004 - Object-Oriented Programming,
18th European Conference, Oslo, Norway, June 14-18, 2004, Proceed-

ings, volume 3086 of Lecture Notes in Computer Science, pages 389-413.
Springer-Verlag, 2004. ISBN 3-540-22159-X.

[18] Kim B. Bruce and Joseph C. Vanderwaart. Semantics-Driven
Language Design: Statically Type-Safe Virtual Types in Object-
Oriented Languages. Submitted to MFPS 99, February 1999.
http://cs.williams.edu/~kim/ftp/StatVT.ps.gz.

[19] Standard ECMA-334 C# Language Specification, 2002.

http://www.ecma-international.org/publications/standards/Ecma-334.htm.

[20] Craig Chambers and Gary T. Leavens. Typechecking and
Modules for Multimethods. ACM Transactions on Program-
ming Languages and Systems, 17(6):805-843, November 1995.
http://citeseer.ist.psu.edu/chambers95typechecking.html.

[21] Clean Programming Language. http://www.cs.kun.nl/~clean/.

[22] William R. Cook. Interfaces and Specifications for the Smalltalk-
80 collection classes. In OOPSLA ’92: conference proceed-
ings on Object-oriented programming systems, languages, and ap-
plications, pages 1-15. ACM Press, 1992. ISBN 0-201-53372-3
http://doi.acm.org/10.1145/141936.141938.

[23] William R. Cook, Walter Hill, and Peter S. Canning. In-
heritance is mnot subtyping. In Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 125-135. ACM Press, 1990. ISBN 0-89791-343-4
http://doi.acm.org/10.1145/96709.96721.

http://citeseer.ist.psu.edu/bono99type.html
http://citeseer.ist.psu.edu/bono98matching.html
http://www.cs.princeton.edu/courses/archive/fall98/cs441/Lectures/Lec21.ps
http://citeseer.ist.psu.edu/article/bruce95binary.html
http://cs.williams.edu/~kim/ftp/StatVT.ps.gz
http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://citeseer.ist.psu.edu/chambers95typechecking.html
http://www.cs.kun.nl/~clean/
http://doi.acm.org/10.1145/141936.141938
http://doi.acm.org/10.1145/96709.96721

BIBLIOGRAPHY 133

[24] Creol Programming Language Project. http://www.ifi.uio.no/~creol/.

[25] Ole-Johan Dahl, Edsger W. Dijkstra, and C. A. R. Hoare. Hierarchical
Program Structures, chapter I11. Academic Press, 1972. ISBN 0-12-200550-
3.

[26] Derek Dreyer, Karl Crary, and Robert Harper. A Type System for Higher-
Order Modules, January 2002. Principles of Programming Languages
(POPLO02) http://citeseer.ist.psu.edu/craryOitype.html.

[27] Didier Rémy. Type Inference for Records in a Natural Ex-
tension of ML. In Carl A. Gunter and John C. Mitchell,
editors, Theoretical — Aspects Of Object-Oriented Programming.
Types, Semantics and Language Design. MIT Press, 1993.
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/taoopl.ps.gz.

[28] Johan Dovland, Einar Broch johnsen, and Olaf Owe. Verification of Con-
current Objects with Asynchronous Method Calls, 2005.

[29] Dominic Duggan and John Ophel. Open and closed scopes for con-
strained genericity. Theoretical Computer Science, 275(1-2):215-258,
2002. http://dx.doi.org/10.1016/S0304-3975(01)00129-3.

[30] Atze Dijkstra (Ed.). Implementation of
Programming Languages (Lecture Notes).
http://citeseer.nj.nec.com/article/dijkstra02implementation.html.

[31] Kathleen Fisher, Furio Homsell, and John C. Mitchell.
A lambda calculus of objects and method specializa-
tion. Nordic Journal of Computing, 1(1):3-37, Spring 1994.
http://citeseer.ist.psu.edu/fisher94lambda.html.

[32] Flex - A fast scanner generator. http://www.gnu.org/software/flex/.

[33] Jun Furuse. Extensional Polymorphism: Theory and Ap-
plication. PhD thesis, Denis Diderot University, 2002.

http://pauillac.inria.fr/~furuse/thesis/thesis_furuse.ps.gz.

[34] Michael R. Garey and David S. Johnson. Computers and Intractability
- A Guide to the Theory of NP-Completeness. Bell Laboratories, 1979.
ISBN 0-7167-1045-5.

[35] Carlo Ghezzi and Mehdi Jazayeri. Programming language concepts (3.
ed.). John Wiley & Sons, Inc., 1997. ISBN 0-471-10426-4.

[36] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.
The Java Language Specification - 2nd edition, 2000.
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html.

[37] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling
Wang, and James Cheney. Region-Based Memory Management in Cy-
clone. In Proceedings of the ACM SIGPLAN 2002 Conference on Program-
ming language design and implementation, pages 282—293. ACM Press,
2002. ISBN 1-58113-463-0 http://doi.acm.org/10.1145/512529.512563.

http://www.ifi.uio.no/~creol/
http://citeseer.ist.psu.edu/crary01type.html
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/taoop1.ps.gz
http://dx.doi.org/10.1016/S0304-3975(01)00129-3
http://citeseer.nj.nec.com/article/dijkstra02implementation.html
http://citeseer.ist.psu.edu/fisher94lambda.html
http://www.gnu.org/software/flex/
http://pauillac.inria.fr/~furuse/thesis/thesis_furuse.ps.gz
http://java.sun.com/docs/books/jls/second_edition/html/j.title.doc.html
http://doi.acm.org/10.1145/512529.512563

134

[38]

[39]
[40]

BIBLIOGRAPHY

David Harel. Algorithmics - The Spirit of Computing. Addison-Wesley,
1992. ISBN 0-201-50401-4.

Haskell Functional Programming Language. http://www.haskell.org/.

Henning Makholm and Joe B. Wells. Type Inference and Prin-
cipal Typings for Symmetric Record Concatenation and Mixin
Modules. Technical report, Heriot-Watt University, March 2005.
http://henning.makholm.net/papers/bowtini-long.pdf .

P. Hudak, J. Peterson, and J. H. Fasel. A Gentle Introduction to Haskell
98. http://www.haskell.org/tutorial, June 2000.

Gérard Huet. Constructive Computation Theory, October 2002. Lec-
ture notes in Constructive Computation Theory at INRIA Rocquencourt.
http://pauillac.inria.fr/~huet/CCT/.

John Hughes. Why Functional Programming Matters. Computer Journal,
32(2):98-107, 1989.

John Hughes. Generalising monads to arrows. Sci-
ence of Computer Programming, 37(1-3):67-111, 2000.
http://citeseer.ist.psu.edu/hughes98generalising.html.

Graham Hutton and Erik Meijer. Monadic Parser Combinators. Technical
Report NOTTCS-TR-96-4, Department of Computer Science, University
of Nottingham, 1996.

Jacques Garrigue. Relaxing the Value Restriction, 2003.
http://citeseer.ist.psu.edu/garrigueO3relaxing.html.

C. B. Jay. The FISh language definition. Technical report,
School of Computing Sciences, University of Technology, Sydney, 1998.
http://linus.socs.uts.edu.au/~cbj/Publications/latest_fish.ps.gz.

Trevor Jim, Greg Morrisett, Dan Grossman, and Mike Hicks. Cyclone -
A Safe Dialect of C. http://www.research.att.com/projects/cyclone/.

Einar Broch Johnsen. Personal communication, 2004.
Einar Broch Johnsen. Personal communication, April 2005.

Einar Broch Johnsen and Olaf Owe. A Compositional Formalism for
Object Viewpoints. In Bart Jacobs and Arend Rensink, editors, Pro-
ceedings of the 5th International Conference on Formal Methods for Open
Object-Based Distributed Systems (FMOODS 2002), pages 45—60. Kluwer
Academic Publishers, March 2002.

Einar Broch Johnsen and Olaf Owe. An Asynchronous Commu-
nication Model for Distributed Concurrent Objects. In Proc. 2nd
Intl. Conf. on Software Engineering and Formal Methods (SEFM’04),
pages 188-197. IEEE Computer Society Press, September 2004.
http://www.ifi.uio.no/~einarj/Papers/johnsen0O4sefm.pdf.

http://www.haskell.org/
http://henning.makholm.net/papers/bowtini-long.pdf
http://www.haskell.org/tutorial
http://pauillac.inria.fr/~huet/CCT/
http://citeseer.ist.psu.edu/hughes98generalising.html
http://citeseer.ist.psu.edu/garrigue03relaxing.html
http://linus.socs.uts.edu.au/~cbj/Publications/latest_fish.ps.gz
http://www.research.att.com/projects/cyclone/
http://www.ifi.uio.no/~einarj/Papers/johnsen04sefm.pdf

BIBLIOGRAPHY 135

[53]

[54]

[60]

[61]

[63]

[64]

Einar Broch Johnsen and Olaf Owe. Object-Oriented Specification and
Open Distributed Systems. In Olaf Owe, Stein Krogdahl, and Tom Lyche,
editors, From Object-Orientation to Formal Methods: Essays in Memory
of Ole-Johan Dahl, volume 2635 of Lecture Notes in Computer Science,
pages 137-164. Springer-Verlag, 2004.

Einar Broch Johnsen and Olaf Owe. Inheritance in the Presence of Asyn-
chronous Method Calls. In Proc. 38th Hawaii Intl. Conf. on System

Sciences (HICSS 2005). IEEE Computer Society Press, January 2005.
http://www.ifi.uio.no/~einarj/Papers/johnsenO5hicss.pdf.

Einar Broch Johnsen, Olaf Owe, and Marte Arnestad. Combining Active
and Reactive Behavior in Concurrent Objects. In Proc. of the Norwe-
gian Informatics Conference (NIK’03), pages 193-204. Tapir Academic
Publisher, November 2003.

Einar Broch Johnsen, Olaf Owe, and Eyvind W. Axelsen. A Run-Time
Environment for Concurrent Objects with Asynchronous Method Calls. In
Proc. 5th International Workshop on Rewriting Logic and its Applications
(WRLA’04), Electronic Notes in Theoretical Computer Science. Elsevier,
March 2004. http://www.ifi.uio.no/~einarj/Papers/johnsenO4wrla.pdf.

Mark P. Jones. Functional Programming with Overloading and Higher-
Order Polymorphism. In Advanced Functional Programming, pages 97—
136, 1995. http://citeseer.ist.psu.edu/jones95functional .html.

Brian W. Kernighan and Dennis M. Ritchie. The C programming language.
Prentice Hall Press, 1988. ISBN 0-13-110370-9.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. In Mehmet Aksit and Satoshi Matsuoka, editors, Proceed-
ings Furopean Conference on Object-Oriented Programming, volume 1241,
pages 220-242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.
http://citeseer.ist.psu.edu/kiczales97aspectoriented.html.

Kimwitu++ - a tool for processing trees, designed to work with Lex and
Yacc. http://site.informatik.hu-berlin.de/kimwitu++/.

Harry R. Lewis and Christos H. Papadimitriou. Elements of The Theory
of computation. Alan Apt, 1998. ISBN 0-13-262478-8.

Barbara H. Liskov and Jeannette M. Wing. A Behav-
ioral Notion of Subtyping. ACM Transactions on Program-
ming Languages and Systems, 16(6):1811-1841, November 1994.
http://citeseer.ist.psu.edu/liskov94behavioral.html.

Kenneth C. Louden. Compiler Construction: Principles and Practice.
PWS Publishing Co., 1997. ISBN 0534939724.

Luca Cardelli, James Donahue, Lucille Glassman, Mick Jordan, Bill
Kalsow, and Greg Nelson. Modula-3: Language definition, November
1989. http://research.compaq.com/SRC/m3defn/html/index.html.

http://www.ifi.uio.no/~einarj/Papers/johnsen05hicss.pdf
http://www.ifi.uio.no/~einarj/Papers/johnsen04wrla.pdf
http://citeseer.ist.psu.edu/jones95functional.html
http://citeseer.ist.psu.edu/kiczales97aspectoriented.html
http://site.informatik.hu-berlin.de/kimwitu++/
http://citeseer.ist.psu.edu/liskov94behavioral.html
http://research.compaq.com/SRC/m3defn/html/index.html

136

[65]

[68]

BIBLIOGRAPHY

Martin Odersky, Vincent Cremet, Christine R&ckl, and Matthias
Zenger. A Nominal Theory of Objects with Dependent
Types. In Proceedings ECOOP’03, Springer LNCS, July 2003.
http://lampwww.epfl.ch/~odersky/papers/ecoop03.html.

Maude. http://maude.cs.uiuc.edu/.

Todd Millstein, Colin Bleckner, and Craig Chambers. Re-
laxed MultiJava: Balancing Extensibility and Modular Type-
checking. OOPSLA ’03: Conference on Object-oriented pro-
gramming, systems, languages, and applications, October 2003.
http://www.cs.washington.edu/research/projects/cecil/www/pubs/icfp02.html.

Francesco Zappa Nardelli. Strong Static Typing and Advanced Func-
tional Programming, March 2005. Lectures given at the Bertinoro In-
ternational Spring School for graduate students in computer science.
http://www.di.ens.fr/~zappa/bertinoro05.html.

Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A
Concurrent Lambda Calculus with Futures, January 2004.
http://www.ps.uni-sb.de/Papers/abstracts/lambdafut.html.

Johan Nordlander, Magnus Carlsson, and Bjorn von Sydow.
O’Haskell - An Object Oriented Extensions to the Language Haskell.
http://www.cs.chalmers.se/~nordland/ohaskell/.

Noweb Literate Programming Tool. http://www.eecs.harvard.edu/~nr/noweb/.

Nathaniel Nystrom, Stephen Chong, and Andrew C. Myers. Scalable ex-
tensibility via nested inheritance. In OOPSLA ’04: Proceedings of the 19th
annual ACM SIGPLAN Conference on Object-oriented programming, sys-
tems, languages, and applications, pages 99-115. ACM Press, 2004. ISBN
1-58113-831-9 http://citeseer.ist.psu.edu/nystromO4scalable.html.

Objective Caml Programming Language. http://www.ocaml.org/.
Olaf Owe. Personal communication, 2004.

Olaf Owe and Isabelle Ryl. A notation for combining formal reasoning,
object orientation and openness. Technical Report 278, University of Oslo,
November 1999. http://www.ifi.uio.no/~adapt/RS-278-IFI.ps.

Benjamin C. Pierce. Bounded quantification is undecidable. In
C. A. Gunter and J. C. Mitchell, editors, Theoretical Aspects
of Object-Oriented Programming: Types, Semantics, and Language

Design, pages 427-459. The MIT Press, Cambridge, MA, 1994.
http://citeseer.ist.psu.edu/pierce93bounded.html.

Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.
ISBN 0-262-16209-1.

James Power. Notes on Formal Language Theory and Parsing.
http://www.cs.may.ie/~ jpower/Courses/parsing/Index.html.

http://lampwww.epfl.ch/~odersky/papers/ecoop03.html
http://maude.cs.uiuc.edu/
http://www.cs.washington.edu/research/projects/cecil/www/pubs/icfp02.html
http://www.di.ens.fr/~zappa/bertinoro05.html
http://www.ps.uni-sb.de/Papers/abstracts/lambdafut.html
http://www.cs.chalmers.se/~nordland/ohaskell/
http://www.eecs.harvard.edu/~nr/noweb/
http://citeseer.ist.psu.edu/nystrom04scalable.html
http://www.ocaml.org/
http://www.ifi.uio.no/~adapt/RS-278-IFI.ps
http://citeseer.ist.psu.edu/pierce93bounded.html
http://www.cs.may.ie/~jpower/Courses/parsing/Index.html

BIBLIOGRAPHY 137

[79] Didier Rémy. Programming Objects with ML-ART, an Extension
to ML with Abstract and Record Types. In Proceedings of the
International Conference on Theoretical Aspects of Computer Soft-
ware, pages 321-346. Springer-Verlag, 1994. ISBN 3-540-57887-0
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.dvi.gz.

[80] Didier ~Rémy and Jerome Vouillon. Objective ~ ML:
An Effective Object-Oriented Extension to ML. The-
ory and Practice of Object Systems, 4(1):27-50, 1998.
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/objective-ml!tapos98.ps.gz.

[81] Didier ~ Rémy and Jéréme Vouillon. The real-
ity of wvirtual types for free! Unpublished note.
http://pauillac.inria.fr/~remy/work/virtual/virtual.html, Octo-
ber 1998.

[82] Nathanael Schérli, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts.
Composable Encapsulation Policies. In Martin Odersky, editor, ECOOP
2004 - Object-Oriented Programming, 18th Furopean Conference, Oslo,
Norway, June 14-18, 2004, Proceedings, volume 3086 of Lecture Notes
in Computer Science, pages 26-50. Springer-Verlag, 2004. ISBN 3-540-
22159-X.

[83] Peter Sestoft. ML pattern match compilation and partial evaluation. In
Gliick Danvy and Thiemann, editors, Lecture Notes in Computer Science:
Partial Fvaluation, volume 1110, pages 446-464. Springer-Verlag, Febru-
ary 1996. http://www.dina.kvl.dk/~sestoft/papers/match.ps.gz.

[84] Programming Language Standard ML of New Jersey.
http://www.smlnj.org/.

[85] Alan Snyder. Encapsulation and inheritance in object-oriented program-
ming languages. In Norman Meyrowitz, editor, Proceedings of the Con-
ference on Object-Oriented Programming Systems, Languages, and Appli-

cations (OOPSLA), volume 21, pages 38-45, New York, NY, 1986. ACM
Press. http://citeseer.ist.psu.edu/snyder86encapsulation.html.

[86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley
Longman Publishing Co., Inc., 2000. ISBN 0201700735.

[87] Sun Microsystems. Java 2 Platform Standard Edition 5.0 API Specifica-
tion. http://java.sun.com/j2se/1.5.0/docs/api/.

[88] S. Doaitse Swierstra. UU_ Combinator parsing library for Haskell.
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/index.html.

[89] S. Swierstra Doaitse. Combinator Parsers: From Toys to
Tools. In Graham Hutton, editor, FElectronic Notes in Theoreti-
cal Computer Science, volume 41. Elsevier Science Publishers, 2001.
http://math.tulane.edu/~entcs/.

[90] Simon Thompson. Miranda: The Craft of Functional Pro-
gramming. Addison Wesley, July 1995. ISBN 0-201-42279-4
http://www.cs.ukc.ac.uk/pubs/1995/353.

ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/tacs94.dvi.gz
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.Remy/objective-ml!tapos98.ps.gz
http://pauillac.inria.fr/~remy/work/virtual/virtual.html
http://www.dina.kvl.dk/~sestoft/papers/match.ps.gz
http://www.smlnj.org/
http://citeseer.ist.psu.edu/snyder86encapsulation.html
http://java.sun.com/j2se/1.5.0/docs/api/
http://www.cs.uu.nl/groups/ST/Software/UU_Parsing/index.html
http://math.tulane.edu/~entcs/
http://www.cs.ukc.ac.uk/pubs/1995/353

138

[91]

92]

(93]

[100]

[101]

BIBLIOGRAPHY

treecc - Tree Compiler Compiler, designed to work with Flex and Bison,
used in Portable. NET. http://www.southern-storm.com.au/treecc.html.

University of Utrecht Haskell Compiler.
http://www.cs.uu.nl/groups/ST/Center/UtrechtHaskellCompiler.

Vincenzo Martena and Pierluigi San Pietro. Alias Analysis by Means of
a Model Checker. Lecture Notes in Computer Science, 2027:3-17, 2001.
http://www.elet.polimi.it/upload/sanpietr/pubs/CCOlsubmission.pdf or
http://citeseer.ist.psu.edu/martenalOlalias.html.

Wolfgang Weck and Martin Biichi. Compound Types:
Strong Typing for Architecture Composition, 1998.
http://citeseer.ist.psu.edu/230137 .html.

Eric W. Weisstein. Presburger Arithmetic.
From MathWorld-A Wolfram Web Resource.
http://mathworld.wolfram.com/PresburgerArithmetic.html.

Eric W. Weisstein. Richardson’s Theorem. From MathWorld—A Wolfram
Web Resource. http://mathworld.wolfram.com/RichardsonsTheorem.html.

Renhard Wilhelm, Dieter Maurer, and R. Wilhelm. Compiler Design.
Addison Wesley Longman Publishing Co., Inc., 1995. ISBN 0201422905.

Xavier Leroy. A Modular Module System. Jour-
nal of Functional Programming, 10(3):269-303, 2000.
http://pauillac.inria.fr/~xleroy/publi/modular-modules-jfp.ps.gz.

Hongwei Xi. Unifying object-oriented programming with typed
functional programming. In Proceedings of the ASIAN sympo-
stum on Partial evaluation and semantics-based program manipu-
lation, pages 117-125. ACM Press, 2002. ISBN 1-58113-458-4
http://doi.acm.org/10.1145/568173.568186.

Hongwei Xi and Frank Pfenning. Dependent Types in Prac-
tical Programming. In Conference Record of POPL 99: The
26th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, San Antonio, Texas, pages 214-227, 1999.
http://citeseer.ist.psu.edu/xi98dependent.html.

Yacc - Yet Another Compiler-Compiler.
http://dinosaur.compilertools.net/yacc/index.html.

http://www.southern-storm.com.au/treecc.html
http://www.cs.uu.nl/groups/ST/Center/UtrechtHaskellCompiler
http://www.elet.polimi.it/upload/sanpietr/pubs/CC01submission.pdf
http://citeseer.ist.psu.edu/martena01alias.html
http://citeseer.ist.psu.edu/230137.html
http://mathworld.wolfram.com/PresburgerArithmetic.html
http://mathworld.wolfram.com/RichardsonsTheorem.html
http://pauillac.inria.fr/~xleroy/publi/modular-modules-jfp.ps.gz
http://doi.acm.org/10.1145/568173.568186
http://citeseer.ist.psu.edu/xi98dependent.html
http://dinosaur.compilertools.net/yacc/index.html

Appendix A

Creol Grammar

This is a compact version of the Creol grammar. Repetition is written with
an element while repetition with delimiter is written element delim. Otherwise
the standard regular expression operators are used such as | for choice and ? for
optional. The grammar is structured to show valid syntax. A more elaborate
description of productions along with examples can be found in Section 2.

varid == [a—z][a —zA — Z]x
typeid = [A—Z][a — zA — Z]*
typexpr = typeid
typdecl = typeid
comment = //.x\n
| /7*[\n] x */
program = (interface|class|data|procedure)
interface ::= interface typedecl
inherits typexpr,)?
begin
signature
end
signature == (with typexpr)?

op wvarid ((in varid: typexpr,)?(out varid : typexpr,)?)
class = class typedecl((varid,))?
(inherits typexpr,)?
(implements typexpr,)?
begin
var?
method?

end

var = var wvarid(=ezpression)?, :typexpr,;
method ::= signature == statement;
statement = (statement)

| statement (|I11][]) statement
| varid := expression

| (varid,) :=expression

| expression
|
|
|

while expression do statement od
(expression .)?varid Cexpression , ; varid ,)
varid! (expression .)?varid (expression ,)

139

140 APPENDIX A. CREOL GRAMMAR

varid? (varid ,)

await expression

wait

varid@typeid (expression , ; varid ,)
varid ! varid@typeid (expression ,)
var; statement

return expression?

int == [1—9][0— 9]«

bool ::= True|False

str = n[" u} "

expression = warid | int | bool | str

| C expression)
(~|not) expression

expression ([+-*/=<>]|<=|>=|!=|or|and) ezpression
new typexpr (varid,)

varid?

if expression then statement else statement fi
varid?

varid Cexpression ,)

expression . label

(expression ,)

expression . int

[expression ,]

case ezpression of pattern (when ezpression)? then statement| fo

typeid

procedure ::= proc varid (varid, : typexpr) : typexpr == statement
data ::= data typedecl = typedef ;
typedef = record

| variant| ;

| typexpr

| Ctypezpr,)
record = (varid, :typexpr,)
variant = typeid typedef

| typeid
label = warid
pattern = _

| varid

| typeid pattern

| pattern as wvarid

| C(varid=pattern,)

| [0

| [pattern: : pattern]
typedecl = typeid

| typeid [typeid,]

| typeid [typeid , <typexpr,]
typexpr = typeid

| typeid [typexpr,]
| [typexpr]

Appendix B

Functional Subset of Creol
Type System

B.1 Expressions

A simple type constructor connects a value with a type. The rules are straight-
forward, and present © and I', although, for brevity, not shown when © and I
are inspected.

Numbers O,I'F...,—1:1Int,0: Int,1: Int,...

Boolean O,I' | True: Bool,False : Bool

String ©,T'F"...": Str
The simple type constructors map primitive values to their type. Note
that the "..." is taken to mean any string enclosed in double quotes.

The parsing of a string with escaped double quotes is not elaborated,
since it is straightforward to deal with.

The next step is to see how expressions are typed. The rules for unary and binary
operators are presented in detail, even though the rule for function application
in general could cover all the cases, given a prelude with standard definitions,
which is not yet developed for Creol. Furthermore the details correspond to the
Creol Virtual Machine implementation of these operators. The type rules for
operators, function application, identifiers and type application are:

©,'te: Int O, e: Bool

Unary operators O,I'F—e:Int O, Fnot e: Bool
Numeric and Boolean negation preserve type.

Binary operators

O,TFel:Int ©.TFe?:Int
O,TFel ope?:Int where op € {+,-,*,/}

O,TFel:Int O,I'Fe?: Int
O,T e! op e?: Bool where op € {=,<,> <=,>= 1=}

141

142 APPENDIX B. FUNCTIONAL SUBSET OF CREOL TYPE SYSTEM

O,T'e!: Bool ©O,TF e?: Bool
O,T Fe! op e : Bool where op € {and, or}

The binary operators are just the common mathematical operators on
integers and booleans, with straightforward rules.

Function Application

O,lte:rt -7 (@,FFEi:TZE)iel
O,I'+-e(Ep):T

(@, ' TZ-E%T;“)

i€l

Function application is typed as the return type of the function, given
that the actual parameters conform to the required function arguments.

Identifiers

(id,7) el
O,'Fid: 7

An identifier is legal if there exists a mapping for it in T'.
Placeholder Type Variable

(f,7) €O
OF..7~~OF...T

A placeholder type 7 can be replaced by the type 7, if the mapping (7, 7)
exists in O.

The identifier and placeholder type rules demonstrate, how information in the
environments, © and I', are used do determine that an identifier or place-
holder type has a specific type. Thus the identifier rule and the placeholder
type rule show, how elements are moved from the left hand side of - to the
right hand side. The identifier rule is used, whenever literal text is looked up in
the namespace. All rules on the form ©,I' F id : 7 use the identifier rule. The
placeholder type rule is used to transform placeholder types into types. It is
used whenever a placeholder type occurs, so placeholder types and types can be
used interchangeably, which corresponds to folding and unfolding of iso-recursive

types.

B.2 Statements

The next step is to look at how expressions can form statements, and how these
statements can be connected. We first consider standard statements such as
assignment, condition, loop and statement combinations. Remark that standard
imperative features, possibly with side effects, have type Void, and their side
effects are type checked in the condition of the rule.

Assignment

O,'+id: 7 O, T'Fe:7" O,I'F tb&re
O,'Fid := e: Void

B.3. ALGEBRAIC DATATYPE EXPRESSIONS 143

Assignment is a side effect with type Void, and the right hand side must
conform to the left hand side.

Condition Expression

©,T'Fe:Bool O©TFe*:7%e": 70 taur<r,r°<r
O,T' I if e then e® else e’ fi: T

The condition expression rule can be used both as a statement and as
an expression. When used as a statement the 7 must be Void. When used
as an expression the two branches must have a common supertype.

Loop

O,T'Fe: Bool,s : Void
O, F while e do s od : Void

A loop is type correct when the conditional expression is of type Bool,
and the body has type Void.

Composition
O,T'Fs': Void ©,T'Fs?: Void
O,T+s! op s?: Void where op € {;, 111, [1}

Any two Void statements may be composed, and then the composition
also has type Void.

The assignment uses the identifier rule to determine the type 7% of the variable
on the left hand side of :=, and the necessary rules to determine type 7° of the
value on the right-hand-side of :=, then these types are analyzed to determine, if
they are compatible 7 < 7%, If these conditions are met, then the assignment is a
proper statement, and it has the type Void. The type Void is a special type with
no value, because the assignment doesn’t return anything. Since the value is now
available through the variable, the assignment either masquerades the type of
the value as the type of the variable, or instantiates the open type of the variable,
to remember the type of the value. This is determined by the conformance
relation. The condition and loop require that the conditional expression has type
Bool. The statement composition contains the usual ; that perform actions in
sequence, but it also contains two new statement operators, | | | and []. The []
chooses arbitrarily between two statements, and ||| performs two statements
in arbitrary order.

B.3 Algebraic Datatype Expressions

This section shows how to type the algebraic datatype expressions, as proposed
in Section 2.3.5. The algebraic data types in Creol are built from records and
variants, with record selection and variant case for deconstruction. The other
algebraic data types, tuples, enumerations, options and lists can be forged from
records and variants. Pattern matching is a generalisation of record selection

144 APPENDIX B. FUNCTIONAL SUBSET OF CREOL TYPE SYSTEM

and variant case, and facilitates binding, nested patterns, wildcards and guards,
which complicate the type checking rule for pattern matching. Since pattern
matching is a general mechanism, it naturally allows deconstruction of tuples,
enumerations, options and lists. The pattern matching rule is presented piece-
meal to accord for each concept.

The record selection rule allows dot-notation to extract an element from a
record. The compilation of record selection can safely be translated to indexed
lookup, because the label is available at compile time.

The variant case rule would be complicated by empty variants, such as enu-
merations in C [58, Sect. A4.2]. Therefore the handling of empty variants is
considered desugaring and is done at parse time. A case statement requires a
valid variant type, and the branches in the case expression must correspond to
the variants of the variant type. To prevent run-time errors the variant case
expression requires a branch for each variant, but such analysis is difficult to
express in our formal type system, and hence not shown.

The rule for pattern matching is valid, if the pattern is valid, and the guard
is valid, where the guard uses an environment updated with bindings from the
pattern. The symbol ® is used to describe the combination of a pattern with a
type, so the rules for different patterns can be specified separately.

Record Selection
O,l'Fe:R((idi:7);e;) ©O,T def (idi : Ti);e } F label: T
O,'Fe.label: T

Record selection extracts an element from a record. The type of the
selection is that of the selected element. The label is looked up with all
the record labels (id; : 7;),c; as namespace, and these record labels are
found in the record definition.

Variant Case

. . . ~variant
@,F"SG.V{(IdJ 'Tj)jg,]} (G,Fu{idi:Tvariant}Fei:T

. ariant . iant
(__), {(Idj . ijdrldn)jeJ} [Pz . pvarian

>i€I

O,I' - case se (of P; id; then e;);.; end: T

The case statement facilitates deconstruction of variant types. Each
branch must have the same type, so the case expression has the same
type, regardless of the chosen branch. The case expression is valid, if all
the branches are valid. A branch is valid, if the constructor P; denotes a
valid variant, written

. riant . ariant
o, {(Idj Dryane)jeJ} B TEE A

and each branch e; can be correctly type checked when id; is typed by
that valid variant, written

O,T U {id; : 7V g, 1 7

and this is repeated for all the branches.

Notice that (of ...then...), ; is an abbreviation for several of ... then ...

branches.

B.3. ALGEBRAIC DATATYPE EXPRESSIONS 145

Pattern Matching

Lists an value patterns are translated into pattern matching by desugaring.

Case

O,k se: 7%

(©,I' - pattern; ® 7°° ¢ ©,I" I- guard, : Bool,e; : 7),;

O,I' - case se (of pattern; when guard, then e;), ., end: 7

The case with pattern matching and guards is simpler, than the
variant case, because the pattern matching is specified by separate
rules for ®, that connect a pattern to a type. The guard of a case
expression must be a Bool, so the branch is chosen if the pattern
matches and the guard is True. The guard can use the bindings
introduced by the pattern through environment updates.

Wildcard ©,TF_©700,T
The wildcard symbol _ pattern matches against any type and returns
the environment unchanged.

Binding ©,T'+ ido®700,TU{id: 7}
A pattern match with only a variable id, introduces id into the
namespace, and binds it to the type 7.

As Binding

O,T + pattern® 70 ©', T
©,T't patternas ido70 0/, IV U{id: 7}

The as binding is appropriate, when one wishes to introduce a bind-
ing for a certain part of a pattern, while still specifying the inner
structure of the pattern. Notice, that the resulting environment con-
tains both the introduced binding, as well as other bindings, that are
specified in the structure of the pattern.

Record
@, {(idj : Tj)jEJ} F label; : 7
O,I' pattern, © 70 0;,I; el

©,T'F ((label;=pattern;),.;) © R ((idj : Tj)je]) ©0r,T;

The record pattern matching rule is like record selection, but the
pattern syntax is slightly different, as multiple labels can be speci-
fied. Each label; is looked up in the record definition, and its type
T is used to check the pattern;, and the environment ©;,I'; is re-
turned. Notice that the conclusion uses ©7,I'; which is the union of
all the updated environments from the pattern; checking.

Variant

0, {(Idi : Ti)iel} FId:7 O,'Fpattern® 700, T’
O,I'F Id pattern® V {(Id; : 73),c,} © ©', 1"

146 APPENDIX B. FUNCTIONAL SUBSET OF CREOL TYPE SYSTEM

The variant pattern matching rule is like the variant case, although
slightly simpler, because the rule only checks one variant, and not
several. If the variant Id is found in V {(Id;,7;),c;}, so the con-
tained type in Id is 7, then the pattern is checked against 7.

Tuple
(©,I'F pattern, ® 7; © O, Fi)z‘el
©,I'+ (pattern,.;) ©R ((idi : Ti)ieI) 0.,

The tuple is valid, if it corresponds to a record of the same number
of elements, indicated by the same subscript range, and each pattern
can pattern match with the corresponding part of the record.

Unconstrained Type Application

O,I'+e:Vay(r) (O,IFTE : 7,'F)
@,Fl—e[TE]]:Ta ;rEO(“)/,F

el

I—T

Unconstrained type application takes types as parameters, and substitutes
free types in a V expression. Note that this rule produces an unspecified
update of the type environment, due to a possible instantiation of recursive
types. © is changed as necessary for instantiation to produce ©’.

Constrained Type Application

. _TE
0,TFe:V (<™, cp (1) (G’FFTEZ'TZ)
el

o,I'+ TZ-TE%'rfuP

ITE 0@/,F

O,I'+elTEf] : 7y, r
Constrained type application is similar to unconstrained, but provides
an additional rule that checks conformance.

The type application rules specify how constrained and unconstrained parametri-
sation is handled. Both rules take a quantified expression, and replace the free
types ay with the type parameters, where the type parameters are looked up in
the type environment. The rule for constrained application, additionally checks
conformance restrictions. Both rules use substitution to replace the free types.
Recall from Section 5.16, that substitution is part of the type language to en-
sure termination of inheritance checking, and that substitution needs to alter
the type environment to perform instantiation on recursive types.

B.4 Declarations

Type checking of declarations is now considered. Declarations interact with the
type environment © and namespace I' environment. The simplest declaration
is that of a variable. Note the contrast with previous rules, the syntactic part
of the conclusion is not given a type. The type system does not give a type
to a declaration, rather a declaration inserts a name into the namespace, or a

B.4. DECLARATIONS 147

type into the type environment. The goal of the rules is to only allow valid
declarations, not to type a declaration.

The function rule is slightly more complex, than the rule for variables, as
there are more conditions. Both parameter types and return type must be valid,
and the body of the function must be checked to have the return type, under
the assumption that the parameters are in the namespace, and that the function
itself is in the namesspace, for recursive function calls.

Variable

O,IFT: 7
O,T'Fvar id: ToO,T'U{id, 7}

If the programmer provided T denotes a valid type 7, then the identi-
fier id is given type 7 in I', which extends the namespace, denoted by the
© notation.

Function

(0,0 TI; : 7T ;

. TO ca LTI . TO
ier O,I'FTO: T @,F’U{(ldi.r-)iel}l—e.T

O, proc £ ((in;:TL;);c;):T0 = e ©O,I" Ly {£:7/1— 770}
The explanations for each condition are:

e Fach declared argument must have a valid type.
e The return value of the function must be a valid type.

e The body is type checked with all the arguments available, and the
body must have the declared return type. The body is checked with
access to the function itself, which allows recursive calls.

The declaration of functional constructs includes records and variants, and these
provide the basis for algebraic datatypes in Creol, as described in 2.3.5. Since
tuples and lists are expressible with records and variants, they do not require
separate type rules.

The type declarations use ¢ notation to update both the type © and names-
pace I' environment. The 77 generates a fresh placeholder type. Thus, the
namespace I' is updated with the name of the type connected to the fresh place-
holder type 77, and 77 is inserted into the type environment ©. This indirection
is unnecessary for simple examples, but allow recursive types to be expressed
naturally where the placeholder type serves as a fixpoint.

The record rule stores both label and type for each contained element, for
later label lookup by the selection rule. The variant rule stores label and type
for each variant, and also introduces a constructor for each variant into the en-
vironment. The approach to variant types is similar to Pierce [77, Sec. 11.10]
and Huet [12] for constructive computation theory. The O’Caml [73] language,
which is based on constructive computation theory, only permits sum-type con-
structors with tuples, so the programmer must remember the position of infor-
mation. To aid the programmer, a variant declaration can include an anonymous
record, as suggested in Section 2.3.5, which is similar approach in the language

148 APPENDIX B. FUNCTIONAL SUBSET OF CREOL TYPE SYSTEM

Haskell [39]. In an effort to keep the type declaration rules simpler, there is no
separate rule for anonymous records, as this can be derived from the rules for
record and variant.

The type abstraction rules show how constrained and unconstrained poly-
morphism is declared. The rules are used by other declaration rules when ap-
plicable, thus the type abstraction rules do not update the environment, rather
they change the result type of a declaration.

Record

(@,F }_ Ti . Ti)ie]

OU{F R ((idi: 7);er)}
FTu{r:+}

©,I't-data R = {(id;:Ti);c; >0
Each programmer provided type in the record is checked to be valid ,
and the environment is updated with the record type.
Variant Type
(O,I"F T)

@U{j’fi {(Idi:Ti)ieI}}
O, Fdata S=(Id; Ti);c; © Fu{ S: 77

(Vi LT — 7.-]:)1'61
A variant type declaration is valid if each of the variants have a valid
type. Variants are checked in an updated environment, that makes the
fixpoint of the current declaration available, which allows variants to be
recursive. The variant type is put into the type environment, as well as
the name and type of each variant, for later typechecking purposes. The
name of the variant is put into the environment as a constructor, which
is a function that produces the variant type, given an argument with the
correct type for that variant. Note that all variants have a type, because
enumerations, which are variants without a type, are expanded to have
type Void as part of desugaring.

Unconstrained Type Abstraction

simplified value restriction
e,T'u {(TVi : O‘i)z‘el} F...id... 7T

©,I'F...id[TV;]... :Vas (1)

Type abstraction can be used for a declaration, by using square brack-
ets to hold free types. To simplify the presentation for syntactic details
the rule uses ... to denote any legal surrounding type declaration. The
type abstraction is legal, if the declaration is legal. The declaration is
checked in an environment, where the type names TV; are given free types
ay. The type abstraction poses no restrictions on the free types ay. Note,
that the rule requires a safety condition, with regard to use of references
in the body. This was described in Section 5.12 and is here referred to as
the simplified value restriction.

Constrained Type Abstraction

B.4. DECLARATIONS 149

(@,F |_TSi . Ti)ie[
O,DU{(TVi : 7);e, p Fovndid.. o7
O, Tk .. id[(TV;:TS);c;] V(<) (7)

Constrained type abstraction extends unconstrained type abstraction, by
checking that the constraints exists, and by checking the body under the,
assumption that each abstract type has the type of the corresponding con-
straint, in contrast to being a free type. Conformance constraints for type
application ensures that only parameters which conform to those declared
are admissible.

150 APPENDIX B. FUNCTIONAL SUBSET OF CREOL TYPE SYSTEM

Appendix C

Creol to CMC Comparison

This section provides the translation of the running example from Arnestad
[8] and compares it with the Creol Machine Code (CMC) produced by the
Functional Creol Compiler.

Consider the following Creol class that implements the faculty function:

class Fakultet(beregn:Int)

begin
var fakultet:Int=1
op run == fac(beregn; fakultet) ;
op fac(in n: Int out f:Int) ==

if (n>2)
then fac(n-1;f); f:= nxf
else f:=n

fi ;

end

The encoding of this function into Creol Machine Code provided [8] by Arnestad
is

< ’Fakultet : Cl |
Att: (°beregn = null), (’fakultet=null),

Ocnt: 0.0,

Init: ’fakultet := int(1), no,

Run: ’fac(’beregn ; ’fakultet),no,
Mtds:

< ’fac : Mtdname |
Latt: (’label = null), (’caller = null), (°n = null),
(’f = null),
Code: if (°n > int(2)) th
(’fac(n-int(1) ; ’f));
Cf := (Cn * ’£));
el (°f :=’n) fi ;
end (°f)

>

The Creol Machine Code generated by the Functional Creol Compiler for this
class is:

151

152 APPENDIX C. CREOL TO CMC COMPARISON

< ’Fakultet : C1 |

Inh: nil,
Att: (’beregn : null), (’fakultet : int(1)),
Mtds:

< ’run : Mtdname | Latt: no,
Code: (’this . ’fac(’beregn ; ’fakultet)) ; end(nil)
> %
< ’fac : Mtdname | Latt: (°n : null), (f : null),
Code: (if (’n > int(2))

th ((’this . ’fac((’n - int(1)) ; ’f)) ;

Cf := Cn x °£)))
el (°f := ’n) fi) ;
end(’f)

Ocnt: 1
>

This demonstrates that the Functional Creol Compiler does indeed generate cor-
rect code, modulo changes that where introduced in the Creol Virtual Machine
specification since the Arnestad translation was valid.

Appendix D

Implementation Remarks

This section contains remarks on the implementation of the Functional Creol
Compiler (FCC).

D.1 Type Checking

This section contains remarks on the implementation of the Creol type system
in the Functional Creol Compiler.

D.1.1 Building Environments

The scoping rules for Creol implies that all class declarations are visible to each
other. From a practical perspective this requires two passes. The first pass
builds the name environments. The second pass uses the name environments
for lookup of identifiers. The presence of recursive types and inheritance requires
the type environment to be constructed in several passes.

Build I' The first pass assigns placeholder types to names. All names are given
a placeholder type before the type for the name is built. This is similar
to the reference trick used by Appel [7].

Build © The second pass builds types for each placeholder type. This pass
may use I' for name lookup. Inheritance is not resolved and instantiation
is not performed because that requires the complete type of both the super
type and the subtype due to possibly mutual type recursion between the
super class and the subclass.

Transform © The third pass resolves inheritance and performs instantiation
while ensuring conformance. This step is performed as a transformation

on O.

Type checking The final © and I's are used to type check code.

The distinction between passes is somewhat artificial because the FCC is im-
plemented in a non-strict language, however the notion of passes allows code in
the FCC to be structured such that dependencies leading to non-termination is
avoided.

153

154 APPENDIX D. IMPLEMENTATION REMARKS

D.1.2 Current State

Although the FCC implements the Creol type system, there is gap between the
representation and details in the code and in the type system presentation. The
FCC intends to faithfully implement the Creol type system, however there are
differences. The first version of the FCC was written before the work on the
type system began, and the FCC was later changed to reflect the type system.
Time constraints has lead to a situation where the FCC is still catching up with
the Creol type system. The following features are not yet implemented properly
in the FCC:

e Abstract data types.

Polymorphism.

Separation of nominal constraint layer.

Static binding.

Interfaces as abstract classes.

Row variables.

Declaration as a statement.

D.1.3 Type Checking Order

The type checking in the Functional Creol Compiler applies rules in the required
order. Since the Functional Creol Compiler is implemented in a non-strict lan-
guage the actual order of the type checking rules depends on the program that
is type checked.

D.2 Creol Language Evolution

This section explains changes to the Creol syntax as implemented in the FCC.
The contributed changes are made by this thesis. The experienced changes are
those resulting from other Creol research.

D.2.1 Contributed

e The keywords in and out are required for method declaration. This makes
method signatures more self descriptive.

e The first letter in a constructor identifier or type is upper case. For in-
stance the type Bool is written Bool, and the constructor true is written
True.

e The process guard await takes an arbitrary boolean expression as param-
eter.

e Labels are implicitly declared when used in a send statement, and can not
be declared otherwise. Labels may not be reused for different method invo-
cations. The label is typed according to the method invocation, therefore
label reuse is not type safe. A separation between the label and the return
values would improve the situation in the case of repeated invocation.

D.2.

CREOL LANGUAGE EVOLUTION 155

Method invocations must have trailing () to distinguish syntactically be-
tween method invocation and record selection.

Lines are ended with the character ; instead of . to make Creol syntax
more uniform and programmer friendly. The uniformity better supports
cut and paste of code.

The character ; is optional after variable declarations in classes and at
the end of a statement. This makes Creol less picky about syntax.

Runnable programs must have a class Main, similar to the main function
found in other programming languages [19,36,86,58]. An object of the
class Main is created when the program is executed, thus leaving the
run () method of class Main responsible for the active behaviour of the
program.

Throw away objects are admissible. Previously it was not possible to
create objects without assigning it to a variable. Since Creol is a lan-
guage with side effect it makes sense to create an object without keeping
a reference to it, as the side effects may be the only purpose of the object.

D.2.2 Experienced

Removal of the init () method in classes. Initialisation is viewed as prior
to object existence.

Introduction of initial expressions for instance variable declarations. Needed
due to removal of the init () method.

Overloading for function names. The introduction of overloading for func-
tions, such as the operator + that works on both strings and integers.

The introduction of multiple inheritance.

156 APPENDIX D. IMPLEMENTATION REMARKS

Appendix E

Code

The program code in this thesis is generated from this document with the help
of the literate programming tool noweb [71].

E.1 Literate Programming

Literate programming is a technique that allows code and text to co-exist in
the same document. Literate programming has been used during the work with
this thesis to integrate the code for the compiler continuously into the text of
the thesis, but as the work progressed it became apparent that it is more reader
friendly to present the code in Appendix E. The code is still embedded with
literate programming.

There exists several tools for literate programming, but due to practical
considerations we have deployed Noweb [71]. In particular this means that this
thesis contains the prototype Functional Creol Compiler, which it documents.
Reading all the source code can however be a daunting task, and it is not
expected that the casual reader is able to or interested in reading the source
code. To ease the learning curve for the compiler code, a small portion of the
code is used in the text to illustrate the underlying principles. A crash course
for reading literate code can be found in Appendix E.2.

E.2 Reading Literate Code

The integration of compiler code into the thesis through literate programming
annotates the code in a certain predetermined manner, and to efficiently follow
the code the reader must understand these annotations. This is some code that
is extracted from this document into the separate file named program.code,
and this separate file can then be used by other tools, such as a compiler.

(program.code 157)= 158a>
...some code...

157

158a

158b

158d

158¢f

158 APPENDIX E. CODE

Note how the code is numbered, according to the page number, on the left
of the name, and that a letter is appended to distinguish code parts on the same
page.

This code can also be split up into several pieces. The next code is added
to the previous, and this is illustrated with the + sign next to the name.

rogram.code 157 += qa157
<p g
...some more code...

See how both code parts are annotated to the right of the name with a small
directed arrow to show where the code continues. The annotations also allow
reference to code in the text, like this (program.code 157).

Code can also be presented at different levels, such as in this example, where
an outer structure is presented, and the details are found elsewhere.

(highlevel.code 158b)=
(part 1 of this code 158c)
(part 2 of this code 158d)

Here comes details of part 1.

(part 1 of this code 158¢)= (158b)
...some code...

Here comes details of part 2.

(part 2 of this code 158d)= (158b)
...some other code...

Note that the number in brackets to the right of the name shows where this
piece of code is included.

Finally the literate programming tool can show such connections for identi-
fiers, such as for instance functions or libraries. This code uses a function.

(some.code 158¢)=
x = foo 1 2

The reader can then read at the bottom of the code where the identifier foo
can be found. The definition of foo also states that it contains foo, as shown.
(library. code 158f)=

fooxy= ...

And that concludes the detailed crash course in reading literate code.

E.3 Main Module and CreolCompiler Library

The compiler is divided in two parts; the main program and the Creol compiler
library. Since Haskell is a purely functional language, side effects such as input
and output are structured through the IO monad. There are many monads,
and the IO monad separates those functions that do input and input from other
code, therefore all input and output is typically done in the main function, which
is an 10 monad. The Functional Creol Compiler does all input and output in
the main function, which is an IO monad. The Functional Creol Compiler offers
a library with a specialised scanner, a Creol parser, and an attribute grammar
that produces synthesized attributes, such as the Creol Machine Code and error
information.

159a

159b

159¢c

E.3. MAIN MODULE AND CREOLCOMPILER LIBRARY 159

E.3.1 The Main Module

The Main module contains the main program that is responsible for opening the
source and destination files, as well as applying the scanner to produce tokens
and parsing the tokens to produce the abstract syntax tree. Then the semantic
function for the abstract syntax tree is used to produce attributes.

(Main.hs 159a)= 159b >
module Main(main) where
- System libraries
import IO
import System
import Directory
- Creol Compiler libraries
import CreolCompiler

help :: String

help = "The Fuctional Creol Compiler\n\
\License: GNU GPL Version 2\n\

\Author: Jgrgen H. Fjeld <jhf@hex.no>\n\
\Homepage: http://www.kompetent.no/fcc\n\
\Version: 2005.02.01 \n\

\Usage: \n\

\CreolCompiler <sourcefile> <targetfile>\n"

The monadic function main is invoked by the operating system when the
compiler is executed. This code checks that the user has invoked that compiler
correctly.

(Main.hs 159a)+= <159a 159c>
main :: I0 O
main = do args <- getArgs
case args of
[sourcefile,targetfile] -> compile sourcefile targetfile
_ —> putStr help

The compilation itself is broken down into different stages and separated into
a compile function. This function uses the scanner to produce tokens, the the
parser is applied to the tokens to produce the abstract syntax tree, and finally
the semantic function wrap_Ast is used to produce the synthesized and chained
attributes of the complete abstract syntax tree.

(Main.hs 159a)+= <4159b 160a>

- Inherited attributes specified with field labels
inherited = Inh_Ast {3}

- Compile function
compile sourcefile targetfile
= do token <- scanner sourcefile
ast <- parser token
synthesized <- return (wrap_Ast (sem_Ast ast) inherited)

160 APPENDIX E. CODE

The Haskell language does not support named function arguments. This can
be awkward for humans, as we have to remember the position of each argument.
Moreover each function has only one return value, resulting in tuples as return
values, and again we have to remember the position of each synthesized element.
To combat this tediousness the wrap_ Ast function allows inherited attributes
and synthesized attributes to be specified with datatypes that have field labels,
and these labels can then be used for insertion and extraction of attributes. This
explicitness is beneficial to both readers and code maintainers. The next part
opens the output file and writes the virtual machine code, along with eventual
error messages, the abstract syntax tree and the symbol table, allowing users to
check if the compiler operates correctly. This information is useful due to the
evolving nature of the Creol language and hence the Functional Creol Compiler.

160a (Main.hs 159a)+= <4159¢ 160bp>
file <- openFile targetfile WriteMode
hPutStr file
(C "k (\n" ++
{- Extract the error attribute -}
(preSuffix "- Errors:\n" (error_Syn_Ast synthesized) "\n") ++
"- Abstract Syntax Tree \n" ++
(shows ast "\n- Symbol Table \n") ++
{- Extract the symboltable attribute -}
(shows (environments_Syn_Ast synthesized)
"\n- Creol Machine Code \n)\n"
) ++
{- Extract the cmc attribute -}
(cmc_Syn_Ast synthesized) ++ "\n"

)

Finally, error messages are written to the standard destination.

160b (Main.hs 159a)+= 4160a
err <- openFile "/dev/stderr" WriteMode
errors <- return (error_Syn_Ast synthesized)
hPutStr err (preSuffix "Errors:\n" errors "\n")
if length errors > 0
then exitWith (ExitFailure 1)
else exitWith ExitSuccess

161a

161b

E.3. MAIN MODULE AND CREOLCOMPILER LIBRARY 161

E.3.2 Creol Compiler Library Module

The Creol compiler library is a University of Utrecht Attribute Grammar file
that contains the different parts of the compiler. The Attribute Grammar is
translated to Haskell with the University of Utrecht Attribute Grammar com-
piler. Any text within braces {} in an Attribute Grammar file is copied verbatim
into the Haskell code, which allows Haskell code in the Attribute Grammar files.
There is no explicit module declaration, rather a module is implicitly defined
with the same name as the file, thus this defines the CreolCompiler module, as
well as the support libraries that are needed.

(CreolCompiler.ag 161a)= 161b>
{
- Haskell libraries
import Numeric
- University of Utrech Attribute Grammar libraries

import UU.Parsing

import UU.Parsing.Derived
import UU.Parsing.Perms
import UU.Parsing.Merge
import UU.Scanner

import UU.Scanner.Scanner
import UU.Scanner.Token
import UU.Scanner.TokenParser
import UU.Scanner.Position

X

The rest of the library is defined in separate code, and the next part shows
how the code in the is assembled together by the literate programming tool.

(CreolCompiler.ag 161a)+= <16la
(Auziliary Functions 216)
(Abstract Syntaz Tree Structure 162)
(Parametrised Scanner 166e)
(Parser 167)
(Creol Machine Code Attributes 209)
(Creol Machine Code Semantic functions 210)
(Unique Labels 215)
(Type Definitions 175)
(Typechecker Attributes 179)
(Typechecker Semantic Functions 181)
(Symbol Table Definitions 200)
(Symbol Table Attributes 204)
(Symbol Table Semantic Functions 205)

162

E.4

Abstract Syntax Tree

162 (Abstract Syntaz Tree Structure 162)=
DERIVING * : Show
DATA Ast

TYPE
DATA

DATA

TYPE
DATA

TYPE
DATA

DATA

TYPE
DATA

DATA

| Ast interfaces: Interfaces
classes: Classes

Classes = [Class]

Class

| Class
pos : Pos
name : Typeld
typeparameters : MaybeTypeDeclarations
parameters : MaybeDeclarations
implements : MaybeTypeDeclarations
inherits : MaybeTypeDeclarations
variables : MaybeDeclarations
methods : MaybeMethods

MaybeMethods

| Nothing

| Just methods : Methods

Methods = [Method]

Method

| Method
signature : Signature
variables : MaybeDeclarations
code : Statement

Interfaces = [Interface]

Interface
| Interface
pos : Pos
name : Typeld
typeparameters : MaybeTypeDeclarations
inherits : MaybeTypeDeclarations
signatures: MaybeSignatures
MaybeSignatures
| Nothing
| Just signatures : Signatures
Signatures = [Signature]

Signature

| Signature
pos : Pos
name : VarId
in : MaybeDeclarations
out : MaybeDeclarations
caller : Typeld

Statement

APPENDIX E. CODE

(161b)

E.4. ABSTRACT SYNTAX TREE

DATA

DATA

DATA

TYPE
DATA

| Binary
operator : String
pos : Pos
left : Statement
right : Statement
| Unary
guard : Expression
statement : Statement
| Nullary
statement : Statement
| Assign
name : Varld
expr : Expression
| While
pos : Pos
condition : Expression
statement : Statement
| Call
object : VarId
method : VarId
in : MaybeExpressions
out : MaybeVarlds
| Send
label : MaybeLabel
object : VarId
method : VarId
in : MaybeExpressions
| Receive
label : Label

pos : Pos

vars : MaybeVarlIds
| Await

pos : Pos

condition : Expression
| Wait

pos : Pos
| Expression

expression : Expression

MaybeLabel
| Nothing
| Just
label : Label
Label
| Label
label : String
pos : Pos

MaybeExpressions
| Nothing

| Just expressions : Expressions

Expressions = [Expression]
MaybeExpression
| Nothing

163

164

| Just expression :

DATA Expression
| Binary

operator

pos : Pos

Expression

: String

left : Expression
right : Expression

| Unary
operator
pos : Pos

expression :

| Nullary

expression :

| Null
pos : Pos
| Variable

: String

Expression

Expression

name : VarId

| Int

value : Int

pos : Pos
| Bool

value : Bool

pos : Pos
| String

value : String

pos : Pos
| New

constructor

: Typeld

tin : MaybeTypelds
in : MaybeExpressions

| If
pos : Pos

condition :

statement
elsepart

DATA MaybeVarlIds
| Nothing

| Just varids

Expression

: Statement
: Statement

: VarIds

TYPE VarlIds = [VarId]

DATA VarId
| VarId

varid : String

pos : Pos

DATA MaybeTypelds

| Nothing

| Just typeids

: Typelds

TYPE Typelds = [Typeld]

DATA Typeld
| Typeld
typeid :
pos : Pos

String

APPENDIX E. CODE

165

E.5. SCANNER

DATA MaybeDeclarations
| Nothing
| Just declarations : Declarations
TYPE Declarations = [Declaration]
DATA Declaration
| Var
name : VarId
typeid : Typeld
default : MaybeExpression

DATA MaybeTypeDeclarations
| Nothing
| Just declarations : TypeDeclarations
TYPE TypeDeclarations = [TypeDeclaration]
DATA TypeDeclaration
| Var
name : Typeld

165

E.5 Scanner

Instead of writing a new scanner, the University of Utrecht Haskell Compiler
scanner was patched in a rather non-intrusive way to work with Creol syntax.
The patch for the UUAG scanner is presented here for as documentation.

(Patch for Scanner.hs 165)=
Index: Scanner.hs

RCS file: /data/cvs-rep/uust/lib/scanner/UU/Scanner/Scanner.hs,v
retrieving revision 1.3

diff -r1.3 Scanner.hs

77,78c77,78

< doScan p (°-’:’-’:s) = doScan p (dropWhile (/= ’\n’) s)
< doScan p (°’{’:’-’:s) = lexNest doScan (advc 2 p) s

> doScan p (°/’:’/’:s) = doScan p (dropWhile (/= ’\n’) s)

>

doScan p (?/?:7%’:

n
~
]

lexNest doScan (advc 2 p) s

163,164c163,164

< where lexNest’ ¢ p (’-’:’}’:s)

<

c (advc 2 p) s
lexNest’ (lexNest’ c¢) (advc 2 p) s

lexNest’ c p (°{’:’-7:8)

> where lexNest’ ¢ p (’*’:’/?:s) = c (advc 2 p) s

>

lexNest’ c p (°/’:7%7:s)

lexNest’ (lexNest’ c¢) (advc 2 p) s

166a

166b

166¢

166d

166e

166 APPENDIX E. CODE

To optimise the Creol scanner, it is given prior knowledge of keywords and
operators. This information must correspond with usage of the scanner, and
this correspondence is not checked. To illustrate this, there is a correspondence
between what the pSpec function can parse and the special characters used
to parametrise the scanner. Such that each of the (Scanner Special Charac-
ters 166a) can be parsed by the pSpec function, but if one is to use pSpec for
other characters, the Haskell compiler will not complain, and the parse will al-
ways fail. The pSpec function and other scanner functions are given an intuitive
explanation in Section 3.4.1.

(Scanner Special Characters 166a)= (166€)
"5,0."

The operator characters can be combined to form operator keywords. This
information is only used to speed up the scanning process.

(Scanner Operator Characters 166by= (166€)
"=<> | []i+-%/71"

The operator keywords are those that are built from one or several operator
characters. These may be scanned with the pKey function. Note that all the
characters used here must be defined in (Scanner Special Characters 166a) and
that this is by convention and not by design, hence not automatically checked
by the Haskell compiler.

(Scanner Operator Keywords 166¢)= (166e)
[||>=u ng=mn nyp=n Nt N——n n_sn n.=n n [] n ||| | |||
L P L L L R AR U R A RN
]

The following string keywords that otherwise would scan as identifiers, are
now recognised by the pKey function as keywords.

(Scanner String Keywords 166d)= (166e)
["interface", "inherits", "begin", "with", "op", "asm"
,"inv", "where", "func", "end", "contract", "class", "await"
,"implements", "var", "if", "then", "else", "fi", "True"
,"False", "in", "out", "while", "do", "od", "new", "wait"
,"null","and", "or", "not"
-, "this" - Is parsed as a variable reference/varid, not keyword.
]

The code that feed the optimisation information to the scanner, and defines
the scanner used by Creol is now presented.

(Parametrised Scanner 166e)= (161b)
{
keywordstxt = (Scanner String Keywords 166d)
keywordsop = (Scanner Operator Keywords 166c)
specialchars = (Scanner Special Characters 166a)
opchars = (Scanner Operator Characters 166b)

scanner :: String -> I0 [Token]

scanner filename = scanFile keywordstxt
keywordsop
specialchars
opchars
filename

E.6. PARSER 167

E.6 Parser
167 (Parser 167)= (161b) 1711
{

parser token = parsel0 pAst token

pAst :: Parser Token Ast

pAst = pMerged Ast_Ast
(list_of pInterface
<||> list_of pClass
)

pClass :: Parser Token Class
pClass = Class_Class
<$> (pKeyPos "class")
<*> pTypeld
<*> pMaybeBracksTypeDeclarations
<*> pMaybeParensDeclarations
<x> pMaybePrefixTypeDeclarations "implements"
<x> pMaybePrefixTypeDeclarations "inherits"
<x (pKey "begin")
<x> pPrefixMaybeDeclarations "var"
<* (pKey ";" <[> pSucceed "") - To remove trailing ";"
<*> pMaybeMethods
<x (pKey "end")

pMaybeMethods :: Parser Token MaybeMethods
pMaybeMethods = opt (MaybeMethods_Just
<$> pMethods
)
MaybeMethods_Nothing

pMethods :: Parser Token Methods
pMethods = pFoldri_gr ((++),[]) pMethodWith

pMethodWith :: Parser Token Methods
pMethodWith = map
<$> ((\x £->f x)
<$> pPrefixDefaultTypeld "with" "Any"
)
<*> pListl_gr pMethod

pMethod :: Parser Token (TypeId -> Method)
pMethod = (\a b ¢ d -> Method_Method (a d) b ¢)
<$> pSignature
<* (pKey "==")
<*> pPrefixSuffixMaybeDeclarations "var" ";"
<*> pStatement
<* ((pKey ".") <I|> (pKey ";") <I> (pSucceed ""))

pInterface :: Parser Token Interface
pInterface = Interface_Interface

<$> (pKeyPos "interface")

<*> pTypeld

168 APPENDIX E. CODE

<*> pMaybeBracksTypeDeclarations

<*> pMaybePrefixTypeDeclarations "inherits"
<* (pKey "begin")

<*> pMaybeSignatures

<*x (pKey "end")

pMaybeSignatures :: Parser Token MaybeSignatures
pMaybeSignatures = opt (MaybeSignatures_Just
<$> pSignatures
)
MaybeSignatures_Nothing

pSignatures :: Parser Token Signatures
pSignatures = pFoldrl_gr ((++),[]) pSignatureWith

pSignatureWith :: Parser Token Signatures
pSignatureWith = map
<$> (. (\x £ ->f x)
<$> pPrefixDefaultTypeld "with" "Any"
)
<*> pListl_gr pSignature

pSignature :: Parser Token (Typeld -> Signature)
pSignature
= (Signature_Signature
<$> (pKeyPos "op")

<x> pVarId
)
<> (pParens (pPrefixMaybeDeclarations "in"
<+> pPrefixMaybeDeclarations "out"
)
<|> pSucceed (MaybeDeclarations_Nothing,MaybeDeclarations_Nothing)
)
pStatement :: Parser Token Statement

pStatement = pStatement_Binary

pStatement_Binary :: Parser Token Statement
pStatement_Binary =
foldr transform
pStatement_Unary
precOpers
where
transform (assoc,ops) =
assoc (Statement_Binary <$-> (pAny pKeyPosTuple ops))

precOpers =
[
(pChainr, ["[1","[I1"])
, (pChainr_ng, [";"]) - _ng allows ; to end lines as well

- ,(pChainr, ["->"]) - replaced by await
-, (pChainr, ["and","or"]) - no meaning without ->

]

E.6. PARSER 169

pStatement_Unary :: Parser Token Statement
pStatement_Unary = pStatement_Nullary
{- <I> Statement_Unary
<$> pExpression
<x (pKey "->")
<x> pStatement_Nullary
-}

pStatement_Nullary :: Parser Token Statement
pStatement_Nullary =
Statement_Nullary
<$> pParens pStatement
<|> Statement_Assign
<$> pVarIld
<* (pKey ":=")
<x> pExpression
<|> Statement_While
<$> (pKeyPos "while")
<x> pExpression
<* (pKey "do")
<x> pStatement
<x (pKey "od")
<|> pStatement_Call
<|> pStatement_Send
<|> Statement_Receive
<$> pLabel
<*> (pKeyPos "7")
<*> (pParens pMaybeVarIds)
<|> Statement_Await
<$> (pKeyPos "await")
<*> pExpression
<|> Statement_Wait
<$> (pKeyPos "wait")
<|> Statement_Expression
<$> pExpression

pStatement_Send :: Parser Token Statement
pStatement_Send
= Statement_Send
<$> pMaybeLabel
<k> ((pKey "!" *> pVarId <* pKey ".")
<|> (VarId_VarId "this"
<$> pKeyPos "!"
)
)
<*> pVarId
<*> pParens pMaybeExpressions

pStatement_Call :: Parser Token Statement
pStatement_Call = (Statement_Call
<$> (pVarId <* pKey "."
<|> pSucceed (VarId_VarId "this" noPos)
)
<*> pVarId

170 APPENDIX E. CODE

)
<-> pInQ0ut

pMaybelLabel :: Parser Token MaybeLabel
pMaybeLabel = opt (MaybeLabel_Just <$> pLabel)
MaybelLabel _Nothing

plLabel :: Parser Token Label
pLabel = Label_Label
<$-> pVaridPos

pMaybeParensExpressions ::Parser Token MaybeExpressions
pMaybeParensExpressions
= (MaybeExpressions_Just
<$> pParens pExpressions
)
<|> pParens (pSucceed MaybeExpressions_Nothing)
<|> pSucceed MaybeExpressions_Nothing

pMaybeExpressions ::Parser Token MaybeExpressions
pMaybeExpressions = opt (MaybeExpressions_Just
<$> pExpressions)
MaybeExpressions_Nothing

pExpressions :: Parser Token Expressions
pExpressions = pListlSep_gr pComma pExpression

pMaybePrefixExpression :: String -> Parser Token MaybeExpression
pMaybePrefixExpression p = opt (MaybeExpression_Just

<$ pKey p

<*> pExpression

)

MaybeExpression_Nothing

pMaybeExpression :: Parser Token MaybeExpression
pMaybeExpression = opt (MaybeExpression_Just
<$> pExpression)
MaybeExpression_Nothing

pExpression :: Parser Token Expression
pExpression = pExpression_Binary

}

E.6. PARSER 171

The operator precedence for the binary operators is decided in the Creol
parser, where the operators with lowest precedence come first, and a associ-
ation function determines right or left associativity. The association function
pChainr is left to right, while pChainl is right to left. The expression 1 + 2 *
3 < 4 and True or False is parsed as ((((1 + (2 * 3)) < 4) and True)
or False).

171 (Parser 167)+= (161b) <167
{
pExpression_Binary :: Parser Token Expression
pExpression_Binary =
foldr transform
pExpression_Unary
precOpers
where
transform (assoc,ops) =
assoc (Expression_Binary <$-> (pAny pKeyPosTuple ops))

precOpers =
[(pChainr s ["OI‘" s "and"])
, (pChainr, ["<", "<=", w>w, wy=w wj=w w=n])
, (pChainr, ["+","-"1)
, (pChainr, ["*","/"1)
]
pExpression_Unary :: Parser Token Expression

pExpression_Unary =
Expression_Unary
<$-> (pAny pKeyPosTuple ["not","-"1)
<*> pExpression
<|> pExpression_Nullary

pExpression_Nullary :: Parser Token Expression
pExpression_Nullary =
Expression_If
<$> (pKeyPos "if")
<*> pExpression
<* (pKey "then")
<*> pStatement
<x> (((pKey "else")
*> pStatement
)
<|> (Statement_Expression <$> (Expression_Null <$> pSucceed noPos))
)
<* (pKey "fi")
<|> Expression_Nullary
<$> (pParens pExpression)
<|> Expression_Null
<$> pKeyPos "null"
<|> Expression_Variable

<$> pVarId
<|> (Expression_Int
<$-> ((\(x,y)->(read x,y)) <$> pIntegerPos)

)

<|> (Expression_Bool

172 APPENDIX E.

<$-> ((\x->(True,x)) <$> (pKeyPos "True")
<> (\x->(False,x)) <$> (pKeyPos "False")
))
<> (Expression_String
<$-> pStringPos
)
<|> Expression_New
<$> ((pKey "new")
*> pTypeld

<*> pMaybeBracksTypelds
<x> pMaybeParensExpressions

pInOut :: Parser Token (MaybeExpressions,MaybeVarIds)
pInOut = pParens (pMaybeExpressions
<+> (opt (pSemi *> pMaybeVarIds)
MaybeVarIds_Nothing
))

pMaybeDeclarations :: Parser Token MaybeDeclarations
pMaybeDeclarations =
opt (MaybeDeclarations_Just
<$> pDeclarations
)
MaybeDeclarations_Nothing

pMaybeParensDeclarations :: Parser Token MaybeDeclarations
pMaybeParensDeclarations
= MaybeDeclarations_Just
<$> pParens pDeclarations
<|> pParens (pSucceed MaybeDeclarations_Nothing)
<|> pSucceed MaybeDeclarations_Nothing

pPrefixMaybeDeclarations :: String ->
Parser Token MaybeDeclarations
pPrefixMaybeDeclarations prefix =
opt (MaybeDeclarations_Just
<$ (pKey prefix)
<*> pDeclarations
)
MaybeDeclarations_Nothing

pPrefixSuffixMaybeDeclarations :: String -> String ->
Parser Token MaybeDeclarations
pPrefixSuffixMaybeDeclarations prefix suffix =
opt (MaybeDeclarations_Just
<$ (pKey prefix)
<*> pDeclarations
<* (pKey suffix)
)
MaybeDeclarations_Nothing

pDeclarations :: Parser Token Declarations
pDeclarations = pFoldriSep_gr ((++),[]) pComma pDeclaration

CODE

E.6. PARSER 173

pDeclaration :: Parser Token Declarations
pDeclaration = map
<$$> (pListi1Sep_gr pComma pVarId)
<*> (Declaration_Var
<$$-> (pPrefixTypeld ":"
<+> pMaybePrefixExpression "="

))

pMaybeBracksTypeDeclarations :: Parser Token MaybeTypeDeclarations
pMaybeBracksTypeDeclarations
= MaybeTypeDeclarations_Just
<$> pBracks pTypeDeclarations
<|> pBracks (pSucceed MaybeTypeDeclarations_Nothing)
<|> pSucceed MaybeTypeDeclarations_Nothing

pMaybePrefixTypeDeclarations :: String -> Parser Token MaybeTypeDeclarations
pMaybePrefixTypeDeclarations prefix
= MaybeTypeDeclarations_Just
<$ pKey prefix <*> pTypeDeclarations
<|> pSucceed MaybeTypeDeclarations_Nothing

pTypeDeclarations :: Parser Token TypeDeclarations
pTypeDeclarations = pListl_gr pTypeDeclaration

pTypeDeclaration :: Parser Token TypeDeclaration
pTypeDeclaration = TypeDeclaration_Var
<$> pTypeld

pMaybeVarlds :: Parser Token MaybeVarIds

pMaybeVarIds = opt (MaybeVarIds_Just <$> pVarIds)
MaybeVarIds_Nothing

pVarIds :: Parser Token Varlds

pVarIds = pListlSep_gr pComma pVarId

pVarId :: Parser Token VarIld

pVarId = VarId_VarId <$-> pVaridPos

pMaybeBracksTypelds :: Parser Token MaybeTypelds
pMaybeBracksTypelds
= MaybeTypelds_Just
<$> pBracks pTypelds
<|> pBracks (pSucceed MaybeTypeIds_Nothing)
<|> pSucceed MaybeTypelds_Nothing

pTypelds :: Parser Token Typelds
pTypelds = pListlSep_gr pComma pTypeld
pPrefixDefaultTypeld :: String -> String -> Parser Token Typeld
pPrefixDefaultTypeld p d = ((pKey p) *> pTypeld)
<> ((TypeIld_Typeld d)

<$> (pSucceed noPos)

)
pPrefixTypeld :: String -> Parser Token Typeld
pPrefixTypeld p = pKey p *> pTypeld
pTypeld = Typeld_Typeld <$-> pConidPos

174 APPENDIX E. CODE

175

E.7. TYPE ANALYSIS 175

E.7 Type Analysis

E.7.1 Type Definitions

(Type Definitions 175)= (161b) 178>
{
{- Term Types -}
{- Primitive Creol Types -}
data Type = BoolType
|
| StrType
{- References -}
| RefType {ref :: Typel}
{- Algebraic Data Types -}
| RecordType{ btps::BoundTypes }
| VariantType {

name :: String
, tps :: Types
}
{- Procedures -}
| FunctionType { inparams :: Types
, outparam :: Type
}

{- Type from Theta
This is used to express fixpoints and mutual recursion
-}
| VarType { tn :: TypeName }
{- Parametrisation -}
| FreeType{ {- A type bound by ForallType -}
ftn :: TypeName - A free type name

}
| ForallType{ -A parametrised type with ftn_count arguments
ftn_count :: Int - Binds fnt_count free type names
, tp :: Type
}

{- Nominal Constraint(s) -}
| NominalType{ names :: [Symbols]
, tp :: Type
}
{- Object Oriented Types -}
| ObjectType{ row :: Row - The fields in the object

}
| MethodType { cointerface :: Type
, inparams :: Types
, outparams :: Types
}
{- Meta types -}

| VoidType
{- When Any is used to prevent cascading errors,
preserve the erroneus type for better error messages.
-}
| AnyType { former :: Maybe Type }
| OverloadedType { tps :: Types }
| ErrorType {message :: String, former :: Maybe Type}

176

deriving (Eq,Show)

data Row = Row { tag ::
, name ::
, tp
, TOW ::
}

| Open

| Closed

deriving (EqQ)

Tag
Symbol
Type
Row

= Variable

| Method

| Abstract

| Inherit
deriving (Eq)

instance Show Tag where
show Variable = "variable "
show Method = "method "
show Abstract = "method "
show Inherit = "inherit "

type Types = [Typel

APPENDIX E.

type BoundType =
type BoundTypes

rowtpmap :: (Typ
rowtpmap f r@Row
rowtpmap f Open

(Symbol, Type)
= [BoundTypel]

e->Type) -> Row -> Row
{} = r{tp=f (tp r),row=rowtpmap f (row r)}
= Open

rowtpmap f Closed = Closed

openrow :: Row —> Bool

openrow r@Row{} = openrow (row r)
openrow Open = True

openrow Closed = False

closedrow :: Row -> Bool;
closedrow row = not (openrow row);

findrow :: [Tag] -> Symbol -> Row -> Maybe Type
findrow ts s r@Row{}
= if (s == (name r)) && wanted
then Just (tp r)
else findrow ts s (row r)
where wanted = case ts of
[1 -> True
_ > (tag r) ‘elem‘ ts
findrow ts s r@0pen = Nothing
findrow ts s r@Closed = Nothing

{- A valid interface is described by an open object
with only Abstract and Inherit tags -}
is_interface :: Env -> Type -> Bool

CODE

E.7. TYPE ANALYSIS 177

is_interface e t@VarType{} = is_interface (expand e t)
is_interface e t@ObjectType{}
= onlytags [Abstract,Inherit] (row t)
where
onlytags :: [Tag] -> Row -> Bool
onlytags ts r@Row{} = ((tag r) ‘elem‘ ts) && (onlytags ts (row r))
onlytags _ Open = True
onlytags _ Closed = True
is_interface _ _ = False
instance Show (Env,Row) where
show (e,r@Row{})
= (show (row r)) ++ show (e,tp r) ++ show (e,row r)
show (e,Open) = ".."
show (e,Closed) = ""

instance Show (Env,Type) where

show (_,BoolType) = "Bool"

show (_,IntType) = "Int"

show (_,StrType) = "Str"

show (e,t@RefType{}) = (show (e,ref t))++ " variable"

show (e,t@RecordType{}) = "{"++(show (e,btps t))++"}"

show (e,t@VariantType{}) = (name t)++"{"++show (e,tps t)++"}"

show (e,t@VarType{}) = show (e,expand t)

show (e,t@FreeType{}) = (name t)++(show (num t))

show (e,t@ForallType{}) = "Types 0.."++(show (num_offset t))++
"=>"++(show (e,tp t))

show (e,t@NominalType{}) = show (e,tp t) ++ " " ++ (name t)

show (e,t@lbjectType{}) = "Object{" ++ (show (e,row t)) ++"}"

show (e,t@MethodType{}) = (show (name t))

show (e,t@FunctionType{}) = (show (e,inparams t))++

"->"++(show (e,outparam t))
show (_,VoidType) = "Void"

show (e,AnyType{former=Just t}) = "erroneus " ++ (show (e,t))

show (_,AnyType{former=Nothing}) = "Any"

show (e,t@0verloadedType{}) = "Overloaded ["++(show (e,tps t))++"]"
show (_,t@ErrorType{}) = "error: "++(message t)

instance Show (Env,Types) where
show (e,tps) = show (map (\t->show (e,t)) tps)

instance Show (Env,BoundTypes) where
show (e,btps) = show (map (\(s,t)->s++":"++(show (e,t))) btps)

178 APPENDIX E. CODE

The MethodType represents a mapping from a set of types to a set of types.
FunctionType is different in that application of a functiontype some types will
yield the return type as the only type.

178 (Type Definitions 175)+= (161b) <175
{

stdenv = Env{ symbols =
[("Bool", (RefType BoolType, [],GammaSymbol))
,("Int", (RefType IntType, [],GammaSymbol))
,("Str", (RefType StrType, [],GammaSymbol))
, ("+", (OverloadedType [i1i2i,ss2s],[],GammaSymbol))
,("-", (OverloadedType [i1i2i,ss2s,i2i], [],GammaSymbol))
, (%", (1i2i, [],GammaSymbol))
,("/", (1121, [],GammaSymbol))
, ("<, (ii2b, [1,GammaSymbol))
, ("<=",(ii2b, [1,GammaSymbol))
, (">", (ii2b, [1,GammaSymbol))
, (">=",(ii2b, [1,GammaSymbol))
,("=", (OverloadedType [ii2b,bb2b],[],GammaSymbol))
, ("/=",(0verloadedType [ii2b,bb2b], [],GammaSymbol))
, ("and", (bb2b, [],GammaSymbol))
, ("oxr", (bb2b, []1,GammaSymbol))
, ("not", (b2b, [],GammaSymbol))
, (", (vv2v, [1, GammaSymbol))
,("[1", (vv2v, [],GammaSymbol))
("I, (vv2v, [, GammaSymbol))
, ("if", (bvv2v, [1,GammaSymbol))
, ("while", (bv2v, [],GammaSymbol))
, ("await", (b2v, [],GammaSymbol))
]
, types = []
, freetype = 0
, traversed = []
} where
b2v = FunctionType [BoolTypel VoidType
bv2v = FunctionType [BoolType,VoidType] VoidType
bvv2v = FunctionType [BoolType,VoidType,VoidType] VoidType
vv2v = FunctionType [VoidType,VoidType] VoidType
ii2b = FunctionType [IntType,IntType] BoolType
bb2b = FunctionType [BoolType,BoolType]l BoolType
ii2i = FunctionType [IntType,IntType]l IntType
ss2s = FunctionType [StrType,StrType] StrType
002b = FunctionType [0ObjectType{row=0pen},0bjectType{row=0pen}] BoolType
i2i = FunctionType [IntType] IntType
b2b = FunctionType [BoolType] BoolType

E.7. TYPE ANALYSIS 179

E.7.2 Typechecker Attributes

179 (Typechecker Attributes 179)= (161b) 180ap

ATTR

ATTR

ATTR

ATTR

ATTR

ATTR

* - Ast VarIds Typelds MaybeTypelds MaybeVarIds MaybeTypeDeclarations
TypeDeclarations MaybeDeclarations Declarations MaybeMethods
Methods MaybeSignatures Signatures MaybeExpressions
Expressions Classes Interfaces

[- Inherited

| - Chained

| - Synthesized

type : Type

Expressions
VarIds Typelds MaybeTypelds MaybeVarIds
MaybeTypeDeclarations TypeDeclarations
MaybeDeclarations Declarations
MaybeMethods Methods
MaybeSignatures Signatures
MaybeExpressions Expressions
[- Inherited
| - Chained
| - Synthesized

types USE { ++ } { [1 }: Types
]

MaybeTypeDeclarations TypeDeclarations
MaybeVarIds VarIds MaybeTypelds Typelds
MaybeSignatures Signatures
MaybeMethods Methods
MaybeDeclarations Declarations
[- Inherited
| - Chained
| - Synthesized
ids USE { ++ } { [1 } : {[Stringl}
]

TypeDeclaration VarId Typeld Signature Label MaybeLabel
Signature Method Declaration
[- Inherited
| - Chained
| - Synthesized
id : String
]

TypeDeclaration TypeDeclarations MaybeTypeDeclarations
[- Inherited
| - Chained
type_offset : Int
| - Synthesized
]

MaybeTypeDeclarations

180a

180b

180 APPENDIX E. CODE

[- Inherited
| - Chained
type : Type
| - Synthesized
]

The caller must know its own class. The type of the class is then inherited
from Class.

(Typechecker Attributes 179)+= (161b) <179 180b>

ATTR MaybeMethods Methods Method Statement Expression Expressions
MaybeExpression MaybeExpressions Declaration Declarations
MaybeDeclarations Signature Signatures MaybeSignatures
[- Inherited

this : Type - The fix point type of the class
| - Chained
| - Synthesized

]

To print type error messages, any type errors must be transferred to a local
error variable, along with the position in the source file where the error occurred.
This error must then be synthesized up to the top node, where it is printed to
the user. The position must also be synthesized from where it is put during

the parsing, such that all elements in the syntax tree may report errors with
position.

(Typechecker Attributes 179)+= (161b) <180a
ATTR *
[- Inherited
| - Chained
| - Synthesized

error USE { ‘consNewline‘ } {""} : String
pos USE { ‘first‘ } {noPos} : Pos
]

{
consNewline = consSep "\n"
first = \x y -> x

}

E.7. TYPE ANALYSIS 181

E.7.3 Typechecker Semantic Functions

181 (Typechecker Semantic Functions 181)= (161b)
{ - Auxiliary Functions

- Expand/Unfold an iso-recursive type.
expand :: Env -> Type -> Type
expand env@Env{} t@VarType{tn=tn}
= case lookup tn (types env) of
Just t > t
Nothing -> ErrorType{message="Internal error: undefined type variable "++
(show (num t))++"."
,former=Nothing}

- Replace a free type with another type

substfree :: [(TypeName,Type)] -> Type -> Type

substfree t@BoolType = t

substfree _ t@IntType = t

substfree _ t@StrType = t

substfree s t@VariantType{} = t{tps=(map (substfree s) (tps t))}

substfree s t@RecordType{} = t{btps=map (\(n,t)->(n,substfree s t)) (btps t)}
substfree _ t@VarType{} =t

substfree s t@FreeType{}
= case lookup (num t) s of { Just t’ -> t’ ; Nothing -> t }
substfree s t@ForallType{}
= t{tp=(substfree (shift_subst (num_offset t) s) (tp t))}
substfree s t@NominalType{} = t{tp = substfree s (tp t)}
substfree s t@0bjectType{} = t{row=rowtpmap (substfree s’) (row t)}
substfree s t@MethodType{}
= t{cointerface=substfree s (cointerface t)
,inparams=map (substfree s) (inparams t)
,outparams=map (substfree s) (outparams t)
}
substfree s t@FunctionType{}
= t{inparams=map (substfree s) (inparams t)
,outparam=substfree s (outparam t)
}
substfree _ t@VoidType =t
substfree _ t@AnyType{} =t
{-
substfree s t@0verloadedType{} = t{tps=map (substfree s) (tps t)}
-}
substfree _ t@ErrorType{} = t
- Shift a substitution with an offset
- Used to support non-flat types
shift_subst :: Int -> [Subst] -> [Subst]
shift_subst offset list = [(n+offset,t)
| (n,t) <- list]

- State variance intents explicitly
contravariance env sub sup = conforms env sup sub
covariance env sub sup = conforms env sub sup
invariance env sub sup = if sub == sup

182

then Nothing
else Just "Invariance not satisfied"

- Check if two types are conforming
- The first type is the lower bound
- The second type is the upper bound
- Return Nothing if conformance, else return error message.
conforms :: Env -> Type -> Type -> Maybe String
- Errors propogate, AnyType is always ok
conforms _ sub@ErrorType{} sup@ErrorType{}
= Just ((message sub) ++ (message sup))

conforms _ _ e@ErrorType{} = Just (message e)
conforms _ e@ErrorType{} _ = Just (message e)
conforms _ AnyType{} _ = Nothing
conforms _ _ AnyType{} = Nothing

{- Expand type names

A type name is a fixpoint of a recursive type.

Subtyping uses the Amber rule for fixpoints.

Matching disregards fixpoints.

The special treatment of fixpoints only occurs

when both sub and sup are type names

The Amber rule checks conformance under a subtype assumption
between the fixpoints.

Matching disregards fixpoints by replacing the fixpoint of sup
with the fixpoint of sub.

Subtyping must first check if these type names are already under
a subtype assumption.

Matching must check if the sub and sup type names are the same. -}

conforms e sub@VarType{} sup@VarType{}

= if sametypename

then Nothing

else if truebyassumption

then Nothing
else if usematching
then conforms e (expand e sub) supwithsubfixpoint

APPENDIX E. CODE

else conforms ewithassumption (expand e sub) (expand e sup)

where
sametypename = (name sub) == (name sup)
truebyassumption = or [((tn sub) == tn_sub_ass) &&

((tn sup) == tn_sup_ass)
| (tn_sub_ass,tn_sup_ass) <- assumptions e]
usematching = isopenobject (expand e sup)
supwithsubfixpoint = substvar [(tn sup),(tn sub)] (expand e sup)
ewithassumption = e{assumptions=(tn sub,tn sup):(assumptions e)}
{- An open object can be contained by
parametrisation (ForallType)
initial parameters (FunctionType)
nominal constraints (NominalType)
and nothing else -}
isopenobject t@ForallType{} = isopenobject (tp t)
isopenobject t@FunctionType{} = isopenobject (outparam t)
isopenobject t@NominalType{} = isopenobject (tp t)
isopenobject t@0bjectType{} = openrow (row t)
isopenobject _ = False

E.7. TYPE ANALYSIS 183

conforms e sub@VarType{} sup = conforms e (expand e sub) sup
conforms e sub sup@VarType{} = conforms e sub (expand e sup)
- Simple types are equal themselves
conforms _ BoolType BoolType = Nothing
conforms _ IntType IntType = Nothing
conforms _ StrType StrType = Nothing
- References are both source and sink, therefore invariance
conforms e sub@RefType{} sup@RefType{} = invariance e (ref sub) (ref sup)
- Variants and records are only equal themselves
conforms e sub@VariantType{} sup@VariantType{} = invariance e sub sup
conforms e sub@RecordType{} sup@RecordType{} = invariance e sub sup
conforms e sub@FreeType{} sup@FreeType{}
= if (num sub) == (num sup)
then Nothing
else Just "Incompatible type parameters"
{- Parametrised types conform when
* same number of type parameters
* constraints conforms - not yet implemented
* contained types conforms -}
conforms e sub@ForallType{} sup@ForallType{}
= case compare (num_offset sub) (num_offset sup) of
LT -> Just ("Polymorphic type "++(show (envs,sub))++
" has too few parameters"
)
GT -> Just ("Polymorphic type "++(show (envs,sub))++
" has too many parameters"
)
EQ -> conforms e (tp sub) (tp sup)
- Nominal types are restricted by declarations in Theta"Nominal
- and by structural restrictions
conforms e sub@NominalType{} sup@NominalType{}
= if reachable (name sub) (constraints e)
then conforms e (tp sub) (tp sup)
else Just ("No inheritance from " ++ (name sup) ++
" to " ++ (name sub) ++ ".")
where {
reachable reachables paths
= if found
then True
else if stuck
then False
else searchmore
where {
found = (name sup) ‘elem‘ reachables ;
stuck = (len reachables) == 0;
searchmore = reachable newreachables pathsleft ;
newreachables = [stop
| start ‘elem‘ reachables
| (start,stop) <- paths] ;
pathsleft = [(start,stop)
| start ‘notElem‘ reachables
| (start,stop) <- paths] ;
T
}

184 APPENDIX E. CODE

{- Object types are checked depending on rows
An open upper bound reduces to matching
matching can instantiate a row variable with rows
- not yet implemented
A closed upper bound reduces to subtyping
subtyping can use subsumption to forget rows
A row variable (open type) may not be forgotten by subsumption
A row variable can be instantiated to contain another row variable.
- not yet implemented
-}
conforms e sub@0ObjectType{} sup@lbjectType{}
= rowconforms e (row sub) (row sup)
where {
- Make sure each row in sup is present and conforming in sub
rowconforms :: Row -> Row -> Maybe String ;
rowconforms sub@Row{} sup@Row{}
= if (name sub) == (name sup)
then case conforms (tp sub) (tp sup) of
Nothing -> rowconforms sub (row sup)
errormessage -> errormessage
else rowconforms (row sub) sup ;
- A row wasn’t found in sub
rowconforms Open r@Row{} = Just ("missing " ++ (name r)) ;
rowconforms Closed r@Row{} = Just ("missing " ++ (name r)) ;
- An open upper bound uses matching to instantiate the open row variable
rowconforms r Open = Nothing ; - Instantiate Open in sup with r
- Not yet implemented.
- A closed upper bound can forget methods, but not a row variable!
rowconforms r Closed
= if openrow r
then Just "Internal error: matching with closed type"
else Nothing - The r is forgotten by subsumption ;
}
conforms e sub@MethodType{} sup@MethodType{}
= case getErrors (c:i++o) of
Just e -> Just ("incompatible methods because " ++ e)
Nothing -> Nothing
where
c = contravariance e (cointerface sub) (cointerface sup)
i = zipWith (contravariance e) (inparams sub) (inparams sup)
o = zipWith (covariance e) (outparams sub) (outparams sup)
conforms e sub@FunctionType{} sup@FunctionType{}
= case getErrors (o0:1i) of
Just e -> Just ("incompatible funcitons because " ++ e)
Nothing -> Nothing
where
i = zipWith (contravariance e) (inparams sub) (inparams sup)
o = covariance e (outparam sub) (outparam sup)
conforms sub@VoidType VoidType = sub

conforms _ sub@AnyType{} _ = sub

conforms _ sub AnyType{} = sub
- Return the error, even if in the supertype
conforms envs sub@ErrorType{} sup = Just (message sub)

conforms envs sub sup@ErrorType{} = Just (message sup)

E.7. TYPE ANALYSIS 185

conforms envs sub sup = Just ((show (envs,sub))++
" does not fit in "++
(show (envs,sup)))

- Check that there are no inheritance cycles
- Information lookup in objects may not terminate
- due to inheritance cycles.
checkinheritance :: Env -> Maybe String
checkinheritance e
= getErrors [findcycle t | (tn,t) <- types el
where {
findcycle :: [TypeName] -> Type -> Maybe String;
findcycle visited t@ForallType{} = findcycle visited (tp t);
findcycle visited t@FunctionType{} = findcycle visited (outparam t);
findcycle visited t@NominalType{} = findcycle visited (tp t);
findcycle visited t@VarType{}
= if (tn t) ‘member‘ visited
then Just ("Inheritance cycle " ++ (show (e,t)) ++
"inherits from itself.")
else findcycle ((tn t):visited) (expand e t);
findcycle visited t@ObjectType{} = findrowcycle visited (row t);
findcycle _ _ = Nothing;
findrowcycle :: [TypeName] -> Row -> MaybeString;
findrowcycle visited r@Row{tag=Inherit}
= findcycle visited (tp r);
findrowcycle visited r@Row{} = findrowcycle visited (row r);
findrowcycle _ _ = Nothing;

}

- Build the nominal constraints according to
- declared inheritance
constraints :: Env -> Env
constraints e = e{constraints=[(lower,upper)
| upper <- findupper lower
| lower <- findnominals t
| (tn,t) <- types e
]
}
where {
findnominals :: Type -> [Symbol] ;
findnominals t = case t of
FunctionType{} -> findnominals (outparam t)
ForallType{} -> findnominals (tp t)
NominalType{} -> names t
ObjectType{} -> findrownominals (row t)
- >0
findrownominals :: Row -> [Symbol];
findrownominals r = case r of
Row{tag=Inherit} -> (findnominals (tp r)) ++ (findrownominals (row r))
Row{} -> findrownominals (row r)

- > 1

186 APPENDIX E. CODE

{- Inheritance from A to B is type safe when
the most revealing types of self are in
the matching relation.
This is checked by safeinheritance
-}
safeinheritance
- Check if conformance is satisfied on inheritance
- Return possible error message(s)
checkvariance :: Env -> Maybe String
checkvariance e = getErrors [variance t
| (tn,t) <- types e
]
where {
variance :: Type -> Maybe String

- extend a BoundTypes with another according to variance
oplus :: (Type->Type->Type) -> BoundTypes -> BoundTypes -> BoundTypes
oplus variance subs sups
= [case lookup subn sups of
Nothing -> sub
Just supt -> (subn,t)
where
t = case subt ‘variance‘ supt of
e@ErrorType{} -> e
- e{message="There is a problem in "++subn++
- " because "++(message e)}
t >t
| sub@(subn,subt) <- subs

]

- Extend sub with each of sup in succession

inherits :: Envs -> Type -> [Typel -> Envs

inherits envs varsub [] = envs

inherits envs varsub (h:t) = inherits (inherit envs varsub h) varsub t

- Extend sub with sup, such that sub <: sup

- Update the type environment with the changes

- Notice that the supertype can be expanded

- while the subtype can not be expanded, because that would give
- an infinite loop. The subtype is therefore updated

- in place with replaceType

inherit :: Envs -> Type -> Type -> Envs
inherit envs _ VarType{} = envs

inherit envs _ _ = envs

{-

inherit envs varsub varsup
= case (varsub,varsup) of
(VarType{},VarType{})
-> envs
(_,2) => envs

E.7. TYPE ANALYSIS 187

-}
{-
inherit envs varsub varsup
= case (varsub,varsup) of
- Both must be vartypes, to expand fixpoints simultaneously
(VarType{},VarType{})
-> envs
{- envs3
where
- Assume that fix points are subtypes
envsl = envs{assumptions=(num varsub,num varsup)
: (assumptions envs)}
(envs2,0ldsub) = replaceType envsl (num varsub) newsub
(envs3,newsub) = extend envs2 oldsub (partExpand envs varsup)
-}

(_,_) -> envs

{-envs1
where
envsl = envs
(envsl,t) = replaceType envs (num varsub) ErrorType{
message="Internal compiler error in inherit"
,former=Just t}
-}
where {
extend :: Envs -> Type -> Type -> (Envs,Type) ;
extend envs sub@ObjectType{} sup@OlbjectType{}
= (envs,newsub)
where
mbts = oplus (subtype envs) (methods sub) (methods sup)
vbts = oplus (invariance envs) (variables sub) (variables sup)
error = getError ((map snd mbts) ++ (map snd vbts))
newsub = case error of
ErrorType{} -> error{message="Inheritance impossible because "++
(show (envs,sub))++" can not inherit from "++
(show (envs,sup)) ++ " because " ++ (message error)
,former=Just sub}
_ —> sub{variables = vbts
,methods = mbts
}

extend envs sub sup
= case (sub,sup) of
(ClassType{},ClassType{}) -> extend envs sub sup
(ClassType{},InterfaceType{}) -> extend envs sub sup
(InterfaceType{}, InterfaceType{}) -> extend envs sub sup
where {
extend :: Envs -> Type -> Type -> (Envs,Type) ;
extend envs sub sup
= (envs3,newsub)
where
envsl = inherit envs (self sub) (self sup)
envs2 = inherit envsl (open sub) (open sup)
envs3 = inherit envs2 (closed sub) (closed sup)
error = getError (map (partExpand envs3)

188 APPENDIX E. CODE

[self sub,open sub,closed subl)
newsub = case error of
ErrorType{} -> error{message="Inheritance impossible because "++
(show (envs,sub))++" can not inherit from "++
(show (envs,sup)) ++ " because " ++ (message error)
,former=Just sub}
_ —>case sup of
ClassType{}->sub{classes = (name sup,varsup):(classes sub)}
InterfaceType{}->
sub{interfaces = (name sup,varsup):(interfaces sub)}

}
extend envs sub sup = replaceType envs (num varsub)
ErrorType{message="Inheritance impossible for "++
(show (envs,sub))++
" from "++(show (envs,sup))
,former=Just sub}
} - End where
-}

{- Find method from object
First search the current object, then traverse parents
-}
findrow :: Env -> Type -> String -> Type
findrow e t s = case t of
VarType{} -> findrow e (expand e t) s
FunctionType{} -> findrow (outparam t)
ForallType{} -> findrow (tp t)
ObjectType{} -> rowfindrow (row t)
where {
rowfindrow :: Row -> Type

}

- Get method from interface
getMethod :: Envs -> Type -> String -> Type
getMethod envs@Envs{complete=env@Env{}} mu m = getMethod (expand envs mu) m
where {
getMethod mu@InterfaceType{} m
= case lookup m (methods mu) of
Just mt -> mt
Nothing -> ErrorType{message="The interface " ++ (name mu) ++
" has no method " ++ m
,former=Nothing}
getMethod mu@ErrorType{} m = mu
getMethod mu m = ErrorType{message=(show mu)++" has no methods.",former=Nothing}

}

- Create the open,closed and self types corresponding to a class/interface
- and put these into the environment and the class/interface

- Return the new type environment.

selves :: Envs -> Type -> Type -> Envs

E.7. TYPE ANALYSIS 189

selves envs _ _ = envs

{-

selves envs vartype@VarType{} selfO@0bjectType{} = envs3
where

- If this is a parametrised class/interface
- then the open and closed types are also parametrised
- while the type of self is not parametrised.
- inspect selfO to determine if this and
- create wrap to parametrize, and get the unparametrised type of self
(wrap,selfl) = case self0O of
tQ@ForallType{tp=self} -> (\o->t{tp=o},self)
self@0bjectType{} -> (id,self)
- Keep the origin of this object for better error messages
- Make self an open type
self = selfi{origin = vartype
,openrow = True}
- Put self into the type environment
(envsO,varself) = newType envs self
{- The closed type derived from self is obtained by
* remove hidden information
* Close the object
* Replace fixpoint with this new closed type.
* use wrap to maintain parametrisation

-}
hiddenself = self{variables=[]}
closedself = hiddenself{openrow=False}

closed = substvar [(num varself,varclosed)] closedself
(envsl,varclosed) = newType envsO (wrap closed)
{- The open type derived from self is obtained by
* Remove hidden information (Already done for closed)
* Open the object (Already open)
* Replace fixpoint with this new open type
* use wrap to maintain parametrisation
-}
open = substvar [(num varself,varopen)] hiddenself
(envs2,varopen) = newType envsl (wrap open)
- Insert the updated information about selves into class/interface
- Don’t expand, but use replace to exchange type,
- Expand would cause infinite loop (obviously)
- since we wan’t to update the partial type,
- not the finished type.
(envs3,t’) = replaceType envs2 (num vartype) t
t = t’{open = varopen, closed = varclosed, self = varself}
selves envs _ ErrorType{} = envs

selves envs ErrorType{} _ = envs
selves envs _ AnyType{} = envs
selves envs AnyType{} _ = envs
-}

- Get error from list of types
getError :: Types -> Type

getError [] = AnyType{former=Nothing}
getError (h@(ErrorType{}):tl) = h
getError (h:tl) = getError tl

190 APPENDIX E. CODE

- Get errors from list of Nothing or Just

getErrors :: [Maybe String] -> Maybe String
getErrors 1 = foldl combine Nothing 1
where

combine Nothing Nothing = Nothing
combine (Just a) Nothing = Just a
combine Nothing (Just b) = Just b
combine (Just a) (Just b) = Just (a ++" "++ b)

- Check that type application is possible
- and return result type or error message
apply_tp :: Envs -> Type -> Types -> Type
apply_tp envs@Envs{complete=e@Env{}} tf@VarType{} tps
= case lookup (num tf) (types e) of
Just t -> apply_tp envs t tps
Nothing -> ErrorType{message="Compiler error: undefined type "++
(show (num tf))
,former=Nothing}
apply_tp envs tf@ForallType{} tps
= case compare (length tps) (num_offset tf) of
LT -> ErrorType{message="Not enough type parameters",former=Just tf}
GT -> ErrorType{message="Too many type parameters",former=Just tf}
EQ -> substfree [(n,tps!!'n) | n <- [0..(num_offset tf)]] (tp tf)
apply_tp _ tf [] = tf - When no parameters and not Forall, just keep the type
apply_tp _ tf@ErrorType{} _ = tf
apply_tp _ tf _ = ErrorType{message="Can not parametrise " ++ (show tf)
,former=Just tf}

- Check that parameter application is possible
- and return result type or error message
apply_fun :: Envs -> Type -> Types -> Type
apply_fun envs f@FunctionType{} ps
= case compare (length ps) (length (inparams f)) of
LT -> ErrorType{message="Not enough parameters",former=Just f}
GT -> ErrorType{message="Too many parameters",former=Just f}
EQ -> case getError (zipWith (subtype envs) ps (inparams f)) of
tQ@ErrorType{} -> ErrorType{message="Incompatible parameter " ++
(message t)
,former=Just f}
_ -> (outparam f)
apply_fun envs fs@OverloadedType{} ps
= case compare (length candidates) 1 of
LT -> ErrorType{message="Could not apply "++(show ps)++
" to any of "++(show (tps fs))
,former=Just fs}
GT -> ErrorType{message="Too many possible subtypes!",former=Just fs}
EQ -> candidates!!0
where candidates = [t
| £ <~ (tps fs)
, let t = apply_fun envs f ps
, case t of ErrorType{} -> False; _ -> True
]
apply_fun envs f@ErrorType{} _ = f
apply_fun envs f ps = ErrorType{message="Internal error: apply_fun "++

E.7. TYPE ANALYSIS 191

(show f)++" "++(show ps)
,former=Just f}

- Assignment requires a reference or an object type.
apply_assign envs lval rval
= case (expand envs lval,expand envs rval) of
(ErrorType{},_) -> 1lval
(_,ErrorType{}) -> rval
(AnyType{},_) -> 1lval
(_,AnyType{}) -> rval
(RefType{ref=1val},_) -> assignable lval
(ObjectType{},_) -> assignable lval
(InterfaceType{},_) -> assignable lval
(ClassType{},_) -> assignable lval
,.) —> ErrorType{former = Nothing
,message = "Assignment requires variable left of :="
¥
where {
assignable lval
= case subtype envs rval lval of - Substitutability
t@ErrorType{} -> t{message="Assignment failure because " ++
(message t)
,former=Just lval}

_ —> VoidType

apply_receive :: Envs -> Type -> Types -> Type
apply_receive envs f@MethodType{} ops - Asynchronous Receive
= case compare (length ops) (length (outparams f)) of
LT -> ErrorType{message="Not enough out parameters",former=Nothing}
GT -> ErrorType{message="Too many out parameters",former=Nothing}
EQ -> case getError (zipWith (subtype envs) (outparams f) ops) of
eQ@ErrorType{} -> e{message="Incompatible out " ++
"parameter " ++ (message e)}
_ —> VoidType
apply_receive _ f@ErrorType{} _ = f

apply_send :: Envs -> Type -> Type -> Types -> Type
apply_send envs f@MethodType{} caller ips - Asynchronous Send
= case compare (length ips) (length (inparams f)) of
LT -> ErrorType{message="Not enough in parameters",former=Nothing}
GT -> ErrorType{message="Too many in parameters",former=Nothing}
EQ -> case subtype envs caller (cointerface f) of
t@ErrorType{} -> t{message="Caller has wrong interface"}
_ —> case getError (zipWith (subtype envs) ips (inparams f)) of
e@ErrorType{} -> e{message="Incompatible parameter "
++ (message e)}
_ —> VoidType
apply_send envs f@ErrorType{} _ _ = £

apply_method :: Envs -> Type -> Type -> Types -> Types -> Type
apply_method envs f@MethodType{} caller ips ops - Synchronous
= case getError [apply_send envs f caller ips, apply_receive envs f ops] of
e@ErrorType{} -> e

192 APPENDIX E. CODE

_ —> VoidType
apply_method envs f@AnyType{} _ _ _ = £
apply_method envs f@ErrorType{} _ _ _ = f

apply_class :: Envs -> Type -> Types -> Type
{-
apply_class envs f@OverloadedType{} ps
= case compare (length ts) 1 of
LT -> ErrorType{message="None of "++(show (tps f))++" is a class."
,former=Nothing}
GT -> ErrorType{message="More than one of "++(show (tps f))++" is a class."
,former=Nothing}
EQ -> apply_class (ts!!0) ps
where ts = [t | t@ClassType{} <- (tps f)]
-}
apply_class envs f@ClassType{} ps
= case compare (length ps) (length (parameters f)) of
LT -> ErrorType{message="Not enough class parameters",former=Nothing}
GT -> ErrorType{message="Too many class parameters",former=Nothing}
EQ -> case getError (zipWith (subtype envs) ps (parameters f)) of
e@ErrorType{} -> e{message="Incompatibel class parameter "
++ (message e)}
_ => self f
apply_class envs f@ErrorType{} _ = f
apply_class envs f@AnyType{} _ = £
apply_class envs f@InterfaceType{} ps
= ErrorType{message=(name f)++" is not a class.",former=Nothing}
apply_class envs f ps = ErrorType{message=(show f)++" is not a class."
,former=Nothing}

}
SEM Ast
| Ast
(loc.envs)
= envs2
where

(envs0,vartype) = newType Qloc.emptyenvs it
it = InterfaceType
{name = "Any"
,interfaces = []
,open = AnyType Nothing
,closed = AnyType Nothing
,self = AnyType Nothing
}
envsl = selves envsO vartype ot
ot = ObjectType
{origin = AnyType Nothing
,variables=[]
,methods=[]
,openrow = True

}
t = partExpand envsl vartype

E.7. TYPE ANALYSIS 193

ns = Q@loc.namespace

(envs2,_) = addSymbols envsl
[("Any", (open t,ns,GammaSymbol))
, ("@Any", (closed t,ns,GammaSymbol))
, ("Any", (vartype,ns,GammaInterface))

]

lhs.error = insertSep "\n"

[@classes.error,@interfaces.error]

SEM Class

Class
typeparameters.type_offset = 0
- Create prelminiary type of objects for this class
- and let parametrisation change if necessary
typeparameters.type
= ObjectType
{origin = AnyType Nothing
,variables=zip Qvariables.ids Q@variables.types
,methods=zip @methods.ids @methods.types
,openrow = True
X
- Create the class type ct and use
- type from parametrisation to build selves,
- which also updates information in ct about selves.
- then perform inheritance
- and find errors
(loc.envs,loc.vartype,loc.error)
= (envs3,vartype,error)
where
(envs0,vartype) = newType @lhs.environments ct
ct = ClassType
{name = @name.id
,interfaces = []
,classes = []
,parameters = @parameters.types
,open = AnyType Nothing
,closed = AnyType Nothing
,self = AnyType Nothing
}
envsl = selves envsO vartype Qtypeparameters.type
ns = Q@lhs.namespace
getClass = getSymbol envsl ns GammaClass
superclasses = map getClass ("Any" : Q@inherits.ids)
envs2 = inherits envsl vartype superclasses
getInterface = getSymbol envs2 ns Gammalnterface
superinterfaces = map getInterface Qimplements.ids
envs3 = inherits envs2 vartype superinterfaces
(envs4,error) = findError envs3 @pos vartype @loc.erroril
lhs.error = insertSep "\n"
[@loc.error, @variables.error, @methods.error]

SEM Interface

Interface
typeparameters.type_offset = 0

194 APPENDIX E. CODE

- Create prelminiary type of objects for this interface
- and let parametrisation change if necessary
typeparameters.type
= ObjectType
{origin = AnyType Nothing
,variables=[]
,methods=[] - zip @signatures.ids @signatures.types
,openrow = True
}
- Create the interface type (it) and use
- type from parametrisation to build selves
- then perform inheritance
- and find errors
(loc.envs,loc.this,loc.error)
= (envs3,vartype,error)
where
(envsO,vartype) = newType @lhs.environments it
it = InterfaceType
{name = @name.id
,interfaces = []
,open = AnyType Nothing
,closed = AnyType Nothing
,self = AnyType Nothing
}
envsl = selves envsO vartype Q@typeparameters.type
ns = Qlhs.namespace
getInterface = getSymbol envsl ns GammaInterface
superinterfaces = map getInterface ("Any" : Qinherits.ids)
envs2 = inherits envsl vartype superinterfaces
(envs3,error) = findError envs2 @pos vartype @loc.errorl
lhs.error = insertSep "\n" [@loc.error, @signatures.error]

SEM MaybeMethods
| Nothing
lhs.types = []
| Just
lhs.types = @methods.types

SEM Methods
| Cons
lhs.types = @hd.type : Q@tl.types
lhs.ids = @hd.id : @tl.ids

SEM Method
| Method
loc.typel = @signature.type
lhs.error = insertSep "\n" [Q@loc.error, @signature.error, Qcode.error]
(loc.type,loc.error)
= catchError @signature.pos @loc.typel @loc.environments ""

SEM MaybeSignatures
| Just
lhs.types = Q@signatures.types

E.7. TYPE ANALYSIS 195

SEM Signatures
| Cons
lhs.types = @hd.type : Qtl.types
lhs.ids = @hd.id : @tl.ids

SEM Signature
| Signature
loc.typel = MethodType{name = @name.id
,cointerface = @loc.caller
,inparams = @in.types
,outparams = Qout.types
}
loc.caller = getSymbol Q@lhs.environments @lhs.namespace
GammaSymbol
Qcaller.id
lhs.error = insertSep "\n" [@loc.callererror
, @loc.error,@in.error,@out.error]
(loc.type,loc.error)
= catchError Qpos @loc.typel @loc.environments @loc.erroril
(_,loc.callererror)
= catchError Qpos Qloc.caller Q@loc.environments ""
lhs.id = @name.id

SEM Statement
| Binary
loc.type
= apply_fun envs operator [@left.type , @right.type]
where operator = getSymbol envs @lhs.namespace
GammaSymbol
Qoperator
envs = Q@lhs.environments
lhs.error = insertSep "\n" [@loc.error, @left.error, Qright.error]
(1hs.type,loc.error)
= catchError @pos Q@loc.type @lhs.environments ""

| Assign
loc.type = apply_assign envs lval Qexpr.type
where
lval = getSymbol envs @lhs.namespace
GammaSymbol
@Gname.id

envs = Q@lhs.environments
lhs.error = insertSep "\n" [@loc.error, @expr.error]
(1hs.type,loc.error)
= catchError @name.pos @loc.type @lhs.environments ""
| While
loc.type
= apply_fun envs whilestmt [@condition.type,@statement.typel
where whilestmt = getSymbol envs [] GammaSymbol "while"
envs = Q@lhs.environments
lhs.error = insertSep "\n" [@loc.error, @condition.error, @statement.error]
(1hs.type,loc.error)
= catchError @pos Qloc.type @lhs.environments ""
| Call
loc.type

196 APPENDIX E. CODE

= apply_method envs method @lhs.this Qin.types outs
where outs = map (getSymbol envs @lhs.namespace GammaSymbol)
Qout.ids
method = getSymbols envs @lhs.namespace GammaSymbol
[@object.id,@method. id]
envs = Qlhs.environments
lhs.error = insertSep "\n" [@loc.error]
(lhs.type,loc.error) = catchError @method.pos @loc.type @lhs.environments ""
| Send
loc.type = apply_send envs Q@loc.methodtype @lhs.this Qin.types
where envs = Qlhs.environments
loc.methodtype
= getMethod envs interface @method.id
where interface = getSymbol envs @lhs.namespace
GammaSymbol
@object.id
envs = Q@lhs.environments
lhs.error = insertSep "\n" [@loc.error]
(1hs.type,loc.error)
= catchError Qobject.pos @loc.type @loc.environments @loc.erroril
| Receive
loc.type
= apply_receive envs method @vars.types
where method = getSymbol envs @lhs.namespace
GammaSymbol
Q@label.id
envs = Qlhs.environments
lhs.error = insertSep "\n" [@loc.error]
(1hs.type,loc.error)
= catchError @label.pos @loc.type @lhs.environments ""
| Await
loc.type
= apply_fun envs await [@condition.typel
where await = getSymbol envs [] GammaSymbol "await"
envs = Q@lhs.environments
lhs.error = insertSep "\n" [@loc.error, @condition.error]
(1hs.type,loc.error)
= catchError @pos @loc.type @lhs.environments ""
| Wait
lhs.type = VoidType
| Expression
lhs.type = Qexpression.type

SEM MaybeLabel
| Nothing
lhs.type = VoidType

SEM Label
| Label
lhs.id = @label
lhs.pos = @pos
lhs.type = VoidType

SEM MaybeExpressions

E.7. TYPE ANALYSIS 197

SEM

SEM

SEM

| Just
lhs.types = Qexpressions.types

Expressions

| Wil
lhs.types

| Cons
lhs.types = @hd.type : @tl.types

[

MaybeExpression
| Nothing
lhs.type = VoidType

Expression
Binary
loc.type
= apply_fun envs operator [@left.type , @right.type]
where operator = getSymbol envs [] GammaSymbol Qoperator
envs = Q@lhs.environments
lhs.error = insertSep "\n" [@loc.error, @left.error, @right.error]
(1hs.type,loc.error) = catchError @left.pos @loc.type @lhs.environments ""
Unary
loc.type
= apply_fun envs operator [@expression.type]
where operator = getSymbol envs [] GammaSymbol @operator
envs = Q@lhs.environments
lhs.error = insertSep "\n" [@loc.error, @expression.error]
(1hs.type,loc.error)=catchError Qexpression.pos @loc.type @lhs.environments ""
Null
loc.type = VoidType

Variable

loc.type = getSymbol @lhs.environments @lhs.namespace
GammaSymbol
Oname.id

lhs.error = insertSep "\n" [@loc.error]

(1lhs.type,loc.error) = catchError @name.pos @loc.type @lhs.environments ""
Int

loc.type = IntType

Bool
loc.type = BoolType
String
loc.type = StrType
New
loc.type
= apply_class envs constr Qin.types
where

constr = apply_tp envs pconstr Qtin.types
pconstr = getSymbol envs @lhs.namespace
GammaClass
Qconstructor.id
envs = Q@lhs.environments
lhs.error = insertSep "\n" [@loc.error,@tin.error,@in.error]
(1hs.type,loc.error)
= catchError Qconstructor.pos @loc.type @lhs.environments ""

198 APPENDIX E. CODE

| If
loc.type
= apply_fun envs ifstmt [@condition.type,@statement.type,@elsepart.type]
where ifstmt = getSymbol envs [] GammaSymbol "if"
envs = @lhs.environments
lhs.error = insertSep "\n" [@loc.error, @condition.error,
@statement.error, Qelsepart.error]
(1hs.type,loc.error)
= catchError @pos @loc.type @loc.environments ""

SEM MaybeDeclarations
| Just
lhs.types = @declarations.types
lhs.error = @declarations.error

SEM Declarations
| Cons
lhs.types = @hd.type : @tl.types
lhs.ids = @hd.id : @tl.ids
lhs.error = consNewline @hd.error @tl.error

SEM Declaration
| Var
loc.typel = getSymbol Qlhs.environments @lhs.namespace
GammaSymbol Qtypeid.id
lhs.error = insertSep "\n" [@loc.error]
(loc.type,loc.error)
= catchError @name.pos Q@loc.typel @lhs.environments @loc.errorl
lhs.type = Q@loc.type
lhs.id = @name.id

SEM MaybeTypeDeclarations
| Nothing
lhs.types = []
lhs.type = Q@lhs.type
| Just
lhs.types = @declarations.types
lhs.type = ForallType @declarations.type_offset @lhs.type

SEM TypeDeclarations
| Cons

tl.type_offset = Q@lhs.type_offset
hd.type_offset Otl.type_offset
lhs.type_offset = @hd.type_offset

lhs.types = @hd.type : @tl.types

lhs.ids = @hd.id : @tl.ids

lhs.error = consNewline @hd.error @tl.error

SEM TypeDeclaration
| Var
lhs.id = @name.id
loc.typel = FreeType Qlhs.type_offset @name.id
lhs.type_offset = Q@lhs.type_offset + 1
lhs.error = insertSep "\n" [@loc.error]

E.7. TYPE ANALYSIS 199

(loc.type,loc.error)

= catchError @name.pos Q@loc.typel @lhs.environments @loc.errorl

SEM VarIds
| Cons
lhs.types = @hd.type : Qtl.types
lhs.ids = @hd.id : @tl.ids

SEM VarId
| VarId
lhs.id = Qvarid
lhs.pos = @pos
lhs.type = getSymbol @lhs.environments @lhs.namespace
GammaSymbol @varid

SEM Typelds
| Cons
lhs.types = @hd.type : Qtl.types
lhs.ids = @hd.id : @tl.ids

SEM Typeld
| Typeld
lhs.id = @typeid
lhs.pos = @pos
lhs.type = getSymbol @lhs.environments @lhs.namespace
GammaSymbol Q@typeid

200 APPENDIX E. CODE

E.7.4 Symbol Table Definitions

200 (Symbol Table Definitions 200)= (161b)
{
type Namespace = [String]
type Symbol = String
data Gamma = GammaSymbol | GammaClass | GammaInterface deriving (Show,Eq)
type SymbolInfo = (Type,Namespace,Gamma)
type TypeName = Int
type TypeNames = [TypeName]
data Env = Env
{ symbols :: [(Symbol,SymbolInfo)] - A list of symbol mappings
, types::[(TypeName,Type)] - Environment of types
, constraints::[(Symbol,Symbol)] - Nominal restrictions

, assumptions :: [(TypeName,TypeName)] - fixpoint subtype assumptions
, freetype::TypeName - The next free type variable
, traversed :: [TypeName] - To detect cycles from mutual recursion

emptyEnv = Env [] [1 [1 0 []
type Subst = (TypeName,Type)

instance Show Env where

show e@Env{} = "Symbols:\n" ++
(insertSep "\n" (map show (symbols e))) ++
"\nTypes: \n" ++
(insertSep "\n" (map show (types e))) ++
"\n" ++
"\nAssumptions:\n" ++
(insertSep "\n" [(show a)++"<:"++(show b)

| (a,b) <- assumptions es]) ++

n \n\nll

- Insert symbol into environment
addSymbol :: Env -> (Symbol,SymbolInfo) -> (Env,String)
addSymbol e@Env{} r@(name, (tn,ns,g))
= case (lookup name (symbols e)) of
(Just (_,ns’,g’)) | (ns == ns’) & (g == g’)
-> (e,"Redeclaration error of " ++ name)
) > (e’,"")

where e’ = e{symbols=r: (symbols e)}

- Add several symbols
addSymbols :: Env -> [(Symbol,SymbolInfo)] -> (Env,String)
addSymbols e [1 = (e,"")
addSymbols e (h:tl) = (e’’,err’’)
where
(e’,err’) = addSymbol e h
(e’’,err’’) = case err’ of
[1 -> addSymbols e’ tl
_ > (e’,err’)

- Find symbol

E.7. TYPE ANALYSIS 201

getSymbol :: Env -> Namespace -> Gamma -> Symbol -> TypeName
getSymbol es ns g s = getSymbols es ns g [s]

- Use a path of symbols to find a type.
- Traverses internal namespaces in types.
getSymbols :: Env -> Namespace -> Gamma -> [Symbol] -> TypeName
getSymbols e@Env{} ns g (s:st)
= foldl (\tn->findin (expand e tn)) (find (symbols e) ns g s) st
where {
find: : [(Symbol,SymbolInfo)]->Namespace->Gamma->Symbol->TypeName;
find [] ns g s = ErrorType{message="Undeclared symbol "++(show s)++ "."
,former=Nothing} ;
find ((n’,(t,ns’,g’)):tl) ns gn
= if (n == n’) && (contains ns’ ns) && (g == g’)

then t
else find tl ns g n ;
contains :: Namespace -> Namespace -> Bool ;

contains (h:t) (h’:t’) = if h == h’ then contains t t’ else False ;
contains [] _
contains _ [] = False ;
findin :: Type -> Symbol -> Type ;
findin t@ErrorType{} _ = t ;
findin t@0bjectType{} s
= case findrow [Method,Variable] s t of
Just t’ -> t’
Nothing -> ErrorType{former=Nothing
,message="Could not find " ++ s ++ " in " ++
(show (e,t))++" object."

= True ;

¥
findin t@AnyType{} s = t - AnyType prevent cascading errors
findin t s = ErrorType{message="Internal error: undefined findin for " ++
(show t)
,former=Nothing}

- Add a new type to the environment
- The TypeName of the type is returned
newType :: Env -> Type -> (Env,TypeName)
newType e@Env{} t
= (e’,tn)
where
tn = freetype e
e’ = e{types=(tn,t): (types e),freetype=tn + 1}

- Replace a type in the environment

- Return the existing version for use in the update
replaceType :: Env -> TypeName -> Type -> (Env,Type)
replaceType e@Env{} tn t

= case lookup tn (types e) of
Nothing -> (e
,ErrorType{message="Internal error: "++
"undefined type variable " ++ (show n)++"."

202 APPENDIX E. CODE

,former=Nothing}

)
Just t’’ -> (e{types=updated},t’’)
where
updated = [(n’,if n == n’ then t else t’)

[
| (n’,t’) <- types e
]

- Update a type in the type environment
updateType :: Env -> TypeName -> Type -> Env
updateType e@Env{} tn t
= case lookup tn (types e) of
Nothing -> e{types=(n,t):(types e)}
Just t’ -> substvars e’ substs
where
(t’’,e’,substs) = unify e t t’

- Apply each substitution to every element in the environment
- Use traversed to avoid infinite looops
substvars :: Env -> [Subst] -> Env
substvars env@Env{} substs
= env{types=[(n,substvar substs t) | (n,t) <- (types env)]}

- Apply substitution to type
substvar :: [Subst] -> Type -> Type
substvar _ t@BoolType = t

substvar _ t@IntType = t
substvar _ t@StrType =t
substvar s tO@RefType{} = t{ref = substvar s (ref t)}
substvar s t@VariantType{} = t{tps=(map (substvar s) (tps t))}
substvar s t@RecordType{} = t{btps=map (\(n,t)->(n,substvar s t)) (btps t)}
substvar s t@VarType{}
= case lookup (num t) s of { Just t’ -> t’ ; Nothing -> t }
substvar _ t@FreeType{} = t
substvar s t@ForallType{} = t{tp=substvar s (tp t)}
substvar s t@0ObjectType{}
= t{variables=map replace (variables t)
,methods=map replace (methods t)
} where replace = \(n,t)->(n,substvar s t)
substvar s t@InterfaceType{}
= t{self = substvar s (self t)
,open = substvar s (open t)
,closed = substvar s (closed t)
,interfaces=map replace (interfaces t)
} where replace = \(n,t)->(n,substvar s t)
substvar s t@ClassType{}
= t{parameters=map (substvar s) (parameters t)
,interfaces=map replace (interfaces t)
,classes=map replace (classes t)
,self = substvar s (self t)
,open = substvar s (open t)
,closed = substvar s (closed t)
} where replace = \(n,t)->(n,substvar s t)
substvar s t@MethodType{}

E.7. TYPE ANALYSIS 203

= t{cointerface=substvar s (cointerface t)
,inparams=map (substvar s) (inparams t)
,outparams=map (substvar s) (outparams t)
}

substvar s t@FunctionType{}
= t{inparams=map (substvar s) (inparams t)
,outparam=substvar s (outparam t)
}
substvar _ t@VoidType = t
substvar _ t@AnyType{} = t
{-
substvar s t@0verloadedType{} = t{tps=map (substfree s) (tps t)}
-}
substvar _ t@ErrorType{} =t

{-
substvar s t = ErrorType{message="Compiler error: substvar not defined for "++
(show t)
,former=Nothing}
-}

- Unification on two types,
- returning the unified type and substitutions
unify :: Envs -> Type -> Type -> (Type,Envs, [Subst])
unify envs 1l@VarType{} r@VarType{}
= if (num 1) == (num r)
then (1,envs,[])
else (error,envs, [(num 1,error), (num r,error)])
where
error = ErrorType{message="Incompatible types: "++ (show (num 1)) ++
" and "++(show (num r))
,former=Nothing}
unify envs 1 r@VarType{} = unify envs r 1
unify envs@Envs{partial=env@Env{}} 1l@VarType{} r
= if elem (num 1) (traversed env) - Detect cycles
then (error,envs,[(num 1,error), (num r,error)])
else (r,envs,[(num 1,r)])
where
error = ErrorType{message="Illegal type cycle detected",former=Nothing}
unify envs t@ErrorType{} _ = (t,envs,[])
unify envs _ t@ErrorType{} = (t,envs,[])
unify envs AnyType{} t = (t,envs,[])
unify envs t AnyType{} = (t,envs,[])
unify envs _ _ = (ErrorType{message="Compiler error: could not unify."
,former=Nothing}
,envs, [1)

204 APPENDIX E. CODE

E.7.5 Symbol Table Attributes

204 (Symbol Table Attributes 204)= (161b)

- Chained environment

ATTR * - Ast
[- Inherited
namespace : { [String] } - Contains starting point for symbol lookup
| - Chained

environments : Envs - Contains all symbols
| - Synthesized
]

ATTR Signature
[- Inherited

| - Chained
| - Synthesized
namespace : { [String] } - Contains starting point for symbol lookup
]
ATTR Ast
[- Inherited
| - Chained
| - Synthesized

environments : Envs

]

E.7. TYPE ANALYSIS 205

E.7.6 Symbol Table Semantic Functions

205 (Symbol Table Semantic Functions 205)= (161b) 208>

SEM Ast
| Ast
loc.namespace = []
classes.namespace = []
interfaces.environments = Qloc.envs
loc.emptyenvs = Envs{partial = stdenv
,complete = partial @classes.environments
,assumptions = []
}
classes.environments
= Envs{partial = partial @interfaces.environments
,complete = complete Qinterfaces.environments
,assumptions = assumptions @interfaces.environments

}

SEM Interfaces
| Nil
lhs.environments = @lhs.environments
| Cons
tl.environments = @lhs.environments
hd.environments = @tl.environments
lhs.environments = @hd.environments

SEM Interface
| Interface
(signatures.environments,loc.errorl)
= addSymbols @loc.envs

[(Gname.id, (open it,@lhs.namespace,GammaSymbol))

,("@" ++ @name.id, (closed it,@lhs.namespace,GammaSymbol))

, (Gname.id, (@loc.this,@lhs.namespace,Gammalnterface))

, ("This", (self it,@loc.namespace,GammaSymbol))

] where it = partExpand Q@loc.envs @loc.this
loc.environments = @signatures.environments
lhs.environments = @loc.environments
loc.namespace = Q@lhs.namespace ++ [@name.id]

SEM Classes
| Nil
lhs.environments = @lhs.environments
| Cons
tl.environments = @lhs.environments
hd.environments = @tl.environments

lhs.environments = @hd.environments

SEM Class
| Class
(typeparameters.environments,loc.errorl)
= addSymbols @loc.envs
[(@name.id, (open ct,@lhs.namespace,GammaSymbol))
,("@" ++ @name.id, (closed ct,@lhs.namespace,GammaSymbol))

206 APPENDIX E. CODE

, (Gname. id, (@loc.vartype,@lhs.namespace,GammaClass))

, ("This", (self ct,@loc.namespace,GammaSymbol))

, ("this", (self ct,@loc.namespace,GammaSymbol))

] where ct = partExpand @loc.envs @loc.vartype
loc.this = self (partExpand @loc.envs @loc.vartype)
parameters.environments = Qtypeparameters.environments
variables.environments = @parameters.environments
methods.environments = @variables.environments
loc.environments = @methods.environments
lhs.environments = @loc.environments
loc.namespace = @lhs.namespace ++ [@name.id]

SEM MaybeMethods
| Nothing
lhs.environments = @lhs.environments

SEM Methods
| Nil
lhs.environments = @lhs.environments
| Cons
tl.environments = @lhs.environments
hd.environments = Q@tl.environments
lhs.environments = @hd.environments

SEM Method
| Method

signature.environments = Qlhs.environments
variables.environments = @signature.environments
code.environments = @variables.environments
loc.environments = Qcode.environments
lhs.environments = @loc.environments
signature.namespace = @lhs.namespace
variables.namespace = @signature.namespace
code.namespace = @signature.namespace

SEM MaybeSignatures
| Nothing
lhs.environments = Q@lhs.environments

SEM Signatures

| Nil
lhs.environments = @lhs.environments

| Cons
hd.namespace = @lhs.namespace
tl.namespace @lhs.namespace
tl.environments = @lhs.environments
hd.environments = Q@tl.environments
lhs.environments = @hd.environments

SEM Signature
| Signature
(loc.environments,loc.errorl)
= addSymbols @lhs.environments
[(Gname.id, (@loc.type ,@lhs.namespace,GammaSymbol))

E.7. TYPE ANALYSIS 207

,("caller", (@loc.caller,@loc.namespace,GammaSymbol))
1
in.environments = if elem @name.id ["run"] - Don’t put "run" in namespace
then Qlhs.environments
else @loc.environments
out.environments = Qin.environments
lhs.environments = Qout.environments
loc.namespace = @lhs.namespace ++ [@name.id]
in.namespace = Q@loc.namespace
out.namespace = @loc.namespace
lhs.namespace = Q@loc.namespace

SEM MaybeDeclarations
| Nothing
lhs.environments = Qlhs.environments

SEM Declarations

| Nil
lhs.types = []
lhs.environments = @lhs.environments

| Cons
tl.environments = @lhs.environments
hd.environments = @tl.environments
lhs.environments = @hd.environments

208

208

(Symbol Table Semantic Functions 205)+=
SEM Declaration

Var
(loc.environments,loc.errorl)
= addSymbol @lhs.environments

APPENDIX E. CODE

(161b) <205

(@name. id, (@loc.type,@lhs.namespace,GammaSymbol))

lhs.environments = @loc.environments

SEM MaybeTypeDeclarations

Nothing
lhs.environments = @lhs.environments

SEM TypeDeclarations

Nil
lhs.types = []
lhs.environments = @lhs.environments
Cons
tl.environments
hd.environments

= @lhs.environments
= @tl.environments
lhs.environments = @hd.environments

SEM TypeDeclaration

Var
(loc.environments,loc.errorl)
= addSymbol @lhs.environments
(@name. id

, (@loc.type,@lhs.namespace, GammaSymbol)

)

lhs.environments = @loc.environments

SEM Statement

Binary

left.environments = @lhs.environments
right.environments = Q@left.environments
lhs.environments = Qright.environments
Unary

guard.environments = Q@lhs.environments
statement.environments
lhs.environments = @statement.environments
Nullary
statement.environments
lhs.environments = @statement.environments
Assign

lhs.environments = @lhs.environments

While

condition.environments = Q@lhs.environments

= @lhs.environments

= @lhs.environments

statement.environments = Q@lhs.environments
lhs.environments = @statement.environments
Call
lhs.environments
Send
(loc.environments,loc.errorl)

= addSymbol @lhs.environments

(@label.id

= @lhs.environments

E.8. CODE MACHINE CODE GENERATION 209

, (@loc.methodtype,@lhs.namespace, GammaSymbol)
)

lhs.environments = @loc.environments

| Receive

lhs.environments = @lhs.environments
| Await

lhs.environments = @lhs.environments
| Wait

lhs.environments = @lhs.environments
| Expression
lhs.environments = @lhs.environments

SEM Expression
| If
condition.environments = Q@lhs.environments
statement.environments = @lhs.environments
elsepart.environments = @statement.environments
loc.environments = Qelsepart.environments
lhs.environments = @loc.environments

E.8 Code Machine Code Generation
E.8.1 Creol Machine Code Attributes

The following is a first attempt at an Attribute Grammar for these steps

209 (Creol Machine Code Attributes 209)= (161b)
ATTR =*
[- Inherited
| - Chained
| - Synthesized

cmc USE {++} {""} : String
]

ATTR MaybeDeclarations Declarations Declaration

Signature

[- Inherited

| - Chained

| - Synthesized

init USE {++} {""} : String
]

210 APPENDIX E. CODE

E.8.2 Creol Machine Code Semantic functions

210 (Creol Machine Code Semantic functions 210)= (161b)
SEM Ast
| Ast lhs.cmc = "in CreolVirtualMachine" ++
"\nfmod CreolMachineCode is" ++
"\n pr CreolVirtualMachine ." ++
"\n op cmc : -> Configuration . " ++
"\n eq cmc = " ++

"(new ’Main (nil)) " ++
Qclasses.cmc ++

"\Il . "4

"\nendfm" ++

"\nrew cmc .\n"

SEM Classes
| Cons 1lhs.cmc = consSep "\n" @hd.cmc Qtl.cmc

SEM Class
| Class lhs.cmc = "\n< " ++ @name.cmc ++
(cmcc @loc.error) ++ " : CL | " ++
"\n Inh: " ++
(xorPrint
(insertSep ", "
[@inherits.cmc
]
)
"nil
o+ M, o+
"\n Att: " ++
(xorPrint
(insertSep ", "
[@parameters.init,
@variables.init
]
)
||n0 n
DI = L =
Omethods.cmc ++
"\n Ocnt: 1 " ++

n \Il> n
SEM MaybeMethods
| Nothing
lhs.cmc = "\n Mtds: none,"

| Just lhs.cmc = "\n Mtds: " ++
Omethods.cmc ++
||\n s n

SEM Methods
| Cons
lhs.cmc = consSep " * " @hd.cmc @tl.cmc

E.8. CODE MACHINE CODE GENERATION 211

SEM Method
| Method
lhs.cmc = "\n < ’" ++ @signature.id ++

(cmcc @loc.error) ++

" : Mtdname | " ++

"Latt: " ++

(xorPrint

(insertSep " "

[@signature.init,
@variables.init

1
)
"no"++
)
R
"\n Code: " ++
(combineSep " ; "
@code.cmc
" end("
) ++
(xorPrint @signature.cmc "nil") ++
")\n >"
SEM Signature
| Signature
lhs.cmc = @out.cmc
lhs.init = insertSep ", " [@in.init, Qout.init]
SEM Statement
| Binary
lhs.cmc
=transform Q@left.cmc Qoperator @right.cmc
where
transform 1 o r
= """ A+ L A+ "+ 0 A" T ") 4
(cmcc @loc.error)
{- | Unary
lhs.cmc = "(" ++
Qguard.cmc ++ "->" ++
Q@statement.cmc ++
")" ++ (cmcc @loc.error)
-}
| Nullary
lhs.cmc = "(" ++ @statement.cmc ++ ")"
| Assign
lhs.cmc = "(" ++ @name.cmc ++
" := " ++ Qexpr.cmc ++ ")" ++ (cmcc @loc.error)
| While
lhs.cmc = "(while " ++
Qcondition.cmc ++
" do " ++

@statement.cmc ++
" od)" ++ (cmcc @loc.error)
| Call

212

SEM

SEM

SEM

SEM

SEM

APPENDIX E.

lhs.cmc = "(" ++ Qobject.cmc ++
" . " ++ Omethod.cmc ++
"(" ++ @in.cmc ++ " ; " ++ Qout.cmc ++ ")" ++
")" ++ (cmcc @loc.error)
| Send
lhs.cmc = "(" ++ @label.cmc ++ " ! " ++
(transform Qobject.cmc) ++
Omethod.cmc ++
"(" 4+ @in.cmc ++ ")" ++
")" ++ (cmcc @loc.error)
where
transform "’this" = ""
transform o = o ++ "."
| Receive
lhs.cmc = "(" ++ @label.cmc ++
" ?(" ++ Q@vars.cmc ++ ")" ++
")" ++ (cmcc @loc.error)
| Await
lhs.cmc = "(await " ++ Q@condition.cmc ++ ")" ++
(cmcc @loc.error)
| Wait
lhs.cmc = "(await wait)"
MaybeLabel
| Nothing
lhs.cmc = " ’" ++ Qloc.id
Label
| Label
lhs.cmc = " ’" ++ Qlabel
MaybeExpressions
| Nothing
lhs.cmc = "nil"
| Just
lhs.cmc = (xorPrint Qexpressions.cmc "nil")
Expressions
| Cons
lhs.cmc = consSep ", " @hd.cmc @tl.cmc
Expression
| Binary
lhs.cmc = "(" ++ @left.cmc ++
@loc.cmc ++
@right.cmc ++ ")" ++ (cmcc @loc.error)
loc.cmc = case (Q@left.type,

Qoperator ,

Q@right.type
) of

(IntType, "+", IntType) -> " + "
(StrType, "+", StrType) -> " cat "
(_’ ll+ll’ _) -> " + n

(_’ ll_ll’ _) -> no_n

CODE

E.8. CODE MACHINE CODE GENERATION

Unary
lhs.cmc =

Null
lhs.cmc =
Variable
lhs.cmc =

Int
lhs.cmc =
Bool
lhs.cmc =

loc.cmc =

String
lhs.cmc =
New
lhs.cmc =

If
lhs.cmc =

SEM MaybeVarIds

Nothing
lhs.cmc =
Just

lhs.cmc =

(transform Qoperator) ++ @expression.cmc

where

u*n’ _) > " xn

) >
u»n’ _) _> n ~n
"<", _) - "<
ne=t,) > M=
">", _) - ">
">=", _) => " >=1"
u=u’ _) > " =n
) > e
Mmoo) > /=
"and", _) -> " and "
"or",) > " or "

transform operator

= case
of (
(

n empty"

(operator)
nony > o neg "
"not") -> " not "

Oname.cmc ++

(cmcec @loc

" int(" ++ (show @value) ++ ")"

.error)

" bool(" ++
@loc.cmc ++

Il) n

case @value
of True -> "true"
False -> "false"

n str(\"" ++ Qvalue ++ n\n)u

" new " ++

"(" ++ Qin.
(cmcc @loc.

"(if "4

Qcondition.

" th " ++

Qstatement.

" el " 4+

Q@constructor.cmc ++
cme ++ ")" ++
error)

cmc ++

cmc ++

Q@elsepart.cmc ++

n fi)" ++

"hil"

(cmcc @loc.error)

(xorPrint @varids.cmc "nil")

213

214

SEM

SEM

SEM

SEM

SEM

SEM

SEM

SEM

SEM

APPENDIX E.

VarIds
| Cons
lhs.cmc = consSep ", " @hd.cmc @tl.cmc

VarId
| VarId
lhs.cmc = "’" ++ Qvarid

MaybeTypelds
| Nothing
lhs.cmc = ""
| Just
lhs.cmc = ""

Typelds
| Cons
lhs.cmc = consSep ", " @hd.cmc @tl.cmc

TypeIld
| TypeId
lhs.cmc = "’" ++ Qtypeid

TypeDeclarations
| Cons

TypeDeclaration
| Var
lhs.cmc = @name.cmc

Declarations
| Cons
lhs.cmc = consSep ", " @hd.cmc @tl.cmc
lhs.init = consSep ", " @hd.init @tl.init
Declaration
| Var
lhs.cmc = @name.cmc
lhs.init = "(" ++ @name.cmc ++ " : " ++
(xorPrint @default.cmc "null") ++
D+

(cmcc @loc.error)

CODE

E.8. CODE MACHINE CODE GENERATION 215

E.8.3 Unique Labels

215 (Unique Labels 215)= (161b)
- Globally Unique Label
ATTR Classes MaybeMethods Methods Method Statement Expression
Class Interface Interfaces Expressions MaybeExpression MaybeExpressions
Declaration Declarations MaybeDeclarations Signature Signatures
MaybeSignatures MaybeLabel
[- Inherited
| - Chained
unique : Int

| - Synthesized
]

SEM Ast
| Ast
loc.unique =1
interfaces.unique = @loc.unique
classes.unique = Q@interfaces.unique

SEM MaybeLabel
| Nothing
loc.unique = @lhs.unique + 1
lhs.unique = @loc.unique
loc.id = "UniqueLabel" ++ (show @loc.unique)
lhs.id = @loc.id

216 APPENDIX E. CODE

E.9 Auxiliary Functions

216 (Auziliary Functions 216)= (161b)
{
- Combinator to apply functions to recursive tuples
- Such as built by successive use of <+>
- (<->) :: (IsParser ps) =>p f ->p a ->p (f a b)
pf <-> pt = tupply <$> pf <*> pt
f <$-> pt = (tupply £f) <$> pt
f <$$-> pt = (tupplysec f) <$> pt

- Apply function to elements of tuple
tupply £ (a,b) = (f a) b

tupplysec £ (a,b) = \x -> ((f x) a) b
tripply £ (a,b,c) = ((f a) b) ¢

- Combine with separator

combineSep _ [1 [1 = []

combineSep _ [] 1 =1

combineSep _ 1 [] 1

combineSep sep 11 12 = 11 ++ sep ++ 12

- Insert separator between list elements
- Discard empty items
insertSep sep list = foldl (combineSep sep) "" list

- : with separator between
consSep _ h [] =h

consSep sep [] t =t

consSep sep h t = h ++ sep ++ t

- : with separator and item prefix

consPrefixSep prefix _ [1 [1 = []

consPrefixSep prefix _ h [] = prefix ++ h
consPrefixSep prefix sep h t = prefix ++ h ++ sep ++ t

- Print with prefix and suffix, if present
preSuffix _ [1 _ = []
preSuffix prefix item suffix = prefix ++ item ++ suffix

- Print one of the alternatives, preferrably the first.
xorPrint [] b =D

xorPrint a _ = a

- Parse key and return tuple with key and pos
pKeyPosTuple key = (\x->(key,x)) <$> pKeyPos key

- Print text as CMC Comment

cmcc :: String -> String

cmcce nno— nn

cmcc s = preSuffix " #x*x(" s ")\n"

findError :: Envs -> Pos -> Type -> String -> (Envs,String)

findError envs pos vartype otherError

E.9. AUXILIARY FUNCTIONS 217

= (envs’,error)
where (envs’,t’) = replaceType envs (num vartype) t
(t,error) = case t’ of

ErrorType{}
-> (AnyType{former=(former t’)}
, (show pos) ++ ": " ++ (message t’) ++
- " from symboltable " ++ (show (complete e)) ++
(preSuffix ", " otherError "")
)
t -> (t, (preSuffix ((show pos) ++ ": ") otherError ""))

catchError :: Pos -> Type -> Envs -> String -> (Type,String)
catchError pos ErrorType{message=msg,former=t} e otherError
= (AnyType{former=t}, (show pos) ++ ": " ++ msg ++
- " from symboltable " ++ (show (complete e)) ++
(preSuffix ", " otherError "")
)
catchError pos t otherError

= (t, (preSuffix ((show pos) ++ ": ") otherError ""))

218 APPENDIX E. CODE

Appendix F

Code Macros

Abstract Syntax Tree Structure 162) 161b, 162
Augziliary Functions 216) 161b, 216

Creol Machine Code Attributes 209) 161b, 209
Creol Machine Code Semantic functions 210) 161b, 210
CreolCompiler.ag 161a) 161a, 161b
highlevel.code 158b) 158b

library.code 158f) 158f

Main.hs 159a) 159a, 159b, 159¢, 160a, 160b
Parametrised Scanner 166e) 161b, 166e
Parser 167) 161b, 167, 171

part 1 of this code 158c) 158b, 158¢

part 2 of this code 158d) 158b, 158d

Patch for Scanner.hs 165) 165

(
(
(
(
(
(
(
(
(
(
(
(
(
(program.code 157) 157, 158a
(
(
(
(
(
(
(
(
(
(
(
(

Scanner Operator Characters 166b) 166b, 166e
Scanner Operator Keywords 166c) 166¢, 166e
Scanner Special Characters 166a) 166a, 166e
Scanner String Keywords 166d) 166d, 166e
some.code 158¢) 158e

Symbol Table Attributes 204) 161b, 204

Symbol Table Definitions 200) 161b, 200

Symbol Table Semantic Functions 205) 161b, 205, 208
Type Definitions 175) 161b, 175, 178

Typechecker Attributes 179) 161b, 179, 180a, 180b
Typechecker Semantic Functions 181) 161b, 181
Unique Labels 215) 161b, 215

219

	1 Introduction
	1.1 The Creol Language
	1.2 Creol Virtual Machine and Maude
	1.3 Creol Compiler and Type System Incentive
	1.4 Type Checking
	1.5 Haskell
	1.6 Combinator Parsers
	1.7 Attribute Grammars
	1.8 Thesis Overview

	2 The Creol Language
	2.1 Essential Creol Concepts
	2.1.1 Processor Release Points
	2.1.2 Separation of Behaviour and Code Reuse
	2.1.3 Compositional Program Analysis
	2.1.4 Cointerface
	2.1.5 Sample Translation to Creol from Java

	2.2 Creol Grammar and Syntax Examples
	2.2.1 Identifiers
	2.2.2 Comments
	2.2.3 Programs
	2.2.4 Interface Declarations
	2.2.5 Class Declarations
	2.2.6 Statements
	2.2.7 Predefined Constants
	2.2.8 Expressions

	2.3 Syntax Proposals for Creol Extensions
	2.3.1 Local Declarations
	2.3.2 Expressions as Statements
	2.3.3 Label Check as Expression
	2.3.4 Procedures
	2.3.5 Algebraic Data Types
	2.3.6 Parametrisation
	2.3.7 Enumeration
	2.3.8 Tuples
	2.3.9 Lists

	3 The Functional Creol Compiler
	3.1 Rationale and Design Goals
	3.1.1 Separate Semantics and Syntax
	3.1.2 Reuse of Existing Solutions
	3.1.3 Modularity Through Expressiveness

	3.2 Attribute Grammar System
	3.2.1 Overview
	3.2.2 Details

	3.3 Abstract Syntax Trees
	3.3.1 Example Abstract Syntax Tree

	3.4 Scanner
	3.4.1 University of Utrecht Scanner

	3.5 Parser
	3.5.1 UUAG Combinator Parser Library
	3.5.2 Parsing Example

	3.6 Type Checking
	3.7 Code Generator
	3.7.1 Creol to CMC Example

	4 Object-Oriented Type Analysis
	4.1 Static Type Safety
	4.2 Essential Type Terminology
	4.2.1 Subtyping
	4.2.2 Object Type
	4.2.3 this, self and Self
	4.2.4 Matching
	4.2.5 Record
	4.2.6 Variant
	4.2.7 Conformance
	4.2.8 Nominal Conformance Constraints
	4.2.9 Behaviour
	4.2.10 Variance
	4.2.11 Contravariance
	4.2.12 Covariance
	4.2.13 Invariance
	4.2.14 Virtual Binding
	4.2.15 Static Binding

	4.3 The Problem of Inheritance and Subtyping
	4.4 Possible Approaches
	4.5 Matching with MyType
	4.6 Matching with Rows
	4.7 MyType versus Rows

	5 Approaching Creol Typing
	5.1 Classes and Interfaces
	5.2 Instance Privacy
	5.3 Namespaces
	5.4 Classes and Object Types
	5.5 Information Flow and Conformance
	5.5.1 Information Flow, Variance and Conformance
	5.5.2 Function Conformance
	5.5.3 Reference Conformance
	5.5.4 Method Override and Conformance
	5.5.5 From Object to Method Conformance
	5.5.6 Conformance by Source and Sink

	5.6 Structural and Nominal Type Systems
	5.6.1 Concerning Creol

	5.7 Nominal Conformance Constraints
	5.8 Interfaces and Virtual Methods
	5.9 Inheritance
	5.10 Statically Bound Instance Variables
	5.11 Typing Cointerfaces
	5.12 Explicit Type Language References
	5.13 Static and Virtual Method Binding
	5.14 Recursive Types
	5.14.1 Mutual Recursion
	5.14.2 Iso-recursion
	5.14.3 Implicit Iso-recursion

	5.15 Termination of Inheritance Checking
	5.16 Polymorphism
	5.17 Iso-recursion and Conformance
	5.17.1 Subtyping
	5.17.2 Matching
	5.17.3 Decidability

	6 Creol Type System
	6.1 Desugaring
	6.2 Meta Notation for the Creol Type System
	6.3 Creol Type Language
	6.4 Object-Oriented Expressions and Statements
	6.5 Object-Oriented Declarations
	6.6 Conformance
	6.6.1 Subsumption

	6.7 Inheritance
	6.8 Deriving Object Types

	7 Viability
	7.1 Function Creol Compiler
	7.1.1 Syntax Errors
	7.1.2 Simple Type Errors
	7.1.3 Inheritance Error
	7.1.4 Inheritance with Variances
	7.1.5 Subsumption
	7.1.6 Recursive Types
	7.1.7 Code Generator

	7.2 Creol Type System
	7.2.1 Inheritance and Binary Methods
	7.2.2 Mutual Parametrisation and Refinement

	8 Further Work and Research
	8.1 Null Pointers and Type Safety
	8.2 Compound Object Types
	8.3 Virtual Classes
	8.4 Pattern Matching Compilation
	8.5 Kind Checking
	8.6 Analysis and Modularity
	8.7 Overloading
	8.7.1 Procedures
	8.7.2 Methods

	8.8 Modules

	9 Conclusion
	9.1 Contributions
	9.2 Critique
	9.3 Experience
	9.4 Related Work

	Bibliography
	A Creol Grammar
	B Functional Subset of Creol Type System
	B.1 Expressions
	B.2 Statements
	B.3 Algebraic Datatype Expressions
	B.4 Declarations

	C Creol to CMC Comparison
	D Implementation Remarks
	D.1 Type Checking
	D.1.1 Building Environments
	D.1.2 Current State
	D.1.3 Type Checking Order

	D.2 Creol Language Evolution
	D.2.1 Contributed
	D.2.2 Experienced

	E Code
	E.1 Literate Programming
	E.2 Reading Literate Code
	E.3 Main Module and CreolCompiler Library
	E.3.1 The Main Module
	E.3.2 Creol Compiler Library Module

	E.4 Abstract Syntax Tree
	E.5 Scanner
	E.6 Parser
	E.7 Type Analysis
	E.7.1 Type Definitions
	E.7.2 Typechecker Attributes
	E.7.3 Typechecker Semantic Functions
	E.7.4 Symbol Table Definitions
	E.7.5 Symbol Table Attributes
	E.7.6 Symbol Table Semantic Functions

	E.8 Code Machine Code Generation
	E.8.1 Creol Machine Code Attributes
	E.8.2 Creol Machine Code Semantic functions
	E.8.3 Unique Labels

	E.9 Auxiliary Functions

	F Code Macros

