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ABSTRACT: In this article, correlated studies on a test set of 36 small
molecules are carried out with both wavefunction (HF, MP2, CCSD) and
density functional (LDA, KT3, cTPSS, cM06-L) methods. The effect of
correlation on exotic response properties such as molecular electronic
anapole susceptibilities is studied and the performance of the various
density functional approximations are benchmarked against CCSD and/or
MP2. Atoms and molecules are traditionally classified into “diamagnetic”
and “paramagnetic” based on their isotropic response to uniform magnetic
fields. However, in this article, we propose a more fine-grained
classification of molecular systems on the basis of their response to
generally nonuniform magnetic fields. The relation of orientation to
different qualitative responses is also considered.

1. INTRODUCTION

Magnetic field effects pose unique challenges for quantum
chemistry. Although the calculation of particular properties,
most notably magnetic dipoles, nuclear shielding constants, and
current densities induced by uniform magnetic fields, is
nowadays routine, many other aspects have been subject to
relatively few systematic studies, if any at all. Higher-order
magnetic response and response to nonuniform magnetic fields
are examples of this.1−4 Moreover, nonperturbative effects of
strong magnetic fields alter the normal chemistry of small
molecules, giving rise to an exotic and largely unexplored strong
field chemistry.5−7 These challenges appear at all levels of
theory, as for example, time-reversal and spin symmetry and
other built in adaptations to zero-field settings need to be
reconsidered. In density functional theory, in particular, an
additional aspect is that magnetic field effects are formally
beyond the scope of the standard mathematical formulation,
necessitating extensions.8−11 Yet, the practically available
density functional methods have almost exclusively been
developed as heuristic approximations with the standard
formulation, and approximations that properly incorporate
magnetic fields are not yet mature enough to be practically
useful.12 Insofar as available density functional methods produce
useful estimates of magnetic field effects, there is a high risk due
to error cancellations specific to the most common magnetic
properties. For example, some functionals have been fitted to
magnetizabilities or nuclear shielding constants.13 In the present
work, we explore properties related to magnetic field gradients
using several available density functional methods, including
meta-GGAs that have recently emerged as particularly
promising candidates for magnetic field effects, and compare

to results at the second-order Møller−Plesset (MP2) and
coupled-cluster singles and doubles levels (CCSD).
Quantum chemical computations of magnetic properties

almost always rely on the assumption of weak-fields enabling
formulations based on perturbation theory. However, for a
higher-order magnetic response, in particular when London
atomic orbitals (LAOs) are employed to enforce gauge-origin
invariance and accelerate basis set convergence,14−17 the
perturbative approach becomes increasingly more difficult.
Ordinary Gaussian basis sets require very large basis sets for
gauge-origin invariance.1,3,4,18,19 In this study, we have used
LAOs in combination with a nonperturbative (finite field)
approach. Integral evaluation for the LAOs, which are plane-
wave/Gaussian hybrid functions,20,21 has been implemented in
the London program20,22 and has been employed in the finite
field computation of magnetic properties7,12,20,23−25 earlier.
Since the introduction of the magnetic field in the Hamiltonian
only requires a modification of the one-electron part, no
additional implementation is necessary for extension to post-
Hartree−Fockmethods. A nonperturbative approach also opens
up the possibility of studying strong magnetic fields competing
with the Coulomb forces and has led to the discovery of
nonperturbative transition from closed-shell para- to diamag-
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netism26 and a new bonding mechanism6,7,27 in very strong
magnetic fields.
In this work, we study the effect of correlation on anapole

moments arising from induced orbital currents for a set of 36
closed-shell molecules subject to transverse magnetic field
gradients. We have benchmarked LDA (SVN5),28 KT3,13

cTPSS,29 and cM06-L30,31 functionals against CCSD and/or
MP2. An earlier study32 to assess the effects of correlation was
inconclusive. CCSD results were reported in the aug-cc-pVDZ
basis set, which is too small for accurate representation of such
high-order properties. Moreover, the relative quality of the
density functional approximations studied (KT3,13 B3LYP,33

CAMB3LYP34) could not be established. Basis set convergence
of the anapole susceptibility values was well-studied and
MODENA basis sets were proposed to be superior to Dunning’s
basis sets. Previous studies of density functional approximations
for magnetic properties like magnetizabilities and NMR
shielding constants12,35,36 have indicated that meta-GGA
functionals, in particular cTPSS, are promising candidates for
capturing even exotic magnetic effects very far from the domain
these functionals were explicitly constructed for. Remarkably, it
was also found that the errors for the paramagnetic closed-shell
molecules were an order of magnitude higher for all of the
methods studied except for cTPSS (current TPSS). The present
work investigates whether this trend holds for more exotic
magnetic properties like anapole susceptibilities, which have not
been considered thus far.
Because paramagnetic systems typically exhibit stronger

correlation effects than diamagnetic systems, we will generalize
below these concepts to allow for nonuniform magnetic fields.
Historically, the discovery of diamagnetism is credited to Anton
Brugmans who observed in 1778 that bismuth was repelled by
magnetic fields.37 William Whewell suggested the terminology
diamagnetic for materials repelled by a magnetic field and
paramagnetic for those attracted by it and Faraday adopted
this.38 The quantum picture of atomic andmolecular magnetism
was established with van Vleck’s theory of paramagnetism and
crystal field theory for solid-state magnetism, Dorfman’s
corresponding theory for metals, Pauli’s work including the
derivation of temperature independent paramagnetism, and
Landau’s quantum theory of diamagnetism. Here, we have
bypassed the vast field of ferromagnetism, since this article is not
concerned with it.
In modern terms, dia- and paramagnetism are understood in

terms of whether the (second-order) response of the energy to a
uniform field is positive or negative. In the mathematical
literature, this distinction has also been used for arbitrary,
nonuniform magnetic fields.39,40 Because a uniform field is a
three-dimensional vector, the second-order magnetic suscepti-
bility is a 3 × 3 tensor. Taking into account a sign convention,
clear-cut examples of diamagnetism (or paramagnetism) occur
when this tensor only has negative (or positive) eigenvalues.
However, the tensor may also have both positive and negative
eigenvalues, corresponding to the decreasing energy for some,
but not all, magnetic field components. Conventionally, the sign
of its isotropic value decides the classification of the molecule as
dia- or paramagnetic. For example, the BH molecule is found to
have a diamagnetic response to fields parallel to the chemical
bond and a paramagnetic response to fields perpendicular to it.
In this case, the isotropic magnetizability turns out to be
paramagnetic as well leading to the classification of BH as a
closed-shell paramagnetic molecule. However, a molecule such
as square C4H4 shows a weak paramagnetic response to fields

perpendicular to the molecular plane but an overall diamagnetic
response.
The magnetic susceptibilities related to inhomogeneities in

the magnetic field such as the anapole susceptibilities are
independent of the magnetizabilities and may in some cases
oppose the effects of the uniform component of the magnetic
field. In our opinion, a classification should also encompass
molecular response to nonuniform magnetic fields in general, as
far as possible. In what follows, we propose a simple classification
of magnetic response to nonuniform fields. The response of the
electrons to inhomogeneities in the external magnetic field arises
from both orbital effects and spin effects. Among the few studies
of these effects is the work by Lazzeretti and co-workers on a
perturbative formalism for the orbital response due to field
gradients41,42 and some other studies at the Hückel-level,43

Hartree−Fock level,1,3,4,18,19 and correlated levels.32,44 While
spin effects are certainly important and in most cases the
dominant effect,25,45 this article is only concerned with orbital
effects in closed-shell molecules. Further exploratory studies are
planned but beyond the present scope.
The response to (transverse) magnetic field gradients may be

quantified by the anapole moments,46 which couple linearly to
the curl of the magnetic field.47−52 They may be considered to
arise from the meridional currents in a toroidal charge
distribution. They are antisymmetric under both spatial
inversion and time-reversal. Nuclear anapole moments are
studied by physicists53,54 in connection with parity violation
with the first experimental evidence coming frommeasurements
on the Cs atom.55−57 Experiments for measuring permanent and
induced electronic anapole moments have been sug-
gested.49,58,59 However, only special structures such as
molecular nanotoroids,43,60 ferroelectric nanostructures,61,62

ferromagnetic structures,63 and Dy clusters (single-molecule
magnets)64−66 are expected to have permanent anapole
moments. Anapole moments in metamaterials have also been
observed with potential application in sensors.50,52,67 On the
other hand, induced anapole moments easily arise in molecules
placed in external nonuniform fields and we can compute the
corresponding susceptibilities. Both toroidal spin and/or orbital
currents can give rise to anapole moments. Induced anapolar
current densities in conjugated cyclic acetylenes60 and some
small molecules58 have been studied. Spin and orbital
contributions to anapole moments have been analyzed in a
simple analytical model of diatomics59,68 and also using
nonperturbative General Hartree−Fock theory.25 The orbital
contributions have been estimated by both perturbative
approaches1,3,4,18,19 and nonperturbative approaches.23 Faglioni
et al.1 have derived the perturbative expressions for induced
anapole moments.
The outline of the article is as follows. In Section 2, we define

the Hamiltonian and the properties relevant to our study.
Section 3.2 discusses our proposed classification of molecules.
Section 3 presents our results on the effect of correlation on the
anapole susceptibilities and the relative performance of the
various density functional approximations. Finally, we conclude
with the summary in Section 4.

2. HAMILTONIAN AND PROPERTIES

In this study, the nonuniform magnetic field has the form

B r B r b r b( )
1
3

Tr( )T
h htot = + −

(1)
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whereB is a uniform (position independent) component, b is a 3
× 3 matrix defining the field gradients, and rh = r − h is the
position relative to some reference point h. This form may be
viewed as arising from a truncation of a Taylor expansion of a
general magnetic field around r = h of linear order. The
corresponding vector potential can be written as

A r B r r r b( )
1
2

1
3

( )T
g h htot = × − ×

(2)

where rg = r− g, g being the gauge origin. One can show thatBtot
=∇ × Atot and that the magnetic field is divergence free,∇ · Btot
= 0. The symmetric part, b = bT, can be set to zero and we focus
on the antisymmetric part Cα = ϵαβγ bβγ of the matrix b. We can
then write

A r B r r C r( )
1
2

1
3

( )g h htot = × − × ×
(3)

B r B C r( )
1
2 htot = + ×

(4)

Furthermore, the antisymmetric part of b equals the curl of the
magnetic field, ∇ × Btot = C, which is taken to be position
independent.
The nonrelativistic Schrödinger−Pauli Hamiltonian is given

by

H v
r

r B r S
1
2

( )
1

( )
l

l
l

l
k l kl l

l l
2

tot∑ ∑ ∑ ∑π̂ = ̂ − + + · ̂
< (5)

where π̂l = −i∇l + Atot(rl) is the mechanical momentum
operator. Properties can be alternately viewed as expectation
values ⟨Ψ|Ω̂|Ψ⟩ or as derivatives of the energy E = ⟨Ψ|Ĥ|Ψ⟩
related to terms in a Taylor expansion. In this study, we ignore
the spin-Zeeman term and thereby the spin-breaking induced by
the nonuniform part of the magnetic field. The first-order orbital
angular moment

L L L r,
l

l l l lq q q q; ; ;∑ π= ⟨Ψ| ̂ |Ψ⟩ ̂ = × ̂
(6)

is with respect to an arbitrary reference point, q. Given the form
of themagnetic vector potential above, it is Lg, with the reference
point at the gauge origin that is the relevant magnetic dipole
moment. The orbital anapole moment is similarly given by

a r L
l

l lh h;
1
3 ;∑= − ⟨Ψ| × ̂ |Ψ⟩

(7)

Recalling that the current density can be obtained as the
functional derivative j = δE/δAtot, we can also identify the
magnetic orbital dipole moment and anapole moment with
linear and quadratic moments of the current density

J r j r r( ) dg g∫= ×
(8)

a r r j r r
1
3

( ( )) dh h∫= − × ×
(9)

We note that the energy E as well as expectation value
properties like Jg and a can be obtained directly as functions of B
and C. We can thus define second-order properties from a
Taylor expansion of the energy

E EB C B J C a B B B C

C C

( , )
1
2

1
2

1
2

1
4

T

T

g0 χ≈ + · − · − −

−
(10)

where Jg and a are evaluated at Btot = 0. We can identify χ as the
magnetizability tensor, and call as the mixed anapole
susceptibility tensor, and as the anapole susceptibility tensor.
When the Hellmann−Feynman theorem is applicable, the

expectation value quantities can be equated with energy
derivatives

E
J

B C
B

2
( , )

g = ∂
∂

!

(11)

E
a

B C
C

2
( , )= − ∂
∂

!

(12)

However, when LAOs are used, the basis set depends on the
parameters B and C leading to a discrepancy between the
expectation values and the energy derivatives, in general, except
in the complete basis set limit.
Second-order susceptibilities may be defined as follows

E
B B

B C( , )
B C

2

0, 0χ = − ∂
∂ ∂

|αβ
α β

= =
(13)

E
C C

B C
2

( , )
B C

2

0, 0= − ∂
∂ ∂

|αβ
α β

= =
(14)

E
B C

B C( , )
B C

2

0, 0= − ∂
∂ ∂

|αβ
α β

= =
(15)

One can also introduce the closely related, but inequivalent,
quantities

a
C
B C( , )

B C0, 0′ =
∂

∂
|αβ

α

β
= =

(16)

L

C

B C1
2

( , )g
B C

;
0, 0′ = −

∂
∂

|αβ
α

β
= =

(17)

a

B

B C1
2

( , )
B C0, 0″ =

∂
∂

|αβ
β

α
= =

(18)

Again, in the basis set limit, equivalence is restored, i.e., = ′
and = ′ = ″. Note that the multiplicative factors in eqs
10, 15, 17, and 18 have been corrected from those reported in
earlier publications23,25 to be self-consistent with the other
definitions. This implies that the values reported in these
publications should be halved. However, this has no implication
on the conclusions of the two papers.

3. RESULTS AND DISCUSSION
Our test set contains 36 molecules (HF, CO, N2, H2O, HCN,
HOF, LiH, NH3, H2CO, CH4, C2H4, AlF, CH3F, C3H4, FCCH,
FCN, H2S, HCP, HFCO, H2C2O, LiF, N2O, OCS, H4C2O, PN,
SO2, OF2, H2, H2O2, BH, CH

+, AlH, BeH−, SiH+, C4H4, FNO)
and subsumes the test set of diamagnetic molecules in Tellgren
et al.12 and the closed-shell paramagnetic molecules in the test
set of Reimann et al.36 Geometries for the molecules are as
reported in earlier publications12,23,36 and are also provided in
the Supporting Information.
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All calculations were performed using the London pro-
gram.20,22 The density functional calculations used the
previously reported implementations.12,35 The coupled-cluster
calculations were performed using the previously reported
implementation69 and exploratory calculations (results not
included) also used a new functionality.70 The symmetric finite
difference formula for numerical second derivatives of the
energy was employed to compute the anapole susceptibilities
and . Step sizes of ϵ = 0.01 au for B and ϵ′ = 0.005 au for C
were used. ϵ′ was chosen to be smaller as the effect of C on the
local magnetic field is scaled by the interatomic distances in the
molecule. The reference point, h, for C was placed at the center
of charge of the molecules in all cases. The error in the energy is
quadratic in the step size within the limits to which the energy is
converged while the error in the analytically computed moments
(first derivative of energy) is linear. All numerical results
presented in this article are given in SI-based atomic unitssee
the earlier work for the conversion factors to SI units.23

The uncontracted aug-cc-pCVTZ basis set has been
employed for all of the computations. The name of the basis
set is prefixed with “L” to denote the use of London atomic
orbitals and “u” to indicate that the basis sets are uncontracted
Luaug-cc-pCVTZ.
3.1. Current-Dependence and Meta-GGAs. The meta-

GGA functional form allows a dependence on the kinetic energy
density. In the absence of a magnetic field, the everywhere
positive, canonical kinetic energy τcan = 1/2 ∑k|∇ϕk|

2, with
summation over occupied orbitals ϕk, is the natural choice. In
the presence of a magnetic field, τcan is gauge dependent and
cannot be used. An obvious solution is to use the gauge
independent, physical kinetic energy density τphys = 1/2 ∑k|
(−i∇ + Atot)ϕk|

2 instead. This choice has been suggested by
Maximoff and Scuseria.71 An alternative, with some theoretical
aspects and numerical results in its favor,36,72−74 is to instead use
Dobson’s gauge-invariant kinetic energy density

j j

2 2D phys

2

can
p
2

τ τ
ρ

τ
ρ

= − = −
(19)

where jp = Im ∑k ϕk*∇ϕk is the paramagnetic current density
and j = Re∑k ϕk*(−i∇ + Atot)ϕk is the physical current density.
A previous work36 used a prefix “a” to denote meta-GGA

functionals using the physical τphys (e.g., aTPSS) and a prefix “c”
to denote functionals using Dobson’s τD (e.g., cTPSS). In the
present work, we only consider the latter type, specifically cTPSS
and cM06-L.
3.2. Classification. Different response tensors in general

have different physical dimensions and units, although this fact is
somewhat obscured when working with atomic units. To
account for this, we fix a length a0= , and define an auxiliary

quantity C C′ = , and auxiliary response tensors 2̅ = and

̅ = . In atomic units, the numerical values of the quantities
and remain unchanged by this transformation of response

tensors to shared units. Next, we construct a 6 × 6 matrix of the
form

1
2

T

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
ζ

χ
=

̅

̅ ̅
(20)

which allows us to re-express the second-order energy in eq 10 as

E EB C
B
C

J

a

B
C

B
C

( , )
1
2 /

1
2

T T
g

0

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

ζ≈ +
′ −

−
′ ′ (21)

The tensor ζ is symmetric and has real eigenvalues, which we
denote by αζ = (αζ;1, ..., αζ;6). If one or more eigenvalues are
positive, i.e., energy decreases with any component of (B, C), we
classif y the system broadly as paramagnetic. Otherwise, if all
eigenvalues are negative, we classif y the system as diamagnetic.
Diagonalization of the submatrices gives us further details of this
behavior such as separate response to only B or C. Additionally,
the trace of ζ gives us a single number for the overall response to
a generally nonuniform field. We also obtain an average
eigenvalue as

1
6

1
6

Tr( )
i

i
1

6

;∑ ζα α̅ = =ζ ζ
= (22)

which is also the orientational average over all possible
molecular orientations (with B, C fixed). This procedure may
be extended to increasingly nonuniform magnetic fields, such as
those with curvatures and beyond. In this article, the magnetic
field has a constant gradient and is of the form shown in eq 1.
The different eigenvectors of ζ are visualized for four

molecules in Figure 1. CCSD level tensors were used for HOF
and FNO and MP2 level tensors for C4H4 and CH2O. Each six-
dimensional eigenvector (B,C′) is represented as a pair of three-
dimensional vectors, displaced along the vertices of a hexagon to
make clear which arrows form pairs. The length of each arrow is
proportional to the eigenvalue, though the proportionality
constant varies between molecules, and the sign is indicated by
red (negative) and blue (positive) colors. In the plot, the arrows
are sorted so that the magnitude increases clockwise around the
hexagon. Note also that the eigenvectors and the molecular
geometry are expressed in the same coordinate system, such that
the angle between eigenvectors and bond axes is independent of
the choice coordinate system and orientation of the molecule. If
the mixed anapole susceptibility tensor vanishes, the eigenvalue
problem does not couple the B and C′. This happens for
cyclobutadiene, for which each eigenvector is of the form (B, 0)
or (0, C′). On the other hand, for FNO and CH2O, there is

Figure 1.Visualization of six-dimensional eigenvectors (B,C′) as pairs of three-dimensional vectors for (a) C4H4, (b) HOF, (c) FNO, and (d) CH2O.
The length is scaled based on the eigenvalue and red and blue are used for negative (diamagnetic) and positive (paramagnetic) components,
respectively. The C′ component is indicated with a darker color and different vector pairs start from different vertices on a hexagon.
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substantial coupling and some eigenvectors have B and C′
components of similar magnitude. Of the molecules shown,

C4H4, HOF, and CH2O each have a single paramagnetic
eigenvector with a magnitude that is small compared to the

Figure 2. Eigenvalues of ζ in the decreasing order computed with CCSD (top panel) and MP2 (bottom panel) in the Luaug-cc-pCVTZ basis set. eig
avg is α̅ζ = 1/6 Tr(ζ). Eigenvalues no. 5 and 6 for BeH− lie beyond the range of the plot: eig5 = eig6 = −71.541 (top panel) and −79.810 (bottom
panel).
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diamagnetic eigenvaluesin the plot the corresponding arrows
are barely visible. By contrast, FNO has two paramagnetic
eigenvalues of large magnitude.
In Figure 2, we have plotted the eigenvalues, αζ, of the super-

tensor, ζ in decreasing order. We have presented the values
obtained with themost accurate methods we have studied in this
article, viz. CCSD andMP2. However, the classification is robust
and all methods studied by us including Hartree−Fock (HF)
and DFT show the same qualitative classification (except for
FNO). The geometry, energy, and properties of FNO are all
extremely sensitive to correlation and need at least CCSD(T)
level computations for reasonable accuracy.75 The values of the
susceptibilities cannot be determined with any reasonable
accuracy with our set of methods. Moreover, the computations
do not converge with LDA and cM06-L functionals. We have
thus left this molecule out of the error statistics presented in
Section 3. All conventionally paramagnetic molecules show at
least one positive eigenvalue. In addition, FNO and HOF show
positive eigenvalues arising from a paramagnetic response to
some component of C. Thus, according to our criterion, the
following molecules from our test set are paramagnetic: AlH,
BH, BeH−, C4H4, CH

+, CH2O, SiH
+, HOF, and FNO. The

nature of this net paramagnetic behavior is summarized in Table
1.

We note that, due to the Cauchy interlace theorem, adding
dimensions will increase the maximum eigenvalue and decrease
the minimum eigenvalue. Hence, with αζ;max = max1≤i≤6αζ;i,
αχ;max = max1≤i≤3αχ;i, and max i i;max 1 3 ;α α= ≤ ≤ , we have

max ,
2;max ;max

2 ;max{ }α α
α

≥ζ χ (23)

With a similar notation for the minimum eigenvalues, we get an
inequality in the reverse direction. When 0= , usually by
reason of symmetry, equality is achieved such as for C2H4, C4H4,
CH4, H2, and N2. Equality is also achieved for the largest
eigenvalue of ζ in CH2O, CO, andHCP. The smallest eigenvalue
also almost saturates in these cases. This may indicate that there
is a limit to how large the orbital paramagnetic and/or
diamagnetic response can be within the limits of the basis set
andmolecular symmetry. While the non-zero components of

are small (∼10−2 au) for CO and HCP, this is not the case for
CH2O ( 0.956xy

MP2 = , 0.760yx
MP2 = au).

Mostmolecules studied are highly diamagnetic with respect to
C but we must remember that here we are only studying the
orbital response. The spin symmetry breaking caused by C will
activate the spin-Zeeman term in the Hamiltonian leading to an
overwhelmingly paramagnetic response to C.25 The interplay of
spin and orbital effects of nonuniform magnetic fields is
discussed in an earlier publication.25 BeH− is particularly
strongly diamagnetic to C. The DFT computation with the
cM06-L functional does not converge for BeH−. FNO, on the
other hand, is strongly paramagnetic with respect toC according
to computations with all of the methods in our study.

3.3. Performance of Density Functional Approxima-
tions for Magnetic Susceptibilities. In this section, we
discuss the relative performance of various wavefunction and
density functional methods in computing anapole magnet-
izabilities, and . We compare this performance with their
accuracy in describing the magnetizability, χthe most well-
studied among the magnetic response quantities.
To quantify errors in the response tensors relative to a

reference method we rely on the Frobenius norm

F
ij

ij ij
method method ref method ref 2

1/2i

k

jjjjjjj
y

{

zzzzzzz∑ζ ζ ζ ζϵ = ∥ − ∥ = | − |ζ

(24)

and similarly for χ, , and . For the isotropic average, we use a
similar notation to mean ϵα̅ζ

method = |α̅ζ
method − α̅ζ

ref|.
We present the error bars for the various methods as box and

whisker plots where the median error is indicated by the
horizontal line in the middle of the box and the top and bottom
ends of the box indicate the third quartile and first quartile,
respectively. The length of the box is thus the interquartile range.
The top and bottom ends of the whiskers indicate the maximum
and minimum errors considered in the estimation of the
quartiles. Points beyond the whiskers are not considered in the
statistics and are regarded as outliers. We superimpose
swarmplots on the box and whisker plots to display the
underlying data.
Values of isotropic magnetizability computed with Hartree−

Fock theory are often reasonable in the absence of low-lying
excited states with correlation contributions of the order of 1−
3%.76 However, DFT approximations, which are reasonably
good for correlation energy and electric properties, such as
BLYP or B3LYP, are mostly inaccurate for magnetic properties,
often being worse than Hartree−Fock theory. This has
prompted the development of exchange−correlation functionals
tailored to magnetic properties such as the KT3 functional of
Keal and Tozer.13 cTPSS has also been seen to be remarkably
accurate for the same.12 Computational studies have indicated
that the effect of electron correlation on the isotropic
magnetizability (Tr(χ)/3)76 is often an order of magnitude
lower than that on the anisotropic magnetizability.77 The
isotropic magnetizability is also less sensitive to the basis set size.
These conclusions are borne out by our results, as shown in
Figure 3. We have not studied BLYP and B3LYP as they are
known to perform poorly for conventional magnetic properties.
While the accuracy of various DFT functionals for magnet-

izability has been well-studied, it remains to be seen if the same
conclusions can be reached for more exotic properties such as
anapole susceptibilities. In particular, we wish to explore if the

Table 1. Selected Molecules Which Are Proposed to Be
Classified by Us as Paramagnetica

B C (B, C)

molecule α̅χ αχ;max α ̅ ;maxα α̅ζ αζ;max

AlH + + − − − +
BH + + − − + +
BeH− + + − − − +
C4H4 + + − − − +
CH+ + + − − + +
CH2O − + − − − +
FNO − − + + −/+b +
HOF − − − + − +
SiH+ + + − − − +

aFor response tensors related to B, C, and jointly to (B, C), we show
the sign of the average and maximum eigenvalue. bThe molecule
FNO is extremely challenging for correlated theories, leading to
different conclusions from different methods with respect to the net
response to (B, C): diamagnetic (−) from CCSD and MP2;
paramagnetic (+) from HF, KT3, and cTPSS; and not converged for
LDA and cM06-L.
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Figure 3. Errors in the isotropic magnetizability computed by various methods in the aug-cc-pCVTZ basis set relative to CCSD (top panel) and MP2
(bottom panel).
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Figure 4. Errors in magnetizability tensor, χ, of the conventionally diamagnetic molecules (negative α̅χ) in our test set computed by various methods in
the Luaug-cc-pCVTZ basis set relative to CCSD (top panel) and MP2 (bottom panel).
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Figure 5. Errors in the magnetizability tensor, χ, of the conventionally paramagnetic molecules (positive α̅χ) in our test set computed by various
methods in the Luaug-cc-pCVTZ basis set relative to CCSD (top panel) and MP2 (bottom panel).
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Figure 6. Errors in anapole susceptibility, , computed by various methods in the Luaug-cc-pCVTZ basis set relative to CCSD (top panel) and MP2
(bottom panel).
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Figure 7. Errors in mixed anapole susceptibility, , computed by various methods in the Luaug-cc-pCVTZ basis set relative to CCSD (top panel) and
MP2 (bottom panel).
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Figure 8. Errors in the average eigenvalue of the super-tensor, ζ, computed by variousmethods in the Luaug-cc-pCVTZ basis set relative to CCSD (top
panel) and MP2 (bottom panel) for diamagnetic molecules as classified by us.
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Figure 9. Errors in the average eigenvalue of the super-tensor, ζ, computed by variousmethods in the Luaug-cc-pCVTZ basis set relative to CCSD (top
panel) and MP2 (bottom panel) for paramagnetic molecules as classified by us.
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KT3 and cTPSS functionals continue to perform well for and
.
In the top panel of Figure 4, we can see that except the cM06-

L functional all of the methods considered here perform
reasonably for the conventionally diamagnetic molecules. The
cTPSS functional and MP2 show similar accuracy with HF and
KT3 also doing quite well. The bottom panel in Figure 4 samples
a larger test set usingMP2 as the benchmark. Among the density
functionals LDA, KT3, and cTPSS perform similarly. It is
interesting to note that the outlier for many of the methods in
the top panel is HOF, which would be classified as paramagnetic
by our proposed scheme. The trends for the paramagnetic
molecules plotted separately in Figure 5 are much more
surprising. All of the errors are much higher than for the
diamagnetic molecules indicating how much more difficult it is
to describe the paramagnetic response. MP2 no longer performs
as well and is easily surpassed in accuracy by both KT3 and
cTPSS. A similar conclusion was reached by Reimann et al.36

where even CCSD performed worse than cTPSS relative to
CCSD(T) for the paramagnetic molecules. The bottom panel in
Figure 5 is thus much less reliable as a measure of errors in
density functionals. Between KT3 and cTPSS, cTPSS is
somewhat more accurate for the paramagnetic systems studied
by us.
The top panel of Figure 6 shows a reasonable description of

by most methods (except cM06-L) against CCSD. MP2 shows
the highest accuracy with cTPSS following close behind. The
bottom panel of Figure 6 also follows the same trends with MP2
as the reference. Here too, the paramagnetic molecules show a
larger error than the diamagnetic ones with HOF behaving as
the conventionally paramagnetic molecules.
Due to the smaller numerical values in the mixed anapole

susceptibility tensor, , the errors appear to be smaller in
Figure 7. cM06-L is no longer as bad although it is still the worst
among the methods studied.
Finally, we present the errors in the quantity, α̅ζthe average

eigenvalue of our super-tensor, ζ in Figures 8 and 9. The
molecules have been classified according to the criterion in
Section 3.2. This may be considered as a condensed
representation of all of the errors presented in Figures 3−7
allowing for the possibility of some error cancellation. The top
panel indicates a comparable performance of MP2, KT3, and
cTPSS in comparison with CCSD. The larger test set in bottom
panel also fits with a similar performance. Molecules classified as
paramagnetic by us again show the largest errors.
Our findings are summarized in Table 2.

3.4. Performance of Density Functional Approxima-
tions for Nonperturbative Effects. As we have seen in the
previous subsection, molecules which show paramagnetic
behavior, with respect to a component of B orC, are particularly
challenging for all of the theories. In this subsection, we further
explore two moleculesBH as an example of paramagnetic
behavior with respect to a component of B and HOF as the
newly discovered example of paramagnetic behavior with
respect to a component of C.
In the top panel of Figure 10, the paramagnetic behavior of

BHwith respect to a field (Bx) perpendicular to the bond axis (z)

is evident up to a critical field strength of about Bx = 0.22 au after
which the quadratic term takes over. An analogous behavior is
observed in HOF (bottom panel of Figure 10) with increase in
the component of C (Cz) perpendicular to the molecular plane
(xy). The turning point can be read off as Cz = 0.048 au. The
depth of the minimum is, however, only 10−5 EH for HOF
against a depth of 10−2 EH for BH.
We have tried to assess the capacity of various theories to

describe the changes in the electronic structure arising from the
application of increasing B and C. The CCSD method has been
chosen as the reference and energies are computed with MP2
and a few selected density functional approximations. Since the

Table 2. Methods Studied by Us Relative to CCSD in the
Increasing Order of Median Errors

property class error

Tr(χ) dia cTPSS < MP2 < HF ≈ KT3 < LDA ≪ cM06-L
Tr(χ) para cTPSS ≈ KT3 < MP2 < HF < LDA ≈ cM06-L
χ dia cTPSS < MP2 ≈ HF < KT3 < LDA ≪ cM06-L
χ para cTPSS < KT3 < MP2 < HF ≪ LDA ≈ cM06-L

dia MP2 ≈ cTPSS < HF < KT3 < LDA ≪ cM06-L
para MP2 < HF ≈ cTPSS < KT3 < LDA ≪ cM06-L
dia MP2 < LDA < cTPSS < HF < KT3 < cM06-L
para cTPSS < KT3 < MP2 ≈ LDA < HF ≈ cM06-L

α̅ζ dia cTPSS ≈ KT3 < MP2 ≈ HF < LDA ≪ cM06-L
α̅ζ para cTPSS ≈ MP2 ≈ KT3 < HF < LDA < cM06-L

Figure 10. Variation of the energy of BH with a uniform field, B (top
panel) andHOFwith the curl of the field,C (bottom panel) showing an
initial paramagnetic orbital response and eventually the quadratic
Zeeman effect in both cases.
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zero-field energies themselves differ considerably, we have
subtracted the zero-field energy computed with each method
from all other data points thereby shifting all plots to a common
starting point of zero. The energy difference between these
shifted data points of various methods and CCSD is then plotted
in Figure 11. For BH (top panel), cTPSS and KT3 work best
with nearly parallel error curves. MP2 is surprisingly worse and
the cM06-L functional gives a highly non-parallel error plot. For
HOF (bottom panel), the error values themselves are an order of
magnitude smaller than for BH with MP2 showing the best
performance. KT3 and cTPSS follow the same trend of errors
increasing with increasing Cz as MP2. No flattening is observed
even when HOF starts showing diamagnetic behavior after the
turning point of Cz = 0.048 au unlike the plots for BH. The
cM06-L functional yields a very non-parallel error curve in this
case too. Although not shown here, the corresponding plots for
BH vsCi, i = x, y, z, also show increasing errors with increasingCi.

4. SUMMARY AND CONCLUSIONS
In this article, we have suggested a new classification of magnetic
behavior of molecules based on their response to a generally
nonuniform field. We have demonstrated that paramagnetic
behavior can arise in a molecule due to inhomogeneities in the

field even when its response to a uniform field is diamagnetic as
is the case for FNO and HOF. We have concluded that the
susceptibilities of moleculesχ, and thus classified as
paramagnetic are more difficult to describe. Assuming that
CCSD gives accurate results, KT3 and cTPSS are found to show
the best performance among the DFT approximations with
cTPSS being marginally better than KT3. The interquartile
range for both functionals are narrow across all of the properties
studied by us. cTPSS and KT3 also perform quite well for the
more challenging paramagnetic molecules, even better than
MP2 relative to CCSD. cM06-L is particularly bad for magnetic
properties performing even worse than LDA. These conclusions
are also found to hold in the strong-field regime as verified for
some typical challenging molecules. Hartree−Fock is surpris-
ingly reliable for diamagnetic molecules with a more or less
constant error across all magnetic properties. The paramagnetic
molecules are far more sensitive to correlation. The eigenvalues
of ζ, or even its higher dimensional analogues with additional
parameters beyond B and C, can serve as a concise measure for
comparing the accuracy of various theories in describing general
magnetic properties.

Figure 11. Errors in energy, ε relative to CCSD for BH with a uniform field, Bx (top panel) and HOF with the curl of the field, and Cz (bottom panel).
All energies have been shifted by the corresponding zero-field values such that all plots start at ε = 0.
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(51) Ögüt, B.; Talebi, N.; Vogelgesang, R.; Sigle, W.; van Aken, P. A.
Toroidal Plasmonic Eigenmodes in Oligomer Nanocavities for the
Visible. Nano Lett. 2012, 12, 5239−5244.
(52) Ye, Q. W.; Guo, L. Y.; Li, M. H.; Liu, Y.; Xiao, B. X.; Yang, H. L.
The magnetic toroidal dipole in steric metamaterial for permittivity
sensor application. Phys. Scr. 2013, 88, No. 055002.
(53) Haxton, W. C. Atomic Parity Violation and the Nuclear Anapole
Moment. Science 1997, 275, 1753.
(54) Haxton, W. C.; Liu, C.-P.; Ramsey-Musolf, M. J. Nuclear anapole
moments. Phys. Rev. C 2002, 65, No. 045502.
(55)Wood, C. S.; Bennett, S. C.; Cho, D.; Masterson, B. P.; Roberts, J.
L.; Tanner, C. E.; Wieman, C. E. Measurement of Parity Non-
conservation and an Anapole Moment in Cesium. Science 1997, 275,
1759−1763.
(56) Haxton, W. C.; Wieman, C. E. Atomic Parity Nonconservation
and Nuclear Anapole Moments. Annu. Rev. Nucl. Part. Sci. 2001, 51,
261−293.

(57) DeMille, D.; Cahn, S. B.; Murphree, D.; Rahmlow, D. A.; Kozlov,
M. G. Using Molecules to Measure Nuclear Spin-Dependent Parity
Violation. Phys. Rev. Lett. 2008, 100, No. 023003.
(58) Pelloni, S.; Lazzeretti, P.; Monaco, G.; Zanasi, R. Magnetic-field
induced electronic anapoles in small molecules. Rend. Lincei 2011, 22,
105−112.
(59) Khriplovich, I. B.; Pospelov, M. E. Anapole moment of a chiral
molecule. Z. Phys. D: At., Mol. Clusters 1990, 17, 81−84.
(60) Berger, R. J. F. Prediction of a Cyclic Helical Oligoacetylene
Showing Anapolar Ring Currents in the Magnetic Field. Z. Naturforsch.
B 2012, 67, 1127−1131.
(61) Naumov, I. I.; Bellaiche, L.; Fu, H. Unusual phase transitions in
ferroelectric nanodisks and nanorods. Nature 2004, 432, 737−740.
(62) Van Aken, B. B.; Rivera, J.-P.; Schmid, H.; Fiebig, M.Observation
of ferrotoroidic domains. Nature 2007, 449, 702−705.
(63) Klaüi, M.; Vaz, C. A. F.; Lopez-Diaz, L.; Bland, J. A. C. Vortex
formation in narrow ferromagnetic rings. J. Phys.: Condens. Matter 2003,
15, R985−R1024.
(64) Novitchi, G.; Pilet, G.; Ungur, L.; Moshchalkov, V. V.;
Wernsdorfer, W.; Chibotaru, L. F.; Luneau, D.; Powell, A. K.
Heterometallic CuII/DyIII 1D chiral polymers: chirogenesis and
exchange coupling of toroidal moments in trinuclear Dy3 single
molecule magnets. Chem. Sci. 2012, 3, 1169.
(65) Guo, P.-H.; Liu, J.-L.; Zhang, Z.-M.; Ungur, L.; Chibotaru, L. F.;
Leng, J.-D.; Guo, F.-S.; Tong, M.-L. The First Dy4 Single-Molecule
Magnet with a Toroidal Magnetic Moment in the Ground State. Inorg.
Chem. 2012, 51, 1233−1235.
(66) Ungur, L.; Langley, S. K.; Hooper, T. N.; Moubaraki, B.; Brechin,
E. K.; Murray, K. S.; Chibotaru, L. F. Net Toroidal Magnetic Moment
in the Ground State of a Dy6-Triethanolamine Ring. J. Am. Chem. Soc.
2012, 134, 18554−18557.
(67) Basharin, A. A.; Kafesaki, M.; Economou, E. N.; Soukoulis, C.M.;
Fedotov, V. A.; Savinov, V.; Zheludev, N. I. Dielectric Metamaterials
with Toroidal Dipolar Response. Phys. Rev. X 2015, 5, No. 011036.
(68) Lewis, R. R. Anapole moment of a diatomic polar molecule. Phys.
Rev. A 1994, 49, 3376−3380.
(69) Stopkowicz, S.; Gauss, J.; Lange, K. K.; Tellgren, E. I.; Helgaker,
T. Coupled-cluster theory for atoms and molecules in strong magnetic
fields. J. Chem. Phys. 2015, 143, No. 074110.
(70) Stopkowicz, S. Molecular gradients at the coupled-cluster level
for atoms and molecules in strong magnetic fields, 2020.
(71) Maximoff, S. N.; Scuseria, G. E. Nuclear magnetic resonance
shielding tensors calculated with kinetic energy density-dependent
exchange-correlation functionals. Chem. Phys. Lett. 2004, 390, 408−
412.
(72) Becke, A. D. Current-density dependent exchange-correlation
functionals. Can. J. Chem. 1996, 74, 995−997.
(73) Bates, J. E.; Furche, F. Harnessing the meta-generalized gradient
approximation for time-dependent density functional theory. J. Chem.
Phys. 2012, 137, No. 164105.
(74) Sen, S.; Tellgren, E. I. A local tensor that unifies kinetic energy
density and vorticity in density functional theory. J. Chem. Phys. 2018,
149, No. 144109.
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