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Abstract. We study ODEs with vector �elds given by general Schwartz distributions, and
we show that if we perturb such an equation by adding an �in�nitely regularizing� path,
then it has a unique solution and it induces an in�nitely smooth �ow of di�eomorphisms.
We also introduce a criterion under which the sample paths of a Gaussian process are
in�nitely regularizing, and we present two processes which satisfy our criterion. The results
are based on the path-wise space-time regularity properties of local times, and solutions are
constructed using the approach of Catellier-Gubinelli based on non-linear Young integrals.

1. Introduction and main results

The regularizing e�ect of adding an irregular stochastic process to an ill-posed ordinary
di�erential equations (ODE) has been extensively studied over the last �fty years. Still it
is one of the most surprising results at the intersection of analysis and probability theory.
Consider the integral version of an ODE under perturbation of a path w : [0, T ] → Rd for
some ε ∈ R given by

yxt = x+

∫ t

0
b (yr) dr + εwt, x ∈ Rd. (1.1)

If ε = 0, then the classical theory of ODEs would essentially require local Lipschitz continuity
of the vector �eld b to obtain the uniqueness of solutions. However, for ε 6= 0 and suitable
w one can show the existence of a unique solution under more general assumptions on the
vector �eld b. This has been studied in a number of papers, e.g. [29, 26, 4, 16, 20, 19, 3, 7].
In recent years particular interest has been directed towards the regularizing properties of a
fractional Brownian motion with Hurst parameter H ∈ (0, 1). It has been proven, both by
probabilistic means, e.g. in [3], and by path-wise analysis in [7], that the lower we choose H,
the more general assumptions we may choose on b. In [7] Catellier and Gubinelli show that
uniqueness may hold for Equation 1.1 even if b is only a distribution. More precisely, they
show that if w is a fractional Brownian motion with Hurst index H, then for all b ∈ Bα

∞,∞
with α > 1− 1

2H , where Bα
∞,∞ is a Besov space of regularity α, the solution to (1.1) almost

surely exists uniquely. The null set outside of which the uniqueness fails depends on the ini-
tial condition x, the noise w, and on the vector �eld b ∈ Bα

∞,∞. Under the stronger regularity

assumption α > 3
2 −

1
2H , they show that the �ow x 7→ yxt is Lipschitz, but even then the null
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set may depend on b. Catellier and Gubinelli also identify a path-wise condition for w under
which uniqueness holds for all su�ciently regular b (measured in terms of �Fourier-Lebesgue
regularity� rather than Besov regularity) and all initial conditions x, see [7, Theorem 1.14].

In the more recent work [1] the authors consider an in�nite sequence of fractional Brownian
motions

(
λkw

Hk
)
k≥0

, where (λk)k≥0 and (Hk)k≥0 are suitable null sequences, and

Bt :=
∑
k≥0

λkw
Hk
t . (1.2)

Using techniques developed in [3], they show that the equation

yxt = x+

∫ t

0
b (yr) dr + Bt

has a unique strong solution (in the probabilistic sense) as long as b ∈ Lp
(
[0, T ] , Lq

(
Rd,Rd

))
∩

L1
(
[0, T ] , L∞

(
Rd,Rd

))
, and furthermore they show that the �ow map x 7→ yx· is in C∞.

The techniques used to obtain this results are mainly based on Malliavin calculus and prob-
abilistic methods, and again the null set outside of which the results fail might depend on b.

In the current article we unite the two perspectives of [7] and [1] and we provide a general
framework to obtain existence and uniqueness as well as di�erentiability of the �ow map
associated to Equation (1.1) for some su�ciently irregular paths w. In contrast to both [7]
and [1], our analysis is purely path-wise.

Similarly as in [7] we formulate the equations in the framework of non-linear young theory.

But rather than considering directly the regularity of the random map (t, x) 7→
∫ t

0 b(x+ws)ds,
which can only be controlled outside of a null set that depends on b, we �rst control the

regularity of the local time L of w, and then write
∫ t

0 b(x + ws)ds = b ∗ (L(−·)). In this
way the null set is independent of b. There is also such a purely pathwise result in [7], but
the regularity of L is given in a Fourier-Lebesgue space and therefore in applications also b
has to be in a suitable Fourier-Lebesgue space. Here we work with more common function
spaces (Sobolev spaces rather than Fourier-Lebesgue spaces), which has the advantage that
we get pathwise regularizing e�ects for b in Hölder spaces or even L2 Sobolev spaces. A second
advantage is that our analysis applies to any regularizing path, and not only stochastic paths.
That is, given a path with a su�ciently regular local time, existence and uniqueness of ODEs
of the form (1.1) is readily obtained.

To this end, we identify a class of Gaussian processes with exceptional regularizing prop-
erties, and we use the space-time regularity of their local times. In fact, if w : [0, T ]→ Rd is
a Gaussian process with co-variance function satisfying some simple conditions (translating
roughly speaking to su�cient irregularity), then its local time L : Ω× [0, T ]×Rd → R almost
surely has in�nitely many derivatives in its spatial variable for almost all ω ∈ Ω. So to ana-
lyze the ODE (1.1) we assume that w is a �xed path with smooth local time. By de�nition
of the local time, we have say for bounded measurable b and x ∈ Rd∫ t

s
b (x− wr (ω)) dr = [b ∗ Ls,t(ω)] (x), (1.3)
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where fs,t := ft − fs for any function f , and ∗ denotes convolution. So for regular Ls,t we

can make sense of
∫ t
s ∇b(x−wr(ω))dr = [b∗∇Ls,t(ω)](x), even if b is not di�erentiable. This

observation allows us to obtain bounds for integrals appearing in (1.1) which only depend on
low regularity norms of b: Consider, for convenience of notation, Equation (1.1) with ε = −1.
Then ỹxt = yxt + wt solves

ỹxt = x+

∫ t

0
b(ỹxr − wr)dr, (1.4)

and the integral term on the right hand side is very similar to the one on the left hand side

of (1.3). In fact, the integral
∫ t

0 b(ỹ
x
r − wr)dr can formally be interpreted as∫ t

0
b(ỹxr − wr)dr =

∫ t

0
[b ∗ Ldr] (ỹxr ). (1.5)

For now this expression is purely formal as we need to make sense of the di�erential Ldr,
which later we will do via non-linear Young integration (giving a simpli�ed derivation of
results from [7]).

We are mainly interested in �in�nitely regularizing� paths w. In this case, we will show
that the solution yx to (1.1) exists uniquely (up to a possibly �nite explosion time), and the
�ow x 7→ yx is C∞, only under the assumption that b ∈ S ′ is a Schwartz distribution. Let
us �rst specify what we mean by an in�nitely regularizing path:

De�nition 1. We say that a continuous path w : [0, T ]→ Rd is in�nitely regularizing if the
local time L : [0, T ]×Rd → R, de�ned in Section 2.1, is in CγTCα for all γ ∈ (1

2 , 1) and α ∈ R.

In the above de�nition, and throughout the text, the space CγTCα := Cγ([0, T ], Cα(Rd))
denotes the space of Hölder continuous functions h : [0, T ]→ Cα(Rd) with values in the Besov
space Cα(Rd) := Bα

∞,∞. More details on these spaces can be found in Section 2.2.
Our �rst main result is that existence and uniqueness hold for ODEs perturbed by the

path w, with drift coe�cients given by general Schwartz distributions in S ′. Moreover, the
�ow mapping x 7→ yx· is in�nitely di�erentiable.

Theorem 2. Let b ∈ S ′ be a Schwartz distribution, and consider an in�nitely regularizing
path w : [0, T ] → Rd as in De�nition 1. Then for all x ∈ Rd there exists T ∗ = T ∗(x) ∈
(0, T ] ∪ {∞} such that there is a unique solution to the equation

yxt = x+

∫ t

0
b (yxr ) dr + wt,

in C
(
[0, T ∗) ∩ [0, T ],Rd

)
, interpreted in the sense of De�nition 31. For T ∗(x) <∞ we have

limt↑T ∗(x) |yxt | =∞. Moreover, the map x 7→ T ∗(x)−1 is locally bounded, and if τ < T ∗(x) for

all x ∈ U for an open set U , then the �ow mapping U 3 x 7→ yx· ∈ C([0, τ ],Rd) is in�nitely
Fréchet di�erentiable.

Proposition 3. Assume in the setting of Theorem 2 that additionally b ∈ Bα
p,q for some

α ∈ R and p, q ∈ [1,∞]. Then T ∗(x) =∞ for all x ∈ Rd.

It should be noted that all this holds for deterministic paths that are in�nitely regularizing.
However, the derivation of sharp spatio-temporal regularity results for the local times of
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deterministic functions (for example the Weierstrass function) is still an open and challenging
problem. Therefore, we show that there exist in�nitely regularizing stochastic processes. In
particular, we will prove the following theorem, outlining su�cient conditions for a Gaussian
process to be in�nitely regularizing.

Theorem 4. Let w : [0, T ] × Ω → Rd be a centered Gaussian process on a complete �l-
tered probability space (Ω,F , {Ft}t∈[0,T ],P) where {Ft}t∈[0,T ] is the �ltration generated by w.
Suppose w satis�es the following local non-determinism condition for any ζ ∈ (0, 1)

inf
t∈(0,T ]

inf
s∈[0,t)

Var(wt|Fs)
(t− s)ζ

> 0. (1.6)

Then for almost all ω ∈ Ω the path t 7→ wt(ω) is in�nitely regularizing. These conditions

are satis�ed by the log-Brownian motion of De�nition 20, or the process Bt :=
∑

k λkw
Hk
t

in (1.2).

The structure of the paper is as follows:

• In Section 2 we provide some background material on local times and Besov spaces, as
well as a statement of the stochastic sewing lemma, recently developed by Lê [17].
• Section 3 is devoted to the proof of Theorem 4.
• In Section 4 we present two in�nitely regularizing Gaussian processes. In particular,
we will consider a process called p−log Brownian motion, and show that is in�nitely
regularizing. We also show that the processes used in [1] is in�nitely regularizing.
• In Section 5 we give a path-wise construction of the so called average operators, in line
with what has been done in [7]. We show that when these operators are constructed
from an in�nitely regularizing path, then they are in CγTCα for any γ ∈ (0, 1), α > 0.
• Finally, in Section 6 we prove the existence and uniqueness of solutions to (1.1) and
the smoothness of the associated �ow.

2. Essentials of local times and Besov spaces

2.1. Occupation measures and Local times . The occupation measure of an Rd-valued
measurable path w : [0, T ]→ Rd at a time t ∈ [0, T ] is de�ned by

µt (A) := λ {s ∈ [0, t] |ws ∈ A} , for A ∈ B(Rd),

where λ is the Lebesgue measure. We interpret µt(A) as �the amount of time w spends in A
up to time t�. Occupation measures have been an important topic in the theory of stochastic
processes during the last �fty years. We refer the interested reader to the comprehensive
review paper by Geman and Horowitz [11], and the references therein for an introductory
account of occupation measures and local times.

De�nition 5. Let w : [0, T ] → Rd be a measurable path. Assume that there exists a
measurable function L : [0, T ]× Rd → R+ with L0 (z) = 0 for all z ∈ Rd and such that

µt (A) =

∫
A
Lt (z) dz, A ∈ B(Rd), t ∈ [0, T ]. (2.1)

Then we call L the local time of w.
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Remark 6. Of course, the local time does not have to exist, and intuitively we interpret its
existence and regularity as an irregularity condition for w. Later we will see that for sample
paths of Gaussian processes this interpretation is in some sense justi�ed. However, in general
it is an open problem to establish a clear link between regularity properties of the local times
and irregularity measures such as �true roughness� [14, 9]; see Sections 10 and 11 of [11] for
some partial results in that direction.

Note that in d = 1 even w ∈ C∞ can have a local time: For a, b ∈ R with b > 0
the path wt = a + bt has the local time Lt(z) = b−1

1(a,a+bt](z). However, if a Lipschitz
continuous w ∈ C([0, T ],R) has a local time L, then Lt has at least two discontinuities: If
z0 = wt0 = max{ws : s ∈ [0, t]}, then Lt(z) = 0 for z > z0, and with the Lipschitz constant
K of w we get ws ∈ [z0− δ, z0] for all s ∈ [t0− δ/K, t0 + δ/K]∩ [0, t]. For δ > 0 small enough
we must have t0 − δ/K ≥ 0 or t0 + δ/K ≤ t, and therefore∫ z0

z0−δ
Lt(z)dz ≥

δ

K
.

By the fundamental theorem of calculus this is impossible if Lt is continuous with Lt(z0) = 0.
Similarly Lt must have a discontinuity at the minimum of w|[0,t]. In other words the local
time can only be continuous if w is more irregular than Lipschitz continuous. A similar
argument shows that the set of paths with local time LT ∈ Cα(R) has empty intersection
with Cβ([0, T ],R) for all β > (α+ 1)−1.

2.2. Essentials of Besov spaces. Here we recall some basic properties of Besov spaces.
For a more extensive introduction we refer to [2]. We will denote by S resp. S ′ the space of
Schwartz functions on Rd resp. its dual, the space of tempered distributions. For f ∈ S ′ we
denote the Fourier transform by f̂ = F (f) =

∫
Rd e

−ix·f(x)dx, where the integral notation is

formal, with inverse F−1f = (2π)−d
∫
Rd e

iz·f̂(z)dz.

De�nition 7. Let χ, ρ ∈ C∞(Rd,R) be two radial functions such that χ is supported on a
ball B = {|x| ≤ c} and ρ is supported on an annulus A = {a ≤ |x| ≤ b} for a, b, c > 0, such
that

χ+
∑
j≥0

ρ
(
2−j ·

)
≡ 1,

supp (χ) ∩ supp
(
ρ
(
2−j ·

))
= ∅, ∀j ≥ 1,

supp
(
ρ
(
2−j ·

))
∩ supp

(
ρ
(
2−i·

))
= ∅, ∀|i− j| ≥ 1.

Then we call the pair (χ, ρ) a dyadic partition of unity. Furthermore, we write ρj = ρ(2−j ·)
for j ≥ 0 and ρ−1 = χ, as well as Kj = F−1ρj .

The existence of a partition of unity is shown for example in [2]. We �x a partition of
unity (χ, ρ) for the rest of the paper.

De�nition 8. For f ∈ S ′ we de�ne its Littlewood-Paley blocks by

∆jf = F−1(ρj f̂) = Kj ∗ f.
It follows that f =

∑
j≥−1 ∆jf with convergence in S ′.

In the following we write
〈x〉 := (1 + |x|2)1/2. (2.2)
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De�nition 9. For any α, κ ∈ R and p, q ∈ [1,∞], the weighted Besov space Bα
p,q(〈x〉κ) is

Bα
p,q(〈x〉κ) :=

f ∈ S ′

∣∣∣∣∣∣∣‖f‖Bαp,q(〈x〉κ) =

∑
j≥−1

(
2jα‖〈x〉κ∆jf‖Lp

)q 1
q

<∞

 ,

with the usual interpretation as `∞ norm if q =∞. If κ = 0, we simply write Bα
p,q. Further-

more, we denote Cα(〈x〉κ) = Bα
∞,∞(〈x〉κ) and Cαp (〈x〉κ) = Bα

p,∞(〈x〉κ).

Remark 10. By Theorem 6.5 of [25] we have

‖f‖Bαp,q(〈x〉κ) ' ‖f〈x〉κ‖Bαp,q .
Remark 11. For α ∈ R+ \ N the space Cα(〈x〉κ) corresponds to a classical weighted Hölder
space, see e.g. [18, Lemma 2.1.23]. For all α ∈ R the Besov space Bα

2,2 corresponds to the
inhomogeneous Sobolev space Hα de�ned by

Hα :=
{
f ∈ S ′

∣∣∣‖f‖Hα = ‖ (1 + | · |)α f̂‖L2 <∞
}
.

Lemma 12 (Besov embedding, see [2], Proposition 2.71). Let 1 ≤ p1 ≤ p2 ≤ ∞ and

1 ≤ q1 ≤ q2 ≤ ∞, and let κ ∈ R. Then Bκ
p1,q1 is continuously embedded into B

κ−d
(

1
p1
− 1
p2

)
p2,q2 .

Recall from De�nition 1 that a path is in�nitely regularizing if its local time is in CγTCα for
all γ ∈ (0, 1) and all α ∈ R. By an interpolation argument this follows from a softer criterion:

Corollary 13. Let w ∈ C([0, T ],Rd) with associated local time L such that

sup
t∈[0,T ]

‖Lt‖Hα <∞

for any α > 0. Then w is in�nitely regularizing.

Proof. We get the necessary time regularity by bounding Ls,t in a Besov space that contains
measures, and then we use an interpolation argument: For any �nite positive measure µ we
have by [2, Proposition 2.76]

‖µ‖B0
1,∞
. sup

ϕ∈S ,
‖ϕ‖

B0
∞,1
≤1

〈µ, ϕ〉 ≤ µ(Rd)× sup
ϕ∈S ,

‖ϕ‖
B0
∞,1
≤1

‖ϕ‖L∞ . µ(Rd).

Since the occupation measure is given by µt(·) =
∫ t

0 δ(· − wr)dr, we get with the Besov
embedding result from Lemma 12 that

‖Ls,t‖C−d . ‖Ls,t‖B0
1,∞
≤
∫ t

s
‖δ(· − wr)‖B0

1,∞
dr . |t− s|,

which implies in particular that L ∈ C1
TC−d(Rd). Now we get for α > 0 and γ ∈ (0, 1):

‖L‖CγT Cα = sup
0≤s<t≤T

sup
j≥−1

2jα
‖∆jLs,t‖L∞
|t− s|γ

≤

(
sup
s,t,j

2−jd
‖∆jLs,t‖L∞
|t− s|

)γ (
sup
s,t,j

2
j α+γd

1−γ ‖∆jLs,t‖L∞
)1−γ

≤ ‖L‖γ
C1
T C−d

sup
s,t
‖Ls,t‖1−γCκ ,
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for κ := α+γd
1−γ . Since ‖Ls,t‖Cκ . ‖Ls,t‖Hκ+d/2 . 1 by assumption, our claim follows. �

2.3. The stochastic sewing lemma. To derive the space-time regularity of local times, we
will apply the stochastic sewing lemma [17] recently developed by Khoa Lê. We therefore
recite here the statement of this lemma, and refer the reader to [17] for the proof and a
discussion of this result. We will make use of n- simplices de�ned by

∆T
n := {(t1, . . . , tn) ∈ [0, T ]n|0 ≤ t1 ≤ . . . ≤ tn ≤ T}. (2.3)

Lemma 14 ([17], Theorem 2.1). Let (Ω,F , {Ft}t∈[0,T ],P) be a complete �ltered probability

space. Let p ≥ 2 and let A : ∆T
2 → Rd be a stochastic process such that As,s = 0, As,t

is Ft measurable, and (s, t) 7→ As,t is right-continuous from ∆T
2 into Lp(Ω). Set δuAs,t :=

As,t − As,u − Au,t for (s, u, t) ∈ ∆T
3 , and assume that there exists constants β > 1, κ > 1

2 ,
and C1, C2 > 0 such that

‖E [δuAs,t|Fs] ‖Lp(Ω) ≤ K1|t− s|β,
‖δuAs,t‖Lp(Ω) ≤ K2|t− s|κ.

(2.4)

Then there exists a unique (up to modi�cations) {Ft}-adapted stochastic process A such that
the following properties are satis�ed:

(i) A : [0, T ]→ Lp(Ω) is right continuous, and A0 = 0.
(ii) There exist constants C1, C2 > 0 such that for As,t = At −As:

‖As,t −As,t‖Lp(Ω) ≤ C1K1|t− s|β + C2K2|t− s|κ,

‖E [As,t −As,t|Fs] ‖Lp(Ω) ≤ C1K1|t− s|β.
(2.5)

Furthermore, for all (s, t) ∈ ∆T
2 and for any partition P of [s, t], de�ne

APs,t :=
∑

[u,v]∈P

Au,v. (2.6)

Then APs,t converge to As,t in Lp(Ω) as the mesh size |P| → 0.

3. Regularity of local times associated to Gaussian paths

Here we study the space-time regularity of the local times of Gaussian processes. Although
there are well known results for the spatial regularity of the local time Lt of Gaussian processes
at �xed times (e.g. [11]), it seems more di�cult to �nd results that are uniform in time or that
even quantify the time regularity (see however [7] for results about the time regularity of the
local time of fractional Brownian motion in certain Fourier-Lebesgue spaces). We therefore
present a general criterion for centered Gaussian processes to be in�nitely regularizing.

De�nition 15. A square-integrable stochastic process w : Ω× [0, T ]→ Rd is called ζ-locally
non-deterministic (ζ-LND) if

inf
t∈(0,T ]

inf
s∈[0,t)

inf
z∈Rd:
|z|=1

zT cov(wt|Fs)z
(t− s)2ζ

> 0, (3.1)

where cov(wt|Fs) := E[(wt − E[wt|Fs])(wt − E[wt|Fs])T |Fs].
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Remark 16. There exists several di�erent de�nitions of the concept of local non-determinism
of stochastic process, e.g. [5, 22, 28]. The condition in De�nition 15 is related to the strong
local φ non-determinism proposed by Cuzik and DuPerez [8], where φ(r) = rγ ; the only
(important) di�erence is that we only condition on the past, while in [8] also information
about the future is taken into account. This concept is also discussed in [28].

The next theorem shows that if ζ ∈ [0, 1
d), then ζ-locally non-deterministic centered Gauss-

ian processes have jointly Hölder-Sobolev continuous local times.

Theorem 17. Let ζ ∈ [0, 1
d) and let w : Ω× [0, T ]→ Rd be a continuous centered Gaussian

process which is ζ-LND. Then there exists a null set N ⊂ Ω such that for all ω ∈ N c the
function w(ω) has a local time L(ω), and for all λ < 1

2ζ −
d
2 and γ ∈ [0, 1− (λ+ d

2)ζ) we have

‖Ls,t(ω)‖Hλ ≤ C(ω)|t− s|γ . (3.2)

It follows that L ∈ CγTHλ, P-almost surely.

Proof. We control the Sobolev regularity by deriving bounds for the Fourier transform of
the occupation measure. By de�nition, the Fourier transform of µs,t is given by µ̂s,t(z) =∫ t
s e

i〈z,wr〉dr. Consider the process As,t :=
∫ t
s E[ei〈z,wr〉|Fs]dr (we will deal with the z depen-

dence of A later, but for now we suppress the notation), where {Ft} is the (completion of
the) natural �ltration generated by w. We will apply the stochastic sewing lemma to derive
bounds for the moments of the limit As,t of the Riemann sums

∑
[u,v]∈P Au,v. Then we will

see that in fact As,t = µ̂s,t(z).
To apply the stochastic sewing lemma, we need to check that A veri�es the necessary

conditions. By de�nition of A, it follows directly that As,s = 0, As,t is Ft measurable, and
(s, t)→ As,t is right continuous. Furthermore,

E[δuAs,t|Fs] = E
[∫ t

s
E[ei〈z,wr〉|Fs]dr −

∫ u

s
E[ei〈z,wr〉|Fs]dr −

∫ t

u
E[ei〈z,wr〉|Fu]dr|Fs

]
= 0,

by the tower property of conditional expectations, and thus the condition ‖E[δuAs,t|Fs]‖Lp(Ω) =
0 in (2.4) is satis�ed. To show the second condition, i.e. ‖δuAs,t‖Lp(Ω) ≤ C1|t− s|κ for some

κ > 1
2 , let us decompose w into two parts, namely

wr = E[wr|Fs] + (wr − E[wr|Fs]) .
For a Gaussian process w, the components E[wr|Fs] and (wr − E[wr|Fs]) are two Gaussian
random variables such that (wr − E[wr|Fs]) is independent of Fs, see e.g. [6, Theorem 3.10.1].
This implies that the conditional covariance cov (wr| Fs) is deterministic, due to the fact that
cov(wr|Fs) = cov (wr − E[wr|Fs]| Fs) and wr−E[wr|Fs] is independent of Fs. Consequently,

E[ei〈z,wr〉|Fs] = exp

(
i〈z, µFsr 〉 −

1

2
zTΣFsr z

)
,

where µFsr := E[wr|Fs] and ΣFsr := cov(wr|Fs). This yields

‖δuAs,t‖Lp(Ω) =

∥∥∥∥∫ t

u
exp

(
i〈z, µFsr 〉 −

1

2
zTΣFsr z

)
− exp

(
i〈z, µFur 〉 −

1

2
zTΣFur z

)
dr

∥∥∥∥
.
∫ t

u

[
exp

(
−1

2
zTΣFsr z

)
+ exp

(
−1

2
zTΣFur z

)]
dr.
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By assumption, w is ζ-LND, so denote by M the constant given by the left hand side of
(3.1). Since (r − s)2ζ ≥ (r − u)2ζ for any (s, u) ∈ ∆T

2 , we observe that

‖δuAs,t‖Lp(Ω) .
∫ t

u
exp

(
−M

2
|z|2(r − u)2ζ

)
dr.

It is readily checked that

e−
M
2

(r−u)2ζ |z|2 ≤ e
MT2ζ

2 e−
M
2

(r−u)2ζ(1+|z|2),

and that for λ′ ≥ 0 we have e−C . C−
λ′
2 , uniformly in C > 0. So we get for λ′ > 0 such that

λ′ζ < 1:

‖δuAs,t‖Lp(Ω) .
Mλ′

2λ′
e
MT2ζ

2

∫ t

u
(1 + |z|2)−

λ′
2 (r − u)−λ

′ζz dr

' (1 + |z|2)−
λ′
2 (t− u)1−λ′ζ

= (1 + |z|2)−
λ′
2 (t− u)κ.

If λ′ < 1
2ζ , then 1 − λ′ζ > 1

2 and we can apply the stochastic sewing lemma, more pre-

cisely (2.5) together with Minkowski's inequality, to deduce that the �sewing� As,t satis�es

‖As,t‖Lp(Ω) . ‖As,t‖Lp(Ω) + (1 + |z|2)−
λ′
2 |t− s|1−λ′ζ ,

where we recall that ‖E[δuAs,t|Fs]‖Lp(Ω) = 0. It is now readily seen, following the lines of
the previous analysis, that we also have

‖As,t‖Lp(Ω) . (1 + |z|2)−
λ′
2 |t− s|1−λ′ζ .

Moreover, we get for tnk = s+ (t− s)k/n

‖µ̂s,t(z)−As,t‖Lp(Ω) ≤
n−1∑
k=0

∥∥∥∥∥
∫ tnk+1

tnk

(ei〈z,wr〉 − E[ei〈z,wr〉|Ftnk ])dr

∥∥∥∥∥
Lp(Ω)

≤ 2
n−1∑
k=0

∫ tnk+1

tnk

∥∥∥ei〈z,wr〉 − ei〈z,wtnk 〉∥∥∥
Lp(Ω)

dr,

and since w is continuous, the dominated convergence theorem shows that the right hand
side converges to zero as n→∞. In conclusion we have shown that

‖µ̂s,t(z)‖Lp(Ω) . (1 + |z|2)−
λ′
2 |t− s|1−λ′γ .

We will now use this moment bound together with Kolmogorov's continuity criterion to derive
the claimed regularity of µ. For p ≥ 2 and ε ∈ (0, λ′− d

2) we apply Minkowski's inequality to
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obtain

E[‖µs,t‖p
Hλ′− d2−ε

]
1
p = E

[(∫
Rd
|µ̂s,t(z)|2(1 + |z|2)λ

′− d
2
−εdz

) p
2

] 1
p

≤
(∫

Rd
‖|µ̂s,t(z)|2‖L p2 (Ω)

(1 + |z|2)λ
′− d

2
−εdz

) 1
2

=

(∫
Rd
‖µ̂s,t(z)‖2Lp(Ω)(1 + |z|2)λ

′− d
2
−εdz

) 1
2

.

(∫
Rd

(
(1 + |z|2)−

λ′
2 |t− s|1−λ′ζ

)2

(1 + |z|2)λ
′− d

2
−εdz

) 1
2

. |t− s|1−λ′ζ
∫
Rd

(1 + |z|2)−
d
2
−εdz,

and the integral on the right hand side is �nite for any ε > 0. Since p ≥ 2 can be chosen
arbitrarily large, it follows from Kolmogorov's continuity theorem that for any γ ∈ [0, 1−λ′ζ)
there exists a set N c of full measure such that for all ω ∈ N c and (s, t) ∈ ∆T

2 we have

‖µs,t(ω)‖
Hλ′− d2−ε

≤ C(ω)|t− s|γ . (3.3)

So with λ = λ′− d
2 − ε and we obtain the claimed result (3.2). Moreover, since ζ < 1

d we can

choose λ > 0 and in particular µt(ω) ∈ L2 and the density Lt(ω) exists. �

Remark 18. Let b ∈ C(Rd), and w : Ω× [0, T ]→ Rd be a ζ-LND Gaussian process for some

ζ ∈ (0, 1
d). Set Twt b(x) :=

∫ t
0 b(x+wr)dr, and observe that Twt b = b∗ (Lt(−·)) where Lt is the

local time of w. Invoking the regularity of the local time obtained in Theorem 17 together
with Young's convolution inequality, there exists a null set N ⊂ Ω only depending on w, such
that for all ω ∈ N c and for all ε > 0:

‖Tw(ω)
t b− Tw(ω)

s b‖
Cα+

1
2ζ
− d2−ε

. ‖b‖Hα‖Ls,t(ω)‖
H

1
2ζ
− d2−ε

. ‖b‖Hα |t− s|γ , (3.4)

for some γ > 1
2 . Compared to Theorem 1.1 of [7] we lose d

2 derivatives in our estimate,
but we gain integrability. The main di�erence is that the null set N ⊂ Ω in [7] depends on
the function b. It would be possible to directly estimate the regularity of Twb using similar
arguments as in the proof of Theorem 17. Indeed, we observe that the Fourier transform of

Twb is b̂(z)
∫ t
s e

i〈z,wr〉dr. It is then readily checked that we recover similar regularity results as
in [7, Theorem 1.1], although in Hα spaces. But as the main goal of this article is to provide
a path-wise analysis of in�nitely regularizing paths, we want to avoid the dependence of the
null sets on b and therefore we estimate the regularity of L.

Remark 19. At least in the case of a fractional Brownian motion with Hurst parameter ζ we
get from [7, Theorem 1.4] a control of the 1

2ζ− regularity of L in a Fourier-Lebesgue space.

Implicitly, Conjecture 1.2 of [7] suspects that the loss of d
2 derivatives in our result can be

avoided and that we should have L ∈ C
1
2

+B
1
2ζ
−

1,1 . Indeed, if w 7→ w ∗ Lt(−·) is a bounded

operator from Cα to Cα+ρ(〈x〉−κ) (see the discussion before Conjecture 1.2), then we obtain
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for α = −ρ+ ε:

|〈b, Lt(−·)〉| = |(b ∗ Lt(−·))(0)| . ‖b ∗ Lt(−·)‖Cε(〈x〉−κ) . ‖b‖C−ρ+ε ,

and since C−ρ+ε = B−ρ+ε
∞,∞ we would get by duality Lt(−·) ∈ Bρ−ε

1,1 , see Proposition 2.76 in [2].

For the fractional Brownian motion we would be able to take ρ = 1
2ζ−, and in particular we

would obtain that Lt ∈ L1 whenever 1
2ζ > 0. But of course in general it does not only depend

on the Hurst parameter ζ but also on the dimension whether the fractional Brownian motion
has an absolutely continuous occupation measure. For example, Xiao [27, Theorem 2.1] shows
that if w is a d-dimensional fractional Brownian motion of Hurst index ζ, then the Hausdor�
dimension of (wt)t∈[0,1] is equal to min{d, 1

ζ }. If
1
ζ < d, the image of (wt)t∈[0,1] is thus a null

set in Rd and therefore the occupation measure cannot be absolutely continuous. Note that
1
ζ < d is equivalent to 1

2ζ −
d
2 < 0 and that Theorem 17 gives us space regularity 1

2ζ −
d
2−, i.e.

for 1
2ζ −

d
2 > 0 it follows from Theorem 17 that the local time exists (and then immediately

has L2-Sobolev regularity and not just B1,1-Besov regularity).

4. Infinitely regularizing stochastic processes

It follows from Theorem 4 together with Corollary 13 that if w is a continuous centered
Gaussian process w which is ζ-LND for any ζ > 0, then w is almost surely in�nitely regular-
izing in the sense of De�nition 1. Here we present two examples of such processes.

4.1. p−log-Brownian motions. If the conditional variance Var(wt+h|Ft) of a continuous
centered Gaussian process is bounded below by φ(h) := | ln(1/h)|−p, for some p > 0, then
it is ζ-LND for any ζ > 0. Thus our �rst example has an incremental variance structure
resembling φ. This is partly inspired by [11], where the authors mention in a remark below
Theorem 28.4 that Gaussian processes with incremental variance behaving like the logarithm
around the origin, i.e. ∼ | ln (1/t) |−1 for t → 0, seem to have local times with exceptional
(spatial) regularity. In [21] the authors investigate a Gaussian process they call the log-
Brownian motion. The same process has also recently been investigated for the purpose of
super rough volatility modelling in [13].

De�nition 20. Consider [0, T ] ⊂ [0, 1) and a p > 1
2 , and let B : [0, T ] × Ω → Rd be a

d-dimensional Brownian motion. We de�ne the p−log Brownian motion as

wpt :=

∫ t

0
k(t− s)dBs, (4.1)

where k(t) := |t ln(1/t)2p|−
1
2 ∈ L2([0, T ]).

Remark 21. Since for p > 1
2 the function t−1 ln(1/t)−2p has a non-integrable singularity at

t = 1, we have to take T < 1. For larger T we could rescale the kernel and consider kβ(t) =
k(βt) for β > T instead. See also the discussion below De�nition 18 of [21] or [13]. To obtain

a stationary version we could for example consider k(t) = (t(| ln(1/t)2p|∨1))−
1
2 ∈ L2(R+) and

then wpt =
∫ t
−∞ k(t−s)dBs for a two-sided d-dimensional Brownian motion B. For simplicity

we do not make these adaptations and we restrict to T < 1 for the rest of the subsection.

Proposition 22. For p > 1 there exists a continuous version of the p-log Brownian.

Proof. See [21], De�nition 18 and below, or [13, Remark 2.5]. �
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Corollary 23. For p > 1 the d-dimensional p-log Brownian motion wp is P− a.s. in�nitely
regularizing.

Proof. By de�nition, the d-dimensional p-lBm is a centered Gaussian process, and according
to Proposition 22 it is continuous if p > 1. By Theorem 17 together with Corollary 13 we
obtain that if wp is ζ-LND for any ζ > 0, then it is in�nitely regularizing. So let us compute
the conditional variance for (s, t) ∈ ∆2:

Var(wpt |Fs) =

∫ t

s
k(t− r)2drId, (4.2)

where k(t) = |t ln(1/t)2p|−
1
2 and Id is the d-dimensional unit matrix. By elementary compu-

tations, using that d
dt

ln(1/t)1−2p

2p−1 = k(t)2, we obtain that∫ t

s
k(t− r)2dr = (2p− 1)−1 ln(1/(t− s))1−2p. (4.3)

Of course inft∈(0,T ] infs∈[0,t)
| ln(1/(t−s))|1−2p

(t−s)2ζ > 0, so wp is ζ-LND for any ζ > 0 and therefore

in�nitely regularizing.
�

4.2. In�nite series of fractional Brownian motions. We will here show that also the
process considered in [1] is an in�nitely regularizing process according to De�nition 1.

Proposition 24. Consider the process B : [0, T ]× Ω→ Rd introduced in [1] given by

Bt :=
∑
n≥0

λnB
Hn
t .

Here (λn)n≥0 and and (Hn)n≥0 ∈ (0, 1) are null sequences such that λn, Hn > 0 for all n ≥ 0.

Moreover, (BHn)n≥0 is sequence of independent Rd-valued fractional Brownian motion of
Hurst parameter Hn. Additionally, we assume that∑

n≥0

|λn|E
[

sup
0≤s≤1

|BHn
s |
]
<∞. (4.4)

Then there exists a null set N ⊂ Ω such that B(ω) is in�nitely regularizing for all ω ∈ N c.

Proof. For simplicity we assume that the fractional Brownian motions BHn are of Riemann
Liouville type. However, the argument is readily extendible to other versions of the fractional
Brownian motion, at the price of slightly more complicated computations. More precisely,
we assume that BHn is given as the Wiener-Itô integral

BHn
t := 2Hn

∫ t

0
(t− s)Hn−

1
2dBn

r , (4.5)

where (Bn)n∈N is a sequence of independent Rd-valued Brownian motions and for con-

venience we chose the normalizing factor 2Hn instead of the usual Γ(Hn + 1
2)−1. Since∑

n≥0 |λn|E
[
sup0≤s≤1 |BHn

s |
]
< ∞ the process B is almost surely the uniform limit of con-

tinuous functions and therefore continuous itself. So to conclude the proof it su�ces to show
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that B is ζ-LND for any ζ > 0. The processes BHn and BHm are independent for m 6= n,
and thus the conditional covariance is

cov(Bt|Fs) =
∑
n∈N

λ2
n(t− s)2HnId. (4.6)

Since (Hn)n∈N is a null sequence there exists m such that Hm < ζ, and then∑
n λ

2
n(t− s)2Hn

(t− s)2ζ
≥ λ2

mT
2(Hm−ζ) > 0,

where we used that λm > 0. This concludes the proof. �

5. Path-wise construction of infinitely regularizing averaging operators

In this section we investigate the spatio-temporal regularity of �averaging operators�. For
a continuous path w ∈ C([0, T ],Rd) and a measurable function b : Rd → Rd, we de�ne the
averaging operator Tw as

Tws,tb (x) :=

∫ t

s
b (x+ wr) dr. (5.1)

Such operators have previously been studied by Tao and Wright in [24] in the case of deter-
ministic perturbations w, and more recently by Catellier and Gubinelli [7] in their study of
the regularizing e�ect of fractional Brownian motions on ODEs.

Our �rst result is that if w is in�nitely regularizing according to De�nition 1, then the
averaging operator Tw can be uniquely extended to any b ∈ S ′.

Recall that Cα(〈x〉−κ)) denotes the weighted Besov space of De�nition 9, with weight

〈x〉−κ := (1 + |x|2)−
κ
2

Proposition 25. Let w ∈ C([0, T ],Rd) be in�nitely regularizing and let b ∈ S ′. There exist
a κ ∈ R depending on b and a unique function

Twb ∈
⋂

γ∈(0,1),
α>0

Cγ([0, T ], Cα(〈x〉−κ))

such that Tw0 b ≡ 0, and such that for any sequence of continuous functions (bn)n∈N ⊂ C(Rd)∩
S ′ that converges to b in S ′ we have

lim
n→∞

‖Twb− Twbn‖Cγ([0,T ],Cα(〈x〉−λ)) = 0

for some λ ∈ R and all γ ∈ (0, 1), α > 0.

Proof. If b is continuous, then

Tws,tb(x) =

∫ t

s
b(x+ wr)dr =

∫
Rd
b(x+ z)Ls,t(z)dz = 〈b, Ls,t(· − x)〉,

where L is the local time associated to w. Since Ls,t(· − x) ∈ C∞c (Rd), the right hand

side makes sense for all b ∈ S ′ and we take it as the de�nition of T bs,t(x). To see the
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claimed regularity note that for b ∈ S ′ there exist κ ∈ R and k ≥ 0 such that |〈b, ϕ〉| .
max|α|≤k ‖〈·〉κ∂αϕ‖∞. In particular,

|T bs,t(x)| = |〈b, Ls,t(· − x)〉| . max
|α|≤k

‖〈·〉κ∂αLs,t(· − x)‖∞

. sup
z∈Rd

〈z〉κ

〈z − x〉κ
|t− s|γ‖L‖Cγ([0,T ],Ck+1(〈x〉κ))

. 〈x〉κ|t− s|γ ,

where we used that 〈x〉 = (1 + |x|2)
1
2 and that ‖L‖Cγ([0,T ],Ck+1(〈x〉κ)) ' ‖L‖Cγ([0,T ],Ck+1) as L

is compactly supported. To control the derivatives note that Tws,tb is essentially a convolution,

and thus ∂βTws,tb(x) = 〈b, (−1)β(∂βLs,t)(· − x)〉, from where the same arguments as above
yield

|∂βTws,tb(x)| . 〈x〉κ|t− s|γ , (5.2)

and therefore Twb ∈ Cγ([0, T ], Cα(〈x〉−κ)) for all α > 0 and all γ ∈ (0, 1). If a sequence of
smooth functions (bn)n∈N ⊂ S ′ converges to b in S ′, then there exist λ ∈ R and ` ≥ 0 such
that |〈bn, ϕ〉| . max|α|≤` ‖〈·〉λ∂αϕ‖∞ uniformly in n, see [23, Theorem V.7]. Therefore, the

convergence of Twbn to Twb in Cγ([0, T ], Cα(〈x〉−λ)) follows as above. �

Corollary 26. If b ∈ Bβ
p,q for some β ∈ R and p, q ∈ [1,∞], then we have (without weights):

Twb ∈
⋂

γ∈(0,1),
α>0

Cγ([0, T ], Cα).

Proof. If b ∈ Bβ
p,q, then we have with the conjugate exponents p′, q′ of p, q:

|〈b, Ls,t(· − x)〉| . ‖b‖
Bβp,q
‖Ls,t(· − x)‖

B−β
p′,q′

= ‖b‖
Bβp,q
‖Ls,t‖B−β

p′,q′
. ‖Ls,t‖C−β+ε ,

where in the last step we used that L is compactly supported and therefore we can decrease
the integrability index from ∞ to p′ while only paying a constant, and that we can replace
q′ by ∞ if we give up ε regularity. This shows that we can take κ = 0 in the proof (and then
in the statement) of Proposition 25. �

6. Existence, uniqueness and flow differentiability of perturbed ODEs

We are now ready to apply the concept of averaging operators to ODEs perturbed by noise.
Formally, we will consider the equation

ỹxt = x+

∫ t

0
b (ỹxr ) dr + wt, (t, x) ∈ [0, T ]× Rd, (6.1)

for a Schwartz distribution b and an in�nitely regularizing continuous path w. To interpret
this equation rigorously, we set yxt := ỹxt − wt, and observe that y formally solves

yxt = x+

∫ t

0
b (yxr + wr) dr, (t, x) ∈ [0, T ]× Rd. (6.2)

To make sense of the integral on the right hand side we consider a sequence (bn)n∈N of
continuous functions converging to b ∈ S ′. Then, inspired by the construction of the operator
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Twb in Proposition 25, we will show that the following limit exists:∫ t

0
b (yr + wr) dr := lim

n→N

∫ t

0
bn (yr + wr) dr. (6.3)

To this end we use the non-linear Young integral of [7], for which we �rst give a simpli�ed
construction.

6.1. Non-linear Young integration. Let Ξ : ∆T
2 → Rd and consider the Riemann sum of

Ξ over a partition P of a set [s, t] ⊂ [0, T ]:

IP (Ξ)s,t =
∑

[u,v]∈P

Ξu,v.

The sewing lemma ([12, Proposition 1], see also [10, Lemma 4.2]) gives explicit conditions
on the function Ξ under which lim|P|→0 IP (Ξ) exists. To state it, we �rst de�ne the linear

functional δ acting on f : ∆T
2 → Rd as

δufs,t = fs,t − fs,u − fu,t, (s, u, t) ∈ ∆T
3 . (6.4)

Lemma 27 ([10], Lemma 4.2). Let α ∈ (0, 1) and β ∈ (1,∞), and let Ξ : ∆T
2 → Rd be such

that

‖δΞ‖β := sup
(s,u,t)∈∆T

3

|δuΞs,t|
|t− s|β

<∞ and ‖Ξ‖α := sup
(s,t)∈∆T

2

|Ξs,t|
|t− s|α

<∞.

Then there exists a unique function I(Ξ) ∈ Cα([0, T ],Rd) such that I(Ξ)0 = 0 and

|I (Ξ)s,t −Ξs,t| ≤ C‖δΞ‖β|t− s|
β,

where C > 0 only depends on β and T . Moreover, we have I (Ξ)0,t = lim|P|→0

∑
[u,v]∈P Ξu,v.

Now let us consider again the integral in (6.2). If b is continuous, then∫ t

0
b (yr + wr) dr = lim

|P|→0

∑
[u,v]∈P

b (yu + wu) (v − u) = lim
|P|→0

∑
[u,v]∈P

∫ v

u
b (yu + wr) du

= lim
|P|→0

∑
[u,v]∈P

Twv,ub (yu) , (6.5)

where Twb is the average operator from (5.1). If w is in�nitely regularizing and P is a �xed
partition, then by Proposition 25 the sum on the right hand side is well de�ned even if only
b ∈ S ′. The existence of the limit as |P| → 0 will follow from the sewing lemma. Note that
the limit is not exactly a Young integral, since Twb is non-linear in its spatial argument:

Tws,tb (z + y) 6= Tws,tb (z) + Tws,tb (y) .

Therefore, we need a non-linear extension of the Young integral, which was introduced by
Catellier and Gubinelli in [7] and for which we give a simpli�ed construction.

Proposition 28 (See also [7], Theorem 2.4 or [15], Proposition 2.4). Let β, γ ∈ (0, 1) be such

that β + γ > 1. Let y ∈ CβT := CβTR
d and let Y ∈ C0,1([0, T ]× Rd,Rd) be such that

|∇Ys,t(x)| ≤ F (x)|t− s|γ , (s, t) ∈ ∆2
T , x ∈ Rd,
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where F is a locally bounded function. Then with Ξs,t = Ys,t(ys), the integral∫ t

s
Ydr (yr) := I (Ξ)s,t , (6.6)

is well de�ned according to Lemma 27.

Proof. Since Ys,t = Yt − Ys, we have

|δuYs,t(ys)| = |Yu,t(ys)− Yu,t(yu)| ≤ sup
|x|≤‖y‖∞

F (x)|t− u|γ |ys,u| ≤ sup
|x|≤‖y‖∞

F (x)‖y‖
CβT
|t− s|γ+β.

So the result follows from Lemma 27. �

6.2. Abstract non-linear Young equations. Here we use the non-linear Young integral
from Proposition 28 to construct solutions to an abstract non-linear integral equation. Later
we will apply these abstract results to our equation (6.2).

Proposition 29. Let Y ∈ C0,1([0, T ] × Rd,Rd) be such that for some γ ∈ (1
2 , 1) and δ > 1

γ

the following conditions hold for s, t ∈ [0, T ] and x, y ∈ Rd:

(i) |Ys,t (x) |+ |∇Ys,t (x) | ≤G(x)|t− s|γ ,

(ii) |∇Ys,t (x)−∇Ys,t (y) | ≤F (x, y) |t− s|γ |x− y|δ−1,

where G : Rd → R+ and F : R2d → R+ are locally bounded functions. Then for all x ∈ Rd
there is a maximal existence time T ∗ = T ∗(x) ∈ (0, T ] ∪ {∞} and a unique solution y ∈
Cγ([0, T ∗) ∩ [0, T ]) to

yt = x+

∫ t

0
Ydr (yr) . (6.7)

Here the non-linear Young integral
∫ t

0 Ydr (yr) is as in Proposition 28. If T ∗ < ∞, then

limt→T ∗ |yt| = ∞. Moreover, the map x 7→ T ∗(x)−1 is locally bounded. If G and F are
bounded, then T ∗ =∞.

Proof. This is quite standard and the result follows from an application of the non-linear
sewing lemma, Proposition 28, together with a Picard iteration. For completeness we include
the arguments.

Let τ ∈ [0, T ] and γ′ ∈ (1− γ, γ) be such that γ + δ(1− γ′) > 1 (note that γ + δ(γ − 1) =

δγ > 1, so this is possible). Let z ∈ Cγ
′

τ . De�ne the increment Ξs,t := Ys,t (zs). Then we
obtain from (i):

|Ξs,t| ≤ G(zs)|t− s|γ ,

|δuΞs,t| = |Yu,t (zs)− Yu,t (zu) | ≤ sup
|a|≤‖z‖∞

G(a)‖z‖
Cγ
′
τ
|t− s|γ+γ′ , (6.8)

where Cγ
′

τ = Cγ
′
([0, τ ]) . Since γ + γ′ > 1 it follows from Lemma 27 that the map

Γ :
{
z ∈ Cγ′([0, τ ] ,Rd)

∣∣z0 = x
}
→
{
z ∈ Cγ′([0, τ ] ,Rd)

∣∣z0 = x
}
,

Γ (z)t = x+

∫ t

0
Ydr (zr)
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is well de�ned and satis�es

|Γ(z)s,t| ≤
∣∣∣∣∫ t

s
Ydr (zr)− Ys,t (zs)

∣∣∣∣+ |Ys,t (zs) |

. |t− s|γ+γ′ sup
|a|≤‖z‖∞

G(a)‖z‖
Cγ
′
τ

+ sup
|a|≤‖z‖∞

G(a)|t− s|γ

. τγ−γ
′ |t− s|γ′ sup

|a|≤‖z‖∞

(
G (a) ‖z‖

Cγ
′
τ

+G(a)
)
.

This implies that for su�ciently small τ > 0 (depending on |x|) the map Γ leaves the ball

B2|x| =
{
z ∈ Cγ′τ

∣∣z0 = x, ‖z‖∞ ∨ ‖z‖Cγ′τ ≤ 2|x|
}

invariant. Moreover, for two paths z, z̃ ∈ B2|x| we have

|Γ (z)s,t − Γ (z̃)s,t | ≤ |Ys,t (zs)− Ys,t (z̃s)|+
∣∣∣∣∫ t

s
[Ydr (zr)− Ydr (z̃r)]− [Ys,t (zs)− Ys,t (z̃s)]

∣∣∣∣ .
For u ∈ [s, t] we rewrite

δu [Ys,t (zs)− Ys,t (z̃s)] = (Yu,t(zs)− Yu,t(z̃s))− (Yu,t (zu)− Yu,t (z̃u))

=

∫ 1

0
∇Yu,t (z̃s + λ (zs − z̃s)) · (zs − z̃s) dλ

−
∫ 1

0
∇Yu,t (z̃u + λ (zu − z̃u)) · (zu − z̃u) dλ

(6.9)

Invoking condition (ii) on the function Y , we observe that

|δu [Ys,t (zs)− Ys,t (z̃s)] |

≤
∣∣∣∣∫ 1

0
[∇Yu,t (z̃s + λ (zs − z̃s))−∇Yu,t (z̃u + λ (zu − z̃u))] · (zs − z̃s) dλ

∣∣∣∣
+

∣∣∣∣∫ 1

0
∇Yu,t (z̃s + λ (zs − z̃s)) · (zs − z̃s − zu − z̃u) dλ

∣∣∣∣
≤
∫ 1

0
F (z̃s + λ (zs − z̃s) , z̃u + λ (zu − z̃u)) |t− u|γ

× |z̃s + λ (zs − z̃s)− (z̃u + λ (zu − z̃u)) |δ−1dλ‖z − z̃‖∞

+

∫ 1

0
G(z̃s + λ(zs − z̃s))|t− u|γdλ|t− s|γ

′‖z − z̃‖
Cγ
′
τ

. ‖F‖B2|x| |t− s|
γ+γ′(δ−1)|2x|δ−1‖z − z̃‖

Cγ
′
τ

+ |t− s|γ+γ′‖G‖B2|x|‖z − z̃‖Cγ′τ ,

where

‖G‖B2|x| = sup
|a|≤2|x|

G(a), ‖F‖B2|x| = sup
|a|,|b|≤2|x|

F (a, b).

Recall that γ + (δ − 1) γ′ > 1. Furthermore, the bound in (i) gives

|Ys,t (zs)− Ys,t (z̃s) | ≤ ‖G‖B2|x| |t− s|
γ‖z − z̃‖∞ ≤ ‖G‖B2|x|τ

γ′ |t− s|γ‖z − z̃‖
Cγ
′
τ ,
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where we used that z0 = z̃0 = x, and therefore ‖z − z̃‖∞ ≤ τγ
′‖z − z̃‖

Cγ
′
τ
. So after possibly

further decreasing τ > 0, depending on |x|, we get a contraction on B2|x|. Since the maximum
possible choice for τ only depends on |x| and it is bounded away from 0 if |x| is bounded, we
can choose τ(x) such that the map x 7→ τ(x)−1 is locally bounded.

Moreover, it is a simple exercise to check that for z ∈ Cγτ we have Γ (z) ∈ Cγτ , so the unique
�xed point (yt)t∈[0,T ] is even γ-Hölder continuous. Now we can iterate the construction and

extend the solution to [0, τ + τ ′] for some τ ′ ≤ τ , etc. We just showed that τ(x) only depends
on the size of the initial condition |x|, so if we would have supt∈[0,T ∗) |yt| < ∞ and T ∗ < T ,
then we could extend the solution beyond T ∗ and thus T ∗ could not have been the maximal
time of existence. Since T ∗ > τ the local boundedness of x 7→ T ∗(x)−1 follows from that of
x 7→ τ(x)−1.

If F and G are bounded, then there exists a �xed τ > 0 such that for any starting point
x the map Γ leaves the ball B2|x| invariant. Therefore, the solution y with initial value x

satis�es supt∈[0,σ] |yσ| ≤ 2d
σ
τ e|x| on any interval [0, σ] ⊂ [0, T ], and it does not explode in

�nite time, i.e. T ∗ =∞. �

6.3. Application to perturbed ODEs. We will now apply the abstract results from the
previous section to de�ne solutions to Equation (6.2) and to prove their existence and unique-
ness and the smoothness of the associated �ow.

Lemma 30. Let w be in�nitely regularizing, let b ∈ S ′, and let Twb the averaging operator
de�ned in (5.1). Then for all ε > 0 and all y ∈ Cε([0, T ],Rd) the non-linear Young integral∫ t

0 T
w
drb(yr) is well de�ned.

Proof. By Proposition 25 the function Yt(x) = Twt b(x) satis�es |∇Ys,t(x)| . 〈x〉κ|t − s|γ for
some κ ∈ R and for all γ < 1. In particular we can choose γ > 1 − ε, and then the claim
follows from Proposition 28. �

De�nition 31. Let w be in�nitely regularizing, let b ∈ S ′ and let τ ≤ T and ỹ ∈
C([0, τ ],Rd). Then we say that ỹ solves the equation

ỹt = x+

∫ t

0
b(ỹr)dr + wt, (6.10)

if y = ỹ − w is in Cε([0, τ ],Rd) for some ε > 0 and

yt = x+

∫ t

0
Twdrb(yr), t ∈ [0, τ ]. (6.11)

Lemma 32. Let w be in�nitely regularizing, let b ∈ S ′ and let τ ≤ T and ỹ ∈ C([0, τ ],Rd)
be such that y = ỹ − w is in Cε([0, τ ],Rd) for some ε > 0. Then ỹ solves (6.10) if and only
if for any sequence (bn) ⊂ C(Rd) ∩S ′ converging to b in S ′ we have

ỹt = x+ lim
n→∞

∫ t

0
bn(ỹr)dr + wt, t ∈ [0, τ ].

Proof. By the convergence result for the average operator in Proposition 25 together with
continuity properties of the non-linear Young integral which follow from Lemma 27 we have∫ t

0 T
w
drb(yr) = limn→∞

∫ t
0 T

w
drbn(yr) for t ∈ [0, τ ]. Therefore, the claim follows from (6.5). �
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Lemma 33. Let w be in�nitely regularizing, let b ∈ S ′ and let γ ∈ (1
2 , 1). For all x ∈ Rd

there exists a maximal existence time T ∗ = T ∗(x) ∈ (0, T ] ∪ {∞} and a unique solution
y ∈ Cγ([0, T ∗) ∩ [0, T ]) to

yt = x+

∫ t

0
Twdrb(yr), t ∈ [0, T ∗) ∩ [0, T ]. (6.12)

If T ∗ < ∞, then limt→T ∗ |yt| = ∞. Moreover, the map x 7→ T ∗(x)−1 is locally bounded. If

b ∈ Bβ
p,q for some β ∈ R and p, q ∈ [1,∞], then T ∗ =∞.

Proof. According to Proposition 25 there exists κ ∈ R such that Yt(x) = Twt b(x) is in
CγTCα(〈x〉−κ) for all γ < 1 and α > 0. In particular it satis�es the assumptions of Propo-

sition 29. If b ∈ Bβ
p,q, then Y ∈ CγTCα (without weight), and therefore the global existence

follows from the last part of Proposition 29. �

To complete the proof of Theorem 2 we have to show the di�erentiability of the �ow
x 7→ yx, where yx solves the equation with yx0 = x. We will achieve this by solving the
equation for (yx,∇yx, . . . ,∇kyx), whose explosion time a priori might depend on k. To show
that it is independent of k and that the �ow exists as long as yx stays bounded, we introduce
an abstract notion:

De�nition 34. Let k ≥ 0 and d = d0 + . . .+ dk and let Y ∈ C0,1([0, T ]× Rd,Rd) be of the
form

Yt (z) = [Y 0
t (z0), Y 1

t (z≤1), . . . , Y k
t (z≤k)] (6.13)

for all z = (z0, z1, . . . , zk) ∈ Rd0+...+dk , where z≤` := (z0, . . . , z`). Let γ ∈ (1
2 , 1), δ > 1

γ and

assume that Y 0 satis�es the condition of Proposition 29, while each of the components Y `

for ` ∈ {1, . . . , k} satis�es the following three bounds:

(i) |Y `
s,t(z

≤`)| ≤ G`(z≤`−1)(1 + |z`|)|t− s|γ ,

(ii) |Y `
s,t(z

≤`)− Y `
s,t(z̃

≤`)| ≤ |t− s|γH`(z
≤`−1, z̃≤`−1)

× (|z` − z̃`|+ |z`| × |z≤`−1 − z̃≤`−1|),

(iii) |∇Y `
s,t(z

≤`)−∇Y `
s,t(z̃

≤`)| ≤ F`(z≤`, z̃≤`)|t− s|γ |z≤` − z̃≤`|δ−1,

where the functions G`, H` and F` are positive and locally bounded. Then we say that Y
has a lower triangular structure.

If Y has a lower triangular structure, then the maximal existence time of yt = x+
∫ t

0 Ydr(yr)

is equal to the explosion time of y0:

Lemma 35. Assume that Y has a lower triangular structure and let y be the solution to yt =

x+
∫ t

0 Ydr(yr), constructed in Proposition 29, with maximal existence time T ∗ ∈ (0, T ]∪{∞}.
If T ∗ <∞, then limt→T ∗ |y0

t | =∞.

Proof. By de�nition Y satis�es the conditions of Proposition 29, so y exists. Assume that

T ∗ <∞ and that supt<T ∗ |y0
t | = C <∞. We claim that then also supt<T ∗ |y

≤`
t | <∞ for all

` ≤ k, which is a contradiction to the fact that supt<T ∗ |yt| =∞ by Proposition 29.
Assume that the claim holds for ` − 1 and let us show that then it also holds for `.

Because of the lower triangular structure, y≤`−1 solves a non-linear Young equation with
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non-linearity Y ≤`−1, and since supt<T ∗ |y
≤`−1
t | <∞ we deduce from Proposition 29 that also

supt<T ∗ ‖y≤`−1‖Cγt <∞.

To obtain a bound for |y`| let Ξ`
s,t = Y `

s,t

(
y≤`s
)
. Then there exists a constant C > 0 which

depends on supt<T ∗ |y
≤`−1
t | and supt<T ∗ ‖y≤`−1‖Cγt such that

|Ξ`
s,t| ≤ G`(y≤`−1

s )(1 + |y`s|)|t− s|γ ≤ |t− s|γC
(

1 + |y`0|+ τγ
′‖y`‖

Cγ
′
τ

)
, (6.14)

|δuΞ`
s,t| = |Yu,t(y≤`u )− Yu,t(y≤`s )|

≤ |t− s|γH`(y
≤`−1
s , y≤`−1

u )(|y`u − y`s|+ |y`s| × |y≤`−1
u − y≤`−1

s |)

≤ |t− s|γ+γ′C
(
‖y`‖

Cγ
′
τ

+ |y`0|+ τγ
′‖y`‖

Cγ
′
τ

)
. (6.15)

With the help of these bounds we obtain from the sewing lemma (Lemma 27):

|y`s,t| =
∣∣∣∣∫ t

s
Y `
dr(y

≤`
r )

∣∣∣∣
. τγ−γ

′ |t− s|γ′C
(

1 + |y`0|+ τγ
′‖y`‖

Cγ
′
τ

)
+ τγ |t− s|γ′C

(
‖y`‖

Cγ
′
τ

+ |y`0|+ τγ
′‖y`‖

Cγ
′
τ

)
.

Therefore, there exists τ > 0 which only depends on C and γ, γ′ such that

‖y`‖
Cγ
′
τ
∨ sup
t≤τ
|y`t | ≤ 2|y`0|.

Since τ is �xed and does not depend on y`0 we deduce that supt<T ∗ |y`t | ≤ 2

⌈
T∗
τ

⌉
|y`0| <∞ and

this concludes the proof. �

Now we are ready to prove Theorem 2:

Theorem (Theorem 2). Let b ∈ S ′ be a Schwartz distribution, and consider an in�nitely
regularizing path w : [0, T ] → Rd as in De�nition 1. Then for all x ∈ Rd there exists
T ∗ = T ∗(x) ∈ (0, T ] ∪ {∞} such that there is a unique solution to the equation

yxt = x+

∫ t

0
b (yxr ) dr + wt,

in C
(
[0, T ∗) ∩ [0, T ],Rd

)
. For T ∗(x) < ∞ we have limt↑T ∗(x) |yxt | = ∞. Moreover, the map

x 7→ T ∗(x)−1 is locally bounded, and if τ < T ∗(x) for all x ∈ U with an open set U , then the
�ow mapping U 3 x 7→ yx· ∈ C([0, τ ],Rd) is in�nitely Fréchet di�erentiable.

Proof. It remains to prove the smoothness of the �ow. Let k ∈ N. We de�ne

Y `
s,t(z

≤`) =
∑̀
j=1

∑
i1+...+ij=`

∇jTws,tb(z0)
(
zi1 ⊗ . . .⊗ zij

)
, for 0 ≤ ` ≤ k.

Since Y ` is an a�ne function of z` it is not hard to see that Y = (Y 1, . . . , Y k) has a lower
triangular structure. Let now x ∈ Rd, let U be an open neighborhood of x and let τ ∈ [0, T ]
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be such that T ∗(z) > τ for all x′ ∈ U . For x′ ∈ U assume that zx
′

= (z0,x′ , . . . , zk,x
′
) solves

zx
′
t = χ+

∫ t

0
Ydr(z

x′
r )

on the maximum existence interval, where

χ = (x′, Id, 0, . . . , 0)

for the d-dimensional unit matrix Id. Then z0,x′ = yx
′
by de�nition of Y , and therefore

Lemma 35 shows that zx
′
exists on [0, τ ]. We claim that z`,x = ∇`yx, as a Fréchet derivative

in C([0, τ ],Rd) equipped with the uniform norm. Below we prove this for ` = 1, the general
case is similar but the notation becomes more involved.

Before we prove the �rst order di�erentiability we �rst show local Lipschitz continuity. So
let x′ ∈ U and de�ne the integrand Ξs,t = Tws,tb(y

x′
s )− Tws,tb(yxs ). Then yx − yx′ is the sewing

of Ξ. There exists a constant C that depends on yx and yx
′
such that for 0 ≤ s ≤ t ≤ σ ≤ τ :

|Ξs,t| ≤ C|t− s|γ sup
t≤σ
|yx′t − yxt | ≤ C|t− s|γ(|x′ − x|+ σγ

′‖yx′ − yx‖
Cγ
′
σ

)

|δuΞs,t| = |(Twu,tb(yx
′
s )− Twu,tb(yx

′
u ))− (Twu,tb(y

x
s )− Twu,tb(yxu))|

≤ C|t− s|γ+γ′‖yx′ − yx‖
Cγ
′
σ
.

So by the sewing lemma (Lemma 27) we get for a new C > 0:

|yxs,t − yx
′
s,t| ≤ C|t− s|γ

′
σγ−γ

′
(|x′ − x|+ ‖yx′ − yx‖

Cγ
′
σ

),

and therefore we have for su�ciently small σ (depending only on C):

‖yx′ − yx‖
Cγ
′
σ
∨ sup
t≤σ
|yx′t − yxt | ≤ 2|x′ − x|,

and then iteratively

‖yx′ − yx‖
Cγ
′
τ
∨ ‖yx′ − yx‖∞ . |x′ − x|,

which proves the local Lipschitz continuity.
Next we want to show that z1,x is the Fréchet derivative of yx in x. For that purpose we

de�ne the new integrand

Ξs,t = Tws,tb(y
x′
s )− Tws,tb(yxs )−∇Tws,t(yxs )z1,x

s (x′ − x).

Then yx − yx
′ − z1,x(x′ − x) is the sewing of Ξ. There exists a C > 0 that depends on

yx, yx
′
, z1,x, such that for 0 ≤ s ≤ t ≤ σ ≤ τ :
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|Ξs,t| ≤ C|t− s|γ
(
‖yx′ − yx‖2∞ + sup

r≤σ
|yx′r − yxr − z1,x

r (x′ − x)|
)

. C|t− s|γ
(
|x′ − x|2 + σγ

′‖yx′ − yx − z1,x(x′ − x)‖
Cγ
′
σ

)
|δuΞs,t| =

∣∣∣(Twu,tb(yx′s )− Twu,tb(yx
′
u ))− (Twu,tb(y

x
s )− Twu,tb(yxu))

− (∇Twu,t(yxs )z1,x
s (x′ − x)−∇Twu,t(yxu)z1,x

u (x′ − x))
∣∣∣

≤ C|t− s|γ+γ′
(
|x− x|2 + ‖yx′ − yx − z1,x(x′ − x)‖

Cγ
′
σ

)
.

From here we obtain as before that

‖yx′ − yx − z1,x(x′ − x)‖
Cγ
′
σ
∨ ‖yx′ − yx − z1,x(x′ − x)‖∞ . |x− x′|2,

and therefore z1,x is indeed the Fréchet derivative of yx.
So far we showed that yx is k times Fréchet di�erentiable, but since k was arbitrary yx is

in�nitely Fréchet di�erentiable as claimed. �
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