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Abstract
Objective  To investigate the effect of inter-operator variability in arterial input function (AIF) definition on kinetic parameter 
estimates (KPEs) from dynamic contrast-enhanced (DCE) MRI in patients with high-grade gliomas.
Methods  The study included 118 DCE series from 23 patients. AIFs were measured by three domain experts (DEs), and 
a population AIF (pop-AIF) was constructed from the measured AIFs. The DE-AIFs, pop-AIF and AUC-normalized DE-
AIFs were used for pharmacokinetic analysis with the extended Tofts model. AIF-dependence of KPEs was assessed by 
intraclass correlation coefficient (ICC) analysis, and the impact on relative longitudinal change in Ktrans was assessed by 
Fleiss’ kappa (κ).
Results  There was a moderate to substantial agreement (ICC 0.51–0.76) between KPEs when using DE-AIFs, while AUC-
normalized AIFs yielded ICC 0.77–0.95 for Ktrans, kep and ve and ICC 0.70 for vp. Inclusion of the pop-AIF did not reduce 
agreement. Agreement in relative longitudinal change in Ktrans was moderate (κ = 0.591) using DE-AIFs, while AUC-nor-
malized AIFs gave substantial (κ = 0.809) agreement.
Discussion  AUC-normalized AIFs can reduce the variation in kinetic parameter results originating from operator input. The 
pop-AIF presented in this work may be applied in absence of a satisfactory measurement.

Keywords  Dynamic contrast-enhanced MRI · DCE-MRI · Glioblastoma · AIF · Arterial input function · Observer 
dependency
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AIF	� Arterial input function
AUC​	� Area under the curve
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FLAIR	� Fluid-attenuated inversion recovery
HGG	� High-grade glioma
IVS	� Intravascular space
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Pop-AIF	� Population-averaged AIF
ROI	� Region-of-interest
TD	� Saturation recovery delay
TE	� Echo time
TR	� Repetition time

Introduction

Dynamic contrast-enhanced (DCE) magnetic resonance 
imaging (MRI) is increasingly being used to assess micro-
vascular properties of tissue in oncology and has proven 
well suited to quantify brain tumor hemodynamics and dam-
age to the blood–brain barrier. DCE-MRI is a technique in 
which a series of T1-weighted images is rapidly acquired 
before, during and after the administration of a paramag-
netic contrast agent (CA) [1]. Using pharmacokinetic (PK) 
modelling, these dynamic images allow for the quantifica-
tion of kinetic biomarkers that are of use in the evaluation of 
tumors. The most commonly used PK model in high-grade 
glioma (HGG) diagnostics is the extended Tofts model [2], 
which describes the tissue by the rate constants Ktrans and kep 
as well as the volume fractions ve and vp.

Quantitative descriptors of tumor vasculature that—in 
theory—can be obtained independently of equipment and 
technique, would be a very powerful tool in disease man-
agement and monitoring. However, DCE-MRI suffers from 
a lack of reproducibility across different imaging sites. This 
is due to several potential sources of error, including inad-
equate temporal resolution, insufficient acquisition time 
frame [3], pre-contrast T1 measurement uncertainty [4, 5] 
and difficulty in determining the dynamic CA concentration 
in plasma (Cp)—the arterial input function (AIF) [6, 7].

Different approaches exist for determining the AIF, 
including fully automatic algorithms [8], semi-automatic 
methods [9], manual selection and the use of standard mod-
els [10]. It is generally accepted that the AIF is dependent on 
cardiac output, blood pressure and vascular auto-regulation 
in the region-of-interest []. The gold standard for DCE-MRI 
imaging is thus an individual AIF from each time-point in 
each patient measured in a feeding artery of the pathology/
region-of-interest (ROI). The accuracy of this AIF varies 
by the temporal resolution, potential partial volume effects 
from low spatial resolution [11] and inter-observer variabil-
ity from manual selection.

The aim of this study was to investigate the inter-observer 
variability, among domain experts (DEs), in AIF determi-
nation and corresponding variability in kinetic parameters 
obtained using the extended Tofts model in HGG patients. 
Further, we define a parametric form of a population-aver-
aged AIF from brain data according to the framework previ-
ously published [10].

Methods

Patients

Study approval was obtained from the regional medical 
ethics committee and patients were included only if writ-
ten informed consent was signed. A total of 118 DCE-MRI 
examinations from 23 patients (17 males, mean age 53.7 
years, range 32–66 years) with histologically confirmed 
HGG (one grade III and 22 grade IV) were included in a 
prospective study of early detection of perfusion changes 
during radiochemotherapy [12]. Patients were imaged once 
before, thrice during, and up to five times for a maximum 
of 15 months after initiation of standard treatment regime 
[13]. In the present work, the initial six imaging time-
points in each patient, encompassing two post-radiochem-
otherapy follow-ups at two and 14 weeks, were considered 
for inclusion. Examinations were excluded if there were 
no contrast-enhancing voxels (N = 2) or if DCE-MRI was 
not successful (N = 18), resulting in a total of 118 included 
examinations. A surgical debulking procedure was per-
formed in 22 patients prior to baseline imaging, whilst the 
remainder received biopsy.

MRI

All imaging was performed at 3.0 T (Philips Achieva, 
Philips Medical Systems, Best, The Netherlands), using an 
eight-channel head coil. DCE images were acquired from 
a 3D- saturation recovery-based gradient echo sequence. 
The sequence was designed to minimize water exchange 
effects by employing a short saturation recovery delay 
(TD) [14]. Eleven slices covering the tumor volume were 
acquired with the following key sequence parameters: 
field of view (FoV): 240 × 240 mm2; acquisition matrix: 
120 × 120; partial Fourier: 5/8; voxel size: 1.9 × 1.9 × 4 
mm3; pixel bandwidth: 434 Hz; echo time (TE)/flip 
angle: 2.5 ms/26°; sensitivity encoding (SENSE) factor: 
2.3 in the anterior–posterior phase-encoding direction. 
Two variants of the DCE sequence were used: one using 
repetition time (TR)/TD/temporal resolution: 8.2 ms/80 
ms/3.4 s, 100 dynamic scans and scan time: 5:40 (variant 
1) in seven patients for a total of 38 examinations, and 
one using TR/TD/temporal resolution: 5.1 ms/50 ms/2.1 
s, 150 dynamic scans and scan time: 5:10 (variant 2) in 
16 patients for a total of 80 examinations. 0.1 mmol/kg 
gadobutrol (Gadovist®, Bayer Schering Pharma AG, Ber-
lin, Germany) was administered after a pre-contrast base-
line duration of five timepoints using a power injector at 
a rate of 3 ml/s, immediately followed by a 20 ml saline 
flush at the same rate. The full imaging protocol included 
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the following structural image series: sagittal 3D fluid-
attenuated inversion recovery (FLAIR) images, axial 2D 
T2-weighted images and sagittal 3D T1-weighted gradient 
echo images acquired before and after CA administration. 
All image series were acquired before the DCE series 
except the CA-enhanced T1-weighted images which were 
acquired directly afterwards. Tumor region-of-interest 
(ROI) containing contrast-enhancing tissue was defined 
in all examinations by a radiologist (4 years of experience) 
using a previously described method [12, 15].

AIF extraction

AIFs were determined independently in each DCE series 
by three DEs (two radiologists with 1 (J. V.) and 5 (M. 
Kim.) years of experience and one clinician with 10 years 
of experience in DCE-MRI (C. L.)) using a semi-automatic 
algorithm based on automated identification of most likely 
AIF voxels using K-means clustering from a user-defined 
search region, implemented in the software tool nordicICE 
(NordicNeuroLab, Bergen, Norway) [8]. The AIF search 
region was selected independently by each DE to include 
the large intracerebral arteries according to the tumor loca-
tion and hence the available volume covered by the DCE 
acquisition. Since the K-means method is iterative with a 
random seed starting point, repeated AIF searches may not 
result in identical results. Hence, multiple AIF searches were 
performed for a selected search region and the AIF with 
the highest first-pass arterial signal peak and the highest 
signal tail during the wash-out phase was chosen. This pro-
cess was repeated until the AIF was considered satisfactory 
by the DE. An overview of the process is given in Fig. 1. In 
addition, a venous output function from the large sinuses 

was obtained in each examination for AIF partial volume 
correction [3].

The AIFs were supplied as single-column text 
files containing change in longitudinal relaxation rate 
ΔR1 = R1(t) − R1(0) from baseline for each timepoint t, 
which was converted to CA concentration by:

where r1 = 4.4 mM−1 s−1 is the relaxivity of gadobutrol at 3.0 
T [16] and Hct is the hematocrit, set to 0.45. R1(0) of arterial 
blood at 3.0 T was assumed to be 0.60 s−1 [16].

This procedure resulted in a total of 354 DE-defined AIFs 
from 23 patients, of which 114 AIFs from seven patients 
were from DCE sequence variant 1 and the remaining 240 
AIFs in 16 patients were from DCE sequence variant 2.

Population‑averaged AIF

A population-averaged AIF (pop-AIF) was created by fitting 
the mean of all measured AIFs with DCE sequence variant 
2 (N = 240 AIFs) to the sum of two Gaussians and an expo-
nential modulated by a sigmoid function, as described by 
Parker et al. [10]:

Here, An are scaling factors, Tn are centers and σn are 
widths of the nth Gaussian; α and β describe the amplitude 
and slope of the exponential function, respectively, and s and 
τ are the width and center of the sigmoid. Prior to calculating 
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Fig. 1   Outline of the arterial 
input function (AIF) extraction 
process. Top right: the search 
area (yellow rectangle) is placed 
in an area likely to contain arte-
rial signal, and the algorithm 
selects the best pixels (red 
squares). The AIF is the mean 
signal of the selected pixels and 
is plotted in red. The venous 
output function is detected simi-
larly and is plotted in blue along 
with mean tumor
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the mean AIF, each individual AIF was time-shifted so that 
the peak occurred at the same timepoint.

Pharmacokinetic modeling

The DCE time series were analyzed using the extended Tofts 
model according to:

where Ct(t) is the time-dependent CA concentration in tis-
sue, Cp(t) is the time-dependent CA concentration in blood 
plasma (the AIF), Ktrans is the flux of contrast agent from the 
intravascular space (IVS) to interstitium, kep is the flux of 
contrast agent back to the IVS, ve is the ratio of Ktrans and kep, 
denoting the fraction of extracellular, extravascular volume 
and vp is the fractional plasma volume.

From Eq. 3, it is evident that errors in the amplitude of 
Cp(t) will directly scale to corresponding errors in Ktrans and 
vp. Therefore, to assess the contribution of differences in AIF 
peak values, the analysis was repeated using AIFs normal-
ized to an area under the curve (AUC) equal to the mean 
of all measured AIFs (600 mM s). Because each patient 
received the same CA dose at each imaging session, the 
AIF AUC is expected to remain constant, and normalization 
should therefore reduce variability in parameter estimates 
due to errors in measured peak AIF amplitudes, but at the 
cost of loss of absolute quantitative parameter estimates. 
Consequently, kinetic analysis was performed with seven 
different AIFs in each examination: three DE-supplied, the 
same three AUC-normalized and the pop-AIF obtained 
by fitting the mean AIF across all examinations to Eq. 2. 
From each analysis, the median parameter values from each 
tumor ROI were extracted and used for comparison. Vox-
els in which parameters ve or vp took an unphysiological 
value outside the range 0–100% was excluded from median 
calculation for all AIFs in that examination. The PK model-
ling and AIF analysis were performed in MATLAB 2020a 
(MathWorks, Natick, MA, United States).

Statistical analysis

AIF peak and AUC, as well as estimates of parameters 
Ktrans, kep, ve and vp, were used for statistical analysis. The 
median value of each parameter in each tumor ROI was 
used for analysis. AIF characteristics were assessed using 
Wilcoxon signed-rank test on the AIF peak and AUC of 
each DE-supplied AIF against each other (e.g. DE 1 vs 
DE 2; four combinations). Intraclass correlation coeffi-
cient (ICC) estimates with 95% confidence intervals (CI) 
were calculated based on an absolute-agreement, two-way 
random-effects model [17]. The ICC estimate evaluates the 
degree of inter-operator agreement in the KPE estimates 

(3)Ct(t) = K
trans∫ t

0
Cp(�)exp

(

−
K

trans(t−�)

ve

)

d� + vpCp(t),

within each examination, such that identical results from 
all AIFs in every examination would give ICC = 1. ICCs 
were estimated both using the complete dataset, and 
including only the examinations with DCE sequence vari-
ant 1 (N = 38) to assess the performance of the pop-AIF. 
To investigate the effect of different AIFs on predicting 
clinical outcome, the change in median Ktrans for each 
patient from the first to the sixth imaging time-point was 
compared using the measured DE-AIFs and the normal-
ized variants. An increase or decrease of more than 10% 
was labeled as, respectively, progression or remission, and 
the scores were assessed with Fleiss’ kappa using linear 
weights. The kappa statistic was interpreted according to 
the Landis and Koch benchmarking scale [18]. ICC and 
Fleiss’ kappa statistics were performed using Stata SE 
16.1 (StataCorp LLC, College Station, TX, United States) 
with the kappa, etc., command [19].

Results

Population‑averaged AIF

Figure 2 shows the fitted population AIF together with 
the mean Cb(t). The fitted value for each AIF parameter 
(Eq. 2) is given in Table 1. The fitted AIF is seen to closely 
follow the mean AIF, with a first-pass peak followed by 
a smaller second-pass peak and subsequent washout. The 
standard deviation of the mean AIF demonstrates a higher 
variation in measured AIFs during the early phase than 
during washout. A comparison of the pop-AIF and DE-
AIFs with resulting Ktrans maps is shown in Fig. 3.  

Fig. 2   Mean arterial input function (AIF) across all domain expert-
measured AIFs in individual subjects at all timepoints represented 
with crosses, and error bars showing ± 1 standard deviation. The fitted 
population AIF is shown in red
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Statistical analysis

The AIF peaks were found to be significantly different 
between all domain experts (p = 0.03), while AUC was 
found to be different between DE 2 and 3 (p < 10–8), but not 
between 1 and 2 (p > 0.80) or 1 and 3 (p > 0.14).

Table 2 shows ICC for median kinetic parameter values 
from the 118 examinations. There is a moderate to sub-
stantial agreement for all kinetic parameters when using 
the measured AIFs [18]. Inclusion of the pop-AIF yields 
a lower agreement estimate for kep, while the other param-
eters are negligibly affected. The normalized AIFs give an 

Table 1   Parameter values and 
their standard deviation (SD) for 
the fitted population AIF (Eq. 2)

Parameter A1 A2 T1 T2 σ1 σ2 α β s τ

Value 2.092 0.118 0.696 1.051 0.059 0.067 3.161 0.200 818.4 0.667
SD 0.028 0.032 0.001 0.016 0.0008 0.0178 0.0982 0.011 0.000 0.001
Units mmol min min min min min min mmol min−1 min−1 min

Fig. 3   Top: measured (left) 
and normalized (right) AIFs 
from each domain expert (DE) 
in a sample examination, with 
the time-aligned population 
AIF (pop-AIF) (11). Bottom: 
resulting tumor Ktrans maps 
overlaid on structural post-
contrast T1 images. The Ktrans 
color scale ranges from 0.0 to 
0.4 min−1. Median Ktrans of the 
whole tumor for DE 1, 2 and 3 
and pop-AIF was, respectively: 
0.049 min−1, 0.053 min−1, 0.044 
min−1, 0.101 min−1 (measured 
AIFs) and 0.071 min−1, 0.067 
min−1, 0.071 min−1 and 0.080 
min−1 (normalized AIFs)

Table 2   Intraclass correlation coefficient (95% confidence interval) 
of median parameter values estimated using measured and normal-
ized arterial input functions (AIF) from domain experts (DE) 1–3 and 

population AIF (pop-AIF), including all imaging time-points in all 
patients (N = 118)

AIFs used Ktrans kep ve vp

DE 1–3 0.670 (0.543–0.766) 0.762 (0.694–0.820) 0.702 (0.588–0.787) 0.510 (0.395–0.617)
DE 1–3 and pop-AIF 0.671 (0.572–0.754) 0.692 (0.619–0.760) 0.678 (0.581–0.758) 0.497 (0.399–0.594)
AUC-normalized DE 1–3 0.951 (0.934–0.964) 0.765 (0.698–0.823) 0.891 (0.857–0.921) 0.698 (0.616–0.769)
AUC-normalized DE 1–3 and 

pop-AIF
0.940 (0.921–0.956) 0.694 (0.622–0.761) 0.858 (0.817–0.892) 0.693 (0.620–0.760)
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almost perfect (0.8–1.00) agreement for parameters Ktrans 
and ve, while vp ‘s agreement is substantial (0.61–0.80). 
As expected, kep is the least affected by normalization of 
the AIF, as it is not sensitive to the AIF amplitude [20]. 
Table 3 shows the same ICC estimates calculated from only 
the examinations using DCE sequence variant 1 and dem-
onstrates a similar relationship between ICC estimates with 
and without inclusion of the pop-AIF.

Figure 4 shows the relative Ktrans change from baseline 
to the sixth exam for two sample patients that demonstrate 
different degrees of observer dependence. Panel B represents 
a worst-case scenario, where different DE-AIFs produce 
opposing estimates of disease progression.

When change in median Ktrans is segmented into remis-
sion (< 10%), status quo (− 10% ≤ and ≤  + 10%) and pro-
gression (> + 10%), Fleiss’ kappa (3 raters, 23 subjects) is 
calculated as 0.595 with a 95% CI of (0.363, 0.827) for the 
measured AIFs, suggesting a fair to moderate agreement, 
while the normalized counterparts yield a kappa of 0.809 
with CI (0.661, 0.958), suggesting a substantial to almost 
perfect agreement.

Discussion

The aim of the present work was to investigate the effect 
of differences in user-defined AIFs on kinetic parameters 
estimated from DCE using the extended Tofts model on 
data from HGG patients. Three experienced DEs individ-
ually produced AIFs for 118 examinations of 23 patients 
with HGG, following a common guideline that included 
the use of a semi-automatic detection algorithm. Addition-
ally, a population-averaged AIF was fitted to a subset of the 
measured AIFs. A fixed T1(0) both in tissue and blood was 
assumed in all patients, and all analyses were performed at 
the same facility without input from the DEs other than their 
supplied AIFs. Therefore, the results of the kinetic analyses 
in this study should not be influenced significantly by factors 
other than the difference in AIFs.

The results in this study show moderate to substantial 
agreement in kinetic parameters estimated with AIFs from 
different DEs (Table 2). Agreement in estimated parameters 

is not substantially affected when the pop-AIF is included. 
This suggests that the pop-AIF represents an appropriate 
alternative to manually measured AIFs on a per-examination 
basis. The AUC-normalized DE-AIFs is seen to yield higher 
agreement in parameter estimates for Ktrans, ve and vp, as 
expected from the known sensitivity of these parameters to 
the AIF peak amplitude. The parameter kep depends more 
on the shape of the AIF [20] and is therefore virtually unaf-
fected by the AIF normalization. This is in agreement with 
previous work investigating the effects of measuring the AIF 
for brain DCE in different vessels [21], which found a strong 
correlation between lower AIF peak and overestimation of 
all parameters except kep.

Comparing the relative change in parameter estimates 
over time as an indicator for disease progression shows that 
the use of AUC-normalized AIFs increases the agreement 
between DEs. The case presented in Fig. 4b represents a 
worst-case scenario where longitudinal change in Ktrans is 
labeled differently (progression, stable, remission) by each 
of the DE-AIFs, while all AUC-normalized DE-AIFs and 
the pop-AIF indicate progression. This demonstrates that 
a single DCE series can contain several clusters of voxels 
that produce subjectively acceptable, yet consequentially dif-
ferent AIFs. This operator-dependency is reduced with the 
AUC-normalized DE-AIFs and completely removed with the 
pop-AIF, at the cost of potential loss of relevant information. 

The AIFs in this study were not accompanied by per-
examination measurement of hematocrit, which is known to 
fluctuate significantly during chemotherapy treatment [22]. 
Hematocrit variations would lead to a true variation in AIF 
peak amplitude, which would not be reflected in the AUC-
normalized AIF or the pop-AIF. However, if hematocrit val-
ues were available, this could be incorporated as an addi-
tional per-patient and per-examination scaling factor in the 
resulting AUC-normalized or population-based AIFs [23].

This study included data acquired with two slightly 
different DCE-MRI sequences, differing in TR, TE, TD 
and number of dynamic scans. The pop-AIF was derived 
using only data from the sequence variant with the larg-
est number (variant 2, N = 220) of scans. To confirm 
that this pop-AIF was valid for both sequence variants, 
the ICC was compared including either all data from 

Table 3   Intraclass correlation coefficient (95% confidence interval) 
of median parameter values estimated using measured and normal-
ized arterial input functions (AIF) from domain experts (DE) 1–3 and 

population AIF (pop-AIF), including only examinations with DCE 
sequence variant 1 (N = 38)

AIFs used Ktrans kep ve vp

DE 1–3 0.559 (0.364–0.725) 0.746 (0.611–0.850) 0.697 (0.507–0.823) 0.446 (0.250–0.635)
DE 1–3 and pop-AIF 0.552 (0.379–0.710) 0.761 (0.645–0.853) 0.668 (0.476–0.805) 0.439 (0.275–0.614)
AUC-normalized DE 1–3 0.967 (0.950–0.984) 0.758 (0.623–0.855) 0.928 (0.879–0.953) 0.792 (0.675–0.879)
AUC-normalized DE 1–3 and 

pop-AIF
0.965 (0.944–0.980) 0.765 (0.650–0.856) 0.923 (0.876–0.955) 0.803 (0.703–0.882)
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both sequences and only data from sequence variant 1. 
The results (Tables 2, 3) show that agreement is equally 
affected when including the pop-AIF in both datasets, indi-
cating that the pop-AIF can be used on data acquired with 
sequence parameters deviating from the ones used when 
defining the pop-AIF.

One major challenge with the DCE-MRI field is lack of 
standardization between sites and studies. Although white 
papers suggesting standards for MRI protocol and analysis 
exist [2], there is still a substantial variation in both acquisition 
and analysis methods in the published data, making compari-
son of quantitative parameter estimates challenging. In treat-
ment response studies, like the one presented here, the absolute 
values of the kinetic parameters may be of less importance 
and the emphasis should be on the ability of a given method 
to accurately detect parameter changes during the course of 
disease progression and treatment response. This is in line 
with previous findings in a large multicenter study concern-
ing prostate cancer [7]. Our results suggest that this can readily 
be achieved through a combination of standardized and fixed 
protocols for AIF determination and a fixed imaging protocol 
over time. Further, and more importantly, our results suggest 
that the derivation of a population-wide AIF derived from the 
mean of many DCE-MRI examinations acquired on the same 
system provides a good alternative to the need for time-con-
suming identifications of individual AIFs by domain experts. It 
is, however, important to stress that such population AIF may 
need to be adjusted according to site-specific variations in MRI 
protocol and scanner type. Still, the population AIF obtained 

here, based on the same functional form as previously sug-
gested by Parker for abdominal use [10], may form the basis 
for a similar pop-AIF for use in brain DCE-MRI applications.

In conclusion, normalizing the measured AIFs to a reasona-
ble AUC can serve to reduce the variation in kinetic parameter 
results that stem from operator input. Further, using a paramet-
ric population AIF for the brain as presented in this study may 
be applied in absence of a satisfactory measurement in kinetic 
parameter estimation from DCE-MRI data in HGG patients.
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Fig. 4   Relative change in Ktrans 
in two sample patients from the 
first to the sixth exam estimated 
using AIFs from each domain 
expert (DE) and population 
AIF (pop-AIF) (11). a Patient 
with similar development in 
Ktrans with all DE-measured 
and population AIF. The largest 
absolute change with measured 
AIFs was − 0.016 min−1 (DE 2), 
and 0.0091 min−1 (DE 1) with 
normalized AIFs. b A patient 
where measured AIFs from the 
three DEs give diverging pro-
gression, while the normalized 
AIFs give a unidirectional pro-
gression. With measured AIFs 
from DE 1 the change is + 0.022 
min−1, while normalized AIFs 
from DE 2 gives a change of 
− 0.014 min−1
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