
Universitetet i Oslo
Institutt for informatikk

Teaching object
oriented
programming to
youths using the
control technology
Lego Mindstorms.

Roar Granerud
Department of
Informatics
University of Oslo

February 2005

Preface

Abstract

This master thesis is a culmination of two experiments performed with chil-
dren. The children got to play with Lego Mindstorms, build and program
their custom made Lego robots. The first of the experiments was performed
with 11 year olds that used Lego Robolab when programming their Lego ro-
bots. This was a pilot experiment prior to the second experiment where 14
year olds programmed the same Lego Mindstorms robot, but this time using
a custom made Java API called Lejos (LEJOS. Java for the RCX n.d.).

This experiment was the last of many experiments performed by people
from the Comprehensive Object Oriented Learning - project (COOL). One
of the aims of COOL is exploring the complex area of learning and teaching
object oriented concepts. The point of the study described in this thesis was
to see in what way the control technology Lego Mindstorms could be used to
teach children object oriented concepts. Control technology enables devices
to be programmed to achieve goals. It can be something as simple as a tape
recorder.

In addition to the results from the experiments performed, this thesis
describes the tools used to program the Lego Mindstorms robots and gives
an indication of how good these tools were both for learning programming
in general and learning object oriented concepts.

The results from these experiments show that children from 11 to 15
years find Lego Mindstorms fun, but it is very difficult to use and takes a lot
of energy, so they get tired after three days. Girls is less fascinated by Lego
Mindstorms than boys, but is still able to learn just as much as the boys.

Lego Robolab cannot be used as a tool for teaching object oriented con-
cepts. But the Java API Lejos enabled the children to learn a lot about the
object oriented concept of encapsulation. The children got a good sense of
the program flow of their programs when programming physical Lego robots
that did or did not do what they were told to do. Using control technology is
still very time consuming, and there are some problems involved with using
physical Lego robots compared to virtual robots on the computer screen.

2

Acknowledgments

I would like to thank my supervisors Christian Holmboe and Jens Kaasbøll
for their guidance through the work on this thesis. Additionally I want to
thank the rest of the COOL group, especially Ole Smørdal, Annita Fjuk and
Richard E. Borge whom I worked very closely with during the experiments.
And I also want to thank Arne-Kristian Groven for some helpful hints along
the way. The COOL groups is a good bunch that I am proud to say that I
have worked with.

3

Contents

1 Introduction 9
1.1 Focus areas in this thesis . 9

1.1.1 Children programming 9
1.1.2 Lego Mindstorms and object oriented programming . . 9
1.1.3 Tools . 10

1.2 Readers’ Guide . 10
1.3 A story from my own experience 11
1.4 Disclaimers . 11

2 Background 12
2.1 The COOL project . 12
2.2 Object Oriented programming 13

2.2.1 The object oriented concept Encapsulation 13
2.2.2 Learning object orientation 14

2.3 Learning theory . 15
2.3.1 Behaviorism . 15
2.3.2 Constructivism . 16
2.3.3 Situated cognition . 18

2.4 Why object oriented programming first? 18

3 Tools used during the experiment 20
3.1 Using control-technology as a learning-tool 20
3.2 Lego and Robolab . 21

3.2.1 The programmable Lego brick called the RCX 21
3.2.2 Robolab Pilot . 22
3.2.3 Robolab Inventor . 24

3.3 KarelJ and BlueJ . 26
3.3.1 BlueJ . 26
3.3.2 KarelJ . 28
3.3.3 KarelJ and BlueJ together 29

3.4 Lejos and Lego Mindstorms 29
3.4.1 The Lejos API . 29
3.4.2 JCreator - The text editor) 31

4

3.4.3 The compile and transfer tool: RCXDownload 34
3.4.4 The Lego help web page 35

3.5 Tools used when programming a restaurant simulation 35

4 Method 40
4.1 Method . 40

4.1.1 The Subjects . 40
4.1.2 Experiment start . 40
4.1.3 School relevance . 41
4.1.4 Data collection . 41
4.1.5 Use of Control Technology 41
4.1.6 Research method . 42
4.1.7 Short interview . 42
4.1.8 Point of study . 43

4.2 Pedagogical Invention . 43
4.3 Experiment Overview . 43
4.4 Day by day at Fjellhamar . 44

4.4.1 The Experiment . 44
4.4.2 The first day . 45
4.4.3 The second and third day 45
4.4.4 KarelJ and BlueJ the last day 46

4.5 Day by day at Mølladammen 46
4.5.1 The Experiment . 46
4.5.2 The first two days . 47
4.5.3 The third and last day: The object oriented restaurant 48
4.5.4 Four interviews the last day 50

4.6 Going through the collected data 54

5 Results and Evaluation 57
5.1 Children working on a difficult assignment 57

5.1.1 Difficult assignment 57
5.1.2 Program understanding 58
5.1.3 Pair programming . 59
5.1.4 Shortcuts . 59
5.1.5 Stoppers and movers 59

5.2 Age and gender . 60
5.2.1 Age . 60
5.2.2 Gender . 61

5.3 Declaring and assigning pointers 62
5.4 Class vs. Object . 63
5.5 Dot-notation . 66
5.6 Program design . 67
5.7 Method call . 74

5.7.1 Parameter problem . 75

5

5.8 Problems with Java syntax and semantics 76
5.9 Real World . 78
5.10 Over-generalization . 81
5.11 Using the Tools . 82

5.11.1 Findings using Pilot 82
5.11.2 Findings using Inventor 83
5.11.3 Findings using KarelJ and BlueJ 85
5.11.4 The API and the help web-page at Mølladammen . . . 86
5.11.5 Using Jcreator and RCXDownload 86
5.11.6 Hardware problems . 87

5.12 Problems with the assistant 89

6 Summary and Conclusion 92
6.1 Children and Lego Mindstorms 92

6.1.1 Working together . 92
6.2 Object oriented concepts with Lego Mindstorms and Lego . . 93
6.3 Lego robot programming in Java and the real world analogy . 95
6.4 Using the tools . 96

6.4.1 Using Lego tools . 96
6.4.2 Using custom made tools 96
6.4.3 Documentation - paper vs. digital assignment descrip-

tion . 97
6.4.4 Tools summary . 97

6.5 Assistant . 97
6.6 Hints for similar experiments in the future 98
6.7 Implications for teaching . 99
6.8 Comparing my results with the results from Borge(2004) . . . 100

6

List of Figures

2.1 What knowledge can be acquired according to constructivism 17

3.1 The heart of the Lego Mindstorms robot. The RCX 22
3.2 An RCX with motors and sensors connected 23
3.3 A simple Robolab Pilot program 24
3.4 A more complex Robolab Pilot program 25
3.5 A small Robolab Inventor program 25
3.6 A Robolab program using an if-fork and a goto jump. 27
3.7 A BlueJ example of a person database. 28
3.8 The beginning of our lejos Template 31
3.9 The Control-part of the lejos template 32
3.10 The Robot part of the lejos template 33
3.11 A screen-shot of the Jcreator editor 34
3.12 A screen-shot of the RCXDownload transfer program 36
3.13 The front page of the Lejos help web page 37

4.1 A picture of Nygaards object oriented restaurant 49
4.2 The start of the Restaurant control class 51
4.3 The typical Restaurant class 52
4.4 An example of a correct result from the restaurant program . 53
4.5 An example where the guests received wrong courses 53
4.6 A drawing of an object oriented robot program, drawn by the

children . 55
4.7 A drawing of an object oriented house program, drawn by the

children . 56

5.1 Drawing of a robot using an UML-like notation 64
5.2 Drawing of an object-oriented house using an UML-like notation 65
5.3 A conversation using “period” instead of ’s 68
5.4 Difficulty using the dot notation 69
5.5 A physical Lego robot with a motor and a sensor 70
5.6 Java representation of a Lego robot with a motor and a sensor 70
5.7 Placing of the Display object 71
5.8 A working but faulty control class 72

7

5.9 Trying to get a group to find their own mistake 76
5.10 Different characters that look the same 77
5.11 The toolbox in Inventor with the different mouse pointers . . 85
5.12 A piece of code that shows how the assistant has to be made

in the robot-class in order to get the turn-method to work. . . 91

8

Chapter 1

Introduction

1.1 Focus areas in this thesis

1.1.1 Children programming

This thesis will present some results on how the children cooperate when
trying to solve a difficult assignment. How boys and girls at age 11 and age
14 differ from each other in the way they work with the problems presented to
them. I will try to find out how the children are thinking about the computer
program they are writing compared to how the physical robot works in the
real world.

1.1.2 Lego Mindstorms and object oriented programming

The point of the experiments described within was using control techno-
logy as a tool for teaching object oriented concepts. In this case the control
technology used was Lego Mindstorms. We wanted to find out that if the ob-
jects inside the computer program is represented by physical objects, would
that be helpful when building a cognitive understanding of the object ori-
ented Java program structure? The main object oriented concept I want
to focus on in this thesis is the object oriented concept encapsulation. See
chapter 2.2.1 on page 13 for a description of encapsulation.

We used an objects first approach to programming during the experi-
ments. This means that we introduced objects and object oriented structur-
ing right from the start, with a complex start program, instead of starting
with a less complex “hello world” program. See chapter 2.4 on page 18
for a more detailed description of the objects first approach. (Borge &
Kaasbøll 2003) say that almost all computer science courses starts with this
kind of program, as an introduction to computer programming.

9

1.1.3 Tools

Finally I will try to describe how the tools for programming the Lego Mind-
storms (Lego Mindstorms n.d.) robots were used, and what problems oc-
curred during the assignments. Some of the tools were made by Lego for
programming their Lego Mindstorms robots. Lego’s programming tool was
called Robolab (Lego Mindstorms for schools n.d.). But the tools from Lego
did not suffice when teaching object oriented concepts. So we used a third
party made Java API called Lejos (LEJOS. Java for the RCX n.d.), custom-
ized to our needs. How good these tools are, will also be presented in this
thesis.

1.2 Readers’ Guide

This thesis covers two experiments using Lego. The first experiment was at
elementary school Fjellhamar. This experiment was a pilot experiment to
find out what we could do with the Lego tool. See chapter 4.4 on page 44
for a detailed description of the experiment. We also wanted to test the
technical equipment. This equipment consisted of the physical Lego bricks
and the cameras we used to videotape the whole event. Therefore this first
experiment is not covered as deep in this thesis as the second experiment
is. During the process of writing this thesis, I used less time looking on the
video taped material from this first experiment than I did with the last.

When I started my master study I wanted to find out how Lego Mind-
storms could be used to teach object oriented concepts, and what concepts
could be thought. There was little focus on these concepts at Fjellhamar,
and this is also a reason why I have focused on the results from the other
experiment, the one at Mølladammen. See chapter 4.5 on page 46 for a
detailed description of the experiment at Mølladammen.

During the process of writing this masters thesis I attended a course at
the University of Oslo called Informatics Didactics. During this course I
and two other students wrote a small article about the experiment that took
place at Mølladammen. This article is part of the appendix of this thesis. I
have used some of the text from this article in my thesis since it was very
relevant and I was the main author of the article as well.

In this thesis I first write some theory about teaching and learning in gen-
eral and in the field of object orientation. See chapter 2.1 on page 12. Then in
chapter 3.1 on page 21 i describe the different tools used in the experiments.
Many of these tools are new in this field, and therefore I have dedicated a
lot of pages describing their use. Then I describe, in chapter 4.1 on page 40,
the methods used. At the end in chapter 5 on page 57, I present the dif-
ferent results under different sub-chapters. Chapter 6 on page 92 is the last
chapter and is a summary of all the results presented in this thesis. In this
last chapter I also try to draw a conclusion from the results.

10

1.3 A story from my own experience

I played a little with Pascal programming before I started my studies at
the University of Oslo. So when I attended CS1 I felt that this should be
a piece of cake and not pose much of a challenge. The study started with
simple procedural programming, learning basic Java syntax and how to use
loops and if-statements. Then half way through the course, object oriented
concepts were introduced, and we were supposed to rewrite some of the
programs we had already written. This time in an object oriented fashion. I
did not understand anything of what we were supposed to do, but I managed
to “solve” all the tasks I was given, so I did not bother to understand what
object orientation was all about. Then the exam came up and I thought
it was very easy, solved all the programming assignments and felt that this
was a good exam. Then the result came and I found out that I failed the
course. And all my friends that had a similar experience in programming
either failed or got a very bad grade.

This is a typical problem when changing from procedural programming
to object oriented programming. Stubborn people, like me, do not under-
stand or do not want to understand what all the fuss with object oriented
programming is all about. What difference does it do when the program
works the way it should? During the summer vacation after receiving bad
news about my CS1 class I suddenly understood what it was all about, and
had the exam again and had pretty good results.

This is the reason why I wanted to write a thesis about a way to learn Ob-
ject Oriented programming at an early stage, even before learning anything
else about both programming and programming paradigms.

1.4 Disclaimers

I would like to comment my use of the words Lego and Lego Mindstorms
during this thesis. I should have written Lego® and Mindstorms ™ during
this thesis, but I use those words a lot and I find that the ® and ™ symbols
are a disturbing element when reading a text. So therefore I left them out.
The same goes for Robolab™ , JCreator™ , Java™and Sun Microsystems™.

One last thing is that the experiments described withing was performed
at one 6th grade class and one 9th grade class. In Norway children are
usually 11 to 12 years old when attending 6th grade and 14-15 years old
when attending 9th grade. But I only use the number 11 and 14 during this
thesis, so it would be easier to write and read.

11

Chapter 2

Background

In this chapter I will briefly explain what the object oriented paradigm is
all about and what the COOL group is doing. I will also mention some well
known theories for learning, and finally I want to discuss learning to program
in an object oriented way in your first programming course instead of using
the more traditional procedures first approach.

2.1 The COOL project

This is a masters thesis written at the end of a project started in 2002. This
project is called COOL, which is short for Comprehensive Object Oriented
Learning (COOL 2002). The experiments described within this thesis was
the last experiments of many COOL experiments. Me as a master student
only participated in these last experiments and the analyzing of the results.
Some of the results found during the writing of this thesis are also described
in the part of the COOL anthology written by Professor Jens Kaasbøll and
me. It can be found as an attachment to this thesis. This anthology is a
summary of the COOL project.

The COOL project was started by Kristen Nygaard in 2002 and is a
project with many participants from different academic environments. Ac-
cording to Nygaard, the main objectives of the COOL project are:

Exploring the complex area of learning (and teaching) object
oriented concepts; Maintaining and further developing the Nor-
wegian (Scandinavian) heritage from object-orientation; Design-
ing blended learning environments.

Most pedagogical approaches state that in order to learn something, the
example has to be sufficiently simple. The examples are from earlier, tra-
ditional programming. (Groven, Hegna & Smørdal 2003) has a description
of the Scandinavian heritage from object orientation where Kristen Nygaard
says that we need a sufficiently complex example that introduces the basic
object oriented concepts from the very beginning.

12

2.2 Object Oriented programming

The objects in object oriented programming are instances of classes. When
learning object oriented programming myself in my CS1 course at the uni-
versity, the teacher said that a class was the blueprint of a house, while the
object was the actual house based on that blueprint. The blueprint defined
that we needed something with walls, windows and at least one door. Then
when you made an object of this class, you made a house with walls, win-
dows and doors, and you decided that the doors should be blue and the walls
should be green. This analogy did not work for me. I did not understand
what object oriented programming was all about until after my exam. As
mentioned in chapter 2.1 on the page before the COOL projects tries to find
other ways to teach object oriented programming.

There are lots of object oriented concepts. In this thesis I only want
to mention the concept that we wanted to teach during the experiments
mentioned in this thesis. This is the concept of encapsulation, which I feel
is one of the main object oriented concept.

2.2.1 The object oriented concept Encapsulation

Three terms that are used a lot in object oriented design are abstraction,
encapsulation and information hiding. (Berard 2000) discusses different dic-
tionary definitions and his conclusion is:

Abstraction, information hiding, and encapsulation are very
different, but highly-related, concepts. One could argue that
abstraction is a technique that helps us identify which specific
information should be visible, and which information should be
hidden. Encapsulation is then the technique for packaging the
information in such a way as to hide what should be hidden, and
make visible what is intended to be visible.

I do not emphasize much on the hiding part of encapsulation in this thesis,
but rather putting the data where it “belongs”. The belong-term is very
vague, but what I mean is that information about a house should be located
inside the house in the same way that a person knows its age, name and so
on.

Encapsulation means that the different objects in a computer program
has control over its own data and changes it with its own methods. This
information is often not available outside the object, so in order to access
the information, you have to use the objects own methods to return the
value you want. The only thing you got outside the object is a reference to
the object. The following example has a reference to a Person object called
person1 :

13

If you create a person object, this object knows everything there is to know
about itself. If you want to know the name of this person, you ask the person
what name it has. In Java this could be done by the call
person1.getName()
In this example the object got a method getName() that returns its own
name to the one wanting to know it. If you wanted to change the name of
this object, you might have to use a method like:
person1.setName("Svein")
You send the name you wanted the person object to have as a parameter,
and the person object fixes the rest by itself. The setName method probably
updates this objects data, so that when someone uses the getName method
in the future, the name Svein is returned.

An idea behind the encapsulation concept is sharing the responsibility.
The different objects in an object oriented program has their own respons-
ibilities.

2.2.2 Learning object orientation

Détienne writes in her book Software Design - Cognitive Aspects(Detienne
2002, page 58):

The identification of objects ought to be easy since the objects
form a natural representation of the problem entities. According
to (Meyer 1988) the world is naturally structured into objects.
It therefore seems particularly appropriate to organize solutions
to design problems around the programming representations of
these objects. The mapping between the problem domain and the
solution domain ought to be simple. The objects of the problem
domain are identified and then used to structure the OO system.
Thus both the problem and the solution are decomposed on the
basis of objects.

Programming something is easier when the programmer can see the res-
ults from his or her programming. It is easier to find the bugs when you
can see just where in a program the error is, because the thing you are pro-
gramming is in direct correspondence with your programming code. In this
thesis we used a real world Lego robot with physical motors and sensors.
When programming this kind of robot the programmer would want to give
the desired command to the object in the program that represented the real
world object. I.e, when you want to make a vehicle with wheels go forward,
you tell the motors that run the wheels to go forward. This is very easily
transferred from the real world into an object oriented program.

Still, as (Detienne 2002, page 59) says:

It is worth remarking that early books on OO emphasized

14

how easy it was to identify objects while later ones, often by the
same authors, emphasize the difficulty of identifying them.

But when the objects already are identified, like in the programming exercise
described in this thesis, this difficulty does not apply.

2.3 Learning theory

There are three major theories for how people learn. I will try to explain in
short what the different theories are about. The theories are:

1. Behaviorism - Acquiring and applying associations: The behaviorist /
empiricist view.

2. Constructivism - Creating and using conceptual and cognitive struc-
tures: The cognitive / rationalist view.

3. Situated cognition - Becoming attuned to constraints and affordances
through participation: The situative / pragmatist-sociohistoric view.

These theories are well explained in the article by (Greeno & Collins
1996).

2.3.1 Behaviorism

Knowledge is empirical. An animal or human that does not show any change
in behavior has not learned anything. Knowledge is acquired through pos-
itive or negative reinforcement. Learning is to strengthen or adjust the as-
sociations between ideas or stimuli and responses. (Borge 2004) says that
behaviorism bases itself on that knowledge is something that is out there in
the world or something that is inside people. And the way to get to this
knowledge is through the correct kind of stimulus and reinforcement.

When training horses and other animals you very often use positive or
negative reinforcement. In the following example I want a horse to move
forward every time i sound a whistle. If you sound a whistle and at the
same time push the horse forward, the horse will either stand its ground or
move forward. If the horse moves forward, you give it a piece of sugar. This
is positive reinforcement. The horse will remember that when it heard a
whistle, was pushed forward, and took a step forward, it received a piece of
sugar. On the other hand, if the horse stood still instead of moving forward,
he would taste the whip. This is negative reinforcement. The horse will
associate the sound of the whistle, the pushing and standing still with the
whipping. Hopefully next time the whistle is blown and the horse is pushed
forward it would want to receive the piece of sugar instead of the whip and
move forward. Then some of the stimulus is removed, i.e. the pushing, and
the next time the whistle is blown the horse still moves forward, receives

15

his piece of sugar and adjusts the association between the stimuli and the
response. And in the end the horse has learned that every time the whistle
is blown it is supposed to move forward.

2.3.2 Constructivism

(Greeno & Collins 1996) says that

understanding is gained by an active process of construction
rather than by passive assimilation of information or rote mem-
orization. Conceptual abilities grow out of intellectual activity
rather than by absorption of information.

This means that knowledge is gained by thinking about problems and work-
ing out a solution for the problem yourself instead of seeing the solution and
memorizing it.

Knowledge is constructed in cognitive schemas, and these schemas are
build up from already acquired knowledge. According to Jean Piaget (Atheron
2003) the adaption of these schemas are done in two ways. (Borge 2004) has
a good explanation.

• Assimilation: fit practice to theory. Complex but familiar external
objects are simplified to fit pre-existent categories in your head.

• Accommodation: fit theory to practice. You have to change the ideas
in your head to fit the realities of external objects

I will try to give some examples of this kind of schema building. When
learning mathematics you first learn to add and subtracts (after learning to
count). This can be done by using real world objects and counting them.
Four pennies plus two pennies equals six pennies. You construct a schema in
your head according to accommodation, and learn how to add small numbers.
Then when asked to add larger sets of numbers you use the knowledge already
learned and assimilate the knowledge. You break down the complex large
number addition into many small number additions. And then you have
learned how to add larger numbers.

But you cannot go directly from addition to derivation because you have
no pre-existent categories in your head to fit this new complex external
object. According to constructivism it is a limited amount of knowledge
that can be gained from one cognitive point to another. (Holmboe 2004) says
that this knowledge is called the student’s “Zone of Proximal Development”.
Figure 2.1 on the following page tries to show how some knowledge is out
of our reach for now, and we have to learn more before being able to learn
more complex stuff.

16

��

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

Knowledge that
you are unable to
aquire until other

Knowledge acquired

knowledge is acquired.

from the knowledge already acquired.
Knowledge that you are able to acquire

Figure 2.1: What knowledge can be acquired according to constructivism

17

2.3.3 Situated cognition

Sitting at school in front of a computer working together with friends and
colleagues is not the same as sitting on an exam and writing a computer
program by hand on a piece of paper. Knowledge is connected with the
environment around the learner. In order to learn you have to practice
what you want to learn in the same environment you are going to use the
knowledge afterward. This way of learning and teaching is the equivalent of
a master-apprentice relationship (Greeno & Collins 1996). The apprentice
works with the master in the same environment as the master and uses what
knowledge he got, and when the apprentice fails to do what he is supposed
to do, the master is able to help him through. After a while the apprentice
is able to do more and more by himself/herself and needs less and less help
from the master. The master is removing the scaffolding (Holmboe 2004)
one piece at a time until the apprentice is able to stand on its own feet.

2.4 Why object oriented programming first?

According to (Groven et al. 2003) the dominant approach for teaching object
oriented programming is that the students learn the procedural way of pro-
gramming at first. They learn how to use variables, loops and if-statements.
And they learn to use procedures in a procedural way. When using Java, this
can be compared to writing everything in the main method. The strange
object oriented Java statements like static and class are ignored in the be-
ginning, they just have to be a part of the code in order for it to work.

Then after the basics of programming is taught, object orientation is in-
troduced, and the students are expected to totally change the way they have
programmed until now and learn about polymorphism and encapsulation in
order to create object oriented programs.

When object oriented programming is taught in this way it is commonly
regarded as difficult to understand (Borge & Kaasbøll 2003). The results
are that many drop out of the course (Shackelford & Badre 1993). The old
way of programming, the procedural way, yielded much better results and
was much easier to learn by beginner programmers.

I want to quote (Bergin 2000) as to the difficulty of changing from the
procedural programming paradigm to the object oriented one.

There is nothing especially complex about OOP, any more
than there is anything complex about procedural programming.
it is just that the world looks completely different in the two
paradigms. The experience of the industry is that an experienced
procedural programmer will take a year to 18 months to make the
switch (Stroustrup 1994). Lattanzi and Henry (Lattanzi & Henry
1996) also report on the difficulty of teaching object-oriented

18

principles to students experienced in the procedural paradigm.
While the programmers are in this learning mode, they will nat-
urally try to solve problems by decomposing functions and not
by discovering objects. Whenever the going gets hard, they will
fall back on what they know best: procedural programming. It
takes a while for the mind to become re-wired to the new way
of thinking. If fact, during this year, the practitioner is likely
to build really ugly programs, mixing techniques in an awkward
way.

My private experience is exactly that. It takes time to change from one
paradigm to the other. But if object oriented programming is the only thing
you know about, then this paradigm change never has to happen. And if
learning object oriented programming is just as easy or hard as learning
procedural programming, why not just start with the object oriented way of
thinking at first.

The COOL project, described in section 2.1 on page 12 in this thesis,
has a goal of providing an alternative introduction to object oriented pro-
gramming. According to (Berge & Fjuk 2003), the COOL group believes
that:

It is not object-orientation in principle that cause the prob-
lems, but the constellation of artifacts available to learn it.

In this thesis I try to add one more artifact to the constellation: Using Lego
Mindstorms to teach object oriented concepts.

19

Chapter 3

Tools used during the
experiment

3.1 Using control-technology as a learning-tool

Control technology enables devices to be programmed to achieve goals. Con-
trol technology can be something as simple as using a tape recorder or some-
thing as complex as programming a robot to do the dishes.

This kind of technology is often used as a device which enables learning
to occur. With this kind of learning, I mean a human learner that uses the
control technology to better understand what is going on and not an artificial
intelligence that wants to learn by itself.

(Papert 1980) is the inventor of a programming language called LOGO.
This language is designed to program floor turtles that can be used to draw
different geometrical figures on a piece of paper below them. Young children
have been using LOGO in order to learn different aspects of mathematics
and acquire some basic programming knowledge. The point of this use of
control technology is to enable the learners to see what their programming
does and when an error occurs, they will be able to see where in the program
the error is according to what the turtle has written on the paper.

In the experiments described in this thesis we use the control technology
in the same way as Papert has done. This time with Lego robots instead of
floor turtles, but the concept is the same. The subjects are able to see the
robot do whatever it is told to do, and if it does something it is not supposed
to do, they will know that their program code has an error, and where in
the program code the error occurs. And at the same time they will see what
the error made the robot do and learn from that experience.

When using this technology to teach object oriented programming, the
basic idea is this: When a motor object in the programming code is told
to do something, the physical motor object reacts. So when the object in
the programming language has received the command forward, the physical

20

motor object will start to go forward. And if it starts going forward at the
wrong time, the subject tries to find and fix the error.

Control technology has been used a lot in elementary education. (Denis
1993) is a collection of articles where control technology has been used.

Following is a short description of the different tools used at the experi-
ment at Fjellhamar and Mølladammen.

3.2 Lego and Robolab

Robolab is a program that can be bought from Lego and is used to program
Lego Mindstorms robots. It is available both for MacOSX and Microsoft
Windows, and is very easily installed onto the computer. The main com-
ponent of Lego Mindstorms is the RCX.

3.2.1 The programmable Lego brick called the RCX

The RCX is the heart of the Lego Mindstorms robot. It is a big and yellow
brick that contains six AA battery elements. On the top of the RCX there
is a small LCD display, and in front of the RCX is an infrared receiver and
sender. It is also able to play sounds. To get this RCX to communicate with
a computer using IR, the computer needs to be connected to an IR-Tower.
This tower is part of the Mindstorms for schools package that we used during
this experiment.

The RCX has six ports. These are numbered A, B, C and 1, 2, 3. Ports A
through C is used when connecting motors and lamps to the RCX, and ports
1 through 3 are used when connecting sensors. See figure 3.1 on the following
page for a picture of the RCX. On the front of the picture you see the IR-
ports. These must point toward the IR-tower in order to communicate with
a computer. You also have to make sure that the RCX is turned on. The
buttons on the top are for starting and stopping a program, and for choosing
what program to run. The default setting on the RCX is that it can contain
up to five different programs.

In the Lego Mindstorms for schools package you also get different motors
and sensors that can be connected to the RCX with wires. The sensors
include light, temperature, rotation and touch. See figure 3.2 on page 23 for
an example. The light-sensor returns a value between 1 and 100 where 100
was the brightest (most light). The touch-sensor returned either the state
change from pressed to non-pressed or from non-pressed to pressed. It could
also return whether the sensor was pressed or not. The rotation-sensor was a
little cross-shaped hole that you could put a cross-shaped shaft in. It would
return how many rotations it had done since last reset, or it could return the
current angle compared to the last reset. The temperature-sensor returned
the current temperature in either Fahrenheit or Centigrade.

21

Figure 3.1: The heart of the Lego Mindstorms robot. The RCX

The RCX is pretty heavy and big, so the robot build will have to be
pretty sturdy if it is going to hold together.

3.2.2 Robolab Pilot

The Robolab programming environment has two user levels: Pilot and In-
ventor.

Pilot is divided into four levels, each with increasing complexity and
functionality. At the first level you are given a working program consisting
of two icons, one to signal the robot to move forward, and one to say how
long the robot should move forward. These icons can be exchanged with
similar icons, i.e. making the motor go backward instead of forward and
changing the time before full stop. See figure 3.3 on page 24 for a picture
of a simple Robolab Pilot program. This program tells the motor connected
to port A to drive clockwise with the power 3, and the motor connected to
port C is told to drive clockwise with the power of 5. They shall do this for
6 seconds, then stop. Start and stop are represented as green and red traffic
lights.

On level three and four, the program is divided into more steps, and
with each step you say what to do with the three motors and how long until
moving to the next step. It can either be for an amount of time, or until
something happens with a sensor, i.e. that a touch-sensor is pressed. The
graphical interface is shown in figure 3.4 on page 25. You can create more
steps with the plus-icon in the top left corner, and browse the different steps

22

Figure 3.2: An RCX with motors and sensors connected

23

Figure 3.3: A simple Robolab Pilot program

using the red left and right arrows. In order to exchange an icon for another,
you just press it once, and your choices pop up. Then just press your new
choice. The program can either go through all the steps and then stop, or
you can press the purple button to make it go in an infinite loop. When you
are satisfied with your program just press the white arrow and the program
is transferred to the RCX. There is no way you can make an erroneous
program in Robolab Pilot. But you can, of course, still make programs that
does something you do not intend.

3.2.3 Robolab Inventor

The Inventor level is more complex. You start with an empty desktop except
for the start and the stop icon, represented as traffic lights. To build your
program you have a tool case with different icons representing the different
actions the robot can perform, and additional icons representing numerical
values and such. You drag and drop the icons you need onto the desktop.
This can be done in an arbitrary order. The icons can then be moved around
on the desktop using the mouse. See figure 3.5 on the following page for a
small Robolab Inventor program.

In order to make the first step into the Inventor world less complex, there
are four different levels. The lower the level, the fewer icons are available,
and the icons available is less flexible and therefore less complex.

To represent the program flow, the user sow the icons together with a
thread, from start to finish. To sow the user exchange the normal mouse-
arrow with a spool mouse-arrow in the tool box. When the spool is selected

24

Figure 3.4: A more complex Robolab Pilot program

Figure 3.5: A small Robolab Inventor program

25

and you click an icon on the desktop, you get the start of a line. When you
click on another icon, the line is drawn between these icons. I call this way
of binding the icons together sowing.

The icon representing the first thing we want the robot to do is sown
together with the green traffic light. Then you connect the next icon with
the last icon, until you reach the red traffic light. If the connections between
the icons are successful, the program is complete and ready for transfer.

If a program is erroneous or incomplete, the picture of the white transfer
arrow will be broken. When you press the transfer arrow when its broken,
the program will not be transferred to the RCX, instead you get an error
message telling you what and where the error is.

Programming functions supported

Figure 3.6 on the next page shows a little program using an if-fork. When
run, the robot will turn left as long as the sensor sees something dark, and
turn right as long as the sensor sees something light. The program checks if
the light-sensor value is higher or lower than 50 (Icon C). If it is higher the
topmost route is chosen, and if it is lower or equal the other will be used.
Icon B represents the port on which the physical sensor is mounted on the
RCX. Icon E represents a motor mounted on port A on the RCX. It will go
at a power of 3 (Icon D) and will do so for 1 second (Icon F). The difference
between the routes are the direction of the motor. When one way or the
other is chosen, the different parts are merged together again (Icon G) and
the program continues with only one path.

Inventor also supports jumping from one part of the program to another,
using a jump-icon (Icon H) and a landing-icon (Icon A). This is the equivalent
of a goto statement. Just going from one place in a program to another. This
can be used to make a program run in an infinite loop.

3.3 KarelJ and BlueJ

3.3.1 BlueJ

“BlueJ is an integrated Java environment specifically designed for introduct-
ory teaching.”1 BlueJ is a simplified java-programming tool where the main
issue is being able to see a graphical representation of a java-program in
a UML-like way. UML is an object-oriented design and analysis language.
Its a visual presentation of a computer system where the different parts of
a computer program is drawn as squares with a name, a content and the
different associations between these squares.

1Quote from www.bluej.org

26

Figure 3.6: A Robolab program using an if-fork and a goto jump.

27

Figure 3.7: A BlueJ example of a person database.

BlueJ is both a Java editor and a tool for visualizing the structure of a
Java program. When writing a Java program using BlueJ you create class-
boxes that you place on the desktop. When you double-click on such a box, a
new window appear with the code for this specific class, just like in any other
Java editor. A Java program consists of many classes that are related to each
other in some way. This way is represented in BlueJ by arrows. Solid arrows
is used to show inheritance and a dotted arrow represents a relationship
where one class uses another class. See figure 3.7 for an example of a person
database. You can see that Staff is a specialization (a subclass) of a Person
and that the Database uses the abstract class Person.

3.3.2 KarelJ

KarelJ is a simulation environment where you program virtual robots on a
computer screen. You can use any editor you want to write the Java code,
KarelJ is just the engine that shows robots on the computer. A Karel-j
program is divided into steps, where a robot does one thing each step. And
each step is represented by a line in the java-code.

The KarelJ world is a grid-world with barriers blocking certain paths
and some Beepers in the world that the robot may pick up if it got enough
room left. The Karel-robot may sense that there is a barrier in front of it,
and take a different route to avoid it. It may also sense if there is a beeper

28

underneath it, and pick it up if it wants to.
In order to create flexible robots you need to use normal programming

functions like loops and if-statements. Each moving robot on the screen is
represented as an object in Karel-j and to make it do something, you had
to write a method in the correct robot-class and then invoke this method.
You can make several objects of the same class, or several objects of different
classes. See (Borge 2004) for a more detailed explanation.

3.3.3 KarelJ and BlueJ together

We wanted to see if a visual representation of the KarelJ program structure
would help the programmers understand how the classes and objects are
interconnected. We used KarelJ and BlueJ together to achieve this.

BlueJ would show graphical boxes of the classes KarelJ used, and show
the relationship between these boxes. When using this combination of BlueJ
and KarelJ the programmers are able to double-click on the class they wish
to edit, and the program code will be shown in a new window. After the
changes are made, the programmer saves and he may open a new class to
make changes there too.

When the program is satisfactory, the programmer can right-click on the
main class and make an object of this class. And when the programmer
wants to run the KarelJ program the programmer tells this object to run.
The KarelJ program will be run like any other Java program and the KarelJ
grid will appear and the robots will start moving.

3.4 Lejos and Lego Mindstorms

3.4.1 The Lejos API

In the last experiment described in this paper we used a modified version of
the Java API for Lego Mindstorms: Lejos. The original lejos (LEJOS. Java
for the RCX n.d.) API is very complex and contains many features that we
do not need for this project. In the original lejos API the program started
with a main-method like any other Java program. This was something we
wanted to avoid having to teach the children. Another thing we did not feel
it was necessary for the children to learn was Java’s static term.

The original lejos API is not created as a beginners programming lan-
guage. Even expert programmers as ourselves had to use a lot of time getting
to know the API and how to use it. We used two weeks testing and using
the lejos API and used our experience from the tests to create a simpler lejos
API that would be more suitable for teaching the object oriented concepts
we wanted to teach. We created a template containing a Control class and a
Robot class. Using this template the children would be able to create their
own robot.

29

When using the light sensors we found it difficult to find an easy way to
program a sensor to listen to changes using a Java actionListener. We decided
that all sensors should use active polling instead of using an actionListener.
In order to make a robot do something until a sensor value changed, the
children had to make a loop and check for a change in value in the loop until
the change was found and they could break the loop and continue with the
program. This was not an optimal solution but I think this is easier for the
tutors to explain and the children to understand.

Following is the template divided into the three parts. Figure 3.8 on the
next page is the start of the class file and contains the main-method. This
was a necessary evil in order for the children to be able to call their program
whatever they wanted. So the only thing they had to do was exchange the
<PROGRAM NAME> with the name for their program, and save the file
as the same program name.

Figure 3.9 on page 32 shows the control-part of the template. It was in
this class the programmers should write the code that told the robot-object
what to do. An example of this kind of code would be:

volvo.rightMotor.forward(5);

volvo.turn();

Figure 3.10 on page 33 shows the robot. This robot should be a rep-
resentation of the Lego robot the children would build using Lego bricks.
They would have to create objects of all the sensors and motors they want
to use on their Lego robot, and in this way see how the program they write
is executed on the robot.

Using our modified API we should be able to do whatever Robolab is
able to do. This modified API consisted of the different objects that could
be placed on the Lego robot. In short these objects were:

• Motor

• Touch sensor

• Light sensor

• Rotation sensor

• Display

• Speaker

Assistant

In addition to the objects mentioned above, we had created an assistant
object in the control class. The reason for this assistant was that in order to

30

import josx.platform.rcx.*;
import java.util.*;

// Make up your own program name.
// IMPORTANT: Capital letter
// Remember to use "Save as..." and then program name + .java

class <PROGRAM NAME> {
public static void main(String [] args) {

new Control();
}

}

Figure 3.8: The beginning of our lejos Template

get the robot to pause between its actions we needed to tell the Java-program
to halt a number of microseconds before continuing on the program. This
is the same pause that Icon F in figure 3.6 on page 27 represents. This
pausing can be accomplished in Java using the class Thread and the method
sleep(milliseconds). The program will then halt the given time, continuing
the last command while the program waits. This was useful when we wanted
the robot to move forward two seconds before doing anything else. The
problem with the sleep-command is that it throws an exception which must
be caught. And this was not something that we wanted to confuse the
children with, so we hid it in an assistant method called wait. We meant
that this assistant was not a part of the Lego robot in the same way as the
motors, sensors, display and speaker, so we placed it in the control class.

In addition this assistant had a method called randomNumber(maximum
seconds) that returned a random integer between zero and “maximum seconds”.
This was useful when programming a more randomized robot. I.e a robot
that drove forward and turned, and the length of both the forward driving
and the turning was random each time.

3.4.2 JCreator - The text editor)

We wanted an uncomplicated and free Java editor. The only thing we wanted
the Java editor to do was to color the Java code so that it would be easier
to read and write. Our choice was a small win32 program called JCreator 2.

2www.jcreator.com

31

class Control {

// First, we state what the program should consist of
// In this example, we use a robot called volvo,
// and an assitant called max
Robot volvo;
Assistant max;

Control(){
// make a new car that we are going to program.
volvo = new Robot();
// and then make a new assistant
max = new Assistant();

// **
// Below, you write what the robot should do.
// **

}
}

Figure 3.9: The Control-part of the lejos template

32

class Robot{

// First, we state what the robot should consist of
Legomotor leftMotor;
Legomotor rightMotor;
// osv...

Robot(){
// Help variables, do not worry about these.
int A = 1; int B = 2; int C = 3;

// Here we make the parts of the robot.

// One motor attached to port A on the RCX

leftMotor = new Legomotor(A);

// One motor attached to port C on the RCX

rightMotor = new Legomotor(C);

// and so on...
}

}

Figure 3.10: The Robot part of the lejos template

33

Figure 3.11: A screen-shot of the Jcreator editor

This program is available in two versions. A free version and a professional
version. The free one has less functionality than the professional, but the
free one still got enough functionality for our needs. See figure 3.11 for a
screen-shot of Jcreator.

3.4.3 The compile and transfer tool: RCXDownload

RCXDownload is a free Java program designed for compiling, linking and
transferring Lejos programs from a computer to a RCX. It is really just a
front end to Lejos, and will not work without Lejos being installed. It has
a very easy to use GUI with an “open” button that lets you choose which
Lejos program to transfer. After selecting the program, you press a “compile”
button that tries to compile the Lejos program. If the program is free of
errors the compile is successful and the program is ready for transfer. If
it contained errors, the compiler will spot these and display error messages
in the RCXDownload GUI. If the program is ready for transfer you can
press the “transfer” button, and RCXDownload will automatically link the
program and transfer the binary file to the RCX. You see a progress bar in

34

RCXDownload while the program is being transferred. The RCX plays a
sound when the transfer is complete.

It is not necessary to choose which program to compile every time you
want to compile a program. Normally you work on a single program for a
while, so the program remembers the last file you compiled. The RCXDown-
load program also has a menu with preferences so you can choose where Java
and Lejos are located. See figure 3.12 on the following page for a screen-shot
of the RCXDownload GUI.

3.4.4 The Lego help web page

We made a web page containing a lot of information about the experiment. It
contained hints for building sturdy Lego robots. Experience from prior Lego
building has shown that it is not easy building a sturdy Lego Mindstorms
robot. The building instructions was a quite detailed recipe, following the
standard Lego instruction booklet way of explaining building. It was divided
into different steps, and each step contained a picture of the robot so far,
and what Lego parts you needed to finish the step. Figure 3.13 on page 37
is a copy of the start web page. You can see the different menu selections on
the left side of the web-page. This web-page is available in the appendix of
this thesis.

The web page also contained different programming assignments. Differ-
ent assignments for using different parts of the Lego robot, for example the
motors. These were written assignments with some explanatory pictures.
The page also contained some brief explanations of some of the different
teaching material. A brief explanation on how to use the editor Jcreator
and instructions on how to use the transfer program RCXDownload. The
users had access to a complete robot template as well, with a robot with
two motors that made the robot drive forward for a little while. When this
template was clicked, JBuilder opened this Java file, so the user could save
it, compile it and then transfer it to the robot.

The web page had small pieces of code with examples on how to use
the different objects that could be placed on the robot. Just click on an
object, i.e. Light Sensor, and you could see a small piece of code that did
not compile alone, but that could be copy-pasted into a users code. These
small code pieces also contained some procedural functions like if-statements
and while-loops. They were only briefly explained.

3.5 Tools used when programming a restaurant sim-
ulation

To write “normal” Java code we used JCreator as described above. To com-
pile and run the Java programs made, we used the standard Java tools from

35

Figure 3.12: A screen-shot of the RCXDownload transfer program

36

Figure 3.13: The front page of the Lejos help web page

37

Sun Microsystems. We only needed the Java compiler and the Java runtime
environment. These are just two command-line applications that comes with
the standard Java package.

javac —– the compiler
java —– the virtual machine that runs Java-programs.

To make these tools as easy as possible to use, we made two small scripts,
one for compiling the java-code and display the error-messages, and one for
running the Java programs and displaying the results. The users only had
to double click on the script they wanted to run, and look at the results.

The Restaurant API consisted of some custom made Java classes used in
a Restaurant simulation. These classes and their methods were:

• Person(Name of the person, sex of the person)
When a person is created he needs to have a name and a sex

• Guest extends Person

– chooseFromMenu(mainCourseNumber, dessertNumber)
Makes the guest choose a main course and a dessert

– mainCourse()
returns the number of this persons main course

– dessert()
returns the number of this persons dessert

• Chef extends Person

– cookFood()
Cooks all the food ordered

• Waiter extends Person

– changeNumberOfSeats(table, number of seats)
lets a waiter change the number of seats at a table. The table will
be reset

– placeByTable(guest, table)
places a guest by the given table

– receiveOrder(guest)
gets the order from a guest

– getMainCourse()
gets a random main course from the kitchen

– getDessert
gets a random desert from the kitchen

38

– findCorrectGuest(table)
finds the guest at the table that ordered the course just gotten.
This method returns the person that ordered the course

– deliverCourse(guest)
Delivers the course just gotten to the guest

• Table(numberOfSeats)
The table is placed in a restaurant and has a number of seats

• Menu()
The menu is created in a restaurant and contains the different courses
and menus

There are two additional classes should be modified in order to create a
correct restaurant simulation. These were:

• Control()
This class only existed in order to make a Restaurant object and for
the users to write their restaurant simulation code. It had the same
function as the control-class in the Lego Robot programming. It might
have been more natural to write the execution code in the restaurant
class, but since we had written the execution code in the control class
when programming Lego robots, we wanted to do the same in the
restaurant assignment.

• Restaurant()
This was the restaurant that was simulated. Here the tables, the
waiters, the chef and the menu was placed. It resembles the Lego
robot class.

This is an API that is handed out to the users at the start of the
assignment.

39

Chapter 4

Method

4.1 Method

Following is a short description of what methods were used during the ex-
periments at Fjellhamar and Mølladammen. Chapter 4.4 on page 44 and
chapter 4.5 on page 46 gives a detailed day by day description of what was
done during the experiments. This thesis will focus on the results from the
experiment at Mølladammen where Java was used to program Lego Mind-
storms robots. The reason is that Fjellhamar was more of a pilot experiment,
and the results from this pilot project is less relevant for this thesis than the
results from the experiment at Mølladammen.

4.1.1 The Subjects

The subjects were 27 children at Fjellhamar and 28 children at Mølladam-
men. This was one school class at each school, and the participating classes
were picked by random. The children at Fjellhamar were 11 years old and
the ones at Mølladammen were 14. As explained at the start of the thesis,
the 11 year old children were really 11 to 12 and the 14 year old children were
really 14 to 15 years old. Very few of the children had any prior experience
in programming, and those few that said that they had some experience had
never used Java as a programming language.

4.1.2 Experiment start

At Mølladammen the experiment started with a short introduction where
they were taught some object oriented concepts and guidance to use the
Java API called Lejos. We wanted to throw the subject into complex problem
solving, without a long pre-lecture. At Fjellhamar we started with a game
so that the children would get to know their tutors.

40

4.1.3 School relevance

The experiments were placed in the natural science part of the schools cur-
riculum. So a while the experiment was performed, some groups were taken
from their seats and given a solar panel and a motor. And their task was to
make their robot go without using the RCX. This was most use as an excuse
in order to get to use the school classes during these experiments.

Another reason for introducing this kind of technology to these children
was that computer science is going to be part of the base curriculum at
elementary schools. And according to the norwegian politicians this is going
to happen in the near future.

4.1.4 Data collection

At first the study’s purpose was to survey and explore the way people learn
and practice object oriented programming with a custom made Java API
called Lejos. This was done by first going through a pilot study at Fjellhamar
where we tested the Lego equipment and the equipment for recording the
data from the sessions. This was done by cameras that was able to film
both a group of children and their computer screen at the same time. The
discussions were also recorded with a microphone. Then at Mølladammen
we would use what we learned from the pilot experiment and find out how
much object oriented programming we were able to teach the children in our
short time.

When we later would look at the data recorded, we would be able to see
what the subjects were doing in their programing and simultaneously see the
subjects’ discussions. This would be very helpful when trying to determine
if the subjects understood what they were doing. After the study there
was approximately three hours of video from the Lego Robot programming
with Java at Mølladammen 4.5 on page 46, and two hours of video from the
interviews the last day at Mølladammen 4.5.3 on page 48. From Fjellhamar
there was about ten DV-cassettes of one hour video each. In addition there
was a lot of hours recorded with the streaming server as well, but I never
took the time to look that them.

4.1.5 Use of Control Technology

We used Control Technology to help the subjects see the connection between
the real world and the computer program they wrote. We wanted them to
see with their own eyes, what effect the program they wrote, had on the
object they were programming, in this case, a Lego robot.

The last day both at Fjellhamar and Mølladammen we removed the Lego.
We wanted the children to use what they had learned using the Lego and
program something similar but different. At Fjellhamar we kept the robot
domain, but instead of programming real life Lego robots the children had

41

to program virtual robots on the computer screen. At Mølladammen we
changed even more. We removed both the Lego and the idea of robots. At
Mølladammen the last day was used to program a restaurant simulation.

4.1.6 Research method

We used qualitative research methods. Qualitative research methods were
originally developed in the social sciences to enable researchers to study
social and cultural phenomena (Borge 2004). Different methodologies are
used in different parts of science. I believe that the study lays closer to the
soft aspect of science, also the closest to social science.

Qualitative data sources include observation and participant observation,
interviews and questionnaires, documents and texts, and the researcher’s
impressions and reactions(Borge 2004). The observational studies consisted
of recording video, both covering the subjects when they programmed alone
and with assistance. The recorded material consisted of sound and computer
screen of the students’ computers, while they programmed.

In order to being able to use a more quantitative research method we
would have needed a more specialized assignment. We could have measured
how long time the different groups had taken in order to complete the differ-
ent assignments, or how many groups got a correct answer on the first try.
During the experiments we did not measure any of these differences between
the groups, so I do not have any quantitative data that I can use.

4.1.7 Short interview

In the closing stages of the experiment at Mølladammen, four groups of
three subjects were handpicked and given small assignments related to object
orientation. Two of the groups were picked because they showed a lot of
understanding during the Lego robot programming. The other two groups
were picked at random. I talked to the groups one group at a time for about
half an hour. The idea of this interview was to map the subjects deeper
understanding of object-oriented thinking. They were given papers on which
they were going to sketch the different objects and inscribe sentences with the
terminology they were introduced to earlier. This last part of the experiment
was not something we had planned and used a lot of time preparing. I just
picked a group while they were programming the restaurant and asked them
to join me in a more private room with their Lego robot and their laptop.
Then I asked them questions that I felt would give me an idea of how much
they had learned about programming and object oriented concepts. All of
the interview sessions were recorded using a video camera.

42

4.1.8 Point of study

The studies evaluate the subjects’ behavior and quality of product, but is not
intended to result as teaching guide in programming. However we are doing
experimental studies with different subjects and new learning styles. We
hope the answer would aid us in understanding of teaching object oriented
concepts and show us that young adults also enjoy programming in object
oriented languages, and programming in general.

4.2 Pedagogical Invention

We wanted to use Lego Mindstorms as the mean for teaching object-orientation.
With the use of a custom made Java API called Lejos we wanted to use Con-
trol Technology(Valcke 1993) to see if a physical representation of an object
helps in understanding how the Java representation works. If the subjects
in their Java program writes
robot.rightMotor.forward(),
they will be able to see both the physical robot, and the attached phys-
ical motor. When the physical representation of robot.rightMotor starts to
go forward the subjects will see the direct correspondence between the ro-
bot.rightMotor object and the physical motor on the right on the physical
robot.

Lego has been used as Control Technology in a lot of other subjects, such
as physics and math. Lego Mindstorms is really just an advanced version of
the turtles in Logo(Papert 1980). Logo has been used to teach geometry and
other math-aspects especially to children and young adults. It has also been
used to some programming aspects i.e. recursion(Papert 1980). According
to our knowledge this is the first time that Lego has been used to teach
object-oriented concepts.

4.3 Experiment Overview

During this experiment we used four different tools. The different tools are:

• Programming Lego Mindstormsrobots with Robolab

– This was used at Fjellhamar with 11 year old children

– This was used for three days

• Programming virtual robots on the computer screen with KarelJ and
BlueJ

– This was used at Fjellhamar with 11 year old children

– This was used for one day, the last day

43

• Programming Lego Mindstorms robots with JCreator and Java

– This was used at Mølladammen with 14 year old children

– This was used for two days

• Programming a restaurant-simulation with JCreator and Java

– This was used at Mølladammen with 14 year old children

– This was used for one day, the last day

4.4 Day by day at Fjellhamar

Following is a description of what was done at Fjellhamar and Mølladam-
men. This is to give the reader an overview, and to more easily be able
to understand the results from the experiments. This sub-chapter is about
Fjellhamar and the next is about Mølladammen.

4.4.1 The Experiment

This experiment was meant to be a pre-experiment prior to Mølladammen.
We wanted to see how the Lego worked, and we wanted to test the other
technical equipment as well, like the cameras and streaming computer. The
goal in this experiment was not to teach the children any object-oriented
concepts. We did not think that this would be possible with the Robolab
tools.

The experiment took place over four full school-days where we had three
days after each other the first week, and then returned for one day two weeks
later. Their class-teacher had divided them up into 9 groups with 3 children
in each group. We would have had more groups if we had more Lego boxes.
There were no mixed groups, only groups with boys only or girls only. This
was probably a good thing, since they were 11 years old.

Each day started with a physical game to build up the teamwork between
the children. One very cool game was to see how few chairs the whole class
could stand on at the same time. The game started with lots of chairs, and
then a one chair was removed at a time, and the children had to help each
other stand on the chairs.

A couple of times a day we would have a gathering in a room and sit in
a circle. The children were then asked different questions about that they
were doing and how and what they were thinking of what they were doing.
They had to explain the robots they had built and talk about the different
parts and their properties. We wanted them to answer what made a vehicle
a vehicle, and what parts of a vehicle was common and what parts were
unusual

44

4.4.2 The first day

The first day we wanted the children to play with Lego, build their own
Lego-house and then explain what the house consisted of, and the properties
of these parts. This was the start-experiment and did not include either
Robolab, motors or sensors.

The next task was building a Lego-robot that included the RCX, and
used wheels. Then they could program these vehicles using Robolab. Their
first programming assignment was making the robot they built do something.
The children’s second assignment was to make the robot go forward, then
turn, then go backward. The trick was to understand how to turn the vehicle.
Either making the motors go opposite ways, or stopping one motor and
letting the other continue, or setting the different motors at different powers,
so that one would go faster that the other.

We had started their computers with the Robolab-program so the first
thing they saw was 2 icons and a "transfer" button. All they had to do to
transfer this program to the robot was pressing this button and making sure
the robot was switched on. This was the first level of the Pilot version of
Robolab. Then the groups advanced through the different levels of Robolab
Pilot. At the higher versions the program lets you use sensors like the touch
and light sensors.

4.4.3 The second and third day

The second day we introduced Robolab Inventor. Inventor is a lot more
flexible than Pilot, and some of the programming tasks required this flex-
ibility. We had programmed a demonstration robot to follow a black line
on the floor. In order to make that kind of program, you need to use an
if-statement, and the Pilot version of Robolab does not support that. The
demonstration robot showed the children the possibilities they had when
using Lego Mindstorms.

In the middle of the second day the children were told that the rest
of the time should be used solving a bigger project that they themselves
should decide what consisted of. The groups got pieces of paper to write a
description of their project robot on. They were also supposed to draw a
picture of the project robot. And after this “plan” had been approved by us,
they were allowed to spend the rest of the time building their robot from the
Lego bricks, and program it to do what they described in their project plan.

The possibilities of their projects were only restricted by the boundaries
of the RCX. It only had three ports for motors and three ports for sensors.
Therefore they could not build a robot with two motors for driving and
turning, and two arms operating separately.

They had to spend some time getting to know how the light sensor and
the touch sensor worked. They had seen the light sensor in use on the

45

demonstration robot, but they did not know exactly how it worked.
As the groups worked with their projects, the teachers helped the groups

that asked for help and tried to see how they were following their plan when
building their robot.

4.4.4 KarelJ and BlueJ the last day

When we returned two weeks later we did not bring any Lego. This time
we wanted the subjects to program robots on the computer screen using
KarelJ and BlueJ. The goal was to keep the programming domain and see
if they could use anything they had learned programming the physical Lego
robots. They were divided into the same groups as when programming with
Robolab.

Their programming tasks were to make a subclass of a simple KarelJ
robot and create new methods in the new and more advanced robot. In
BlueJ this is shown graphically in a UML like way (see figure 3.7 on page 28).
They would program the robot to navigate some pre-made KarelJ worlds,
and picking up the beepers in the maze.

At first we only wanted the children to write the program in a procedural
way. Just instructing the robot line by line what to do. Then we introduced
more flexible ways of doing things, with while-loops and if-statements. They
would then be able to create flexible robots that felt their way through the
maze and managed to pick all the beepers.

We even tried programming a messing-robot that put out beepers ran-
domly in the world, and they had to make a flexible cleaning-robot that had
to clean up the mess. This is a very challenging task, and our messing robot
was not very good and sometimes it would create a mess that was impossible
to clean up.

4.5 Day by day at Mølladammen

This school is a junior high school where the children were 14 - 15 years old. It
was a well funded school. We were allowed to borrow 10 brand new laptops
for the project. The study’s purpose was to survey and explore the way
people learn and practice object oriented programming. We had two cameras
and the possibility to film both a group and the groups computer screen at
the same time. This was the same equipment we used at Fjellhamar.

4.5.1 The Experiment

All the sessions were filmed. We had a camera that filmed one of four groups,
that we thought would be the most interesting groups. The streaming com-
puter also had a direct feed of the computer screen of one of the groups, and
a switch-box was used to select one of the four screens for streaming. So

46

when we look at the material later on and see both one of the four groups
and their computer screen at the same time.

4.5.2 The first two days

We started the first day just playing with the Lego and building a robot
that included the RCX. Then the children started using the web-page we
had created. It hopefully contained everything that they needed to know.
This web-page also contained step by step guides in how to create a sturdy
robot that used belts instead of wheels. In order to get started we had made
a simple start-robot code that just made the robot drive forward for two
seconds. Then the children, using an printout of our API had to program
the robot to do whatever they wanted.

There were nine groups of children with three people on each group. And
one group had one person extra. We had learned that it would be pointless
to try to get them all on tape, so we concentrated on four groups. Most
of the results are from the videos of these four groups. They were also the
groups that got the most attention when asking for help.

In order to use i.e. a light sensor, they had to make a new light sensor
object in the Robot class, and then call this light-sensor object from the
control class. Or they could make a method in the Robot that used the
"local" sensor. We wanted see observe the way they used the dot-notation
to get to the right methods in the right objects.

The children had a lot of assignments to solve, with increasing difficulty.
The first assignments only required the children to copy and paste from code
already given, but later on when the assignments got more complex, they
had to learn how to use the different sensors, and how to write something
to the LCD display. One of our goals was that they would create methods
in the robot class that they could call from the control class. An example
of a method of this kind would be a turn method, that made the correct
commands to make the robot turn 180 degrees.

One of the assignments the children had to do was to create a robot that
followed a black line. A fully functional robot that we had programmed was
used as a demonstration. To program this robot you had to use both a while
loop and if statements. In order to make the assignment a little easier we
created a similar assignment that the children could solve first. Create a
robot than can find its way out of a black circle with a little opening. They
were supposed to create a robot that drove forward until a light-sensor saw
the black tape, then back up a little, turn a little (maybe even turn a random
number of seconds) and then continue forward again. The good thing about
this exercise as a start is that it does not require an if-test with different
outcome-paths. Just making the robot go forward until it sees the tape is
easier than having two sensors that makes the robot do different things.

47

4.5.3 The third and last day: The object oriented restaurant

The last day we removed the Lego. We wanted the children to do something
completely different. We wanted them to program a restaurant simulation.
They would still use Java in approximately the same manner, but there
would be no live action in which the results would be shown. All they would
get is some text on a computer screen.

Following is the assignments that were given to the children along with
a paper copy of the restaurant API:

The task in this assignment was as follows:

Four guests arrive at the restaurant. You have to come up with names
yourselves. The guests want to be seated at a table and eat a nice meal with
dessert. You will have to decide what they will eat from the menu.

Problem 1

When they arrive there is only one table free. There are only two chairs at
this table, but they are a party of four. When they have been seated they
will choose what to eat from the menu, the waiter will take the order and
the chef will cook the food.

Problem 2

The food is cooked simultaneously but will be done in random order. The
waiter have to find out who ordered what in order to delver the correct course
to the correct guest. Remember that the guests have to eat their main course
before they can eat dessert.

We used the same groups as we had done the previous days. The chil-
dren were told to look at the picture of the restaurant1. See figure 4.1 on
the next page. They could see this picture when they clicked one of the links
in the help web-page. Before they started programming the restaurant their
assignment was to find a name for this restaurant, and write down which
objects this restaurant consisted of.

Then the different objects of the restaurant was written down and these
were discussed in the class. Now the children were ready to start program-
ming their own object oriented restaurant using Java.

1This picture of a restaurant is the same Nygaard used when he argued for the objects
first way of teaching object oriented programming. He meant that in order to teach object
oriented programming, you had to start out with a sufficient complex example, so that
the programmer had to use object oriented structuring in order to solve the task ahead.

48

Figure 4.1: A picture of Nygaards object oriented restaurant

49

The assignment was to get the guests to order the food they wanted,
giving the order to the waiter who would take the order to the chef. The chef
would then cook the order and the waiter would take the different courses
back to the people that ordered them. The challenge was that the courses
were finished at random, and the waiter had to find out who ordered the
different courses using his own method: findCorrectGuest(table).

When the program was compiled successfully and run, it printed out the
simulation step by step. Figure 4.5.3 on page 53 shows an example of such
a printout. Figure 4.5.3 on page 53 shows an example where the guests has
received the wrong courses.

The Restaurant assignment was meant to be difficult and we had not
counted on every group finishing the assignment. The children only had one
day on this assignment. To make this assignment as similar to the Lego
robot programming assignment, we used a control class to write the actual
code in this assignment as well.

Figure 4.2 on the following page shows the typical start of a control
class in the restaurant assignment. Figure 4.3 on page 52 shows a typical
restaurant class in the same assignment.

4.5.4 Four interviews the last day

During the restaurant assignment the last day I wanted to interview four
groups about what they had learned during the experiment. I chose two
groups that I knew had performed pretty well during the Lego robot pro-
gramming assignment, and two random groups. They were taken to another
room where I had placed some chairs, a little table and a video-recorder.
They brought their Lego robot and the laptop they had used along with
them. These interviews took 30 minutes and after they were done they went
back to the restaurant assignment.

The interviews started with some smalltalk about how they felt the ex-
periment had been. Then I gave them a piece of paper and asked them to
draw their Lego robot using boxes and lines. I started them off by drawing a
square that I called control and a square that I called robot. Then I drew a
line between them, connecting them together. Then I wanted them to draw
the different robot parts on this drawing in the same manner. Figure 4.6 on
page 55 shows a drawing made by the children during this interview.

At the same time they were drawing I asked them different questions to
try to find out how much they had learned during the experiment, and if this
knowledge could be transferred to this assignment, which was very different
from the one they had just participated in. A lot of the questions was about
how they would write different call sentences in order to invoke different
methods. I wanted to see if they were able to generalize the dot-notation
they had used when programming the Lego robot in Java.

After I was satisfied with their drawing of the robot I wanted them to

50

class Control {

Restaurant objecta;
Person per;
Person lise;
Person kjell;
Person hanne;

Control() {

objecta = new Restaurant();
per = new Guest("Per", "male");
lise = new Guest ("Lise", "female");
kjell = new Guest("Kjell", "male");
hanne = new Guest("Hanne", "female");

objecta.butler.changeNumberOfSeats(objecta.table4,4);
objecta.butler.placeByTable(per, objecta.table4);
objecta.butler.placeByTable(lise, objecta.table4);
objecta.butler.placeByTable(kjell, objecta.table4);
objecta.butler.placeByTable(hanne, objecta.table4);
...
...

Figure 4.2: The start of the Restaurant control class

51

class Restaurant {

Waiter butler;
Chef chef;
Menu menu;
Table table1;
Table table2;
Table table3;
Table table4;

Restaurant() {
butler = new Waiter("Eva", "female");
waiter = new Waiter("bob", "male");
chef = new Chef("Tor", "male");
menu = new Menu();
table1 = new Table(4);
table2 = new Table(2);
table3 = new Table(5);
table4 = new Table(2);

}
}

Figure 4.3: The typical Restaurant class

52

Per is added as a guest
Lise is added as a guest
Kjell is added as a guest
Hanne is added as a guest
Beef is ordered
Cake is ordered
Salad is ordered
Jelly is ordered
Salmon is ordered
Chocolate pudding is ordered
Salad is ordered
Ice cream is ordered
The chef cooks the food
Per has received Beef as a main course. And this is correct.
Lise has received Salad as a main course. And this is correct.
Kjell has received Salmon as a main course. And this is correct.
Hanne has received Salad as a main course. And this is correct.
Per has received Cake as a desert. And this is correct.
Lise has received Jelly as a desert. And this is correct.
Kjell has received Chocolate pudding as a desert. And this is correct.
Hanne has received Ice cream as a desert. And this is correct.

Figure 4.4: An example of a correct result from the restaurant program

Per has received Salad as a main course. Incorrect. Per ordered Beef.
Lise has received Salmon as a main course. Incorrect. Lise ordered Salad.
Kjell has received Salad as a main course. Incorrect. Kjell ordered Salmon.
Hanne has received Beef as a main course. Incorrect. Hanne ordered Salad.
Per has received Cake as a desert. And this is correct.
Lise has received Chocolate as a desert. Incorrect. Lise ordered Jelly.
Kjell has received Jelly as a desert. Incorrect. Kjell ordered
Chocolate.
Hanne has received Ice cream as a desert. And this is correct.

Figure 4.5: An example where the guests received wrong courses

53

draw an object oriented house on another piece of paper. I gave them this
task because I wanted to see if they had gotten a general understanding of
how the different parts of their program was connected. I also wanted to
see if the knowledge gained from programming the Lego robots could be
transferred into a more general understanding. Figure 4.7 on page 56 shows
a drawing made by one group of children. The results from these interviews
are found in chapter 5 on page 57 along with the other results from the
experiments.

4.6 Going through the collected data

When the experiments were complete I had about half a years time until the
masters thesis was due. I had a feeling that I would not have the time to go
through all the recorded material both from Fjellhamar and Mølladammen.
Since this thesis was going to be about teaching object oriented concepts
using Lego Mindstorms, I chose to focus on the material from Mølladammen.

I quickly browsed through some of the material from the group sessions
at Fjellhamar and transcribed this, and some of that material is used in
this thesis. But all in all there are very few results from the experiment at
Fjellhamar described in this thesis.

From the experiment at Mølladammen I had the video recordings and in
addition I had some notes taken during the experiments and the code the
groups had written, both for the Lego robot assignment and the restaurant
assignment. I also had the video tapes from the last day interviews with four
of the groups.

54

Figure 4.6: A drawing of an object oriented robot program, drawn by the
children

55

Figure 4.7: A drawing of an object oriented house program, drawn by the
children

56

Chapter 5

Results and Evaluation

This chapter contains the results from both the experiment at Fjellhamar
and the experiment at Mølladammen. I have categorized them according to
what results are related to programming and object oriented concepts and
what results are related to the way children work together when solving this
kind of assignment.

5.1 Children working on a difficult assignment

5.1.1 Difficult assignment

At the start of each interview, the last day at Mølladammen, I asked each
group how they felt that the exercise had been. Most of the groups were
positive. They said that they had had fun, and that they had learned a
lot. Most fun was working on a difficult assignment and almost giving up,
and then suddenly find an answer to the problem that worked. (Greeno &
Collins 1996, page 27) This is very typical in all programming. And it is
linked with the behavioristic learning theory. People learn when receiving
positive or negative reinforcements. In this case the positive reinforcement
was when you finally managed to solve a difficult task after failing many
times.

One 14 year old girl thought that it was very fun to learn about how
things worked. In this case it was fun to learn about how cogwheels and
other parts of the Lego Technics worked. There was also a lot of fun to get
a real challenge, but getting stuck on a difficult task was less fun.

During the interviews it became apparent that answering my questions
was just as difficult as programming the Lego robot using Java. I know
that typing a computer program on a personal computer is something quite
different from drawing a UML-like diagram of the design of this computer
program. It is also a difference in sitting in a classroom surrounded by class-
mates than sitting secluded in a little room with only your group members

57

and a tutor. This change in setting is an example of the situated cogni-
tion theory (Greeno & Collins 1996). Learning is a social happening. If the
same questions had been asked when the children was seated at their normal
place in the classroom, their answers to my question would probably be a
lot different from the ones I received.

5.1.2 Program understanding

The children had seen our demonstration-robot follow the black tape on the
floor, and had in their heads constructed a hypothesis on how it was doing
this. The sensors used polling when checking for change. The reason is
described in chapter 3.4.1 on page 30. When programming their robots they
tried to follow their hypothesis and if one method of following the black
tape did not work, they would try another method. When we asked how
they would program the robot to follow the black tape they had different
answers. First one would answer:
“We just use the built in function for following a black line”
We would then tell them that no such function exists. Their next answer
was much closer to the correct answer:
“The robot will go forward until one of the sensors sees the black tape. Then
the robot will turn until none of the sensors sees a black tape”
This is a way of solving the problem, but it is much more complex both for
the children and for the tutors, than the idea we had in mind. If the robot
should turn and turn until it stopped seeing the black tape, we would have
to poll the sensor again an again in very short intervals. Then their next
answer was acceptable to us:
“When one of the sensors sees the black tape, the robot turns for a given
number of seconds”
This was the way we had solved the problem in our test robot and it was
the way we wanted the children to solve the assignment. Then they just had
to use trial and error to find the amount of seconds the robot should turn
before it continues driving forward.

It was very interesting to see the children somewhat understanding that
the first option was difficult, because the robot was very stupid. And then
the second option was difficult to implement because the way the robot was
programmed did not have any way of “listening” to a sensor. At least not
a way we had implemented in our custom made Java API. The reason is
explained in chapter 3.4.1 on page 30. The children did not know this, but
they only learned to tell the robot to do something for a given set of time, and
making it do something until something occurred was not so easy. There was
also some “slowness” in the system that made it difficult to “fine-control” the
robot So then the children would settle for the third option and be satisfied
that they managed to solve the task.

58

5.1.3 Pair programming

The groups consisted of three people on each group. This usually lead to one
of two things. One person doing all the programming while the other two
just talked about something else, or two people programming and discussing,
and the last person just sitting in the background minding its own business.
When interviewing these groups afterward it was very peculiar to find out
that these background-people had learned at least as much as the active
ones. They were able to participate in the discussions when drawing their
robot on a piece of paper. They were also able to correct their classmates
when they were wrong.

5.1.4 Shortcuts

A lot of the groups both at Fjellhamar and Mølladammen used a typical
hacker-way of programming where the only goal is to get something that
produces the correct output. This is the same result that (Kolikant 2004)
witnessed in his study. He was studying two people who were working on
a synchronization-task. They had gotten an assignment from their teacher
that they had to solve. When it produced the correct output, the teacher
made them use another set of input. And when their program used this
set of input the result was wrong. The people doing the assignment solved
the new problem not by going through their code and finding the bug, but
rather just exchanged some random semaphore values. After a lot of trail
and error the program produced the correct output again and the subjects
were satisfied. But the program was still faulty.

One of the groups that did not reach the goal of completing the restaurant
assignment was very quick to write a program that produced the correct
output, but they had found a flaw in the program and exploited it. I do not
think that it was intentional, but they had to write their program in another
way nonetheless. One of the problems in the assignment was that when the
waiter fetched a course from the chef, he got a random course. So he had to
use a method:
findCorrectGuest(objecta.table4)
that returned the guest that had ordered the course the waiter just had
gotten. But if you ordered the same course for all the guests, you could
skip this method call and just deliver the received course to any guest. And
that was what this group had done. This group did not manage to solve the
assignment after we told them about their "cheating".

5.1.5 Stoppers and movers

Some of the children are obviously stoppers while others are movers and
some are the kind of movers that just keeps patching their program over and
over again (Robins, Rountree & Rountree 2003). Some of the children give

59

up at the first sign of trouble and put their hand in the air and asking for
help. And while waiting they do not even look at their problem. Others put
a hand in the air when getting stuck, but found the error themselves before
one of the tutors managed to help them. And a few of the children were very
keen on finishing the assignment at any cost and just tried and failed over
and over again, without really trying to find their original error.

5.2 Age and gender

5.2.1 Age

Children are trying to find out who they are, and at the same time trying to
be special. This was easy to see when the 11 year olds were building their
houses. They were always looking at each others houses, and did not dare to
be very original. Except for some few of course, that wanted all the attention
they could get. Compared to the 11 year olds, the 14 year olds used more
energy on getting recognition from the other people in the classroom, trying
to act cool and saying funny stuff.

Most of the 11 year old children thought it was most fun creating Lego-
robots that could move. The children at Mølladammen thought it was less
exciting to build the Lego robots and more time was spent programming the
robot instead.

At Fjellhamar with the 11 year olds, a lot of the time was used getting
to know Lego Technics and designing a sturdy robot. And approx half of the
groups spent most of their time building fancy robots and using the pre-built
programs just to make the robot go forward. At Mølladammen we had made
a template for a very sturdy robot that the children could follow. So the
14 year olds spent considerable less time trying to build a cool and fancy
robot before using the template at built the sturdy robot we had planned
that they should built.

Compared to the 11 year old children at Fjellhamar, the 14 year olds
did not have any more experience using Lego or Lego Mindstorms. Children
stop playing with Lego at a certain age. They were not so eager to start
with the building once they got permission to open their Lego boxes, and
they did not build the same kind of imaginary Lego vehicles as the 11 year
olds did. Because of this I think that the 14 year olds felt that they were a
little too old to play with Lego.

The 14 year olds did not have any more experience using the Technics
side of Lego than the 11 year olds had. They had no more understanding
of how to use cogs and shafts either. And the same can be said about their
knowledge of general physics. I asked a random group if they could explain
to me why tires with rubber "stuck" more to the floor than ordinary hard
Lego bricks. I wanted them to explain to me about the friction. But even
thought they had a general feeling, they were unable to explain it to me.

60

14 year old children do not have much physics in their curriculum, so it is
understandable that they had problems explaining friction to me.

5.2.2 Gender

We found that 14 year old children, especially the girls, had very little in-
terest in programming Lego robots using Java. But the girls still wanted to
complete the project, so that they could say to the other schoolmates that
they were done. They did what they were told and tried to find the easiest
way to get the program completed and working. At Fjellhamar with the
11 year olds the difference in interest between boys and girls was not that
noticeable.

During my interviews the last day at Mølladammen I found that the girls
were no worse at answering my questions, but they cited the API instead of
telling me what they thought. For most of the girls this was “just another
school exercise”.

At Mølladammen the girls had very strong personalities, and the boys
were more in the background. Some of the boys enjoyed programming, and
tried their best to program a good Robot, but they did not seem as smart
of fast as the girls. In a group consisting of two girls and a boy, the boy
would try hard to understand the program, and the girls would just chat
about other stuff and help occasionally when the boy was stuck. Girls in the
early teens often seem smarter than boys at the same age, and I guess that
is because they mature earlier.

When we removed the Lego from children at Mølladammen the last day
the feelings were mixed. We got the feeling that some of the children, espe-
cially the girls were tired of Lego and of programming. This is understand-
able, since it was very demanding at times. And they were also 14 and Lego
is not cool with 14 year old kids. One day we had a case of a heartbroken
girl, and this really devastated the whole class. This was a very strange
experience, to see a whole classroom fall apart because of one girl.

During the interview a boy said that he found the experiment fun a first,
but it became a little repetitive on the last day. He hoped that they could put
more gadgets on the robot, for example a web-cam. This is typical boyish
behavior. They usually appreciate technical gadgets, and would appreciate
that the robot could do all sorts of things.

At the start of each interview I wanted to know the name the group
had chosen for their robot. In one group they had the same name both on
their robot and on their Java-file. One group even said the name of their
program file when asked the name of their robot. This group only consisted
of girls. All the other groups were mixed. I am not sure why they think that
the name of their program is the name of their robot. And when asked to
describe what they did with their Lego-robot they answered that they solved
assignment 1 and 2. Again this shows a typical way of behaving typical for

61

most of the girls participating in the exercise. They have no real interest in
the project, but since it is a school-project they have to solve the assignments
given to them.

One group, when asked to describe what the robot consisted of, mis-
understood and thought I wanted them to explain how the physical robot
worked. The two girls on that particular group pushed the boy to do this
explaining. But when they found out that it was the robot-program that
should be explained, they were at least as active as the boy. This shows that
the girls were interested in the assignment since it was schoolwork, and you
are supposed to complete your schoolwork. The boys seemed to enjoy the
actual programming and Lego-building.

5.3 Declaring and assigning pointers

We did not use much time teaching the children about declaration and cre-
ation of new objects. At the top in their robot class they had to declare
their object:
LegoMotor leftMotor,
and then again inside the constructor they had to make the new object:
leftMotor = new LegoMotor(A)
We did not tell them much about the constructor, just that it was something
that had to be there. They often forgot to write either the declaration on
the top of the robot-class, or the assignment in the constructor.

This leads me to believe that they had problems understanding the dif-
ference between the declaration and the assignment. The children usually
copied and pasted from previous code and did not bother to try and under-
stand why they wrote either of them. If we could have avoided this confusion
we would have, but declaring the correct reference to a objects at the right
places in a Java program is still a big part of object-oriented programming.

During an interview, when the children drew a gardener-object (see fig-
ure 5.2 on page 65), they called the class itself Torleif (with a capital T)
and not Gardener. A lot of the participants of this project had that same
problem, to see the different between a type of object (class) and the name of
the object (pointer). This is probably because of the strange way an object
is created in Java. When you want to create an object of a class you have to
use two lines of code to declare the object. First you have to declare what
kind of object the pointer is, and then you have to assign the new object
to this pointer. This is what is done at the top of this chapter. There is
a shorter way to do it as well, but we did not use that in this assignment.
It is pretty hard to understand why the declaration have to be in one part
of the program, and the assignment in another part of the program. Espe-
cially when you do not really know what declaration and assignment are.
At last the gardener is placed in the garden, and is given a method called

62

cleanup(milliseconds).
Using a method that returned an integer was something the children had

used when they programmed the Lego robot. In the restaurant assignment
they had to use a method that returned an object, a person object. They
had to use this method when the waiter had fetched a course from the chef
and wanted to deliver it to one of the guests. This could be done in two
ways. Both the ways were used by the groups that managed to solve the
assignment.

1. By writing a code line that used both the deliverFoodCourse and find-
CorrectGuest methods like this:
objecta.table4.waiter.deliverFoodCourse
(objecta.table4.waiter.findCorrectGuest(objecta.table4));

2. By using a temporary variable to store the correct guest and then
delivering the correct course to this guest like this:
guest = objecta.waiter.findCorrectGuest(objecta.table4);
objecta.waiter.deliverFoodCourse(guest);

The second way, they way with the temporary variable shows that they
have an understanding of what an object is and how it is treated. And the
difference from this person object and i.e. a LegoMotor object, is that the
person object does not have a physical representation. In the real world
the waiter would probably have gotten a sheet of paper with the name or
reference number of the person receiving the course, and not the whole person
or a reference to the person. Or maybe the sheet of paper with the name of
the recipient can act as a unique identifier and as a reference.

5.4 Class vs. Object

In the object-oriented paradigm it is often difficult for beginner students to
understand the difference between an object and a class, especially if they
only create one object of a class.

The call
murderer.lilleputt.kill.garden1.swing.child
. has a lot of errors. The murderer named lilleputt is supposed to kill the
child that is using a swing in the garden. The start of the call
murderer.lilleputt
contains both the class murderer and the reference to the murderer object
called lilleputt. This is an indication of the difficulties of understanding
the difference between an object and a class. The rest of the errors of the
statement is explained in chapter 5.7.1 on page 75

During an interview I asked the group if it was possible to have more
than one robot. The answer was yes, but they could not have the same

63

Control

Lightsensor

Lightsensor
Robot

Assistant

Assistant

Motor

Motor

per

kjell

kaare

ronny

 aicy

turn()

Figure 5.1: Drawing of a robot using an UML-like notation

name. The children and the teachers use the term “name” as the name of
the pointer to the actual robot-object, and not a name-variable in the robot-
object. They knew about the control-class as the “start” of the program,
which was described as a control-center for controlling the world. Much like
a main-method, but without the Java static-problems. This is visible on
figure 5.1 as well, where the control-class does not have a name, and does
not have a pointer to it from anywhere.

After talking about the Lego-robot and drawing their Robot, they were
asked to draw an object-oriented house in the same way they created their
robot. They were given the same start material as with the robot. First a
control-object, as a remote-control to the different parts of the house. This
was because it should look the same way as the Lego-robot. In the control-
object there was a pointer, named “hansen” to a house-object. Exactly in
the same way as the control-object had a pointer to the Lego-robot. One
student asked if they needed to call this pointer to the Lego-robot object
something. This question may show that the children have learned that an
object is something you need a handle in order to use.

Figure 5.2 on the following page shows a translated and redrawn version
of an object-oriented house drawn by one group during an interview. And
looking at the drawing the children have to tell the gardener to cleanup for a
number of seconds. The method is called from the control-object. The boy
on the group’s first try at the long call sentence was:

64

House hansen

Assistant

wait()

per

Control

House jensen

Garden

Bed Bed

Sofa

sitting()

Washing
Machine

tearer sitter

Garden

Gardener

Figure 5.2: Drawing of an object-oriented house using an UML-like notation

control.househansen.garden.gardener.cleanup(1000)
This call has a number of errors, but some of them are because of my incon-
sistence when I helped them to draw their house. To start with you do not
have to type control when you type the call from the control-object. This
was not done so much in the coding, but when they see a visual representa-
tion, it is easier to see that they have a control-object, and that it all starts
in this object. The error househansen is caused by an inconsistent way of
drawing the different objects of the house(see figure 5.2). We had given the
gardener a name, so he should have used this name instead of just writing
“gardener”. To me it seems that it was difficult, for the children, to see the
difference between the type(class) and the name of the object or the pointer
to the object.

When asked to attach the motors to the drawing, a girl made a box with
the name Motor over it and the names kjell and kaare inside. Kjell and kaare
were the names they used on the motors on their Java-program. When asked
if they really made a motor called “kjell kaare”, the answer was no. Then
she made another Motor box and called it kaare. But still when she should
place the light-Sensors on the drawing, she only made one box. It seems that
this girl had difficulties understanding that they had made two motor and

65

two sensor objects in their computer program. The reason is probably that
the two motor objects were of the same type(class). The two sensor objects
were also of the same type and caused the same confusion. This is another
example of the difficulties in understanding the difference between an object
and a class.

During the interviews the groups were given random tasks to complete.
This was mainly because I had very few questions prepared, and I did not
always remember what I asked the other groups about. One group were
asked to place a sofa in the house. This task was a little difficult, since they
did not have anything to look at. There was no possibility to copy-paste
here, so they had to make the transfer from what they learned about the
robot, the attached objects, and the house. After some thinking, the active
boy of the group got an idea, and drew a little box called sofa beside the
house-box, and named the new box: Sofa. The same boy said that this sofa
had the property: “you can sit in it”. Another question asked was: “If we
wanted two different sofas with different properties, could we call them both
a sofa?”. They answered the question correct with a negative answer. If two
objects have different properties, they are different types of objects.

In order to make something that was not directly the same as the robot-
program, I asked one of the groups to place another house in their program.
And they did correctly by making another square beside their first house-
square and placing a pointer in the control-object named something else than
the first house. This was a little unexpected, since they had not done any-
thing like that before, and they had not even thought in the same manner
when they always just had one object in the control object (except the as-
sistant). I draw the conclusion that they had learned something about how
to be able to control an object that they made.

5.5 Dot-notation

Understanding how the different objects interacts and how they are inter-
connected is part of what you have to understand in order to use Java and
object oriented programming. How the children understand and misunder-
stand the use of this dot-notation will give an indication of how much they
understand. It will also give an indication for what is difficult and not.

There were two different ways to talk when the children called the meth-
ods. Along with their writing they said either “period” or used the genitive
“’s”. Figure 5.3 on page 68 shows a discussion between a girl and a boy where
the boy says “period” instead of using the genitive s.

The people that said “’s” as in “volvo’s leftMotor’s forward” showed a little
more dotting-understanding in what they really were doing. By dotting-
understanding I mean understanding where to type the dot when writing
statements that access a specific method at a specific object. I.e. a statement

66

like:
volvo.display.write("Hello World");

Figure 5.4 on page 69 is an example of the lack of understanding of where
to apply the dot when using dot-notation. It shows the discussion on how
to change the number of seats. It also shows the difficulty of understanding
that in a parameter you also have to say where the object is located, just as
in the discussion in figure 5.9 on page 76.

5.6 Program design

With the use of control technology the children had the possibility to see
what their programming actually did. The physical Lego robot would be a
real world object of the robot class they wrote in Java, and the Lego robot
would behave according to the programming in the control class.

When the correlation between the programmed robot class and the phys-
ical robot object was more or less one to one, it might be easier for the chil-
dren to understand the reasons for their programming. Figure 5.5 on page 70
and figure 5.6 on page 70 shows this correlation between the physical robot
and the program code.

Because of this one to one correlation we hoped the children would be
able to place the different Lego objects in the correct class. That they would
place a new LegoMotor in the Robot class and not in the control class. The
same goes for the different sensors, the LCD display and the Speaker. And
when the children would write their controlling code in the control-class they
would have to access the motor and sensors through the robot object using
dot-notation.

The discussion in figure 5.6 on page 71, from the Lego Robot program-
ming, shows how the children did not think in the manner we wanted them to
and only copied what they had already written. In this scenario the Speaker
object is incorrectly placed in the control class.

And the children ended up placing the Display at the same place they
had placed the Speaker. In the same groups’ program the motors and the
sensors were placed correctly in the Robot class. So it was strange that the
Speaker and the Display would be placed in the control class. My theory
is that since they did not physically place the Speaker and the Display on
the robot in the same way they did with the sensors and motors, they did
the same thing with the Speaker and the Display that they had done with
the Assistant. And that was placing it at the top of their control-class.
Figure 5.8 on page 72 shows a part of their code. It does make the robot do
what they wanted it to do. But we wanted them to place the Speaker and
the Display in the robot class instead. I would want to say that they did not
think correctly, but what I mean is that they did not think in the manner
we wanted them to.

67

This conversation starts when the group has made an if test that checks if
one of the light sensors sees a black tape. They return from the testing and
starts writing the test for the other one.

boy: ‘‘come, we have to write another one.’’ (Another if test)
girl1: ‘‘another what?’’
girl1: ‘‘Hey, I was sitting there. I want to write.’’
boy: ‘‘I do not care.’’
boy: ‘‘if....’’ (typing if(under the previous if sentence)
girl1: ‘‘but I wanted to write.’’
boy: ‘‘volvo period mummi period luminosity 45’’

(writes volvo.mummi.luminosity)
boy: ‘‘is there any capital letters in luminosity?’’
girl1: ‘‘no’’
boy: ‘‘paranthesis’’
girl1: ‘‘out’’
boy: he types types ()
girl1: ‘‘now you need a bigger than, smaller than, character’’
girl1: grabs the keyboard and types <45)
boy: the boy grabs the keyboard again. He then starts to write: volvo
girl1: the girl starts building with the Lego bricks and not paying

attention.
boy: ‘‘Shit, it is written too far away’’
boy: he then deletes the volvo characters he has writting and looks

at the girl, obviouly wanting some help.
boy: after a little while he sees that he is missing the curly braces

that needs to be placed after the if clause
boy: he looks all over the keyboard but does not find the character
girl2: the other girl on the group arrives and looks at the monitor
girl2: ‘‘did not it work? Why are you doing it again’’?
girl1: ‘‘we have to do it for the other light sensor aswell’’
girl2: ‘‘aha’’
boy: the boy find the curly braces and types it in.
girl2: leaves again
girl1: now pays attention to the boy
girl1: ‘‘leftMotor stop’’ She does not say period between the words
boy: the boy types volvo.leftMotor.stop()
girl1: is not paying attention again
boy: types a copy of the previous if sentence

Figure 5.3: A conversation using “period” instead of ’s

68

girl: ‘‘we have to change the number of seats at the table’’
tutor: ‘‘yes’’
girl: ‘‘is that the butler?’’
tutor: ‘‘yes it is the butler, the butler of the restaurant objecta’’
girl: ‘‘so then it is objecta period butler period changeNumberOfSeats’’

while talking she types: objecta.butler.changeNumberOfSeats(
tutor: ‘‘what does the API say? What table to change..’’
girl: ‘‘table four and number of seats four’’

she writes (4, 4)
tutur: ‘‘yes...but what was the name of the table?’’
girl: ‘‘the tables’ name was four’’
boy: ‘‘table four’’
tutor: ‘‘yes...table four is correct’’

‘‘but where does the table belong?’’
girl: ‘‘objecta period table period four’’
tutor: ‘‘uhm...yes, it is objecta’s table four’’
girl: ‘‘so there is no period between table and four?’’
boy: ‘‘no’’

Figure 5.4: Difficulty using the dot notation

During the interviews I wanted the groups to explain to me how their
robot-program worked, and how this correlated with the physical Lego-robot
that they had built. They got a piece of paper and a pen. My plan was
to make them draw a UML-like diagram. These kids did not have any
experience whatsoever with that kind of thing, they had just written their
first computer program two days ago. My plan was that if these children
managed to draw their program on a piece of paper, they would have an
overview, and maybe understand a lot. Figure 5.1 on page 64 is a translated
version of one of these drawings.

After drawing their robot on the paper I wanted to find out whether they
understood why they had drawn their robot in this way. How they could use
the names(pointers) of an object to issue commands to either that object
or to another object even deeper inside the structure. And if they got the
dot-notation correct, they would understand some of the program structure.
In order to reach the robot, one child said in a very insecure way, that you
had to type control.robot1..... and then mumbles something incoherent. This
was said while looking at the UML-like drawing they just had drawn. The
statement is wrong because you type the statement in the control class and
therefore do not know about any control-reference. If control at the start of
the statement had been removed it would have been correct. But still this
shows that the UML-drawing is being used when trying to give the correct
answer, because while the child was formulating the desired statement her

69

Figure 5.5: A physical Lego robot with a motor and a sensor

class Robot{
Lightsensor rightLight;
Legomotor rightMotor;

Robot(){

//rightLight is sensor B on figure 5.5

rightLight = new Lightsensor(1);

//rightMotor is motor A on figure 5.5

leftMotor = new Legomotor(A);
}

}

Figure 5.6: Java representation of a Lego robot with a motor and a sensor

70

A child raises her hand and asks the tutor how
she can make the robot write something on the display:
Child1: ‘‘How can we make it write name?’’
Tutor: ‘‘Write?’’
Child1: ‘‘Name’’
Child2: ‘‘I want to write something on the display’’
Tutor: ‘‘Aha, write on the display’’

The tutor then uses their printout of the API and tells the children
to use Display.

Child3: ‘‘Class Display’’
Tutor: ‘‘You have to find out where the Display belongs’’
Child3: ‘‘Is it here?’’ points the mouse to the top of the Robot class
Tutor: ‘‘Where does the Display belong....it belongs to the yellow box..so....’’
Child3: ‘‘Ok...here then’’ and points to the top of the Control class.

At the top of their control class they have already declared and made
a new Speaker object. This is not correct, since the speaker also is
a part of the robot and not of the control.

Tutor: ‘‘Sounds good, it was here you made the Speaker’’
Child2: ‘‘What shall we call it?’’
Tutor: ‘‘You have to make a new Display first’’
Child3: ‘‘How do we do that?’’
Tutor: ‘‘Look at how you did it with the Speaker’’

Figure 5.7: Placing of the Display object

71

Robot volvo;
Assistant per;
Speaker lars;
Display beate;

Control(){

volvo = new Robot();
per = new Assistant();
lars = new Speaker();
beate = new Display();

lars.playTone(738, 50);
volvo.leftMotor.backward(2);
volvo.rightMotor.forward(3);
per.wait(2000);
lars.playTone(440, 70);
lars.playTone(536, 30);
lars.playTone(694, 48);
volvo.rightMotor.forward(5);
lars.playTone(559, 50);
volvo.turn();
beate.write("Hello");

}

Figure 5.8: A working but faulty control class

finger first moved to the control class and then over to the robot class.
One group had an assistant both in the control-object and the robot-

object. I wanted to see if they understood the program structure and how
the references worked. So I asked them if the control object could access
the assistant in the robot object, and if the robot object could access the
assistant in the control object. The answer was that control could get hold
of the assistant in the robot-object, but the robot could not get hold of the
assistant in the control-object. I am not sure why they managed to answer
this one correctly. I did not ask why, mainly because I was so surprised of the
correct answer. They could have been lucky with their answer, or they could
have tried it in their own program. They may have thought that the lines on
the drawing are one-way only. Figure 5.1 on page 64 is a translated version
of the figure this group had drawn, and this figure does not say anything
about the lines being one way only.

Not many groups created their own methods. Figure 5.1 on page 64 shows

72

that one group created a turn method and placed it in the robot class, but
still their control-class became very big and difficult to get an overview of.
Often the students lost track of their program, and did not understand why
the robot acted in the manner it did. It was also difficult for the teachers to
help the children understand their program when it consisted of 20 or more
lines of commands for the robot, and no structure at all. In the example
described in figure 5.6 on page 71 the tutor misunderstands the program
and does not notice that they are making Display in the control-class.

One group was asked what the robot consisted of, and asked to draw this
on the paper. At first one on the group draw a motor-object and attached
it to the robot-object. When asked if the robot only consisted of one motor,
another on the group drew the second motor on the drawing. It also consisted
of two touch-sensors and one light-sensor. The interesting thing about these
sensors was that when the children drew them on the piece of paper, they
did not make object-boxes like they did with the motors, but instead just
wrote the sensors directly into the robot-object. The physical motors are a
little bigger and are placed on the A-B-C ports on the RCX instead of the
1-2-3 ports. But since none of the other groups did the same “mistake” this
was probably just a coincidence.

When one group was asked what the robot consisted of they mentioned
the methods driveForward() and driveBackward(). This was not something
that we had written in their template, and they had not made any methods
in the robot that drove it forward and backward. When asked how they
got the robot to drive forward, they remembered that they had to write
volvo.rightMotor.forward(). It was not obvious that they had to attach mo-
tors to the robot (in their drawing) before they would be able to make it
go forward. Maybe they did not really understand that the robot consisted
of different parts like motors and sensors. And since their template had the
line volvo.rightMotor.forward() they just had to copy and paste this line,
and did not have to understand why they wrote what they wrote. After a
little discussion with me, they agreed to that there was no such thing as a
driveForward() method in the robot.

During the object oriented house part of the interview, one of the groups
were asked to draw a living room in the house. One of the boys on the
group asked if they had to make a room first. I feel that this is very object-
oriented thinking, but probably a coincidence, since the programming of the
Lego-robots had nothing to do with this kind of thinking. I did not give the
students a definite answer to this question. Instead I asked them about the
different rooms in the house. Why did we call one of the rooms kitchen, and
the other one a living room, when obviously they were both rooms. After
this little discussion they wanted all their rooms to be of the type Room.
So both the kitchen and the living room were kinds of Room, then only
thing different between them was the names of the pointers. But since one
of these rooms has a pointer to an air-conditioning-system they have to be

73

different in some way. There was also some discussion about whether the
air-condition should be in the house-object or in the kitchen object. They
agree to place it in the kitchen, because it is there it is needed.

This could have been explained if we had introduced subclasses to the
children. But since we had not mentioned subclasses during the program-
ming, I did not want to confuse the children with another concept.

5.7 Method call

During an interview one group of children were asked if they could write
per.forward() (per was the name of the assistant). They all agreed that they
could not. The reason was that only a motor could go forward and backward,
and per was just an assistant. So obviously it was easier to understand that
the assistant was unable to go forward compared to what the robot was
able to do. In the course we had not used much time explaining how to
create your own methods, and how to use them. Some groups had created
their own methods anyway, usually with lots of help from the instructors.
One group had made a method turn() in the robot, and were using this
from the control-object. And when calling the motors from this method
in the robot-object they did not have to write volvo.rightmotor.forward(),
just rightMotor.forward(). I am not convinced they understood why they
wrote the method. But afterward when I interviewed them and they were
able to see their drawing of the robot, it got clearer why they did not have
to tell who’s rightMotor to access, since they already were in the correct
robot-object. Still, this was not the norm. More than half the children
interviewed answered incorrect when they had to make a call they had not
made before. Like calling the motors forward-method from the robot. The
answer was usually the same as when it should be called from the control-
object. Obviously they had problems to see how the "world" works from
inside the robot object compared to outside the robot object in the control
object.

During an interview, one group made an air-conditioner that could blow
hot air or cold air. When asked how to make the air-conditioner blow hot
air, the one of the boys answered correctly: ville.kitchen.dc.blow(hot). He
also manages to explain why in a satisfactory way. Then a thief called
staale shows up in the control-object. This thief wants to steal the air-
conditioner. The girl that memorized the API answered more or less cor-
rectly: staale.steal(ville.kitchen.ac). But when asked if the thief would steal
both the house and the kitchen, she said “maybe it would?”. This could
be because she thinks that a parameter can consist of many inputs at the
same time, or it could simply be because she is very uncertain of what she
is doing, and is only copying something that she remembers, but have not
understood. The boys of the same group are pretty certain that the thief

74

only will steal the air-conditioner, because when asked one of them said that
the thief would steal the ac that belonged to the kitchen in the house.

5.7.1 Parameter problem

On one group we made a public garden which was not part of a house. And
in this garden we made a swing, and a little child using the swing. This
child had one method. To swing(). And then we placed a murderer in the
control-object. This murderer could kill(person). And I wanted the children
to kill the little child swinging in the garden. This murderer is called lilleputt
and is of the class Murderer. I ask the children what to type in order for the
murderer to kill the swinging child. Their first try was:
murderer.lilleputt.kill.garden1.swing.child
. This was not entirely correct, but I could see they got the basic idea. Our
course did not teach the children about parameters in any good way, so very
few of the children interviewed got this correct. And during the interviews
I was very inconsistent about giving the different objects names. So in this
case murderer and the garden had gotten a name, but the child and the swing
had not. Since there were only one swing, we had not given the children any
reason to name it in order to get at it. The beginning of the command:
murderer.lilleputt
is also wrong. The explanation is given in chapter 5.4 on page 63

It contains both the class murderer and the reference to the murderer ob-
ject called lilleputt. It it clear that it is difficult to understand the difference
between an object and a class.

During the restaurant assignment, one of the groups reached their hands
in the air and asked a tutor how they were supposed to use the menu object.
In order to explain it, the tutor pointed to another error in their code. The
group had written the following line in their control class code:
objecta.butler.changeNumberOfSeats(table4)
The correct answer would have been:

objecta.butler.changeNumberOfSeats(objecta.table4)
The reason is that table4 is part of the restaurant object and not part of the
control class. Figure 5.9 on the following page shows the discussion between
the group and a tutor trying to explain their error.

From this conversation I find that they found the error themselves, though
with very much help from the tutor. But still on the calls for seating a person
at a table:
objecta.butler.placeByTable(person, objecta.table2)
they still forgot the objecta in front of the table. They struggled with the
new error at least 10 minutes even thought it was the same cause as before.
It is understandable that reading and understanding compile-errors is diffi-
cult, but even with trial and error they were not able to see that this table

75

tutor: ‘‘why have you written: objecta.butler ?’’
girl1: ‘‘because we thought that.....’’
tutor: ‘‘I am not saying that what you have written is wrong’’
girl2: ‘‘because it is the butler to the....’’
girl1: ‘‘because it is the butler at the restaurant objecta’’
tutor: ‘‘correct. Table4, where is that located?’’
girl1: ‘‘at the restaurant objecta’’
tutor: ‘‘so the butler belongs to the restaurant and...’’
girl2: ‘‘and it is the restaurant’s menu’’
tutor: ‘‘yes, but as you said, table4 is located in the restaurant’’
girls: ‘‘???’’
tutor: ‘‘you cannot write table4, it needs something more’’
girl1: ‘‘no..’’
tutor: ‘‘yes..’’
girl1: ‘‘aha, so you have to type objecta here’’

points to the start of table4 and types: objecta.table4
tutor: ‘‘yes, you have to spoonfeed the computer’’

Figure 5.9: Trying to get a group to find their own mistake

was the same table as the one in objecta.
Failing to write the whole reference to an object like the the example

above was more frequent inside parameter parenthesis. The example in fig-
ure 5.9 shows that the children understood why they had to tell the computer
that it was the butler in the restaurant that should do something. But they
did not understand that it was the table in the restaurant that the butler
should do something with.

The reason for this difficulty in using the dot-notation in a parameter
between two parentheses could be the following. When programming the
robot and using methods with parameters, they never used any kind of dot-
notation. Either it was forward(5) or write("something"). It could be that
the children did not generalize enough. And since they never made a method
themselves that used parameters, I would think that they did not get a real
understanding for what a parameter was.

5.8 Problems with Java syntax and semantics

A big problem with Java is the syntax and the semantics. My own experience
in Java programming have shown me that the use of some characters are
difficult. One thing is to remember to place the semi-colon at the end of
each statement. This is something I forget to do all the time, and when I
compile the program afterward I sometimes get an error message in another

76

[] - brackets
() - normal paranthesis
{ } - curly braces

Figure 5.10: Different characters that look the same

part of the program because of the missing semi-colon. The same goes for
using parenthesis, brackets and curly braces. It is very easy to use one of
them instead of the other.

The children often used the wrong kind of parenthesis in their code, and
when compiling the program they got an error they did not understand.
When they put a hand in the air and one of the tutors tried to help and find
the error, they also found it difficult to find the parenthesis that was wrong.
This is a problem that a lot of the editors that is used when writing program
code. The characters in figure 5.10 is very difficult to distinguish from each
other. But as you can see in the figure, this is not really a problem when
the characters are printed out on a piece of paper.

This problem with the use of different parentheses was often solved by
trying and failing. The children relied mostly on copy and paste from already
generated algorithms.

There were some troubles commenting out pieces of the code. In Java
this is not always as easy as it should be. Commenting in Java can be done
in two ways. Either you use two slashes at the beginning of the line you wish
to comment, or you can comment out a larger part of the code by using slash
and asterisk at the start, and the opposite, asterisk and slash at the end.
The problem with the Java way of commenting code is that it is difficult to
see where the comment ends, and if you have lots of comments all over the
code it can be very hard to keep track of where the comments starts and
where it ends.

Another problem some of the groups had, was to find the correct charac-
ter on the keyboard. In the discussion in figure 5.3 on page 68 you can see
how they boy has problems finding out how to type the curly braces. The
parenthesis was easier because they had used this in other programs, and
you get to it by using the shift-key on the keyboard. More difficult was the
curly braces since they were not a “normal” character, and it was just more
difficult to type, But I think that using the “alt gr” key on the keyboard is
easier for norwegian children than it would have been for english children.
The reason for this is that in order to type @ on a norwegian keyboard,
something youth do all the time, you have to use the “alt gr” key instead of
the shift-key which is used on the english keyboard layout.

77

5.9 Real World

Since we had pushed the term “properties” so much during the experiment,
I asked the children the difference between a motor and a sensor. All the
students answered correctly, that the properties were different. And this was
the answer I was looking for.

The group consisting of girls wanted to decorate the kitchen in order to
make the room into a kitchen. A room without correct kitchen-wear was
not a kitchen. This is a very natural way of thinking, but has little to do
with programming and naming classes. They got to put a refrigerator and
a range in the kitchen. I asked them what the range and the refrigerator
had in common, and the answer was that they both belonged in the kitchen.
And this is true enough, though it has little to do with their properties.

The same group had a lot of problems when I wanted them to tell me
how different call-statements from the control object should be written. I
wanted them to make the milk in the refrigerator explode. The milk had a
explode method, so they only had to call this method in the correct manner.
Their first try was
refrigerator.milk.explode()
I did not bother to get the children to name their object, so the object-type
and the object was often the same. Anyway this was not a statement that
would work, since the statement should be written in the control object.
Their next attempt at the same statement was
ville.refrigerator.milk.explode()
This answer was not correct either, even if they remembered the house ville.
They still forgot the kitchen. Maybe they would have been more successful
if they had looked at their UML-like drawing while giving me the answer.

Their next task was even more difficult. I wanted the person in the living
room to go to the kitchen. And the called should be made from the control-
object this time as well. They started correctly this time around:
ville.livingRoom.person.walk(kitchen),
but it was not correct. I tried to explain that the control-object did not know
about the kitchen, and neither did the person in the living room. They feel
that this is very strange, since he lives in the house. Logically he should
know about the kitchen and be able to go there without much difficulties.
Since they had not done this kind of calling in their Lego-programming I did
not expect them to succeed. But they clearly have a hard time seeing how
the world looks from the control-object. (Pea 1986) talks about a superbug.
He says:

The superbug may be described as the idea that there is a
hidden mind somewhere in the programming language that has
intelligent, interpretive powers. It knows what has happened or
will happen in lines of the program other than the line being

78

executed; it can benevolently go beyond the information given to
help the student achieve he goals in writing the program.

And this is clearly what happens here as well. Since the person lives in
the house, the computer (or this person), knows about the other rooms in
the house and does not need to be told where the kitchen is located.

One group thought it was unnecessary for the waiter to follow the guests
to their table one by one like this:

objecta.butler.placeByTable(person1, objecta.table4);
objecta.butler.placeByTable(person2, objecta.table4);
objecta.butler.placeByTable(person3, objecta.table4);
objecta.butler.placeByTable(person4, objecta.table4);

and rather wrote:

objecta.buther.placeByTable
(person1, person2, person3, person4, objecta.table4);

While writing the call above, the children said that it probably would not
work, but they did not want to fix it just yet and continued with the rest of
the program. This example shows that they are trying to use the real world
analogy of a butler seating the guests at a table. In the real world the butler
would have seated all the guests at once, in the same manner as they did in
their program. But our API did not support this way of seating the guests,
so when they tried their program they got an error, and were quick to fix it
by seating one person at a time instead. Seeing how their first try is much
more like the real world, we would probably support that way of seating the
people as well if we wanted to make a new version of the restaurant simulator
program.

When writing the next part of their program, this group wondered if they
had to write a command line for each of the guests when selecting from the
menu. In the real world the guests would each take turns and placing their
order at the butler. And this was what the group did in their code as well.
So they had four calls like this one:

person.chooseFromMenu(3, 2):

where the first number indicated the number of the main course and the
second number was the dessert.

During an interview when the children put two beds into the house, they
wondered if they could compare these beds with the motors on the robot.
And I find that this is a very good comparison. But when the house also
needed a gardener the children had different opinions. One alternative was to

79

have the gardener in the control-object, but the others on the group felt that
it would not belong to the house if they did it that way. And this is some
of the object-oriented encapsulation that we wanted to teach the children
in this experiment. To put the different objects where they belong, and not
where it is easiest to access them. But they did not see the point of the house
having a gardener, when it did not have a garden. So a garden object was
made. But where should the pointer to the garden object be placed? One
of the girls meant that it should be in the control-object since it would not
fit inside the house because of size. And when every other object we have
talked about until now always fits inside or on top of the other object, this
was a logical way to think. The others on the group did not agree, and said
that the garden still was a part of the house and the pointer should therefore
be in the house. Another reason was that if the garden was placed in the
control-object it would be more like a house of it own. This last argument
shows that the placement of an object has a lot to say about its properties.
I.e. that a garden placed in a house is smaller that a garden placed outside
(in the control-object). Compare a public park with a private garden.

A group made a garden and a gardener in their object oriented house.
When writing a call with the gardener, the two girls on the group felt that
the call-sentence was unnecessary long. They claimed that since the garden
is such a big part of the house, the program already knows that the gardener
is located in the garden. I wonder if it is the size of the garden that makes
it so obvious that the gardener should be in the garden, or if it is the fact
that the gardener is a gardener. Obviously there is a big difference in the
way the garden and the sofa are a part of the house.

Another issue with the garden is how to get to it. Since you can not get
to a sofa unless you enter the house, it is natural that you have to go by the
house-object in order to obtain the sofa-object. But the problem the garden
causes is that this analogy will not work anymore. Usually you can get into
the garden without first having to go into the house. Sometimes you even
have to go through the garden in order to enter a house. And this causes a
lot of confusion. Several of the students meant that the garden was not part
of the house.

The children might have thought it was logical that the motors should
be placed in the robot-object and not in the control-object. The reason I
think they might have thought that was that they said that it "belonged"
there. And this was just what we wanted the children to see. Even if it is
easier to put the motor in the control class, in order to access it directly, it
is not the way we wanted them to do it. We wanted them to think of how
it was done in the real world, where the motor is a part of the vehicle. A
beautiful example of encapsulation and responsibility-sharing. And I think
they did this correctly because they physically placed the Lego-motor on the
Lego-robot. It was not that obvious where the assistant should be placed.
Was it part of the robot or outside the robot in the control-object? The

80

most active participants wanted to place it inside the robot, since it was
the robot’s assistant. Some of the less active children were not so sure, and
wanted a discussion. One of the active pupils says that the control-object
sends the assistant to where it is needed. So when the assistant is needed
in the robot, the control-object sends the assistant over to the robot-object,
and then it can do what it is supposed to do. This is a very strange way of
seeing how the program works. But it is understandable that the assistant
is confusing, since it is not a part of the robot, but is still able to affect the
robot.

The different sensors and motors had to be connected to the same ports
on the RCX as in the program. This was something the different groups
understood very fast and had little problems with. When changing from
one type of sensors to the next, most groups deleted all their declarations
and initializations of the particular sensor type and started writing it all
over again. Because of this behavior I think they understand the correlation
between the physical sensor and the sensor-object in their Java program.
That they represent the same thing.

There was some discussion among the groups if they had to place their
light-sensors on the same ports as the touch sensors had been placed just
before. This discussion took place while writing the computer program after
the the robot was built and the physical sensors were exchanged on the
physical Lego robot. After some discussion they agreed that they could be
placed on the same ports. I did not find this discussion in any of the other
groups, so i do not think it was a common problem. There was no problem
exchanging one of the sensors for another sensor on the physical robot, so
why would it be a problem in the computer program?

5.10 Over-generalization

During an interview a boy wanted to have an assistant object in his object
oriented house that was drawn on the piece of paper. This in an indication
that this boy, and probably a lot of his classmates, used copy and paste a
lot during their programming, and did not understand what they were copy-
pasting. The reason he wanted to have the assistant in his house, was to
get access to the wait method they had used when programming the Lego
robots. This example of the misuse of the wait-method is an example of
over-generalization (Boulay 1986). If you see bracket used some places in a
code and not really understand why and how the bracket is used, you may
use it wrongfully somewhere else. Very often in the children’s programs they
use the assistant.wait method both where it is necessary and where it is not.
And in some cases it is used between each line of ordinary code.

The reason for wanting an assistant is to get access to the wait method
here as well. This boy thought that if we did not have any means of slowing

81

the program down, the house would create sofas at an alarming rate all the
time. And this is not entirely wrong. It all depends on what kind of program
we are talking about. If it was a house-simulator in the same way as we had a
robot-simulator, we would need some way of slowing the program down. It is
very understandable that they thought of the house-program as a simulator.

Another interesting observation was that some of the children had prob-
lems placing three objects of the same type in the house. Two doors were
okey, but the third one felt very strange. If the third door was of a different
kind, it was okey. This could be a result of the fact that they never placed
more than 2 motors or 2 sensors of the same type on their Lego Robots. And
therefore it was not possible to do that in a program. But it was not hard
to convince them that was not the case. This is also an example that the
children tended to over-generalize.

5.11 Using the Tools

All the children had a hard time remembering to turn on their robots before
transferring the program they had written in Robolab, but the error message
was quite clear. The children did not have much problems turning on their
robots and trying to transfer the program one more time. A bigger problem
was that the transfer bar on screen was a little too fast. It said that the
program was transferred before it actually was, and this led to the children
removing the robot before the transfer was complete. Then they had to
start the transfer all over again. This is one of the five difficulties that du
Bolay talked about in his article about the difficulties in learning to program:
(Boulay 1986, p. 144). The difficulty of The Notional Machine. The children
do not see the difference between the graphical bar on the computer screen,
and the actual program transfer from the workstation to the RCX. They
have no way to comprehend what is really happening inside the computer.

Another example of this kind of error was the fact that some of the
children had a problem understanding what they actually did when they
transferred the program. They would create a program on their computer,
transfer it, then make some changes, and then test the robot again before
transferring the new program to the computer.

5.11.1 Findings using Pilot

Making the robot go forward, turn and then go backward was pretty easily
completed by most of the groups. But the Pilot version of Robolab also
provided the possibility to use light and touch sensors. They were much
harder to use than the timing icons. It was much easier just saying to
Robolab that you wanted a motor to go forward for a given time, than
telling the the robot to go forward until a touch sensor was activated. It
was also difficult to build a physical robot that is able to crash into a wall

82

and activate the touch sensor. We did not really want the children to use
the sensors just yet, but since they were an option in the higher versions of
Robolab, the children would naturally try them out.

This is a very typical example of children’s curiosity and the value of
bricolage. (Ben-Ari 1999) says in his article that bricolage is a way of learning
by trying and failing, something that is usually a good way to learn when
the subjects use a graphical programming tool. Since the children only had
to choose the different icons forming the program, it was very easy for them
to just test out the different icons and see what they did. And if the icon did
not make the robot do what the children suspected, they would have very
little chance of using the icon correctly. This was because the light sensor
and touch sensor icons was not self explanatory in the same manner as the
"motor go forward"-icon and the "stop after X number of seconds"-icon.

Most of the groups quickly advanced through the different levels of com-
plexity from Pilot 1 to the most complex version of the program, Pilot 4. In
the last level of the program you could have as many icons after each other as
you wanted, seeing six at a time. Some groups made huge incomprehensible
programs that just did different stuff, without really doing anything. If we
saw this, we had their program deleted and asked them to start over again
creating a program that made the robot do something smart. This way of
treatment was well accepted.

5.11.2 Findings using Inventor

Our main goal of the experiment was to see how well the children were doing
when they programmed the Lego robots using the Inventor part of Robolab.
To be able to create a working program in Inventor you have to understand
some of the programming and not just try to put different icons together and
hope for the best. This is still a minimalistic way of teaching programming
(Ben-Ari 1999). We only gave the children some basic training in using
Robolab Inventor. The rest they should be able to figure out by themselves.

At first the Inventor was very big and incomprehensible. A good feature
of Robolab was the different levels. When we used the lowest level (Level 1) of
the Inventor the icons were pretty easy to understand. A tutor demonstrated
how to place the icons on the desktop and how to sow them together. Then
they managed to construct the same kind of simple programs they did using
the Pilot version.

The children started creating their project assignment, first building the
Lego robot, and then programming it. And they had mostly the same prob-
lems that they had using Pilot. It was not difficult to make the robot go
forward, backward and turning, but using the different sensors caused a much
bigger problem.

When a program was to be transferred to the RCX you pressed a white
arrow on the top left of the Inventor windows. If this arrow was broken,

83

the program had some kind of syntactical error and pressing the arrow at
this state caused the program to show a new windows box with the error
message, and where in the program the error was located. But this function
was not very good, and the children had problems locating and fixing the
problems. This was mainly because the children had a tendency to create
huge programs without making sure that the different parts of the program
worked. This also made the bug-tracking much more difficult.

When trying to reconstruct our demonstration robot the problem was to
tell the computer program when the sensor saw a black line. We suggested
that they should guess what integer represented the switch from tape to
floor, but this was a very bad suggestion. We found out that we could get
the robot to tell us what brightness it saw, and using this knowledge the
children found out what level of brightness they were looking for.

The next problem was to find out what to do when one of the sensors
saw a black line. This was something most of the children easily found out
by themselves, since they had already learned to make the robot turn at will.
So it was just a matter of deciding how long the robot should turn before
it resumed driving forward. At the end of the last day most of the groups
had managed to build a vehicle that could do something when it saw a black
line.

Problems with Inventor

The biggest problem with Inventor was the sowing. To sow you had to
combine two icons. But you had to combine them in the right way. The
icons had 4 corners. One in, one out, and one for values and one last for
other things. So when you wanted to sow 2 icons together you had to make
sure you connected the right corners with the sowing thread. If you do not
the program will not work, and it will be very difficult to see why it does not
work. The sowing problem was the problem that caused the most confusion.
This is also the biggest reason we think that Inventor is not such a good
introductory programming tool.

One other big flaw in Robolab Inventor was that there was no way you
could comment out a piece of code, and this was very frustrating because
the children had a tendency to make giant programs that they themselves
did not have control over, and when these programs contained errors, they
did not know where to begin fixing them. So we, the tutors often deleted
over half the students code and told them to start over again, programming
some and then testing it before they moved on. This was not appreciated
but they did as they were told. And this way of programming was much
more successful. If Robolab Inventor had supported some way of structuring
and splitting up their program into different parts, it would have been much
easier for both the children and us tutors.

A smaller issue was that you had different kinds of mouse pointers. In our

84

Figure 5.11: The toolbox in Inventor with the different mouse pointers

assignments the children had to use three different kind of mouse pointers.
Figure 5.11 shows the different pointers. One pointer that looked like a reel
and was used for sowing the icons together (A). One pointer for getting icons
from the toolbox and moving the icons around on the desktop (C). And one
last pointer for changing the value of an integer box (B). The toolbox with
the different pointers were not on the desktop by default. And this caused a
problem each time you had to restart Robolab. You had to press the window-
bar on top, and tell Inventor to show the toolbox. We do not understand why
the toolbox was not a default part of the desktop, considering its usefulness.

5.11.3 Findings using KarelJ and BlueJ

At first they told the KarelJ robot what to do step by step. Then we told
them how to write and use while-loops and if-sentences. With just a little
syntax-help the children were able to program pretty flexible robots that were
able to pick up all the beepers in all the mazes presented. We even tried
programming a messing-robot that put out beepers randomly in the world,
and they had to make a flexible cleaning-robot that had to clean up the mess.
And some of the children managed to write quite complex programs picking
up the mess. But the messing-robot had a bug which made it impossible to
create a 100% effective and flexible cleaning-robot.

This way of programming was very different from the way the children
were used to programming robots. There are very few similarities between
Robolab and KarelJ-BlueJ. Still the children were able to construct pretty

85

flexible and complex robots. There could be two reasons for this. Either the
programming tasks the children were given were too easy and they only had
to apply some copy-paste technique in order to complete the programming
tasks they were given. The other solution is that they learned a lot of robot-
thinking using the physical Lego-robot first. And they were able to use the
same kind of thinking when programming the KarelJ-robots. It is probably a
good idea too keep the robot-domain when switching to a new programming-
domain. When doing just that the children will have fewer new things to
learn and can concentrate on the programming.

5.11.4 The API and the help web-page at Mølladammen

Even though the participants got a handout of the API for our version of
Lejos, they did not use it much. One reason for this was that it was not
easy enough to use, but the main reason was because they do not have any
training at all using any kind of manual. We told the children to use the
API to solve a problem, or to find out i.e. how to make the Robot play a
sound. In most of the cases when we did this the children managed to solve
the exercise without much help from us. But usually when the children had
a problem they just put their hand in the air and called for help, without
trying to find the error themselves. As mentioned in chapter 5.2 on page 60
I think this was because it was an easier and less time consuming way of
getting to the goal of finishing the assignment.

When working with the restaurant assignment, the groups were much
better at using the API that was delivered to them, than they were in the
previous assignment. When programming the Lego robots the assignments
were described on the help web-page and they did not receive a printout of
these assignments. During the restaurant assignment, both the assignment
and the API was on paper. In a lot of the groups one person would be
reading the API and advising and helping the one at the keyboard. And
this seemed like a successful way of working together. An example of pair
programming where one sits at the keyboard and is the driver, and the other
sits beside him and acts as a navigator.

5.11.5 Using Jcreator and RCXDownload

Jcreator was the editor we used during the java writing assignments, both
at Fjellhamar and Mølladammen. This editor was easy to use, and none of
the children seemed to have any problems using the editor to write or copy
and paste their Java code.

RCXDownload was used to compile and transfer the code written in
Jcreator. The children easily managed to select the Java file they wanted
to compile, and if no errors occurred during, they just pressed the transfer
button, and the program was transferred to the RCX.

86

When using one program to make the code, and another to compile it
and send it to the robot, it is easy to forget to save code before compiling
it. Even expert programmers have this problem. And it caused a lot of
confusion both among the teachers and the children. But in most of the
cases the children were good at finding out what the problem was. This was
probably because every time they wrote something new, the response from
the robot should be somewhat different from last time. And it was also easy
to see that the robot did what you wanted it to or not.

5.11.6 Hardware problems

There was some problems related to the use of the Lego sensors. The most
difficult sensor to use was the light sensor. One of the assignments was to
make the robot follow a black tape-line on the floor. The children would
often start programming right away and did not bother to find out how the
light-sensor really worked. They needed it to tell the RCX when it saw
something dark enough to be the black tape and not just the floor. This was
a common problem with most the groups. Some of the groups started with
a small test program using only one sensor, and just making the robot stop
when it hit the sensor. These groups got a lot longer with their programming
than the ones programming it all right away. A problem with understanding
the light-sensors, was that even though you got no reaction when the robot
was on the floor, it reacted as soon as you lifted it up. It was very frustrating,
for the children, to see the robot reacting when it was not supposed to.

The next thing to do was finding the correct light-value that showed
when the light-sensor saw a black tape instead of the floor. The children
guessed and used a trial and error-method. Some groups were told that
they could print the light-value on the display of the robot, and were shown
how to do this. In that way they could find out what value the floor was
and what value the black tape was. But even when this was taught to the
children, they had problems understanding that the middle-value between
these values were a good value to look for. I guess this requires more general
programming knowledge to figure out. There were also a problem that the
difference between the tape-value and the floor-value was so small, usually
under ten, that if they placed the sensor somewhere else later on, they had
to reconfigure the light-values.

The amount of light the Lego light-sensors saw varied a lot from robot
to robot. The reason for this was the distance the sensor was placed from
the floor, and how sunny it was outside. If the sun suddenly moved behind
a cloud, some of the sensor values had to be reconfigured. This took a lot of
time, but was unavoidable. Another problem was getting the vehicle to run
slow enough for the sensors to see the black lines on the floor. This was not
a big problem for them who had their robot with belts instead of wheels.

When trying to make the robot turn left or right different strategies are

87

tried out. This was a task most of the children managed without much
difficulties. When the Java API was used, the starting template had two
motors, and both of these motors were told to go forward at the same time,
thus making the robot run forward without turning. And using this template
the children experimented. One strategy was to tell the different motors to
go forward at different powers. They could choose between zero and seven,
where seven was the strongest and the fastest. So when they told one to
go at a speed of four and the other at a speed of seven, they thought the
robot would turn pretty smooth. And this was something they wanted the
robot to do when following the black line. The outcome of this strategy was
usually that the robot failed to turn enough. This was even a problem when
they used power level two on one of the motors, and power level seven on the
other motor. This was a bigger problem with the wheeled robots than the
belted ones. And the reason, of course was the friction between the rubber
tires and the floor was too great, so the most powerful motor would cause
the whole robot just to go forward. Another way of making the robot turn
was to stop one of the motors completely. And this worked a lot better with
the belted vehicles. With the wheeled ones, the forward tires would still
keep the robot from turning. Some of these groups removed the rubber from
their forward tires, and that helped a lot. But this was not something they
figured out by themselves.

I guess they had not learned much about the physics of the real world.
This is one of the downsides of using real world physical objects. A vir-
tual robot would not be subject to physical laws, like friction. During the
experiment we had a lot of problems because we used this kind of control-
technology. Sometimes the children would make a symmetrical robot and
tell both the motors to go at the same power, and the robot would still turn
slightly.

A Lego Robot is not very sturdy, and the different constructions that
the children had made kept falling apart. We had decreased the difficulties
of building a sturdy robot a bit, since we had created easy to use building-
instructions. The batteries had to be exchanged all the time, and every time
they were exchanged, we had to upload the lejos software to the RCX, and
this took five minutes to do. Transferring the compiled program from the
workstation to the RCX was also very unreliable. It took over a minute to
transfer a small program, and since the RCX relied on infra red beams to
communicate with a workstation the transfer was often interrupted. And
the transfer had to start all over again.

One of the groups had a strange idea of what the Lego-robot consisted
of. When asked to describe what their robot consisted of, they said that the
motors leftMotor and rightMotor had one sensor each. I find this a strange
thing to say. They may think of the RCX as a motor, and when they say
that it has different motors they may be thinking of the different ports of the
RCX. This group was very insecure. None on the group dared to say much

88

A girl on one group said this about the difference between the sensor
and the motor: “The motor is the motive power, and the sensor have to use
the motive power to do something” I am not sure what she meant by this,
and a little while later she said that she did not know what she was talking
about. It could have something to do with having to use some kind of power
in order to do something. Or it could be a matter of input/output thinking,
since the motor has some kind of output(the wheels that go round), and the
sensors only being able to sense things as an input-device. But this is just
speculations. Somehow she thought that the motor created the energy the
sensors used. The other people on her group convinced her that this was not
the case. The RCX works as a big battery, powering the motors and sensors.

During the experiment there was no one designated as cameraman that
had the responsibility to point the camera to the most interesting group and
switching to the correct computer screen. This was done by a random tutor
that had the extra time. During the project there were between two and
four tutors, and this was not enough to have one of those tutors constantly
keeping track of the cameras. This resulted in a quality loss in the material
captured by the cameras. Another problem was that the streaming server
had problems encoding the larger movie-sessions. When the camera had
been filming continuous for two hours and we wanted the streaming server
to finish the session, the streaming server stopped working and the whole
session was lost. So we found out that we better have shorter sessions.

I estimate that we lost approximately a days worth of filming material
because of this problem. The strange thing was that this problem did not
occur when we used the same material to film the children at Fjellhamar one
month earlier.

5.12 Problems with the assistant

The assistant was never really a part of the robot or the robot-program, it
was just an annoyance that we had to learn the children to cope with. It
created a lot of unnecessary confusion when the children were asked to draw
their robot. It was difficult to determine where the assistant really belonged,
if anywhere. Even worse was it if the children wanted to make a method in
the robot class, i.e. turn(). They had to find out that they could not call the
motor using the same syntax they used calling the motor from the control-
class. And at the same time they had to make a new assistant-object in the
robot-class in order to get hold of the wait-method. This created a lot of
unnecessary confusion. Figure 5.12 on page 91 shows how the assistant has
to be declared both in the control class and in the robot class. If we could,
we would have dropped the assistant. But we needed the wait method. We
tried to explain that the assistant sat inside the vehicle and controlled it,
but this analogy was completely wrong when we said that it was not really

89

a part of the robot.
During an interview one of the groups were asked what objects they

placed on their Lego robot in the Java program they wrote. Among the
objects mentioned was the assistant object. This was not supposed to be a
part of the Lego robot object.

When asked again if they really placed the assistant on their robot, the
answer was no. The place for the assistant is in the control-object. Another
group said that the one writing on the LCD-display was the assistant. This
was not the case, since the display-object was made in the robot, and did
not have anything to do with the assistant. A reason for this LCD misun-
derstanding could have been that the children did not physically place the
LCD-display on the Lego robot. It was just there from the beginning. And
this can be compared with the assistant task of getting the program to sleep.

90

class Control {
Robot volvo;
Assistant per;

Control(){
volvo = new Robot();
per = new Assistant();

per.wait(4000);
volvo.leftMotor.forward(5);
volvo.rightMotor.forward(5);
volvo.turn();

}

class Robot{
Legomotor leftMotor;
Legomotor rightMotor;
Assistant nils;

Robot(){
leftMotor = new Legomotor(A)
rightMotor = new Legomotor(C)
nils = new Assistent();
}

public void turn() {
rightMotor.forward(3);
leftMotor.backward(3);
nils.wait(1500);

}
}

Figure 5.12: A piece of code that shows how the assistant has to be made in
the robot-class in order to get the turn-method to work.

91

Chapter 6

Summary and Conclusion

6.1 Children and Lego Mindstorms

Lego bricks are something that almost all norwegian children have played
with at one time or another. The building bricks are very flexible and easy
to use. I dare to say that every child over 7 years in age is able to build a
small house out of Lego bricks. This makes Lego a good choice when using
it in a learning context. The problem with Lego Mindstorms is that it is
basically based on Lego Technics, and this is a kind of Lego that fewer of
the children have used and are familiar with. The children showed little
knowledge of the use of cogs and shafts, and during the experiments a lot of
time was used building sturdy functional robots.

Both the 11 old year boys and girls found this way of working with control
technology interesting and fun. So did the 14 year old boys. But the 14 year
old girls did not have the same enthusiasm for Lego Mindstorms.

This use of control technology is more interesting for boys than it is for
girls at the age of 14. The results from these experiments show that boys
have an easier time relating to robots and computer programming. The boys
were much more interested in programming the robots they had built. The
girls became bored much faster and started to wander from their group and
disturbing the other groups. But girls had no harder time understanding
how to use the control technology than the boys had.

It was also obvious that the boys are “supposed” to know more about
technical Lego than the girls. Chapter 5.2.2 on page 61 shows that when
asked how the physical robot works, the girls hesitated to give an answer,
and wanted the boy to answer instead. Even though the girls probably knew
as much as the boy did.

6.1.1 Working together

The children worked together in groups of three people both at Fjellhamar
and at Mølladammen. At Fjellhamar there were single sex groups, while at

92

Mølladammen the genders were mixed, either with two girls and one boy
or two boys and one girl. At Fjellhamar three people on the same group
was not such a bad choice as it was at Mølladammen. At Fjellhamar one
of the group members could build on the Lego robot while the others were
programming, or two could build while one was programming.

At Mølladammen two people on one group worked together and pro-
grammed in Java, while the third person wandered off to disturb another
group. Or one person worked with the assignment while the two other
people sat in the background and talked about something else beside the
assignment. In the last case, the person working alone with the task often
just had to turn his head and ask the others a question, and they would
reply with a correct answer and help the worker. This leads me to believe
that some of the people that did not show a big interest in the experiment
did not find it challenging enough, and lost their motivation. But they were
able to help schoolmates if they were asked to do so.

Still I feel that two people on each group would be better than three. Be-
cause we just had a limited number of Lego Mindstorms sets and nine groups
are already too many groups, because since we only filmed four groups, the
other groups just took too much time when they needed help. The third per-
son on each group wandered a lot around and disturbed the other groups.
The only exception was the group with three girls. They cooperated better
than the other groups, and none were left behind. This might have been a
coincidence, but maybe children at age 14 work better together if they are
of the same gender. Since the 11 year olds were better at working together,
and they had single sex groups, I conclude that at the age of 14 and below
you work better with people of the same sex.

6.2 Object oriented concepts with LegoMindstorms
and Lego

The programming environment from Lego called Robolab could not be used
as a tool for teaching object oriented concepts. There was no possibility
to use encapsulation. In addition the Pilot version was too simple and not
flexible enough, and the Inventor had too many design bugs, which made it
unnecessarily difficult to use.

Java and Lejos together with Lego Mindstorms make up a better teaching
environment for object oriented concepts. Even though Java is difficult to
use for beginners, the children were able to learn a lot of both programming
and program design during the experiment.

According to my results I would claim that the children understood part
of the program structure of the object oriented Java program. They un-
derstood that an object needed a name in order to use the object in the
computer program, but I do not think they understood that the name of

93

the object was a pointer to the object and not the actual object itself. The
results also show that they understood that they had to make an object
representation in the Java program in order to make the physical equivalent
object move. I.e., in order to be able to type something on the display of
the RCX they had to make a display in their Java program.

The results from the experiments, especially from the interviews at Møl-
ladammen, show that the children understood a lot about the program struc-
ture of their Lego robot Java program. They were very good at drawing an
object model of their robot on the paper that was handed out, and looking
at the drawing they were very good at writing the method calls I wanted
them to write. This was done while looking at their drawing. They managed
to follow the lines from the control-object to the object that contained the
method they wanted to use. And when changing domain and drawing an
object oriented house instead, the children performed just as well when writ-
ing the method calls I asked them to. It seems that they learned something
from programming the Lego robots that they could use in a more general
way. I draw the conclusion that some of the children understood the con-
nection between the dot-notation they used while programming the Lego
robots, and the connection between the objects in the computer world.

Because of the way you declare and assign objects in Java, the children
never understood why you had to type:
LegoMotor leftMotor;
at the top of the class and
leftMotor = new LegoMotor(A);
a little further down in the same class. During the programming they kept
forgetting either the first or the second.

It was easy to understand how to use a number or a letter in a parameter
after assigning a new motor or sensor like in the example above. But using
an object in a parameter was much more difficult. When asked, the children
explained their reason for typing
volvo.leftMotor.forward(5);
It was because “it is the volvo’s leftMotor that is ordered to go forward”
But during the interviews and the restaurant assignment when they needed
to use an object in the parameter, they failed to tell Java where the object
was located. As the discussion in 5.9 on page 76 shows, the children had
problems understanding that when they were supposed to do something to
table4 in the restaurant, they had to type objecta.table4 and not just table4.
Even though they answered that table4 belonged to the restaurant objecta,
they failed to type this in their program code. My conclusion to this is
that they did not really understand how the program structure was. They
managed to get it right when using a method, but this was probably because
they copied and pasted it from somewhere else in their program code.

A good way to learn the principle of encapsulation would be to make
methods in the robot object. During the experiment only one group made

94

such a method in their robot, a method called turn. The main reason almost
no groups made this kind of method was that we did not explain to the
children how to create such methods. The only group that made one was
helped a lot by a tutor. We hoped that the students would see the similarities
between the pre made classes like LegoMotor and ask the tutor how they
could make methods themselves like the one in the LegoMotor objects they
made. During the experiment no such questions were asked, so I feel that
we should have used some time explaining about methods before starting to
program the Lego robot.

Another reason for the absence of such methods was that the assistant
was originally placed in the control class only, so in order to access the wait
method you had to create one assistant in the robot class as well. And this
caused a lot of confusion. But as mentioned in chapter 5.12 on page 89 we
should have found another way to make the Java threads sleep.

All in all I think the children understood what object was supposed to
do something when they wrote calls like:
“volvo.legoMotor.forward(6);”
But I do not think they understood how the parameter worked. The problem
when you needed to place an object in a parameter, shows that this was
difficult to understand. But I guess the understanding would have been
greater if more groups had made their own methods in the robot class, that
they could call from the control class.

6.3 Lego robot programming in Java and the real
world analogy

It seems from the results presented in chapter 5.9 on page 78 that the children
had an easier time understanding how to use the methods from the restaurant
API when they had a connection with the real world. When the waiter would
take the orders, he would talk to the guests one at a time and writing down
their order. And this was something the children managed to do with much
ease while programming the restaurant. Seating the guests one at a time
instead of seating them all at the same time was more confusing. They
would rather type:
“objecta.waiter1.seatGuests(guest1, guest2, guest3, guest4, objecta.table4)”
instead of typing
“objecta.waiter1.seatGuest(guestX, objecta.table4)”
four times. So if we had managed to make the restaurant more like the
real world the children would probably have had less problems using the
restaurant methods correctly.

When building an object oriented house on a piece of paper, the children
were able to create rooms inside the house and furniture inside the rooms.
But when the object that was going to belong to the house, reprented some-

95

thing huge the children had difficulties understanding how it could be a part
of the house. An example is when the children were asked to make a garden
a part of the house. This caused a lot of confusion.

This shows that as long as the program structure correlates to the real
world, the children understand how to create an object oriented program.
And they understand how to use an object oriented program. But when
this correlation is missing, the children are confused and have a harder time
understanding how the program works.

The children had a tendency to assume that the computer knew what
they wanted the computer to do. It was difficult to understand that the
computer was stupid and had to be spoon-fed. (Pea 1986) talks about the
“superbug”. The idea of a hidden mind inside the computer that understands
what the programmer wants to achieve. And some of the errors performed
by the children can be explained by this incorrect assumption.

6.4 Using the tools

6.4.1 Using Lego tools

When working with physical objects, like Lego Mindstorms robots, a lot of
things can go wrong. Building a sturdy robot with the bricks provided is
a difficult task that takes a lot of time. When working with a computer
program on a computer screen, like KarelJ, you do not have to worry about
physical problems. See (Borge 2004) for an example of an experiment where
virtual robots were used instead of physical robots.

Using the light sensor was very difficult. When the sun outside moved
behind clouds and out again, the light values used for detecting a black tape
on the floor also changed. So the children needed to re-calibrate their light
sensor values all the time, and this was unnecessary frustrating and time
consuming.

During the experiment at Fjellhamar we found that we were not able to
find any ways of teaching object oriented concepts using the programming
language from Lego: Robolab. In general programming we found that the
Pilot version had too little flexibility and the Inventor version had a huge
flaw. This flaw was the way you sowed the different icons together. (See
chapter 5.11.2 on page 84 for a more detailed description of this problem).
The children were still able to create complex problems that used both loops
and if-statements, but this was something they managed to do using KarelJ
and BlueJ as well.

6.4.2 Using custom made tools

The text editor used when writing Java code was Jcreator. Together with
the RCXDownload tool for compiling the Lejos Java code and transferring

96

it to the RCX this was a combination that worked very well and was easy
to use. The children were good at saving their program when they had
made changes, and then using RCXDownload to compile and transfer their
program. The error messages provided by the compiler were normal Java
error messages. Understandably these were difficult to understand by the
subjects, but I do not think that it made any difference that these error
messages were given by another program than the editor.

6.4.3 Documentation - paper vs. digital assignment descrip-
tion

The children were not very good at using the Lego help page we provided
for them. The printout of the API were more often used than the pieces
of code provided by the web-page. They were also much better at finding
a solution to their problems using the API, rather than reaching a hand
in the air, when programming the restaurant, compared to when they were
programming their robots. This was probably because the assignment tasks
themselves were on a piece of paper, and not on the help page, when the
children were programming the restaurant.

6.4.4 Tools summary

All in all I would say that using physical control technology, like the Lego
robots, has a lot of time consuming drawbacks. But for 11 year olds I think
this way of working is much more entertaining than using computer simulated
robot program. The 14 year olds were tired of playing with Lego after two
days. The last day they used a computer simulated program, namely the
restaurant simulation. They old welcomed the change.

6.5 Assistant

To be able to make the Lego robot go forward for a given amount of time,
we needed to use Java’s sleep method. But we wanted this sleep function to
be part of the package we had prepared for the children. The sleep method
is part of the static Thread object. We did not want the children to have
to relate to more than necessary, so we wanted to hide this fact, and rather
just use the sleep-method like any other method the robot could use.

The solution to this problem was to create an assistant that had a wait
method. But as you can see in this thesis, placing this assistant in the
control class created a lot of unnecessary confusion. Another way to “hide”
the sleep-complexity would have been to put the assistant in the robot class.
Then when the children wanted the robot to go forward for a given amount
of time, they would use the wait method in the same way they used i.e. the
forward method:

97

volvo.rightMotor.forward();
volvo.per.wait(1000);
In the example above “volvo” is the name of the robot and “per” is the name
of the assistant. A third option would have been to make the wait method a
part of the robot class or the control class. But we wanted the wait method
to belong somewhere, like all the other methods did.

I think now, that the best solution would have been to place the assistant
object in the robot class. Then it would seem that the robot waited until it
did something else, and that is an analogy I think would have been easy to
understand.

6.6 Hints for similar experiments in the future

It would be wise to spend a day or two just playing with the Lego and
getting used to the camera, before actually starting to gather result data.
Very much time was spent in vain looking through videotapes of children
playing with Lego in a less constructive way. And since the experiment only
lasted for three plus one day, we would have gotten more interesting results
if more time was spent programming instead of fooling around. This is very
logical, that the more time you use gathering data, the more relevant data
you will get. But if i.e. the school had used a couple of days filming the
people we would be filming, and just playing with the Lego as a spare time
activity. And me and the other tutors would not have to be a part of it.
And then when we came and did what we wanted to do, the children would
have gotten used to the cameras and the Lego. But I guess this is just using
the schools valuable time so that me and the tutors would not have you use
so much of our own valuable time.

I would also recommend having one person dedicated to follow the most
interesting group with the camera. This person will see to it that when a
group of participants work on a problem, the whole session from finding the
problem to working out a solution would be recorded. This was something I
really missed when going through the recorded material from the experiments
described within this thesis. This requires that one more person has the time
to participate in the experiment, but I think it will be worth it.

At last I would like to mention that when you decide to have a pilot
experiment before the “real” one, you should use more time looking through
the results from the pilot experiment before the second experiment takes
place. This was something we failed to do, and we would probably have been
better prepared for the second experiment if we had more time between the
experiments.

98

6.7 Implications for teaching

Teachers that plan to use Lego Mindstorms and Java as tools for teaching
programming and object oriented concepts should have very well defined
assignments for the children to solve. And the assignments should have an
increasing difficulty, so that the children are challenged all the time.

Children between 11 and 15 are also very interested in competing with
each other. They put a lot more effort into what their doing if it means
that they can beat someone else. This was very obvious when looking at
the children at Mølladammen. They wanted to solve all the assignments as
quick as possible in order to be better than their schoolmates.

It is important that the assignments are created in such a way that taking
shortcuts is difficult. The children do not always want to learn, but they like
solving assignments. What I mean is that their main motivation is getting
the correct result from the assignment and not learning.

Before introducing Java and the Lego it would be wise to introduce the
object oriented concepts that you want to teach. You could make the children
draw a house, or something else, on a piece of paper. Doing this in the same
manner as I did during the interviews at Mølladammen can be a good way
to introduce encapsulation and inheritance. Make them i.e. draw the house
they live in, the different rooms, the furniture, and the family members.
And let them give the different objects in the house different properties
and abilities. This may be very boring for the children, at least if they are
teenagers or older, so you should only spend some hours on it.

A lot of time was spent building the Lego robots so that they would be
sturdy enough. This time can be saved if building templates are handed out,
and only the pieces needed to build a simple robot are given to the children.
Then they can concentrate on the programming and they do not have to be
frustrated about a Lego robot that keeps falling apart.

Use some time before the building starts to explain how the different
sensors works. Especially the light sensor. This sensor is difficult to use,
and it is difficult to understand why it is not working the way you want it
to work.

Put the children together in pairs. Groups of two work much better
than groups of three. You should probably use single sex groups as well.
It will lead to more competition between the groups, and it will make the
assignments more fun. And there will be less competition inside the group,
so the members of the groups are more likely to tell each other what they
think they know, instead of holding it to themselves and never dare to ask
the group mate.

And if you are able, you should get the children to explain to each other
what they are thinking and discuss among themselves. (Holmboe 2004)
recommends the same in his article. This will give both the tutors and the
children a deeper understanding of what they are trying to find out.

99

A couple of times a day there should be a gathering in another room
without the computers and the Lego. When more groups find something
difficult, this should be discussed in these groups, and children who think
they have an answer should be allowed to explain to the other students what
he or she thinks. This way the children will learn from each other, which
is a much better way to learn something, than from a teacher in front of a
blackboard.

These project days should never be more than two days in a row. Chil-
dren get tired when working with difficult assignments. But if this course
could be a course like any other course, i.e. two double classes during a week,
the children would have had something to look forward to, and maybe think
about the things they have learned.

6.8 Comparing my results with the results from
Borge(2004)

(Borge 2004) wanted in his thesis, to find out if the use of graphical environ-
ments is good tools for introducing object oriented programming the objects
first way. His conclusions indicate that the use of graphical environments
help the students visualize how their code affected the movement of the Java
objects. This is something I also feel that the use of physical Lego robots
did for the children in my experiments. When they made a little change in
their code, the robot did something different, and the children understood
what in their code, made this difference.

Borge complains that he had too few participants to be able to draw
any strong conclusions. My experiments had too many participants, but not
enough recording tools to manage all of them. So we concentrated on four
groups in each of the experiments.

Both the experiments described in this thesis, and the ones in Borge’s
thesis concludes that the subjects learned a lot of the object oriented con-
cepts, got an understanding for object oriented programming and how to
make their own objects before learning more imperative programming. In
all the experiments, little time was used teaching procedural programming,
like loops and if-statements. They also tried to avoid introducing the main
method and the use of the Java phrase static.

Both theses conclude that it was fun to use graphical/physical environ-
ments to learn and program. But none of the environments are used much
in teaching and need further research. They need further study. Study by
experts before being used more in experiments. But we agree that this might
be the way go.

Borge talks about using BlueJ and KarelJ together. This was something
we did, but it is not well described in this thesis. But at least we got the
environments to work together. And the children at Fjellhamar managed to

100

solve our assignments, so it could not have been all that bad.

101

Bibliography

Atheron, J. S. (2003), Learning and teaching: Assimilation and accommod-
ation. http://www.dmu.ac.uk/ jamesa/learning/assimacc.htm.

Ben-Ari, M. (1999), ‘Bricolage forever!’, Proceedings of the 11th annual work-
shop of the Psychology of Programming Interest Group .

Berard, E. V. (2000), Abstraction, encapsulation, and information hiding.
The Object Agency, http://www.itmweb.com/essay550.htm.

Berge, O. & Fjuk, A. (2003), Socio-cultural perspectives on object-oriented
learning. Presented at ECOOP 2003.

Bergin, J. (2000), Why procedural is the wrong first paradigm if oop is the
goal. http://csis.pace.edu/ bergin/papers/Whynotproceduralfirst.html.

Borge, R. E. (2004), Teaching oop using graphical programming environ-
ments, Master’s thesis, University of Oslo.

Borge, R. E. & Kaasbøll, J. (2003), What is "oo first"? Presented at ECOOP
2003.

Boulay, B. D. (1986), ‘Some difficulties of learning to program’, J. Educa-
tional Computing Research, Vol. 2(1) .

COOL (2002).
*http://www.intermedia.uio.no/cool/

Denis, B. (1993), Control Technology in Elementary Education, Vol. 0,
Springer-Verlag.

Detienne, F. (2002), Software Design - Cognitive Aspects, Springer.

Greeno, J. G. & Collins, A. M. (1996), ‘Cognition and learning’, Handbook
of Educational Psychology .

Groven, A.-K., Hegna, H. & Smørdal, O. (2003), Oo learning, a modeling
approach. Presented at ECOOP 2003.

102

Holmboe, C. (2004), The linguistics of object-oriented design: implications
for teaching. Accepted for Educators Symposium, OOPSLA2004.

Kolikant, Y. B.-D. (2004), ‘Learning concurrency as an entry point to the
community of computer science practitioners’, Computers in Mathem-
atics and Science Teaching .

Lattanzi, M. & Henry, S. (1996), ‘Teaching the object-oriented paradigm
and software reuse,’, Computer Science Education, V7, N1 7(1).

Lego Mindstorms (n.d.).
*http://lejos.sourceforge.net

Lego Mindstorms for schools (n.d.).
*http://lejos.sourceforge.net

LEJOS. Java for the RCX (n.d.).
*http://lejos.sourceforge.net

Meyer, B. (1988), ‘Object-oriented software construction’, International
Series in Computer Science .

Papert, S. (1980), Mindstorms - Children, Computers, and Powerful Ideas,
BasicBooks.

Pea, R. D. (1986), ‘Language-independent conceptual "bugs" in novice pro-
gramming’, Journal of Educational Computer Research .

Robins, A., Rountree, J. & Rountree, N. (2003), ‘Learning and teaching
programming: A review and discussion’, Computer Science Education .

Shackelford, R. L. & Badre, A. N. (1993), ‘Why can’t smart students solve
simple programming problems?’, International Journal of Man-Machine
Studies .

Stroustrup, B. (1994), The Design and Evolution of C++, Addison Wesley.

Valcke, M. (1993), Knowledge Representation and the Learning Process: Tak-
ing Account of Developmental Features and Support Features in Inter-
active Learning Environments, Vol. 0 of Denis (1993), pp. 13–25.

103

Appendix:

Pages 1 – 13
 Children understanding of object orientation.

An article for the COOL anthology written by Jens Kaasbøll, Roar Granerud, Richard
Borge, and Christian Holmboe.

Pages 14 – 18
Teaching the object-oriented concept Encapsulation to 14 year old children using
Lego Mindstorms and the problems with this kind of teaching method.
An article written as a part of the Informatics Didactics course at the University of
Oslo. Written by Roar Granerud, Ruth Merethe Evang, and Marte Ødegaard.

Pages 19 – 26
The drawings drawn by the children at Mølladammen the last day of the experiment.
They are object oriented UML-like diagrams of their object oriented robot program
and an object orientet house.

Pages 27 – 36
The day by day plan for the experiment at Fjellhamar. Written by Christian Holmboe

Pages 37 – 40
The custom made Lejos API for programming Lego robots used during the first two
days at Mølladammen. Written by Roar Granerud, Richard Borge and Christian
Holmboe

Pages 41 – 45
An API for programming an object oriented restaurant. This was used during the last
day at Mølldammen. Written by Richard Borge and Christian Holmboe

Pages 46 – 49
A short recipe for installing and configuring Java, RCXDowload and JCreator. Written
by Roar Granerud

Pages 50 – 71
The Web page used as a helping tool at Mølladammen, containing assignments, API,
helpful hints and a step by step description for building a sturdy Lego robot.

Pages 72 – 73
The Lejos API Java code. Written by Roar Granerud, Richard Borge and Christian
Holmboe

 Pages 74 – 86
The Java code written by the children at Mølladammen during their Lego robot
programming assignments.

Pages 87 – 96
The Java code written by the children at Mølladammen during their restaurant
programming assignments.

Pages 97 – 100
The API Java code for the restaurant assignment. Written by Richard Borge and
Christian Holmboe.

Pages 101 – 110
The transcripts for the recorded material from the experiment at Mølladammen.
Transcribed by Roar Granerud.

Pages 111 – 120
The transcripts for the recorded material from the interviews the last day at
Mølladammen. Transcribed by Roar Granerud.

Roar Granerud, Jens Kaasbøll, Richard Edvin Borge and Christian
Holmboe

Department of Informatics, University of Oslo

{rgraner, jensj, richared, christh}@ ifi.uio.no

Children’s Understanding of Object-Orientation

Abstract

Previous studies have shown that adults can learn object-oriented programming through an

objects-first approach. The experiment reported in this paper demonstrates the feasibility of

objects-first also when teaching 14 year olds. The software tool used for teaching, Lejos,

defines the classes to be used, and objects of these classes have physical counterparts in the

Lego Robolab components that execute the children’s programs. Lejos required programming

with exceptions, which was hidden by a shell that was constructed for the experiment. A

procedural, graphic programming package, Mindstorms, also to be used with Robolab, had

flaws in interface design and mechanisms for structuring imperatives.

Introduction

A previous literature survey concluded that novices preferred a procedural structure of their

analysis of a domain, which corresponds to imperative programming rather than the object-

oriented approach (Détienne, 1997, p60). Recent studies of learning object-oriented

programming have shown that novice adults can learn to create subclasses, create objects and

call methods after one day of training, even though they could not distinguish between

references and objects at that stage (Borge, Fjuk and Groven, 2005). A condition is that the

domain is simple and that the objects created are visualized. A study of mid term mastery in a

beginners’ OO procedural first course, showed that the students were able to use the basic OO

concepts and syntax, but they struggled with program design, and they tended to code directly

without sketching models (Kaasbøll et al, 2004).

Previous complaints by professors who state that OO is too difficult to learn during the

first year of study have thus been refuted. The research seems to show that adults are able to

learn programming concepts in the sequence these are taught, and that they struggle with

translating the problems into the formal expressions required and designing their programs,

while the syntax and semantics of the programming language constitute smaller obstacles to

their learning.

In order to know whether these findings are age specific, and whether teaching object-

orientation can be done in schools, two experiments with teaching OO to grade 6 and 9

classes were carried out.

Tools

Robolab

The LOGO.language (Papert, 1980) is designed to program floor turtles that can be used to

draw different geometrical figures on a piece of paper. Children have used LOGO for learning

imperative programming. The idea has ben taken up by Lego (2005) in their design of the toy

construction set Mindstorms and the Robolab (2005) programming environment.

11

The central part of Mindstorms is a control brick (RCX), containing three ports to motors

or lamps, and three ports to sensors, a display, a loudspeaker, an IR eye for receiving

programs from a PC, and batteries, see Figur 1. The sensors can detect light, touch, rotation

and temperature. Robots like cars have to be built with motors, cog wheels and the control

centre.

Figur 1. The RCX with motors and sensors attached.

The Robolab programming environment has two user levels: Pilot and Inventor.

Pilot is divided into four levels, each with increasing complexity and functionality. At the

first level you are given a working program consisting of two icons, one to signal the motor to

move forward, and one to say for how long. These icons can be exchanged with similar icons,

i.e. making the motor go backward and changing the time before full stop.

At the Inventor level you start with an empty desktop except for the start and the stop icon,

represented as traffic lights. To build your program you have a tool case with different icons

representing the actions the robot can perform, and additional icons representing numerical

value. You drag and drop the icons you need onto the desktop and move them around using

the mouse. Some icons represent if-forks that read sensor values. The sequence of operation is

determined by a thread that has to be sewn between the icons.

Figur 2 shows a small program using an if-fork. The program checks if the light-sensor

value is higher or lower than 50 (C). If it is higher, the topmost route is chosen, and if it is

lower or equal the other will be used. Icon B represents the port on which the physical sensor

is mounted on the RCX. Icon E represents a motor mounted on port A on the RCX. It will go

at a power of 3 (D) and will do so for 1 second (F). The difference between the routes is the

direction of the motor. The paths are merged (G) and icon H makes it jump to the landing-

icon (A).

22

Figur 2. A Robolab Inventor program with an if-fork (C) and a goto (from A to A).

Lejos

Lejos (2005) is a Java tool for programming Lego robots with classes Motor, Sensor, etc. Its

API requires knowledge of Static, Main and Exceptions, and experienced programmers used a

substantial time to learn utilizing it. In order to hide complexity, a shell was programmed so

that all threads and exceptions were hidden through two classes called Control and Assistant,

which had to be instantiated in the students’ programs.

KarelJ with BlueJ

These tools are described elsewhere in this volume (Borge, Fjuk and Groven; Hegna and

Groven). In this experiment, KarelJ was run through BlueJ, in order to have a visual interface

also of the code.

Restaurant simulation environment

An environment was built in Java for simulating guests ordering dishes from waiters, chefs

cooking and waiters delivering the dishes to the correct tables (Hegna, 2003). Class Guest

with methods like chooseFromMenu, class Waiter with placeByTable(guest,table),

receiveOrder(guest), findCorrectGuest(table), etc. The environment opens for generating

objects and writing method calls closely resembling the business logic that the pupils have

experienced when visiting restaurants. No visual representation of the objects appeared at the

screen, when executing the programs, ASCII output like the following appeared:

Hanne has received Ice cream as a desert. And this is correct.

Per has received Salad as a main course. Incorrect. Per ordered Beef.

Method

The class of 11-12 year olds consisted of 27 kids in a primary school, and the 28 fourteeners

were in the second of three grades in the mandatory, lower secondary school.

The 11 year olds were given three days of teaching, mainly with procedural programming

of Lego Mindstorms with Robolab. One OO activity in between consisted of a half an hour

paper and pencil exercise on specialisation. The last day the kids used KarelJ and BlueJ.

33

The 14 year olds were instructed by means of Java programming of Lego robots for two

days, while the last day was devoted to Java programming in an environment with the

restaurant simulation.

All sessions were videotaped. This was done by cameras that were able to film both a

group of children and their computer screen at the same time. The discussions were also

recorded with a microphone. The camera focussed on some of the children, and for periods,

those who seemed to be of most research interest, were selected for recording. Out of 35

hours of teaching, around 25 hours were video recorded, partly due to a technical breakdown

one day.

Programs and paperwork done by the children were collected.

During the last day of the experiment, four groups of pupils were interviewed, two of

which were selected due to their mastery of the programming, and two more at random

The videos were viewed in order to take notice of the specifically OO issues that the

children worked on. Also other issues of possible interest, like intense cooperation and clues

of motivation were noticed. Relevant video intervals were then transcribed.

Studying with hardware and software

Age and gender

All of the 11 years old were eagerly using the tools for the three day period. Some boys spent

most of their time constructing the mechanics of the cars and had little interest in

programming the robots. Two groups consisting only of girls and one of boys were

constructing complex programs. These groups, constituting 1/3 of the class, also picked up on

imperative Java programming when this was presented during the last hour of the three days.

The 14 years expressed that Lego was for kids, and less enthusiasm was observed. The 14

year old girls became bored much faster than the boys. During the interview a boy said that he

found the experiment fun at first, but it became a little repetitive on the last day. He hoped

that they could put more gadgets on the robot, for example a web-cam. When asked to

describe what they did with their Lego-robot the girls answered that they solved assignment 1

and 2. For most of the girls this was just another school exercise. One group, when asked to

describe what the robot consisted of, misunderstood and thought that they were to explain

how the physical robot worked. The two girls on that particular group pushed the boy to do

this explanation. But when they found out that it was the robot-program that should be

explained, they were at least as active as the boy. Some of the boys enjoyed programming,

and tried their best to program a good Robot, but they did not seem as smart or fast as the

girls.

Pair programming

Studies have indicated that pair programming helps poor performers to retain their studies and

pass the exam in introductory programming courses (McDowell et al, 2002; Herzog, 2005).

The pupils in these experiments were organized in triplets, partly due to three being less

vulnerable if one drops out, and partly due to practical circumstances like available space and

Lego sets. The principle of shifting being the driver was mildly emphasized, and the teachers

in general did not intervene if one of the kids took control or if one played with the bricks on

the floor. The latter happened in several of the 11 years groups.

In many groups of the 14 year olds, one person would be reading the API and advising and

helping the one at the keyboard, while the third paid little attention. This seemed like a

productive way of working together, but little is known of its effects on learning.

44

 In one group consisting of two girls and a boy, the boy would try hard to understand the

program, and the girls would just chat about other stuff and help occasionally when the boy

was stuck. While this case may correspond to prejudices of the genders, it also shows that

some of the back seaters picked up the issues faster than the drivers.

The relaxed, triplets programming demonstrate that the children find their ways of

working based on their interests and skills, to some extent taking notice of the instructions

given. While some girls socialized and some boys played with the bricks, the majority found

their ways of learning the main topic of the sessions. Pair programming seems to be too rigid

for studying at this age.

Graphical and textual programming

When working with Robolab, the children had a tendency to create a huge program that was

difficult to understand, before testing the program. When they finally did try to transfer the

program to the RCX, they received lots of error messages and finding the errors was difficult.

When using KarelJ and BlueJ, the children were much better at writing small portions of the

program before testing it. When an error occurred, finding its location in the program code

was easier. One reason for this change of behaviour could be that they had learnt from the

experience with Robolab. Another explanation is that writing the actual program when you

just use text in an editor is less fun than pasting and moving graphical icons on a computer

desktop. And since the writing is less fun the children are more curious to see whether they

programmed correctly so far.

Threads and gotos

The 11 year old pupils struggled both with the syntax and semantics of the Robolab Inventor

programming tool.

The icons have 4 corners. One in, one out, and one for values and one last for other

options. So when you wanted to sow 2 icons together you had to make sure you connected the

right corners with the sowing thread, and the icons did not display the functionality of their

corners. Finding errors when connecting to the wrong corner proved difficult for the kids.

When the size of the programs extended one screen, the program structure resembled

spaghetti, and neither the pupils nor the teacher were able to mend them. The Robolab

language enables program structures like the following

while (…) {

 …

 label:…

 …

}

…

goto label;

So even small programs could be unintelligible.

Nuts and bolts

While the Lego toys trigger enthusiasm amongst the younger kids and also supports a

program execution that can easily be experienced at all age, mechanical problems detracted

attention away from programming for long periods. For example, when programming a motor

to run faster than the other in order to get a car to turn, the car did not turn due to the friction

between the rubber tyres and the floor. The kids had to learn how to work around this, eg, by

55

equipping the car with a belt. Learning to build a sturdy construction and use cog wheels also

consumed time. The pupils thus acquired other skills than programming when working with

the Lego robots, which also may be valuable learning.

Object-oriented skills

When learning new concepts, using them to refer to the things in the world which they are

intended to denote is a symptom of mastery. Also, distinguishing between concepts that are

similar is an important skill.

Getting the objects in the right place

The following discussion from the Java Lego programming starts with a child raising her

hand and asks the tutor how they can make the robot write something on the display:

Child1: How can we make it write name?

Tutor: Write?

Child1: Name

Child2: I want to write something on the display

Tutor: Aha, write on the display

The tutor then uses their printout of the API and tells the children to use Display.

Child3: Class Display

Tutor: You have to find out where the Display belongs

Child3: Is it here? (points the mouse to the top of the Robot class)

Tutor: Where does the Display belong....it belongs to the yellow box..so....

Child3: Ok...here then (and points to the top of the Control class.)

At the top of their control class they have already declared and made a new Speaker object.

This is not correct, since the speaker also is a part of the robot and not of the control.

Tutor: Sounds good, it was here you made the Speaker

Child2: What shall we call it?

Tutor: You have to make a new Display first

Child3: How do we do that?

Tutor: Look at how you did it with the Speaker

And it ended up with the children placing it at the same place where they had placed the

Speaker. In the same groups program the motors and the sensors were placed correctly in the

Robot class.

Subject – predicate - object

We found in many of the instances that the children had problems understanding the

difference between the dot and the parentheses when they called a method with a parameter

value. They would write:

leftMotor.forward.rightMotor.getSpeed

instead of

leftMotor.forward(rightMotor.getSpeed())

They had not been taught that such method calls have the same structure and semantics as the

simple grammatical construction of subject – predicate – object, and that the grammatical

66

object has to be enclosed in parenthesis in Java. Even if this had been explained, their

knowledge of grammar of their mother tongue might not have been good enough to constitute

a foundation for learning the programming grammar.

Dots and the genitive ‘s’

There were two different ways of talking when the children called the methods. Along with

their writing they said either ‘period’or ‘s.’

This following conversation starts when the group has made an if-test that checks whether

one of the light sensors sees a black tape. They return from the testing and starts writing the

test for the other one.

Boy: volvo period mummi period luminosity 45

(writes volvo.mummi.luminosity)

…

Girl1: leftMotor stop

Boy: the boy types volvo.leftMotor.stop()

It ends with one of the tutors coming over to the group and helps them with the rest of the

program. More of the groups where the pupils said ‘s’ as in “volvo’s leftMotor’s forward”

completed the exercise.

Using the genitive ‘s’ is a sign of understanding the semantics of the dot notation.

Object, class and reference

The groups were also asked whether they could have more that one robot. The answer was

yes, but these could not have the same name. The children and the teachers used the term

“name” as the name of the pointer to the actual robot-object, and not a name-variable in the

robot-object. They also knew about the control-class as the start of the program, also visible

in Figur 4, where the control-class doesn't have a name, and doesn't have a pointer to it from

anywhere.

The 14 year olds seem to distinguish between class and object, but they have not learnt

that references and objects are different kinds of entities. This distinction was not taught, in

order to reduce the number of concepts to be absorbed.

Without being aware of the distinction between objects and references, the pupils’

struggling with declaration of references should not come as a surprise. Declaring

LegoMotor leftMotor

and then generating and assigning

leftMotor = new LegoMotor(A)

seemed like saying the same twice and remained unintelligible.

Navigating to the objects

During the restaurant assignment, one of the groups of 14 year olds asked a tutor how they

were supposed to use the menu object. In order to explain it, the tutor pointed to an error in

their code. The group had written the following line in their control class code:

objecta.butler.changeNumberOfSeats(table4)

The correct answer would have been:

objecta.butler.changeNumberOfSeats(objecta.table4)

77

The following conversation took place between the girls who wrote the incorrect version and

the tutor:

Tutor: Why have you written: objecta.butler ?

Girl1: because we thought that.....

Tutor: I'm not saying that what you have written is wrong'

Girl2: Because it is the butler to the....

Girl1: because it is the butler at the restaurant objecta

Tutor: Correct. Table4, where is that located?

Girl1: At the restaurant objecta

Tutor: So the butler belongs to the restaurant and...

Girl2: and it is the restaurant's menu

Tutor: Yes, but as you said, table4 is located in the restaurant

Girls: ???

Tutor: You cannot write table4, it needs something more

Girl1: No

Tutor: Yes

Girl1: Aha, so you have to type objecta here

(points to the start of table4 and types: objecta.table4)

Tutor: Yes, you have to feed the computer with a teaspoon

These pupils managed to distinguish between the grammatical entities of subject, predicate

and object in their method call. This may be due to two days training. When navigating to the

Java object that had the role of the subject to carry out the action, they also managed to use

the dot notation correctly, but they did not transfer their skill of navigation to the parameter.

They had never seen dot notation in actual parameters before, which may explain their failure.

Another explanation is that they may have thought that when the statement was preceded

by objecta. , this also applied to the parameter. This would have constituted a

misunderstanding of the semantics of the dot notation and statements of method calls.

A third explanation is that the first path led them to the butler, who knew table4, so

therefore it should not be necessary to tell him that the table was in his restaurant. Such an

inference from the real world to code was evident in the next issue.

Generalization – specialization

Subclasses with Java notation was not taught to any of the classes. However, in order to

assess the possibility that the children could understand this concept, a test was performed

with the 11 years class.

The kids gathered in front of a blackboard in a room without computers. A teacher

explained during 5 minutes the biological hierarchy of animal species and draw Figur 3 on the

blackboard, emphasizing that these relations were between types of animals, except the lowest

level, where individual animals were present. The children were then requested to extend the

hierarchy, and more than half of them eagerly suggested animals like wasp, salmon, parrot,

their pet parrot Nina, dogs, their dog Snoopy, and more pets, all placed correctly in the

diagram. This extension took more than 5 minutes and was halted by the teacher.

The task given them afterwards was to draw a similar diagram of the Lego robots that the

groups had constructed. The teacher mentioned that there were cars, some with belts, and that

one group had made a machine for sorting bricks according to their colour.

88

They worked individually for about 10 minutes, and then their drawings were collected.

Animals

Insects Vertebrates

Fish Birds Mammals

Elephants Cats

Pussy

Figur 3. Generalization hierarchy presented to the children

Out of 27 sketches, 15 were generalization hierarchies of robots, three of which had errors.

There were six aggregation hierarchies of the type Robot consists of Motor, Wheels, Sensors,

etc., and six that were of less obvious order.

Half of the class of 11-12 year old kids were thus able to create their own hierarchy of

subclasses of entities that they had not categorised like that before. These kids have the

necessary general understanding of the relationship that is needed in order to utilize the

subclass mechanism in OO languages.

When switching to KarelJ at a later day, the kids had to modify a subclass of class

ur_Robot. However, time was running short, so the children were not told about the Java

concept of subclasses or the relation with the generalization hierarchy that they had made

previously. No conclusion regarding the children’s understanding of subclasses can therefore

be drawn.

Reality, models and code

The pupils who were working with Lego toys mostly had a limited and straight forward

domain of reality to model in their programs. In addition to the objects that represented

motors, sensors, etc, there were two abstract objects in their programs that originated in the

programming environment. An object of Class Control was the start of the program,

which was described as a control-center for controlling the world. This is similar to the main-

method, but without the Java static notation. There was also an Assistant object for

hiding thread-programming that has to be included in order to control execution.

When asked to draw a model of the robot program, some of the 14 year olds came up with

the model in Figur 4. The Control and the Assistant are included, and an additional

assistant was also included.

Another group was asked what the robot consisted of, and asked to draw this on the paper.

A member of the group drew a motor-object and attached it to the robot-object. When asked

whether the robot only consisted of one motor, another participant in the group drew the

second motor on the model. The robot also consisted of two touch-sensors and one light-

sensor. However, the children did not make object-boxes like they did with the motors, but

instead just wrote the sensors directly into the robot-object. None of the other groups did the

same.

99

Figur 4. M odel of the robot

The robot case had a reality immediately available for experience, the code and the model

drawn by the pupils. In the restaurant case, the reality had to be imagined, based on the

children’s prior experience, while the code was retained. In the last exercise, also the code

was omitted, and this time the kids were asked to make a model of a house.

One of the groups made the model reproduced in Figur 5. Without instruction, they

included the Assistant and Control. They were instructed to make a garden, And looking at

the drawing the children have to tell the gardener to cleanup for a number of seconds. The

method is called from the control-object. Their first try at the long call sentence was:

control.househansen.garden.gardener.cleanup(1000). However, you don't

have to type control. when the call is made from the control-object. This mistake was not

done so much in the coding of the robot, but without the programming environment of the

robots, the kids seem to place themselves outside the model and interact with it through the

control object.

Some of the girls feel that the call-sentence is unnecessary long. They claim that since the

garden is such a big part of the house, the program already knows that the gardener is located

in the garden. They may assume that the program already has a representation of the real

world that is similar to their own.

Concerning the garden, one can argue that since it is outside the house, it should not have

been modelled as included in the house as the same way as the sofa. If they were to follow the

logic of inclusion consistently, they could have included the house in the garden and not vice

versa.

1010

Figur 5. A model of a house.

Discussion and conclusion

Based on the observations of the different topics of mastery above, stating that some kids

understand object-orientation would be a sweeping statement that would have to be modified.

What we see is rather that the competence of OO programming is constructed by a number of

skills of using the different OO constructs in ways that make the programs perform and that

the teacher finds acceptable. Also, the pupils have to be able to relate code to its execution

and to the real world being represented.

In addition to the technical skills, the students have to acquire the social competence

needed for programming, which at this introductory stage includes commenting peers’

performance, helping others and interacting with the tutors.

Comparing with Borge (2004), the issue of class, object and reference is similar and

triggered by the way these concepts are taught rather than the age of the learners. Détienne

(2002, p65) mentions that novices have a tendency to use instances of classes without having

generated them, which corresponds to the kids using references to objects without having

declared the. The subject-predicate-object confusion has not been reported earlier, but the

authors have seen this mistake amongst novice university students during teaching

introductory programming. No earlier documentation of the navigation problems have been

found either, but in general assuming that the computer knows more than you have told it is a

common “superbug” by novices (Pea, 1986). The question of where to place a class in the

code or an object in a model is also well known amongst adults, and also experts have to

struggle with such design issues.

Kaasbøll et al (2004) noted that learners who in their programs have to represent a real

world domain not being present for experience have a much higher cognitive load than if

1111

programming visible objects. The children’s quick learning of the classes of Motor, Sensor,

etc, corroborates this hypothesis.

The Robolab and the Lejos programming tools for Lego robots enabled learning

programming in a setting where the execution of the program is visible in space, which eases

the experience of how the program works, as compared to imagining methods being called in

the RAM of the computer. However, Robolab deserves improved language mechanisms for

structuring the imperatives, and Lejos can be improved through hiding threads, exceptions,

Static and Main.

The restaurant simulator was useful for programming a real world domain before having

learnt to identify classes, thereby providing an intermediate learning step from the toy worlds

of Lego and Karel to solving programming problems based only on a natural language

description.

In total, the learning issues presented in studies of adult learning differ partly from those

reported here, but the issues seem to be generated by the topics being taught rather than the

age of the learners.

Nygaard’s claims that OO is a natural way of conceiving the world seem to be confirmed

when the domain of the program is open for direct experience, like Lego Mindstorms robots

and KarelJ (Borge, Fjuk and Groven, 2005), and the programming environment offer some

predefined classes.

Vessey and Conger (1994) report that OO is more difficult to learn than other paradigms,

and their conclusion is supported by Détienne (1997).This result seems too general when

considering the different pedagogical approaches possible. The OO concepts can be learnt by

kids, but Détienne’s conclusion that identifying classes when analysing real world domains

has not been refuted by the experiments reported here.

Implications for teaching

Teaching by means of Lego requires that one or two days additional time for learning the

mechanics has to be scheduled. Three to four days of training can be recommended for kids

aged 11-12 working with Mindstorms and Robolab. Older children, and girls in particular,

may find Lego less motivating.

The experiment demonstrated that children at the age of 14 can learn object-oriented

programming, provided an environment that supports immediate experience of program

execution. Teaching OO programming in mandatory school at this age seems therefore

feasible. Considering that many kids at that age struggle with abstraction, only a portion of the

pupils can be expected to be able to transfer the skill of programming robots to other domains.

Teenagers in high schools have more training in formal theories, and the less theoretically

able have chosen other educational paths. Therefore, more profound programming

competence can be developed in high schools.

The argument that OO is superior due to its strength in modelling the real world has been

put forward as the main reason for an OO first (Groven, Hegna and Smørdal, 2003). Even

though modelling the world is essential in programming competence, starting out by

modelling the real world adds complexity to the learning environment. The teaching should

rather start with programming hardware or software robots or similar visible domains, and

when the students have developed competence in that limited environment, they can move on

to real world modelling.

1212

References

Borge, Richard Edvin (2004) Teaching OOP using graphical programming environments : an

expermental study. Master thesis, Department of Informatics, University of Oslo

Borge, Fjuk and Groven (2005) Using KarelJ collaboratively to facilitate object-oriented

learning. This volume

Détienne, F., (1997). Assessing the cognitive consequences of the object-oriented approach: a

survey of empirical research on object-oriented design by individuals and teams.

Interacting with Computers. 9, 47-72.

Groven, Arne-Kristian; Håvard Hegna; Ole Smørdal (2003) OO learning, a modeling

approach. In Luca Cardelli (ed.) ECOOP 2003--Object-oriented programming: 17th

European conference – proceedings. Darmstadt, Germany

Hegna, Håvard (2003) Using Active Objects in a "Model First" Approach to the teaching of

Object-Orientation. COOL seminar, Norwegian Computing Centre, Oct.

Herzog, Christian (2005) Learning programming in pairs. Master thesis, Department of

Informatics, University of Oslo

Kaasbøll, Jens; Ola Berge; Richard Edvin Borge; Annita Fjuk; Christian Holmboe; Terje

Samuelsen (2004) Learning Object-Oriented Programming. In E Dunican (ed.)

Proceedings of the Psychology of Programming Interest Group 2004. Carlow Institute of

Technology, Ireland

Lego Mindstorms (2005) http://mindstorms.lego.com

Lego Robolab (2005) http://www.ni.com/company/robolab.htm

Lejos. Java for the RCX (2005) http://lejos.sourceforge.net/index.html

McDowell, Charlie; Linda Werner, Heather Bullock and Julian Fernald (2002) The Effects of

Pair-Programming on Performance in an Introductory Programming Course. SIGCSE

Bulletin 34, 1, 2002, 38-42

Papert, Seymour (1980) Mindstorms: Children, Computers and Powerful Ideas. New York,

Basic Books

Pea, Roy (1986) Language-independent conceptual ”bugs” in novice programming. Journal

of Educational Computing Resarch, 2, 1, 1986

Vessey, I., & Conger, S. A., (1994). Requirement Specification: Learning Object, Process,

and Data Methodologies. Communications of the ACM. 37(5), 102-113.

1313

Teach in g th e o b ject-o r ien ted co n cep t E n cap su latio n to 1 4
year o ld ch ild ren u sin g L eg o r© M in d sto rmsTM an d th e

p r o b lems w ith th is k in d o f teach in g meth o d

[A Ca s e S tu d y]

Ro a r G ra n e ru d
Institute fo r Info rm atic s

B lind ern
O slo , No rway

rg ra n e ru @ ifi .u io .n o

Ru th Me re th e E v a n g
Institute fo r Info rm atic s

B lind ern
O slo , No rway

ru th e @ ifi .u io .n o

Ma rte O e d e g a a rd
Institute fo r Info rm atic s

B lind ern
O slo , No rway

ma rte o d @ ifi .u io .n o

AB S TRACT

During three days at a junior high school in N orway, some
students got the chance to play with L ego r© and write pro-
grams using J avaTM. They used a modifi ed version of a
J avaTM API called lejos[1]. We wanted to see if they could
understand some of the object-oriented concepts. During
the sessions, groups of three were videotaped and at the
same time their computer-screens were recorded. O n the
last day the L ego r© robots were ex changed with a restau-
rant simulation to see if the k nowledge received from the
robot-programming could be transferred. The last day four
groups were interviewed in front of a camera and ask ed how
much they had learned. The main object-oriented concept
we tried to teach the subjects was encapsulation. We wanted
the subjects to get a sense that certain objects “ belonged”
together, and that these objects were responsible for their
parts of the program. We wanted them to go above the
computer program and get a more general understanding
of what they were doing. They would learn how to access
the object and the method they wanted using J avaTM dot-
notation.

1 . I NTRO DUCTI O N

The C O O L -group, formed by K risten N ygaard in 20 0 1 has
been researching diff erent ways of teaching object-orientation.
L ast year a study was performed by the C O O L -group. A
handful of C S 1 1 students programmed virtual robots on the
computer screen using K arel-J , a small J avaTM -API for pro-
gramming 2D robots on a grid-based screen. The idea with
this study was to see if a graphical representation of the stu-

1C S 1 is short for C omputer S cience 1 . This is the fi rst com-
puter course taught at universities and colleges. It usually
involves computer programming in a chosen language.

dents code would help them understand the object-oriented
concepts encapsulation and inheritance. S ome of these sub-
jects were also participants during this case study. Part of
the conclusion from that study was that graphical represen-
tation of objects helps students understand what objects re-
ally are. Françoise Détienne speak s about the naturalness of
object-oriented design[4]. S o when someone is programming
a physical object lik e a L ego r© robot, it would be natural to
use object-oriented design and programming. The object-
oriented k nowledge gained by these ex periences would then
prove helpful in other object-oriented programming task s.
Is object-oriented design as natural as Détienne says that it
is?

According to the late N orwegian professor K risten N ygaard
”Teaching object-orientation must start with at suffi ciently
complex ex ample [6]” In our ex periment we started with a
simple ex ample, but after two days we totally changed the
domain from physical L ego r© robots to a simulation of a
large restaurant. We still didn’t use a procedure fi rst way
of teaching object-oriented concepts. We didn’t use much
time ex plaining loops and if-sentences, our goal being to
teach what objects are in the most understandable way.

In N ygaard’s restaurant there are lots of objects that inter-
act, and therefore the natural way of simulating this restau-
rant would be using an O bject O riented approach [6] . The
objects in the restaurant are customers, waiter, tables and
the food plus many more. H opefully the object-oriented
k nowledge gained from programming L ego r© robots would
prove useful when trying to solve another vast assignment
containing many objects. Would the subjects be able to
mak e the abstraction?

We hope to fi nd out if the subjects will be able to understand
what they are programming with just three days of training,
and with no prior k nowledge of either J avaTM or program-
ming. Will the subjects be able to use the k nowledge gained
from this project to design programs in an object-oriented
manner? We also want to k now if the use of C ontrol Tech-
nology (see chapter 2 for an ex planation) help the subjects
to understand their programming better. Will they see the
connection between the robot programs and the physical

14

robot they make?

2. P E DAG OG ICAL INVE NTION

We wanted to use Lego r© M indstormsTM as the mean for
teaching object-orientation. With the use of a custom made
JavaTM API called Lejos we wanted to use Control Technol-
ogy[3] to see if a physical representation of an object helps
in understanding how the JavaTM -representation works. If
the subjects in their JavaTM -program writes
“robot.rightM otor.forward()”,
they will be able to see both the physical robot, and the
attached physical motor. Due to this it will be easier to
see why it is natural in a computer program that both the
data and the methods, that is associated with an object, is
hidden inside that very object.

Lego r© has been used as Control Technology in a lot of other
subjects, such as physics and math[3]. Lego r© M indstormsTM

is really just an advanced version of the turtles in Logo[7].
Logo has been used to teach geometry and other math-
aspects especially to children and young adults. It has also
been used to some programming aspects i.e. recursion[7].
According to our knowledge this is the first time that Lego r©
has been used to teach object-oriented concepts. And if us-
ing Lego r© is a good way of teaching object-oriented con-
cepts, this will hopefully be shown in the final exercise we
had the last day: The object-oriented restaurant.

3 . BACK G ROUND

Studies show that students need to understand both the low
level programming model and the high level domain model
to be good programmers. In object-oriented models we focus
on the domain knowledge[8].

Last year there was a study of graphical environments for
supporting the teaching of object oriented programming and
with a main focus on JavaTM. [2] The experiment concluded
that using a graphical environment as a support helped the
students greatly in learning the first step in object oriented
programming.

We wanted to examine this further, and tried to find out if it
is easier to learn object oriented programming with physical
objects. Our idea was to give the students a visual contact
with their program. When they programmed their robots,
they saw how it worked as the robots did different things.

In our experiment we were trying to teach the students by
giving them Lego r© M indstormsTM robots to build and pro-
gram them with Lejos. Lejos is a JavaTM library made for
Lego r© -robot programming. Since JavaTM has a complex
syntax we gave them a simplified template to start with.
They only had to copy and paste in the correct places in or-
der to make the robot do simple things like turning, running
forward and backward. In order to use the sensors they had
to read the API they were given.

In this study our focus was on two object oriented concepts
used to reduce complexity, abstraction and encapsulation.
Our goal was to make the students learn these concepts.
We started the projects with more concepts in mind, like
subclasses, we found no good way of using the LegoTM to
teach that concept.

Abstraction is the process of picking out common features
of objects and procedures. You simplify the program by
picking out relevant information, and not using all available
data. Abstraction also occurs in non-object oriented pro-
gramming, like C. In C they are called structs. Abstraction
leads to encapsulation and information hiding.

E ncapsulation is the process of combining elements to cre-
ate a new entity, like procedures, methods or objects. One
aspect of encapsulation is information hiding. This gives
the opportunity to hide certain data and prevent these data
from changing by accident, by not allowing objects to access
other objects variables directly.

There are two common ways of learning, behaviorism and
constructivism. B ehaviorism is the learning based on stim-
ulus. A different path in behaviorism says that people can
learn a certain behavior through how a persons actions are
rewarded, either through positive or negative reinforcement.
[5]

In constructivism, the knowledge is not ready made, but
is constructed in a person’s psyche through the interaction
with the environment around them.[2] We wanted the sub-
jects to build their cognitive schemas in this way by seeing
the LegoTM robot as an object interacting with the environ-
ment using its sensors.

4 . M E TH OD

The study’s purpose was to survey and explore the way peo-
ple learn and practice object oriented programming with a
custom made JavaTM API called Lejos. The study eval-
uates the subjects’s behavior and q uality of product, but
is not intended to result as a programming template, nor
a programming guide. However we are doing experimental
studies with different subjects and new learning styles. We
hope the answer would aid us in understanding of teaching
object oriented concepts and show us that young adults also
enjoy programming in object oriented languages.

Programming Lego r© R obots using an Object Oriented pro-
gramming language like JavaTM, 14 year old children were
introduced both to programming and object-oriented con-
cepts. U sing Control Technology[3] the subjects were able
so see in real life what their programming were doing to the
Lego r©R obots.

The students were given a simple API describing what their
Lego r© R obot could do, and how to do it. They also received
a program template with a simple working JavaTM program.
We wanted to see if the subcjets were able to place the cor-
rect objects (or pointers to objects) in the correct objects.
In other words, we wanted to see if we could teach these sub-
jects the use and power of encapsulation which is one of the
most important object-oriented concepts. An object knows
about what is relevant for that particular object, and if other
objects wants to access some of that information, they have
to go through that object (using the correct dot-notation).

The third day after programming Lego r© robots, the sub-
jects were presented with a new task. This assignment was
to program a simulation of an object-oriented restaurant.
The subjects were given a restaurant-template where the

15

different restaurant-classes already were made. In order to
succeed, the subjects had to use an object with the another
object in the correct way. They could make customers, wait-
ers, chefs and tables. There was also a menu-object in the
restaurant. The task was to make the waiter seat all the
guests, take their orders and making sure that the guest got
what they had ordered. The chef cooked everything that was
ordered in one go. The results from this assigment would
show if the subjects had learned anything, both of JavaTM

-programming and the object-oriented concept of encapsu-
lation and sharing of responsibility.

We used qualitative research methods. Q ualitative research
methods were originally developed in the social sciences to
enable researchers to study social and cultural phenomena
[2]. Different methodology is used in different part of sci-
ence, we believe that the study lays closer to the soft aspect
of science, also the closest to social science.

Q ualitative data sources include observation and participant
observation, interviews and questionnaires, documents and
texts, and the researcher’s impressions and reactions[2]. The
observational studies consisted of recording video, both cov-
ering the subjects when they programmed alone and with
assistant. The recorded material existed of sound and com-
puter screen of the students’ computers, while they pro-
grammed. The study ended with some students being hand-
picked for an interview. Four groups of three subjects were
being questioned the final day.

The subjects were about 30 children. They were thirteen
to fourteen years old. They had no prior experience in
programming. The experiment started with a short intro-
duction where they were taught some object oriented con-
cepts and guidance to use the JavaTM API called Lejos. We
wanted to throw the subject into complex problem solving,
without a long pre-lecture.

V ideo cameras were used during the experiment. Both the
computer-screen and the subjects working together in the
groups were filmed simultaneously. We would then be able
to see what the subjects were doing in their programing and
simultaneously see the subjects’s discussions. This would
be very helpful when trying to determine if the subjects
understood what they were doing.

In the closing stages of the experiment, the subjects were
given small assignments related to object orientation. This
was suppose to map the subjects deeper understanding of
object-oriented thinking. They were given papers on which
they were going to sketch the different objects and inscribe
sentences with the terminology they were introduced to ear-
lier.

5. RESULTS
5.1 Le jo s
The main object-oriented concepts that we wanted to teach
the subjects encapsulation. We hoped that they would be
able to place the objects in the “correct objects”, and logical
methods in different objects.

The subjects were able to understand that the motor be-
longed in the robot-object. They were also able to use

the pre-made methods in the motors and sensors from the
control-object. When wanting to turn the robot around they
would write the turning sequence in the control-object step
by step, and if they needed the turning sequence again, they
would copy and paste the sequence they had already made.
We wanted them to understand that a better solution would
be to create a “turn” method in the robot. We didn’t use
much time explaining what a method was and how to use
it. We hoped that they would see the correlation between
the methods in the sensors and motors, and methods that
they could create themselves. Unfortunately it can’t be said
that any of these results are conclusive. The reason for this
is probably because using a copy and paste technique takes
much less time and is easier than writing a method, some-
thing that was new to them. Another reason was that the
main goal for the subjects was to complete the exercise, and
just making the program run with the correct results.

We were aware that there would be a limit to the amount
of new things learned. We only had three days, and much
time was wasted playing with the cameras and the Lego r© .
But we still feel that we contributed to the subjects’s under-
standing on how robots in the real worlds are programmed,
and how to model a real world object into an object-oriented
program. When asked about everyday robots the subjects
knew about, they mentioned a cleaning robot that used mo-
tors and different sensors to clean most of the fl oor. The
subjects were now able to understand how this sort of robot
were programmed.

5.2 Re s ta u r a n t
After programming the physical Lego r© robots, we hoped
that the subjects had gotten a sense of ownership. That the
different objects belonged to another object. In their pro-
gramming they would write:

......changeNumberOfSeats(table4, 4)

instead of telling the program that it was restaurant.table4
that needed then number of seats changed. This was an er-
ror that was done by a lot of the groups and it shows that
ownership and belonging isn’t very natural, even after work-
ing with physical objects where the ownership can be seen
with your own eyes. After being asked if the table belonged
somewhere (a very leading question) they answered that it
was part of the restaurant and was able to fix the error. This
shows that the subjects had some difficulties finding out how
the objects are interconnected by themselves, but when they
understood how they were connected, they programmed it
correctly in JavaTM.

In a discussion on how to place the different persons at a
table, the subjects wondered how to use the waiter-method:
placeByTable(Table, Person). Their idea was that some of
the guest entered the restaurant at the same time, and since
they should be seated together, the waiter should be able to
show them all to the table at the same time. So instead of
writing:
restaurant.waiter.placeByTable(restaurant.table4, ole);
restaurant.waiter.placeByTable(restaurant.table4, per);
restaurant.waiter.placeByTable(restaurant.table4, kari);

They wanted to write:

16

restaurant.waiter.placeByTable(restaurant.table4, ole, per,
kari);

This is a more natural way of thinking, which is what we
wanted to do. They should be able to seat all the persons at
once, and this is probably what they would do if they had
made the placeByTable-method themselves.

The subjects didn’t have logical errors only. One curiosity
was when the orders were taken and it was time to cook,
they would order the cook to make all the meals as many
times as there were guests. And not cook it all at once.
This shows that these subjects didn’t really think naturally
when programming the restaurant and instead used a more
copy-paste kind of method. But since the only reason why
the logical thing was to cook the meals all in one go, was
that the cook.cookFood() method took no parameters.

Some of the groups finished this assignment very quickly and
got the message saying that the courses were delivered cor-
rectly. These groups had taken the easy way out and ordered
the same types of food for all their customers, so that when
the waiter delivered something to a person it had to be the
correct course. When we said that they had to order differ-
ent courses, their program reported that the customers had
gotten the wrong order. This was very discouraging, since
they felt that they had completed the course, that is, get-
ting their program to display the correct messages. It was
fairly obvious that some of the subjects were very tired of
programming the last day and just wanted to get it done
and go home. We found this a little strange, since these
subjects usually had long school-day, and they had to be at
school all day no matter how fast they did their exercises.

5.3 Interv iews
In an interview with four of the groups on the last day, some
of the subjects were asked to draw their program on a piece
of paper. The had never done this before. The point of this
exercise was to see if their cognitive idea of the program
was anything like the idea we wanted them to have. A sim-
plified UML-diagram2 consisting of two squares connected
together by a line. One square was called “Control” and the
other was called “Robot”. In the “Control” square there was
a “variable” which was the name of the Robot, i.e. volvo.
They were explained that this was the pointer named volvo
that pointed to a Robot object. Starting with this simple
drawing we wanted to see if the subjects were able to fill in
the rest of the Lego r© robot program structure.

Most of the groups (3 out of 4) were able to connect at least
one Motor or Lego r© motor correctly on their Robot. Some
of the groups failed to name the motor correctly, because
they didn’t understand the difference between the name of
the object (the pointer to the object) and the object itself.
We didn’t make a lot of effort in trying to teach the sub-
jects the difference between a class and an object. And the
interviewer didn’t make fuss about the pointer being called

2UML is an object-oriented design and analysis language.
Its a visual presentation of a computer system where the
different parts of a computer program is drawn as squares
with a name, a content and the different associations be-
tween these squares.

Robot or volvo3. The important thing was that they under-
stood what they had to write in order to give a command
both to the robot, and to its parts. And all the groups placed
the motors in the robot-object and not in the control-object.
And because of this fact, we believe that since they actually
placed the physical motor on the physical robot this would
be a logical thing to do in the computer program too. And
since this drawing was a graphical representation of that
very robot, they had to put it in the robot-object. As they
said: ‘Because it belongs there’. And this shows that the
idea of using Lego r© Control Technology to teach responsi-
bility sharing and information hiding in object-oriented pro-
gramming was a success.

6 . DISCUSSION AND CONCLUSION
There were a lot of different results from this study. Not all
of them was associated with object-oriented comprehension.
They will be mentioned in this article since they are relevant
for teaching in general, and also for teaching object-oriented
concepts.

The first issue of this sort of exercise is that 14 year old chil-
dren don’t have much training in front of a camera. Not that
they need it to be filmed, but the cameras were an extremely
disturbing element. A common thing with most of the video
sessions were that the first 15 minutes of each session were
productive, and the participants had fruitful discussions and
worked very well on their assignment. But suddenly one on
the group would discover that the camera was pointed to-
ward them, and the rest of the session would just consist of
14 years olds making funny faces in front of the camera. We
should have trained them in being filmed a week before the
actual experiment took place, but we didn’t have the time.
They didn’t have any training in using documentation ei-
ther, but it was clear that the API was much more used on
the last day when programming the restaurant.

A second issue was that there were three people on each
group. So what happened on some of the groups was that
two people wrote the code and discussed the program, and
the third subject wandered off to disturb another group.
The participants were only 14 years old, so this is very un-
derstandable. People that have participated in group pro-
gramming, all know that being the odd man out tends to be
pretty boring. But since we had to use a whole school-class
this was the only option.

Admittedly three days isn’t a long time. But we still feel
that they learned a lot these days. Mostly because of the
good performance on the restaurant-assignment. Either the
tasks were too easy and trivial, or they got too much help
and scaffolding. 4 Or they actually used the knowledge
gained from programming object oriented Lego r© robots to
understand how the object-oriented restaurant was built.

3In our template that the students started to program in,
we had called the pointer to the robot: volvo. So most of
the student groups called their robot volvo
4Scaffolding is the master-apprentice way of teaching. You
help a lot at first, and gradually offer less and less assistance,
until the apprentice is able to perform the task on his own.
In this case we mean that we helped them too much and not
giving them a chance to do it themselves.

17

7. REF ERENCES
[1] LEJOS. Ja va fo r th e RC X

(h ttp :/ / lejo s.so u rcefo rge.n et).

[2] R. E. Borge. Teaching oop using graphical
programming environments. Master’s thesis, University
of Oslo, 2004.

[3] B. Denis. C o n tro l Tech n o logy in Elem en ta ry Ed u ca tio n .
Springer-Verlag, 19 9 3.

[4] F. Detienne. So ftwa re D esign - C ogn itive Aspects,
chapter 5. Springer, 2002. Programforselse sett p som
tekstforstelse.

[5] J. G . G reeno and A. M. Collins. Cognition and
learning. P ren tice H a ll In tern a tio n a l, 19 9 6.

[6] K. Nygaard. The restaurant example.
www.intermedia.uio.no/ english/ projects/ cool/ complex.html.

[7] S. Papert. M in d sto rm s - C h ild ren , C o m p u ters, a n d
P owerfu l Id ea s. BasicBooks, 19 9 3.

[8] S. Wiedenbech and V. Ramalingam. Novice
comprehension of small programs written in the
procedural and object-oriented styles. Aca d em ic P ress,
19 9 9 .

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

En liten ins tr u k s jo ns m a nu a l fo r

k la r g jø r ing a v w ind o w s m a s k iner til å

b r u k e L ejo s

Roa r G ra n e ru d

In s titu tt for In form a tik k

Un iv e rs ite te t i O s lo

E-p os t: rg ra n e ru @ ifi .u io .n o

16. m a rs 2004

Hva som tr e n gs av p rogramvar e p å mask in e n e

• Java S y s te m D e ve lo p me nt.e x e kit må le g g e s inn. D e tte e r e n
fi l ve d navn j2 s d k-1_ 4_ 2 _ 0 3 -w ind o w s -i5 8 6 -p .e x e s o m må kjø r e s .
F ø lg s å ins tr u ks jo ne n p å s kje rme n i fo r b ind e ls e me d ins tallas jo -
ne n. H u s k h vo r d u le g g e r p r o g r amvar e n. b in-katalo g e n i S D K e n
må le g g e s inn i p ath e n fo r at w ind o w s s kal vite h vo r javac .e x e b e -
fi nne r s e g . D e t e r mu lig d e tte g jø r e s au to matis k. M anu e lt g jø r e s
d e t ve d i S y s te m P r o p e r tie s , Ad vanc e d , Envir o nme nt Var iab le s .

• L e jo s katalo g e n ko p ie r e s s å o ve r til e t ø ns ke t s te d p å h ar d d is ke n.
H u s k o g s å p å h vo r d e nne le g g e s .

• RCXD o w nlo ad ko p ie r e s s å o ve r til e t ø ns ke t s te d p å h ar d d is ke n.
D e tte e r e t g r afi s k b r u ke r g r e ns e s nitt fo r c o mp ile r ing , linking o g
o ve r fø r ing av le jo s -ko d e til RCXe n. S tar tfi le n til RCXD o w nlo ad
h e te r RCXD o w nlo ad .b at. D e t e r ing e nting s o m s kal ins talle r e s i
d e nne s amme nh e ng s å le ng e Java S D K e r lag t inn.

• En g ratis o g e nke l ID E ve d navn Jc r e ato r 3 le g g e s inn p å mas ki-
ne n. S tar t s e tu p .e x e o g fø lg ins tr u ks jo ne ne p å s kje rme n. F o r at
d e nne ID Ee n s kal s e litt e nkle r e b ø r d e n e ne r ad e n me d knap p e r
fje rne s ifr a G UIe n. D e n s o m kan fje rne s h e te r To o ls o g lig g e r p å
vie w , To o ls b ar s .

B r u k av R C X Dow n load

RCXD o w nlo ad e r e n lite n G UI lag e t i Java fo r ko mp ile r ing , linking o g
o ve r fø r ing av L e jo s p r o g r amme r fr a d atamas kine n til RCXe n. G UIe n
h ar 4 ve s e ntlig e knap p e r. P r e fe r e nc e s knap p e n må b r u ke s id e t p r o g -
r amme t e r lag t o ve r p å mas kine n d e t s kal b r u ke s p å . H e r kan d u vis e
RCXD o w nlo ad h vo r L e jo s o g Java S D K e r ins talle r t. D e t må o g s å b e -
s te mme s h vilke n s e r ie p o r t s o m s kal b r u ke s til o ve r fø r ing e n. D e tte må

1

46

gjøres før RCXDownload kan brukes. De andre valgene i Preferences
er ikke vesentlige. Den andre knappen er open og brukes for å hen-
te hvilken javafil som skal kompileres og overføres. Dette er da filen
med main-metoden, men vi kommer vel ikke til å dele opp programm-
ene i fl ere filer uansett. Den tredje knappen er compile. Den kompi-
lerer Lejosprogrammet til .class-filer. Feilmeldinger blir skrevet ut på
skjermen i RCXDownload. Den siste knappen, Download, kompilerer
og linker .class-filene til en binæ rfil som så overføres til RCXen. Pass
på at RCXen står i overføringsmodus (Slå den av og på hvis den er
ugrei) og pass på at lyset i rommetikke ødelegger for overføringen.

Merk at denne versjonen av RCXDownload er modifisert av meg
slik at bl.a knappen for overføring av Lejos-Firmware mangler. Dette
for at elevene og vi ikke skal trykke på denne ved en feiltagelse. Jeg
regner med dette ikke blir noe problem siden vi skal ha med ferdig
klargjorte RCXer.

Bruk av J Creator

Dette programmet er en standard teksteditor for windows. En litt me-
re avansert versjon av Notepad. Den har iallefall fargekoder på javapro-
grammeringen. Det eneste den skal brukes til er å lagre .java-filene.
RCXDownload tar seg av resten. Hvis noen vil prøvde den er den til-
gjengelig for nedlasting ifra: http://www.jcreator.com/download.htm

2

47

Figur 1: RCXDownload GUI

3

48

Figur 2: JCreator teksteditor

4

49

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Main Page :: Lego Prosjekt

This is the main page for the Lego Experiment.
The main activities are:

● Building Lego Robots.
● Programming Lego Robots using Java.

Java is a programming language that enables us to give commands to the
computer. It is the RCX that we want to tell what to do. We call this list of
commands a program.

When you're working with the asignments there are three main parts you
shall use:

● The Lego Robot with a yellow RCX.
● JCreator. We're writing our programs in this editor.
● RCX-download. A program that you use when you transfer your

program from the computer to the RCX.

When you save your programs make sure that you save them in the
directory
c:\UIO\web\programs\
or else they won't work.

50

Hovedsider:
 *Hovedside
 *Resturant

Byggetips:
 *Minuttbil
 *Beltebil
 *Støtfanger

Oppgaver:
 *Oppgave strek 1
 *Oppgave strek 2
 *Oppgave trykk
Læringsmateriell:
 *Overføringsverktøy
 *Bruk av JCreator
 *Mal for
robotprogrammer
 *Ferdig enkel robot
Kodebiter:
 *Tilfeldig Tall.
 *Motor og Vent.
 *Trykksensor
 *Lyssensor
 *Display

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Resturantoppgaven

Vi har en resturant som består av personer, kelnere, kokker, bord osv.
Det er deres jobb å sørge for at de forskjellige personene sitter ved
bord, at bestillingene deres blir tatt og at kokken lager riktig mat til
riktige personer.

Under er en link til en startfil. Denne åpnes i Jcreator på vanlig måte
når dere trykker på den. Det står hvor i denne filen dere skal skrive
deres egen del av programmet.

Når dere er fornøyd med programmet så langt lagrer dere det på vanlig
måte (save). Deretter må programmet kompileres. Dette ble før gjort i
RCXTools. Nå må dere gjøre det manuelt med et kommandovindu.
Dette vinduet får dere frem ved å trykke på start-knappen nederst til
venstre, velge kjør, og så skrive cmd (etterfulgt av enter).

Dere vil nå ha fått opp et svart vindu med en kursor blinkende. Dere må
nå gå til den riktige katalogen. Det gjør dere med kommandoen:

cd \uio\resturant (etterfulgt av enter)

Det vil nå stå C:\UIO\Resturant> nederst i det svarte vinduet.

For å kompilere programmet skriver dere:

javac MollaMat.java (etterfulgt av enter....pass på store bostaver
og sånt)

Hvis dere ikke får noen feilmeldinger skriver dere følgende:

java MollaMat (etterfulgt av enter)

Da vil programmet deres kjøre. Lykke til...det vil dere trenge...og en ting
til. Pass på å lage programmet i små porsjoner og kompiler ofte, slik at
dere ikke får så mange feilmeldinger om gangen.

Resturantoppgaven MollaMat

51

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Building Hints :: Simple Vehicle

The simple vehicle is the three first steps on the vehicle with belts,
but instead is has 2 wheels and little else.

52

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Building Hints :: Vehicle with belts

The best thing about the vehicle with belts is that it's very stable and it is
easy to turn. The picture on the left shows the vehicle from below and the
picture on the right shows the vehicle from above. The topmost picture is
just a picture of the parts you need for the step. Don't mind that the colors
on the pieces in the pictures. Some of them are of a different color so that
you will find it easier to tell them apart.

53

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Building Hints :: A bumper with two touch sensors

A bumber of this kind is a good thing to make the robot understand that it has hit an
object in its path, and needs to find a different route. I don't think that you will have
any problems putting it on your robot.

54

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Assignment :: Touch Sensors

Make a robot that drives forward until it hits an obstacle. When it does,
make it back off a little, turn a little to the left and then stop.

This robot needs only one touch sensor.

When you have completed the first part you can make a smarter and more
advanced robot. A robot that can drive around on the floor, and when it hits
something, it backs off and tries go clear of the object it crashed into.

To make this kind of robot you need to use 2 touch sensors. I recommend
that you build the kind of bumber found at the building hints. Just attach
this bumper to the car and attach the wires to the correct ports.

The robot you're making now shall drive forward until one of the touch
sensors on the bumber is activated. That the button on the touch sensor is
pushed. Then I want the robot to back off a little distance(perhaps a
random distance between 0 and 2 seconds) and then turn left or right,
depending on which touch sensors that was pushed. And then just make
the robot continue forward until it hits something else.
This robot shall run forever, and to make it do just that you need to write
your program inside a while loop that looks like this:

while(true) {
 write your program here
}

Write the program one part at a time so it will be easier to understand.
Good luck, you will need it

55

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Assignment Lightsensor 1 :: Find the way out of a black circle

Place your robot inside a black sirkel that has a little opening. Using a light
sensor your robot shall be able to find the opening of the circle, and not run over
the black border. You are not allowed to place the robot in front of the
opening. :)

Question: How do you know how dark the circle is?

56

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Assignment Lightsensor 2 :: Follow the black tape

In this assignment you have to make your robot follow the black tape. To be able to follow
the tape you have to use light sensors. How many light sensors do you need to be able to
follow the black tape? How shall the light sensors behave when they see the black tape?
You also have to consider how fast your robot can move in order to notice the black tape.

57

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Assignment :: Use the RCX to play a song

Create a program that plays a little piece of music. To do this you must
connect a Speaker to your robot to be able to use it to play a tone. Use
playNote(frequency, length) where the frequency is a number below
2100Hz for the human ear to be able to hear the tone. The length is
measured in 1/100 of a second. If you type playTone(500,100) it will play a
pretty deep tone in one second (100/100 seconds)

To be able to solve this assignment you have to find out what frequency
the different tones is. For example you cound find that a frequency of 700
is the same a C tone.

To make the assignment easier and the program less messy you should
make a method for each of the tones. So when you want to play 3 tones
after eachother you only have to write:

playA();
playC();
playLongA();

and so on.

You have to make these methods yourself.

And again....Good Luck

58

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Assignment :: Rotation Sensor

To solve this assignment you have to place a rotation sensor on one of the
axles on the robot, and make sure that the axle turns around so that the
movement is registered. When you connect the rotation sensor the robot
may turn a little to the left or the right when it is supposed to go forward.
You have to compensate for this skewness by making the motors go with
differend power.

In this assignment I want you to make the vehicle go forward for about a
meter. And then it shall play a sound. Then is shall turn 180 degrees and
go 1 meter the other way so that it is in the same place as it started..

But on the way back I want to make the robot go a little slower. So to make
it go one meter the other way you have to know how far it has gone, so you
can find out when to stop. Use the rotation sensor for this task. You can
ask the rotation sensor how many rotations it has recorded and then ask it
when this number of rotations occur again.

It is very important that you solve this assignment in small steps at a time,
so that it will be easier to understand

It may be difficult to make the robot run straight forward when you have
connected the rotation sensor. This is not a big deal. As long as you record
the distance the robot has travelled (approximately)

Good Luck.

59

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Teaching Material :: How to use RCXDownload

To make the robot do our bidding we have to transfer the program we have
written from the computer to the RCX. To do this you need a program called
RCX-download. This is a very easy program to use

To start the program, double-click the RCX-download icon on the desktop.
Then a window will appear:

This is our main window. We can se that there is a button called "Open"
here. Press this button to select a new java-program to transfer to the RCX.
When you press "Open" the following window pops up:

60

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

How to use the editor JCreator

When we're writing our programs for the robot we have to use some kind of editor. We've chosen an editor called JCreator. The shortcut the the program is on your desktop. Lets look at
a picture of the program:

Don't mind all the text in the editor. You can notice a lot of similarities with for example Microsoft Word: We can save and open files, cut, paste and so on. You also notice all the different
colors on the words in the file. Blue, green, brown, purple and black. These different colors means different things:

● Blue: These are reserved words in Java. Reserved means that these words has a spesial meaning in Java, and these words cannot be used for other things than what they're
reserved for.

● Green: Everything that is written in green is a commentary. It is never read by the RCX. It is just small reminders to the programmer to easier understand the program later on.
● Purple: When you give a method a name, and when you use a method the color is purple. A method is a command that does spesific things. You can also make your own

methods. turnLeft is an example of a method.
● Black: This is the rest of the program which isn't methods, reserved or anything special

A little hint: When you save your programs, save it in the same folder each time. First of all it will be easier for you to find it when you need it, and there are some extra stuff in the folder
that the program needs to work.

61

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Template for Robot programs

Here is a link to a template you can use when writing your own robot
programs. Just click on the link below to open the template in Jcreator.
You have to save the file in c:\UIO\web\programs
Remember to change the on top of the file so that it matches the name of
your file. Remember that is has to start with a capital letter

Template. Choose open and it will open in Jcreator

62

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

A complete robot program

Here is a link to a complete and working program.
Click on the link below to open the file in Jcreator
Be sure to save it in the folder c:\UIO\web\programs\

Complete Robot. Choose open, and it will be opened with Jcreator

63

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Piece of code :: Using random number

● This is a piece of code to show you how to use a random number
● To use it just just copy it from here and paste it in your own program

 Assistant harry; // We want to have an assistant
 harry = new Assistant(); // Here we make the new assistant

int waitseconds; // We make a variable called waitseconds. It can contain a
number

// Putting a value in the waitseconds variable
 waitseconds = harry.randomNumber(5000);

// Now waitseconds contains a value between 0 og 5000

64

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Piece of code :: Wait and Legomotor

● Here is a piece of code to explain the use of Legomotor and
● how to set the time between each command
● Just cut the code out and paste it in your own program

 // The motor has to be made in the Robot class since it is a part of the Robot
 Legomotor rightMotor; // we want a rightMotor
 Legomotor leftMotor; // we want a leftMotor

 rightMotor = new Legomotor(A); // We connect this motor to port A on the RCX
 leftMotor = new Legomotor(C); // We connect this motor to port C on the RCX

 // This has to be pasted into the Control class since this is where we control
the robot

 Assistant harry; // We want an assistant called harry
 Robot volvo;

 harry = new Assistant(); // The new assistant is created
 volvo = new Robot(); // The new robot is created

 volvo.rightMotor.forward(7); // The motor runs forward with power 7
 volvo.leftMotor.forward(7);
 harry.wait(2500); // harry asks the program to wait 2.5 seconds and then continue

 // The following methods explain themself
 volvo.rightMotor.stop();
 volvo.leftMotor.stop();

65

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Piece of Code :: Using the touchsensor

● This is a piece of code on how to use the touch sensor
● Just cut it out and paste it into your code

 // This is part of the Robot
 Touchsensor touch1; // we want to use a touchsensor
 touch1 = new Touchsensor(1); // We connect this touchsensor to port 1

 // And this belongs in the Control class
 // you have to have already made a robot called volvo

 volvo.rightMotor.forward(7);
 volvo.leftMotor.forward(7);

// as long as the touchsensor isn't pushed, just continue
// when it is finally pushed, then get out of the while loop and continue program

while(volvo.touch1.isPressed() == false){
continue; // jumps to the top of the while loop

 }
// here will the program go when the touchsensor is pushed

 volvo.rightMotor.stop();
 volvo.leftMotor.stop();

66

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Piece of Code :: Advanced touch sensors

● This is an advanced piece of code for using a touch sensor
● It won't work if you haven't already made 2 touch sensors on the robot

while(true){ //this is a while loop that will run forever until we tell it to break;
//if the first touchsensor register a push then do what's inside the if sentence

if(touch1.isPressed() == true){
 leftMotor.backward(7);
 rightMotor.backward(7);

harry.wait(3000);
break;// here we will jump out of the while loop.

 }
// if the second touchsensor registers a push, the result will be slightly different.

if(touch2.isPressed() == true){
 leftMotor.backward(7);
 rightMotor.backward(7);

harry.wait(500);
break;

 }
//this is the end of the while loop. If neighter of the sensors are pushed, we will
check them again
//as the programs starts from the top of the while loop again.
//Forever until one of the sensors are pushed

}

67

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Piece of Code :: Using a light sensor

● This is a piece of code on how to use the light sensor

 // This is part of the robot
 Lightsensor light1; // we want to use a lightsensor
 light1 = new Lightsensor(2); // we connect the new lightsensor to port 2

 // This belongs in the Control class since it controls the robot
 // You need a robot called volvo

 volvo.rightMotor.forward(7);
 volvo.leftMotor.forward(7);

// this is a while loop that will run as long as the light sensor says that
the

// luminosity is greater than 33
while(volvo.light1.luminosity() > 33){

continue;
 }

 volvo.rightMotor.stop();
 volvo.leftMotor.stop();

68

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Piece of Code :: Using the Display

● This is a piece of code to explain how to use the Display on the RCX

 // This is part of the robot
 Display lcd; // We want a display called lcd on the robot
 lcd = new Display(); We make our new Display

 // This belongs in the Control class since it controls the robot
 // You need an Assistant named harry and a robot named volvo

String textString; // We want a textString
 textString = "Math"; // I want the textstring to contain the word "Math"
 volvo.lcd.print(textString); // This prints the text to the Display
 harry.wait(3000); // This will be shown for 3 seconds before the program ends

69

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Piece of Code :: How to use a rotation sensor

● This is a piece of code that explains the use of the rotation sensor

 // This is part of the robot
 Rotationsensor rotation1; // we want a rotation sensor on our robot
 rotation1 = new Rotationsensor(1); // we connect the rotation sensor to port 1
 Display lcd; // we want a display as well
 lcd = new Display(); so we create a new display

 // This belongs in the Control class since it controls the robot
 // You need a robot named volvo and an assistant named harry

 volvo.rotation1.reset(); // we want the counter of the rotation sensor to be
0
 volvo.rightMotor.forward(7);
 volvo.leftMotor.forward(7);
 harry.wait(2500);

int rotationValue; // we make a variable called rotationValue
// Then we put the number of rotations into the rotationValue variable

 rotationValue = volvo.rotation1.rotation();

 volvo.rightMotor.stop();
 volvo.leftMotor.stop();

 volvo.lcd.print(rotationValue); // we print out the rotationvalue to the display
 harry.wait(3000); // we show the value for 3 seconds before the program ends

70

Main Pages:
 *Lego and Java
 *Resturant

Building
Hints:
 *Simple
Vehichle
 *Vehichle w/
belts
 *Touch Sensors

Assignments:
 *Touchsensor
Task
 *Black Line 1
 *Black Line 2
 *Sound Task
 *Rotation Task
Teaching
Material:
 *Transfer Tool
 *Using JCreator
 *Template for
Robots
 *Complete
Robot
Pieces of Code:
 *Random
Number.
 *Motor and
Wait.
 *Touch Sensor
 *Adv.
Touchsensor
 *Light Sensor
 *Display
 *Rotation
Sensor
 *Playing Sounds

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Piece of Code :: How to make the RCX play music

● This is a piece of code to make the RCX play tones given a frequency and a lenght

 // This is part of the robot
 Speaker soundplayer; // We want the robot to have a Speaker
 soundplayer = new Speaker(); We make a new Speaker

 // This belongs in the Control class since it controls the robot
 // it needs a robot called volvo to work

 // this soundplayer plays a tone with a frequency of 500Hz
 // and a length of 200/100 seconds = 2 seconds

 volvo.soundplayer.playTone(500,200);

71

import josx.platform.rcx.*;
import java.util.*;

class Pressuresensor {

private Sensor sen;

public Pressuresensor(int number) {
if (number == 1)
 sen = Sensor.S1;
if (number == 2)
 sen = Sensor.S2;
if (number == 3)
 sen = Sensor.S3;

sen.setTypeAndMode(1, 0x20);
 }

public boolean isPressed() {
return sen.readBooleanValue();

 }
}

class Lightsensor {

private Sensor sen;

public Lightsensor(int number) {
if (number == 1)
 sen = Sensor.S1;
if (number == 2)
 sen = Sensor.S2;
if (number == 3)
 sen = Sensor.S3;

sen.setTypeAndMode(3, 0x80);
sen.activate();

 }

public int luminosity() {
return Math.abs(sen.readValue());

 }
}

class Rotationsensor {

private Sensor sen;
private int n;

public Rotationsensor(int number) {
n = number;
if (number == 1)
 sen = Sensor.S1;
if (number == 2)
 sen = Sensor.S2;
if (number == 3)
 sen = Sensor.S3;

sen.setTypeAndMode(4, 0xE0);
sen.activate();

 }

Jun 14, 04 8:47 Page 1/4MainClasses.java

public void reset() {
sen.setPreviousValue(0);

 }

public int rotation() {
return Math.abs(sen.readValue());

 }

}

class Temperaturesensor {

private Sensor sen;

public Temperaturesensor(int number) {
if (number == 1)
 sen = Sensor.S1;
if (number == 2)
 sen = Sensor.S2;
if (number == 3)
 sen = Sensor.S3;

sen.setTypeAndMode(2, 0xA0);
sen.activate();

 }

public void reset() {
sen.setPreviousValue(0);

 }

public int temperature() {
//return sen.readSensorValue(n−1, 0);
return Math.abs(sen.readValue());

 }

}

class Assistant{

public Assistant(){}

void wait(int msek) {
try {
 Thread.sleep(msek);
} catch(InterruptedException ie) {}

 }

int randomNumber(int maxNum){
double rnd = Math.random();
double random = (double)maxNum * rnd;
return (int) random;

 }
}

class Speaker {
public Speaker() {}

 Assistant ast = new Assistant();

void playNote(int freq, int length){

Jun 14, 04 8:47 Page 2/4MainClasses.java

Printed by Roar Granerud

Wednesday January 26, 2005 MainClasses.java
72

Sound.playTone(freq, length);
ast.wait(10*length);

 }
}

class Display {
public Display() {}

void write(String s){
 TextLCD.print(s);
 }

void write(int t){
 LCD.showNumber(t);
 }
}

class Legomotor{

 Motor mot = null;

public Legomotor(int number) {
if (number == 1)

mot = Motor.A;
if (number == 2)

mot = Motor.B;
if (number == 3)
 mot = Motor.C;

 }

void forward(int pow){
mot.setPower(pow);
mot.forward();

 }

void backward(int pow){
mot.setPower(pow);
mot.backward();

 }

void stop(){
mot.stop();

 }
void softStop(){

mot.flt();
 }
}

class Light {

 Motor mot = null;

public Light(int number) {
if (number == 1)
 mot = Motor.A;
if (number == 2)
 mot = Motor.B;
if (number == 3)
 mot = Motor.C;

 }

void turnOn(int pow){

Jun 14, 04 8:47 Page 3/4MainClasses.java
mot.setPower(pow);
mot.forward();

 }

void turnOff(){
mot.stop();

 }
}

Jun 14, 04 8:47 Page 4/4MainClasses.java

Printed by Roar Granerud

Wednesday January 26, 2005 MainClasses.java
73

// Disse to linjene trengs for å fortelle programmet hvilke verktøy vi trenger
import josx.platform.rcx.*;
import java.util.*;

// Her starter programmet vårt.
class Skybært2 {

public static void main(String [] args) {
new Kontroll();

 }
}

class Kontroll {
Robot volvo; //her sier vi at vi skal ha en ny robot som vi kaller volvo.
Assistent per; //vi vil ha med en assistent som heter per.
Display ut;

Kontroll(){

//her lager vi en ny bil som vi skal programmere:
volvo = new Robot();
//og så lager vi en ny assistent:
per = new Assistent();
//her kan dere skrive hva roboten skal gjøre
ut = new Display();

volvo.kneipen.reset();

while(true) {

volvo.venstreMotor.kjørFremover(5);
volvo.høyreMotor.kjørFremover(5);

ut.skriv(volvo.kneipen.rotasjon());

if(volvo.my.lysstyrke()<43) {
volvo.venstreMotor.kjørBakover(6);

per.vent(100);
}

if(volvo.mummi.lysstyrke()<43) {

volvo.høyreMotor.kjørBakover(6);

} per.vent(100);

}

}

// idet trykksensor1 blir trykket inn, så hopper programmet hit

}//her er programmet ferdig

//nå gjenstår det å lage selveste bilen

Jun 08, 04 14:30 Page 1/2Skybært2.java

class Robot{
//først må vi si hva roboten består av
Legomotor venstreMotor;
Legomotor høyreMotor;
Trykksensor ivar;
Trykksensor iver;
Lyssensor mummi;
Lyssensor my;
Speaker trond;
Rotasjonssensor kneipen;

//osv.....

Robot(){
//***
// Helpevariabler for motorer. Ikke bry dere om disse
int A = 1;
int B = 2;
int C = 3;
//***

//her lager vi alt som roboten skal bestå av
venstreMotor = new Legomotor(A);//en motor festet til port A på RCXen
høyreMotor = new Legomotor(C);//en motor festet til port C på RCXen
mummi = new Lyssensor(1);
my = new Lyssensor(3);
trond= new Speaker();
kneipen= new Rotasjonssensor (2);

}
}

Jun 08, 04 14:30 Page 2/2Skybært2.java

Printed by Roar Granerud

Wednesday January 26, 2005 p1/Skybært2.java
74

// Disse to linjene trengs for å fortelle programmet hvilke verktøy vi trenger
import josx.platform.rcx.*;
import java.util.*;

// Her starter programmet vårt.
class Gunnar {

public static void main(String [] args) {
new Kontroll();

 }
}

class Kontroll {
Robot volvo; //her sier vi at vi skal ha en ny robot som vi kaller volvo.
Assistent per; //vi vil ha med en assistent som heter per.

Kontroll(){
 Speaker lars;
 Display beate;

//her lager vi en ny bil som vi skal programmere:
volvo = new Robot();
//og så lager vi en ny assistent:
per = new Assistent();
//her kan dere skrive hva roboten skal gjøre
lars = new Speaker();
beate = new Display();

/*
 volvo.venstreMotor.kjørFremover(7);
 volvo.høyreMotor.kjørFremover(7);
 per.vent(4000);
 lars.spillTone(560, 50);
 volvo.venstreMotor.kjørFremover(5);
 volvo.høyreMotor.kjørFremover(5);
 per.vent(3500);

 while(volvo.kurtkåre.lysstyrke() > 40) {
volvo.høyreMotor.kjørFremover(6);
volvo.venstreMotor.kjørFremover(6);

 }

 per.vent(4000);
 lars.spillTone(738, 50);
 volvo.venstreMotor.kjørBakover(2);
 volvo.høyreMotor.kjørFremover(3);
 per.vent(2000);
 lars.spillTone(440, 70);
 lars.spillTone(536, 30);
 lars.spillTone(694, 48);
 volvo.venstreMotor.kjørFremover(4);
 volvo.høyreMotor.kjørFremover(4);
 volvo.snu();
 per.vent(3000);
 beate.skriv("hallo");
 lars.spillTone(460, 73);
 beate.skriv("marit");

volvo.høyreMotor.kjørFremover(4);
volvo.venstreMotor.kjørFremover(4);

 if (volvo.kurtkåre.lysstyrke() < 40) {

Jun 08, 04 14:22 Page 1/3Gunnar.java
 volvo.venstreMotor.kjørBakover(3);

volvo.høyreMotor.kjørBakover(3);
per.vent(1000);
volvo.snu();
 }

 */
while (true) {

if (volvo.kårekurt.lysstyrke() < 40) {
 volvo.venstreMotor.kjørFremover(4);
 volvo.høyreMotor.kjørFremover(4);

}
else {

volvo.høyreMotor.kjørBakover(3);
volvo.venstreMotor.kjørBakover(3);

if (volvo.kurtkåre.lysstyrke() < 40) {
 volvo.høyreMotor.kjørFremover(3);
 volvo.venstreMotor.kjørBakover(3);
 }

if (volvo.kårekurt.lysstyrke() < 40) {
volvo.venstreMotor.kjørFremover(3);
volvo.høyreMotor.kjørBakover(3);

 }

 }

 }
 }

//her er programmet ferdig
}
//nå gjenstår det å lage selveste bilen

class Robot{
//først må vi si hva roboten består av
Legomotor venstreMotor;
Legomotor høyreMotor;
Lyssensor kurtkåre;
Assistent nils;
Lyssensor kårekurt;
//osv.....

Robot(){
//***
// Helpevariabler for motorer. Ikke bry dere om disse
int A = 1;
int B = 2;
int C = 3;
//***

//her lager vi alt som roboten skal bestå av
venstreMotor = new Legomotor(A);//en motor festet til port A på RCXen
høyreMotor = new Legomotor(C);//en motor festet til port C på RCXen
kurtkåre = new Lyssensor (1);
nils = new Assistent();

Jun 08, 04 14:22 Page 2/3Gunnar.java

Printed by Roar Granerud

Wednesday January 26, 2005 p2/Gunnar.java
75

kårekurt = new Lyssensor (3);
}

public void snu() {
høyreMotor.kjørFremover(3);
venstreMotor.kjørBakover(3);
nils.vent(1500);

}

}

Jun 08, 04 14:22 Page 3/3Gunnar.java

Printed by Roar Granerud

Wednesday January 26, 2005 p2/Gunnar.java
76

// Disse to linjene trengs for å fortelle programmet hvilke verktøy vi trenger
import josx.platform.rcx.*;
import java.util.*;

// Her starter programmet vårt. Ved siden av "class" skriver du hva du vil robot
en skal hete.
class sasha {

public static void main(String [] args) {
new Kontroll();

 }
}

class Kontroll {
Robot sasha ; //Her sier vi hva den nye roboten skal hete.
Assistent merethe; //Her sier vi hva ssistenten skal hete.

Kontroll(){

//her lager vi en ny bil som vi skal programmere:
sasha = new Robot();
//og så lager vi en ny assistent:
merethe = new Assistent();
//under programmerer man roboten.

sasha.høyreMotor.kjørFremover(6);
sasha.venstreMotor.kjørFremover(6);
sasha.venstreMotor.stopp();
sasha.høyreMotor.stopp() ;
sasha.venstreMotor.kjørFremover (4);
sasha.høyreMotor.kjørFremover (4);
//her sier du noe roboten skal gjøre hele tiden
while(sasha.lys.lysstyrke() > 40) {

merethe.vent(3000);
sasha.venstreMotor.kjørFremover(5);
sasha.høyreMotor.kjørFremover(5);

}

}//her er programmet ferdig

}
class Robot{

//først må vi si hva roboten består av

Legomotor venstreMotor;
Legomotor høyreMotor;
Lyssensor lys;
Lyssensor lysrosa;

// osv...

Robot(){
// Helpevariabler for motorer. Ikke bry dere om disse

int A = 1; int B = 2; int C = 3;

//her lager vi delene på bilen
//en motor festet til port A på RCXen
venstreMotor = new Legomotor(A);
//en motor festet til port C på RCXen
høyreMotor = new Legomotor(C);
// osv...
lys = new Lyssensor (1);

Jun 08, 04 13:13 Page 1/2Sasha.java

lysrosa = new Lyssensor (3);

}
}

Jun 08, 04 13:13 Page 2/2Sasha.java

Printed by Roar Granerud

Wednesday January 26, 2005 p6/Sasha.java
77

// Disse to linjene trengs for å fortelle programmet hvilke verktøy vi trenger
import josx.platform.rcx.*;
import java.util.*;

// Her starter programmet vårt.
class Arsenal4 {

public static void main(String [] args) {
new Kontroll();

 }
}

class Kontroll {
Robot arsenal; //her sier vi at vi skal ha en ny robot som vi kaller arsenal.
Assistent bob; //vi vil ha med en assistent som heter bob.
Display ut;

Kontroll(){

//her lager vi en ny bil som vi skal programmere:
arsenal = new Robot();
//og så lager vi en ny assistent:
bob = new Assistent();
//her kan dere skrive hva roboten skal gjøre

ut = new Display();

int gå = 0;

while(gå == 0){

arsenal.venstremotor.kjørFremover(6);
 arsenal.høyremotor.kjørFremover(6);

if (arsenal.vensen.trykkesInn()==true){
arsenal.venstremotor.kjørBakover(5);
arsenal.høyremotor.kjørBakover(5);
bob.vent(2000);
arsenal.venstremotor.stopp();
bob.vent(1500);
}

if (arsenal.høysen.trykkesInn()==true) {
arsenal.venstremotor.kjørBakover(5);
arsenal.høyremotor.kjørBakover(5);

 bob.vent(2000);
arsenal.venstremotor.stopp();
bob.vent(1500);

}

if (arsenal.light.lysstyrke() < 41){
arsenal.venstremotor.stopp();
arsenal.høyremotor.stopp();
bob.vent(1000);

 arsenal.venstremotor.kjørBakover(5);
arsenal.høyremotor.kjørBakover(5);

 bob.vent(2000);
arsenal.venstremotor.stopp();
bob.vent(1500);

}

Jun 08, 04 14:12 Page 1/2Arsenal4.java

}//slutt while

}//her er programmet ferdig

}
//nå gjenstår det å lage selveste bilen

class Robot{
//først må vi si hva roboten består av
Legomotor venstremotor;
Legomotor høyremotor;
Trykksensor vensen, høysen;
Lyssensor light;

//osv.....

Robot(){
//***
// Helpevariabler for motorer. Ikke bry dere om disse
int A = 1;
int B = 2;
int C = 3;
//***

//her lager vi alt som roboten skal bestå av
venstremotor = new Legomotor(A);//en motor festet til port A på RCXen
høyremotor = new Legomotor(C);//en motor festet til port C på RCXen
vensen = new Trykksensor(1);
høysen = new Trykksensor(2);
light = new Lyssensor(3);
//osv.....

}
}

Jun 08, 04 14:12 Page 2/2Arsenal4.java

Printed by Roar Granerud

Wednesday January 26, 2005 p7/Arsenal4.java
78

// Disse to linjene trengs for å fortelle programmet hvilke verktøy vi trenger
import josx.platform.rcx.*;
import java.util.*;

// Her starter programmet vårt.
class Donnie {

public static void main(String [] args) {
new Kontroll();

 }
}

class Kontroll {
Robot volvo; //her sier vi at vi skal ha en ny robot som vi kaller volvo.
Assistent per; //vi vil ha med en assistent som heter per.

Kontroll(){

//her lager vi en ny bil som vi skal programmere:
volvo = new Robot();
//og så lager vi en ny assistent:
per = new Assistent();
//her kan dere skrive hva roboten skal gjøre

/*per.vent(1500);
volvo.stopp();
volvo.snu();
volvo.venstreMotor.kjørBakover(5);
volvo.høyreMotor.kjørBakover(5);
per.vent(1000);
*/
//hehehe :D ,,,, dette er jo litt kult da =);)!!!!!! my kommentarer da

 liksom.. dette blir som en videodagbok hehe

int tall;

tall = 45;

while (tall == 45){

volvo.venstreMotor.kjørFremover(1);
 volvo.høyreMotor.kjørFremover(1);

volvo.molle.skriv(volvo.kaare.lysstyrke());
if((volvo.kaare.lysstyrke()<34)){

volvo.høyreMotor.kjørFremover(1);
volvo.venstreMotor.kjørBakover(2);
per.vent(200);

}

if ((volvo.kjell.lysstyrke()<34)) {
volvo.venstreMotor.kjørFremover(1);
volvo.høyreMotor.kjørBakover(2);
per.vent(200);

}

else {volvo.høyreMotor.kjørFremover(3);
volvo.venstreMotor.kjørFremover(3);

Jun 08, 04 14:07 Page 1/2Donnie.java
}

}

}//her er programmet ferdig

}
//nå gjenstår det å lage selveste bilen

class Robot{
//først må vi si hva roboten består av
Legomotor venstreMotor;
Legomotor høyreMotor;
Assistent Alex;
Lyssensor kaare;
Lyssensor kjell;
Display molle;
//osv.....

Robot(){
//***
// Helpevariabler for motorer. Ikke bry dere om disse
int A = 1;
int B = 2;
int C = 3;
//***

//her lager vi alt som roboten skal bestå av
venstreMotor = new Legomotor(A);//en motor festet til port A på RCXen
høyreMotor = new Legomotor(C);//en motor festet til port C på RCXen
Alex = new Assistent();//osv.....
kaare = new Lyssensor (1);
kjell = new Lyssensor (3);
molle = new Display ();
}

public void snu() {
høyreMotor.kjørFremover(7);
Alex.vent(900);

}
public void stopp() {

høyreMotor.stopp();
venstreMotor.stopp();

 }
}

Jun 08, 04 14:07 Page 2/2Donnie.java

Printed by Roar Granerud

Wednesday January 26, 2005 p8/Donnie.java
79

// Disse to linjene trengs for å fortelle programmet hvilke verktøy vi trenger
import josx.platform.rcx.*;
import java.util.*;

// Her starter programmet vårt.
class Arnold {

public static void main(String [] args) {
new Kontroll();

 }
}

class Kontroll {
Robot volvo; //her sier vi at vi skal ha en ny robot som vi kaller volvo.
Assistent per; //vi vil ha med en assistent som heter per.

Kontroll(){

//her lager vi en ny bil som vi skal programmere:
volvo = new Robot();
//og så lager vi en ny assistent:
per = new Assistent();
//her kan dere skrive hva roboten skal gjøre

volvo.venstreMotor.kjørFremover(7);
volvo.høyreMotor.kjørFremover(7);
per.vent(4000);

}
}
//nå gjenstår det å lage selveste bilen

class Robot{
//først må vi si hva roboten består av
Legomotor venstreMotor;
Legomotor høyreMotor;
Lyssensor lyssensor1;
Lyssensor lyssensor2;
Display display1;
//osv.....

Robot(){
//***
// Helpevariabler for motorer. Ikke bry dere om disse
int A = 1;
int B = 2;
int C = 3;
//***

//her lager vi alt som roboten skal bestå av
venstreMotor = new Legomotor(A);//en motor festet til port A på RCXen
høyreMotor = new Legomotor(C);//en motor festet til port C på RCXen

 lyssensor1 = new Lyssensor(1);
lyssensor2 = new Lyssensor(3);

}
}

Jun 08, 04 13:45 Page 1/1Arnold.java

Printed by Roar Granerud

Wednesday January 26, 2005 p9/Arnold.java
80

// Disse to linjene trengs for å fortelle programmet hvilke verktøy vi trenger
import josx.platform.rcx.*;
import java.util.*;

// Her starter programmet vårt.
class Streken {

public static void main(String [] args) {
new Kontroll();

 }
}

class Kontroll {
Robot volvo; //her sier vi at vi skal ha en ny robot som vi kaller volvo.
Assistent per; //vi vil ha med en assistent som heter per.

Kontroll(){

//her lager vi en ny bil som vi skal programmere:
volvo = new Robot();
//og så lager vi en ny assistent:
per = new Assistent();
//her kan dere skrive hva roboten skal gjøre

volvo.høyreMotor.kjørFremover(4);
volvo.venstreMotor.kjørFremover(4);

boolean temp = true;

while (temp){
if(volvo.lys1.lysstyrke() < 37)

volvo.svingH();
if(volvo.lys3.lysstyrke() < 37)

volvo.svingV();
}

}//her er programmet ferdig

}
//nå gjenstår det å lage selveste bilen

class Robot{
//først må vi si hva roboten består av
Legomotor venstreMotor;
Legomotor høyreMotor;
Lyssensor lys1;
Lyssensor lys3;
Assistent ola;

Robot(){
//***
// Helpevariabler for motorer. Ikke bry dere om disse
int A = 1;
int B = 2;
int C = 3;
//***

//her lager vi alt som roboten skal bestå av
venstreMotor = new Legomotor(A);//en motor festet til port A på RCXen
høyreMotor = new Legomotor(C);//en motor festet til port C på RCXen
lys1 = new Lyssensor(1);

Jun 01, 04 14:07 Page 1/2Streken.java
lys3 = new Lyssensor(3);
ola = new Assistent();

}

void svingV(){
// venstreMotor.kjørBakover(5);

høyreMotor.kjørBakover(4);
// ola.vent(1000);
// venstreMotor.kjørFremover(5);

ola.vent(100);
høyreMotor.kjørFremover(4);

}

void svingH(){
venstreMotor.kjørBakover(4);

// høyreMotor.kjørBakover(5);
// ola.vent(1000);
// høyreMotor.kjørFremover(5);

ola.vent(100);
venstreMotor.kjørFremover(4);

}

}

Jun 01, 04 14:07 Page 2/2Streken.java

Printed by Roar Granerud

Wednesday January 26, 2005 p10/Streken.java
81

// Disse to linjene trengs for å fortelle programmet hvilke verktøy vi trenger
import josx.platform.rcx.*;
import java.util.*;

// Her starter programmet vårt.
class Snurre2 {

public static void main(String [] args) {
new Kontroll();

 }
}

class Kontroll {
Robot snurre; //her sier vi at vi skal ha en ny robot som vi kaller volvo.
Assistent per; //vi vil ha med en assistent som heter per.

Kontroll(){

//her lager vi en ny bil som vi skal programmere:
snurre = new Robot();
//og så lager vi en ny assistent:
per = new Assistent();
//her kan dere skrive hva roboten skal gjøre

while(true){

snurre.venstreMotor.kjørFremover(7);
snurre.høyreMotor.kjørFremover(7);

if (snurre.trykksensor1.trykkesInn()==true){
snurre.venstreMotor.kjørBakover(7);
snurre.høyreMotor.kjørBakover(7);
per.vent(1000);
snurre.venstreMotor.kjørFremover(7);
per.vent(500);
}

if (snurre.trykksensor3.trykkesInn()==true){
snurre.venstreMotor.kjørBakover(7);
snurre.høyreMotor.kjørBakover(7);
per.vent(1000);
snurre.høyreMotor.kjørFremover(7);
per.vent(500);

}

if (snurre.trykksensor2.trykkesInn()==true){
snurre.midtMotor.kjørBakover(7);
per.vent(1200);
snurre.midtMotor.stopp();

 }

 }

// idet trykksensor1 blir trykket inn, så hopper programmet hit

}//her er programmet ferdig
}

Jun 08, 04 14:37 Page 1/2Snurre2.java

//nå gjenstår det å lage selveste bilen

class Robot{
//først må vi si hva roboten består av
Legomotor venstreMotor;
Legomotor høyreMotor;
Trykksensor trykksensor1;
Trykksensor trykksensor3; // vi skal nå ha med en trykksensor
Trykksensor trykksensor2;
Speaker lyd;
Legomotor midtMotor;
//osv.....

Robot(){
//**

// Helpevariabler for motorer. Ikke bry dere om disse
int A = 1;
int B = 2;
int C = 3;
//**

//her lager vi alt som roboten skal bestå av
venstreMotor = new Legomotor(A);//en motor festet til port A på

RCXen
høyreMotor = new Legomotor(C);//en motor festet til port C på RC

Xen
trykksensor1 = new Trykksensor(1); // denne nye trykksensoren sk

al vi ha på port 1
trykksensor3 = new Trykksensor(3);
trykksensor2 = new Trykksensor(2);
lyd = new Speaker();
midtMotor = new Legomotor(B);

}

public void snu() {
høyreMotor.kjørFremover(5);
venstreMotor.kjørBakover(5);

}

}

Jun 08, 04 14:37 Page 2/2Snurre2.java

Printed by Roar Granerud

Wednesday January 26, 2005 p12/Snurre2.java
82

// Disse to linjene trengs for å fortelle programmet hvilke verktøy vi trenger
import josx.platform.rcx.*;
import java.util.*;

// Her starter programmet vårt.
class Bae {

public static void main(String [] args) {
new Kontroll();

 }
}

class Kontroll {
Robot jack; //her sier vi at vi skal ha en ny robot som vi kaller volvo.
Assistent per; //vi vil ha med en assistent som heter per.

Kontroll(){

//her lager vi en ny bil som vi skal programmere:
jack= new Robot();
//og så lager vi en ny assistent:
per= new Assistent();
//her kan dere skrive hva roboten skal gjøre

/*
jack.venstreMotor.kjørFremover(7);
jack.høyreMotor.kjørFremover(7);
per.vent(1000);
jack.høyreMotor.kjørBakover(5);
jack.venstreMotor.kjørFremover(5);
per.vent(1000);
jack.høyreMotor.stopp();
jack.venstreMotor.stopp();
per.vent(1000);
jack.venstreMotor.kjørBakover(4);
jack.høyreMotor.kjørBakover(5);
per.vent(1500);
jack.høyreMotor.stopp();
jack.venstreMotor.stopp();
per.vent(500);
jack.høyreMotor.kjørFremover(6);
jack.venstreMotor.kjørBakover(3);
jack.lars.spillTone(500, 125);
per.vent(3000);
jack.lars.spillTone(2000, 240);
jack.høyreMotor.kjørFremover(7);
jack.venstreMotor.stopp();
per.vent(6000);
jack.lars.spillTone(1200, 240);
jack.lars.spillTone(21, 100);
jack.høyreMotor.kjørFremover(7);
jack.venstreMotor.kjørBakover(7);
per.vent(3000);
jack.høyreMotor.kjørFremover(7);
jack.venstreMotor.kjørFremover(6);
jack.lars.spillTone(43, 300);
per.vent(3000);
jack.høyreMotor.kjørBakover(7)
jack.venstreMotor.kjørBakover(2)
jack.lars.spillTone(2000, 200)
per.vent(2000)
jack.høyremotor.kjørFremover(4)
jack.venstremotor.kjørFremover(4)

Jun 08, 04 14:26 Page 1/4Bae.java
per.vent(500)

int tall;
tall = 1;

while(tall == 1){
 jack.høyreMotor.kjørFremover(5);
 jack.venstreMotor.kjørFremover(5);
 if (jack.eye.lysstyrke() < 33){
 jack.venstreMotor.kjørFremover(5);
 jack.høyreMotor.kjørBakover(5);
 per.vent(500);
 if (jack.kjel.lysstyrke() < 33){
 jack.høyreMotor.kjørFremover(5);
 jack.venstreMotor.kjørBakover(5);
 per.vent(500);
 if (jack.eye.lysstyrke() < 33){
 jack.høyreMotor.kjørFremover(5);
 jack.venstreMotor.kjørFremover(5);
 }

 }
 }

jack.kran.kjørFremover(7);
per.vent(4000);
jack.kran.kjørFremover(7);
jack.høyreMotor.kjørFremover(6);
jack.venstreMotor.kjørFremover(5);
per.vent(4000);
jack.høyreMotor.kjørFremover(5);
jack.venstreMotor.kjørBakover(4);
per.vent(3000);
jack.høyreMotor.kjørBakover(6);
jack.venstreMotor.kjørBakover(6);
per.vent(1000);
jack.høyreMotor.kjørFremover(7);
per.vent(2000);
jack.høyreMotor.kjørFremover(7);
jack.venstreMotor.kjørFremover(7);
per.vent(4000);
jack.kran.kjørFremover(7);
per.vent(2400);
jack.venstreMotor.kjørFremover(5);
jack.høyreMotor.kjørFremover(3);
jack.venstreMotor.kjørFremover(2);
jack.høyreMotor.kjørFremover(6);
jack.lars.spillTone(21,2000);
jack.lars.spillTone(21,1500);
jack.lars.spillTone(21,1000);
jack.lars.spillTone(21,500);
per.vent(3000);
jack.venstreMotor.kjørFremover(4);
per.vent(2000);

jack.høyreMotor.kjørBakover(4);
jack.kranåpning.kjørFremover(6);
jack.kranåpning.kjørBakover(3);
if(jack.eye.lysstyrke() < 40){
jack.venstreMotor.kjørFremover(7);

Jun 08, 04 14:26 Page 2/4Bae.java

Printed by Roar Granerud

Wednesday January 26, 2005 p13/Bae.java
83

jack.
*/
while (true) {

jack.venstreMotor.kjørFremover(7);
jack.høyreMotor.kjørFremover(7);

if (jack.kjel.lysstyrke() < 37){
jack.kran.kjørFremover(7);
per.vent(2000);
jack.venstreMotor.kjørFremover(7);
jack.høyreMotor.kjørFremover(1);
per.vent(1000);
jack.høyreMotor.kjørFremover(5);
jack.venstreMotor.kjørBakover(2);
per.vent(4000);
}

}

}

}

//her er programmet ferdig

//nå gjenstår det å lage selveste bilen

class Robot{
//først må vi si hva roboten består av
Legomotor venstreMotor;
Legomotor høyreMotor;
Speaker lars;
Lyssensor eye;
Lyssensor kjel;
Legomotor kran;
Legomotor kranåpning;
//osv.....

Robot(){
//***
// Helpevariabler for motorer. Ikke bry dere om disse
int A = 1;
int B = 2;
int C = 3;
//***

//her lager vi alt som roboten skal bestå av
venstreMotor = new Legomotor(A);//en motor festet til port A på RCXen
høyreMotor = new Legomotor(C);//en motor festet til port C på RCXen
lars = new Speaker();
eye = new Lyssensor(1);
kjel = new Lyssensor(3);
kran = new Legomotor(B);
kranåpning = new Legomotor(2);
//osv.....

}

Jun 08, 04 14:26 Page 3/4Bae.java
}

Jun 08, 04 14:26 Page 4/4Bae.java

Printed by Roar Granerud

Wednesday January 26, 2005 p13/Bae.java
84

// Disse to linjene trengs for å fortelle programmet hvilke verktøy vi trenger
import josx.platform.rcx.*;
import java.util.*;

// Her starter programmet vårt.
class Kandoo {

public static void main(String [] args) {
new Kontroll();

 }
}

class Kontroll {
Robot volvo; //her sier vi at vi skal ha en ny robot som vi kaller volvo.
Assistent per; //vi vil ha med en assistent som heter per.

Kontroll(){

//her lager vi en ny bil som vi skal programmere:
volvo = new Robot();
//og så lager vi en ny assistent:
per = new Assistent();
//her kan dere skrive hva roboten skal gjøre

volvo.kjør(2);
per.vent(2000);

volvo.bakover(2);
per.vent(555);

volvo.kjør(2);
per.vent(2000);

volvo.svinghøyre(3,2100);
volvo.stans();

volvo.svingvenstre(2,2000);
volvo.stans();
//volvo.Louie.spillTone(1100, 250);

//while (volvo.Belly.lysstyrke()>35) {
// volvo.kjør(3);
//}

//volvo.Anna.skriv("strek");
//per.vent(1000);

//volvo.kjør(1)
//per.vent(1500)

//volvo.Anna.skriv("Marit");
//per.vent(2600);

//volvo.Anna.skriv(volvo.Olly.lysstyrke());
//per.vent(1000);

Jun 08, 04 14:26 Page 1/3Kandoo.java

//volvo.Louie.spillTone(800, 180);
//volvo.Louie.spillTone(1000, 200);

}//her er programmet ferdig

}
//nå gjenstår det å lage selveste bilen

class Robot{
//først må vi si hva roboten består av
Legomotor venstreMotor;
Legomotor høyreMotor;
Speaker Louie;
Display Anna;
Lyssensor Belly;
Lyssensor Olly;
Assistent petter;
Robot(){

//***
// Helpevariabler for motorer. Ikke bry dere om disse
int A = 1;
int B = 2;
int C = 3;
//***

//her lager vi alt som roboten skal bestå av
venstreMotor = new Legomotor(A);//en motor festet til port A på RCXen
høyreMotor = new Legomotor(C);//en motor festet til port C på RCXen
Louie = new Speaker();
Anna = new Display(); //osv.....
Belly = new Lyssensor(1);
Olly = new Lyssensor(3);
petter = new Assistent();

}

public void kjør(int styrke) {
høyreMotor.kjørFremover(styrke);
venstreMotor.kjørFremover(styrke);

}

public void stans() {
høyreMotor.stopp();
venstreMotor.stopp();

}

public void bakover(int styrke){
høyreMotor.kjørBakover(styrke);
venstreMotor.kjørBakover(styrke);

}

public void svinghøyre(int styrke, int tid) {
venstreMotor.kjørFremover(styrke);
høyreMotor.stopp();
petter.vent(tid);

}

Jun 08, 04 14:26 Page 2/3Kandoo.java

Printed by Roar Granerud

Wednesday January 26, 2005 p14/Kandoo.java
85

public void svingvenstre(int styrke, int tid) {
høyreMotor.kjørFremover(styrke);
venstreMotor.stopp();
petter.vent(tid);

}

}

Jun 08, 04 14:26 Page 3/3Kandoo.java

Printed by Roar Granerud

Wednesday January 26, 2005 p14/Kandoo.java
86

class Kontroll {

 Resturant vertshuset;
 Person per;
 Person lise; // osv

Person kjell;
Person hanne;

 Kontroll() {
 vertshuset = new Resturant();

// Under her kan dere skrive kommandoene deres.
per = new Gjest("Per", "mann");
lise = new Gjest ("lise","kvinne");
kjell = new Gjest("kjell","mann");
hanne =new Gjest("hanne","kvinne");

vertshuset.hovmester.endreAntallPlasser(vertshuset.bord4,4);

vertshuset.hovmester.plasserVedBord(per, vertshuset.bord4);
vertshuset.hovmester.plasserVedBord(lise, vertshuset.bord4);
vertshuset.hovmester.plasserVedBord(kjell, vertshuset.bord4);
vertshuset.hovmester.plasserVedBord(hanne, vertshuset.bord4);

per.velgFraMeny(vertshuset.meny.rettNummer("Biff"),vertshuset.men
y.rettNummer("Kake"));

lise.velgFraMeny(vertshuset.meny.rettNummer("Salat"),vertshuset.m
eny.rettNummer("Gele"));

kjell.velgFraMeny(vertshuset.meny.rettNummer("Laks"),vertshuset.
meny.rettNummer("Sjokoladepudding"));

hanne.velgFraMeny(vertshuset.meny.rettNummer("Salat"),vertshuset.
meny.rettNummer("Is"));

vertshuset.bord4.servitør.taBestilling(per);
vertshuset.bord4.servitør.taBestilling(lise);
vertshuset.bord4.servitør.taBestilling(kjell);
vertshuset.bord4.servitør.taBestilling(hanne);

vertshuset.kokk.lageMat();
vertshuset.kokk.lageMat();
vertshuset.kokk.lageMat();
vertshuset.kokk.lageMat();

vertshuset.bord4.servitør.hentHovedrett();

vertshuset.bord4.servitør.leverMatrett(vertshuset.bord4.servitør
.finnRiktigGjest(vertshuset.bord4));

vertshuset.bord4.servitør.hentHovedrett();
vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);
vertshuset.bord4.servitør.leverMatrett(vertshuset.bord4.servitør

.finnRiktigGjest(vertshuset.bord4));
vertshuset.bord4.servitør.hentHovedrett();
vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);
vertshuset.bord4.servitør.leverMatrett(vertshuset.bord4.servitør

.finnRiktigGjest(vertshuset.bord4));
vertshuset.bord4.servitør.hentHovedrett();
vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);
vertshuset.bord4.servitør.leverMatrett(vertshuset.bord4.servitør

Oct 15, 04 23:01 Page 1/2MollaMat_1.java
.finnRiktigGjest(vertshuset.bord4));

 }
}

class Resturant {

 Kelner hovmester, bob;
Kokk kokk;

 Meny meny;
 Bord bord1;
 Bord bord2;
 Bord bord3;
 Bord bord4;

 Resturant() {
hovmester = new Kelner("Eva", "dame");
kokk = new Kokk("Tor", "mann");
meny = new Meny();
bob = new Kelner("bob", "mann");
bord1 = new Bord(4);
bord2 = new Bord(2);
bord3 = new Bord(5);
bord4 = new Bord(2);

 }

}

Oct 15, 04 23:01 Page 2/2MollaMat_1.java

Printed by Roar Granerud

Wednesday January 26, 2005 MollaMat_1.java
87

class Kontroll {

 Resturant vertshuset;
 Person per;
 Person ole;
 Person kari;
 Person siri; //osv
 Kontroll() {
 vertshuset = new Resturant();
 per = new Gjest("per", "mann");
 ole = new Gjest("ole", "mann");
 kari = new Gjest("kari", "dame");
 siri = new Gjest("siri", "dame");

// osv

// Under her kan dere skrive kommandoene deres.
vertshuset.hovmester.plasserVedBord(per, vertshuset.bord1);
vertshuset.hovmester.plasserVedBord(siri, vertshuset.bord1);
vertshuset.hovmester.plasserVedBord(kari, vertshuset.bord1);
vertshuset.hovmester.plasserVedBord(ole, vertshuset.bord1);
per.velgFraMeny(0, 10);

 ole.velgFraMeny(4, 11);
 kari.velgFraMeny(5, 6);
 siri.velgFraMeny(3, 6);

vertshuset.bord1.servitør.taBestilling(per);
 vertshuset.bord1.servitør.taBestilling(ole);
 vertshuset.bord1.servitør.taBestilling(kari);
 vertshuset.bord1.servitør.taBestilling(siri);
 vertshuset.tor.lageMat();
 vertshuset.bord1.servitør.hentHovedrett();
 vertshuset.bord1.servitør.hentHovedrett();
 vertshuset.bord1.servitør.hentHovedrett();
 vertshuset.bord1.servitør.hentHovedrett();
 vertshuset.bord1.servitør.hentDessert();
 vertshuset.bord1.servitør.hentDessert();
 vertshuset.bord1.servitør.hentDessert();
 vertshuset.bord1.servitør.hentDessert();

 }
}

class Resturant {

 Kelner hovmester;
Kokk tor;

 Meny meny;
 Bord bord1;
 Bord bord2;
 Bord bord3;
 Bord bord4;

 Resturant() {
hovmester = new Kelner("Eva", "dame");
tor = new Kokk("Tor", "mann");
meny = new Meny();
bord1 = new Bord(4);

Oct 15, 04 23:01 Page 1/2MollaMat_10.java
bord2 = new Bord(2);
bord3 = new Bord(5);
bord4 = new Bord(4);

 }
}

Oct 15, 04 23:01 Page 2/2MollaMat_10.java

Printed by Roar Granerud

Wednesday January 26, 2005 MollaMat_10.java
88

class Kontroll {

 Resturant vertshuset;
 Person per;
 Person lars;
 Person nina;
 Person hanne; // osv
 Person gjest;

 Kontroll() {
 vertshuset = new Resturant();
 per = new Gjest("Per", "mann");
 lars = new Gjest("Lars", "mann");
 nina = new Gjest("Nina", "kvinne");
 hanne = new Gjest("Hanne", "kvinne");
 gjest = new Gjest ("Kalle", "mann");

// osv

// Under her kan dere skrive kommandoene deres.

 vertshuset.hovmester.endreAntallPlasser(vertshuset.bord4,4);
 vertshuset.hovmester.plasserVedBord(per, vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(lars,vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(nina,vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(hanne,vertshuset.bord4);
 per.velgFraMeny(vertshuset.meny.rettNummer("Biff"),vertshuset.meny.rettNummer
("Gele"));
 lars.velgFraMeny(vertshuset.meny.rettNummer("Laks"),vertshuset.meny.rettNumm
er("Is"));
 nina.velgFraMeny(vertshuset.meny.rettNummer("Salat"),vertshuset.meny.rettNumm
er("Is"));
 hanne.velgFraMeny(vertshuset.meny.rettNummer("Biff"),vertshuset.meny.rettNumm
er("Sjokoladepudding"));
 vertshuset.bord4.servitør.taBestilling(per);
 vertshuset.bord4.servitør.taBestilling(lars);
 vertshuset.bord4.servitør.taBestilling(nina);
 vertshuset.bord4.servitør.taBestilling(hanne);
 vertshuset.kokk.lageMat();
 vertshuset.bord4.servitør.hentHovedrett();
 gjest = vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);
 vertshuset.bord4.servitør.leverMatrett(gjest);
 vertshuset.bord4.servitør.hentHovedrett();
 gjest = vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);
 vertshuset.bord4.servitør.leverMatrett(gjest);
 vertshuset.bord4.servitør.hentHovedrett();
 gjest = vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);
 vertshuset.bord4.servitør.leverMatrett(gjest);
 vertshuset.bord4.servitør.hentHovedrett();
 gjest = vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);
 vertshuset.bord4.servitør.leverMatrett(gjest);
 vertshuset.bord4.servitør.hentDessert();
 gjest = vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);
 vertshuset.bord4.servitør.leverMatrett(gjest);
 vertshuset.bord4.servitør.hentDessert();
 gjest = vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);
 vertshuset.bord4.servitør.leverMatrett(gjest);
 vertshuset.bord4.servitør.hentDessert();
 gjest = vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);

Oct 15, 04 23:01 Page 1/2MollaMat_12.java
 vertshuset.bord4.servitør.leverMatrett(gjest);
 vertshuset.bord4.servitør.hentDessert();
 gjest = vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);
 vertshuset.bord4.servitør.leverMatrett(gjest);

 }
}

class Resturant {

 Kelner hovmester;
 Kelner kelner;

Kokk kokk;
 Meny meny;
 Bord bord1;
 Bord bord2;
 Bord bord3;
 Bord bord4;

 Resturant() {
hovmester = new Kelner("Eva", "dame");
kelner = new Kelner("Hans", "mann");
kelner = new Kelner("Grete", "kvinne");
kokk = new Kokk("Tor", "mann");
meny = new Meny();
bord1 = new Bord(4);
bord2 = new Bord(2);
bord3 = new Bord(5);
bord4 = new Bord(2);

 }

}

Oct 15, 04 23:01 Page 2/2MollaMat_12.java

Printed by Roar Granerud

Wednesday January 26, 2005 MollaMat_12.java
89

class Kontroll {

 Resturant mia;
 Person arne;
 Person bjarne; // osv
 Person chris;
 Person daniel;

 Kontroll() {
 mia = new Resturant();
 arne = new Gjest("1", "mann");
 bjarne = new Gjest("2", "mann");
 chris = new Gjest("3", "mann");// osv
 daniel = new Gjest("4", "mann");

 mia.hovmester.endreAntallPlasser(mia.bord4, 4);

 mia.hovmester.plasserVedBord(arne, mia.bord4);
 mia.hovmester.plasserVedBord(bjarne, mia.bord4);
 mia.hovmester.plasserVedBord(chris, mia.bord4);
 mia.hovmester.plasserVedBord(daniel, mia.bord4);

 arne.velgFraMeny(1, 1);
 bjarne.velgFraMeny(2, 2);
 chris.velgFraMeny(3, 3);
 daniel.velgFraMeny(4, 5);

 mia.bord4.servitør.taBestilling(arne);
 mia.bord4.servitør.taBestilling(bjarne);
 mia.bord4.servitør.taBestilling(chris);
 mia.bord4.servitør.taBestilling(daniel);

 mia.kokk.lageMat();

 mia.bord4.servitør.hentHovedrett();
 mia.bord4.servitør.hentHovedrett();
 mia.bord4.servitør.hentHovedrett();
 mia.bord4.servitør.hentHovedrett();

 mia.kelner.finnRiktigGjest(4);

 mia.kelner.leverMatrett(arne);
 mia.kelner.leverMatrett(bjarne);
 mia.kelner.leverMatrett(chris);
 mia.kelner.leverMatrett(daniel);

 mia.bord4.servitør.hentDessert();

Oct 15, 04 23:01 Page 1/2MollaMat_13.java
 mia.bord4.servitør.hentDessert();
 mia.bord4.servitør.hentDessert();
 mia.bord4.servitør.hentDessert();

 mia.kelner.finnRiktigGjest(4);

 mia.kelner.leverMatrett(arne);
 mia.kelner.leverMatrett(bjarne);
 mia.kelner.leverMatrett(chris);
 mia.kelner.leverMatrett(daniel);

// Under her kan dere skrive kommandoene deres.

 }
}

class Resturant {

 Kelner hovmester;
Kokk kokk;

 Meny meny;
 Bord bord1;
 Bord bord2;
 Bord bord3;
 Bord bord4;

 Resturant() {
hovmester = new Kelner("Eva", "dame");
kokk = new Kokk("Tor", "mann");
meny = new Meny();
bord1 = new Bord(4);
bord2 = new Bord(2);
bord3 = new Bord(5);
bord4 = new Bord(2);

 }

}

Oct 15, 04 23:01 Page 2/2MollaMat_13.java

Printed by Roar Granerud

Wednesday January 26, 2005 MollaMat_13.java
90

class Kontroll {

 Resturant vertshuset;
 Person per;
 Person lise; // osv
 Person ole;
 Person karl;

 Kontroll() {
 vertshuset = new Resturant();
 per = new Gjest("Per", "mann");
 lise = new Gjest("Lise", "dame");
 ole = new Gjest("Ole", "mann");
 karl = new Gjest("Karl", "mann");

// osv

// Under her kan dere skrive kommandoene deres.
 vertshuset.hovmester.endreAntallPlasser(vertshuset.bord4, 4);

 vertshuset.hovmester.plasserVedBord(per, vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(lise, vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(ole, vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(karl, vertshuset.bord4);

 per.velgFraMeny(vertshuset.meny.rettNummer("Elgstek"),vertshuset.meny.rettNumm
er("Bær"));
 lise.velgFraMeny(vertshuset.meny.rettNummer("Kotelett"),vertshuset.meny.rettNu
mmer("Is"));
 ole.velgFraMeny(vertshuset.meny.rettNummer("Salat"),vertshuset.meny.rettNumme
r("Gele"));
 karl.velgFraMeny(vertshuset.meny.rettNummer("Oksestek"),vertshuset.meny.rettN
ummer("Kake"));

 vertshuset.bord4.servitør.taBestilling(per);
 vertshuset.bord4.servitør.taBestilling(lise);
 vertshuset.bord4.servitør.taBestilling(ole);
 vertshuset.bord4.servitør.taBestilling(karl);

 vertshuset.kokk.lageMat();

 vertshuset.bord4.servitør.hentHovedrett();

 vertshuset.bord4.servitør.hentDessert();

 vertshuset.bord4.servitør.finnRiktigGjest(vertshuset.bord4);
 vertshuset.bord4.servitør.leverMatrett(per);
 vertshuset.bord4.servitør.leverMatrett(lise);
 vertshuset.bord4.servitør.leverMatrett(ole);
 vertshuset.bord4.servitør.leverMatrett(karl);

 }
}

class Resturant {

 Kelner hovmester;

Oct 15, 04 23:01 Page 1/2MollaMat_14.java
Kokk kokk;

 Meny meny;
 Bord bord1;
 Bord bord2;
 Bord bord3;
 Bord bord4;

 Resturant() {
hovmester = new Kelner("Eva", "dame");
kokk = new Kokk("Tor", "mann");
meny = new Meny();
bord1 = new Bord(4);
bord2 = new Bord(2);
bord3 = new Bord(5);
bord4 = new Bord(2);

 }

}

Oct 15, 04 23:01 Page 2/2MollaMat_14.java

Printed by Roar Granerud

Wednesday January 26, 2005 MollaMat_14.java
91

class Kontroll {

 Resturant vertshuset;
 Person per;
 Person lise; // osv

Person kjell;
Person hanne;

 Display skjerm;
 Kontroll() {
 vertshuset = new Resturant();
 per = new Gjest("Per", "mann");
 lise = new Gjest("lise", "dame");
 kjell = new Gjest("kjell", "mann");
 hanne = new Gjest("hanne", "dame");
 skjerm = new Display();

// Under her kan dere skrive kommandoene deres.

 skjerm.skriv("velkommem");
 vertshuset.hovmester.endreAntallPlasser(vertshuset.bord4, 4);
 vertshuset.hovmester.plasserVedBord(lise, vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(kjell, vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(hanne, vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(per, vertshuset.bord4);

 lise.velgFraMeny(vertshuset.meny.rettNummer("Salat"), vertshuset.meny.ret
tNummer("Sjokoladepudding"));
 kjell.velgFraMeny(vertshuset.meny.rettNummer("Biff"), vertshuset.meny.ret
tNummer("Is"));
 hanne.velgFraMeny(vertshuset.meny.rettNummer("Elgstek"), vertshuset.meny.r
ettNummer("Tiramisu"));
 per.velgFraMeny(vertshuset.meny.rettNummer("Laks"), vertshuset.meny.rett
Nummer("Kake"));
 vertshuset.servitrise.taBestilling(per);
 vertshuset.servitrise.taBestilling(lise);
 vertshuset.servitrise.taBestilling(hanne);
 vertshuset.servitrise.taBestilling(kjell);
 vertshuset.kokk.lagMat();
 vertshuset.servitrise.hentHovedrett();
 skjerm.skriv("vaersaagod");
 skjerm.skriv("takk");
 vertshuset.servitrise.hentDessert();

 }
}

class Resturant {

 Kelner hovmester;
 Kelner servitrise;
 Kelner servitør;

Kokk kokk;
 Meny meny;
 Bord bord1;
 Bord bord2;
 Bord bord3;

Oct 15, 04 23:01 Page 1/2MollaMat_2.java
 Bord bord4;

 Resturant() {
hovmester = new Kelner("Eva", "dame");
servitrise = new Kelner("Maren", "dame");
servitør = new Kelner("Bjarne", "mann");
kokk = new Kokk("Tor", "mann");
meny = new Meny();
bord1 = new Bord(4);
bord2 = new Bord(2);
bord3 = new Bord(5);
bord4 = new Bord(3);

 }
 }

Oct 15, 04 23:01 Page 2/2MollaMat_2.java

Printed by Roar Granerud

Wednesday January 26, 2005 MollaMat_2.java
92

class Kontroll {

 Resturant oblecta;
 Person per;
 Person lise; // osv

Person kjell;
Person hanne;

 Person gjest;

 Kontroll() {
 oblecta = new Resturant();
 per = new Gjest("Per", "mann");
 lise = new Gjest("lise", "dame");
 kjell = new Gjest("kjell", "mann");
 hanne = new Gjest("hanne", "dame");
 gjest = new Gjest("gjest", "dame");

// Under her kan dere skrive kommandoene deres.

 oblecta.hovmester.endreAntallPlasser(oblecta.bord4,4);
 oblecta.hovmester.plasserVedBord(per,oblecta.bord4);
 oblecta.hovmester.plasserVedBord(lise,oblecta.bord4);
 oblecta.hovmester.plasserVedBord(kjell,oblecta.bord4);
 oblecta.hovmester.plasserVedBord(hanne,oblecta.bord4);
 per.velgFraMeny(oblecta.meny.rettNummer("Elgstek"),oblecta.meny.rettNummer
("is"));
 lise.velgFraMeny(oblecta.meny.rettNummer("laks"),oblecta.meny.rettNummer(
"tiramisu"));
 kjell.velgFraMeny(oblecta.meny.rettNummer("kotelett"),oblecta.meny.rettNumm
er("sjokoladepudding"));
 hanne.velgFraMeny(oblecta.meny.rettNummer("salat"),oblecta.meny.rettNumme
r("gele"));
 oblecta.hovmester.taBestilling(per);
 oblecta.hovmester.taBestilling(lise);
 oblecta.hovmester.taBestilling(kjell);
 oblecta.hovmester.taBestilling(hanne);
 oblecta.kokk.lageMat();
 oblecta.hovmester.hentHovedrett();
 gjest = oblecta.hovmester.finnRiktigGjest(oblecta.bord4);
 oblecta.hovmester.leverMatrett(gjest);
 oblecta.hovmester.hentHovedrett();
 gjest = oblecta.hovmester.finnRiktigGjest(oblecta.bord4);
 oblecta.hovmester.leverMatrett(gjest);
 oblecta.hovmester.hentHovedrett();
 gjest = oblecta.hovmester.finnRiktigGjest(oblecta.bord4);
 oblecta.hovmester.leverMatrett(gjest);
 oblecta.hovmester.hentHovedrett();
 gjest = oblecta.hovmester.finnRiktigGjest(oblecta.bord4);
 oblecta.hovmester.leverMatrett(gjest);

 oblecta.hovmester.hentDessert();
 gjest = oblecta.hovmester.finnRiktigGjest(oblecta.bord4);
 oblecta.hovmester.leverMatrett(gjest);
 oblecta.hovmester.hentDessert();
 gjest = oblecta.hovmester.finnRiktigGjest(oblecta.bord4);
 oblecta.hovmester.leverMatrett(gjest);
 oblecta.hovmester.hentDessert();
 gjest = oblecta.hovmester.finnRiktigGjest(oblecta.bord4);
 oblecta.hovmester.leverMatrett(gjest);

Jan 06, 05 12:19 Page 1/2MollaMat_6a.java
 oblecta.hovmester.hentDessert();

 gjest = oblecta.hovmester.finnRiktigGjest(oblecta.bord4);
 oblecta.hovmester.leverMatrett(gjest);

 }
}

class Resturant {

 Kelner hovmester;
Kokk kokk;

 Meny meny;
 Bord bord1;
 Bord bord2;
 Bord bord3;
 Bord bord4;

 Resturant() {
hovmester = new Kelner("Eva", "dame");
kokk = new Kokk("Tor", "mann");
meny = new Meny();
bord1 = new Bord(4);
bord2 = new Bord(2);
bord3 = new Bord(5);
bord4 = new Bord(2);

 }

}

Jan 06, 05 12:19 Page 2/2MollaMat_6a.java

Printed by Roar Granerud

Wednesday January 26, 2005 MollaMat_6a.java
93

class Kontroll {

 Resturant vertshuset;
 Person per;
 Person lise; // osv

Person kjell;
Person hanne;

 Kontroll() {
 vertshuset = new Resturant();
 per = new Gjest ("Per", "mann");
 lise = new Gjest ("Lise", "dame");
 kjell = new Gjest ("Kjell", "mann");
 hanne = new Gjest ("Hanne", "dame");

// Under her kan dere skrive kommandoene deres.
 vertshuset.hovmester.endreAntallPlasser(vertshuset.bord4,4);
 vertshuset.hovmester.plasserVedBord(per, vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(lise, vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(kjell, vertshuset.bord4);
 vertshuset.hovmester.plasserVedBord(hanne, vertshuset.bord4);
 vertshuset.meny.rettNummer("Biff");
 vertshuset.meny.rettNummer("Elgstek");
 vertshuset.meny.rettNummer("Salat");
 vertshuset.meny.rettNummer("Laks");
 vertshuset.meny.rettNummer("Kotelett");
 vertshuset.meny.rettNummer("Oksestek");
 vertshuset.meny.rettNummer("Is");
 vertshuset.meny.rettNummer("Kake");
 vertshuset.meny.rettNummer("Bær");
 vertshuset.meny.rettNummer("Sjokoladepudding");
 vertshuset.meny.rettNummer("Gele");
 vertshuset.meny.rettNummer("Tiramisu");
 per.velgFraMeny(0, 6);
 lise.velgFraMeny(1, 7);
 kjell.velgFraMeny(2, 8);
 hanne.velgFraMeny(3, 9);
 vertshuset.ida.taBestilling(per);
 vertshuset.ida.taBestilling(lise);
 vertshuset.ida.taBestilling(kjell);
 vertshuset.ida.taBestilling(hanne);
 vertshuset.kokk.lageMat();
 vertshuset.ida.hentHovedrett();
 vertshuset.ida.finnRiktigGjest(vertshuset.bord4);
 vertshuset.ida.leverMatrett(per);
 vertshuset.ida.hentHovedrett();
 vertshuset.ida.finnRiktigGjest(vertshuset.bord4);
 vertshuset.ida.leverMatrett(lise);
 vertshuset.ida.hentHovedrett();
 vertshuset.ida.finnRiktigGjest(vertshuset.bord4);
 vertshuset.ida.leverMatrett(kjell);
 vertshuset.ida.hentHovedrett();
 vertshuset.ida.finnRiktigGjest(vertshuset.bord4);
 vertshuset.ida.leverMatrett(hanne);
 vertshuset.ida.hentDessert();
 vertshuset.ida.finnRiktigGjest(vertshuset.bord4);
 vertshuset.ida.leverMatrett(per);
 vertshuset.ida.hentDessert();
 vertshuset.ida.finnRiktigGjest(vertshuset.bord4);
 vertshuset.ida.leverMatrett(lise);

Oct 15, 04 23:02 Page 1/2MollaMat_7.java
 vertshuset.ida.hentDessert();
 vertshuset.ida.finnRiktigGjest(vertshuset.bord4);
 vertshuset.ida.leverMatrett(kjell);
 vertshuset.ida.hentDessert();
 vertshuset.ida.finnRiktigGjest(vertshuset.bord4);
 vertshuset.ida.leverMatrett(hanne);
 }
}

class Resturant {

 Kelner hovmester;
Kokk kokk;

 Meny meny;
 Bord bord1;
 Bord bord2;
 Bord bord3;
 Bord bord4;
 Kelner ida;

 Resturant() {
hovmester = new Kelner("Eva", "dame");
kokk = new Kokk("Tor", "mann");
meny = new Meny();
bord1 = new Bord(4);
bord2 = new Bord(2);
bord3 = new Bord(5);
bord4 = new Bord(2);

 ida = new Kelner("Ida","dame");
 }

}

Oct 15, 04 23:02 Page 2/2MollaMat_7.java

Printed by Roar Granerud

Wednesday January 26, 2005 MollaMat_7.java
94

class Kontroll {

 Resturant vertshuset;
 Person per;
 Person blabla; // osv

 Kontroll() {
 vertshuset = new Resturant();
 per = new Gjest("Per", "mann");

// osv

// Under her kan dere skrive kommandoene deres.

 }
}

class Resturant {

 Kelner hovmester;
Kokk kokk;

 Meny meny;
 Bord bord1;
 Bord bord2;
 Bord bord3;
 Bord bord4;

 Resturant() {
hovmester = new Kelner("Eva", "dame");
kokk = new Kokk("Tor", "mann");
meny = new Meny();
bord1 = new Bord(4);
bord2 = new Bord(2);
bord3 = new Bord(5);
bord4 = new Bord(2);

 }

}

Oct 15, 04 23:02 Page 1/1MollaMat_8.java

Printed by Roar Granerud

Wednesday January 26, 2005 MollaMat_8.java
95

class Kontroll {

 Resturant vertshuset;
 Person per;
 Person ole;
 Person pamula;
 Person erik;
 Person elise;

 Kontroll() {
 vertshuset = new Resturant();
 per = new Gjest("Per", "mann");
 ole = new Gjest("Ole", "mann");
 pamula = new Gjest("Pamula", "dame");
 erik = new Gjest("Erik", "mann");
 elise = new Gjest("Elise", "dame");

// osv

// Under her kan dere skrive kommandoene deres.

 vertshuset.hovmester.endreAntallPlasser(bord, 5);
 vertshuset.hovmester.plasserVedBord(per,bord);
 vertshuset.hovmester.plasserVedBord(ole,bord);
 vertshuset.hovmester.plasserVedBord(pamula,bord);
 vertshuset.hovmester.plasserVedBord(erik,bord);
 vertshuset.hovmester.plasserVedBord(elise,bord);
 per.velgFraMeny(1, 1);
 ole.velgFraMeny(2, 2);
 pamula.velgFraMeny(1, 1);
 erik.velgFraMeny(1, 1);
 elise.velgFraMeny(1, 1);
 vertshuset.bord4.servitor.taBestilling(per);
 vertshuset.bord4.servitor.taBestilling(ole);
 vertshuset.bord4.servitor.taBestilling(pamula);
 vertshuset.bord4.servitor.taBestilling(erik);
 vertshuset.bord4.servitor.taBestilling(elise);
 vertshuset.kokk.lageMat();
 verthuset.bord4.servitor.hentHovedrett();
 vershuset.bord4.servitor.hentDessert();

 }
}

class Resturant {

 Kelner hovmester;
Kokk kokk;

 Meny meny;
 Bord bord1;
 Bord bord2;
 Bord bord3;
 Bord bord4;
 Resturant() {

hovmester = new Kelner("Eva", "dame");
kokk = new Kokk("Roly", "mann");

Oct 15, 04 23:02 Page 1/2MollaMat_9_a.java
meny = new Meny();
bord1 = new Bord(4);
bord2 = new Bord(2);
bord3 = new Bord(5);
bord4 = new Bord(5);

 }

}

Oct 15, 04 23:02 Page 2/2MollaMat_9_a.java

Printed by Roar Granerud

Wednesday January 26, 2005 MollaMat_9_a.java
96

import java.util.Random;

// DENNE MÅ DE STRENGT TATT IKKE SE...
class MollaMat {

static Thread t = new Thread();
static void vent(int msek) {

try {

t.sleep(msek);
} catch(Exception e) {
}

}
public static void main(String [] args) {

t.start();
new Kontroll();

 }
}

// DENNE MÅ DE STRENGT TATT IKKE SE...
// MÅ LAGE EN API FOR DEN. IKKE BESKRIV NOEN METODER.
class Person {
 String navn;
 String kjønn;

 Person(String navn, String kjønn) {
 this.navn = navn;
 this.kjønn = kjønn;
 }

void velgFraMeny(int hoved, int dessert) {}
int beOmHovedrett() { return 0; }
int beOmDessert() { return 0; }
void leggInnBestilling(int bestillt) {}
void lageMat() {}

 Matrett leverHovedrett() { return null; }
 Matrett leverDessert() { return null; }

void hentHovedrett() {}
void hentDessert() {}
void leverMatrett(Person gjest) {}
void taBestilling(Person gjest) {}
void plasserVedBord(Person gjest, Bord bord) {}
void endreAntallPlasser(Bord bord, int antall) {}
int hovedrett() { return 0; }
int dessert() { return 0; }

}

// DENNE MÅ DET LAGES API FOR.
class Gjest extends Person {

int hovedrett;
int dessert;

 Meny meny;

 Gjest(String navn, String kjønn) {
super(navn, kjønn);

 meny = new Meny();
 }

Oct 18, 04 11:29 Page 1/7Resten.java
// DISSE MÅ IKKE LAGES API FOR
int hovedrett() {return hovedrett;}
int dessert() {return dessert;}

// DENNE METODEN MÅ DET LAGES API FOR:
// VELGER DESSERT OG HOVEDRETT FRA MENYEN
// SLIK AT GJESTEN KAN FORTELLE DETTE TIL
// SERVITØREN NÅR HAN KOMMER.
void velgFraMeny(int hoved, int dessert) {

if(meny.meny[hoved] instanceof Dessert) {
 System.out.println("Kan ikke bestille dessert til hovedrett!");
 System.exit(0);
}
if(meny.meny[dessert] instanceof Hovedrett) {
 System.out.println("Kan ikke bestille hovedrett til dessert!");
 System.exit(0);
}
this.hovedrett = hoved;

 this.dessert = dessert;
 }

// TRENGER IKKE API, ELLER?
int beOmHovedrett() {

return hovedrett;
 }

// TRENGER IKKE API, ELLER?
int beOmDessert() {

return dessert;
 }

}

// DENNE MÅ DET LAGES API FOR
class Kokk extends Person {

 Random r = new Random();
static int [] bestillinger;
static boolean lagetMat;

 Meny meny;

 Kokk(String navn, String kjønn) {
super(navn, kjønn);

 bestillinger = new int[20];
for(int i = 0; i < bestillinger.length; i++) {

 bestillinger[i] = −1;
 }
 lagetMat = false;
 meny = new Meny();
 }

// TRENGER IKKE API, ELLER?
void leggInnBestilling(int bestillt) {

int plass = r.nextInt(19);

while(bestillinger[plass] != −1) { plass = r.nextInt(19); }

 bestillinger[plass] = bestillt;
System.out.println(meny.meny[bestillt].rett + " er bestillt.");
MollaMat.vent(1000);

 }

Oct 18, 04 11:29 Page 2/7Resten.java

Printed by Roar Granerud

Wednesday January 26, 2005 Resten.java
97

// MÅ LAGE API FOR
// MÅ KALLES FØR MATEN KAN LEVERES.
void lageMat() {

System.out.print("Kokken lager mat...");
MollaMat.vent(500);
System.out.print(".");
MollaMat.vent(500);
System.out.print(".");
MollaMat.vent(500);
System.out.print(".");
MollaMat.vent(500);
System.out.print(".");
MollaMat.vent(500);
System.out.print(".");
MollaMat.vent(500);
System.out.print(".");
MollaMat.vent(500);
System.out.println(".ferdig!");
MollaMat.vent(500);

 lagetMat = true;
 }

// TRENGER IKKE API, ELLER?
// SENDER HOVEDRETT TIL KELNER

 Matrett leverHovedrett() {
if(lagetMat == false) {
 System.out.println("Maten er ikke laget!");
 System.exit(0);
}

for(int i = 0; i < bestillinger.length; i++) {
if(bestillinger[i] != −1 && meny.meny[bestillinger[i]] instanceof Ho

vedrett) {
int temp = bestillinger[i];

 bestillinger[i] = −1;
return meny.meny[temp];

 }
 }

System.out.println("Ukjent matrett.");
return null;

 }

// TRENGER IKKE API, ELLER?
// SENDER DESSERT TIL KELNER

 Matrett leverDessert() {
if(lagetMat == false) {
 System.out.println("Maten er ikke laget!");
 System.exit(0);
}
for(int i = 0; i < bestillinger.length; i++) {

if(bestillinger[i] != −1 && meny.meny[bestillinger[i]] instanceof De
ssert) {

int temp = bestillinger[i];
 bestillinger[i] = −1;

return meny.meny[temp];
 }
 }

System.out.println("Ukjent matrett.");
return null;

 }

Oct 18, 04 11:29 Page 3/7Resten.java

}

class Kelner extends Person {

 Matrett ferdigMatrett;
 Kokk kokk;
 Meny meny;

 Kelner(String navn, String kjønn) {
super(navn, kjønn);

 kokk = new Kokk("Olav", "Mann");
meny = new Meny();

 }

// MÅ LAGE API FOR
// FINNER RIKTIG GJEST SOM SKAL HA MATEN
// RETURNERER DENNE GJESTEN

 Person finnRiktigGjest(Bord bord) {
int matrett = meny.rettNummer(ferdigMatrett.rett);

for(int i = 0; i < bord.antallPlasser; i++) {
if(ferdigMatrett instanceof Hovedrett) {

if(matrett == bord.gjester[i].hovedrett()) {
return bord.gjester[i];

}
 } else {

if(matrett == bord.gjester[i].dessert()) {
return bord.gjester[i];

}
 }
}

return null;
 }

// MÅ LAGE API FOR
// HENTER EN FERDIG LAGET HOVEDRETT FRA KOKKEN
// DENNE KOMMER UT I RANDOM!
void hentHovedrett() {

// legg inn random rett fra bestillingslisten
// alle hovedretter kommer før desserter

 ferdigMatrett = kokk.leverHovedrett();
 }

// MÅ LAGE API FOR
// HENTER EN FERDIG LAGET DESSERT FRA KOKKEN
// DENNE KOMMER UT I RANDOM!
void hentDessert() {

 ferdigMatrett = kokk.leverDessert();
 }

// MÅ LAGE API FOR
// LEVERER MATRETT TIL EN GJEST
void leverMatrett(Person gjest) {

 String type;
if(ferdigMatrett instanceof Hovedrett)

 type = "hovedrett.";
else

 type = "dessert.";

Oct 18, 04 11:29 Page 4/7Resten.java

Printed by Roar Granerud

Wednesday January 26, 2005 Resten.java
98

 System.out.print(gjest.navn + " har fått " + ferdigMatrett.rett + " til "+ type
);

if(type.equals("hovedrett.") && ferdigMatrett.rett.equals(meny.meny[gjest.h
ovedrett()].rett) ||
 type.equals("dessert.") && ferdigMatrett.rett.equals(meny.meny[gjest.de
ssert()].rett)) {

System.out.println(" Og dette er riktig.");
 } else {

System.out.print(" Men dette er feil, ");
System.out.print(gjest.navn + " bestillte ");
if(type.equals("hovedrett.")) {

System.out.println(meny.meny[gjest.hovedrett()].
rett);

} else {
System.out.println(meny.meny[gjest.dessert()].re

tt);
}

 }
 MollaMat.vent(1000);
 }

// MÅ LAGE API FOR
// TAR BESTILLING FRA EN GJEST
void taBestilling(Person gjest) {

// Legg inn bestilling
 kokk.leggInnBestilling(gjest.hovedrett());
 kokk.leggInnBestilling(gjest.dessert());
 }

// MÅ LAGE API FOR
// PLASSERER GJESTER VED ET BORD
void plasserVedBord(Person gjest, Bord bord) {

boolean full = bord.leggTilGjest(gjest);

if(full) {
 System.out.println("Det er ikke plass!");

 System.exit(0);
 }
 System.out.println(gjest.navn + " er lagt til som gjest.");
 MollaMat.vent(1500);
 }

// MÅ LAGE API FOR
// ENDRER ANTALL PLASSER VED ET BORD
void endreAntallPlasser(Bord bord, int antall) {

 bord.nyttAntallPlasser(antall);
 }

}

// DENNE MÅ DE STRENGT TATT IKKE SE...
class Matrett {
 String rett;

 Matrett(String rett) {
 this.rett = rett;
 }
}

// DENNE MÅ DE STRENGT TATT IKKE SE...
class Hovedrett extends Matrett {
 Hovedrett(String rett) {

Oct 18, 04 11:29 Page 5/7Resten.java
super(rett);

 }
}

// DENNE MÅ DE STRENGT TATT IKKE SE...
class Dessert extends Matrett {
 Dessert(String rett) {

super(rett);
 }
}

// MÅ LAGE API FOR
// SKRIV OPP ALLE MATRETTER I RIKTIG REKKEFØLGE
class Meny {
 Matrett [] meny;

 Meny() {
 meny = new Matrett[12];
 meny[0] = new Hovedrett("Biff");
 meny[1] = new Hovedrett("Elgstek");
 meny[2] = new Hovedrett("Salat");
 meny[3] = new Hovedrett("Laks");
 meny[4] = new Hovedrett("Kotelett");
 meny[5] = new Hovedrett("Oksestek");
 meny[6] = new Dessert("Is");
 meny[7] = new Dessert("Kake");
 meny[8] = new Dessert("Bær");
 meny[9] = new Dessert("Sjokoladepudding");
 meny[10] = new Dessert("Gele");
 meny[11] = new Dessert("Tiramisu");
 }

// MÅ LAGE API FOR
// RETURNERER NUMMERET PÅ MATRETTEN
int rettNummer(String matrett) {

int i = 0;

try {
while(!matrett.equalsIgnoreCase(meny[i].rett)){

i++;
 }
} catch(Exception e) {
 System.out.println("Matrett " + matrett + " finnes ikke.");
 System.exit(0);
}

return i;

 }
}

// DENNE MÅ DE STRENGT TATT IKKE SE...
class Bord {

boolean juksefull;
int antallPlasser;

 Person [] gjester;
 Person gjest1, gjest2, gjest3, gjest4, gjest5, gjest6;
 Kelner servitør;

 Bord(int plasser) {
 antallPlasser = plasser;

Oct 18, 04 11:29 Page 6/7Resten.java

Printed by Roar Granerud

Wednesday January 26, 2005 Resten.java
99

 gjester = new Person[6];
 servitør = new Kelner("Kåre", "Mann");
 }

void nyttAntallPlasser(int antall) {
 antallPlasser = antall;
 gjester = new Gjest[6];
 }

boolean leggTilGjest(Person gjest) {

boolean full = true;

for(int i = 0; i < antallPlasser; i++) {
if(gjester[i] == null) {

 gjester[i] = gjest;
 full = false;

break;
 }
 }

 gjest1 = gjester[0];
 gjest2 = gjester[1];
 gjest3 = gjester[2];
 gjest4 = gjester[3];
 gjest5 = gjester[4];
 gjest6 = gjester[5];

return full;
 }

}

class Display {

Display() {
}

void skriv(String text) {
System.out.println(text);

}

void skriv(int tall) {
System.out.println(tall);

}
}

Oct 18, 04 11:29 Page 7/7Resten.java

Printed by Roar Granerud

Wednesday January 26, 2005 Resten.java
100

Gruppe 1. Christian som hjelper jentene.
De har et ganske stort og komplisert program. Christian hjelper dem å kommentere ut en bolk tekst.
220: De lurer på om programmet gjorde som det skulle. De synes også at bilen snudde litt sakte. De
har også laget en metode snu som de kaller ifra kontrollklassen.
260: De sletter så kommandoene i kontrollklassen om å starte med å kjøre begge motorer forover, og
kommenterer så inn igjen den utkommenterte teksten. De har fortsatt et langt program som ikke synes
å gjøre noe spesielt.
325: De kommenterers å ut øverste bolk av programmet. Programmet har først kommandoer for å
kjøre motorer fremover litt og så stoppe, og så går det inn i en while-løkke som får motorene til å
kjøre fremover så lenge ikke lyssensoren ser noe svart.
340: De rekker nå opp hendene og spør Richard hvordan de kan få roboten til å skrive navn.. (på
displayet)
400: dhar fra før av laget speakeren i kontroll-klassen. Dette er jo feil, selv om det fungerer. Richard
sier nå at de kan legge display på samme sted.
500: Richard prøver å få elevene til å finne ut hvordan de skal bruke Display og skriv-metoden
525. De starter med å skrive skriv.#noe# men siden de husker at det skal være et punktum et sted, så
kommer de på at de må skrive beate.skriv Dette sier de er fordi det er displayet som skal skrive ut.
575: De har fortsatt ikke deklarert displayet, bare sagt beate = new Display. Richard spør hva som
mangler. De finner ikke ut av dette selv, selv med mye hjelp.
810: Roboten gjorde tydeligvis ikke som den skulle, den skrev ikke det de sa den skulle. Dette er
sannsynligvis fordi de ikke venter noen etter de sier at den skal skrive "hallo"

Ikke mye nyttig informasjon i denne snutten.

101

Gruppe 2. Programmering av restaurant. Hjulpet av Christian.

30: Jenta på gruppa spør om "man skal skrive et mat her?"
De sier de ikke kjønner hva de skal gjøre.
60: Hvorfor skriver de vertshuset.hovmester? Fordi det er hovmesteren på vertshuset.
Siden det også er vertshuset.bord2 så deduserer jentene at da skal det være vertshuset.meny

85: Det er ikke så logisk at man må skrive vertshuset.hovmester.endreAntallPlasser(vertshuset.bord2)
istedenfor vertshuset.hovmester.endreAntallPlasser(bord2)

120: Jentene vil tenke minst mulig selv. De spør Christian før de prøver å tenke logisk selv. Det er
også litt forvirring i hvilke gjester som er hvilke nummer.

160: Nok et eksempel på avsporing pga. kameraer som filmer. Selv om nå halvparten av gruppa
ønsker å jobbe videre.

170: Selv om de synes det var logisk at man måtte skrive vertshuset.bord2 så gjorde de likevel med
neste metode plasserVedBord ikke noe forsøk på å fortelle hvilket bort cecilie skulle plasseres ved.

220: snakker om å lage en historie ved siden av. Skrive med grønt.. er kommentar = historie?

290: Spørsmål ifra sidekamerat: Hvordan laget dere skjerm? new Display...

De hadde så 7 feil under kompilering. Det synes de var mye.

Feilen er bl.a at de ikke har fortalt hvor bord2 ligger, og at de skrev vertshuset.kelner istedenfor
vertshuset.hovmester. Det er tydelig at de har tenkt litt selv iom de skrev kelner. Jeg har tro på at de
finner ut av dette selv.

350: Jenta sier etter å ha kikket på koden: "vi må få mye hjelp..jeg skjønner ingenting." I tilleg så tar
de vekk parameterene til cecilie.valgFraMeny.

370: De tror at feilen er pga noen whitespaces. Det har de ikke rett i.

390: Når de fjernet whitespace og paramererene til valgFraMeny så sa kompilatoren at de bare hadde
1 feil. Dette er trist at den juger på denne måten.

Det er iallefall sikkert at jentene ikke gjør noe forsøk på å forstå programmet, bare prøver å fjerne
kompileringsfeil. Dette er et typisk eksempel på: (patching uten forståelse)

405: De tar så vekk den linjen som de får feil på og sier at Christian skal ordne ting for dem.

450: Ole kom bort til gjengen å spør om de står fast.

480: Den ene jenta utbryter at hun vet feilen...at bord skal skrives med stor B. Dette tyder på at de
102

ikke har forstått poenget med stor b noen steder, men de har iallefall fått meg seg case-sensivitet.
Men makkeren er ikke enig i at det er feilen.

520: Stor b var ikke løsningen. Likevel fortsetter de å rette små b-er til store b-er.

590: Christian spør hvorfor de ikke bruker bord4, og de svarer at de fjernet bord4. Det tyder på at de
iallefall ikke ser på bordene som statiske, men som noe de selv kan putte inn i restauranten, og fjerne
som de vil.

103

Det starter med at de gjør om alle hovmesterene til kelnere, av ukjent grunn. Idet de kompilerer så får
de feil både på kelner og hovmester.

55: De legger til en kelner i restauranten, men da spør den andre på gruppa hvorfor de da ikke bare
gjør om hovmester til kelner.. (regner med det er navnene de mener)

115: For å løse eventuell kelner-feil så gjør de om alle kelner til kelner1 . Det ser ikke ut som om
det er noe forskjell på kelner og hovmester i bruksområder.

130: Videre gjør de om de resterende hovmesterne til kelnere.

160: De kompilerer på nytt og får 5 feil. Den klager på at den ikke finner metoden leverMatrett i
Kelner.

175: De sier at det er noe galt med kelneren, men uten å diskutere det sammen rekker de opp handa å
spør etter hjelp. Mens hjelpen er på vei, finner de ut at de har skrevet Kelner med liten k i
deklarasjonen. Jeg tror dette er forholdsvis smarte jenter, men fy faen så fjortisser de er.

** 190: Hun ene på gruppa sier at siden de hadde laget kelnern på feil måte, så vil stedene kelnern
blir brukt, også bli feil. Dette er veldig bra observert. Det triste er at det ikke hjalp i dette tilfellet,
siden feilen er noe annet.

225: Hun minst smarte på gruppa lurer på om feilene kan skyldes at de ikke avslutter setningen med 2
parantes slutt, som er gjort endel andre steder. Dette er 100% gjetning og avskrift. Veldig kjedelig.
Hun er ikke sikker, men desperasjonen fører til denne typen prøving og feiling.

300: Ole prøver å finne feilen sammen med jentene. Søket etter feilen er bra utført.

Filmen tar slutt før de finner frem til feilen. Feilmeldingen er:

cannot resolve symbol
method leverMatrett(String)
kelner1.leverMatrett("henrik")

2 grunner.

Enten så er parameteren til leverMatrett feil, eller så finnes ikke leverMatrett i Kelner. Jeg vil vel tro
at parameteren til leverMatrett også skulle innehold bordet den skulle blitt levert til.

Hadde elevene vært flinkere på å tolke feilmeldinger, så hadde de nok funnet ut av dette problemet.

104

Gruppe 3 holder på med restauranten.

Starter med en diskusjon om hva som skal være med under opprettelsen av en person. Jenta vil ikke
ha det med, mens gutten sier at det står i api-en at det skal være med. Han er den første jeg har vært
innom som bruker api-en.

60: Det blir skiftet til riktig skjerm.

80: Jenta sier at hun føler at de er ute å kjører. Det tyder på at de vil prøve å forstå det de holder på
med, og ikke bare prøve og feile. De fortsetter å lage nye gjester. gjest1 til gjest4

130: De snakket om det skulle stå dame eller jente når de deklarerer gjester. De kommer frem til å at
det skal stå dame. Jenta klager på at de skulle fått beskjed om det av oss.

180: De spør så om hjelp og mener de er ute å kjører. De har deklarert personene med navn som lise
og kjell, mens når de lager nye, så kaller de dem gjest1 - gjest4.

220: Richard forklarer at det må være samsvar mellom per og per.

235: Hva skal man begynne med? Ende sitteplasser ved bordet. De bruker iallefall bruksanvisningen.
Det virker som det er lettere å bruke api-en hvis de har oppgavene på samme ark.

gjestene ligger i kontrollklassen og ikke i restauranten. Men dette er vel egentlig riktig.

260: ved å fortelle de at de skulle bruker vertshuset sin hovmester fant de selv frem til hvilken kelner-
metode de måtte kalle for å ende antall sitteplasser ved et bord.

280: De gjetter først på at parameteren skal være (bord4, 4) og forteller da ikke at bordet ligger i
restauranten. Dette er en klassisk startfeil. Men når Richard spurte hvor bordet tillhørte, så svarte de
riktig at det tilhører vertshuset.

320: Gutten lurer på om de må skrive at jestene skal komme, mens jenta tror at de liksom bare er der,
noe som forsåvidt er riktig.

360: De synes det er litt tungvindt å måtte plassere alle gjestene ved det samme bordet i flere linjer..
dvs: plasser(per, bord4) plasser(ole, bord4). De vil heller skrive alle personene som skal plasseres
ved bordet samtidig..slik: plasser(ole, kjell, kaare, bord4) Men de tror ikke at dette fungerer. Men
det er jo egentlig ingen grunn til at det ikke skal fungerere.

390: Når gjestene skal velge ifra menyen synes de dette også er tungvindt å gjøre hver for seg. Men
nå vil jeg si at det er mere logisk at dette blir gjort hver for seg.

De lurer på hvordan de skal få tak i per når han skal bestille. Om de skal skrive vertshuset.per bare
per eller Person per. Det er spørsmål som viser at de tenker iallefall. De antar at det bare skal være
per. per.velgFraMeny(2,6)

105

525: Det er noe de ikke forstår med å "sende tilbake hovedretten som gjesten har bestilt" Dette
hopper de da over sålenge. De tror de har gjort mange feil, men de vet at de finner ut av det litt
seinere.

580: Over til å ta bestillinger. Dette ser ikke ut til å væ re noe problem. vertshuset.hovmester tar
bestilling i tur og orden for de forskjellige gjestene. Det virker som det er logisk at dette må gjøres på
denne måten.

645: Over til kokken tor. De bruker api-en flittig. De regner med at tor ligger i vertshuset og kaller da
tor.lagMat. Det viser seg etterhvert at kokken ikke heter tor, men kokk. de forandrer det til kokk.

745: De kommer til å tenke på at hovmesteren har noen oppgaver mens kelneren har andre. Jenta vet
at de egentlig kan gjøre akkurat det samme så hun vil ikke at de skal lage noen kelner, mens gutten
synes de skal gjøre det siden de har fått beskjed om det.

760: De klarer å lage en ny kelner uten problemer. De gjør så om slik at kelneren tar bestilingene
istedenfor hovmesteren.

860: så får de kelneren til å hente hovedrett.

og da er det slutt på del 1.

106

Dette er en fortsettelse av 3.1 men nå har de kommet endel lenger.

De har noen problemer. Programmet har blitt ganske langt med mye henting av Hovedrett og Dessert.

De setter opp kelneren til å hent hovedrett og levere mat rett etter hverandre. Når de kjører
programmet så får de beskjed om at det ikke er noe mat å levere.

Etter at de gjorde noen forandringer så fikk de programmet til å fungere.

Det var veldig lite nyttig å hente ut ifra denne lille videosnutten.

107

tallet angir antall sekunder ut i filmen

Christian forklarer at variable både må deklareres og initialiseres. Dette er jo helt klart ikke en
selvfølge, og er også noe som egentlig gjør java tungvint til denne oppgaven. Det samme gjelder det
at det må væ re stor forbokstav i klassenavn under deklarering.

50: I dette tilfellet så er Lyssensorene deklarert, men ikke initialisert, mens speakeren kun er
initialisert men ikke deklarert. Er dette tilfeldig, eller er det en logisk forklaring?

De bytter så ut sine eksisterende trykksensorer med lyssensorer. De sletter initialiseringslinjene for
Trykksensorene ivar og iver, og erstatter de med lyssensorene mummi og my.

90: Hun ene på gruppa ville ikke at lyssensoren skulle kobles til samme port som trykksensoren var
på, men en annen på gruppa inisterte på at denne også måtte kobles til 3.

175: Siden det kom en fra en annen gruppe å begynte å snakke med jentene, så går gutten alene å
prøver roboten. jentene kommer etter, men virker ikke like interessert som gutten. Er det somregel
tilfelle at Guttene er mye mer interessert i å prøve, mens jentene bare ser på dette som en
vilkensomhelst oppgave som bare må løses, og egentlig ikke er så veldig interessert.

250: Ting gikk tydeligvis ikke helt som først antatt. Ole kommer bort sammen med gutten. Den ene
jenta sier til den andre jenta at de "må følge med på Lego" Denne måten å uttrykke seg på viser ikke
kjempeinteresse for prosjektet, annet enn at det er en skoleoppgave som må gjøres.

Problemet var lysstyrken sensorene var satt til. De var først satt til 20. Etter forslag ifra Ole, så blir
disse satt til 40.

Programmet de lager er bare et lite testprogram som får roboten til å stoppe hvis my-sensoren ser en
svart strek. Dette er et godt utgangspunkt.

355: Gutten prøvde roboten såvidt i handa, og nå stoppet den iallefall. De går så bort på gulvet for å
prøve ordentlig.

385: Det fungerte fortsatt ikke. Nå blir den ene jenta litt mere med. De vil nå prøve med verdien 50.
Det spørs om de finner den riktige verdien på denne måten.

430: Ole forklarer at de kan ha 2 if-tester inni while-løkka slik at de får testet på hver sin lysssensor.

De samarbeider litt bedre når det er 2 av de...jente og gutt. Da er jenta også med på arbeidet. Grupper
på 3 har lett for å bli for mye forstyrrelser.

560: De bytter nå til 45. Gutten synes det er rart at bilen stopper når han legger hånda foran sensoren,
men ikke ellers. Det er litt rart med slike lyssensorer. De er litt for ømfintelige ovenfor forstyrrelser.

670: gutten kommer alene tilbake og roper etter den ene jenta (hun som jobber litt). Det blir
108

tydeligere og tydeligere at hun egentlig ikke er så veldig interessert.

710: Gutten skriver nå videre på den neste if-løkka. Dette før de har klart å finne riktig lysstyrke å se
etter. Når han skriver så sier han punktum imellom volvo.mummi.lysstyrke. Dette tyder på at han
ikke tenker på dette som objekter, men heller som noe som bare må skrives.

780: Det skjer noe rundt her. Han sier at "det står for langt bort" ikke sikker på hva han mener med
dette. Han har ikke satt klammeparantes for å starte if-klausen, og styrer mye med å få plassert
kursoren ett eller annet sted. Jenta sitter passiv i bakgrunnen.

805: Nye beviser kommer frem.. Det viser seg at 45 var det riktige tallet å lete etter. Var dette flaks,
eller er dette en god måte å finne frem til tallet man er ute etter på.

klammeparantesen kommer på plass der den skal. Problemet var å finne hvor på tastaturet denne var.
Det er ikke så rart. så kopieres det som står i den helt like if-klausen over. Dette også men noen
hjelpekommentarer ifra jenta.

890: Ole kommer bort å ber de gjøre om programmet slik at når den ene lyssensoren kommer borti
noe svart så svinger bilen, istedenfor å stoppe. Nå skjer det samme på begge sensorene, bilen stopper.
Gutten svarer at de må få testet begge sensorene først, før de vil gå noe videre. Jeg synes det er en
god strategi.

910: Hvem er hvem av my og mummi? Gutten kan svare på dette, og peker på Roboten. Ole prøver å
hinte til hva som må gjøres nå for å få den til å svinge, men gutten insisterer på å få den til å kjøre
først.

940: Ole tar over kontrollen og begynner å kommentere bort ting. gutten sier nei, men jenta sier at
Ole sikkert vet hva han gjør. Det virker ikke som gutten nå vet hva som vil skje, etter at ole kun
stoppet venstremotor ved den ene sensoren og høyre ved den andre. Muligens svinger den litt, men
siden den har belter, så blir det nok mye friksjon.

1000: Gutten overfører og går bort for å prøve alene. Det har kommet en ny jente bort for å forstyrre
jentene på gruppa. De sitter nå å koser i bakgrunnen.

1100: Gutter kommer tilbake og jentene spør hvordan det gikk. Han svarer ikke, men gjor om
ventingen i 3 sekunder om til 2 sekunder. tydeligivs svingte den litt for mye. Richard kommer bort å
spør hvordan det går, og gutten sier at de har fått litt hjelp av Kameramannen Ole :)

1270: Hører hoiing i bakgrunnen, så det er tydelig at det fungerer nå.

1345: Gutten og jenta kommer tilbake igjen å gjør om lys-verdien ifra 45 til 43. De gjør også om
ventetiden ifra 2 sekunder til 1.5 sekunder. Ventetiden tilsvarer hvor lenge den skal svinge før den
begynner å kjøre fremover igjen. Den svinger fortsatt ved å stoppe den ene motoren, ikke ved å kjøre
motorene motsatt vei.

1535: Jentene stikker av. Gutten blir sittende alene. Har rydder litt sammen. kanskje det er slutt for
109

dagen? Det kan hende det er lunsjtid.

110

Christian hjelper gruppe 4. Alle har fått utdelt årbøker. Ikke veldig positivt det heller. I følge koden
har de ikke kommet noe videre siden gr_4_opt_1

285: de har problemer med at den ene siden går fortere enn den andre, selv om de i koden har samme
fart på begge motorer. Richard ser på problemet. Gutten kikker opp og ned på programmet for å
prøve å finne grunnen.
330: Gutten bytter om på portene til lyssensorene i programmet. Han kompilerer å overfører så
programmet på nytt. Hva vil han oppnå med dette? han bytter også fysisk om på roboten. Richard
spør hvorfor. Noen som sa han skulle prøve det?

370: Resultatet er at den samme fortsatt går mye fortere. Grunnen til at han prøvde å bytte var for å
utelukke at problemet lå i programmet eller i RCXen (egentlig samme sak) Dette tyder på at det
kanskje er noe som bremser det ene beltet.

420: Richard tar av beltene for å se om de fortsatt går i ulik hastighet. nå så det ut som de gikk like
fort. Richard synes motorene virker helt annerledes ifra hverandre. Jeg tror ikke det er tilfelle, det
bare virker sånn.

500: Gutten fortsetter å jobbe sammen med Richard. De to jentene tuller i bakgrunnen uten å bidra.
Rickard bytter så ut den ene av motorene (fysisk)

590: Bilen så ikke ut til å gå så mye rettere nå.

680: Endelig tilbake til programmet. Gutten mener at den de har laget ikke er så avansert som den
som ble laget av oss i teamet. Den var mere "perfekt"

725: De vil at Richard skal få bilen dems til å kjøre når det ikke er sort på noen av sensorene. Det er
jo forsåvidt det den allerede gjør, men kanskje de mener at den skal stoppe å svinge når det ikke er
sort lenger.

765: Richard gjør om venting i svinging til 100. Dette er et tiendels sekund, og vil sannsynligvis væ re
altfor kort for at maskinen skal klare å følge den svarte streken.

790: Richard lager et Display på roboten. Ber gruppa finne frem API-en. Men Richard skriver alt
som skal skrives for å få igang Displayet selv, uten at elevene får prøvd seg på dette.

880: Det ser ut som koden er litt feil, men den kompileres likevel. Det er fordi Richard glemte å lagre
før han kompilerte.

955: Vi prøver igjen sier Richard.. Og denne gangen lagrer han først :) Nå gav kompilatoren en
feilmelding, og Richard fikset problemet.

1000: Enda et eksempel på at kamera og mikrofon er et distraksjonselement. Kanskje vi skulle væ rt
nøyere på regler i før undersøkelsen begynte.

111

1070: Richard spør hva som står på displayet, og jenta gjetter at det er hvor mange ganger "den" går
rundt. Da kan hun ikke ha fulgt med de siste 10 minuttene.

1150. Gutten tar med seg bilen for å finne ut hva verdien er på gulvet, og på det sorte. Det er bra. Det
viser seg at bakken er 45 og tapen er 41. Ikke mye å gå på, med andre ord.

1270: Nå så det ut til at oppdagingen av den svarte tapen fungerte bra, men 100 i svingemillisekunder
er altfor lite. Prøver med 200. Gutten er veldig ivrig, mens jenta holder tunga rett i munnen og passer
på at alle venterne blir oppdatert.

1435: Gutten overfører programmet 2 ganger "for å væ re på den sikre siden" Denne typen
ustabilitetr gjør at man kanskje burde vurdere andre verktøy.

1510: Over til gruppen rett ovenfor. Ida spør gutten på gruppa hva "skiten" skal gjøre nå. Dette er ei
jente med masse Power, tydeligvis. Hennes ord er lov :I

112

intervju gruppe 2: synne, jeanette, joakim
Synne og Jeanette synes det var morsomt (sier de iallefall) mens Joakim synes det var gøy først, og så
ble det kjedelig etterhvert, siden man ikke gjorde noe mer, som å bruke webkamera og sånt. Eller
gjøre bilen større.
1:50 Hva fikk dere bilen til å gjøre.. følge etter tape. Fikk lyset til å fungere (det som bare lyser, ikke
sensor), og trykksensor, og å spille tone. I tillegg så skrev de ut på displayet hvilken lysstyrke som ble
sett. De begynte på rotasjonssensor, men kom ikke så langt med den.
3:45 Roar: vil at de skal forklare hvordan bilen er bygd opp, og hvordan delene henger sammen.
Jentene misforstår og tror jeg mener den fysiske bilen. De vil da at joacim skal forklare. Joacim må
likevel tegne etterpå.
4:30 Jeg prøver å forklare at jeg vil ha en tegning av programmet, men jeg forklarer det veldig dårlig.
Jeg starter så med å tegne en kontroll-klasse og sammenligner det med kontrolltårnet på en flyplass. ¨
5:20 Jentene spør om de skal tegne på samme måten som ble gjort på tavlen, og det er helt riktig.
5:35 Roar: Kan man ha flere roboter? Joakim: ja, men de kan ikke hete det samme (riktig observert)
Roar: hvis man hadde 2 roboter? ¨
6:25 Roar: Hvis man skal sende kommandoer til robot1, hva gjør man?
Svaret er veldig usikkert: kontroll.robot1..... det er jo forsåvidt riktig hvis man bare skal ha tak i
roboten, og ikke gi den noen kommandoer.
I følge tegningen så har joacim tegnet 2 roboter og festet de til kontroll, men de går til samme
variabel i kontroll-klassen.
7:15 Hva består en robot av? 2 motorer som blir festet på riktig måte på tegningen.
7:40 Roar: Hvorfor blir ikke venstre og høyremotor lagret i kontroll? synne: Fordi de hører til
roboten. Bra.
8:00 Roar: Hvor skal assistenten? Joacim vil ha den i roboten, mens jentene ikke er enige i det. De
har endel problemer med å tegne hvor assistenten skal væ re. Jeanette vil ikke, og Joacim vet ikke
helt. Synne er overraskende mye med i diskusjonene i forhold til hva hun gjorde på gruppa.
9:20 Kontroll sender per ut til begge 2, dvs begge robotene. Dette er også en måte å tenke på det på.
At kommandoene blir sendt ut til robotene via via per. Jeg sier at dette er feil. JEg forsto det som de
trodde at per måtte ligge i roboten på en måte.
10:35 Roar: Kan man skrive per.kjørfremover? Jeanette: Nei, det er motoren som gjør sånne ting,
per er bare en assistent. Det er forståvidt helt riktig det. Vet ikke helt om de har forstått hva som er
likheter og forskjeller mellom de likevel.
10:50 Når de skulle skrive hva som var i roboten, skrev de inn metodene kjørfremover og
kjørbakover i roboten. Dette stemmer ikke utifra utdelt kode, men det stemmer hvis de har laget slike
metoder selv.
De har laget en metode som heter snu().
11:00 De er enige med Roar når han sier at de har feil i at det ikke finnes noen kjørfremover i robot.

11:50 Laging av et hus.
Hus hansen.
12:40 Roar: Fest en sofa til huset. Alle tenker litt, og så kommer Jocim på det, og tegner er firkant-
sofa og fester den til huset. Egenskap til sofa: den kan sittes i.
13:20 Jocaim spør: skal vi ha en assistent? Et tegn på at assistenten i roboten forvirrer, siden den
egentlig ikke har noe der å gjøre, men må væ re med for å få programmet til å fungere. Det samme
hadde kanskje væ rt tilfelle med et hus.

113

13:50 Jocam spør: Hvis man ikke har noen assistent, vil ikke programmet lage sofaer hele tiden?
Dette er jo et veldig godt spørsmål. Hvis sofa-simuleringen er på samme måte som robot-programmet
så er man avhengig av noe som kan vente.
14:20 Joacim skriver i assistent-klassen - per.vent, selv om det bare skal stå "vent" her. Jeg vil tro
utifra dette, at han ikke helt forstår hvorfor vi må skrive per.vent i kontroll-klassen. Det er dumt og
forvirrende med kontroll-klassen.
15:20 Lager en vaskemaskin på samme måte.
15:35 Hvordan vil man lage en nabo. Joacim tegner helt riktig et Hus jensen hvor pekeren ligger i
Kontroll.

16:00 Her gjør jeg samme feilen som med gruppe 2. Jeg lar de tegne 2 forskjellige hus av typen Hus,
som er litt forskjellige, og dette går ikke ann med mindre man lager 2 forskjellige subklasser.

17:00 Roar: Hvis man vil ha 2 senger, hva gjør man da? Synne sammenligner det med Motor, og
dette er en veldig bra sammenligning.
18:00 Roar: Hva hvis huset skal ha en gartner, hvor skal den legges? Jeanette: da må vi skrive sånn
torleif = new Gartner.. Det er helt riktig.
Synne: Da kan man gjøre det samme med per = new Assistent.
19:00 Joacim tegner den en gartner på arket, og Roar spør om det blir riktig. Kaller den nye klassen
for torleif istedenfor Gartner. Det sitter tydeligvis ikke helt hos Joacim forskjell på navn og på type
(klasse)
1940: Roar spør om vi har en type som heter Torleif, og de sier nei.
1950: Synne foreslår å ha gartneren i Kontroll sammen med assistenten.
20:20 Synne vil lage en hage. Roar sier at de kan ha garneren i denne hagen. Jeanette vil ha en hage i
Kontroll. fordi det blir det samme som med husene..Men Synne mener at Hagen hører til huset. De er
usikre, men Synne mener at hvis den står i Kontroll så blir den et eget hus og ikke en hage tilhørende
et hus. Det er nok et problem å tenke i størrelse, når en hage blir for stor til å kunne "festes" til et hus.
De blir enige om at hagen tilhører huset.
22:00 Putter så en Gartner ved navn torleif i hagen.
Merker også at Roar er inkonsistent på bruk av ordet egenskap, når det blir brukt både om metoder til
objekter, og objekter som et objekt peker på.
23:00 Roar vil at garneren skal begynne å renske opp i hagen. Joakom foreslår kontroll.hushansen.
hage.gartner.gjørpent(1000)
Her er det mange feil. kontroll kan sees på som this, men han tenker nok at man likevel står utenfor
kontroll når man begynner. hushansen blir skrevet fordi det står på arket. Hus var der ment som en
deklarasjon av hansen. hage fikk aldri noe navn, så dette er greit, men gartner er terpet så mye på at
gartneren heter torleif, at dette burde han ikke gjort feil. Ellers så tenker han riktig når han går inn til
garneren.

23:35 Jentene synes at det ble skrevet for mye. De mener at når hagen er en del av huset, så vet
programmet at gartneren er i hagen. Det er tydeligvis stor forskjell på hage og sofa i måten de er en
del av huset.
24:30: Det er tydelig at Roar ikke gidder å bry seg om han skriver typen eller navnet på variabelen
når han dott-er seg frem. Parameteren tenker han helt riktig når han vil gjøre pent i 10000
millisekunder.

114

katinka, margrete, aleksander
R: Hva var gøy? margrete: prorammering mest, og litt å bygge.
R: Vanskelig? margrete: mye info i starten, gikk bedre etterhvert, begynte å gå litt automatisk.
1:20 Fikk ikke helt til å følge den svarte streken. Bilen kjørte for fort og lysstyrken var ikke helt
justert riktig. Programmet fungerte egentlig likevel.
2:00 De lagde en serie av kommandoer. først frem og så tilbake osv. Er det noen forskjell på å lage
serie av kommandoer istedenfor noe som oppfører seg etter det som er rundt.
3:00 Hva ble laget i tillegg til robot....motorene kjell og kåre. Hvor ble de laget? På roboten.
3:45 margrete: skal jeg skrive høyremotor og sånt? ... Har navnet høyremotor noe å si for hvor
motoren sitter? Hun vet at de kalte den kaare, er den høyremotor? Burde vi her hatt subklasser
høyremotor og venstremotor? nei..jeg tror ikke det.
4:10 Hun tegner en firkant Motor og inni skriver hun kjell og kåre. Dette er kanskje en vanlig måte å
tenke på. R: Lagde dere en motor som het kjell og kaare? margrete: nei...og så tegner hun en boks til
som heter kaare.
4:30 R: Lagde dere noe mer på bilen? M: Assistent.... R: Lagde dere den på bilen? M: Nei...i kontroll.
I tillegg 2 lyssensorer på roboten.
5:30 Når hun tegner på lyssensorer så tegner hun også kun 1 boks. Er det logisk at det skal væ re 2
bokser?
5:45 R: Finn 2 like ting på roboten... m: motorene er like og lyssensorene er like R: Hvorfor? M:
Begge har samme egenskaper.
6:20 R: Hva skrives for å få bilen til å kjøre fremover? donny.høyremotor.kjørfremover()
6:55 R: Lagde dere metode i roboten? m: lagde snumetode.
7:30 M: i snu-metoden i roboten skrev vi donny.hm.kjør og donny.hm.bak og så vent. R: Det tror jeg
var feil. Veit roboten hvem donny er? M: Vi trengte ikke skrive donny. Men vet hun hvorfor? Jeg
vet ikke helt om hun forstår hva som skjer når hun skriver donny.hm.kjør.
8:10 R: De lagde sannsynligvis en ny assistent i roboten for å få med vent-funksjonen. Dette er jo
kjempeforvirrende. Det er veldig, veldig dumt at vi måtte ha med denne assistenten. Bare det i seg
selv forteller at lejos kanskje ikke er tingen.
8:20 R: Hva vis dere skal snu?.. hva skriver dere etter donny.hm.kjørfremover? M: men vi skulle jo
ikke skrive donny. R: Jo, ifra kontroll skal dere det. (Dette blir veldig forvirrende)
8:40 M: Vi skriver donny.snu() og det er jo bra at hun trodde.
9:00 Lager en assistent i donny også. Kan kontroll få tak i assistenten til donny...ja....kan donny få tak
i assistenten til kontroll....nei. Supert. Det er helt riktig. (hvorfor forstår hun dette) Hva er det
logiske med dette?

9:40 Over til laging av hus..

hus ville.
10:10 legge til vindu. m: må man kalle vinduet noe? R: Ja, må alltid kalle noe noe.
11:00 Forskjellen på dør1 og dør2? M: stedene de er festet.
11:30 Hvis man vil ha en annen type dør? M: Da må man kalle den noe annent.. annet navn på døra?
nei annen dørtype. Det er riktig, iallefall når man ikke tenker på subklasser.
12:00 m: hvis vi skal legge til en hundedør, må vi kalle dør2 hundedør? Litt usikker på hvorfor hun
tror at man ikke kan ha 3 dører på et hus. Det kan væ re fordi man aldri har mer enn 2 ting av en sort
på roboten.

115

12:15 R: Er alle dørene like? Nei, hundedør er ulik. Hva vil det si at de er like? At de har de samme
egenskapene.
13:00 Hagen blir plassert utenfor huset. Hvorfor det? m: Fordi hagen ikke sitter på huset, men er
utenfor huset, og kan væ re for seg selv.
Det er jo et godt poeng at man f.eks kan gå inn i hagen uten først å gå inn i huset. Vil da hagen tilhøre
huset?
14:00 En park er ikke en del av et hus.
14:20 Så blir en huske plassert i hagen, og så et barn blir plassert på husken. Helt riktig. Barnet får så
egenskapen å huske.
15:30 Åpning av dør1. M: Da må det først væ re en "link" ifra kontroll til ville. Det er kjempebra at
hun fikk med seg dette. Det viser forståelse. Ellers ble det riktig med ville.dør.åpne.
17:00 Det dukker opp en morder i kontroll som skal drepe det huskende barnet.
M: morder.lilleputt???? dere må væ re med å diskutere. M: hva med.. morder.lilleputt.drep.hage1.
huske.barn
18:50 R: Dere har en feil i førsten. Katinka gjetter at de skulle hatt med huset.
De finner ikke ut av feilen selv, så Roar hjelper de med å si at det begynte med morder.
Roar må forklare om parantes. Dette var ikke noe gruppen forsto av seg selv. Opplegget forklarer for
lite om parametre. Ellers så tenkte gruppa ganske riktig.

116

Intervju med (fra venstre til høyre) ståle, ida og magnus. (ark2)

35: Har dere læ rt noe...ja..
Hva? Å programmere, bygge Lego.
55: Ida: Skjønne litt mer hvordan ting fungerer. f.eks legobiler

65: Kjedelig når man ikke skjønte hva man skulle gjøre og ikke får det til. F.eks oppgaven med
Resturanten
Gøy med utfordringer, men ikke når man ikke kommer videre.
85: Magnus syntes at lego-byggingen var gøy.

110: Lagde en bil som het arsenal, det samme som programmet het.

R: Hva bestod bilen av? ståle: motor... Det stod Legomotor som type. Roar forklarer at Legomotor er
en type motor, men siden de ikke vet om noen andre typer motorer så har det ikke så mye å si.
150: Ståle: 2 motorer eller 1. R: Hva ble gjort i programmet? S: Høyremotor og venstremotor.
170: R: Så kan dere tegne motorene på samme måte som jeg tegnet Robot. Ståle tegne så den ene
motororen, og da Roar spør om de bare hadde 1 motor, så tegner Ida den andre motoren på samme
måte.
210: Ståle sier at Roboten også består av RCX-en. Dette er jo forsåvidt sant, men det er ikke noe som
modelleres i programmet.
220: Ida sier at den bestod av en lyssensor. Tegner så denne og lager en ny firkant.
250: R: Den bestod også av en trykksensor. Ida: 2 trykksensorer.
Til forskjell ifra legomotorene så blir trykksensoren bare skrevet inn i roboten 1 gang, mens det ble
laget 2 streker ut til symboliserende firkanter. Er dette tilfeldig? Det kommer ikke inn i samtalen.
275: : Hva kan dere få bilen til å gjøre? S: kjøre fremover, stoppe, merke svart strek på gulvet. R:
Hvordan merket den svart strek? S: Den sjekket lysstyrken. Dette er vel egentlig svar godt nok. De
jobbet mye med å finne riktig verdi å sjekke etter.
300: Snakke om de forskjellige delene til roboten. Er noen deler like? Ida: Begge motorene. R: Er de
helt like? De diskuterer litt, nei, jo....De trakk forskjellig?
335: R: Motorene er 2 fysisk forskjellige ting med nøyaktig de samme egenskapene.
340: R: Hva med LegoMotor og Lyssensor? Magnus: Legomotor og Lyssensor har forskjellige
egenskaper. Endel diskusjoner.... S: Den ene kjører, går rundt....Ida: Den ene er drivkraften, mens den
andre må bruke drivkraften for å gjøre noe.. Hmm. Ida mener hun bare tuller. :)
370: Ida: Motoren er den som lager energi slik at lyssensoren virker??? Heftige diskusjoner. Ståle og
Magnus overtaler Ida til at RCxen gir strøm til både motor og sensor.
405: Er RCXen et stort batteri? JA..forsåvidt.
425: R: Hadde dere noe mer enn en robot? Belter og Hjul....slapp å programmere. Musikk. Display..
Hvor var disse? I roboten.. Et ting til.. Ida: En assistent...hvor da...i kontroll.. Dette er riktig.
Ida skriver bob(assistend) i kontroll. Jeg sier at hun må lage assistenten på samme måte som hun
lagde andre ting. De tegner så en bob-firkant med 2 metoder...vent og tilfeldigtall.
505: Hva skrev man for å få roboten til å kjøre fremover? De måtte først ha en "greie" inni roboten.
Regner med at det er deklarering og initialiserig av en motor. Så sier Ståle helt riktig: arsenal.hm.
kjørfremover() R: Hvorfor? S: Peker på arket og sier: først så går man inn her, og så inn der, og så
inn i motor og gjør det som gjør at den beveger seg (kaller på riktig metode)

117

545: Hva med venting? Ida: bob.vent(antall millisekunder). hvorfor ikke bilen.vent? Ida veldig
usikker, men forstår at det er noe å tenke på. Ståle forklarer veldig usikker, men jeg tror han forklarer
det riktig. Roar er iallefall fornøyd.

Det er kjempetydelig at Ståle (og kanskje Magnus) har litt interesse og forståelse for hva som skjer,
mens Ida bare kan det hun har læ rt uten noen viderere forståelse. Ida er typisk skoleflink for å væ re
det. Hun siterer APIen

570: Huset: (ark1)
Kontroll med en variabel ville som peker på et hus-objekt: Hva vil vi at husket skal bestå av?
Magnus: 2 dører. Han ville ikke tegne det inn i huset på arket...overlot det til Ida.
625: Ida tegner inn dører. dør1 og dør2. De snakker i bakgrunnen om bruk av sensorer for å
automatisere hus. Type Dør.. navn dør1. 2 Totalt identiske dører. bortsett ifra fargen.
680: Hva hvis man vil ha en elektrisk dør i tillegg til vanlige dører. Navn: blå, type: Elektrisk dør.
730: Forskjeller mellom dørene. Den ene er elektrisk og den andre er ikke. Roar sier at egenskapene
er forskjellige??
755: Likheter? Begge brukes til å gå igjennom.
770: Lag stue og kjøkken. Ida mener man må lage et rom før man kan lage en stue. Dette er jo
kjempe-objekt-orientert tenking. Var det tilfeldig?. Er huset et rom? Kaller rommene rom1 og rom2
(eller stue og kjøkken)
815: R: Er begge rommene av typen rom, eller er det ene av typen kjøkken og det andre av type stue?
Ida: Begge er rom.
825: Her tenker Ida mye. Hun blander sammen navnet på typer (klasser) og navnet på selveste
klassene. Sier at begge dørene burde hett dør. Rommene blir nå hetende stue og kjøkken istendenfor
rom1 og rom2. Etter en forklaring så er de enige.
895: R: Hvis vi vil ha forskjellige rom?` Ida sier at vi får et problem, noe som er helt riktig. De
foreslår å legge airconditioning i rommet på samme måte som de la dører til huset.
935: Ståle mener man burde lagt airconditioning i huset, men blir nedstemt av Ida som vil legge det i
rommet. De kaller en airconditioning-type for AC og kaller dette objektet for DC.
980: Egenskapene til aircondition-eren Den kan blåse varmt og kaldt sier Ida. Roar sier at dette kan
skrives som parametere, varmt og kaldt. Vet ikke om folka forsto dette.
1010: R: fra kontroll start airconditioningen. Ståle skriver: ville.kjøkken.dc.blåse(varmt) På arket står
det ac -> dc av typen ac men dette er nok bare en skrivefeil. De forklarte det riktig.
1060: Magnus får beskjed om å forklare forfor det skal stå på denne måten.. Han forklarer det sånn
passe greit. Man går først til den, og så til den og så til den osv.
1080: Det dukker opp en tyv. med egenskapen stele (bruker egenskap om metoder også). Tyven skal
stjele airconditionanlegget ifra veggen. Ida prøver: hun prøver med ståle.stjele(ville.kjøkken.ac) her
blir også Ac og DC blandet sammen. her skulle det stått dc. Roar legger ikke merke til dette selv. R:
Vil tyven stjele både ville og kjøkken i tillegg. Ida sier hun er usikker. De andre virker sikre på at det
ikke vil skje. Ståle sier: det er ville sin stue sin airconditioning.

1340: Roar begynner å forklare om subklasser. Etter en forholdsvis kort forklaring så prøvde Ida å
forklare hva de kunne gjort, uten å få det ordentlig til. Jeg mener at de ikke helt forso hva jeg
forklarte. Men har de forstått subklasser?

118

Disse jentene synes det var morsomt å programmere roboten, spesielt når de fikk det til.
På tegningen sin har de kun klasser, men ikke navn på klassene slik som noen av de andre hadde.
Roar sier at ikke dette er så farlig.
1:00 R: Hva kalte dere bilen? C: gunnar.. (men gunnar var navnet på programmet, og ikke bilen som
het volvo)
1:20 R: Hva gjode dere med bilen? B: løste oppgave 1 og 2.. Typisk eksempel på at jentene liker å
løse oppgaver som kan løses, slik at de blir ferdige.
2:40 B: Sier at venstremotor og høyremotor hadde hver sin sensor. Det er rart å si. De var koblet til
den gule dingsen. Kanskje RCXen blir sett på som en Motor på denne gruppa.
4:10 R: Er det forskjell på lyssensor og motor? c: Den ene får hjulene til å gå, den andre fanger opp
lys. (forskjellige egenskaper)
4:30 R: Er det forskjell på lyssensorene? Jentene tror ikke det er noen forskjeller, men er litt usikre.
Det samme gjelder motorene, bortsett fra at de styrer hver sin side av bilen.
5:00 R: Hva mer? C: Toner (speaker) R: Hvordan? C: Det var assistenten, tror jeg? Dette er vel noe
som assistenten kunne gjort, men som det ikke er logisk at assistenten gjør. Det kan væ re fordi det
ikke er noe de ser på RCXen, men noe som bare er der...på samme måte som stoppe-mulighetene.
5:30 Diskutere seg imellom...komme inn på Display (som er synlig, men som ikke blir satt på bilen)
Roar måtte si Speaker.
Jentene er veldig usikre på seg selv.
6:20 Er det forskjell på lyssensor og display? den ene føler lys og den andre skriver.
6:40 R: Hvor var assistenten? C: Inni der (peker på robot-klassen). Roar spør igjen om den var i
robot-delen av programmet? Jentene fortsatt usikre.
7:05 R: Hva skrev dere hvis dere skulle vente? per.vent Hva med når bilen skulle kjøre fremover?
høyre/venstremotor.kjørfremover. (dette kan væ re fordi de ikke riktig husker. Ingen av jentene ser på
tegningen sin mens de diskuterer og kommer med forslag. De kommer på etterhvert at de sa "volvo"
først.
7:40 per sitter da på en egen del.. (og tegner den som en del av kontrollklassen)
8:10 Her forvirrer Roar med å sammenligne per.vent med volvo.høyremoter. Dette er helt på trynet.
8:25 R: Dere får tak i per på samme måte som med volvo. Hvor må da per ligge? C: I kontroll.
8:40 De skriver så Per som klassetype istedenfor Assistent.
9:10 De husker hvordan man skulle få bilen til å kjøre fremover.
9:50 En litt dårlig forklaring på hvorfor det må stå volvo.høyremotor.kjørfremover

10:30 Laging av hus
11:00 De vil innrede kjøkkenet i huset for å lage et kjøkken. Dette betyr at et kjøkken er ikke et
kjøkken før det består av kjøkkenredskaper
La til et kjøkken på riktig måte. Legger også til bad på riktig måte. Legger så til kjøleskap og komfyr
i kjøkkenet på riktig måte.
13:00 Mer terping på egenskaper. Kjøleskap og kjøkken har forskjellige egenskaper.
13:35 Likhet mellom mellom komfyr og kjøleskap: De er begge på kjøkkenet.
13:50 Lager et kjøleskap til. Er det forskjell på kjøleskapene? Nei. de er like
14:00 Hvis man vil ha et kjøleskap på 50 liter istedenfor 100 liter, er det da samme type kjøleskap
som de andre?
14:50 Interessant diskusjon om kjøleskap. Litt mumlende at det ikke har noe å si om det er på 50 liter
eller på 100 liter. Det er likevel kjøleskap. Det er ikke samme fysiske ting selv om det er samme

119

ting???
15:20 Roar forklarer at to kjøleskap ikke kan væ re på forskjellig størrelse da de begge er av typen
kjøleskap.
16:30 I kjøleskapet er det en melk som kan eksplodere.
16:50 En fyr i kontroll skal få melken til å eksploder. førse forskøk på løsning er kjøleskap.melk.
eksploder() De fikk beskjed om at de stod i kontroll, så dette er feil. Det er kanskje mer naturlig å
lage en metode i kjøkkenet som kan eksplodere melka. Neste forsøk var villa.kjøleskap osv Roar
sier at de glemte av kjøkken, og da blir dette også ført til i rekken.
18:00 stue blir lagt til. Med en person som kan gå. Roar: Få denne personen til å gå til kjøkkenet.
Kallet skal gjøres ifra kontroll.
19:25 De får tak i personen på riktig måte i stua. Men som parameter har de bare (kjøkken)
Roar: vet denne mannen om kjøkkenet? De svarer at han bor i huset, så det burde han. De forseslår å
styre han manuelt bort til kjøkkenet. Det lar seg ikke gjøre. Det er veldig forstålig at de ikke fikk til
denne oppgaven, siden de ikke har gjort det i sitt legoprogram. Det viser også at de ikke helt forstår
hvordan verden ser ut i kontroll-klassen.
20:30 Etter mye hjelp så blir det riktig. villa.stue.person.gå(villa.kjøkken)

120

