
UNIVERSITY OF OSLO
Department of informatics

Curve
approximation and
constrained
shortest path
problems

Geir Dahl and
Bjørnar Realfsen

Preprint 6

August 1996

CURVE APPROXIMATION AND CONSTRAINED SHORTEST PATH

PROBLEMS

GEIR DAHL∗ AND BJØRNAR REALFSEN

Abstract.

We study the following problem k-constrained shortest path problem: given an acyclic directed
graph D = (V,E) with arc weights ci,j , (i, j) ∈ E, two nodes s and t and an integer k, �nd
a shortest st-path containing at most k arcs. An important application of the problem in linear
curve approximation is discussed. Vertices and edges of associated polytopes are determined, and
integrality of these polytopes for certain graphs are shown. We present a combinatorial algorithm for
solving the problem and compare it to other methods based on Lagrangian relaxation and dynamic
programming. Numerical results for curve approximation problems are reported.

Keywords: Approximation, cardinality constrained shortest path, polyhedra.

1. Introduction. Piecewise linear functions (of one variable) are often used to

approximate complex functions or geometrical objects in areas like computer aided

geometric design, cartography, computer graphics, image processing [2] and mathe-

matical programming [4]. Piecewise linear functions are popular because they are easy

to obtain and manipulate and may still provide a su�ciently good approximation in

the problem studied.

Applications in the mentioned areas often include a huge amount of data (break-

points in the piecewise linear function), and this may cause di�culties regarding to

storage space, transmission rates or the time taken to display the curve on a graphical

device. This naturally leads to data reduction problems where one wants to determine

a new piecewise linear function that approximates the original one, but has fewer

breakpoints. It is common to require that the approximating curve should not devi-

ate too much from the old one as measured by some norm de�ned on the function

space.

Di�erent methods have been suggested for this data reduction problem, see [11]

and [1] (and the references cited therein) for surveys. The majority of the methods

select the new breakpoints, called �critical breakpoints�, as a subset of the old ones,

while others insert new breakpoints that are close to the old ones in order to improve

the data compression rate. The di�erent algorithms may be classi�ed into local and

global methods. A local method makes a single sweep through the data and determines

the critical breakpoints based on comparisons of neighbor breakpoints. A global

method considers intervals of the curve (possibly the entire curve) and decreases the

number of critical breakpoints in each iteration until a �low number� of breakpoints is

reached. The local methods may have a linear computational time, i.e., the number

of calculations in the algorithm is proportional to the number of breakpoints of the

initial curve. For global methods the computational complexity is usually higher, but

better solutions are found. A major disadvantage of many of these methods is that

they may not provide su�ciently high data compression.

Imai & Iri [10] studied the data reduction problem with the new breakpoints given

as a subset of the old ones, and stated that it can be viewed as a longest path problem

in an acyclic directed graph. In [13] this idea is developed further and one studies a

a shortest path problem in a similar graph.

In this paper we extend this problem and require that the approximating curve

∗Institute of Informatics, University of Oslo, P.O.Box 1080, Blindern, 0316 Oslo, Norway
(Email:geird@i�.uio.no)

1

should not contain more than a speci�ed number of breakpoints. This requirement

is of interest because it gives direct control of the compression rate. We formulate

this problem as a constrained shortest path problem and analyze the structure of

this problem and associated polytopes for interesting classes of graphs. For these

graphs the compression rate is at most 50 %. Using adjacency results for certain path

polytopes we present a fast combinatorial algorithm for solving the approximation

problem. Due to integrality properties of the mentioned polytopes the problem can

also be solved by linear programming and Lagrangian relaxation. We describe and

compare some of these algorithms and report computational experiences.

The paper is organized as follows. In the next section we describe the approx-

imation problem of interest and how it translates into a constrained shortest path

problem. In Section 3 we study polytopes related to the constrained shortest path

problem, and how their vertices and edges are connected to paths in the given acyclic

directed graph. Di�erent results on vertices, edges and integrality of polytopes are

described. Some of these results lead to algorithms for solving the approximation

problem as discussed in Section 4. Other algorithms, e.g. based on dynamic pro-

gramming, are also presented. Computational results and experiences as well as some

examples are given in Section 5.

Some remarks on our notation are in order. IR denotes the set of real numbers.

The optimal value of an optimization problem Q is denoted by v(Q). For a �nite set

A we let IRA denote the set of real vectors indexed by A (so, by selecting an ordering

of the elements of A this set is the Euclidean space IR|A|). We use fairly standard

graph theoretic notation, see any modern text book in graph theory. For polyhedral

theory, we refer to [14], [3] or [12]. A∆B denotes the symmetric di�erence of two sets

A and B, i.e., (A \B) ∪ (B \A).

2. Approximation and the constrained shortest path problem. We shall

describe the curve approximation problem of interest in this paper.

Let [a, b] be a nonempty interval of real numbers. For a set of points Z = {zi =
(ti, fi) : i = 0, . . . , n} ⊂ IR2 where a = t0 < t1 < . . . < tn = b we let fZ denote

the linear interpolant of Z de�ned on the interval [a, b]. That is, fZ(ti) = fi for
i = 0, . . . , n and fZ is linear on each of the subintervals [ti, ti+1] for i = 0, . . . , n− 1.
The function fZ is continuous and piecewise linear (and, clearly, any real-valued

function h de�ned on [a, b] with these two properties is of the form h = fZ for suitable

Z). Each point in Z is called a breakpoint of fZ (even if the left-sided and right-sided

derivative of the function coincide at that point). If S ⊆ Z is such that z0, zn ∈ S the

function fS is called a subinterpolant of fZ . Thus the subinterpolant interpolates fZ
in some subset S of Z and it may be viewed as an approximation of fZ .

The curve approximation problem (CAPX) is the following approximation prob-

lem: given a set Z as above and a number k ≤ n, �nd a subinterpolant fS of fZ with

|S| ≤ k + 1 such that ‖fZ − fS‖ is minimized. Here ‖ · ‖ denotes some norm on the

vector space Ca,b of continuous real-valued functions f de�ned on [a, b] (and satisfying
f(a) = f(b) = 0). The subinterpolant has at most k linear segments (i.e., subinter-

vals between consecutive breakpoints). We shall restrict the attention to norms ‖ · ‖
that satisfy the following �local additivity� property: if f ∈ Ca,b and J1, . . . , Js is a
partition of [a, b] into closed intervals, then we have

‖f‖ = ‖f · IJ1‖+ . . .+ ‖f · IJs‖(2.1)

where t → IJ (t) is the indicator function which is 1 for t ∈ J and 0 otherwise. For

instance, any Lp norm de�ned by ‖f‖p =
∫ b
a |f(t)|dt for 1 ≤ p <∞ satis�es (2.1) due

2

to the additivity of the integral.

The local additivity property opens up for a reformulation of the (CAPX) problem

as discussed next. Let fS be a subinterpolant of fZ , say that

S = {(ti0 , fi0), (ti1 , fi1), . . . , (tis, fis)}

where i0 = 0 and is = n. Then we have

‖fZ − fS‖ =
s−1∑
j=0

‖(fZ − fS) · I[tij ,tij+1
]‖ =

s−1∑
j=0

cij,ij+1 ,

where we de�ne

cj,l := ‖(fZ − fS) · I[tij ,til]‖ for 0 ≤ j < l ≤ n.(2.2)

This means that the total approximation error is the sum of the local errors between

consecutive interpolation points. Furthermore, the information needed to calculate

the approximation error for any subinterpolant of fZ are the numbers cj,l for 0 ≤ j <
l ≤ n.

The (CAPX) problem may be transformed into a combinatorial optimization

problem as follows. We introduce a directed graph D = (V, E) with node set V
and arc set E. V consists of the nodes vi = (ti, fi) for i = 0, . . . , n, that is, the

breakpoints of the target function f. For each 1 ≤ i < j ≤ n we introduce an arc

(vi, vj) and E consists of all these arcs. The digraph D is clearly acyclic. There is a

correspondence between subinterpolants of f and directed paths from v0 to vn in D:
to a subinterpolant g with breakpoints in tij for j = 0, . . . , s (and i0 = 0, is = n) we
de�ne the path with nodes vi0 , vi1, . . . , vis. Thus each linear segment of g corresponds
to an arc in the path. Therefore the number of linear segments of g equals the number

of arcs in the path. We de�ne the weight of the arc (vj , vl) to be cj,l given in (2.2).

We see that the (CAPX) problem is equivalent to the problem

min{c(P) : P ∈ P(k)}(2.3)

where P(k) denotes the set of directed v0vn-paths in D with at most k arcs and

c(P) :=
∑
e∈P ce denotes the weight of the directed path P .

We call the optimization problem (2.3) the k-constrained shortest path problem.

This problem may be of interest in other settings as well, but with a di�erent

digraph and weights. For instance, an interesting problem in telecommunications

is to route tra�c between two destinations on a single path which satis�es a �hop

constraint�. In fact, a bound on the number of arcs in the path re�ects a lower bound

on the reliability of that path (under standard assumptions of a stochastic graph

with independent arc failures). More general models with hop constraints have been

studied in [7].

Remark. The CAPX problem may also be presented for curves in higher dimen-

sional spaces; a curve is then a continuous vector-valued function de�ned on a real

interval [a, b]. We see that this problem may also be transformed into a CSP problem.

We note that (2.3) is a special case of the shortest path problem with a �time

constraint� of the form
∑

(i,j)∈P ti,j ≤ k where ti,j may be interpreted as the time it

takes to move from node i to node j in the digraph. This problem is known to be

NP-hard, see [6]. The CSP problem is polynomially solvable (see [6]) using dynamic

programming (see Section 4). The problem is also treated in [13].

3

We �x some terminology. By the term �path� we hereafter mean a directed

path. The cardinality of a path is its number of arcs. The set of all vivj -paths in
D is denoted by Pi,j (a path is usually considered as an arc set). We also de�ne

Pi,j(k) := {P ∈ Pi,j : |P | ≤ k}, i.e., this is the set of vivj -paths of cardinality at most

k. For simplicity, we write P := P0,n and P(k) := P0,n(k). For a path P we de�ne

its weight c(P) :=
∑

(i,j)∈P ci,j .
The augmentation of two internally node-disjoint paths P ∈ Pi,j and Q ∈ Pj,l is

denoted by (P,Q); this is the path from vi to vl obtained by augmenting the sequence

of arcs in P by the sequence of arcs in Q.

3. CSP polytopes and integrality. In this section we study polytopes asso-

ciated with the constrained shortest path problem. From some polyhedral results we

also determine a class of graphs for which the CSP problem may be solved as a linear

program. This class of graphs is of interest in the curve approximation problem.

Let A be the node-arc incidence matrix of an acyclic digraph D = (V, E) and

recall that V = {v0, . . . , vn}. De�ne b ∈ IRV by bv0 = 1, bvn = −1 and bvj = 0 for

0 < j < n. It is well-known that the convex hull of incidence vectors of v0vn-paths in
D coincides with the polytope

M = {x ∈ IRE : Ax = b, 0 ≤ x ≤ 1}.(3.1)

This follows from the fact that A is totally unimodular (each subdeterminant is either

-1, 0 or 1) and integrality results for associated polyhedra, see e.g., [14], [12]. We call

M the path polytope. Thus the shortest path problem corresponds to minimizing

some linear function over M . We are interested in the polytope M(k) obtained by

intersecting M with the halfspace {x ∈ IRE : x(E) ≤ k}, i.e.,

M(k) = {x ∈ IRE : Ax = b, 0 ≤ x ≤ 1, x(E) ≤ k}.(3.2)

If the underlying graph needs to be indicated we may write M(D; k) for this

polytope.

The main goal in this section is to study vertices and integrality of M(k). Note
that the integral vectors inM(k) are the incidence of v0vn-paths with at most k arcs.
Thus, the problem (CSP) is equivalent to the integer linear program

min{cTx : x ∈M(k), x is integral}

which explains our interest in M(k). We also remark that the matrix A augmented

with a row 1 is not totally unimodular.

Some of the vertices of M are also vertices of M(k), namely the vertices corre-

sponding to paths in P(k), i.e., v0vn-paths of length at most k. However, M(k) may

also have other vertices and we shall determine the vertex set of this polytope below.

We de�ne some useful terminology. A two-terminal graph is a graph D with two

speci�ed distinct nodes (�terminals�) u and v in D. We de�ne the sum D1 +D2 where

Di is a two-terminal graph with terminals ui and vi for i = 1, 2 as the two-terminal

graph with node set V [D1] ∪ V [D2] where nodes v1 and u2 are identi�ed and with

arc set E[D1] ∪E[D2], and, �nally, with terminals u1 and v2. By repeating this sum

operation we may get D1 +D2 + . . .+Dt (this binary operation + is associative on

the set of two-terminal graphs).

If P1 and P2 are two internally node-disjoint and non-trivial uv-paths in D, we
call P1 ∪ P2 a uv-split. A two-terminal graph of the form P1 + S1 + P2 + S2 + . . .+
Ps + Ss + Ps+1 where, for each i, Pi is a uivi-path and Si is a viui+1-split is called a

4

s-split-path from u1 to vs+1. We here allow trivial paths, i.e., consisting of one node

only (but splits are non-trivial). Note that an s-split-path has exactly s splits. By a

split-path in a graph D we mean a subgraph of D which is a split-path.

Consider a 1-split-path Q = P1 + S1 + P2 where S1 consists of the two node-

disjoint paths C1 and C2. Assume that |C1| ≤ |C2|. We may then construct the two

paths P1 + C1 + P2 and P1 + C2 + P2 and we de�ne k(Q) to be the set of integers

lying strictly between the lengths of these two paths, i.e.,

k(Q) = {|P1|+ |P2|+ |C1|+ 1, . . . , |P1|+ |P2|+ |C2| − 1}(3.3)

Note that k(Q) is empty i� |C2| = |C1| or |C2| = |C1|+ 1. We say that Q covers an

integer k if k ∈ k(Q). We also let k(D) denote the union of all the sets k(Q) taken

over all 1-split-paths Q from v0 to vn in the digraph D.

We shall determine the edges of the path polytope M given in (3.1), and for this

the following well-known results on adjacency are useful (see [8]); we include a proof

for completeness.

Lemma 3.1. Let F be a class of subsets of {1, . . . , n} and de�ne the associated

polytope T = conv({χF : F ∈ F}). Let F1, F2 ∈ F .
(i) If there are two sets F ′1, F

′
2 ∈ F both distinct from F1 and F2 and such that

F ′1 ∩ F
′
2 = F1 ∩ F2 and F ′1 ∪ F

′
2 = F1 ∪ F2, then χ

F1 and χF2 are not adjacent on T .

(ii) If there is no F ∈ F distinct from F1 and F2 and with F1∩F2 ⊆ F ⊆ F1∪F2,

then χF1 and χF2 are adjacent on T .

Proof. First we note that the vertices of T are the vectors χF , F ∈ F ; this follows
from the fact that T ⊆ {x ∈ IRn : 0 ≤ x ≤ 1}. χF1 and χF2 are adjacent i� there is

an objective function (vector) c ∈ IRn such that the optimal vertex solutions of the

LP problem max {cTx : x ∈ T} are precisely the points χF1 and χF2 .

(i) Assume that F ′1, F
′
2 ∈ F are both distinct from F1 and F2 and that F ′1 ∩ F

′
2 =

F1 ∩ F2 and F ′1 ∪ F
′
2 = F1 ∪ F2. From this we get

1/2 · (χF1 + χF2) = 1/2 · (χF
′
1 + χF

′
2).

Thus, if χF1 and χF2 are optimal in max {cTx : x ∈ T}, then their midpoint is also

optimal which again implies that both χF
′
1 and χF

′
2 are optimal. This proves property

(i).

(ii) Assume that there is no F ∈ F distinct from F1 and F2 and with F1 ∩ F2 ⊆
F ⊆ F1∪F2. Let γ be a �suitably� large number, and de�ne c by cj = γ for j ∈ F1∩F2,

cj = −γ for j 6∈ F1∪F2, cj = |F2\F1| for j ∈ F1 \F2 and cj = |F1 \F2| for j ∈ F2 \F1.

We see that if F ∈ F is such that χF is optimal in max {cTx : x ∈ T} we must have

that F1 ∩ F2 ⊆ F ⊆ F1 ∪ F2. Property (ii) follows directly from this.

The edges of the path polytope are described next.

Proposition 3.2. Consider the two-terminal graph (D, v0, vn) and path polytope

M in (3.1). Let P1 and P2 be two v0vn-paths. Then the vertices χP1 and χP2 are

adjacent on M if and only if P1∆P2 is a split, or, equivalently, P1 ∪ P2 is a 1-split-
path.

Proof. We �rst prove the necessity of the condition. Let P1, P2 ∈ P be distinct

paths such that χP1 and χP2 are adjacent on M . Since D is acyclic P1 ∪ P2 is an

s-split-path for some integer s where each split contains one subpath of P1 and one

subpath of P2. Assume that s ≥ 2. Select a split S and consider the two v0vn-paths
Q1 = (P1 \ S) ∪ (P2 ∩ S) and Q2 = (P2 \ S) ∪ (P1 ∩ S). Then Q1 ∩Q2 = P1 ∩ P2 and

5

Q1 ∪Q2 = P1 ∪ P2 and, as s ≥ 2, both these new paths are distinct from P1 and P2.

This contradicts that χP1 and χP2 are adjacent according to Lemma 3.1. It follows

that s = 1 (clearly s ≥ 1 as P1 and P2 are distinct) and P1 ∪ P2 is a 1-split-path as

desired.

To prove the converse, assume that P1∪P2 is a 1-split-path. We see that the only

v0vn-paths contained in P1 ∪ P2 are P1 and P2, and by Lemma 3.1 χP1 and χP2 are

adjacent.

Consider next the polytope M(k). All integer points in M(k) are also vertices;

these points are the incidence vectors of paths in P(k). However,M(k) may also have

other vertices and these are constructed from the 1-split-paths as discussed next.

Consider a 1-split path Q = P1 + S + P2 such that Q covers k (i.e., k ∈ k(Q)).
Assume that S = C1 ∪ C2 with |C1| < |C2| (as above C1 and C2 are paths) and let

λQ = (|C2| + |P1| + |P2| − k)/(|C2| − |C1|). We de�ne the split-solution xQ ∈ IRE

by xQe = 1 for e ∈ P1 ∪ P2, x
Q
e = λQ for e ∈ C1, x

Q
e = 1 − λQ for e ∈ C2, and

xQe = 0 for all other arcs e. Observe that (i) 0 ≤ xQ ≤ 1, (ii) 0 < xQe < 1 if and only

e ∈ S, (iii) AxQ = b, and (iv) xQ(E) = k. Consequently, we have that xQ ∈ M(k).
Moreover, xQ is a (strict) convex combination of the incidence vectors of the two

paths P1 +C1 + P2 and P1 +C2 + P2.

Proposition 3.3. The vertex set of M(k) consists of the incidence vectors of

each path in P(k) and the split solution xQ for each 1-split-path Q from v0 to vn such

that Q covers k. In particular, M(k) is integral if and only k 6∈ k(D). Thus, in this

case, we have that

conv({χP : P ∈ P(k)}) = {x ∈ IRE : Ax = b, 0 ≤ x ≤ 1, x(E) ≤ k}.(3.4)

Proof. The vertices of M(k) are (i) the vertices of M that satisfy x(E) ≤ k, and
(ii) the points obtained as the intersection of the relative interior of an edge of M
with the hyperplane {x ∈ IRn : x(E) = k}. This follows from a general result on the

intersection of a polytope and a halfspace, see e.g., [3].

Consider an edge F of M having a relative interior point x′ in the hyperplane

{x ∈ IRE : x(E) = k}. By Proposition 3.2 there is a split-path Q = P1 +S +P2 with

S = C1 ∪ C2 and |C1| < |C2| such that F = [χQ1 , χQ2] where Qi = P1 + Ci + P2 for

i = 1, 2. Since x′(E) = k we get χQ1(E) < k < χQ2(E) so S covers k and x′ must

coincide with the split-solution xQ and the proof is complete.

An immediate consequence of the previous result is the following integrality result

of interest in curve approximation.

Corollary 3.4. Assume that D contains no split S = C1∪C2 with |C2|−|C1| ≥
2. Then M(k) is integral for all k.

Proof. The condition implies that k(Q) = ∅ for each split-path Q in D and

therefore k(D) = ∅. The result then then follows from Proposition 3.3.

An interesting question is to determine the set KI of those k ≤ n for whichM(k)
is integral. Let L∗ (resp. L∗) be the minimum (resp. maximum) cardinality of a

v0vn-path in D. From Proposition 3.3 it follows that KI = {L∗, . . . , n} \ k(D). If

k < L∗ then M(k) = ∅, and if k ≥ L∗ then M(k) = M . Thus, we are led to a

study of some properties of cover sets k(D). We shall see that for many graphs KI is

empty, but there some interesting exceptional cases that are also of interest in curve

approximation.

6

We shall determine the cover set of the graph D1 + . . . + Dm where for each

j ≤ m Dj is a split consisting of two paths of lengths ai and bi. Let D(a,b) denote
this graph, where a = (a1, . . . , am) and b = (b1, . . . , bm). We assume that ai < bi and
that bi − ai ≥ bi+1 − ai+1 for i = 1, . . . , m− 1 (otherwise we could change the order

of the graphs Di; the cover set is not altered by this operation).

Lemma 3.5. Let D(a,b) be as above and de�ne ri = bi − ai for i ≤ m, so

L∗ =
∑n
j=1 aj and L∗ =

∑n
j=1 bj .

If all the ri's are equal, say ri = d for i = 1, . . . , m, then k(D) = {L∗ < j <
L∗ : j 6≡ 0 (mod d)}. Otherwise (i.e., when r1 > rm) we have that k(D) = {L∗ +
1, . . . , L∗ − 1}.

Proof. Let u1 and vm be the terminals in D(a,b). Each u1vm-path P in D(a,b)
is constructed by selecting for each i ≤m either the path of length ai or the one with
length bi in the graph Di and then adding all these paths together. Thus there are

2m di�erent paths. Moreover, there is a one-to-one correspondence between the set of

these paths and the set of all subsets of {1, . . . , m}: S ⊆ {1, . . . , m} determines those

i for which we choose bi instead of ai. From Proposition 3.2 it is clear that two paths

are adjacent in the path polytope M if and only if they di�er for exactly one i, or,
equivalently, if S′ = S ∪ {i} where S and S′ correspond to the two paths.

For each subset S of {1, . . . , m} we let, as usual, r(S) :=
∑
j∈S rj. Based on the

remarks above we want to determine the numbers s that can be covered in the sense

that r(S) < s < r(S) + rj for some S ⊂ {1, . . . , m} and some j ∈ {1, . . . , m} \ S.

Consider the case when ri = d for i = 1, . . . , m. For each S ⊂ {1, . . . , m} we then
have r(S) = d · |S| and r(S) + rj = d · (|S|+ 1) for j 6∈ S. Thus it is clear that k(D)
consists of all integers lying strictly between L∗ and L

∗ except d, 2d, . . ., (m− 1)d.

Finally, consider the case with r1 > rm. We use the notation Nt := {1, . . . , t} for
each natural number t. Let t ≤ m − 1 and consider S = {1, . . . , t} and j = t + 1.
The pair (S, j) then covers each integer lying strictly between r(Nt) and r(Nt+1). To
cover r(Nt) let S = {2, . . . , t, m} so r(S) = r(Nt) + rm − r1. Since r1 > rm we have

r(S) < r(Nt). Furthermore, r(S) + r1 = r(Nt) + rm > r(Nt) as rm ≥ 1, so r(Nt) is
covered by the pair (S, 1). This can be done for each t ∈ {1, . . . , m−1}, and therefore
K(D) = {L∗ + 1, . . . , L∗ − 1} as desired.

Based on this lemma one may argue that in �most� graphs k(D) becomes very

large, which again means that the polytope M(k) has fractional vertices for most

values of k. To realize this, one may consider di�erent pairs of v0vn-paths in D and

apply the lemma to that subgraph, e.g., one may consider a path pair consisting of a

shortest and a longest v0vn-path. However, there is an interesting class of graphs for

which k(D) = ∅, i.e., M(k) is integral for every k.

De�ne the 2-graph Tn = (V, E) by V = {v0, . . . , vn} and E = {(vi, vj) : 0 ≤ i <
j ≤ i + 2 ≤ n}. To simplify the notation we shall sometimes denote a node vi by
just i. We view Tn as a two terminal graph with terminals 0 and n. The longest

(0, n)-path in Tn consists of all arcs (i, i+ 1) for i = 0, . . . , n− 1 so it has cardinality

n, while the shortest path has cardinality dn/2e.
For 2-graphs the structure of split-paths is very simple. Let 0 ≤ i < j ≤ n and

let C1 and C2 be two internally node-disjoint ij-paths in Tn. We may assume that

(i, i + 1) ∈ C1 (otherwise we rename the paths). If j − i is even, it follows from

the disjointness that C1 contains the nodes i, i + 1, i+ 3, . . . , j − 3, j − 1, j (and the

corresponding arcs) while C2 contains the nodes i, i+ 2, i+ 4, . . . , j − 2, j. Similarly,

if j − i is odd, then C1 contains the nodes i, i + 1, i + 3, i + 5, . . . , j − 2, j and C2

7

contains the nodes i, i+ 2, i+ 4, i+ 6, . . . , j− 3, j− 1, j. In particular, this shows that

there is exactly one pair of internally node-disjoint (i, j)-paths in Tn. Furthermore,

the cardinalities of these two paths are equal when j − i is odd and they di�er by 1

when j− i is even. We call the split C1 ∪C2 even (resp. odd) when j− i is even (resp.

odd).

Corollary 3.6. For each k ≤ n, the polyhedron M(Tn; k) is integral.

Proof. This follows from the mentioned properties of splits in Tn and Corollary

3.4.

Let A be the node-arc incidence matrix of Tn (and the supply vector b as usual for

the two terminal problem). We note that the matrix A augmented with the row 1 is

not totally unimodular, for instance one can �nd 2× 2 submatrices with determinant

equal to 2. Thus our integrality result can not be derived directly from standard

integrality results for polyhedra associated with totally unimodular matrices.

In Proposition 3.2 we gave a characterization of adjacency on the path polytope.

We now consider the same question for the polytope M(Tn; k), which by Corollary

3.6 is the convex hull of the incidence vectors of v0vn-paths in Tn with at most k arcs.
Geometrically, what happens is that the hyperplane {x ∈ IRn : x(E) = k} introduces
some �new edges� between vertices corresponding to paths of cardinality k.

The structure of split-paths in Tn is also su�ciently simple to allow a complete

characterization of the edges of M(Tn; k).

Proposition 3.7. Let P1 and P2 be two (0, n)-paths in Tn with |P1|, |P2| ≤ k.
Then χP1 and χP2 are adjacent on M(Tn; k) if and only if P1∆P2 is a 1-split-path or

a 2-split-path.

Proof. We shall use the geometrical fact that every edge of the intersection of a

polytope P with a halfspace H is either an edge of P lying in H or an edge obtained

as the intersection of a two-dimensional face of P with the hyperplane that H de�nes.

Assume that x1 = χP1 and x2 = χP2 are adjacent on M(Tn; k). We shall show

the necessity of the condition. If at least one of the two paths has cardinality less

than k, then it is easy to see that x1 and x2 are adjacent on M(Tn; k) if and only

if they are adjacent on M(Tn) which again, by Proposition 3.2 is equivalent to that

P1∆P2 is a split-path. Thus, it remains to consider the case when |P1| = |P2| = k.

P1 ∪ P2 is an s-split-path for suitable s ≥ 1 with splits Si = Ci1 ∪ C
i
2 (where

Ci1 ⊆ P1 and Ci2 ⊆ P2) for i ≤ s. We say that Si is of type t if |Ci1| − |C
i
2| = t for

t = −1, 0, 1. It follows from our discussion of split-paths for Tn that each Si is of
exactly one of these types. Let qt be the number of i's for which Si is of type t.

Using similar arguments to those in the �rst part of the proof of Proposition 3.2

one can show that q0 ∈ {0, 1}. Furthermore, since P1 and P2 have equal cardinality

we have q−1 = q1.

We claim that q1 ≤ 1. To see this, assume that q1 ≥ 2 and therefore there are two

splits S1 and S2 of type 1 and two splits S3 and S4 of type -1. Let P ′1 be obtained

from P1 by �switching� over S1 and S3, i.e., replacing P1 ∩ St by P2 ∩ St for t = 1, 3.
Similarly, let P ′2 be obtained from P2 by switching over S1 and S3. Then P ′1 and P ′2
are both (0, n)-paths of cardinality k and by Lemma 3.1 it follows that χP1 and χP2

are not adjacent. This proves the claim.

Finally, we observe that if q−1 = q1 = 1, then q0 = 0. Otherwise we could make a

switch over the split-cycle of type 0 and �nd another feasible pair of paths violating

the necessary adjacency condition of Lemma 3.1.

Thus the only two remaining possibilities are that P1 ∪P2 is either a 1-split-path

8

or a 2-split-path as desired.

It remains to prove that if P1 ∪ P2 is either a 1-split-path or a 2-split-path, then

χP1 and χP2 are adjacent. We note that in each of these cases there is no (0, n)-path
P distinct from P1 and P2 and satisfying P1 ∩ P2 ⊂ P1 ∪ P2. Thus, the adjacency

follows from the second part of Lemma 3.1.

This adjacency characterization may be exploited algorithmically for solving the

CSP problem in 2-graphs. Starting in any vertex of M(Tn; k) one may check if any

adjacent vertex is better by considering 1-splits and 2-splits. If a better vertex is

found, one moves to that one; otherwise, the solution is optimal by linear programming

theory. In the next section some algorithms for solving CSP are presented.

We now return to the CSP problem in a general acyclic graph D. It is of interest
to study the CSP problem using Lagrangian duality. Let λ ≥ 0 and consider the

relaxed problem

min{cTx+ λ(x(E) − k) : x ∈M}(3.5)

which is called the Lagrangian subproblem and denoted by LRk(λ). Note that this is a
shortest path problem with a modi�ed cost function. The Lagrangian dual problem is

to maximize v(LRk(λ)) for λ ≥ 0. (Recall that v(LRk(λ) denoted the optimal value

of the problem LRk(λ)). From the general theory of Lagrangian relaxation (see [12])

it follows that

v(CSP) ≥ v∗ = v(LPk)(3.6)

where

v∗ := maxλ≥0 v(LRk(λ))(3.7)

provides the best lower bound on v(CSP) obtained from Lagrangian duality and LPk
denote the linear programming relaxation of CSP:

min{cTx : x ∈ M(k)}.

The equality in (3.6) is due to the fact that the path polytope M = {x ∈ IRn : Ax =
b; 0 ≤ x ≤ 1} is integral. If, furthermore, the polytope M(k) is integral (as is the

case for 2-graphs), the inequality in (3.6) may be replaced by an equality.

Let x1, . . . ,xN denote the incidence vectors of all v0vn-paths in D and let gjk(λ) =
cTxj + λ(xj(E) − k) be the Lagrangian cost of the solution xj . Then we have

v(LRk(λ)) = minj≤t g
j
k(λ).

Thus the function v(LRk(·)) is the pointwise minimum of a �nite (but large) number

of a�ne functions, so it is piecewise linear and concave. The Lagrangian dual problem

is therefore to maximize this concave function in the single variable λ.
Consider an optimal solution λ∗ of (3.7) and de�ne J∗k = {j ≤ N : gjk(λ∗) = v∗}.

The graphs of the a�ne functions gjk for j ∈ J
∗
k all go through the point (λ∗, v∗). By

optimality of λ∗ this solution may be chosen such that xj(E)−k ≤ 0 and xl(E)−k > 0
for suitable j, l ∈ J∗k . The solution xj is therefore both a feasible solution of CSP and

it solves the Lagrangian subproblem LR(λ∗). The question of integrality of M(k)
may now treated in terms of Lagrangian duality.

9

Proposition 3.8. Assume that v(CSP) > 0. Then there is an optimal integral

solution of the LP problem max {cTx : x ∈ M(k)} if and only if there is an s ∈
J∗k with xs(E) = k.

Proof. It follows from v(CSP) > 0 that any solution xj with cTxj = 0 must be

such that xj(E) > k. This implies that an optimal solution λ∗ of the Lagrangian dual
problem must be strictly positive. Consider an j ≤ N such that xj(E) ≤ k, i.e., xj is
an integral feasible solution of max {cTx : x ∈ M(k)}, and therefore also feasible in

CSP. For each j ∈ J∗k we then obtain from (3.6) that

cTxj ≥ v(CSP) ≥ v(LPk) = v(LRk(λ∗)) = cTxj + λ∗(xj(E) − k).

Thus, cTxj = v(LP) if and only if xj(E) = k (as λ∗ > 0).

This description may be carried further to give a similar integrality result for

varying k. Let for each k ≥ 0 and λ ≥ 0

gk(λ) = v(LRk(λ)) = minj≤N gjk(λ).(3.8)

As noted above g0 is piecewise linear and concave. Let λr, r = 1, . . . , m denote

the breakpoints of g0. Thus, for each r, g0 is linear on the interval [λr, λr+1] and

equal to, say, the function g
t(r)
0 . In the breakpoint λr there may be several t's such

that gt0(λr) = g0(λr); we let T (r) denote the set of such t's. Clearly, we have that

t(r − 1), t(r) ∈ T (r) for all r (except for r = 1 where λ1 = 0 and t(1) ∈ T (1)).
The structure of the solutions xt corresponding to each of the sets T (r) determines

the existence of an integral optimal solution to the problem max {cTx : x ∈ M(k)}
as described next.

Corollary 3.9. The set of integers k such that the LP problem max {cTx : x ∈
M(k)} has an integral optimal solution coincides with the set

{xt(E) : t ∈ ∪rT (r)}.

Proof. We note that gtk(λ) = gt0(λ) − λk and therefore also gk(λ) = g0(λ) − λk.
The result now follows directly from Proposition 3.8.

We remark that both Proposition 3.8 and Corollary 3.9 are general results that

hold for a general combinatorial optimization problem with a cardinality constraint

x(E) ≤ k. See also [9] for a similar discussion. Furthermore we note that the integral-

ity result for the polytopeM(k) given in Corollary 3.4 may be derived from Corollary

3.8 using the additional fact that a polytope is integral if and only if each LP problem

over that polytope has an integral optimal solution.

4. Algorithms for solving CSP. In this section we present several algorithms

for solving the CSP problem. Some of these algorithms are based on ideas related

to adjacency on the polytopes M and M(k) studied in the previous section. We are

mainly interested in applications of CSP to the curve approximation problem CAPX

and, more speci�cally, for digraphs that are 2-graphs (see Section 3). We present

the basic algorithmic ideas and some implementation details. Numerical results and

experiences are given in Section 5.

We have studied four di�erent algorithms, namely

(i) COMB: a combinatorial algorithm;

10

(ii) LAGR: an algorithm based on Lagrangian relaxation;

(iii) DYNP: a dynamic programming algorithm;

(iv) SIMX: a linear programming algorithm.

We consider problems in an acyclic graph D with nodes v0, . . . , vn and arcs of the

form (vi, vj) for i < j. These graphs are represented by an adjacency list consisting

of the inward arcs to each of the nodes.

It should be remarked that the algorithm DYNP is extendible to problems in

general graphs.

A combinatorial algorithm. We shall extend some of the results in Section 3 and

thereby develop a combinatorial algorithm for solving the CSP problem in 2-graphs.

The development consists of two stages. First, we transform the CSP problem into a

linear programming problem with half as many variables as the number of arcs in the

2-graph. Next, some adjacency properties of optimal solutions of this new LP problem

(for varying k) are derived. These properties are the foundation of the combinatorial

algorithm which we denote by COMB. We shall assume that dn/2e ≤ k ≤ n so that

CSP has feasible solutions.

The starting point is a reformulation of the CSP problem obtained by elimination

of certain variables. We call each arc (i, i+1) inD = (V, E) a basic arc (in CAPX these

arcs correspond to the graph of the target function). Let Eb denote the set of basic arcs
and de�ne the subgraph Dr = (V, Er) where Er := E\Eb = {(i, i+2) : 0 ≤ i ≤ n−2}.
We call Dr the reduced graph. De�ne cri,i+2 = ci,i+2 − ci,i+1 − ci+1,i+2.

Consider the following integer linear programming associated with Dr. It will be

denoted by ILPk.

min
∑n−2
i=0 c

r
i,i+2 yi

subject to

(i) yi + yi+1 ≤ 1 for 0 ≤ i ≤ n− 3;

(ii)
∑n−2
i=0 yi ≥ n− k;

(iii) yi ∈ {0, 1} for 0 ≤ i ≤ n− 2.

(4.1)

This problem has feasible solutions since dn/2e ≤ k ≤ n. Let y = (y0, . . . , yn−2)
be the variable vector in this problem.

ILPk relates to the CSP as follows. De�ne for each feasible solution y of (4.1) the

vector xy ∈ {0, 1}E by xyi,i+2 = yi and x
y
i,i+1 = xi+1,i+2 = 1− yi for all i ≤ n− 2.

Lemma 4.1. If y is an optimal solution of problem ILPk, then xy is an optimal

solution of CSP. In particular, we have v(CSP) = v(ILPk) + c(Eb).

Proof. Let x ∈ {0, 1}E be an integral solution in M(k), i.e., x is the incidence

vector of a v0vn-path. We see that (i) if xi+1,i+2 = 1, then xi,i+2 = xi+1,i+3 = 0,
and (ii) if xi+1,i+2 = 0, then xi,i+2 + xi+1,i+3 = 1 (from connectivity). In addition,

we clearly have that xi,i+2 + xi+1,i+3 ≤ 1, and therefore xi+1,i+2 = 1 − (xi,i+2 +
xi+1,i+3). This implies that all the variables corresponding to the basic arcs in D
may be eliminated from the CSP problem, and the resulting problem is precisely

(4.1).

The elimination of variables described in this lemmameans that it su�ces to solve

the smaller linear programming problem ILPk; see the SIMXr algorithm described

later.

We remark that the polyhedron de�ned by the linear system (4.1)(i)�(iii) is in-

tegral. In fact, one can show that the coe�cient matrix is a network matrix and

11

therefore totally unimodular (see [12] for a de�nition of network matrix). In particu-

lar, this means that the problem ILPk may be solved by its LP relaxation. We return

to this in the next section.

We proceed by giving a combinatorial result concerning optimal solutions of ILPm
as m is decreased.

Theorem 4.2. Let z be an optimal solution of ILPm. Then there is an optimal

solution y of ILPm−1 such that for certain integers l and r with l ≤ r the following

holds: (i) yj = xj when j < l or j > r, (ii) yj = 1− xj when l ≤ j ≤ r, and (iii) for

l ≤ j ≤ r the variable yj is 1 if j − l even and it is 0 if j − l is odd.
Proof. To prove the result we initially pick an (arbitrary) optimal solution y′ of

ILPm−1.

Assume �rst that there exists a t ≤ n such that

y′t = 1, y′t−1 = y′t+1 = xt−1 = xt = xt+1 = 0.(4.2)

De�ne y ∈ {0, 1}n−1 by yj = y′j for j ∈ {t − 1, t, t + 1} and yj = xj for all other

j's. Note that y is feasible in ILPm−1. It follows from the optimality of x (in ILPm)

that cTy ≤ cTy′, so y is also optimal in ILPm−1. Furthermore, y satis�es properties

(i)�(iii) in the theorem as desired.

Next we treat the case when there is no t ≤ n such that (4.2) holds. Then there

exists for each j with y′j = 1 an i(j) ∈ {j − 1, j, j + 1} such that xi(j) = 1. Let

J 6= = {j ≤ n : i(j) 6= j}. Note that xj = 1 − y′j for each j ∈ J 6= and xj = y′j for

j ∈ J \ J 6=. The set J 6= is the union of intervals (of integers) Ir, r ≤ m with the

property that for each Ij , say Ij = {s, s + 1, . . . , t} we have xs−1 = ys−1 = 0 and

xt+1 = yt+1 = 0.
Consider such an interval Ir with even cardinality. De�ne y′′ as the solution

obtained from y′ by letting y′′j = 1− y′j for j ∈ I
r and y′′j = y′j otherwise. Then y′′ is

also optimal in ILPm−1. In fact, it is feasible (due to the construction of the interval

Ir) and it is optimal because the optimality of x implies that c({j ∈ Ir : y′j = 1}) ≥
c({j ∈ Ir : xj = 1}). The new solution y′′ agrees with x in more components than

y′ did. Repeating this procedure for all intervals Ir with even cardinality we end up

with an optimal solution which we denote by y′.
It remains to study the intervals Ir with odd cardinality; let O denote the set of

such r's. De�ne nrx = |{j ∈ Ir : xj = 1}| and nry = |{j ∈ Ir : y′j = 1}|. Then, for each
r ∈ O we have either that (i) nrx = nry + 1 or (ii) nrx = nry − 1. Let Ox (resp. Oy)

denote the subset of O for which (i) (resp. (ii)) holds. Since
∑n−2
j=0 y

′
j =

∑n−2
j=0 xj, we

obtain

|Oy| = |Ox|+ 1.

Assume that |Ox| ≥ 1 and let r ∈ Ox. Let also r′ ∈ Oy (which is possible as |Oy| ≥ 2).
We may then construct a new optimal solution y′′ of ILPm−1) by de�ning y

′′
j = 1−y′j

for j ∈ Ir ∪ Ir
′

and y′′j = y′j otherwise. Here the feasiblity and optimality may be

argued as above. We may repeat this procedure and thereby end up with another

optimal solution y which coincides with x everywhere except at one interval Ir with
nry = nrx+1. This solution y satis�es properties (i)�(iii) in the theorem and the proof

is complete.

Based on Theorem 4.2 we obtain the following algorithm, denoted by COMB, for

solving ILPk and therefore CSP in 2-graphs: solve ILPm for m = n, n−1, . . ., k. Note

12

that we start in the infeasible part of the path polytope (with exception of the case

k = n in which the CSP problem is an ordinary shortest path problem). This is done

because the number of solutions to be scanned is considerably less compared to the

alternative approach of solving ILPm for increasing m.

The initial problem is trivial; z = 0 is an optimal solution.

The general step is to �nd an optimal solution y of ILPm−1 from the known

optimal solution z of ILPm. If a feasible solution z = (z0, . . . , zn−2) of ILPm is such

that zi−1 = 0, zi = 0, zi+1 = 1, zi+2 = 0, zi+3 = 1, . . . , zj−1 = 1, zj = 0, zj+1 = 0 for

some i and j, then {i, i+1, . . . , j} is referred to as an z-interval. If z0 = 1 or zn−2 = 1
we de�ne the two special z-intervals {0, . . . , j} and {i, . . . , n − 2}, respectively. We

also note that the z-intervals are pairwise disjoint. Let Iz denote all the indexes in

{0, . . . , n− 2} that are not contained in any z-interval. It is clear that each feasible

solution z can be represented by its z-intervals. In order to obtain y from z one checks

each solution obtained by either (i) complementing variables in some z-interval or (ii)
setting yp = 1 for an p ε Iz and yj = zj othervise.

If no more than n−k weigths are negative we can terminate after n−k iterations.
Otherwise we need to solve the problems ILPk−i for i = 1, 2, . . . until v(ILPk−i) >
v(ILPk−i+1). The optimal solution of ILPk−i+1 will then also be optimal in CSP.

The number of candidate solutions to be checked in iteration m is 2m−n− 1, so
the complexity of the algorithm is

k∑
m=n

(2m− n− 1) = nk − k2 − 2k

If for instance k = 3n/4, we get the complexity 3n2/16.
This algorithm may also be interpreted in terms of the original CSP problem in

the graph D. This can be done via the transformation we used to derive ILPk from

CSP. Assume that x is optimal in ILPm. Then x corresponds to a v0vn-path P (m)
in D of length m. The candidate solutions y to be checked for optimality in ILPm−1

correspond to those paths P (m− 1) in D of length m such that χP(m) and χP(m−1)

are adjacent in the path polytope M . In fact, the interval on which x and y di�er

according to Theorem 4.2 corresponds to an even split, and for 2-graphs such a split

has a very simple form, see Section 3.

The COMB algorithm has also a nice geometrical interpretation in terms of the

�slices� of the path polytope. Consider the slice

Sm = {x ∈M : x(E) = m}

for m = 1, . . . , n. COMB moves in each iteration from an optimal solution of cTx
over Sm to an optimal solution of cTx over Sm−1. This move is a nondegenerate

simplex pivot, i.e., along an edge of the path polytope M . The decision on which

edge to choose is made by checking all of the edges of M joining the current vertex

to a vertex in Sm−1.

Lagrangian relaxation. The LAGR algorithm is obtained by dualizing the cardi-

nality constraint x(E) ≤ k as described in Section 3. Thus one solves the Lagrangian

dual problem (3.7) by solving a sequence of Lagrangian subproblems LR(λ(i)) (see

(3.5)) until convergence of the multiplier sequence is achieved or an optimal inte-

gral solution is found. Each subproblem is a shortest path problem with a modi�ed

cost function depending on the chosen λ. As the graph is acyclic the shortest path

algorithm simpli�es (see below).

13

Since we here consider 2-graphs only, we know that we have equalities in (3.6),

i.e., the optimal value of the Lagrangian dual problem equals the optimal value of the

CSP problem.

As for other applications of Lagrangian relaxation it is crucial for convergence

(and speed) to update the multiplier λ suitably. We tried several adjustment methods

and found that binary search performed best (signi�cantly better than, for instance,

the standard subgradient method, see [12]). Binary search has guaranteed and fast

convergence and is numerically stable.

The binary search procedure keeps track of an interval [λl, λr] containing an

optimal multiplier λ∗ and halves that interval in each iteration. Throughout the

iterations we have that the right-sided derivative of gk in λl is nonnegative and that

the left-sided derivative of gk in λr is negative (recall that the Lagrange function

gk is de�ned in (3.8)). This assures that the interval contains a point with 0 as a

subgradient, i.e, an optimal λ∗. Based on the input data an initial interval for λ
may be determined with the mentioned derivative properties. In each iteration the

Lagrangian subproblem is solved for the midpoint λm := (λl + λr)/2 and one obtains

an optimal solution x being the incidence vector of some v0vn-path. If x(E) = k
we terminate: an optimal solution is found (see Proposition 3.8). If x(E) < k (resp.

x(E) > k) we update the interval by λr := λm (resp. λl := λm). The algorithm also

terminates if λr − λl is smaller than a speci�ed small tolerance.

The shortest path subproblems are solved by a simple pulling algorithm as de-

scribed in [13]. The graph is acyclic so the shortest path to node j is obtained as the

shortest path to some preceding node i plus the edge (i, j), and for 2-graphs we have

i ∈ {j − 1, j − 2}. The algorithm traverses the nodes in the order j = 1, 2, . . . , n and

determines a shortest path to node j, say Pj , by the equation

c(Pj) = mini∈{j−1,j−2}(c(Pi) + ci,j + λm)(4.3)

For each j we let i(j) be a node for which this minimum is obtained; i(j) is called the

parentnode of node j. By moving from node n to node 0 via parentnodes a shortest

v0vn-path Pn is determined (in reverse order). The (computational) complexity of this

shortest path algorithm is O(2n) because it visits each edge once. This means that the

algorithm for solving the Lagrangian dual has a complexity bound of O(n log2(ε/C))
assuming that the algorithm is terminated whenever λr − λl ≤ ε and where C is the

length of the initial interval for λ.

Dynamic programming. A natural approach to the CSP problem is to use dynamic

programming. This was done in solving the shortest path subproblems in the LAGR

algorithm, but it may also be used on the CSP problem directly.

The basic fact is that a shortest path of cardinality at most m to a node j is

obtained as a shortest path of cardinality at most m − 1 to some preceding node i
plus the edge (i, j).

Let Pmj denote a shortest v0vj -path of cardinality at most m. The DYPR al-

gorithm is then: for m = 1, . . . , k calculate the the minimum of the three numbers

c(Pm−1
j), c(Pm−1

j−1) + cj−1,j and c(Pm−1
j−2) + cj−2,j and let c(Pmj) be this minimum.

A di�erence compared to (4.3) is that nodes are processed in the opposite order.

Furthermore, we only need to visit the nodes i for which there exists path of given

cardinality to a higher ordered node, i.e., imust satisfy i = 2j, 2j+1, . . . , j if j ≤ dn/2e
or i = n, . . . , j if j > dn/2e. As for the algorithm used to solve LRk(λ) we store the
parentnode for each Pmj we obtain. To construct the �nal path we start in node n
and moves to the parentnode u for the path with cardinality at most k. We then

14

move to the parentnode of node u for the path with cardinality at most k − 1, and
continue in this manner until we reach node 0. The number of parentnodes equals∑dn/2e
i=0 (i+ 1) +

∑k
i=dn/2e+1(n − i+ 1) which gives that the algorithm needs storage

space of O(n2). The complexity of the algorithm is of the order 8kn − 7/4n2 − 4k2.

For instance, if k = 3n/4, we get the complexity 2n2.

Simplex methods. The polytopeM(k) is integral for 2-graphs, so the CSP problem

in 2-graphs may be solved as a linear programming problem. Moreover this LP

problem is a minimum cost network �ow problem with one additional constraint.

This structure may be exploited to give a specialized simplex algorithm using basis

partitioning although this was not done here. Instead we solved the problem using

the general LP-solver CPLEX (see [5]) based on two di�erent approaches. The �rst

approach is based one the original �network �ow� formulation min{cTx : x ∈ M(k)}
and the resulting algorithm is denoted SIMXo. The second approach is to solve the

LP relaxation of the �reduced problem� ILPk. (Recall that the feasible polyhedron of

this problem is integral, see Section 3). This algorithm is denoted by SIMXr.

We also considered variants of SIMXo and SIMXr by �nding a candidate initial

LP basis. For the SIMXr algorithm we use the initial basis obtained by setting all

the variables equal to one.

For SIMXo an initial basis is obtained by a greedy algorithm. For simplicity of

the presentation we assume that n is even. First we consider the unique v0vn-path
P of cardinality dn/2e; each arc in P is of the form (i, i + 2). Using the quicksort

algorithm (see [15]) we determine the k − dn/2e arcs (i, i + 2) in P having largest

value cri,i+2 (as de�ned in connection with the problem ILPk). Each such arc (i, i+2)
is then replaced by the two arcs (i, i+ 1) and (i+ 1, i+ 2). The resulting solution P ′

is a v0vn-path P of cardinality k. From P ′ we construct a spanning tree by adding

suitable (basic) arcs, and together with a slack variable for the constraint x(E) ≤ k
this represents the initial LP basis.

5. Computational results. In this section we present some test examples to

compare the algorithms described in the previous section. All the graphs considered

are 2-graphs, see Section 3. In addition to a general comparison of the algorithms for

graphs of di�erent sizes we illustrate how the cardinality k in�uences the run time for

a �xed graph.

The test runs were performed on a SGI-Indy workstation with a 100 MHz pro-

cessor and 32 Mbyte memory. COMB, LAGR and DYNP were written in C++, and

the SIMX algorithms were coded in C (in order to call CPLEX, our linear optimizer,

see [5]). We tried to make the implementations e�cient and as uniform as possible.

The run time was measured by the UNIX function times. This function has a 60

Hz sample rate, which gives su�cient precision for our purposes. The run time is

reported in minutes and seconds.

The test data were obtained by choosing some real-valued functions to be ap-

proximated, i.e., we solved CAPX problems (see Section 2). Each target function f
was chosen as the linear interpolant of some real-valued function on an interval [a, b].
The number of interpolation points were varied so graphs D of di�erent sizes were

obtained. In all cases the interpolation points were equally spaced. The arc weights

ci,j were determined as follows. We let ci,i+1 = 0 for each i (as f is linear on the

corresponding interval) and ci−1,i+1 = |f(ti)−
1
2 (f(ti−1)+f(ti+1))|. This corresponds

to using the `1-norm (for the vectors consisting of the function values in the points

t0, t1, . . . , tn). This norm was mainly chosen in order to make the calculations of the

vector c easy.

15

In Figure 1 and Figure 2 the performance of the di�erent algorithms on a wide

range of sizes of instances are given. The columns in Figure 1 contains the following

information:

v: The optimal value of the CSP instance.
COMB: The combinatorial algorithm.

CPU: User CPU-time (minutes.seconds).
DYNP: The dynamic programming algorithm.
LAGR: The Lagrangian relaxation algorithm.

ITER: The number of Lagrangian subproblems.
ARCS: The number of arcs in the optimal solution.
GAP: (v− v∗)/v · 100%.

Recall that v∗, as de�ned in (3.7), is the optimal value of the Lagrangian dual

problem.

The columns in Figure 2 contain the additional information:

GR: Greedy algorithm.
GAP: (v− greedy value)/v · 100%.

SIMXo: LP formulation of CSP solved by CPLEX.
PIV: The number of simplex pivots.

SIMXo+B: SIMXo is solved with a �good� initial basis.
SIMXr: LP formulation in the reduced graph solved by CPLEX.
SIMXr+B: SIMXr is solved with a �good� initial basis.

COMB DYNP LAGR

n k v CPU CPU CPU ITER ARCS GAP

1000 550 1.652 0.00 0.02 0.00 15 550 0

750 0.390 0.00 0.03 0.00 19 750 0

900 0.066 0.00 0.04 0.00 61 898 4.55

3000 1550 1.234 0.04 0.20 0.00 14 1550 0

2000 0.231 0.04 0.28 0.00 20 2000 0

2500 0.041 0.02 0.34 0.00 20 2500 0

5000 2600 0.572 0.10 0.58 0.00 15 2600 0

3000 0.182 0.10 M 0.00 47 3000 0

3500 0.086 0.08 M 0.00 59 3444 9.30

4000 0.032 0.06 M 0.00 56 4000 0

10000 5500 0.162 0.46 M 0.01 53 5500 0

7500 0.0022 0.32 M 0.01 58 7496 9.09

30000 15500 2.691 8.40 M 0.01 19 15500 0

20000 0.247 6.57 M 0.01 15 20000 0

25000 0.0022 3.31 M 0.04 57 24999 4.55

50000 26000 0.517 21.18 M 0.06 44 26000 0

30000 0.234 19.50 M 0.08 56 29748 5.55

40000 Z 11.17 M 0.08 56 38079

Fig. 5.1. The algorithms COMB, DYNP and LAGR.

The entries marked `M' in the DYNP column in Figure 1 indicates insu�cient

memory for the given instance. The entry containing `Z' indicates that the objective

function is close to zero (c(P) = 1.4 · 10−11). The entries marked `T' in Figure 2

indicates that the program was aborted since it exceeded the chosen run-time limit

of 45 minutes. Note that the time needed to calculate the initial bases is included in

the run times reported, but it is negligible for all the instances.

In the second set of test runs we varied the parameter k occuring in the cardinality

16

GR SIMXo SIMXo+B SIMXr SIMXr+B

n k %GAP CPU PIV CPU PIV CPU PIV CPU PIV

1000 550 0.6 0.07 1334 0.04 1546 0.02 1526 0.01 238

750 0.8 0.05 1054 0.07 1571 0.04 1555 0.01 576

900 3.0 0.02 488 0.03 635 0.01 671 0.02 838

3000 1550 0.3 0.55 3844 0.38 4584 0.19 4562 0.02 119

2000 24.2 0.55 3660 0.54 2429 0.30 4882 0.09 1223

2500 87.8 0.23 1666 0.27 2508 0.15 2462 0.15 2487

5000 2600 0.7 2.33 6483 1.50 7687 0.51 7681 0.08 285

3000 9.9 2.52 6839 2.13 8367 1.08 7824 0.21 1665

3500 23.3 2.11 5267 2.29 7791 1.17 7514 0.30 2812

4000 46.9 1.44 4100 1.46 5494 0.58 5430 0.36 3679

10000 5500 17.3 16.59 12233 8.37 4966 3.52 15832 1.09 2621

7500 1536.4 13.30 10079 7.56 12767 4.19 12719 2.11 6970

30000 15500 T T T T T 30.13 46288 4.04 1687

20000 T T T T T 37.39 43131 17.33 18632

25000 T T T T T 23.34 24857 21.25 24933

Fig. 5.2. The simplex algorithms.

constraint x(E) ≤ k. This was done by running the algorithms on an instance with

3000 nodes and k in the range 1600, 1700, . . ., 2900. The results are shown graphically
in Figure 3 where we have plotted the CPU-time for the di�erent algorithms as a

function of k.

1600 1800 2000 2200 2400 2600 2800
0

10

20

30

40

50

60

k

U
se

r
C

P
U

−
tim

e
(s

ec
.)

Fig. 5.3. Run times for a 3000 node instance as a function of k.

The curve labeled with `+' is the COMB algorithm (it is the bottom curve),

the curve labeled with `x' is the DYNP algorithm, the curves labeled with `∗' is the
SIMXr algorithm and the curves labeled with `o' is the SIMXo algorithm. For the

SIMX algorithms the solid curves indicates the run time when an initial basis is given

and the dashed ones are without an initial basis.

17

We may summarize our computational experiences with these algorithms as fol-

lows.

COMB. The combinatorial algorithm has a very good performance, and is able

to solve problems of all the reported sizes within a reasonable time. It is slower than

the SIMXr algorithm with an initial basis when k is very small. Otherwise it is much

faster than the other algorithms that are guaranteed to �nd an optimal solution.

DYNP. The major weakness of this algorithm is its memory consumption, and

as can be seen from Figure 1 the algorithm can only solve small scale problems.

However, an advantage of DYNP is that it can be used to solve CSP problems in

arbitrary graphs.

LAGR. The LAGR algorithm is the fastest among the implemented algorithms,

but as Figure 1 shows it does not always produce an optimal solution. Whether LAGR

solves CSP or not depends upon the number of similar arc weights in the given graph

(see Section 3 for a discussion of this topic).

SIMXo. CPLEX has poor performance on the SIMXo formulation of the LP-

problem, but the run time is reduced rapidly as we allow more points in the solution.

Notice that the initial basis only has an e�ect when k is low, so in that case the greedy
solution seems to be pretty close to optimal.

SIMXr. CPLEX is much faster on this LP problem than the preceding one, and

SIMXr is able to solve larger problems than SIMXo within our time limit. The run

time was considerably reduced by using the greedy solution as an initial basis, even

whenever this initial basis was infeasible.

Finally we illustrate an application of our study to a problem from medicine (see

the �gures at the end of the paper). The data in Figure 4 shows a cross section of

a human heart, and were obtained from [16]. The target curve was found by linear

interpolation of the data (i.e., a straight line between consecutive data points). In

Figure 5 one can see the target curve and an optimal subinterpolant for k = 183 (i.e.,

with 183 straight segments). At this scale the two curves are almost impossible to

distinguish. A zoomed picure showing the lower left part of the two cuves may be

seen in Figure 6. It should be remarked that the computational time for �nding this

approximation was less than a hundredth of a second.

6. Conclusions. We have considered a cardinality constrained shortest path

problem in acyclic directed graphs. The problem has important applications in curve

approximation problems that arise in e.g. computer aided geometric design. The

polytope M(k) = {x ∈ IRE : Ax = b, 0 ≤ x ≤ 1, x(E) ≤ k} was studied. A

characterization of all vertices of M(k) was presented, and extended to adjacency

and integrality results for certain graphs called 2-graphs. A combinatorial algorithm

COMB was developed based on the adjacency descriptions.

The numerical results indicate that several algorithms seem feasible in many ap-

plications, but that COMB and a Lagrangian algorithmLAGR are preferable for large

scale problems. The COMB algorithm is guaranteed to �nd an optimal solution while

the the Lagrangian algorithm may fail to do this. For curve approximation problems

the algorithms may be used to �nd best approximations with a desired data reduc-

tion within reasonable time. It would be interesting to see some of these algorithms,

properly extended, in (for instance) some real world geometric design tools. Further

work in this area could also be to consider the approximation problem for functions

of two variables or even splines. These problems are much harder, but at least some

reasonable heuristics for the two-variable problem may be developed based on the

algorithms discussed here.

18

REFERENCES

[1] E. Arge and M. Dæhlen, Data reduction of piecewise linear curves, Tech. Report STF33
A94042, SINTEF, Norway, 1994.

[2] V. Bhaskaran, B. K. Natarajan, and K. Konstantinides,Optimal piecewise-linear com-
pression of images, in Data Compression, J. Storer and M. Cohn, eds., IEEE Computer
Society Press, 1993, ch. 31, pp. 168�177.

[3] A. Brøndsted, An introduction to convex polytopes, Springer, New York, 1983.
[4] R. E. Burkard, H. W. Hamacher, and G. Rote, Sandwich approximation of univariate

convex functions with an application to separable convex programming, Naval Research
Logistics, 38 (1991), pp. 911�924.

[5] CPLEX, Using the cplex callable library, tech. report, CPLEX Optimization, Inc., 1994.
[6] M. Garey and D. Johnson, Computers and intractability. A guide to the theory of NP-

completeness, W.H. Freeman and company, 1979.
[7] L. Gouveia, Using variable rede�nition for computing minimum spanning and steiner trees

with hop constraints, Tech. Report 2, Faculdade de Ciéncias da Universidade de Lisboa,
Centro de investigação operacional, Lisboa, Portugal, 1996.

[8] D. Hausmann, Adjacency on polytopes in combinatorial optimization, Verlag Anton Hain,
1980.

[9] E. Houssaine and L. Wolsey, Lot-sizing polyhedra with a cardinality constraint, Operations
Research Letters, 11 (1992), pp. 13 � 18.

[10] H. Imai and M. Iri, Computational-geometric methods for polygonal approximations of a

curve, Computer Vision, Graphics, and Image Processing, 36 (1986), pp. 31�41.
[11] T. Lyche and K. Mørken, A data-reduction strategy for splines with applications to the ap-

proximation of functions and data, IMA Journal of Numerical Analysis, 8 (1988), pp. 185�
208.

[12] G. Nemhauser and L. Wolsey, Integer and combinatorial optimization, Wiley, 1988.
[13] J. B. O. R. K. Ahuja, T. L. Magnanti, Network �ows: theory, algorithms, and applications,

Prentice-Hall, Englewood Cli�s, New Jersey, 1993.
[14] A. Schrijver, Theory of linear and integer programming, Wiley, Chichester, 1986.

[15] N. Wirth, Algorithms + datastructures = programs, Prentice Hall, 1976.
[16] D. K. Zyck, Hjertets elektriske aktivitet modellert ved hjelp av elementmetoden, master's

thesis, University of Oslo, 1994.

19

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

Fig. 6.1. The 363 data points.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

Fig. 6.2. The original curve and an optimal solution with k = 183.

20

7 7.5 8 8.5 9 9.5
0

0.5

1

1.5

2

Fig. 6.3. Zoom of lower left corner.

21

