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Abstract: Herein we report the first total synthesis of RvD2n-3
DPA, an endogenously formed mediator biosynthesized from
the omega-3 fatty acid n-3 docosapentaenoic acid. The key
steps are the Midland Alpine borane reduction, Sonogashira
cross-coupling reactions, and a Z-selective alkyne reduction
protocol, yielding RvD2n-3 DPA methyl ester in 13% yield over
12 steps (longest linear sequence). The physical property data

(UV chromophore, chromatography and MS/MS fragmenta-
tion) of the synthetic lipid mediator matched those obtained
from biologically produced material. Moreover, synthetic
RvD2n-3 DPA also carried the potent biological activities of
enhancing macrophage uptake of Staphylococcus aureus and
zymosan A bioparticles.

Introduction

The inflammatory process is an essential part of the normal
protective response to tissue injury and infection by invading
pathogens and is divided into acute and chronic
inflammation.[1] Although the primary goal of the inflammation
phase is to regain homeostasis,[2] if kept uncontrolled, it may
result in the development of a highly unappreciated outcome,
namely a chronic state of inflammation. Chronic inflammation is
associated with diseases such as rheumatoid arthritis, cardiovas-
cular disorders, Parkinson and Alzheimer’s diseases.[3] However,
the acute inflammatory response is normally self-limited and
resolves smoothly. This self-contained process is divided into
two distinct phases: the initiation and the resolution phase. The
resolution of the inflammatory process is now considered to be
a dynamic, programmed response, and not just a means of
passive dilution of chemoattractants, as previously thought.[4]

Further, evidence for this emerged with the discovery of
oxygenated lipid mediators possessing pro-resolving abilities

biosynthesized from the ω-3 polyunsaturated fatty acids
(PUFAs) docosahexaenoic acid (DHA), eicosapentaenoic acid
(EPA), and n-3 docosapentaenoic acid (n-3 DPA).[5–7]

New drugs that can resolve inflammation without undesir-
able side effects are of great interest in drug discovery
programs,[8] and are therefore attractive targets for total
synthesis.[9] The pro-resolving endogenously formed resolvins
are excellent candidates displaying these actions in vivo[10] and
belong to a superfamily called specialized pro-resolving media-
tors (SPMs). SPMs are derived from ω-3 PUFAs and interact with
G-protein coupled receptors (GPCRs) on the cell surface, hence
limiting the infiltration of polymorph nuclear neutrophils
(PMNs) and enhance the clearance of apoptotic cells by
phagocytosis[11] – two important features in controlling inflam-
mation. More in-depth insight into the importance of SPMs in
the resolution phase of an inflammatory process may lead to
the development of new treatments of inflammatory driven
diseases.[4] Thus, the resolution of inflammation controlled by
SPMs is considered a biomedical paradigm shift.[12] The chemical
structures of some resolvins are depicted in Figure 1.

Results and Discussion

The DHA-derived SPM resolvin D2 (RvD2, see Figure 1) was
isolated from inflammatory exudates and its structure was later
established by LC-MS/MS experiments[13] and total
synthesis.[14,15] RvD2 reduces excessive neutrophilic trafficking to
inflammatory loci and has been reported to decrease leukocyte-
endothelial interactions in vivo by endothelial-dependent nitric
oxide production and by direct modulations of leukocyte
adhesion receptor expression[10,11] Additionally, RvD2 decrease
both local and systemic bacterial burden, excessive cytokine
production and neutrophil recruitment,[16a] while increasing
peritoneal mononuclear cells and macrophage phagocytosis.[16b]

These initial reports spurred an interest in evaluating other
biological properties of this SPM.[16b–d] The congener of RvD2,
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RvD2n-3 DPA (1), was reported in 2013 and its structure elucidated
based on UV and LC-MS/MS data.[5] This SPM is derived from n-
3 DPA and formed after two consecutive lipoxygenation
reactions and epoxide formation, followed by ring opening of
the epoxide by a hydrolytic enzyme (Scheme 1). In the
anticipated biogenetic formation of 1, the first biosynthetic step
in the presence of 15-LOX forms 17(S)-HpDPA, while the second
lipoxygenation step is catalyzed by 5-LOX. The product herein,
7(S),17(S)-diHpDPA, is then subjected to enzymatic conversion
to an epoxide intermediate that is next enzymatically hydro-
lyzed to either RvD1n-3 DPA (Figure 1) or RvD2n-3 DPA (1), see
Scheme 1. Alternatively, direct reduction of the hydroperoxide
intermediate 7(S),17(S)-diHpDPA, catalyzed by peroxidase en-
zymes, produces RvD5n-3 DPA (see Figure 1 and Scheme 1).

Biosynthetic considerations, LC–MS/MS data, and physical
properties (MS- and UV-Vis data) of the isolated endogenously
produced material gave evidence for the proposed structure of
1 (Figure 2) with a highly sensitive E,Z,E,E-tetraene embedded
by two chiral allylic alcohols. An overview of the retrosynthetic
proposal applied to the tentatively assigned structure of RvD2n-3
DPA (1) suggest a disconnection based on the Sonogashira cross-
coupling reaction[17] followed by Z-selective reduction. The
analysis identified two key fragments, 3 and 4, to be
convergently assembled in the synthesis.

Fragment 3 was disconnected back to alkyne 5, to be
prepared from commercially available dimethyl pimelate (7)
with an aliphatic Friedel-Crafts acylation,[18] Midland Alpine
borane reduction,[19] and Sonogashira cross-coupling. Two
subsequent Wittig reactions and a Takai olefination[20] were
chosen as the key transformations for finishing fragment 4 from
2-deoxy-β-d-ribopyranose (8).

The project commenced with the construction of com-
pound 4, starting from commercially available and affordable 8,
as shown in Scheme 2. Aldehyde 9 was prepared according to
the literature,[21,22] and was further reacted in an E-selective

Figure 1. Chemical structures of some resolvins derived from n-3 DPA and
the DHA-derived RvD2.

Scheme 1. Proposed biosynthesis of RvD2n-3 DPA (1), RvD1n-3 DPA, and
RvD5n-3 DPA from n-3 DPA.

Figure 2. Overview of the retrosynthetic analysis of RvD2n-3 DPA (1).

Scheme 2. Synthesis of vinylic iodide 4.
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Wittig reaction with the stabilized ylide (triphenylphosphorany-
lidene)-acetaldehyde at elevated temperature, to give the α,β-
unsaturated aldehyde 10. A Takai olefination protocol was then
performed to complete the synthesis of vinyl iodide 4 in 59%
yield over two steps as one geometrical isomer after purification
using column flash chromatography (Supporting Information).

For the synthesis of alkyne ester 3, a selective monohydrol-
ysis of dimethyl pimelate (7) using aqueous NaOH in THF,
followed by acidic work-up, was performed to give carboxylic
acid 11 in 70% yield (see Scheme 3).[23] Next, the corresponding
acid chloride of 11 was prepared in situ and submitted to an
aliphatic Friedel-Crafts acylation, giving ketone 12 in 59% yield.
The asymmetric reduction of the alkynyl ketone was achieved
by the addition of the Midland (S)-Alpine borane reagent in THF
at � 10 °C, followed by swift removal of the solvent to
essentially neat conditions, yielding the desired propargylic
alcohol (S)-13 in 93% enantiomeric excess (ee) and 95% yield
after workup and purification (Supporting Information). The ee-
value was determined by HPLC-analyses of the 2-naphthoate
derivative of 13 (Supporting Information).

The secondary alcohol (S)-13 was then treated with TBS
chloride and imidazole in dichloromethane, followed by TMS-
deprotection using potassium carbonate in methanol to yield 5
in 89% over the two steps. At this point, it was necessary to
convert the terminal acetylene 5 into the corresponding E-vinyl
iodide 14. This was achieved by first treating the compound
with a catalytic amount of azobisisobutyronitrile (AIBN) and
excess tributyltin hydride at elevated temperature, followed by
iododestannylation, to give 14 in 87% yield over the two steps.
The first of the two planned palladium catalyzed reactions was

accomplished using catalytic amounts of Pd(PPh3)2Cl2/CuI in
THF under basic conditions, which united vinyl iodide 14 with
commercially available trimethylsilylacetylene. Direct protodesi-
lylation of the crude compound 15 was achieved after treat-
ment with potassium carbonate in methanol, affording the
terminal alkyne 3 in 81% yield.

For the assembly of the two key fragments, 3 and 4, the
Sonogashira cross-coupling reaction using Pd(PPh3)4/CuI and
diethylamine in benzene produced 16 in excellent yields
(Scheme 4). Removal of the three TBS-groups in 16 was
performed by adding tetra-n-butylammonium fluoride (TBAF) in
THF to give the triol 17 in 93% yield. However, for the Z-
selective reduction of the internal alkyne in 17, several different
protocols were attempted. Firstly, a Zn(Cu/Ag) mediated
reduction protocol,[24] reported to be highly Z-selective for
conjugated systems, was tested, but the conversion was rather
poor. Additionally, elimination of the (7S)-alcohol moiety was
observed. Next, a Lindlar hydrogenation protocol[25] using a
mixture of EtOAc/pyridine/1-octene as solvent system was
attempted, but no product formation was observed. Then, a
hydrosilylation protocol[26] using the Karstedt catalyst was tried,
which was successfully employed in the preparation of RvD1n-3
DPA.

[21] Unfortunately, major byproduct formation and difficulties
in the purification step was observed. Finally, a reaction using
zinc powder and potassium cyanide in a mixture of 1-propanol/
H2O,

[27] followed by a solvent switch to toluene/methanol and
addition of TMS-diazomethane, gave RvD2n-3 DPA methyl ester (2)
in 59% yield and with chemical purity >96% after purification
by column chromatography (Supporting Information). The
NMR- (1H, 13C, and COSY), MS-, and UV-data were all in
accordance with the structure of 2 (Supporting Information).

MRM LC-MS/MS matching experiments were performed to
assure that our synthetic material was identical to that of
authentic RvD2n-3 DPA (1). For SPMs, direct NMR analyses for

Scheme 3. Preparation of the alkyne ester 3.
Scheme 4. Sonogashira cross-coupling reaction and Z-selective hydrogena-
tion to complete the synthesis of RvD2n-3 DPA methyl ester (2).
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structural elucidation and configurational assignments are not
possible, since their biosynthetic formation yields nano- to
picogram amounts.[9a] As previously reported, SPMs are chemi-
cally labile compounds.[28] Hence, hydrolysis of the methyl ester
2 to the free acid 1 was performed just prior to the LC-MS/MS
experiments,[5] since the E,Z,E,E-tetraene in SPMs easily undergo
conversion to other geometrical isomers.[1]

Injection of biological material obtained from human
peripheral blood and mouse infectious exudate with synthetic
materials gave a single sharp peak (RT=11.5 min). Co-elution of
the synthetic material with biological material was further
corroborated by co-injecting the synthetic material with bio-
logical material (see Figure 3). In addition, the UV-spectrum of 1
(λmax (EtOH)=301 nm, shoulders at 288 and 315 nm, Figure S-1,
Supporting Information), is in agreement with earlier reported
data of RvD2n-3 DPA (1)[5] and RvD2.[7,14]

Additionally, the MS/MS spectra of biologically and syntheti-
cally produced material of 1 (Figure S-2, Supporting Informa-
tion), confirmed that the synthetically produced compound
matched the data of the biogenic material. Key diagnostic
fragments were identified in MS/MS spectra from biological and
synthetic material, including m/z 143, 197, 233 and 249
(Figure S-2, Supporting Information).

In order to investigate the biological properties of the
synthetic material, murine macrophages were differentiated
from bone marrows in vitro. Macrophages were incubated with
either vehicle or RvD2n-3 DPA (1) for 15 minutes before adding
pHrodo-labelled Staphylococcus aureus or zymosan A biopar-
ticles, as previously described.[29] Here we observed that

synthetic RvD2n-3 DPA (1) potently increased the uptake of both S.
aureus (Figure 4 A–B) and zymosan A bioparticles (Figure 4 C–D)
in a dose dependent matter. S. aureus is a bacterium commonly
located on the skin and mucosa of healthy individuals that can
cause serious infections if in contact with internal tissues or by
dissemination through the bloodstream.[29] Zymosan A is a
macromolecule derived from the yeast wall of Saccharomyces
cerevisiae, commonly used to induce sterile inflammation. Our
findings demonstrate that RvD2n-3 DPA (1) not only promotes the
uptake of bacterial and fungal particles, but also their
degradation since the dye employed is a pH-sensitive dye and
thus indicates that this mediator also promotes the phagolyso-
some acidification, a key step in microbial killing. Clearing of
such pathogens and inflammatory molecules by tissue-infiltrat-
ing macrophages is a fundamental step in the resolution of
inflammation that, when impaired, can lead to increased tissue
damage and systemic inflammation.[29] Notably, SPMs have
been demonstrated to effectively increase the clearance of
pathogens in several inflammatory settings.[30,31]

Conclusion

In summary, the first total synthesis of the methyl ester 2 of the
specialized pro-resolving mediator RvD2n-3 DPA (1) has been
stereoselectively obtained in 13% overall yield over 12 steps
(longest linear sequence). The synthesis featured the rarely
used synthetic method of Z-selective alkyne hydrogenation
using potassium cyanide and zinc. Our synthesis differs
significantly to earlier reported synthesis of the congener
RvD2,[14,15] and produced multi milligrams of 2. The stereo-

Figure 3. Synthetic RvD2n-3 DPA (1) elutes at the same retention time as
endogenous RvD2n-3 DPA (1) in human serum and mouse inflammatory
exudates. (A) Human serum was obtained from commercial sources and (B)
inflammatory exudates were collected from mice 2 h after inoculation of E.
coli (105 CFU) via peritoneal lavage. Results are from n=3 determinations for
A and n=4 mice for B. See Supporting Information for details.

Figure 4. RvD2n-3 DPA (1) increases bone marrow-derived macrophages uptake
of S. aureus and zymosan A bioparticles. Results in A and C are expressed as
change in signal intensity recorded at baseline (0 min), (mean � s.e.m.,
N=3). Results in B and D are expressed as AUC values (mean � s.e.m., N=3).
See Supporting Information for details.
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selective synthesis of RvD2n-3 DPA (1) and data from LC-MS/MS
matching experiments enabled the configurational assignment
of this oxygenated natural product as
(7S,8E,10Z,12E,14E,16R,17S,19Z)-7,16,17-trihydroxydocosa-
8,10,12,14,19-pentaenoic acid. In addition, using synthetic
material of 1 in the 0.01 to 10 nM range, experiments showed
that 1 potently increases bone marrow-derived macrophage
uptake of S. aureus and zymosan A bioparticles. Such bioactions
are of interest towards developing new immunoresolvents[8,30,31]

targeting development of new anti-bacterial drugs.[32]
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