UNIVERSITY OF OSLO
Department of Informatics

Temporal Data:
Time and
Relational
Databases

Bjorn Skjellaug

Research Report 246

ISBN 82-7368-161-0
ISSN 0806-3036

April 1997







Temporal Data: Time and Object Databases

Bjgrn Skjellaug!
Institutt for informatikk
Universitetet i Oslo

P.O.Box 1080 Blindern, 0316 Oslo, Norway

bjornsk@ifi.uio.no

http://www.ifi.uio.no/ bjornsk/

Research Report 246
ISBN 82-7368-161-0

April 1997

"The author is also part time at Department of Distributed Information Systems,
SINTEF Telecom and Informatics, Oslo.






Contents

1 Introduction
1.1 ‘What, then, is time?” . . . . . . ... ... ... L.
1.2 Time and databases . . .. ... .. ... ... ........
1.3 About this Report . . . .. . ... ... .. ... ...
1.3.1 Report Structure . . . . . . ... ...
1.3.2 Acknowledgments. . . . . .. ... ... ...

2 Temporal Data — Basics

2.1 Perception and Construction of Time . . . . . .. ... ....
2.2 Some basic definitions . . . . .. ... 0oL
2.3 Time Dimensions and Definitions . . . . . . ... ... .. ..
2.3.1 ValidTime . . ... ... .. .. ... ... ......

2.3.2 Transaction Time . . . . . . ... ... ... ......

2.3.3 Bi- and Multi-Temporal Dimensions . . . .. .. ...

2.3.4 NOW and other variables . . . . ... .. .. .....

2.3.4.1 Variables and Semantics . . . . ... ... ..

2.3.4.2 Formal Issues on Variables . . ... ... ..

SR W N =

O 00 0 O U Ot

2.3.4.3 Databases — Application of Variables . . . .

Time and the Relational Model

3.1 Introduction . . . .. . ... ... ...
3.2 The Conventional Relational Model . . . . . . . ... ...
3.3 Approaches to Support Time . . . ... ... ... ....
3.3.1 Temporal Extensional Support . . .. . ... ...
3.3.2 Temporal Intentional Support . . . . . . ... ...

3.4 Userdefined time . . . .. . ... .. ... ...
3.4.1 Adding Data Types . ... ... ... .. .....
3.4.2 Adding a ‘Temporal’ Layer . .. ... . ... ...
3.4.3 Use of a Conventional System . . . .. . ... ...

3.5 Tuple timestamping . . . . . .. .. ... ...
3.5.1 Basic Approaches . . . . . . ... oL
3.5.2 Event-based models . . ... ............
3.5.2.1 Aravismodel . . . ...

14



il

CONTENTS

3.5.3 Interval-event based models . . . .. . ... ... ... 24
3.5.3.1 Jensen’s Model . . . . ... ... L. 24

3.5.4 Interval-based models . . ... ... ... ... ... 25
3.5.4.1 Snodgrass’model . . . ... ... L. 26

3.5.4.2 BenZvi'smodel ... ... ... ...... 26

3.5.5 First Normal Form and Object Identity . . ... ... 27

3.6 Attribute timestamping . . . . . ... .. oL 27
3.6.1 Basic Approaches . . . . . . ... o o 0oL 28
3.6.2 Transaction-time Indexed Models . . . . . ... ... 28
3.6.2.1 McKenzie’s Model . . . ... ... ... ... 28

3.6.3 Bi-Temporal Multi-Value Models . . . ... ... ... 29
3.6.3.1 Gadia and Yeung’s Model . . . . . ... ... 29

3.6.4 Valid-Time Multi-Value Models . . . . . .. ... ... 30
3.6.4.1 Gadia’s Model . . .. ... ... ... .. 30

3.6.4.2 Tansel’'s Model . . ... ... ... ...... 30

3.6.4.3 Clifford and Croker’s Model . . . . . . .. .. 31

3.6.5 Non-First Normal Form and Object Identity . . . . . . 31

3.7 Query Language . . ... ... .. ... ... ... 32
3.7.1 Introduction. . . . .. . ... o 32
3.7.2 Time Reference in Queries . . . . . . . ... ... ... 33
3.7.3 Definitions and other Properties . . . ... ... ... 34
3.7.4 Temporal Algebras - Their Objects and Operators . . 35
3.74.1 Objects . . .. . ... L o 35

3.74.2 Operators . . . . ... ... 35

3.7.4.3 Conventional vs Temporal Queries . . . . . . 37

3.7.4.4 Optimization and Efficiency . . . . ... ... 39

3.7.5 Uniform Data Access . . . . .. ... . ... ... ... 39
3.7.6 Point- or Interval-based Query Languages . . .. . .. 40

4 Summary 43

Bibliography 45



Chapter 1

Introduction

What, then, is time? T know well enough what it is, provided that nobody asks

me; but if | am asked what it is and try to explain, I am baffled.

Saint Augustine in the ‘Confessions’,

Book XI, Section 14. [7, page 36].

Most computerized information systems are formed from general purpose
components, such as databases, GUIls, etc. Whenever properties of, and
operations on, these components are generic they are in principle reusable
for different purposes and in different contexts. Time and time support may
also be regarded as a generic information system component. In fact, most
applications have requirements that involve dynamics, and a time-varying
nature of both data and processes used by these applications. Temporal
databases are means to capture some aspects of the required time support,
and are mainly used to manage historic data, present data, and predictive
data within the same framework and model. To be more specific, in our
context time acts as an intrinsic part of objects denoting when these objects
are defined related to the built-in time dimension(s) support of the system.
A common name of such objects is temporal objects, i.e., objects capturing,
besides other properties, time and time dependencies of their values, e.g. an
address history of a person.

1.1 ‘What, then, is time?’

Time has been a topic of philosophical and natural scientific study since the
ancient Greeks (including Plato, Aristotle, and Diodorus Cronus), through
Saint Augustine in the Middle Ages and many later Medieval logicians, to
Newtonian physics, Einstein’s theory of relativity, and on to present [49]. In
the second half of our century logicians, computer scientists, and others have



2 CHAPTER 1. INTRODUCTION

showed significant interest in the task of understanding time in both more
formalized, linguistic, mathematical, and technical terms.

The material presented in this report is founded on the above results, in
particular, and not surprisingly, mainly of those results utilized and devel-
oped by computer scientists.

Time is a human construct. Although it is useful for describing and
prescribing changes to the systems and objects under study, as we will see
later on, time is in the day to day life most often understood as something
which is ever increasing, or is continuously moving in one direction — into the
future. This perception of time is more (or only) reflecting human memory.
That is, we are able of memorizing the past, e.g. as facts and experiences,
but we know nothing about a given time in the future. Still, we may have
expectations for and predictions about the future. But, it is only when we
reach that time in the future, which in the past was a future time, we can
say anything, for example, about the validness of our predictions at the time
when the predictions were first stated.

Another model presented by Rucker [57] incorporates time and space into
a 4-dimensional space where all “points” are predefined. In such a model we
are not “moving” in any specific directions; humans and things are objects
defined within the hyperspace. Hence, each 4D object is always showing us
when and where we were, are, and (possibly) will be. So, both past, present
and future exist simultaneously. Although some points may be regarded as
“facts” and others are “predictions”, we are within that hyperspace all the
time — “going” nowhere — because all entities are defined by their extent in
this 4D-space. Rucker elaborates on this 4D view most elegantly in his book:
“Geometry, relativity and the fourth dimension” [57].

1.2 Time and databases

In this report we are aiming at an understanding of time as an integral part
of properties of data objects. Basically this reduces to understand how prop-
erties (or objects) change and behave over time. A common name of such
objects is temporal objects, i.e., objects denoting, besides other properties,
time and time dependencies. There are different “times”, and different no-
tions of time for data management may denote whether phenomena in reality
are regarded as events, facts, or processes.

An intuitive interpretation of time objects in a system would be to let
events be represented by time points, facts by time periods (or intervals)
and processes with time functions. Why these interpretations? To follow
this more or less common sense notion of time a bit further: An event is
often taken as happening at a time instant, i.e., a point in time with no
duration. A fact is a truth about some static aspects of reality but does not
last for ever, i.e. a valid-time period defining when the fact was, is, or is



1.3. ABOUT THIS REPORT 3

believed to be defined (i.e., valid) in reality. A process like an event denotes
or refers to a dynamic aspect of reality, and which, unlike an event, does
have a duration. Thus, a process may be a function describing some “cyclic”
or repeating behavior like a tide or a continuous behavior like an expanding
desert or disease. A process and a fact may for example be defined to last
forever, or until terminated or changed, respectively.

We will primarily treat time related to facts because our concern is tem-
poral data and how such data could be used to integrate facts of different
kind and/or of different databases. We easily see that if an object changes its
value(s) this is in the first place caused by an external/real event triggering
some action to do the change (e.g. database update operation). The event
itself may have been initiated by a process object. So in a overall setting
objects of facts, events and processes are inter-linked. We deal only with the
former of these objects, i.e., data management of facts, but will treat the
other two whenever they relate to issues discussed.

We also present time and temporal data in a broader sense than is usu-
ally the case with temporal databases. We define the notions of schema
versioning/evolution, object versioning and configuration management to be
part of a broad scope of temporal data. Definitions and examples of these
notions are given and we show how they are related to times such as valid
times and transaction times, respectively.

For definitions of concepts and glossaries related to temporal databases
see Jensen et al. [31].

1.3 About this Report

This report is one out of two reports describing the approaches, proposals
and other issues within the field of temporal database research. This report
deals with temporal relational databases, and the other deals with temporal
object-oriented databases [61]. The reports give a survey of their respec-
tive subfields, and they classify the proposed models according to structural
characteristics and present representatives of every class in more detail. How-
ever, equally important is that the fundamental concepts defined by the field
is presented, therefore, this introduction chapter and the next chapter are
included in both reports to give all potential readers an introduction and
hopefully a sound understanding of the fundamental temporal concepts as
defined and utilized within the temporal database field.

After fifteen years of active research in the field of temporal databases,
about 800 papers published, the first international workshop was held in
Arlington, Texas, 1993 [62, 51]. This workshop showed the diversity of issues
and topics covered by the field, and the same tendency is documented by the
follow-up workshop held in Zurich, Switzerland, 1995 [16, 60]. We are not
aiming at covering all the research related to temporal database, and will,



4 CHAPTER 1. INTRODUCTION

of course, only refer to those research publications that are relevant for our
purpose. The reader who are interested in temporal database bibliographies
is referred to Tsotras and Kumar’s bibliography [70], and also the electronic
bibliography, authored by Kline, containing nearly 1100 entries as of January
1996 [35].

1.3.1 Report Structure

In Chapter 2 we presents some basic concepts that are generic to most tem-
poral database models. Chapter 3 presents a survey of temporal relational
databases, i.e. models and languages, with a classification of the different
approaches presented in the literature. We end this report with a short
summary in Chapter 4.

1.3.2 Acknowledgments

I would like to thank Amela Karahasanovic, Ragnar Normann and Dag
Sjgberg for comments and suggestions to a previous version of this report.

This research was supported by the Norwegian Research Council through
grant MOI.31297.



Chapter 2

Temporal Data — Basics

In this chapter we introduce some generic properties and definitions which
are relevant in most settings dealing with temporal data.

2.1 Perception and Construction of Time

A philosophical view of time will probably pin point that an event is not
(or necessarily not) an instant of or point in time, and could never be an
instant of time because an event happens and something that happens has
to have some sort of duration. Otherwise, it would not happen. In natural
languages the term event is (in an informal sense) a homonym because it may
denote the implicit semantics of time differently: 1) ‘the concert was quite
an event’, e.g. meaning an experienced duration of joy and pleasure, and
2) ‘at the event he sat down he had a stroke’, e.g. meaning that something
happened at a sudden (or an instant).

So, what is an instant of or point in time? In life and thought we often
regard time as continuous say like a river. Thus, a point in time is non-
existing or is not an appropriate notion if we want to grasp what continuous
time is. However, a point in time is a (mathematical) construct and a notion
that gives a sufficient structure of time when it comes to formal reasoning,
data management, etc.

With proper models and operations we may sufficiently approximate or
describe phenomena by computer systems by time points or other constructs
derived from time points, e.g. intervals and periods. Euclidean geometry
does the same with natural spatial primitives like for example an extended
body that could be approximated by means of theoretical notions like points
and lines. That is, the notion of extended body is described in terms of points
and lines. See van Benthem [7, chapter I.1] for a more in depth presentation
of the above problems, including a discussion of “The Fleeting Now”.



6 CHAPTER 2. TEMPORAL DATA — BASICS

2.2 Some basic definitions

Before presenting the different subjects and issues raised and discussed we
will clarify some concepts which are used throughout the text (and without
any further explanations if not the context defines them separately or relates
them to more specific structures). The term temporal data means the concept
where data or say an object is defined to have some time related information
associated with it, e.g. a “built-in” timestamp!. For example, in a person
object with an property attribute address, and whenever the person changes
his/her address the new address value is timestamped. More important,
though, is that the previous address values are still accessible, in the sense
that an application (or user) may retrieve the whole or a part of the address
history of a person. Thus, an address contains both the current and previous
addresses (and possibly a future address), as well as the time information
associated with each address value. Hence, by means of a temporal data
model we may get an integrated knowledge of both where a person lived and
when this was. The time (or periods) when a person has addresses is called
the lifespan of the address object (see below). The relationship between
facts, e.g. a person’s addresses, and times is shown in Figure 2.1.

current
facts

historic facts l predicted facts
»-time

now

Person’s - - -
Addresses |Addr.|—1 | | Addr. i |Addr. i+l

Figure 2.1: Facts and Times

The time information may be given different semantics depending on
the time dimensions a particular system supports. For example, temporal
database models usually define one or two of the following time dimensions:
the valid-time dimension (see Section 2.3.1) supports information on when
a fact was, is, or is believed to be valid (true) in reality, on the other hand
the transaction-time dimension (see Section 2.3.2) supports information on
when a fact was or is stored/current in the database. The transaction-
time dimension has always its upper bound set to the (moving) time now
and its lower bound is always set to the time when the system was first
in operation, i.e., the time when the database was created. Whereas the

LA timestamp is a time value (point in time, time period, or time interval) associated
with an object [31]. It is the key time representation in temporal databases. But, qual-
itatively different timestamps represent different notions of time. Hence, an object may
have several orthogonal timestamps.



2.2. SOME BASIC DEFINITIONS 7

valid-time dimension’s upper and lower bounds are set by the application,
such bounds for the transaction-time are independent of applications. These
two dimensions constitute an object’s “real world” history and registration
history respectively. In addition several database systems support primitive
data types such as DATE, TIME, DATE-TIME, which are used to model
what is called user-defined time, and its semantics is defined and only known
by the application. For example, an object of type DATE is used to model
the property of a person’s date of birth, whereas a valid-time timestamp
on that persons address property is used to handle the different times a
person is associated with different addresses in the modeled reality. Thus, the
built-in semantics of valid-time and transaction-time bound objects to the
respective dimensions. That is, a time dimension provides more information
of being only a value domain, i.e., a time related order of an objects values
is maintained and this ordering is utilized, for example, by query processing.

Our concern is valid- and transaction-times and modeling their seman-
tics as part of the database, and not only as structures and semantics of
one particular application. Although valid and transaction-times are or-
thogonal temporal concepts there exist several applications where these two
dimensions collapse into one dimension. Many (if not all) real-time database
(RTDB) applications have this characteristic. For example, in a cash-line
application a bank account is the temporal object of interest. A customer’s
withdrawal of an amount of money from his/her account means that the reg-
istration of this database transactions happens (approximately) at the same
(instant of ) time as the customers account is changed in reality, i.e. the time
when the real money is withdrawn from the account and the time when this
withdrawal is registered coincide, and only one (say valid-transaction-)time
dimension may suffice for recording both times. Such an database is called
degenerated if both valid- and transactions times are captured by one time
value [32]. On the other hand when using an ordinary check the times when
money is spent and when usage is registered, respectively, could vary form
days to weeks, i.e., the valid-time (when spent) and transaction-time (when
registered) do not coincide.

Further, a temporal data object is said to have a lifespan, and the time
periods or intervals constituting the lifespan are not necessary contiguous.
In the address example above, there could be a period when a person does
not have a known address. Hence, the address object for this person was not
defined for this period of time. Thus, the person had no address (or possibly
an unknown address) for a period of time, e.g. see the “gap” between the
address values i-1 and i in Figure 2.1. So, the lifespan captures the time
when an object is defined. That is, a valid-time lifespan is the time when
the object is defined to exist in the modeled reality. On the other hand a
transaction-time lifespan is the time when the object is defined to be current
and accessible in the database [68, page 625].

We have referred to the concepts point in time and instant as synonyms.



8 CHAPTER 2. TEMPORAL DATA — BASICS

Another important concept is chronon. A chronon, which is the shortest du-
ration of time supported, for example, by a database is a non-decomposable
unit of time or the smallest granule of time. Based on the notion of a chronon
a time period is a set of (total) ordered time values, of which each is sepa-
rated by a chronon. If a time dimension is discrete and linear the concepts
of point in time, time period, and time interval are equivalent constructs for
representing time [7]. Although this is true for the semantics of time, one
construct may be preferred because applications interpret these semantics in
context of the modeled reality. We return to this issue in a later chapter.
In most temporal models the chosen time dimension is discrete [42, 50], and
therefore it is isomorphic to (some subset of) the integers, or isomorphic to
(some subset of) the natural numbers when it has an exact lower bound.

2.3 Time Dimensions and Definitions

Time dimensions are (usually) classified into valid-time and transaction-time
dimensions. Both dimensions can be defined separately, and, hence, they are
orthogonal.

2.3.1 Valid Time

The valid-time dimension supports not only management of histories and
current data, but also planned or predicted data. Histories are data defined
for previous times compared to the time now. Current data are data valid
at the time now (i.e., present time), as opposed to predictive data which is
data believed to be valid in the future. Figure 2.2 illustrates these proper-
ties of valid-time data. Thus, valid-time of some fact is the time when the
fact was/is (believed to be) true in reality. Thus, a fact may have several
instances, each with an associated timestamp recording changes of that fact

31].

Obj ect t1 t2 t3 t4 l t5 time t
sal ary: " -

15000 17000 19000 25000

Figure 2.2: Valid-Time Data

Figure 2.2 shows an object salary. It could be an object recording the
salary evolution of an employee of a company or a general salary object
defining the salary of a particular professional category of a company, e.g.
an assistant researcher, an engineer. Despite the difference in possible inter-
pretation of the actual object say by an employee or a professional category
application, the temporal semantics of this object remain the same. That is,



2.3. TIME DIMENSIONS AND DEFINITIONS 9

the object salary had from time ¢; to time ¢ a value of 15000, from time %o
to time t3 a value of 17000 and so on. Some interesting facts are also stored
or are part of the semantics of the temporal object salary.

Firstly, between times t3 and ¢4 no value was recorded. We say that
the object was not valid (or undefined) during that period. For the fore-
mentioned applications this could be interpreted as follows: 1) the actual
employee in question had no salary (or even more likely s/he was not an
employee) during that period, 2) the company had not a fixed salary for this
professional category (or the professional categories did not exist) during
that period.

The second interesting fact says something of what is planned or what is
believed to be true (or be a fact) in reality, namely that the salary will be
raised from 19000 to 25000 at time t5 and will be fixed until some uncertain
(unknown) time in the future. This could be interpreted by an application
along the line of the employee and professional category examples above.

And last; the time now is in our example currently between times ¢4
and t5. We will discuss the issue concerning now and other variables in
Section 2.3.4.

We have presented some of the goodies of a valid-time database, and
given several examples of the semantics captured with this approach. A
nice property with valid-time is that its basic semantics are independent of
applications and their interpretations of the data. Thus, the basic tempo-
ral semantics are only managed by the built-in valid-time support of the
database. This is true even when the valid times are usually given by the
user. Hence, we distinguish on one side what valid-time is, and on the other
for what it is used (or how it is used) by a user. The former concerns the
database semantics the latter concerns some specific application’s interpre-
tation of it.

Below we discuss the transaction-time support where both semantics
and usage are given and controlled by the database system. Valid- and
transaction-times support increases the data independence of databases from
applications. This aspect is the main technical argument for extending a
database model to a temporal database model.

2.3.2 Transaction Time

The other time support in temporal databases is the so-called transaction-
time. A transaction-time timestamp registers the time when an object (or
say a fact) is current in the database, and may be retrieved [31]. As with
valid-time a fact may have several value instances and timestamps associated
with it. Although transaction-time never exceeds the current transaction-
time (or time now) a fact has also associated with it transaction timestamps
for predicted valid-time data when both time dimensions are supported by
the database.



10 CHAPTER 2. TEMPORAL DATA — BASICS

now

t1 t2 t3 t|4 IIS

I 1 I o Valid
T time t
) 15000 17000 19000 25000
Object
salary: 19000
15000 17000 25000
T T T By Transacti on
K1 k2 k3 k41 time k
k5

now

Figure 2.3: Transaction-Time Data

Figure 2.3 shows how the instances of the fact salary are associated with
transaction timestamps. At time k; the salary value 15000 was first recorded
in the database. And it was current in the database until transaction-time
ke. At transaction-time k3 the fact was logically deleted but restored at
transactions-time k, with the new value 19000. At the same time there is
another transaction-time ks (equal to k4) which records that the fact has
value 25000, but not valid before t5. Both values are current until the time
now, which is always an upper-bound constraint on transaction timestamps.
With transaction-time alone this information makes no sense besides saying
something about when a particular value was stored. However, together
with the valid-time support it will be interpreted as that both the current
salary of 19000 and the planned/predictive salary of 25000 were recorded
in the database within the same transaction or by concurrent transactions,
respectively, but at the same time. This makes of course sense for both the
employee and professional category applications above.

Transaction-times associated with facts have a property or restriction
not shared with valid-times. That is, they are not to be altered when first
stored. Put differently, we cannot change what already has happened, i.e., at
previous transaction times. The transaction-times are in an one-to-one cor-
respondence with the actual database transactions or operations performed,
i.e., they register the modifications activities of the database.

2.3.3 Bi- and Multi-Temporal Dimensions

If a database captures both valid-time and transaction-time, we will have
the relation shown in Table 2.1. This relation is the representation of the
object salary shown in Figure 2.3. For convenience and hopefully to make
the illustration more intuitive we think of this relation recording the salary of
a professional category, and all symbolic times, ¢; and k;, are replaced with
month-year timestamps, still, representing a similar information as above.
A database that supports both valid- and transaction-times is called a
Bi-temporal Database [18]. In principle there are no limitations of how many
time dimensions a database may support, and multi-temporal databases are
in fact possible. In other words the 2D time associated with database facts



2.3. TIME DIMENSIONS AND DEFINITIONS 11

Salary || Valid-Time | Trans-Time
15000 || Jan88 Dec89 | Apr88  wuc’
17000 Jan90 Mar92 | Mar90 uc
19000 Sep94  Dec97 | Oct94 uc
25000 Jan98 oo | Oct94 uc

Table 2.1: Object Salary represented as bi-temporal data

in Table 2.1 could easily be extended to capture n dimensions.

Jensen and Snodgrass present application scenarios of multi-temporal
databases [32]. The multiple dimensions are based on a taxonomy where a
valid timestamp is defined relatively to transaction timestamps. For exam-
ple, a valid timestamp is restricted not only to one but several transaction
timestamps, say when data is defined and stored both locally and globally
by several databases. For one valid time there may be several transaction
times and these times have restriction imposed on them. All such restrictions
could be defined in a schema. A generalization of the multi-temporal nature
of [32] is provided by STSQL, a spatio-temporal extension to SQL-92 [8].
In STSQL both multiple valid-times and transactions-times may be defined
for a table. That is, multiple valid-time dimensions are associated with an
object, where each dimension either denote a separate temporal aspect of
an object or a possible world of an object. For example, if we have tasks
to be planned and scheduled, one valid timestamp may denote the aspect of
when the data stored about a task is true in reality, whereas another valid
timestamp may denote the aspect of when the task itself should be executed,
i.e., when it is scheduled. If we have possible world semantics, a third valid
timestamp would possibly denote an other time when the task should be
scheduled, because this time is estimated with some other parameters.

The value-added property of having bi- or multi-temporal relations is
that these dimensions capture inter-dimensional semantics which are impor-
tant for deducing information about the facts stored in the database. It
requires, of course, that if such inter-dimensional semantics exist (i.e., their
relationships are expressible), each dimension has to be identical, equiva-
lent or compatible with some underlying notions of time. For example, the
relation in Table 2.2 illustrates some of the relationships.

The second of Paul’s rows, in Table 2.2, represents a so-called pro-active
change of the database stating in December 1990 (start of trans-time) that
Paul will be “re-hired” as an assistant from March 1991 (start of valid-time),
i.e., the fact is stored before it is expected to be valid in reality. Paul’s
has a retro-active change of its position (row 4), i.e., in December 1991
the database registers that Paul was an engineer from August the same
year. At this time it is also known that the information that Paul was an
assistant until November 1991, in fact, was misleading information current



12 CHAPTER 2. TEMPORAL DATA — BASICS

| name | department | position || Valid-Time | Trans-Time |
Paul design assistant || Jan90 Sep90 | Feb90 uc
Paul design assistant || Mar91  Nov9l | Dec90 Dec91
Paul design assistant || Mar91 May91 | Dec91 uc
Paul design engineer || Aug9l uc | Dec91 uc
Mary design manager || Jan90 Feb91 | Jan90 uc
Mary HQ AD Dec90 Dec93 | Feb91 uc

Table 2.2: Bi-temporal Employee Data

in the database until December 1991 (row 3), i.e., Paul was an assistant
only until May 1991. That is, all data retrieved before December 1991 may
have resulted in inaccurate information. To restore a consistent database
regarding Paul’s position the following is done: The second row is logically
deleted from the relation marked with a deletion time as the upper limit of
the transaction timestamp. The information (as best known of December
1991) when Paul was an assistant this year is shown by the third row. The
following row captures the present information that Paul is an engineer,
and has been so since August 1991. Note that Paul was not an employee
during the periods of October 1990 until February 1991, and in June and
July of 1991, or Paul had no known position in the company during these
two periods.

In the first of Mary’s rows the two times coincide for her being a manager,
i.e., the database and the reality modeled by it are synchronous in some sense
on the fact that Mary was a manager during that period. The last row,
together with the previous one, shows that during a specific period Mary
held two positions in the company, i.e. from December 1990 until February
1991 Mary was both a manager and an AD.

There are a number of relationships between time dimensions such as
those mentioned above. See Jensen and Snodgrass’s discussion and taxon-
omy on temporal specialization and generalization for a more exhaustive
presentation of this issue [32].

2.3.4 NOW and other variables

The time now, as defined by [15] and [24], in our example in Figure 2.2 is
currently between times t4 and t5. A function with domain time could re-
turn the salary of the object at a particular time-value. In particular, the
function now will always return the current salary of the object. Notice
that the notion of now, and its like, makes temporal databases becoming
variable databases. That is, we may store a salary say 10000 with a times-
tamp [t;, now] as a variable temporal object (not shown in Figure 2.2 and
Table 2.1). However, now is a (continuously) moving target, so whenever
now changes the timestamp changes and then the temporal interpretation



2.3. TIME DIMENSIONS AND DEFINITIONS 13

of the object changes. The same applies for queries: “what s Mary’s posi-
tion now”, which obviously would give different answers when now varies.
In contrast, what is Mary’s position as of May 1992 always yield the same
answer.

Thus, it is a semantic difference between models supporting only fixed
timestamp(s) and those who support variable timestamp(s). It could be
thought of as a difference between extensional and intensional models as
Clifford and Isakowitz point out, but without overloading these terms they
named them variable databases [18].

2.3.4.1 Variables and Semantics

Alternatives and supplements for now are variables such as uc — until changed
- [72], and distinguished individuals such as oo® [63]. They all denote differ-
ent semantics, but we will not discuss these issues here. However, it should
be apparent that now, uc, and oo by their names denote different semantics.

Although such variables may be intuitively understood and used for the
same purpose in different contexts/applications (and in fact they are used
that way), we need a formal model to define them precisely. So, if the vari-
able semantics managed by the database are unambiguous at the database
level, the interpretation of what a variable denotes in a specific context is a
transformation based on the database semantics but done by an application
only.

For example, a personnel application and a project application would
most presumably interpret the data of Table 2.2 differently because they
operate in different contexts. A personnel “user” could interpret the data
about Paul being an engineer (i.e. the variable uc) that he is still an em-
ployee. On the other hand a project “user” could interpret uc that he is a
suitable candidate for a project. The semantics of uc are the same in both
cases, but it gives rise to different information.

An interesting discussion on the issues concerning temporal variable databases
and their semantics is found in [18].

2.3.4.2 Formal Issues on Variables

The function of now have been studied in several fields, for example in logic
and philosophy. The pioneering work of A.N. Prior on time, modality and
logic in the 1950’s [53] and onwards [52] laid the ground for the formal study
of now. Kamp gives a formal discussion and analysis of the English word
now [34]. He studied now-calculi — £L(N) — and their semantics in which now
is an operator, and, hence, not a distinct individual. Not to be too technical,
though, Kamp’s main result is on completeness of the £(N)’s axiom sets;

ntuitively forever is the same as, and is also used as a synonym for, the distinguished
individual oo.



14 CHAPTER 2. TEMPORAL DATA — BASICS

Such an axiom set is said to be semantically complete if a “same” calculus —
L — without the now-operator has a semantically complete axiom set, and
if £(N)’s axiom set is “closely” related to L’s axiom set. This is obtained
easily in the propositional case, where every formula containing now in £(N)
is proven equivalent to a formula not containing now in L. For the predicate
calculi the results are stated to be less general because (some) formulae of
predicate calculi may not have any equivalent formulae without now. Hence,
the completeness has to be proved by other means in this case.

Both Rescher and Urquhart [54, pages 35-37], and van Benthem [7, pages
6—7] have another interesting observation concerning the matter of now and
temporal structures. The observation is by van Benthem stated as a “global
property of temporal structures”. The property is called ‘homogeneity’ and
its definition imposes that all temporal individuals are formally indistin-
guishable. van Benthem requires no ontological difference between any time
value t; and for instance the time now. He argues that because the role
of a/any point in time (e.g. now) can be played by any temporal individ-
ual, so when formalizing temporality the only interesting notions are those
that are interesting in the general case. It seems to us that both Rescher
and Urquhart, and van Benthem see in certain situations the necessity of
a separate notion of for example now. Thus we interpret them such that
distinguished individuals and their semantics have only interest in a context
of an application domain, i.e., where a specific emphasis on such variables
and distinguished individuals is required.

2.3.4.3 Databases — Application of Variables

We regard databases as a representative of an application domain of now and
other distinguished individuals where it is crucial to define the semantics of
such notions precisely. The term individual is somewhat loosely used here,
what it really means is that it is a function value. The importance of a
formal semantic is that a database has to respond unambiguously on the
meaning of any access to (temporal) data. So, for now and other variables,
the meaning of them should be uniformly and unambiguously for all access
of the database. The database aspects of now are treated by Clifford et al.
mostly relative to the temporal relational model [13]. The same authors have
in particular discussed these issues in context of TSQL2 [14].



Chapter 3

Time and the Relational Model

3.1 Introduction

This chapter present the temporal relational model and its query language
(QL) features. There has been an extensive research activity on relational
temporal models and query languages over the past ten to fifteen years. The
models and solutions proposed in the literature are based on adding time
to the relational model, and extending the query languages, algebras and
calculi.

Ozsoyoglu and Snodgrass present several published relational models and
query languages, and their characteristics in a survey on temporal and real-
time databases [50]. We will not present such models in full detail, but
concentrate on the principles, i.e., issues and definitions, and give a repre-
sentative examples of proposed models and their languages covering several
approaches of incorporating time and temporal support.

3.2 The Conventional Relational Model

Codd’s conventional relational model, [19], is a snapshot model, it doesn’t
take into account the time varying nature of reality, and it supports only
one database state — the (assumed) current state, i.e., as best known now.
Codd’s model defines relations which are, in a mathematical and set-theoretic
sense, defined as the Cartesian products over (value) domains, D;. The
mathematical notion of a relation is underlying Codd’s notion of a relation.
The more pragmatic concept of a relation is defined by a relation scheme R,
which is a finite set of ordered attributes names, A4;, i.e., R = (A1, Aa, ..., Ay).

We can view a snapshot relation instance r(R) (read as r is an instance
of schema R) as a table where each row in r is an n-tuple value, (a1, ..., an).
On the other hand each column corresponds to an attribute name, A;, with
an associated data type, e.g. an integer or string data type. A data type
corresponds to the mathematical notion of a domain, and a column name,

15



16 CHAPTER 3. TIME AND THE RELATIONAL MODEL

A;, in a table denotes a finite set of attributes values, a;, of the associated
data type.

Put differently, a tuple is a set of ordered name-value pairs (A4;, d;), i.e.,
each element of the tuple maps an attribute name, A;, onto its corresponding
value, d; € D;. Accordingly, a relation instance, r(R), is defined as follows:

r(R) € {(dy, ..., dn)[(d1 € Dy, ..., dn € Dp}

The model defined by Codd is also the starting point for extending
the relational model to a temporal model, where a relation scheme, R =
(Ay, Ag, ..., Ay|T)', has associated a time representation T. The following
presents several definitions and approaches to what the T is and how it is
incorporated into the relational model.

3.3 Approaches to Support Time

In the literature several approaches define time support for different pur-
poses, or they differ in their approaches on supporting logically the same pur-
pose. The two main areas of time support for temporal relational databases
focus on change management for data instances and change management
for database schemata, respectively. We call these two foci for temporal
extensional support and temporal intentional support, respectively.

3.3.1 Temporal Extensional Support

There are three main approaches where extensional time support is incor-
porated with the relational model. The first is to support some notions of
user defined time (i.e., extend the number of simple data types with DATE,
TIME, etc.).

The other two extend the relational model with DBMS built-in times-
tamp support and temporal semantics. One is timestamping tuples, and the
other supports attribute timestamping. Thus, conceptually, they only differ
on the level of timestamping.

Both of the timestamping approaches can have valid- and /or transaction-
time support due to the orthogonality of these two time-dimensions. In the
following we will mainly concentrate on tuple and attribute timestamping.
The user-defined time approach is only given a very brief presentation in
Section 3.4.

3.3.2 Temporal Intentional Support

The three approaches mentioned above only concern the temporal exten-
sional aspects of data and not the temporal intentional ones, i.e., data in-
stance versus schema issues, respectively. We first give a brief idea of the

'This notation of a generic temporal relational scheme is adopted from Jensen et al. [33].



3.3. APPROACHES TO SUPPORT TIME 17

latter. The temporal intentional issues, called schema versioning and/or
schema evolution are often related to the transaction-time dimension where
only the current schema is subject of change. That is, no previous schemata,
and instances defined under them, are affected. This means that the registra-
tion history is not altered, only the current (i.e., the latest defined) schema
and data may change properties. In Figure 3.1 a schema with the type Em-
ployee changes its definitions at times #o and t4, respectively. These changes
also affect the object named John (of type Employee) probably at the same
or some time close to times ¢y and t4, respectively. (For illustration only, the
object John is also modified both at times ¢35 and t5, but, of course, these
modifications do not affect the schema definitions of the object John.)

Schema: Enpl oyee: Enpl oyee: Enpl oyee:
(nane, ADD (city) ADD ( phone)
sal ary) DEL (city)
Transaction

+ y T y T - Tine

tl t2 t3 t4 t5
Object: (John, (John, (John, (John, (John,

! 10000) 10000, 15000, 15000, 17000,
Gsl o) Ber gen) 5 2835) 5 2835)

Figure 3.1: Schema Versioning — Transaction Time

This kind of schema versioning is in line with the definition of transaction
time which is to record the change or transaction history of the database —
one is not allowed to change the past because transaction time is reflect-
ing the time when a database changes its state. For this kind of schema
versioning see for example [20, 41, 55, 56].

On the other hand, by valid-time schema versioning both the current
as well as previous schema versions may be altered and changed. A single
change statement may alter one or multiple versions of the schema, for ex-
ample, the addition of an attribute definition to an object type shown in
Figure 3.2. We use the same example as of Figure 3.1, where the “Schema
before” part in Figure 3.2 illustrates the corresponding valid times of the
schema changes illustrated by Figure 3.1 where . Thus, there are three
schema versions valid at distinct and non-overlapping intervals. However, in
retrospect we “now know” that all employees actually had an employee num-
ber (emp_no) during a certain period of time, say between times k' and £”.
We want to add this fact to the database by a change statement. The fact
spans several of the existing versions of the schema. That is, several versions
are altered by a single statement. The result of this change statement give
rise to five versions versus three before the change statement was issued, see
the “Schema after” part of Figure 3.2.

The benefit of a valid-time schema versioning is that both schema and
data are subjects to change and that the database better captures the facts
as they appear(ed) in reality. That is, intentional changes to a database may



18 CHAPTER 3. TIME AND THE RELATIONAL MODEL

Per son:

Schema Fﬁrarsvg,n: (Q:F:'ry fﬁg\lfrg.n:
. sal ar i ' sal ary, .

before: Y) city) phone) valid

} t t -Ti me

k1 k2 k3
Change statement: Employee: ADD (emp_no) VALID [k’ k"]

Per son: Per son:
. Person: (nane, (name, Per son:
Fﬁrars'gn' (nare, sal ary, sal ary, (nane,
sal ary, enp_no, enp_no, salary,

Sf(;hgma salary) e noj city) phone) phone;’ val i d
aiter: + + + t t p-Ti me

k1 k’ k2 k3 k'

Figure 3.2: Schema Versioning — Valid Time

support both retro-active and pro-active updates by valid-time schema ver-
sioning. In this example we made a retro-active modification affecting several
previous valid-time versions. By only transaction time support the knowl-
edge of updates being either retro-active or pro-active is not maintained by
the database. However, valid-time schema versioning for relational databases
has yet got little attention by the research field. The only proposal known
to us is presented by De Castro et al. [21].

We will not elaborate on the intentional issues any further. Our main
emphasis will be on extensional issues of models and query languages.

3.4 User defined time

User defined time is regarded to be controlled by an application. In this
section we present three ways of “incorporating” time without extending or
changing the semantics of an underlying system with semantics typically
introduced by a temporal system. The first only defines an additional set of
basic time-related data types. The second extends an existing system with
an additional “temporal” layer on top of it. The third is an example on how
temporal data may be stored and accessed by a conventional system.

3.4.1 Adding Data Types

The first and simplest solution is to extend the set of basic data types with
DATE, TIME, DATETIME and INTERVAL with some intrinsic operations,
such as in SQI.-92 [44] and the “pure” SQL3 standard? [45, 46]. However,
the SQL/Temporal part of SQL3 includes proposals for both valid- and
transaction-time support as extensions to the SQL3 standard [65, 64].

2The “pure” SQL3 standard defines a framework and a database language foundation
as a self contained core of the standard. Other, non-mandatory, features are defined as
separate parts of the standard.



3.4. USER DEFINED TIME 19

Several commercial relational systems (RDBMSs) support one or more
of the simple temporal data types. Although time is materialized as simple
data types the systems do not support time in the sense what is meant by
a Temporal DBMS. The handling of temporality and history of data, i.e.,
the time-varying and time-dependent aspects of data, is managed by the
applications and the RDBMS has no built-in semantics for capturing these
aspects of data.

Attempts have been made to incorporate some of the time-varying as-
pects of data into existing non-temporal RDBMSs without redefining the
whole system and /or making versions of the systems too incompatible. Based
on the tradeoffs between the responsibility of a DBMS and that of an ap-
plication some functionality has been added to the DBMS or explored for
the management and access of temporal data as presented in sections 3.4.2
and 3.4.3, respectively. Both rely on the existence of some time data type(s)
of the underlying RDBMS.

3.4.2 Adding a ‘Temporal’ Layer

Vassilakis et al. present in [71] a transaction support® for a temporal ex-
tended RDBMS system. The temporal extension is realized as an additional
layer, called the temporal engine, on top of the Ingres RDBMS. Thus, their
main objective is to develop a transaction support for a temporal DBMS by
utilizing the transaction features of the Ingres DBMS.

Furthermore, they extend the Ingres kernel with a data type DATEIN-
TERVAL and operations on this data type, based on a pair of the DATE
datatype. The temporal model is defined by means of tuple timestamping
for valid-time, and its semantics is managed by the temporal engine. A
timestamp could either by of data type DATE or DATEINTERVAL.

A valid-time relational algebra, termed V'T-AlL, is defined to support an
efficient and temporal consistent data manipulations. The operators of this
algebra is FOLD, UNFOLD, PUNION, PEXCEPT, and NORMALIZE. The
first two of these are the most fundamental, and they are used to map re-
lations between interval- and point-based timestamped representations (See
also Lorentzos and Johnson’s algebra [39] for similar operators). For exam-
ple, when UNFOLD takes as input an interval timestamped relation, it re-
turns a relation where each input tuple is replaced by a set of value-equivalent
tuples* [31], i.e., every tuple in such a set has a point timestamp identical
to a point within the interval timestamp of the original tuple, and any two

Transactions are here regarded as transactions in a traditional database sense, e.g.
according to the ACID properties, and should not be confused with a transaction-time
mechanism in a temporal RDBMS.

*Value-equivalent tuples are tuples where each attribute value of a tuple is equal to the
value of the same attribute of all the other tuples in the set (timestamp values need not
to be value-equivalent).



20 CHAPTER 3. TIME AND THE RELATIONAL MODEL

value-equivalent tuples in the set has distinct point timestamps. FOLD is the
“inverse” operator, for example, value-equivalent timestamped tuples, with
identical or adjacent timestamps are collapsed into one tuple of the result
relation, but FOLD ensures that every result interval timestamp covers all
the time points defined by the timestamps of its operand relation.

The NORMALIZE operators are defined in terms of FOLD and UN-
FOLD, i.e., it is defined identical to first an UNFOLD operation followed by
a FOLD operation. Both PUNION and PEXCEPT are temporal redefini-
tions of their SQL.-89 counterparts. The PUNION is an ordinary UNTON
operator but the result is NORMALIZEd. The PEXCEPT is also an or-
dinary EXCEPT operator but the operands are first UNFOLDed, and the
result is FOLDed.

At the user level SQL-89 is consistently extended both for data defini-
tions and temporal queries, this extension is termed VT-SQL. Both queries
and modification statements are extended with language constructs that cap-
ture the temporal aspects of data manipulated by the user. All temporal
statements issued are pre-processed by the temporal engine before they are
issued to the underlying Ingres DBMS.

The novel approach of this system is the integrated support of database
transactions and temporality. The temporal transaction management layer
(i.e., the temporal engine) uses a combination of allocating user sessions and
system sessions to manage system internal temporary tables and objects
locking, and also manages recovery in this way.

Other examples of the temporal layer approach are given by ATSQL of
Béhlen and Jensen [9] that is a temporal extension to SQIL.-92 implemented
on top of the Oracle DBMS, and the extended relational algebra of Lorentzos
and Johnson [39] implemented on top of Ingres DBMS by means of the Quel
macros.

3.4.3 Use of a Conventional System

Leung and Pirahesh show how to handle time-varying data for both storage
and query evaluation by a DB2 RDBMS for AIX version 2 [38]. Especially
the data type DATE and the recursive SQL of DB2 play central roles in
representing temporal data and in defining two important operators respec-
tively.

The approach is based on tuple timestamping either by supporting a
time-point timestamp or a time-interval timestamp. The first is defined
as a single DATE attribute of a relation, and the other as start-time and
end-time DATE attributes, respectively. This is how temporality is defined
and managed persistently. The DBMS does not know that these attributes
denote timestamps.



3.5. TUPLE TIMESTAMPING 21

Two important temporal operators are defined. One is the so-called as_ of
or time-slice operator for access of data at a given time-point or time-interval.
The other is a time-coalesce operator which is used to compress the number of
tuples of a relation. These operators are defined and formulated by means of
the existing DB2’s recursive SQI. — no language extensions are introduced
to handle temporal queries.

The time-slice operator takes a relation and a time-value (i.e., time-point
or time-interval) and returns a set of tuples with valid tuples for the specified
time-value.

The time-coalesce operator takes all value-equivalent tuples of its operand
relation and returns a relation where all value-equivalent tuples have non-
overlapping and non-adjacent timestamps. That is, each output tuple is
a result of collapsing a corresponding set of value-equivalent input tuples
that have overlapping or adjacent timestamps. Hence, the timestamp of
each result tuple is the union of the timestamps of its input tuples. Note the
similarity between this operator and the FOLD and NORMALIZE operators
presented above.

Storage-space considerations are also discussed. They propose two mod-
els, named incremental-forward and incremental-backward models. The for-
mer stores the complete initial state of an object, i.e., an initial tuple, and
only changes to that object are added later on. That is, a change is a new tu-
ple inserted but all other attributes beside the key attribute(s), timestamp(s),
and the modified attribute(s), are given NULL values. The rational behind
this approach is that NULL values normally occupy less space.

In the case of an incremental-backward model only the current state of an
object is completely stored, and previous states are “filled” by NULL values
in the same manner as in the forward model.

3.5 Tuple timestamping

The most common introduction of time into the relational model is by tuple
timestamping, and where the query language and relational algebra is ex-
tended accordingly. All of the early temporal relational models concentrate
on tuple timestamping [4, 6, 17, 63].

Over the past ten to fifteen years more than a dozen tuple timestamped
temporal relational models and algebras have been proposed in the literature.
We only present a few of these to indicate the differences in approach. In
principle these approaches differ along the following lines. They may support
valid-time, transaction-time, or both time-dimensions. Further, they support
timestamps as either time-points or time-intervals. They may support only
notions of past and current time, or they in addition support some notions of
future time where timestamps are defined in terms of explicit values and/or
variables like uc, oo, and forever.



22 CHAPTER 3. TIME AND THE RELATIONAL MODEL

3.5.1 Basic Approaches

Section 2.3 presented the two time-dimensions of valid-time and transaction-
time, respectively. To indicate different ways in managing temporal relations
we show how a selected set of proposals define their respective temporal rela-
tional models. In the following we more formally present the two dimensions
(or domains) for valid-time, D,, and transaction-time, D;. The time dimen-
sions may be defined as follows (for simplicity we use discrete total ordered
set of time instants to represent both time-dimensions):

e Transaction time-dimension and ordering:
Di = {to,t1,.. -, ti,...,now}
V', t" € D\ {now} : t' <t" <now vV t' <t <now vt =t" < now
e Valid time-dimension and ordering:
D, ={to,t1,...,t;,...,now, ...} U{oo}
Vi, t" € Dy\{oo} : ' <t'<oo V<t <oV it=t'<oo

For both time dimensions D, and time values given in time instants and
time intervals the following equations apply:

1. th=to+kandty =t 1+1, k>1

2. [tet] ={tilti €Dy At <t;<t; A to <t}

The next definitions show how one could define different bi-temporal rela-
tional schemata, R;, where the temporal information has domains defined
by the time-dimensions D; and D, respectively:

1. Ry = (A1, ooy Ap, T, T)
2. Ro=(44,.., A, T,,,T,,,T})
3. R3 = (Ala "'7Am TvsaTveaTtSaTte)

where each A; is a regular attribute of the relation (including key attributes),
and T, and T, are start and end times of interval timestamps. Subscripts
» and ; stands for valid and transactions timestamps respectively.

Codd’s definition is, informally, extended to R = (Ay, ..., 4,|T), where
the T is characterized by a combination of T,’s as shown above. Further-
more, each timestamp is either a name-point pair, (T, d,), if a time-point
timestamp is applied, or it is a name-interval pair, ((Ty,,T%.), [dz,, dz,]):
when an interval is the timestamp.

We coin the three R;’s schemata for event-based, interval-event based,
and interval-based bi-temporal models, respectively. Each of these is pre-
sented below with examples of models proposed in the literature.



3.5. TUPLE TIMESTAMPING 23

3.5.2 Event-based models

The first, Ry, is an event based bi-temporal relation. That is, it does not
consider for example the duration of when an object was valid in reality.
It only states that at time ¢; € D,, possibly some event occurred, the fact
become valid, and was registered at time ¢; € D;. Of course an application
may impose additional interpretations if it knows that an event’s duration
is always from this time until the next event occurs for the same object, i.e.,
the next event that is “closest” in time. A problem arises with this inter-
event relationship, because events may enforce different interpretations at
different moments in time, say that a past event is always fixed in the past,
but a predictive event may change because of its predictive nature. When
predictive events become past events, an inconsistency may occur because
the recorded sequence of events may be different to the actual sequence
occurred in reality.

The lesson is that event relations should only act as pure event relations
where the time to consider capture only instants of time and not some other
derived time semantics, like durations or lifespans. The same applies to
predictions of events in this context. If predictions are allowed, there should
be some support for physical and/or logical deletion of predictions which
change before they become present and past events. (For example, both
Jensen [30] and Ben-Zvi [6] use specific attributes to record changes and
errors respectively. See below.) By use of a bi-temporal relation a correct
sequence of events may be detected by means of known relationships between
valid-time and transaction-time. Sometime it is better to separate the past
and present from the predictive data. In contrast to the other two relational
schemata event timestamps do not use variables or distinguished individuals.
Only explicit individuals are allowed as timestamp values.

3.5.2.1 Ariav’s model

Ariav’s model is a bi-temporal relational model where timestamps are based
on time points [3].

| name | department| position

| Valid- Time | Trans-Time |

Paul design assistant Jan90 Feb90
Paul design assistant Mar91 Deco0
Paul design engineer Augdl Dec91
Mary design manager Jan90 Jan90
Mary HQ AD Dec90 Feb91

Table 3.1: A bi-temporal Employee Relation by Ariav’s model

The employee relation with six tuples of the relation of Table 2.2 in Sec-
tion 2.3.3, will have a relation with only five tuples by Ariav’s model, as



24 CHAPTER 3. TIME AND THE RELATIONAL MODEL

shown in Table 3.1. It is obvious that this representation misses the explicit
information such that Mary was both a manager and an AD between De-
cember 1990 and February 1991 (see Table 2.2). The same is true for the
fact that the database stored inaccurate information about Paul being an
assistant between March 1991 and December 1991. Paul was only an assis-
tant from March until May that year. That is, if someone wants to verify
if the data used at a previous point in time was inaccurate or inconsistent
with what we now at the present time, then this information is hard, if not
impossible, to derive from a model of this kind. In both cases the informa-
tion may be derived by an application, but that depends on that only the
application knows how this information is to be derived from the data, and
including that it provides a record for resolving all previous inaccuracies and
inconsistencies.

3.5.3 Interval-event based models

The second, Rs, shows a mixed interval-event based bi-temporal relational
schema. It supports actual semantics of the duration of some fact in reality.
In addition the semantics may say something about the lifespan of an object.
That is, when the object was defined, when it eventually disappeared, and
when it was redefined. In addition to past and present these relations may
also store predictive data. The transaction-time support is given by time
points. All data is registered with a when stored timestamp. Hence, the
database captures no semantics of the period of time when the fact was
current in the database, only when it became current.

3.5.3.1 Jensen’s Model

| name | department | position || Valid-Time | Trans-Time | Op |
Paul design assistant || Jan90 Sep90 Feb90 I
Paul design assistant || Jan90 Sep90 Deco0 D
Paul design assistant || Mar91  Nov9l Deco0 I
Paul design assistant || Mar91  Nov9l Deco1 D
Paul design assistant || Mar91 May91 Decol I
Paul design assistant || Mar91 May91 Dec91 D
Paul design engineer || Aug9l uc Deco1 I
Mary design manager || Jan90 Feb91 Jan90 I
Mary design manager || Jan90 Feb91 Feb91 D
Mary HQ AD Dec90 Dec93 Feb91 I

Table 3.2: A bi-temporal Employee Relation by Jensen’s model

Jensen’s model [30] is an example of an interval-event model. Table 3.2
takes the relation of Table 2.2 in Section 2.3.3, and represents it by Jensen’s



3.5. TUPLE TIMESTAMPING 25

model®. The Op attribute denotes tuples as deletion and insertion requests
indicated by ‘1)’ and ‘I’, respectively. Modifications of an object is handled
by a pair of deletion and insertion requests in the following manner; First
a deletion request is represented by a new tuple with the same attribute
values and valid-time as its previous insertion request of this object, but the
Op value equals ‘D’; Second, the deletion request is followed by an insertion
request with a transaction-time identical that of the deletion request it is
paired with, but in this case the Op value is equal to ‘I’.

It is not clear if two tuples, such as in Mary’s case, are allowed to record
information about the same object with overlapping valid-time intervals.
Because an I-marked tuple with no corresponding and succeeding D-marked
tuple is regarded as the only present/latest valid state of the object. So,
information where two facts about an object are true at the same time has
to be recorded after one another. That is, the “latest” fact of an object
must always be represented by a retroactive deletion-insertion pair of some
previous fact. A similar problem arise with Paul’s inaccurate information of
he being an assistant between March 1991 until November the same year.
This inaccuracy is not explicit in this type of representation. That is, data
that records an error and data that only supersedes old data are treated the
same way, and the application has to know which one is what, if that is
possible at all.

3.5.4 Interval-based models

The last schema, R3, shows an interval based bi-temporal relation. Both in-
tervals denote a start time and an end time. The transaction-time registered
the duration when a tuple is current in the database. There are different
interpretations of a transaction interval timestamp due to handling of vari-
ables. The information of a timestamp pair, ([vs, ve, [ts,te]), of valid- and
transaction-times respectively, is defined as follows:

—_

. If t. is a variable, e.g. uc, then the tuple is current in the database
2. If to =t € Dy then the tuple is logically deleted

3. If tgy < vs then the tuple is pro-actively inserted

4. If t; > vs then the tuple is retro-actively inserted

5. If ty = vs then we have a “synchronized” insertion

5 Jensen’s model is a so-called backlog representation. That is, the actual representation
of the data is divided between a table handling current data and a backlog table handling
previous data.



26 CHAPTER 3. TIME AND THE RELATIONAL MODEL

3.5.4.1 Snodgrass’ model

Snodgrass’ TQuel (a temporal extension of the Ingres Quel) is an example of
a query language which is based on a (relational) model with interval times-
tamping both for the valid-time and the transaction-time [63]. A relation
illustrating Snodgrass’ model is given by the Employee relation of Table 2.2
in Section 2.3.3.

3.5.4.2 Ben-Zvi’s model

Another approach for defining interval tuple timestamping is given by Ben-
Zvi’s model [6, 25]. Ben-Zvi was the first to introduce different times; called
effective time and registration time, which are analogous to our notion of
valid time and transaction time respectively. A relation schema, R, is on the
following form:

R = (Ala ceey Ana Tesa Trsa Teea Trea Td)

where the A;’s are as in the previous cases, and:

e T, and T, are the first pair of timestamps and define effective start-
time and registration start-time, respectively, which correspond to T,
and T}, in the previous examples.

o T.. and T, the other pair, define the effective end-time and regis-
tration end-time, respectively. The T, corresponds to T;_ . The time
T, denotes the time when the time T, is recorded. Both T, and T;.
may be given as ’-’, a symbolic value denoting, at present, an unknown
time.

e Ty is used to differentiate between changes and errors. If the T, at-
tribute has a timestamp, the information captured by the tuple is
known to be an error and therefore logically deleted. Otherwise, the
Ty's value is -7, and then the tuple is regarded as a current fact, i.e., a
latest or previous fact about some object stored in the database.

If we employ the employee relation of Table 2.2 in Section 2.3.3, which
conforms to Snodgrass’ temporal model [63], we have the relation shown in
Table 3.3.

Beware that Ben-Zvi’s model gives another definition of the concept of a
transaction time. In this model registration times, T}.; and T;.., record when
facts have known effective start- and end-times, respectively. In contrast,
transaction (interval) timestamps denotes when facts are current (i.e., ac-
cessible) in the database. Ben-Zvi’s definition relies exclusively on the time
T'e, that is defined relatively to the time T¢.. This is a significant difference
from the definition of what is regarded current (i.e., accessible) in respect to
the notion of a transaction time (interval) [31]. For example, in Snodgrass’



3.6. ATTRIBUTE TIMESTAMPING 27

| name | department | position || Trs | Tes Tee Tre || Ty |
Paul design assistant || Jan90 | Feb90 | Sep90 | Feb90 -
Paul design assistant || Mar91 | Dec90 | Nov9l | Dec90 || Dec91
Paul design assistant || Mar91 | Dec91 | May91 | Dec91 -
Paul design engineer | Aug91 | Dec91 N S S
Mary design manager || Jan90 | Jan90 | Feb91 | Jan90 S
Mary HQ AD Dec90 | Feb91 | Dec93 | Feb91l -

Table 3.3: A bi-temporal Employee Relation by Ben-Zvi’s model

model [63] an explicit transaction end-time denotes when a fact was recorded
as logically deleted. In Ben-Zvi’s model this is solely denoted by the means
of the Ty attribute.

3.5.5 First Normal Form and Object Identity

All tuple timestamped relations obey the first normal from (INF) restric-
tion, i.e., no multi-value attributes are allowed. But what is regarded as an
entity (or object) in reality may be defined by several tuples in a database,
i.e., database objects. Hence, it is not necessary a one-to-one correspondence
between an entity in reality and an object in the database. The entity is rep-
resented by several tuples. This set may have redundant information because
some attribute values may for example change more frequently than others.
This, in turn, causes the less frequently changed attributes to replicate, at
least logically, their values over several tuples.

The 1NF relational databases have no intrinsic mechanism to automati-
cally capture changes to an object’s identity, i.e., the primary key of a tuple.
When a primary key of a tuple is changed the temporal database inserts
a new tuple with the new primary key, but the database regards the new
inserted tuple as representing a different object. That is, the database can-
not deduce that these two tuples represent the same object. This lack of
“dynamics” is inherited from the 1NF snapshot relational model, hence, ap-
plications have to manage changes of this kind. In Section 3.6 we will see
that attribute timestamped relational models to some extent handle these
shortcomings of the relational model.

3.6 Attribute timestamping

Although most temporal relational models are tuple timestamped there are
some proposals for attribute timestamping. In this approach a time-variant
attribute is not a single value but a multi-value, or more correct a complex
value like a function with domain time (or a Cartesian product of times),
where its range is the value domain of the attribute timestamped. Hence,



28 CHAPTER 3. TIME AND THE RELATIONAL MODEL

this approach breaks the first normal form restriction on relations. Relations
of this type are known as Non-1NF (N1NF) relations.

3.6.1 Basic Approaches

Three different approaches on attribute timestamping could be defined as
follows:

1. Ry = (T, R'), where R' = (A1Ty,, ..., AxTy,)

2. Ry = ({(A41,VxD)}, ... {(An, V xXT)}), where V = [T,,,T,.| and T =
[Tts’Tte]

3. Rs=({(A1,Tv)}, ., {(An, To) }

where A;’s are attributes of the relation (including key attributes), and
T,, is start time and T;_ is end time, both associated with interval times-
tamps. Subscripts , and ; stand for valid and transactions timestamps,
respectively. These three approaches are named transaction-time indexed
models, bi-temporal multi-value models, and valid-time multi-value models,
respectively. Representatives of each of these models are presented in the
following sections.

3.6.2 Transaction-time Indexed Models

The first schema, R;, defines a relation consisting of transaction-time T
and a valid-time relation R’. That is, each transaction-time timestamp is
an index for a separate valid-time relation (instance) of the relation scheme
R’. We say that changes made to a relation of type R; are indexed by
transaction-times, and, hence, each such index captures a transaction-time
state of the relation R;. Thus, the index could be thought of as a stack of
transaction-time slices.

3.6.2.1 McKenzie’s Model

McKenzie’s model [40, 43] is a transaction indexed approach. A tempo-
ral database, Dgp, in McKenzie’s model is a finite sequence, Dy, ..., Dap,,,
where each element, Dy, , of the sequence is a database “state” relative to a
particular transaction time.

An example is the Object Salary relation (Table 2.1) presented in Sec-
tion 2.3.3. This relation translated to the representation of McKenzie’s model
is shown in Table 3.4, where it is represented as a sequence of valid-time re-
lations each of which is indexed by a unique transaction timestamp.

The Object Salary relation, Table 3.4, is represented by tuples consti-
tuted by single transaction-time instants and a relation of valid-time at-
tributes. The valid-time of each individual attribute is given by a set of time



3.6. ATTRIBUTE TIMESTAMPING 29

LT | R |
0 [
Aprs8 {(15000, {Jan8s,...,Dec89})}

Mar90 || {(15000, {Jan8g,...,Dec89}),(17000, {Jan90,...,Mar92})}
Oct94 || {(15000, {Jangg,...,Dec89}), (17000, {Jan90,...,Mar92}),
(19000, {Sep94,...,Dec97}), (25000, {Jan98,...,c0})}

Table 3.4: Object Salary by McKenzie’s model

points. The times is of type mmyy and a chronon is one month. McKen-
zie’s model does not handle modifications of facts satisfactory. For example,
when a fact is to be deleted from a valid-time relation, r;(R’), it is simply
done by logically inserting a new valid-time relation, r;11(R’), with the fact
removed, indexed by the new transaction-time ¢;;1. The information that a
fact was deleted cannot be deduced without comparing one valid-time rela-
tion with its previous and/or following valid-time relations in the sequence.
The second drawback is that changing a key attribute value of a fact will
have the same effect as with 1NF relations. The third drawback is that the
expected spinoff of reduced redundancy is not obviously achieved, because
each attribute value of a valid-time relation is single-valued, i.e., they are
replicated over several tuples indexed by different transaction times.

3.6.3 Bi-Temporal Multi-Value Models

The second schema, Ro, has multi-valued attributes where each multi-value
is a triplet of a valid-time (e.g. interval), a transaction-time (e.g. interval),
and a value of the attribute domain. A tuple of n attributes is given by n
sets of such triplets, each set representing the bi-temporal information of an
attribute of that tuple at different times.

3.6.3.1 Gadia and Yeung’s Model

Gadia and Yeung’s model [26], called the heterogeneous model, is a repre-
sentative of Rs.

The schema of the relation in Table 3.5 is a specialization of the schema
given for the relation of Table 2.1 (the tuples are not related). We have
included an employee attribute to make this illustration more interesting,
i.e., Paul and Mary are included as employees and the relation records data
about salary histories of employees. Beware that the original salary relation
shown in Table 2.1 would have had only one attribute (one column in the
table) by Gadia and Yeung’s model. This model copes with the redundancy
problem, and it also allows existing keys to change values. In this example
Paul’s Name, which is the key attribute, is changed from Paul to Peter in
September 1991, but valid from August 1991.



30 CHAPTER 3. TIME AND THE RELATIONAL MODEL

| Name | Salary |

Paul, [Jan90,Sep90] x [Feb90,uc] 30000, [Jan90,Sep90]x [Feb90,uc|

Paul, [Mar91,Nov91]|x[Dec90,Dec91] | 30000, [Mar91,Nov91]x[Dec90,Dec91]

Paul, [Mar91,Jul91] x[Dec91,uc] 30000, [Mar91,May91] x[Dec91,uc]

Peter,[Aug91,uc] x[Sep91,uc] 35000, [Aug91,Dec92] x[Dec91,uc]
40000, [Jan93,uc]x[Dec91,uc]

Mary, [Jan90,Dec93]x[Jan90,uc| 60000, [Jan90,Feb91]x[Jan90,uc]
100000,[Dec90,Dec93] x [Feb91,uc]

Table 3.5: Object Salary by Gadia and Yeung’s model

3.6.4 Valid-Time Multi-Value Models

A valid-time multi-value model, R3, is a simplification of the previous model,
Rs, in the sense that it only supports valid times and not transactions times.
Some representatives of this approach are briefly presented, because each
one of them provided novel research contributions.

3.6.4.1 Gadia’s Model

Gadia’s model [24] is an example of this approach defined over the valid-
time dimension. The intrinsic time of Gadia’s model is based on interval
timestamping.

The novel contribution of this model is the homogeneity assumption (Sec-
tion 3.7) imposed on a database. A homogeneous temporal tuple has all its
attributes defined over the same time period(s). In other words all attributes
of a tuple have identical timestamp values. Gadia’s idea was to prevent ob-
jects containing NULL-values, i.e., all attributes have to be defined during
the lifetime of an object.

3.6.4.2 Tansel’s Model

Tansel’s model [67] adds both valid-time and different structure types on
attributes, such as atomic, set-valued, triplets, and set-triplet-valued at-
tributes. The first contains atomic values only. The second is a set of atomic
values. The last two are attributes with timestamps. That is, each triplet is
an attribute value with valid start- and end-times.

The model suggests to use both atomic and triplet attributes for keys
where values are not expected to change over time. If they do change, a new
tuple has to be inserted and the redundancy problem is in some sense analo-
gous to that of tuple timestamping. Tansel’s contribution is the combinations
and co-existence of different attribute structures in the same relation.



3.6. ATTRIBUTE TIMESTAMPING 31

3.6.4.3 Clifford and Croker’s Model

Clifford and Croker’s model [12] is based on representing attributes as pairs.
That is, a function takes a time point of the time domain and returns an
element of the value domain of the attribute, i.e., the attribute value defined
at that time.

The novel contributions of this model are the notions of function values,
as mentioned above, and the algebra based on lifespans. (The notion of a
lifespan were first introduced by Clifford and Tansel [15].) Lifespans are used
to capture the existence of database objects, i.e., including “birth”, “death”,
and “rebirth” of such objects. Both tuple and attribute lifespans are defined.
The former captures lifespans on the data instance level, i.e., of tuples. On
the other hand, an attribute lifespan reflects when a particular attribute
value was/is defined. Since lifespans are sets of time points set-theoretic
operators apply to these structures.

| Name | Salary || Lifespan |
Jan90 — Paul Jan90 — 30000
Sep90 — Paul Sep90 — 30000
Mar91 — Paul | Mar91 — 30000
Aug9l — Peter | Aug91 — 35000
{Jan90, ..., Sep90}U
Jan93 — Peter | Jan93 — 40000 {Mar91, ...,now}
Jan90 — Mary | Jan90 — 60000
Dec90 — Mary | Dec90 — 10000
Dec93 — Mary | Dec93 — 10000 {Jan90, ..., Dec93}

Table 3.6: Object Salary by Clifford and Croker’s model

Table 3.6 illustrates how the Object Salary relation of Table 3.5 is trans-
lated to Clifford and Croker’s model. Each multi-valued tuple has a lifespan.
Even the first tuple has a lifespan of two not adjacent time periods. The
functional aspects of this model is defined such that at each time point within
a tuple’s lifespan the function returns the attribute value of the tuple at that
time.

Gadia and Yeung’s [26] models is functional too in the same sense as

Clifford and Croker’s model.

3.6.5 Non-First Normal Form and Object Identity

Two obvious advantages may be gained by attribute timestamping. Firstly,
by means of complex or multi-valued attributes an object in reality may be



32 CHAPTER 3. TIME AND THE RELATIONAL MODEL

represented by only one tuple in the database, and one-to-one correspon-
dences between entities in reality and database objects are established at
the database level. This property increases the modeling power. A side
effect of attribute timestamping is that primary keys are in some models
allowed to be time-variant. Many applications may require that a key does
not need to be constant over time. Still, all attributes, keys included, should
be unambiguous at any given time instant.

Secondly, when properties of an object change at different times and/or
with different frequency, only the individual attributes involved are affected,
and not the tuple as a whole. Only the new attribute value(s) and times-
tamp(s) are inserted. The problem of a potential redundancy as introduced
by tuple timestamping may be avoided by this approach. But, for example
Mckenzie’s model presented above does not reflect the redundancy issue, i.e.,
each attribute value is logically replicated over all transactions-time indexed
states as long as it is valid.

3.7 Query Language

By incorporating the temporal dimensions into the relational model the se-
mantics of time become part of the underlying temporal relational model.
To take advantage of the inherent semantics of temporality in querying a
database, the query language, the relational algebra and the calculus have
to extend constructs, set-theoretic-like operations, and semantics to capture
the inherited nature of temporal data.

3.7.1 Introduction

In the case of user-defined times no other extensions are required than to
make intrinsic operations like equality, less-than, etc. applicable on basic
data types for time (e.g. DATE, TIME, and DATETIME). This is done in
the same manner as with the operations applied on basic data types like
INTEGER, STRING, etc. In the cases of tuple and attribute timestamping
more comprehensive considerations have to be taken into account. For exam-
ple, the snapshot employee relation of Table 3.7 records name, department
and positions of each employee.

| name | department| position

Paul design assistant
Paul design engineer
Mary design manager
Mary HQ AD

Table 3.7: A Snapshot Employee Relation



3.7. QUERY LANGUAGE 33

Querying this snapshot relation: ‘determine the positions held by employ-
ees of the design department’, or expressed in snapshot SQL:

SELECT position
FROM employee
WHERE  department = ‘design’

The result relation consists of the following three 1-tuples: (assistant),
(engineer), (manager). However, imagine that the same query is issued on the
relation of Table 2.2 in Section 2.3.3, then the result is a valid-time relation
shown in Table 3.8.

| position || valid-time |
assistant || Jan90 Sep90
assistant || Mar91 May91
engineer || Aug9l uc
manager || Jan90 Feb91

Table 3.8: A valid-time result relation

Obvious, a syntactical identical query of the temporal SQI. could be
defined by a temporal semantics, i.e., as the default semantics, as in the
above example. If we only wants information of the current or some other
snapshot state, we have to state that explicitly, and, then, we deal with what
is termed a reference time—to be discussed next.

3.7.2 Time Reference in Queries

We can now extend the complexity of querying the database by introducing
what may be called a time scope, a time window, or a time reference. If, for
example, we want to know the state of the database at a particular time in
the past, we may query the relation of Table 2.2 in Section 2.3.3: Find all
positions held by employees of the design department as of July 1990. The
result valid-time relation is shown in Table 3.9.

| position || valid-time |
assistant || Jan90  Sep90
manager || Jan90 Feb9l

Table 3.9: A valid-time result relation at a particular reference time

By introducing the notion of a reference time, we can both view the
reality and the database as they were at some other states states. Beware
that we can define a reference time relative to either valid-time or transaction
time, i.e., ’as_of’ and ’as_best known_as_of’, respectively. The above
example was a ‘as_ of " query with a transaction reference time automatically



34 CHAPTER 3. TIME AND THE RELATIONAL MODEL

set ‘as_best_known_as_of’ the time now. If no reference time(s) is (are)
specified the default for valid-time is all times, i.e., the whole history, and
the corresponding transaction-time default is now.

For example, ’as_best known_as_of’ July 1991 the database stored
information that we now know was inaccurate. The information that an
assistant position is held until November the same year is wrong, i.e., Paul
holds his assistant position only until May that year. By means of a reference
time we may actually investigate or analyze the database at previous times,
and then refine earlier reports and decisions based on this information. The
term reference time was introduced by Clifford and Isakowitz [18], but its
notion is based on an earlier work by Finger [23] who takes an analogous
approach on historical databases as that of “point of reference” in intentional
logic by Montague [47].

3.7.3 Definitions and other Properties

Before going into detail on the various models and approaches regarding
their extensions on their operational parts we consider a few important def-
initions. A homogeneous tuple is a tuple where each attribute has the same
temporal domain [24], i.e., each timestamp of each attribute is the same.
The temporal domain of an attribute is a temporal element which is a finite
union of intervals [24]. (Beware that the terms temporal domain, temporal
element, and lifespan denote the same concept. We use hereafter only the
term lifespan as introduced by Clifford and Tansel [15].)

The homogeneity assumption is introduced by Gadia [24] to be the tempo-
ral counterpart of a conventional relational database without NULLs. That
is, when the attribute lifespans of a tuple are not identical, then a snapshot
of this database at time, say t;, may result in producing NULLs for some of
the attributes. This is due to the obvious reason that some attribute values
are unknown at time ¢;. This is the case in the heterogeneous model by Ga-
dia and Yeung [26]. The homogeneity assumption may be enforced both on
time dimensions, relations, or the whole database. In the tuple timestamped
approach a tuple is by definition homogeneous when NUILLs are not allowed.

The relational algebra, as defined by Codd [19], operates on only one
object type, namely the relation. That is, both the domain and range of an
algebraic operator are relations, though, of possibly different kinds. The five
fundamental operators of this algebra are: union, set difference, Cartesian
product, projection, and selection, and, for example, operators such as in-
tersection, join, division are all defined in terms of these five fundamental
operators.

A temporal language needs also to specify time both as domain and/or
range for its set of operators. Time-values like points and intervals are el-
ements and subsets of the domain D,, respectively. That means that time
entities like intervals and lifespans, if they are interpreted as sets of time



3.7. QUERY LANGUAGE 35

instants, are closed under the set-theoretic operations of union (U), intersec-
tion (N), difference (\), and complementation (—). The semantics of these
operators are then given by their set-theoretic semantics.

3.7.4 Temporal Algebras - Their Objects and Operators

Most temporal models and algebras differ in the type of objects they define
and on the operators they provide on objects, respectively. See McKenzie
and Snodgrass [42] for a presentation and a more comprehensive evaluation of
twelve algebras incorporating time. The following is in part a brief summary
of that paper.

3.7.4.1 Objects

Three kinds of objects are proposed: snapshot relations, temporal relations,
and lifespans. Five of the algebras support snapshot relations [6, 39, 40, 48,
59].

Only one of the algebras, namely that of Lorentzos and Johnson [39],
does not support time-oriented objects. This model and algebra define
timestamps explicitly as user-defined times, but introduce new operators,
UNFOLD and FOLD, to map between an interval representation and point
representation of timestamps, respectively. Each interval timestamped tu-
ple is expanded by UNFOLD into its point-based counterpart. That is, an
interval-based tuple is expanded into several tuples, where all the new tu-
ples hold the same information (i.e., they are value-equivalent), but each
defined at unique and distinct point of the input interval. A temporal query
imposes the following operational scheme: First, one UNFOLD the interval
user-defined time relation(s) and then perform the wanted operation(s), and,
then, the result is FOLDed back to an interval representation. In this man-
ner the algebra uses the basic algebraic operators on the point-based relation
to express the temporal queries.

Eleven of the algebras do indeed support temporal relations. Of these
eleven three also manipulate pure time objects such as lifespans [12, 24, 26|,
e.g. these models have attributes defined as functions that map timestamps
onto the attribute domain.

3.7.4.2 Operators

The set of algebraic operators defined by the non-temporal relational algebra
is tailored to capture temporal operations. There are at least four classes
or approaches of defining operators that could be distinguished. But, note
that algebra proposals found in the literature may combine several of these
classes. Thus, the distinction we make is solely to classify operators and not
whole algebras.



36 CHAPTER 3. TIME AND THE RELATIONAL MODEL

The first class where the five basic algebraic operators are retained. For
example, in the case of both Lorentzos and Johnson’s algebra [39] and Vas-
silakis et al. VT-AL algebra [71], new operators are defined to capture the
wanted temporal queries implicitly, like the UNFOLD and FOLD opera-
tors. There are to varying degrees how these operators have formal defined
semantics. Some are only informally defined by examples.

The second class introduces what is called snapshot reducibility seman-
tics [63]. The algebra defined for the homogeneous model by Gadia [24] and
the algebra defined for ATSQIL by Bohlen and Jensen [9] both satisfy this
criterion. That is, applying a temporal algebraic operator on relation(s) at
time ¢; should produce the same result as applying its conventional algebraic
counterpart to the snapshot version at time ;.

The third class extends the set of conventional algebraic operators to
capture time-varying information. The common way of doing this is to ma-
nipulate the input timestamps in such a way that the operator produces a
meaningful timestamped output relation. For example, in Clifford and Cro-
ker’s algebra [12] the lifespan of an output tuple produced by a Cartesian
product is the union of the lifespans of the input tuples. Moreover, if an at-
tribute of an input tuple is not defined for a time point of the output tuple’s
lifespan, then this attribute is assigned a null value at that time.

The last class of operators is the class of new operators. These operators
could be used alone, others are defined to support the temporal extensions
of queries in general.

Below we present some of the operators that we believe will illustrate
the flavor of having temporal operators. Those presented here are defined
by Clifford and Croker [12], but similar and analogous operators exist. Re-
call that Clifford and Croker’s model is attribute timestamped, and both
attributes and tuples have lifespans.

Time-slice The first is the unary time-slice operator, which is an operator
that projects the temporal domain of the operand. Two time-slice opera-
tions are possible, one static and one dynamic. The static approach specifies
a fixed lifespan condition, and returns all tuples that are defined for all points
within the fixed lifespan. The dynamic approach specifies an attribute de-
pendent lifespan conditions, and returns all tuples where each tuple is defined
by the lifespan of its corresponding attribute’s lifespan. The former returns
tuples with identical lifespans, the latter returns tuples with, possibly, differ-
ent, lifespans. This operator reduces the relation in the temporal dimension.

Select-when The next is the unary select-when operator, which takes a
relation as input and produces a relation where each tuple’s lifespan is re-
stricted by the non-temporal selection condition, i.e., the result lifespan of a
tuple is denoting exactly those time points when the selection condition is



3.7. QUERY LANGUAGE 37

satisfied. This operator reduces the relation in both the value and temporal
dimensions.

Select-if A select-if is also a unary operator. 1t selects each tuples from
a relation that satisfies a specified selection condition within a given lifes-
pan. A select-if operation may be specified so that the result tuples satisfy
the selection condition either at some point or at all points, i.e., existential
and universal quantification, respectively. This operator reduces a relation
only in the value dimension, and the lifespans of the input tuples are left
untouched.

Time-join The time-join is a binary operator and uses as the join-condition
a timestamped attribute of the first operand relation. The lifespan of each of
the output tuples is the intersection of the lifespan of the condition attribute
and the lifespans of the joined input tuples. If a resulting lifespan is empty
(a lifespan is a set of time points) the tuple is not included in the result
relation. This join operator imposes no relationship restriction on any of the
value domains (i.e., the regular attribute domains) of the operand relations
as would have been the case for the temporal extended 6-join, equi-join and
natural-join operators. Hence, in the time-join case only the time dimension
is restricted.

3.7.4.3 Conventional vs Temporal Queries

There are several reasons for defining a temporal algebra. The most obvious
reason is that the conventional algebra as defined by Codd is unable to handle
time-varying information as such. For example, assume that the relation in
Table 2.2 has the valid-times as explicit user-defined attributes, and denoted
by From-time and To-time attributes. (The transaction time is of no interest
here.) If the query ‘when was Mary an employee’ is issued, then the result
should be Mary’s employee history. The query is a projection on the From
and To attributes.

| From | To |
Jan90 | Feb91l
Dec90 | Dec93

Table 3.10: Mary’s employee history

The result relation of the above query, see Table 3.10, shows two tuples
overlapping on their valid-times, but we have no indications why it is like
this. Are there two employees with name Mary? Does the input relation
contain inconsistent data about Mary?



38 CHAPTER 3. TIME AND THE RELATIONAL MODEL

A temporal model and algebra would have recognized these overlapping
intervals (or adjacent intervals) and coalesced the two tuples into one, and,
hence, produce the correct result relation of one tuple with the interval
[Jan90,Deco3], that in fact is the period when Mary was an employee in our
example.

However, not all temporal query languages would automatically yield a
coalesced result, because when objects are interval timestamped there could
be reasons for retaining the interval structure for the result. For example,
the result of the query: when was Gro Harlem Brundtland prime minister of
Norway, is denoted by three distinct and non-overlapping periods, namely
1981, 1986-1989 and 1990-1996, regardless of coalescing or not. However,
the result of the query: find all periods when Bill Clinton was the President
of USA, would yield different results with and without coalescing. When
the system imposes an automatic coalescing the result denotes that Clinton
was president only during one period, namely 1992-2000. The correct result
should be the periods 1993-1996 and 1997-2000. Of course, the above exam-
ple and results could be interpreted correctly by users, because we may know
that a single president period is only four years. This is a naive example, but
there should not be difficult to envision situations that are more complicated
and involved, and where a user could not deduce that some intervals have
been inconsistently coalesced. The following, still naive, example illustrate
this.

| name | department | salary || valid-time |
John Design 15000 | Jan90 Sep91
John HQ 15000 || May90 May91

Table 3.11: A Salary History Example

We issue the following query on the relation of Table 3.11: determine
John’s salary history, stated as a temporal SQL-like query:

SELECT name, salary
FROM employee
WHERE name = ‘John’

This query would yield a relation with one tuple, namely (John, 15000,
Jan90-May91). But, say that the meaning of John’s tuples is that John
had two jobs during the period of May91-Sep91, and, therefore, the correct
salary for this period should be 30000, and not as 15000 as given above. In
this example the result is an incorrect result due to automatically coalescing
of result tuples.

ATSQL provides a explicit user-level language construct to enforce coa-
lescing on the result [9], and thereby let the user decide if it make sense to
apply this operation or not.



3.7. QUERY LANGUAGE 39

In general by defining formal temporal algebras query languages like SQL
could be extended and assigned the formal semantics for operating on tem-
poral data.

3.7.4.4 Optimization and Efficiency

A temporal algebra is needed for the system internal organization and be-
havior of a DBMS. No commercial relational DBMS provides an algebra as
the query language. The most common query language is SQL (and Quel
for the Ingres DBMS).

Unlike SQL, that is a declarative language, algebras are procedural. That
is, the operational aspects are important and are used to optimize database
queries that are either predefined or interactive. The conventional way of
optimizing queries is to translate declarative statements (i.e., queries) into
their algebraic counterparts. When a query is on an algebraic form the
sequence of subqueries (i.e., partial queries), which constitute the original
query, may be reorganized to reduce the number of internal operations (e.g.
number of 1/O accesses) or otherwise minimize the computation. Thereby,
an optimization also decreases the user’s response-time. The same should
apply to temporal databases, and several studies and proposals on issues
related to algorithms for temporal query optimizers have been published [I,
5, 10, 27, 28, 29, 37].

There is also another important and related aspect of having a temporal
algebra which operates on the temporal structure imposed by a temporal
model. That is, the system internal structures such as index structures. If
an algebra does not handle temporality an optimization algorithm may not
produce efficient expressions that could take into account system supported
temporal indexes, storage structures, and so forth, for example see [2, 5, 22,

29, 36, 58].

3.7.5 Uniform Data Access

The reason for having a temporal model was to incorporate temporal data
and their semantics, that are otherwise managed by each of the applications
using the database, and providing a uniform model and management of the
temporal data.

The reason for having a temporal query language is similar; accessing
a database utilizing the potential advantages of temporal data makes the
resulting objects (e.g. temporal relations, lifespans, snapshot relations) not
only consistent with the modeled reality, but equally important queries and
results are uniformly managed across applications. That is, both the tem-
poral access strategies and temporal data independence are uniformly main-
tained by one (database) system for all applications. In consequence, tempo-
ral queries with identical semantics issued to the same database by different



40 CHAPTER 3. TIME AND THE RELATIONAL MODEL

and independent applications would yield the same result. In contrast, if the
database had no built-in temporal support the temporal queries issued by
different applications have to be identical syntacticly to ensure the same re-
sult, i.e., semantics implicitly defined by a query is unknown to the database.
We may regard each application as representing some concrete database
view of the more “abstract” temporal data model defined by the actual
database. What we then identify as wuniform data access is in some sense
analogous to Chomicki’s notion of representation-independence [11].

3.7.6 Point- or Interval-based Query Languages

A query language can be point based or interval based. That is, to denote
time by timestamps we either use points, i.e., time instants or intervals.
Many query languages, including TQuel and TSQL2, adopt interval-based
timestamps.

The most prominent reason for adopting interval as the “unit” of time is to
efficiently encode sets of time instants, where each such set is associated with
some data value. Thus, an interval is a practical representational solution to
deal with, among other issues, space-efficient storage.

On the other hand a point based data model would (logically) replicate
each data value at all time instants for which it is defined to be valid. This
approach is not space-efficient and is regarded as less practical. Event-based
models, such as presented in Section 3.5.2, are defined so that each data
value is associated with only one time instant, and, therefore, event-based
models cannot generally replace a point-based approach. Put differently, a
point-based timestamp is a set of points and not a single point. An obvious
drawback with a pure point-based model and language is that value equiv-
alent tuples are always coalesced as a result of a query, i.e., one timestamp
may denote different distinct periods of an object, but the initial structure
of these periods are lost. This is a similar problem as discussed above with
coalescing interval timestamps in query results.

There also are some servile problems with interval-based query languages
and data model supporting interval timestamps. As mentioned an interval is
nothing but some encoding of a set of time instants. Thus, when the query
language also uses intervals, it is more reflecting the representational issues
of the data rather than the semantics of the data. Formulating queries in
an interval-based language have to take into account the encoding of the
set of time instants they actually denote. And; whereas we are able to
easily express queries in a point-based logic, their interval-based counterparts
are not necessarily easily obtained, see examples in [69]. The effect is that
declarative languages based on intervals have to deal, in some way, with the
encoding of intervals. Hence, the pure declarative property of such languages
are to some extent lost.

The semantics of a language are better handled by a point-based ap-



3.7. QUERY LANGUAGE 41

proach, because the semantics are better suited to be defined by some first-
order (temporal) logic. The reason for this is that variables in a temporal
logic refer to time instants as known individuals. In a corresponding logic
for an interval language an explicit and special treatment of the notions of
interval’s upper and lower bounds are required, i.e., the logic has to manip-
ulate the structure of the values, making expressions in such a logic rather
cumbersome.

However, there are relational languages that support a mix of a point- and
interval-based approach in both processing and manipulation of temporal
data, e.g. ATSQL [9] and STSQL [8] but their query results are always
interval-based. In particular, ATSQL applications can decide to coalesce or
not to coalesce results of queries, and thereby retain the interval structure
of the domain relation(s).



42

CHAPTER 3. TIME AND THE RELATIONAL MODEL



Chapter 4

Summary

We have presented a survey of temporal relational models and given an in-
troduction to temporal query languages and their properties. The temporal
relational models deal both with time-varying schema and data, coined in
this report temporal intentional and temporal extensional, respectively. Both
schema and data may be temporal relative to more than one time dimen-
sion. Time dimensions are orthogonal and impose different semantics on the
timestamped objects.

Temporal extensional models are grouped according to three main ap-
proaches incorporating time as an integral part of the database. One is
simply to introduce additional basic time types, and is classified as user-
defined time. The other two are more fundamental with respect to what
characterize temporal databases, and they mainly differ on which objects
are timestamped. One timestamps tuples, the other attributes. However,
models within each of these groups also differ in how they define and asso-
ciate timestamps to their respective objects.

The temporal extensional models support what is commonly named his-
tory/predictions and revision of data. The former reflects the evolution of
an object along the valid time dimension, the latter reflects the evolution
of an object along the transaction time dimension, i.e., modeling the “real
life” history and database history, respectively. Versioning and configuration
management aspects of data, e.g. variants and alternatives, are not defined
for temporal relational databases. These aspects are extensively covered by
(temporal) object databases, see Skjellaug [61] for a survey on time in object
databases.

Temporal models require that query languages are extended with tempo-
ral capabilities. One effect is that the set of objects handled by a language
rises from that of only managing one relation kind to that of both manag-
ing temporal relations (relations with “times”), snapshot relations (relations
without “times”), and lifespans (only “times”). With a temporal query lan-
guage all the temporal information stored in a database may be manipulated

43



44 CHAPTER 4. SUMMARY

and explored through a query language by means of the built-in temporal
semantics of the database system.

In summary, research in temporal relational databases has set the stage
for several areas of research on temporal data, such as temporal object and
engineering databases, time in active and deductive databases, multi-media
databases, geographic information systems, scientific and statistic databases.



Bibliography

[1] T. Ahn, H. Jo, J. Kim, Y. Lee, and B. Kim. Graphic Interface for Tem-
poral Summary Data (Extended Abstract). In Proceedings of the 6th
Korea and Japan Joint Conference on Statistics (invited paper), pages
3-8, 1989.

[2] C. H. Ang and K. P. Tan. The interval B-tree: a new time indexing
technique. In Proceedings of the 5th Australasian Conference, pages
162-178, Christchurch, New Zealand, 1994.

[3] G. Ariav. A Temporally Oriented Data Model. ACM Transactions on
Database Systems, 11(4):499-527, December 1986.

[4] G. Ariav, A. Beller, and H. L. Morgan. A Temporal Data Model. Techni-
cal Report DS-WP 82-12-05, Decision Sciences Department, University
of Pennsylvania, December 1984.

[5] L. Baekgaard and L. Mark. Incremental computation of time-varying
query expressions. [KKFE Transactions on Knowledge and Data Fngi-

neering, 7(4):583-590, August 1995.

[6] J. Ben-Zvi. The Time Relational Model. PhD thesis, Computer Science
Department, UCLA, 1982.

[7] J. van Benthem. The Logic of Time. Kluwer Academic Publishers,
Dordrecht, Bosten, London, 2nd. edition, 1991.

[8] M. Béhlen, C. S. Jensen, and B. Skjellaug. Spatio-Temporal DataBase
Support for Legacy Applications. Submitted for publication, April 1997.

[9] M. H. Béhlen and C. S. Jensen. Seamless Integration of Time into SQL.
Technical Report R-96-49, Department of Computer Science, Aalborg
University, 1996.

[10] S. Chaudhuri. Temporal Relationships in Databases. In Proceedings of
the International Conference on Very Large Data Bases, pages 160-170,
Los Angeles, California, 1988.

45



46

[11]

[12]

[21]

BIBLIOGRAPHY

J. Chomicki. Temporal Query Languages: A Survey. In Ohlbach H. J.
Gabbay, D. M., editor, Proceedings of the First International Confer-
ence on Temporal Logic, pages 506-534. Lecture Notes in Artificial In-
telligence 827, Springer-Verlag, July 1994.

J. Clifford and A. Croker. The Historical Relational Data Model
(HRDM) and Algebra Based on Lifespans. In Proceedings of the Inter-
national Conference on Data Fngineering, pages 528—-537, L.os Angeles,
CA, February 1987. IEEE Computer Society Press.

J. Clifford, C. Dyreson, T. Isakowitz, C. S. Jensen, and R. T. Snod-
grass. On the Semantics of “Now” in Databases. ACM Transactions
on Database Systems, 1997. Tentatively scheduled for Vol. 22, No. 1,
March 1997.

J. Clifford, C. Dyreson, T. Isakowitz, S. J. Jensen, and R. T. Snodgrass.
“Now”, chapter 20. In R. T. Snodgrass (ed.) [66], 1995.

J. Clifford and A. U. Tansel. On an Algebra for Historical Relational
Databases: Two Views. In S. Navathe, editor, Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 247—
265, Austin, TX, May 1985.

J. Clifford and A. Tuzhlin, editors. Recent Advances in Temporal
Databases: Proceedings of the International Workshop on Temporal
Databases, Workshops in Computing, Zurich, Switzerland, September
1995. Spinger-Verlag.

J. Clifford and D. S. Warren. Formal Semantics for Time in Databases.
ACM Transactions on Database Systems, 8(2):214-254, June 1983.

James Clifford and Tomas Isakowitz. On the Semantics of (Bi)Temporal
Variable Databases. In Proceedings of the International Conference on
Faxtending Database Technology, volume 779 of Lecture Notes in Com-
puter Science, pages 215-230. Springer-Verlag, 1994.

E. F. Codd. A relational model of data for large shared data banks.
Communications of the ACM, 13(6):377-387, June 1970.

P. Dadam, V. Lum, and H.-D. Werner. Integration of Time Versions
into a Relational Database System. In U. Dayal, G. Schlageter, and
L.H. Seng, editors, Proceedings of the International Conference on Very
Large Data Bases, pages 509-522, Singapore, August 1984.

C. De Castro, F. Grandi, and M. R. Scalas. On Schema Versioning in
Temporal Databases. In Clifford and Tuzhlin [16], pages 272-291.



BIBLIOGRAPHY 47

[22]

[25]

[26]

R. Elmasri and V. Kouramajian. Indexing, Searching and Archiving
Issues in Temporal Databases. In R. T. Snodgrass, editor, Proceed-

ings of the International Workshop on an Infrastructure for Temporal
Databases, Arlington, T'X, June 1993.

M. Finger. Handling Database Updates in Two-Dimensional Temporal
Logic. Journal of Applied Non-Classical Logics, 2(2), 1992.

S. K. Gadia. A Homogeneous Relational Model and Query Languages
for Temporal Databases. ACM Transactions on Database Systems,
13(4):418-448, December 1988.

S. K. Gadia. Ben-Zvi’s Pioneering Work in Relational Temporal
Databases, chapter 8, pages 202-207. In Tansel et al. [68], 1993.

S. K. Gadia and C. S. Yeung. A Generalized Model for a Relational
Temporal Database. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 251-259, Chicago, IL, June
1988.

H. Gunadhi and A. Segev. A Framework For Query Optimization In
Temporal Databases. In Fifth International Conference on Statistical
and Scientific Database Management Systems, 1989.

H. Gunadhi and A. Segev. Query Processing Algorithms for Temporal
Intersection Joins. In Proceedings of the 7th International Conference
on Data Engineering, Kobe, Japan, 1991.

H. Gunadhi and A. Segev. Efficient Indexing Methods for Temporal
Relations. [KEFE Transactions on Knowledge and Data Fngineering,

5(3):496-509, June 1993.

C. S. Jensen. Towards the Realization of Transaction Time Database
Systems. PhD thesis, Aalborg University, Department of Mathematics
and Computer Science, Aalborg, Denmark, December 1990.

C. S. Jensen, J. Clifford, R. Elmasri, S. K. Gadia, P. Hayes, and S. Jajo-
dia [eds]. A Glossary of Temporal Database Concepts. ACM SIGMOD
Records, 23(1):52—-64, March 1994.

C. S. Jensen and R. Snodgrass. Temporal Specialization and Gen-
eralization. [KKF Transactions on Knowledge and Data Fngineering,

6(6):954-974, December 1994.

C. S. Jensen, M. D. Soo, and R. T. Snodgrass. Unifying Temporal
Models via a Conceptual Model. Information Systems, 19(7):513-547,
October 1994.



48 BIBLIOGRAPHY

[34] H. Kamp. Formal properties of ‘now’. Theoria, 37(3):227-273, 1971.

[35] N. Kline. Bibliography containing entries relevant to Temporal DBMS’s.
http://liinwww.ira.uka.de/bibliography /Database/time.html, January
27, 1996.

[36] C. Kolovson. [ndexing Techniques for Historical Databases, chapter 17,
pages 418-432. In Tansel et al. [68], 1993.

[37] T. Y. Leung and R. Muntz. Generalized Data Stream Indexing and
Temporal Query Processing. In Second International Workshop on Re-

search Issues in Data Fngineering: Transaction and Query Processing,
February 1992.

[38] T.Y.C. Leung and H. Pirahesh. Querying Historical Data in IBM DB2
C/S DBMS Using Recursive SQL. In Clifford and Tuzhlin [16], pages
315-331.

[39] N. Lorentzos and R. Johnson. Extending Relational Algebra to Manip-
ulate Temporal Data. Information Systems, 15(3):289-296, 1988.

[40] E.McKenzie. An Algebraic Language for Query and Update of Temporal
Databases. PhD thesis, Computer Science Department, Univ. of North
Carolina at Chapel Hill, September 1988.

[41] E. McKenzie and R. Snodgrass. Schema Evolution and the Relational
Algebra. Information Systems, 15(2):207-232, June 1990.

[42] E. McKenzie and R. Snodgrass. An Evaluation of Relational Algebras
Incorporating the Time Dimension in Databases. ACM Computing Sur-
veys, 23(4):501-543, December 1991.

[43] E. McKenzie and R. T. Snodgrass. Supporting Valid Time in an His-
torical Relational Algebra: Proofs and Extensions. Technical Report
TR-91-15, Department of Computer Science, University of Arizona,
Tucson, AZ, August 1991.

[44] J. Melton and A.R. Simon. Understanding the New SQL: A Complete
Guide. San Mateo, CA: Morgan Kaufmann Publishers, Inc., 1993.

[45] J. Melton (ed.). Database Language SQL. ISO/TEC JTC 1/SC21 WG
3 DBL:RIO-004 (ANSI TC X3H2-94-329), August 1994.

[46] J. Melton (ed.). Framework for SQL. ISO/IEC JTC 1/SC21 WG 3
DBL:RIO-003 (ANSI TC X3H2-94-328), August 1994.

[47] R.Montague. Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven, 1974.



BIBLIOGRAPHY 49

[48] S. B. Navathe and R. Ahmed. A Temporal Relational Model and a
Query Language. Information Sciences, 49:147-175, 1989.

[49] P. Ohrstrgm and P. F. V. Hasle. Temporal Logic: From Ancient Ideas
to Artificial Intelligence. Kluwer Academic Publishers, 1995.

[50] G. Ozsoyoglu and R. Snodgrass. Temporal and Real-Time Databases:
A Survey. [FEFE Transactions on Knowledge and Data Engineering,
7(4):513-532, August 1995.

[51] N. Pissinou, R. T. Snodgrass, R. Elmasri, I.S. Mumick, M.T. Ozsu,
B. Pernici, A. Segev, and B. Theodoulidis. Towards an Infrastructure for
Temporal Databases: Report of an Invitational ARPA /NSF Workshop.
ACM SIGMOD Records, 23(1):35-51, March 1994.

[52] A. Prior. Past, Present and Future. Oxford University Press, 1967.
[63] A. N. Prior. Time and Modality. Clarendon Press, Oxford, 1957.

[64] N. C. Rescher and A. Urquhart. Temporal Logic. Springer-Verlag, New
York, 1971.

[55] J. F. Roddick. SQL/SE - A Query Language Extension for Databases
Supporting Schema Evolution. ACM SIGMOD Records, 21(3):10-16,
September 1992.

[56] J. K. Roddick and R. T. Snodgrass. Schema Versioning Support, chap-
ter 22, pages 427-449. In R. T. Snodgrass (ed.) [66], 1995.

[57] R.v.B. Rucker. Geometry, Relativity and The Fourth Dimension. Dover
Publications, Inc., New York, 1977.

[58] B. Salzberg. On Indexing Spatial and Temporal Data. [nformation
Systems, 19(6):447-465, 1994.

[69] N. Sarda. Algebra and Query Language for a Historical Data Model.
The Computer Journal, 33(1):11-18, February 1990.

[60] A.Segev, C.S. Jensen, and R. T. Snodgrass. Report on The 1995 Inter-
national Workshop on Temporal Databases. ACM SIGMOD Records,
24(4), December 1995.

[61] B. Skjellaug. Temporal Data: Time and Object Databases. Research

Report 245, Department of Informatics, University of Oslo, April 1997.
ISBN 82-7368-160-2.

[62] R. Snodgrass, editor. Proceedings of the International Workshop on an
Infrastructure for Temporal Databases, Arlington, TX, June 1993.



50 BIBLIOGRAPHY

[63] R. T. Snodgrass. The Temporal Query Language TQuel. ACM Trans-
actions on Database Systems, 12(2):247-298, June 1987.

[64] R. T. Snodgrass, M. H. Bohlen, C. S. Jensen, and A. Steiner. Adding
Transaction Time to SQL/Temporal. ANSI Expert’s Contribution,
ANSI X3H2-96-502r2, ISO/IEC JTC1/ SC21/WG3 DBIL-MAD-147r2,

International Standards Organization, November 1996.

[65] R. T. Snodgrass, M. H. Bohlen, C. S. Jensen, and A. Steiner. Adding
Valid Time to SQL/Temporal. ANSI Expert’s Contribution, ANSI
X3H2-96-501r2, ISO/IEC JTC1/ SC21/WG3 DBL-MAD-14612, Inter-

national Standards Organization, November 1996.

[66] R. T. Snodgrass (editor). The TSQL2 Temporal Query Language.
Kluwer Academic Publishers, 1995.

[67] A. U. Tansel. Adding Time Dimension to Relational Model and Ex-
tending Relational Algebra. Information Systems, 11(4):343-355, 1986.

[68] A. U. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snod-
grass (eds.). Temporal Databases: Theory, Design, and Implementation.
Database Systems and Applications Series. Benjamin/Cummings, Red-

wood City, CA, 1993.

[69] D. Toman. Point vs. Interval-based Query Languages for Temporal
Databases. In Proceedings of the ACM SIGACT-SIGMOD-SIGART
PODS,; Montreal, Canada, June 1996.

[70] V. J. Tsotras and A. Kumar. An Update of the Temporal Database
Bibliography. ACM SIGMOD Records, 25(1), March 1996.

[71] C. Vassilakis, N. Lorentzos, and P. Geogiadis. Transaction Support in
a Temporal DBMS. In Clifford and Tuzhlin [16], pages 255-271.

[72] G. Wiederhold, S. Jajodia, and W. Litwin. Dealing with Granularity of
Time in Temporal Databases. In Proc. 3rd Nordic Conf. on Advanced
Information Systems Engineering, Trondheim, Norway, May 1991.



