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ABSTRACT
Let �n denote the class of n × n doubly stochastic matrices (each
suchmatrix is entrywise nonnegative and every rowand column sum
is 1). We study the diagonals of matrices in �n. The main question is
which A ∈ �n are such that the diagonals in A that avoid the zeros
of A all have the same sum of their entries. We give a characteriza-
tion of suchmatrices and establish several classes of patterns of such
matrices.
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1. Introduction

LetMn denote the (vector) space of real n × nmatrices and on this space we consider the
usual scalar product A · B = ∑

i,j aijbij for A,B ∈ Mn, A = [aij], B = [bij].
A permutation σ = (k1, k2, . . . , kn) of {1, 2, . . . , n} can be identified with an n × n

permutation matrix P = Pσ = [pij] by defining pij = 1, if j = ki, and pij = 0, otherwise
(i ≤ n). If X = [xij] is an n × nmatrix, the entries of X in the positions of X in which P has
a 1 is the diagonal Dσ of X corresponding to σ and P, and their sum

dP(X) =
n∑

i=1
xi,ki

is a diagonal sum of X. Sometimes we refer to the set of positions as a diagonal of X. Per-
mutations σ1, σ2, . . . , σk of {1, 2, . . . , n}, and their corresponding permutations matrices,
are pairwise disjoint provided no two of them agree in any position; equivalently, no two
of their corresponding permutation matrices have a 1 in the same position. We also then
say that the associated diagonals are pairwise disjoint. A zero diagonal of X is a diagonal of
X with 0’s in all its positions. Without some restriction on the entries of X, diagonal sums
can be quite arbitrary.
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Let X = [xij] be a doubly stochastic matrix. Thus, X is a square nonnegative real matrix
with all row and column sums equal to 1:

xij ≥ 0 (i, j = 1, 2, . . . , n) and
n∑

i=1
xij =

n∑
i=1

xji = 1 (j = 1, 2, . . . , n).

The set of n × n doubly stochasticmatrices is denoted by�n.�n is a polytope of dimension
(n − 1)2 in the spaceMn of real matrices of order n with the standard inner product.

A n × nmatrixA is partly decomposable if suitable permutations of its rows and columns
give a matrix [

A1 A2
O A3

]
,

whereA1 andA3 are square, nonemptymatrices. IfA is not partly decomposable, it is called
fully indecomposable. If A is fully indecomposable, then there exists a doubly stochastic
matrix with the same pattern as A. If a doubly stochastic matrix is partly decomposable,
then, after suitable row and columnpermutations, it is a direct sumof fully indecomposable
doubly stochastic matrices. Thus in studying properties of doubly stochastic matrices, one
usually assumes that they are fully indecomposable.

Sinkhorn [1] and Balasubramanian [2] independently proved the following theorem.

Theorem 1.1: Let X ∈ �n, and let D = {Dσ1 ,Dσ2 , . . . ,Dσk} be a set of k pairwise disjoint
zero diagonals of X. Assume that every diagonal of X that is disjoint with the diagonals inD
has a constant diagonal sum. Then all entries of X not on any of the diagonals in D equal
1

n−k .

For a matrix X, let ξ(X) be the set of positions in which X has 0’s. Generalizing
Theorem 1.1, Achilles [3] proved the following theorem.

Theorem 1.2: Let X,Y ∈ �n and let ZX ⊆ ξ(X) and ZY ⊆ ξ(Y). Assume that all diagonals
of X disjoint from ZX have diagonal sum equal to α and all diagonals of Y disjoint from ZY
have diagonal sum equal to β. The following hold:

(i) If ZX ⊆ ZY, then α ≤ β.
(ii) If ZX = ZY, then α = β and X = Y.

Theorem 1.1 follows from this result by letting Y be the doubly stochastic matrix with
the zeros as prescribed by the set D = {Dσ1 ,Dσ2 , . . . ,Dσk} of zero diagonals and with all
other elements equal to 1

n−k ; see [3] for details.

Corollary 1.3: An n × n doubly stochastic matrix X with a specified set Z of zeros all of
whose diagonal sums avoiding Z are equal is uniquely determined.

Since their publication more than 40 years ago, the three papers [1–3] seem not to have
received any attention in the literature. In fact, Theorem 1.2 is true under more general
circumstances as shown next.
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Lemma 1.4: Let � be a polytope (in an inner product space)with set of extreme points W =
{w1,w2, . . . ,wp}. Let u, v ∈ � and let X,Y ⊆ W such that

u =
∑
x∈X

cxx, cx ≥ 0 (x ∈ X),
∑
x∈X

cx = 1

and

v =
∑
y∈Y

cyy, cy ≥ 0 (y ∈ Y),
∑
y∈Y

cy = 1.

Assume that u · x = a for all x ∈ X and v · y = b for all y ∈ Y. If Y ⊆ X, then a ≤ b. If
Y = X, then a = b and u = v.

Proof: The proof follows the proof in [3]:

u · u = u ·
(∑
x∈X

cxx

)
=
∑
x∈X

cx(u · x) = a
∑
x∈X

cx = a(1) = a.

Similarly, v · v = b. Now suppose that Y ⊆ X. Then a similar computation shows that u ·
v = a and thus

0 ≤ (u − v) · (u − v) = u · u − 2u · v + v · v = a − 2a + b = b − a

and hence a ≤ b. If Y = X, then we also have that b ≤ a, and hence a = b and u = v. �

Let A be an n × n (0, 1)-matrix which, without loss of generality, is assumed to be fully
indecomposable. ThematrixA defines a faceF(A) of�n consisting of all doubly stochastic
matrices X with ξ(A) ⊆ ξ(X) (see [4]). In general, F(A) contains matrices X where ξ(A)

is a proper subset of ξ(X) such that all the diagonals of X not containing any positions in
ξ(X) have equal diagonal sums. The following example [3] is instructive.

Example 1.5: Let

A =

⎡⎢⎢⎣
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎤⎥⎥⎦ .

Consider a doubly stochastic matrix X ∈ F(A). Then X is of the form

X =

⎡⎢⎢⎣
a + b + c − 2 1 − c 1 − b 1 − a

1 − c c 0 0
1 − b 0 b 0
1 − a 0 0 a

⎤⎥⎥⎦ (0 ≤ a, b, c ≤ 1, a + b + c − 2 ≥ 0).

In order for X to have the same set of 0’s as A, we must have 0<a, b, c<1 and
a+ b+ c−2>0. There are four diagonals of X that avoid the displayed 0’s. A simple com-
putation shows that if the corresponding four diagonal sums are equal, then a = b = c and
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a+ b+ c−2 = 0 and hence

X = 1
3

⎡⎢⎢⎣
0 1 1 1
1 2 0 0
1 0 2 0
1 0 0 2

⎤⎥⎥⎦ , (1)

We conclude that there does not exist a doubly stochastic matrix with 0’s exactly where A
has 0’s and where all of the diagonals avoiding the positions of the 0’s of A have the same
sum. Thus not every zero pattern of a fully indecomposable (0, 1)-matrix is realizable as
the zero pattern of a doubly stochastic matrix whose diagonal sums avoiding the 0’s are
constant. Let the (0, 1)-matrix A′ be obtained from A by replacing the 1 in position (1, 1)
with a 0. Then A′ ≤ A and A′ is realizable as the zero pattern of a doubly stochastic matrix
(namely X as in (1)) whose diagonal sums avoiding the 0’s have constant value 2.

For later reference, we note that thematrixX in (1) and its zero pattern can be permuted
to obtain ⎡⎢⎢⎣

0 1 1 1
1 0 1 0
1 0 0 1
1 1 0 0

⎤⎥⎥⎦ → 1
3

⎡⎢⎢⎣
0 1 1 1
1 0 2 0
1 0 0 2
1 2 0 0

⎤⎥⎥⎦ .

A motivation for considering our investigations is the following: Given an n × n matrix
X = [xij], the optimal assignment problem (OAP) asks for a permutation (i1, i2, . . . , in)
of {1, 2, . . . , n} such that the corresponding diagonal sum in X is maximum. Thus, xij is
regarded as representing the value a person (corresponding to row i) brings to a job (cor-
responding to column j). An assignment of people 1, 2, . . . , n to jobs 1, 2, . . . , n is denoted
by a permutation of {1, 2, . . . , n}, equivalently, an n × n permutation matrix. Let A = [aij]
be an n × n fully indecomposable (0, 1)-matrix corresponding to people and jobs as above
where an entry aij = 0 is interpreted as person i is not qualified for job j, and an entry
aij = 1 is interpreted as person i is qualified for job j. Thus, the only allowable assignments
are those avoiding the 0’s in A. Assume that ξ(X) = ξ(A). The largest allowable diagonal
sum of X solves the OAP, under the restrictions imposed by A. Since A is fully indecom-
posable, so is X and as is well known, there exist diagonal matrices D1 and D2 with entries
on the diagonal positive, such that D1XD2 is doubly stochastic. We now assume that X is
doubly stochastic, that is, we replace X with D1XD2. Thus the values xij have been nor-
malized so that the total value each person brings to the jobs and the total value of each
job equals 1. If all diagonal sums of X avoiding the 0’s of A are equal, then any permissible
assignment solves the OAP.

Let A be an n × n fully indecomposable (0, 1)-matrix such that there exists an n × n
doubly stochastic matrix X with ξ(X) = ξ(A), where all diagonals of X disjoint from ξ(X)

have equal sum. Call thematrixX a restricted constant diagonal sum (abbreviated to RCDS)
doubly stochastic matrix determined by A, and call A the pattern of an RCDS doubly
stochastic matrix. Note that if A is the pattern of an RCDS doubly stochastic matrix, so
is PAQ for permutation matrices P and Q. An analogous assertion holds for X. Our goal
is to investigate and give methods of construction of RCDS doubly stochastic matrices
and their patterns, and some generalizations as discussed above. Note that if A = Jn (the
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n × n matrix of all 1’s) so that ξ(A) = ∅, then 1
n Jn is an RCDS doubly stochastic matrix

determined by A.

Example 1.6: LetA be a (0, 1)-matrix with k 1’s in each row and column. Define the n × n
matrix X so that ξ(X) = ξ(A) and every nonzero entry in X is 1/k, i.e. X = (1/k)A. Then
X ∈ �n and every diagonal disjoint from ξ(X) consists of only entries being 1/k, so that
the diagonal sum is n/k. Therefore, X is the RCDS doubly stochastic matrix determined
by A. It is well known that when A has this form, A contains k pairwise disjoint diagonals,
so this example is of the type considered in Theorem 1.1. Note that all nonzero entries in
X are equal. Clearly, every matrix with this property must have the form of this example.
Below is a specific example with n = 4 and k = 2, where we indicate a diagonal in boldface

A =

⎡⎢⎢⎣
1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

⎤⎥⎥⎦ , X = (1/2)A =

⎡⎢⎢⎣
1/2 1/2 0 0
1/2 0 1/2 0
0 1/2 0 1/2
0 0 1/2 1/2

⎤⎥⎥⎦ .

We also note that one can determine in polynomial time if a given matrix X is an RCDS
doubly stochastic matrix. First, one checks if X is doubly stochastic (trivial), and then one
solves two optimal assignment problems, namely

max
P≤X

P · X and min
P≤X

P · X,

where P ranges through permutation matrices P satisfying P ≤ X. We then check if these
two optimal values coincide.

The remaining part of the paper is organized as follows. In the next section, we give a
characterization of RCDS doubly stochastic matrices and a method for their construction.
A discussion of a strengthening of the RCDS property is given next. In the two sections that
follow, we develop certain classes of RCDS doubly stochastic matrices. In the final section,
we briefly consider the difference of diagonal sums of a doubly stochastic matrix.

Notation: A is a nonnegative matrix (resp., positive matrix), and we write A ≥ O (resp.,
A>0), if each entry in A is nonnegative (resp., positive).

2. Characterization of RCDSmatrices

In this section, we use the duality theoremof linear programming to give a characterization
of RCDS doubly stochastic matrices, which affords a means to construct them.

Theorem 2.1: Let A = [aij] be a fully indecomposable (0, 1)-matrix of size n × n and let
R = (r1, r2, . . . , rn) and S = (s1, s2, . . . , sn) be the row and column sum vectors of A.

(i) Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be real vectors. Define Y = Y(u, v) =
[yij] ∈ Mn by yij = ui + vj whenever aij = 1, and yij = 0 otherwise. Assume that yij >

0 whenever aij = 1 and that all row and column sums of Y are equal to some positive
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number α, i.e.

uiri +
∑
j:aij=1

vj = α (i ≤ n),

vjsj +
∑
i:aij=1

ui = α (j ≤ n).
(2)

Then X = (1/α)Y(u, v) is an RCDS doubly stochastic matrix of A.
(ii) Conversely, assume X is an RCDS doubly stochastic matrix of A. Then X =

(1/α)Y(u, v), as in (i), for some vectors u and v, and α as the common line sum of
Y(u, v).

Proof: Since all row and column sums of Y = Y(u, v) are equal to α, and yij ≥ 0 (i, j ≤
n), X := (1/α)Y is a doubly stochastic matrix. Clearly, ξ(X) = ξ(Y) = ξ(A). Consider
a nonzero diagonal in Y corresponding to the permutation σ = (k1, k2, . . . , kn). The
associated diagonal sum in Y is

dYσ =
n∑

i=1
yi,ki =

n∑
i=1

(ui + vki) =
n∑

i=1
ui +

n∑
i=1

vki =
n∑
i=1

ui +
n∑
i=1

vi

which is independent of σ . Thus, all diagonal sums in Y, and therefore in X, are equal, and
X is an RCDS doubly stochastic matrix of A. This proves (i).

To prove (ii), for the given RCDS matrix X = [xij] consider the linear optimization
problem

minimize
∑
i,j

xijyij

subject to
∑
j
yij = 1 (i ≤ n)

∑
i
yij = 1 (j ≤ n)

yij ≥ 0 (i, j ≤ n).

(3)

Here, we use variables yij only for those (i, j) such that xij 	= 0; the other yij can be assumed
to be 0. It is well-known that the coefficient matrix in (3) is totally unimodular (see [5]), so
there is an optimal solution which is integral; therefore, Y = [yij] is a permutation matrix.
Thus, the optimal value γ in (3) is the minimum diagonal sum in the matrix X; in fact, all
diagonal sums inX equal γ , by assumption, and this optimal assignment problem is solved.
By the duality theorem of linear optimization, γ is also equal to the maximum value in the
dual problem

maximize
∑
i
ui +

∑
j
vj

subject to ui + vj ≤ xij (i, j ≤ n).
(4)
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Here, the constraints are present only for those (i, j) such that xij 	= 0. So, there exists u∗
i ,

v∗
i (i ≤ n) such that

u∗
i + v∗

j ≤ xij (i, j ≤ n) and
∑
i
u∗
i +

∑
j
v∗
j = γ .

To examine the duality relation closer note that if Y = [yij] ∈ �n (so it satisfies the
constraints in (3)), then∑

i,j
xijyij ≥

∑
i,j

(u∗
i + v∗

j )yij =
∑
i
u∗
i

∑
j
yij +

∑
j
v∗
j

∑
i
yij =

∑
i
u∗
i +

∑
j
v∗
j = γ .

(5)
If Y is a permutation matrix, then the left-hand side here is also equal to γ , and therefore
the inequality holds with equality. This means that if yij = 1, then xij = u∗

i + v∗
j (i, j ≤ n).

Since A is fully indecomposable, for every (i, j) outside ξ(A), there exists a permutation
matrix with a 1 in that position. Therefore, xij = u∗

i + v∗
j (i, j ≤ n) as desired. �

We remark that the assumption thatA is fully indecomposable is only used in part (ii) of
the theorem. Moreover, Theorem 2.1 is closely related to Theorems 2.6.3 and 2.6.4 in [6]
where one studies products of diagonals of doubly stochastic matrices. Our result may be
obtained by taking the logarithm of these products. The proofs are quite similar in using
integrality of the polytope of doubly stochasticmatrices and LP duality. However, our proof
is shorter for the main part (ii) due to our analysis of equality in (5).

The construction given in the theorem is illustrated in the next example.

Example 2.2: Let A be the (0, 1)-matrix

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1
1 1

1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎦ .

Choose vectors u and v as indicated below and let yij = ui + vj for each (i, j) 	∈ ξ(A)

u \ v 0 0 1 1 1 1
1 1 2 2
1 1 2 2
2 2 3
2 2 3
2 2 3
2 2 3
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where every line sum is 5. Therefore, by Theorem 2.1, the diagonal sums (avoiding zeros
of A) are equal, in fact equal to 14. The corresponding RCDS doubly stochastic matrix is

X = 1
5

⎡⎢⎢⎢⎢⎢⎢⎣

1 2 2
1 2 2
2 3
2 3

2 3
2 3

⎤⎥⎥⎥⎥⎥⎥⎦ .

Example 2.3: Consider the following RCDS doubly stochastic matrix and its construction
from vectors u and v:

1
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2
2 2

2 2
1 1 2
2 2

2 2
2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

u \ v −1 −1 −1 −1 0 0 0
2 1 1 2
2 2 2
2 2 2
2 1 1 2
3 2 2
3 2 2
3 2 2

Note that here v has some negative components. By adding 1 to the components of u and
subtracting 1 from the components of v, we obtain nonnegative u and v.

Theorem 2.1 may be used to construct classes of RCDS doubly stochastic matrices in
the following way:

(1) Let n ≥ 1, and let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be real vectors. Define
the matrix Y = Y(u, v) = [yij] ∈ Mn by yij = ui + vj and assume that u and v are
chosen so that Y is nonnegative (see remark below).

(2) Choose an n × n (0, 1)-matrix S such that the Hadamard product (that is, entrywise
product) Y ◦ S has constant positive line (row and column) sums, and let α denote
this sum.

(3) Then V = (1/α)Y ◦ S is an RCDS doubly stochastic matrix.

Clearly, the nontrivial part is step 2 which is to select an appropriate S, that is, to select
entries fromY such that all line sums for the selected entries are constant. Then the fact that
V = (1/a)Y ◦ S is an RCDSdoubly stochasticmatrix follows fromTheorem2.1.Moreover,
any such RCDS doubly stochastic matrix may be constructed in this way. Those entries of
Y which are not selected could have been negative without altering conclusion 3 above.

We give an example of this procedure. Let k, t ≥ 1 be integers and consider an n × n
matrix

V = 1
tp

[
tIk tIk · · · tIk

A

]
, (6)

where the block tIk occurs p times, n = kp, and A is an (n − k) × n (0, 1)-matrix.
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We denote the column vector of k 1’s by ek.

Theorem 2.4: Let k, t, p ≥ 1 be integers with t ≤ k, and let n = kp. Define constant vectors
R = tpen−k and S = t(p − 1)en, and let A be a (0, 1)-matrix with row sum vector R and
column sum vector S. Then V in (6) is an RCDS doubly stochastic matrix.

Proof: Let u = (t, t, . . . , t, 1, 1, . . . , 1) ∈ R
n where the first k components are t. Let v be

the zero vector of length n. Then the matrix Y = Y(u, v) (defined above) has n columns,
each equal to u. So every entry in the first k rows of Y is t and all other entries are 1.
Thus, V = (1/α)Y ◦ S where α = tp and S is the (0, 1)-matrix with ones in the positions
of the nonzeros of V. By the procedure above V is an RCDS doubly stochastic matrix.
It only remains to show that a matrix A ∈ A(R, S) exists. Let R = (r1, r2, . . . , rn) and
S = (s1, s2, . . . , sn). Note that t(p − 1) ≤ n − k as n − k = kp − k = (p − 1)k and t ≤ k.
Thus, ri ≤ n and sj ≤ n − k for each i and j. Moreover,

∑
i ri = (n − k)tp = ntp − ktp and∑

j sj = n(p − 1)t. But then the class A(R, S) is nonempty as both R and S are constant
vectors. This may be verified from the Gale–Ryser theorem (see e.g. [7]) as S is majorized
by the conjugate R∗ of R. �

Example 2.5: Let k = 3, t = 2, p = 2 and n = kp = 6. Then the following matrix:

V = (1/4)

⎡⎢⎢⎢⎢⎢⎢⎣

2 0 0 2 0 0
0 2 0 0 2 0
0 0 2 0 0 2
1 1 0 1 1 0
0 1 1 1 0 1
1 0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦
is an RCDS doubly stochastic matrix with a constant diagonal sum 9/4.

Theorem 2.4 shows that RCDS patterns may be complicated, and at least as complicated
as the pattern of (0, 1)-matrices with constant row sums and constant column sums.

We return to the characterization in Theorem 2.1. Let A be a given n × n fully inde-
composable (0, 1)-matrix. LetR(A) = (r1, r2, . . . , rn) and S(A) = (s1, s2, . . . , sn) be the row
sum and column sum vectors of A. Let DR and DS be the diagonal matrices with main
diagonals R(A) and S(A), respectively. Define

Ri(A) = {j : aij = 1}, (i ≤ n) and Cj(A) = {i : aij = 1} (j ≤ n).

Thus, ri = |Ri(A)| and sj = |Sj(A)| for each i and j. In Equation (2) in Theorem 2.1, we
may assume α = 1. This gives

riui +
∑

j∈Ri(A)

vj = 1 (i ≤ n),

sjvj +
∑

i∈Cj(A)

ui = 1 (j ≤ n),
(7)
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which is a linear system of equations with 2n variables ui, vj (i, j ≤ n) and 2n constraints.
Rewriting this system in matrix form gives

Hx = e, where H =
[
DR A
AT DS

]
and x =

[
u
v

]
. (8)

Here, e is the all ones vector (of suitable dimension).
The unexpected observation is that thematrixH is equal to the signless Laplacianmatrix

of the bipartite graph BG(A) whose biadjacency matrix is A. Therefore, a lot is known on
H in terms of spectral properties, e.g. H is positive semidefinite and singular. The vector
w = (e,−e) lies in the null space ofH. Thus, the system (8) hasH as the coefficient matrix,
the right-hand side is all ones, and we look for a solution with a certain nonnegativity
property. We may solve this system using the block structure:

DRu + Av = e, ATu + DSv = e

which gives u = D−1
R (e − Av), so ATD−1

R (e − Av) + DSv = e, i.e.

(ATD−1
R A − DS)v = ATD−1

R e − e.

Wenext discusswhether this systemhas a solution or, equivalently, ifHx = ehas a solution.
The following is the main result on RCDS patterns, based on the discussion above.

Theorem 2.6: Let A be an n × n fully indecomposable (0, 1)-matrix. Then the following
holds :

(i) There exists u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) such that (u, v) is a solution
of the system (8). The solution is unique up to adding a constant to each component in
u and subtracting the same constant from each component in v.

(ii) A is the pattern of an RCDS doubly stochastic if and only if ui + vj > 0 for all (i, j) with
aij = 1, where (u, v) is an arbitrary solution of (8).

Proof: First, as A is fully indecomposable, the bipartite graph BG(A) is connected. Since
H is the signless Laplacian of BG(A), and this graph is connected, it is a known fact that
0 is a simple eigenvalue of H. So H has rank 2n−1. Hx = e has a solution provided that e
lies in the range (column space) of H, so we need to show this. Let L denote the null space
ofH, so L = span{w}where w = (e,−e). Then L is the orthogonal complement of the row
space of H. The row space and the column space are equal, as H is symmetric. But

e · w = n − n = 0.

Thus e is in L⊥, and it follows that e lies in the range of H. Hence Hx = e has a solution,
and a general solution is obtained by adding some multiple of the vector w. This shows (i).

Next, assume A is a pattern of an RCDS. Then, by Theorem 2.1 and the discussion
above there exists a solution x = (u, v) of Hx = e. By (i) in this theorem, the solution is
unique up to adding a multiple of w = (e,−e) (w spans the null space of H), but this does
not change the value of xij = ui + vj. Thus, we must have that xij > 0 (from the initial
assumption). The converse implication follows directly fromTheorem 2.1, and the proof is
complete. �
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Corollary 2.7: Let A be an n × n fully indecomposable, symmetric (0, 1)-matrix which is the
pattern of an RCDS doubly stochastic matrix. Then there exists a symmetric, RCDS doubly
stochastic matrix X with pattern A, and a vector w = (w1,w2, . . . ,wn) such that X = A ◦ W
where W = [wij] with wij = wi + wj (1 ≤ i, j ≤ n).

Proof: Let Z be an RCSD doubly stochastic matrix with pattern A. Since A is symmetric,
ZT is also an RCSD doubly stochastic matrix with pattern A. Hence X = Z + ZT is a sym-
metric, RCSD doubly stochastic matrix with pattern A. By Theorem 2.6, there exists u =
(u1, u2, . . . , un) and v = (v1, v2, . . . , vn) such that, with the matrix Y(u, v) = [yij] where
yij = ui + vj (for all i, j),X = A ◦ Y(u, v). But thenwe also haveX = A ◦ Y(u+v

2 , u+v
2 ). �

IfA is fully indecomposable, we have a polynomial-time algorithm for deciding ifA is an
RCDS pattern: One first finds a (near-unique) solution x = (u, v) of Hx = e. An efficient
way of finding x is by solving

(ATD−1
R A − DS)v = ATD−1

R e − e

and defining u = D−1
R (e − Av). Next, we simply check if xij = ui + vj > 0 for (i, j) with

aij = 1. If these strict inequalities hold, then A is an RCDS pattern; otherwise, it is not.
We remark that this algorithm may also be used to find some ‘random’ RCDS patterns.

One generates a random (0, 1)-matrix A and runs the algorithm above. Then, even if A is
not an RCDS pattern it may happen that the resulting matrix X is doubly stochastic, but
its support is contained in the support of A. This procedure has been used in the example
below. Finally, we note that the rank ofH satisfies n ≤ rank(H) ≤ 2n − 1 where the lower
bound is obtained when A is a permutation matrix.

Example 2.8: Let

A =

⎡⎢⎢⎢⎢⎣
1 0 0 1 1
0 1 1 1 0
1 0 0 1 1
1 1 1 0 0
1 0 1 1 0

⎤⎥⎥⎥⎥⎦ .

Using the procedure above we compute v and u: v = (0, 0.3, 0.1, 0, 0.25) and u =
(0.25, 0.2, 0.25, 0.2, 0.3). From this, we obtain

X =

⎡⎢⎢⎢⎢⎣
0.25 0 0 0.25 0.5
0 0.5 0.3 0.2 0

0.25 0 0 0.25 0.5
0.2 0.5 0.3 0 0
0.3 0 0.4 0.3 0

⎤⎥⎥⎥⎥⎦
which is an RCDS doubly stochastic matrix corresponding to the pattern A.
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Example 2.9: A1 and A2 below are some RCDS patterns found by the procedure above.

A1 =

⎡⎢⎢⎢⎢⎣
1 1 1 1
1 1 1 1

1 1 1
1 1

1 1 1

⎤⎥⎥⎥⎥⎦ , A2 =

⎡⎢⎢⎢⎢⎣
1 1

1 1 1 1
1 1 1
1 1

1 1

⎤⎥⎥⎥⎥⎦ .

Next, recall the fully indecomposable matrix A in Example 1.5; we showed that it is not an
RCDS pattern. When the procedure above is applied to the matrixA, we obtain the doubly
stochastic matrix X below. Since entry (1, 1) is zero in X, this proves that A is not an RCDS
pattern, see Theorem 2.6. We can also conclude that the pattern of X is RCDS, and this is
the matrix A′ mentioned in Example 1.5.

A =

⎡⎢⎢⎣
1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1

⎤⎥⎥⎦ , X =

⎡⎢⎢⎣
1/3 1/3 1/3

1/3 2/3
1/3 2/3
1/3 2/3

⎤⎥⎥⎦ .

3. Compatible classes of permutationmatrices

In view of our earlier discussion, we now consider, primarily through examples, the follow-
ing general problem (cf. Lemma 1.4). LetA be an n × n fully indecomposable (0, 1)-matrix
and let P(A) be the set of permutation matrices P ≤ A. Thus, F(A) = {X : X ≤ A, X ∈
�n} is a face of �n whose set of extreme points is P(A). The cardinality of P(A), the
number of extreme points of P(A), equals the permanent, per(A), of A.

The setP(A) is a compatible class of permutationmatrices provided that the scalar prod-
uctQ ·∑P∈P(A) P is a constant γ (A) for allQ ∈ P(A). We also describe this by saying that
A has compatible permutation support (abbreviated to CPS). If A has CPS, then the matrix

Â = 1
perA

∑
{P : P ∈ P(A)} (9)

is a doubly stochastic matrix with constant diagonal sums avoiding the zero set ξ(A) of
A. Thus, the CPS property determines a subclass of RCDS doubly stochastic matrices and
provides another possible way to construct such matrices.

In our discussion that follows, it is usually more convenient to drop the normalizing
factor 1

per(A)
and to use instead of (9) the matrix

Â =
∑

{P : P ∈ P(A)}. (10)

In order that P(A) be a compatible class of permutations, it is necessary and sufficient
that the sum of the permanental minors of A corresponding to the 1’s of each permutation
matrix P ≤ A equals a constant γ (A) independent of the permutation matrix P. This is
because the permanental minor of a 1 in A counts the number of permutation matrices
Q ≤ Awhich use that 1. Hence ifA has CPS, then for each permutation σ = (j1, j2, . . . , jn)
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of {1, 2, . . . , n} with corresponding permutation matrix Pσ ≤ A,

γ (A) =
n∑

i=1
perA(i | ji), (11)

where perA(i | ji) is the permanent of the matrix obtained from A by deleting row i and
column ji. Thus, the matrix in (9) is an RCDS doubly stochastic matrix if and only if the
sumof the permanentalminors of the 1’s corresponding to each permutationmatrixP ≤ A
is constant. We remark here that Bapat [8] proved that if an n × n fully indecomposable
(0, 1) -matrix A satisfies that the permanental minors of all entries (both 0’s and 1’s) are
constant, then A = Jn or (after row and column permutations) A = In + Pn, where Pn is
the permutation matrix corresponding to the permutation (2, 3, . . . , n, 1).

Example 3.1: The following two examples of RCDS doubly stochasticmatrices come from
simplex faces of the polytope �7 using the construction given in (9):

1
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2
2 2

2 2
1 1 2
2 2

2 2
2 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

1
9

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 3
1 1 1 6
1 1 1 6
1 1 1 6

3 6
3 6
3 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The first has the constant diagonal sum 13
4 ; the second has the constant diagonal sum 7

3 .
Both matrices are symmetric. For instance, for the first matrix u = (1, 1, 1, 1, 2, 2, 2) and
v = (0, 0, 0, 0, 2, 2, 2) work as in Theorem 2.6.

Example 3.2: We consider again the matrix A in Example 2.8, repeated below. The per-
manental minors of its 1’s are given in thematrixM where ∗ corresponds to a permanental
minor of a 0 and so is not included in our calculations:

A =

⎡⎢⎢⎢⎢⎣
1 0 0 1 1
0 1 1 1 0
1 0 0 1 1
1 1 1 0 0
1 0 1 1 0

⎤⎥⎥⎥⎥⎦ , M =

⎡⎢⎢⎢⎢⎣
3 ∗ ∗ 3 6
∗ 6 4 2 ∗
3 ∗ ∗ 3 6
2 6 4 ∗ ∗
4 8 4 4 ∗

⎤⎥⎥⎥⎥⎦ .

M has diagonal sums of 3+ 4+ 6+ 6+ 4 = 23 and 6+ 6+ 3+ 2+ 4 = 21.HenceM does
not have equal diagonal sums avoiding the 0’s of A. While A is the nonzero pattern of an
RCDS doubly stochastic matrix, A does not have CPS. We conclude that CPS is a stronger
property than RCDS.

There is a cubic bipartite graph G of order 54 contained in the complete bipartite graph
K27,27, called the Gray graph, whose automorphism group of cardinality 1296 acts transi-
tively on each set of the bipartition (but not on the complete vertex set) and transitively on
the edge set (an edge-transitive graph but not a vertex-transitive graph). The Gray graph is
the smallest cubic edge-transitive graph which is not vertex-transitive [9].
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Figure 1. The Gray Graph G (fromWikipedia, en.wikipedia.org).

LetA be the 27 × 27 biadjacencymatrix ofGwith suitable labelling of its vertices. Using
Figure 1, we have constructed A as shown in Figure 2.

Since the automorphism group of G is edge-transitive, every edge must be in the same
number of perfectmatchings since perfectmatchings are preserved under automorphisms.
Since the perfect matchings containing an edge correspond to permutation matrices P ≤
AG containing the 1 corresponding to the edge, each 1 is in the same number of permu-
tation matrices P ≤ AG. This implies that the permanental minors of the 1’s of AG are all
equal. Thus,AG hasCPS and, in particular, ÂG (see (9)) is a RDCSdoubly stochasticmatrix,
and indeed has a much stronger property.

There are other classes of n × n (0,1)-matrices whose 1’s have constant permanental
minors. The matrices Jn and In + Pn as previously discussed (all of whose entries, not just
the entries equal to 1) have constant permanentalminors. The n × n (0,1)-matrix Jn − In of
all 1’s except for 0’s on the main diagonal has all the permanental minors of its 1’s equal to
the permanent of an (n − 1) × (n − 1) (0, 1)-matrix with exactly (n − 2) 0’s where no two
of these 0’s belong to the same row or column. The permanental minors of the 0’s are also
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Figure 2. Adjacency matrix AG of the Gray graph G.

constant but a different constant if n ≥ 4. Thus, 1
Dn

(Jn − In) is a RCDS doubly stochastic
matrix where Dn is the permanent of Jn − In (the nth derangement number).

In general, simplex faces of the polytope �n correspond to n × n fully indecomposable
(0,1)-matrices which, after permutations of rows and columns, have the form

A =
[
A3 A1
A2 O

]
, (12)

where, for some p with 0 ≤ p ≤ n − 2, A3 is an (n − p) × (p + 1) nonzero matrix, and A1
and AT

2 are vertex-edge incidence matrices of trees T1 and T2 and so have exactly two 1’s
in each column (see Theorem 3.5 of [4]). Note that for Example 3.1, the 1’s inA3 are in the
rows and columns determined by the pendent vertices ofT1 andT2, respectively. Each such
row and column of A3 must contain at least one 1 in order that A be fully indecomposable.
The number of permutations P ≤ A equals the number of 1’s in A3 with each such 1 on
exactly one such permutation matrix P. Let there be k 1’s in A3 so that there are exactly
k permutation matrices P1,P2, . . . ,Pk with the Pi ≤ A. Then X = P1 + P2 + · · · + Pk is a
nonnegative integral matrix with pattern A and all its row and column sums equal k. Thus
1
kX is a doubly stochastic matrix.

Consider a simplex face given by (12) in whichA3 has at least one 1 in those rows corre-
sponding to the pendent vertices of T1 and in those columns corresponding to the pendent
vertices of T2, and in no other positions. Then A is fully indecomposable. Let A∗

1 be the
matrix obtained from A1 by including as a new first column, the column vector which has
1’s exactly in those rows in which A3 has a 1. Let A∗

2 be defined in a similar way using
the columns of A3. Then A∗

1 and A∗T
2 are square, vertex-edge incidence matrices of loopy
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trees with loops on exactly the pendent vertices of T1 and T2, respectively. Then A has
CPS if and only if the permanental minors of the new 1’s in A∗

1 are constant and similarly
for A∗

2.

4. Tridiagonal RCDS patterns and trees

Let A be an n × n (0, 1)-matrix. Recall that F(A) = {X ∈ �n : X ≤ A} is the face of the
polytope�n determined byA and consists of all those doubly stochasticn × nmatrices that
have zeros wherever A has. If A is fully indecomposable, then (see e.g. [10]) the dimension
of this face is σ(A) − 2n + 1 where σ(A) is the number of ones in A. For a matrix A, we
let ρ(A) denote its term rank.

Lemma 4.1: Let X be a an RCDS in �n. Let X′ be a 2 × 2 submatrix such that X′ > 0
(entrywise) and its complementary submatrix X′′ satisfies ρ(X′′) = n − 2. Then the two
diagonals in X′ have the same sum.

Proof: This follows from the fact that a diagonal in X′′ can be combined with any of the
two diagonals in X′ to get a diagonal of X. �

Lemma 4.1 gives a necessary condition for a matrix to be an RCDS doubly stochastic
matrix. In a certain situation, this condition is also sufficient, as we now discuss.

Tridiagonal doubly stochastic matrices were studied in [11], and a number of results
on this special face �t

n of �n were established. Any matrix X = [xij] ∈ �t
n is symmetric

and determined by the entries on the superdiagonal, xi = xi,i+1 (i = 1, 2, . . . , n − 1). We
write X = X(x) to indicates this dependency. For instance, for n = 5, the general form of
a tridiagonal matrix doubly stochastic matrix is

X(x) =

⎡⎢⎢⎢⎢⎣
1 − x1 x1
x1 1 − x1 − x2 x2

x2 1 − x2 − x3 x3
x3 1 − x3 − x4 x4

x4 1 − x4

⎤⎥⎥⎥⎥⎦ ,

where the remaining entries are zero.

Theorem4.2: LetA = [aij] be the tridiagonal (0, 1)-matrix of order nwith aij = 1whenever
|i − j| ≤ 1, and aij = 0 otherwise. Then A is the pattern of an RCDS doubly stochastic matrix
X, and X = X(x) where x is uniquely determined by

xi−1 + 4xi + xi+1 = 2 (i ≤ n) (13)

and x0 = xn+1 = 0. The solution x is such that X(x) is doubly stochastic.

Proof: Let X = [xij] = X(x) ∈ �t
n and assume that X is an RCDS of A. Then each entry

xij where |i − j| ≤ 1 is positive, or equivalently,

xi > 0 (i ≤ n − 1), xi−1 + xi < 1 (i ≤ n), (14)

where x0 = xn = 0. The only positive 2 × 2 submatrices inX are those containing row and
column i and i+ 1 (i = 1, 2, . . . , n − 1). For each of these submatrices, the complementary



LINEAR ANDMULTILINEAR ALGEBRA 17

submatrix has full term rank (as the main diagonal contains nonzeros). Therefore, as X is
an RCDS matrix, by Lemma 4.1, the following equations must hold:

xi + xi = (1 − xi−1 − xi) + (1 − xi − xi+1), (i ≤ n) (15)

which gives (13) . The coefficient matrix C corresponding to the linear Equations (13) is
strictly diagonally dominant, so the system has a unique solution x. Below, we show that
x also satisfies (14). Moreover, X = X(x) is in fact an RCDS of A which is seen as follows.
Consider the identity matrix and let α be its sum in X. Any other permutation matrix P
with ξ(P) ⊆ ξ(A) is obtained by replacing some 2 × 2 submatrices being I2 by L2, see [11].
However, each such interchange does not change the diagonal sum due to (15). Thus all
nonzero diagonals in X have the same sum.

It only remains to show that x satisfies (14). This is done by solving (13) , using Gaussian
elimination. Let C = [cij] be the coefficient matrix, i.e. cii = 4 (i ≤ n), ci,i+1 = ci+1,i = 1
(i = 1, 2, . . . , n − 1), and cij = 0 otherwise. Also let b be the n-vector with all components
being 2. The algorithm is: start with the augmented matrix [C b] , and for i = 1, 2, . . . , n,
(a) multiply row i by the inverse of the (current) entry (i, i), and then, if i<n, (b) subtract
that row from the next. Let F = [fij] be the resulting n × (n + 1) matrix. Then fii = 1, and
the remaining nonzeros are in positions (i, i + 1) (i<n) and in the final column. Let hi be
the value in position (i, i) of E right after row i−1 has been subtracted from row i. We then
get successively h1 = 4, f1,n+1 = 1/2, and

hi = 4 − 1/hi−1 (i = 2, 3, . . . , n),

fi,i+1 = 1/hi (i = 1, 2, . . . , n − 1),

fi,n+1 = (2 − fi−1,n)/h(i) (i = 2, 3, . . . , n).

(16)

Moreover, the solution x is found by back-substitution

xi = fi,n+1 − fi,i+1xi+1

= (2 − fi−1,n+1 − xi+1)/h(i) (i = n, n − 1, . . . , 1),
(17)

where xn+1 = 0.

Claim 1: 3.7 < hi < 3.75 (i = 2, 3, . . . , n). Proof of Claim 1: The function g(h) = 4 −
1/h is strictly increasing for h>0 and a computation shows 3.7 < g(3.7) < g(3.75) < 3.75.
The claim then follows by induction.

Claim2: 0.4 ≤ fi,n+1 ≤ 0.5 and 0.2 < xi < 0.5 (i = 1, 2, . . . , n). Proof ofClaim 2:Assume
0.4 ≤ fi,n+1 < 0.5 for some i. From (16) and Claim 1

fi,n+1 = (2 − fi−1,n)/h(i) ≤ (2 − 0.4)/3.7 = 0.4324 < 0.5

and

fi,n+1 = (2 − fi−1,n)/h(i) ≥ (2 − 0.5)/3.75 = 0.4.

Thus, by induction, 0.4 ≤ fi,n+1 ≤ 0.5 (i = 1, 2, . . . , n). Assume 0.2 < xi+1 < 0.5 for some
i, then

xi = (2 − fi−1,n+1 − xi+1)/h(i) ≤ (2 − 0.4 − 0.2)/3.7 = 0.3784 < 0.5
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and

xi = (2 − fi−1,n+1 − xi+1)/h(i) ≥ (2 − 0.5 − 0.5)/3.75 = 0.2667 > 0.2.

By induction (backward on i), 0.2 < xi < 0.5 (i = 1, 2, . . . , n), and Claim 2 is proved.
Finally, Claim 2 shows that x satisfies (14), so the matrix X(x) is doubly stochastic, as
desired.

�

One can show further properties of the solution x of the linear system (13), but this is not
done here. In fact, the exact solution may be found by solving this as a linear second-order
difference equation. Note, however, that the modified system where the first and last com-
ponent on the right-hand side is changed to 5/6, has the solution x′ = (1/3, 1/3, . . . , 1/3).
The solution x of (13) is close to x′ (except near ‘the two ends’).

In an attempt to generalize the above result for tridiagonal matrices, we introduce the
following notion. Let T be a tree on vertices 1, 2, . . . , n and let T∗ be a loopy tree obtained
from T by putting a loop at each pendent vertex and possibly also at other vertices. Let
A = A(T∗) = [aij] be the n × n adjacency matrix of T∗ with 1’s on the main diagonal cor-
responding to the loops. Note that A is a symmetric (0,1)-matrix. When T is a path on n
vertices we obtainA as in Theorem 4.2 by putting a loop at each vertex.With loops allowed,
a perfect matching of T∗ is a collection of edges (including loops) that are vertex disjoint
and meet all vertices. Perfect matchings of T∗ are in one-to-one correspondence with the
permutation matrices P ≤ A and thus their number is the permanent of A.

We have the following lemma.

Lemma 4.3: Let A be an n × n symmetric (0, 1)-matrix, and let G be the loopy graph whose
adjacency matrix is A. Then every permutation matrix P ≤ A is symmetric, that is, cor-
responds to a perfect matching of G, if and only if G does not have any cycles of length
k ≥ 3.

Proof: If there are no permutation matrices P ≤ A, then the lemma is vacuously true.
Assume that there is a permutation matrix P ≤ A. If P is the identity matrix In, then P
is symmetric. Now assume that P 	= In. Let the set of vertices of G be {1, 2, . . . , n} . Then
P determines a bijection f : {1, 2, . . . , n} → {1, 2, . . . , n} such that (a) {i, f (i)} is an edge of
G for all i and (b) there exists a k such that f (k) 	= k. If P is not symmetric, there exists
i1 	= i2 such that f (i1) = i2 and f (i2) 	= i1, i2. Since f is a bijection, there exists i3 	= i1, i2
such that f (i2) = i3. Continuing like this we see that, since there are only finitely many ver-
tices, there exists distinct i1, i2, . . . , ik with k ≥ 3 such that f (ij) = ij+1 for 1 ≤ j ≤ k − 1
and f (ik) = i1. This implies thatG contains a cycle of length k ≥ 3 that gives a permutation
cycle of length k ≥ 3 of P and hence P is not symmetric. The converse is clear since if P has
a cycle of length k ≥ 3, then P is not symmetric. �

It follows from Lemma 4.3 that if X is an n × n RCDSmatrix and T∗ is a loopy tree with
ξ(X) = ξ(A(T∗)), then all diagonals of X avoiding its 0’s are symmetric. But not all such
X constructed as in (9) are RCDS matrices.
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Example 4.4: Let T be the tree with vertices 1, 2, . . . , 8 and edges

{1, 2}, {1, 3}, {1, 4}, {2, 5}, {2, 6}, {4, 7}, {4, 8}}.

Let T∗ be the loopy tree obtained by putting loops only at the pendent vertices 3, 5, 6, 7,
8, and let A be the adjacency matrix of T∗. Let X be the sum of the permutation matrices
P ≤ A. Then

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 4 2
2 3 3
4 4
2 3 3

3 5
3 5

3 5
3 5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then X has two diagonals neither of which contain any 0’s and with different sums

5 + 5 + 2 + 2 + 4 + 3 + 3 + 5 = 29 and 5 + 3 + 3 + 4 + 4 + 3 + 3 + 5 = 30.

Now, let A be the adjacency matrix

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 1 1
1 1
1 1

1 1
1 1

⎤⎥⎥⎥⎥⎥⎥⎦
of a loopy tree T∗ with five perfect matchings. Then

X = 1
5

⎡⎢⎢⎢⎢⎢⎢⎣

1 2 2
1 2 2
2 3
2 3

2 3
2 3

⎤⎥⎥⎥⎥⎥⎥⎦
is an RCDS doubly stochastic with restricted diagonal sums equal to 14

5 .

Example 4.5: Let n ≥ 2 and let xi ≥ 0 (2 ≤ i ≤ n). Define the symmetric n × n matrix
Vn = [vij] by v1i = vi1 = xi and vii = 1 − xi (2 ≤ i ≤ n), and x11 = 1 −∑n

i=2 xi, while all
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other entries are zero. For instance, when n = 5 the matrix is

V5 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 −

5∑
i=2

xi x2 x3 x4 x5

x2 1 − x2
x3 1 − x3
x4 1 − x4
x5 1 − x5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Vn is a doubly stochastic matrix when xi ≥ 0 (2 ≤ i ≤ n) and
∑n

i=2 xi ≤ 1. If all these
inequalities are strict, the graph of the matrix is a star with edges {1, i} (2 ≤ i ≤ n) and a
loop in every vertex i. Assume that X is an RCDS matrix. By Lemma 4.1, the following
equations must hold:

xi + xi = (1 − xi) +
(
1 −

n∑
k=2

xk

)
, (2 ≤ i ≤ n)

or equivalently

4xi +
∑
k	=i

xk = 2, (2 ≤ i ≤ n).

The unique solution is xi = 2/(n + 2) (2 ≤ i ≤ n). However,
∑n

i=2 xi = 2(n − 1)/(n + 2)
which is≤ 1 if and only if n ≤ 4. Thus, whenn ≥ 5, the correspondingmatrix is not doubly
stochastic (the entry in position (1, 1) is negative) and this proves that there is no RCDS
doubly stochastic matrix with this pattern. The remaining cases n ≤ 4 correspond to the
following matrices:

V2 =
[
1/2 1/2
1/2 1/2

]
, V3 =

⎡⎣1/5 2/5 2/5
2/5 3/5
2/5 3/5

⎤⎦ , V4 =

⎡⎢⎢⎣
0 1/3 1/3 1/3
1/3 2/3
1/3 2/3
1/3 2/3

⎤⎥⎥⎦
and it is easy to check that each of these is an RCDS doubly stochastic matrix.

To summarize, we have shown that when the (loopy) tree T is a path, the corresponding
adjacency matrix A is the pattern of a RCDS doubly stochastic, while when T is a star, A is
not an RCDS pattern for n ≥ 5. Moreover, we gave two other trees, in either of these two
categories. Based on this, one might guess that the loopy trees that correspond to RCDS
patterns must satisfy some constraint on the maximum degree. It is an open question to
characterize the loopy trees that correspond to RCDS patterns.

5. Further classes of RCDSmatrices

From Theorem 1.2, we immediately obtain the following result.

Corollary 5.1: The only RCDS doubly stochastic matrix without any zeros is (1/n)Jn.
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Proof: We give an alternative proof of this corollary without applying Theorem 1.2. Let
A = [aij] be a RCDS doubly stochastic matrix with no zeros. Consider a 2 × 2 submatrix
B of A. By Lemma 4.1, and as A has no zeros, the two diagonals in B have the same sum.
Let i ≤ n and assume aij = aik for some j 	= k. Then column j and column kmust be equal.
Assume A 	= (1/n)Jn. Since A is doubly stochastic, at most n−2 columns are equal. Con-
sider two unequal columns, say columns j and j′. Then aij 	= ai,j′ (i ≤ n). Then there are
i, i′ such that aij > aij′ and ai′j < ai′j′ . So, in the submatrix of A consisting of rows i, i′ and
columns j, j′, we have

aij + ai′j′ > aij′ + ai′j,

a contradiction. This shows that the only possibility is A = (1/n)Jn. �

We next identify another class of RCDS doubly stochastic matrices. Let r, s and n be
positive integers satisfying s< r<n, and define the matrix X = X(r,s,n) = [xij] ∈ Mn by

xij =

⎧⎪⎪⎨⎪⎪⎩
1/r (i ≤ r, j ≤ s),
(r − s)/(r(n − s)) (i ≤ r, s < j ≤ n),
0 (r < i ≤ n, j ≤ s),
1/(n − s) (r < i ≤ n, s < j ≤ n).

(18)

Proposition 5.2: X(r,s,n) is an RCDS doubly stochastic matrix for each s< r<n.

Proof: All entries of X = X(r,s,n) are nonnegative. For each j ≤ s the j’th column sum is
r · (1/r) = 1, and for each s < j ≤ n the j’th column sum is

r · (r − s)/(r(n − s)) + (n − r) · 1/(n − s) = (r − s + n − r)/(n − s) = 1.

Next, for each i ≤ r the i’th row sum is

s · (1/r) + (n − s) · (r − s)/(r(n − s)) = (s + r − s)/r = 1.

while for r < i ≤ n the i’th row sum is (n − s) · (1/(n − s)) = 1. Therefore, X is doubly
stochastic.

Consider a diagonal D in X avoiding zeros. From the first s columns it contains s times
the entry 1/r. NextD contains additionally r−s entries in the r first rows and each such entry
must be in the last (n − s) columns and is therefore equal to (r − s)/(r(n − s)). Finally, D
contains n−r additional entries in the last n−s columns but from the last n−r rows. Each
such entry is 1/(n − s). Thus, the diagonal D contains

1/r (s times), and (r − s)/(r(n − s)) ((r − s) times), and 1/(n − s) ((n − r) times).

So, all diagonals contain exactly the same numbers, and their sums are equal. This shows
that X is an RCDS doubly stochastic matrix. �

Proposition 5.2 provides a construction of a fully indecomposable n × n RCDS matrix
whose zeros form a p × q submatrix for any positive p and q with p + q ≤ n − 1.
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Example 5.3: Consider the matrix X = X(3,2,6) ∈ �6 given by

X =

⎡⎢⎢⎢⎢⎢⎢⎣

1/3 1/3 1/12 1/12 1/12 1/12
1/3 1/3 1/12 1/12 1/12 1/12
1/3 1/3 1/12 1/12 1/12 1/12
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4
0 0 1/4 1/4 1/4 1/4

⎤⎥⎥⎥⎥⎥⎥⎦ .

Any diagonal avoiding zerosmust contain the entries 1/3, 1/3 (from the first two columns),
1/12 (fromone of the first three rows), and 1/4, 1/4 and 1/4 (from three of the last columns).

The class discussed in the previous proposition can be extended to matrices with stair-
case pattern. A matrix is constant if all entries are equal (so it is a multiple of the all ones
matrix). Let k ≥ 3. Let X be a n × nmatrix of the form

X =

⎡⎢⎢⎢⎢⎢⎣
X1 X2

X3 X4
X5 X6

. . . . . .
Xk Xk+1

,

⎤⎥⎥⎥⎥⎥⎦ (19)

where Xi (i ≤ k + 1) are constant matrices and open space indicates a zero matrix. We
permit Xk+1 to be void. The constant associated with Xi is denoted by c(Xi) (i ≤ k + 1), so
Xi = c(Xi)J.We callX a zig–zagmatrix. LetXi have dimension ri × si (i ≤ k + 1). Consider
the following conditions on the dimensions:

t∑
i=1

si <

t∑
i=1

ri <

t+1∑
i=1

si (t ≤ k). (20)

Example 5.4: The following matrix X is a zig–zag doubly stochastic matrix:

X =
⎡⎣X1 X2

X3 X4
X5 X6

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1/2 1/4 1/4 0 0 0
1/2 1/4 1/4 0 0 0
0 1/4 1/4 1/4 1/4 0
0 1/4 1/4 1/4 1/4 0
0 0 0 1/4 1/4 1/2
0 0 0 1/4 1/4 1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Theorem 5.5: Let X be a doubly stochastic zig-zag matrix satisfying (19) and (20). Then X
is an RCDS matrix.

Proof: Consider a diagonal D in X with no zeros. Since r1 > s1, we get c(X1) = 1/r1 and
D contains one entry from each of the first s1 columns of X. So, D has s1 entries from
X1. Moreover, as s1 < r1 < s1 + s2, D contains the remaining r1 − s1 entries in the r1 first
rows in the last (n − s1) columns, i.e. D has r1 − s1 entries in X2, all equal to c(X2). The
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remaining s2 − (r1 − s1) = s1 + s2 − r1 > 0 entries that D contains in the columns in X
corresponding to X2 must all lie in X3. This again implies that D has a fixed number of
entries in X4, etc. So, continuing like this, any diagonal contains a fixed number of entries
in Xi (i ≤ k). Therefore each such diagonal contains the same numbers, and then clearly
their sums are equal. �

We proceed and identify a large class of RCDS matrices. They are constructed inspired
by the procedure after Theorem 2.1. Let Ak,n be the class of n × n (0, 1)-matrices with k
ones in every row and column. Consider a n × n (0, 1)-matrix

A = [aij] =
[
A1 A2
A3 A4

]
(21)

where each of the blocksAi has size p × p (i ≤ 4) so n = 2p. Assume thatAi ∈ Aki,p where
ki ≤ p (i ≤ 4).

Now, let u = (ui) = (a1, . . . , a1, a2, . . . , a2) and v = (vj) = (b1, . . . , b1, b2, . . . , b2)
where the first p components are equal, in each of these vectors. LetX′ = [x′

ij] be the n × n
matrix where x′

ij = ui + vj when aij = 1, and x′
ij = 0 otherwise (i, j ≤ n). The i’th row sum

in X′ is

ri(X′) =
{
k1(a1 + b1) + k2(a1 + b2) (i ≤ p),
k3(a2 + b1) + k4(a2 + b2) (i > p)

and the j’th column sum in X′ is

sj(X′) =
{
k1(a1 + b1) + k3(a2 + b1), (j ≤ p),
k2(a1 + b2) + k4(a2 + b2) (j > p).

We want all these four sums to be equal; this gives three equations where one is redundant.
By some simplification, we get the equivalent system

k1(a1 + b1) = k4(a2 + b2),
k2(a1 + b2) = k3(a2 + b1).

(22)

The next theorem is obtained by finding a solution to these two equations.

Theorem 5.6: Let A = [aij] be as in (21) where Ai ∈ Aki,p and ki ≤ p (i ≤ 4) satisfy k1 +
k4 = k2 + k3. Let X′ = [x′

ij] be the n × n matrix where x′
ij > 0 precisely when aij = 1 and

x′
ij =

⎧⎪⎪⎨⎪⎪⎩
k4, (i, j ≤ p),
k3, (i ≤ p, j > p),
k2, (i > p, j ≤ p),
k1, (i > p, j > p).

Define X = (1/(k1k4 + k2k3)) · X′. Then X is an RCDS doubly stochastic matrix and A is
the corresponding RCDS pattern.
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Proof: Equation (22) is a linear system of two equations in four unknows a1, a2, b1, b2.
One way to find a solution is to solve (if possible)

a1 + b1 = k4, a2 + b2 = k1, a1 + b2 = k3, a2 + b1 = k2

or

a1 = k4 − b1, a2 = k1 − b2, (k4 − b1) + b2 = k3, (k1 − b2) + b1 = k2.

The last two equations give

b2 − b1 = k3 − k4, b2 − b1 = k1 − k2

which is consistent as k1 + k4 = k2 + k3. Choose

b1 = 0, b2 = k3 − k4, a1 = k4, a2 = k2.

This is a solution of (22). The correspondingmatrixX′ is then as described in the theorem,
and, by the discussion before the theorem, all row and column sums inX′ are equal to some
numberα.We computeα = k1k4 + k2k3. Therefore,X = (1/α)X′ is doubly stochastic and
has the same pattern asX. Finally, by Theorem2.1,X has all diagonals sums that avoid zeros
in A equal, so the conclusion of the theorem follows. �

Note that it should not be difficult to find all solutions of the (22), and possible more
RCDS patterns.

Example 5.7: Let k1 = 1, k2 = 2, k3 = 3, k4 = 4, p = 5 and n = 2p = 10. Then, by
Theorem 5.6, the following matrix is an RCDS doubly stochastic matrix

X = (1/10)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 3 3
4 3 3

4 3 3
4 3 3

4 3 3
2 2 2 1 1 1 1

2 2 2 1 1 1 1
2 2 2 1 1 1 1

2 2 2 1 1 1 1
2 2 2 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

6. The diagonal width

To conclude, we mention a generalization of the concept of having equal diagonal sums.
Let X ∈ �n. Define the diagonal width DW(X) of X by

DW(X) = max{dXP : P ∈ Pn, ξ(X) ⊆ ξ(P)} − min{dXQ : Q ∈ Pn, ξ(X) ⊆ ξ(Q)}. (23)

This is themaximumdifference between twodiagonal sums inX, where the diagonals avoid
the zeros of X. Thus, X is an RCDS (doubly stochastic matrix) if and only if DW(X) = 0.
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The following result characterizes DW(X), and may be used to analyse the diagonal
width. The proof uses the duality ideas in the proof of Theorem 2.1.

Theorem 6.1: Let X ∈ �n. Then

DW(X) = θ∗(X) − θ∗(X), (24)

where

θ∗(X) = min

⎧⎨⎩∑
i
ui +

∑
j
vj : ui + vj ≥ xij ((i, j) 	∈ ξ(X))

⎫⎬⎭ ,

θ∗(X) = max

⎧⎨⎩∑
i
ui +

∑
j
vj : ui + vj ≤ xij ((i, j) 	∈ ξ(X))

⎫⎬⎭ .

Proof: Recall from the proof of Theorem 2.1 that the linear optimization problem

minimize
∑
i,j

xijyij

subject to
∑
j
yij = 1 (i ≤ n)

∑
i
yij = 1 (j ≤ n)

yij ≥ 0 ((i, j) 	∈ ξ(X))

(25)

has optimal valuemin{dXP : P ∈ Pn, ξ(X) ⊆ ξ(P)}, theminimumdiagonal sum inX avoid-
ing the zeros of X. Here, there is a variable yij for each (i, j) 	∈ ξ(X), i, j ≤ n. Moreover, by
the duality theorem

min{dXP : P ∈ Pn} = θ∗(X),

where θ∗(X) is the optimal value of the dual problem

maximize
∑
i
ui +

∑
j
vj

subject to ui + vj ≤ xij ((i, j) 	∈ ξ(X)).
(26)

We use this duality relation to find an expression for max{dXP : P ∈ Pn}:
max{dXP : P ∈ Pn}

= max{X · P : X ∈ �n}
= −min{(−X) · P : X ∈ �n}

= −max

⎧⎨⎩∑
i
ui +

∑
j
vj : ui + vj ≤ −xij ((i, j) 	∈ ξ(X))

⎫⎬⎭
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= −max

⎧⎨⎩−
∑
i

(−ui) +
∑
j

(−vj) : (−ui) + (−vj) ≥ xij ((i, j) 	∈ ξ(X))

⎫⎬⎭
= min

⎧⎨⎩∑
i
ui +

∑
j
vj : ui + vj ≥ xij ((i, j) 	∈ ξ(X))

⎫⎬⎭
= θ∗(X)

by a change of variables. This gives (24). �

Example 6.2: Let X ∈ �2 so

X =
[
1 − α α

α 1 − α

]
.

Assume α ≥ 1/2 (by symmetry). If α = 1, clearly DW(X) = 0, so assume α < 1. Then
there are two diagonals and their sums are 2(1 − α) and 2α. Then DW(X) = 2α − 2(1 −
α) = 4α − 2.

The previous theoremmay be used to find upper bounds onDW(X) for a givenX ∈ �n,
as the following corollary shows.

Corollary 6.3: Let X ∈ �n. Let ui, vi and u′
i, v

′
i be such that

ui + vj ≤ xij ≤ u′
i + v′

j ((i, j) 	∈ ξ(X)).

Then

DW(X) ≤
∑
i

(ui − u′
i) +

∑
j

(vi − v′
i).

Proof: This follows directly from Theorem 6.1. �

We refer to [12] and [13] for some other results on diagonal sums of doubly stochastic
matrices.
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