
Abstract

As we are entering the third generation of mobile technology (3G) the num-
ber of services needing security grows larger. To assess if the security pro-
vided by 3G is sufficient, we take a closer look at the security mechanisms
and their building blocks. Within the 3G security environment the Kasumi
block cipher plays an important role in the integrity and confidentiality
provided. Thus the security of Kasumi, the integrity mode (f9) and confi-
dentiality mode (f8) is vital.

In this thesis the published attacks, the provable security and the pseudo-
randomness of Kasumi are examined in order to consider whether Kasumi,
f8 and f9 are secure. Also described are the authentication and key agree-
ment example set Milenage and it’s kernel function Rijndael (AES). In ad-
dition, background theory is provided for the reader to better understand
the proofs and cryptanalytic techniques used.

The results of this thesis show no threat to the security of the Milenage,
f8 or f9 functions. The security of Kasumi is also preserved as it is a
family of pseudo-random permutations and provable secure against linear
and differential cryptanalysis.

Keywords: block cipher, provable security, pseudo-randomness, Kasumi,
UMTS, f8, f9, Milenage

i



Foreword

This thesis was written in the period between February 2003 and July 2004
by Tor-Erik Mathisen. The thesis is the result of the final assignment lead-
ing to the Cand. scient degree at the University of Oslo, Department of
Informatics.

This thesis assumes that the reader has good knowledge of computer science
equal to a bachelors degree and some knowledge of basic cryptology.

The report is divided into two main parts. Part I will give a thorough
background theory for the reader to understand Part II. Part II will give
a state-of-the-art review of the block ciphers in UMTS(with emphasize on
Kasumi), the security they provide and the environment that they are used
in.

I would also like to give my gratitude to my tutor Leif Nilsen for continuous
good reviews and help throughout the time spent on this thesis. And to
Niels Petter Callin and Jan-Walter Parr for many helpful hints.

Tor-Erik Mathisen

Kjeller, August 2004

ii



Contents

I Background material 1

1 Introduction to cryptography 2
1.1 Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Symmetric-key trust model (STM) . . . . . . . . . . . . . . . 3

1.2.1 Symmetric-key encryption scheme (SES) . . . . . . . . 3
1.2.2 Message authentication scheme/code (MAC) . . . . . 5
1.2.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Block ciphers 7
2.1 Definitions of block ciphers . . . . . . . . . . . . . . . . . . . 7

2.1.1 A block ciphers goal . . . . . . . . . . . . . . . . . . . 8
2.2 Security of block ciphers . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Security levels . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Security requirements . . . . . . . . . . . . . . . . . . 9

2.3 Design principles . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Confusion and Diffusion . . . . . . . . . . . . . . . . . 11
2.3.2 Feistel networks (FN) . . . . . . . . . . . . . . . . . . 11

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Pseudo-random functions and permutations 14
3.1 Function family . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Permutation . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Important families . . . . . . . . . . . . . . . . . . . . 15

3.2 Random functions . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Pseudo-random functions (PRF) . . . . . . . . . . . . . . . . 16

3.3.1 Adaptive distinguisher model . . . . . . . . . . . . . . 16
3.4 Pseudo-random permutation (PRP) . . . . . . . . . . . . . . 18
3.5 Block ciphers and pseudo-randomness . . . . . . . . . . . . . 18
3.6 Shared-random-function model (SRF) . . . . . . . . . . . . . 18
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

iii



CONTENTS iv

4 Operation Modes 20
4.1 Electronic Code Book (ECB) . . . . . . . . . . . . . . . . . . 20

4.1.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.2 Functional description . . . . . . . . . . . . . . . . . . 21
4.1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Cipher Block Chaining (CBC) . . . . . . . . . . . . . . . . . . 21
4.2.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Functional description . . . . . . . . . . . . . . . . . . 22
4.2.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Counter (CTR) mode . . . . . . . . . . . . . . . . . . . . . . 23
4.3.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 Functional description . . . . . . . . . . . . . . . . . . 23
4.3.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Output Feedback (OFB) mode . . . . . . . . . . . . . . . . . 24
4.4.1 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.2 Functional description . . . . . . . . . . . . . . . . . . 25
4.4.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.4 Creating the f8 mode from OFB and counter mode . 26

4.5 Cipher block chaining - message authentication code (CBC-
MAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.1 Creating the f9 from the CBC-MAC mode . . . . . . 27

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Introduction to cryptanalysis 29
5.1 Classification of attacks . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 Passive attacks . . . . . . . . . . . . . . . . . . . . . . 30
5.1.2 Active attacks . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Types of Passive attacks . . . . . . . . . . . . . . . . . . . . . 31
5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.2 Differential cryptanalysis . . . . . . . . . . . . . . . . 32
5.2.3 Linear cryptanalysis . . . . . . . . . . . . . . . . . . . 34
5.2.4 Side channel attacks . . . . . . . . . . . . . . . . . . . 34

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 UMTS - Universal Mobile Telecommunications System 36
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 UMTS architecture . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2.1 Designing the UMTS architecture . . . . . . . . . . . 37
6.2.2 The architecture . . . . . . . . . . . . . . . . . . . . . 37

6.3 Security Architecture . . . . . . . . . . . . . . . . . . . . . . . 38
6.3.1 Security Features . . . . . . . . . . . . . . . . . . . . . 39
6.3.2 Security Mechanisms . . . . . . . . . . . . . . . . . . . 41
6.3.3 Confidentiality and integrity functions . . . . . . . . . 48

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

August 2, 2004



CONTENTS v

6.4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 52

II Block ciphers in UMTS 53

7 Kasumi 54
7.1 Designing Kasumi . . . . . . . . . . . . . . . . . . . . . . . . 54

7.1.1 From Misty to Kasumi . . . . . . . . . . . . . . . . . . 55
7.2 Algorithm description . . . . . . . . . . . . . . . . . . . . . . 55

7.2.1 The journey through Kasumi . . . . . . . . . . . . . . 55
7.2.2 The round function (f) . . . . . . . . . . . . . . . . . 57
7.2.3 FL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2.4 FO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2.5 FI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Key schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 Implementation aspects . . . . . . . . . . . . . . . . . . . . . 59

7.4.1 Parallel computing . . . . . . . . . . . . . . . . . . . . 60
7.4.2 Lookup tables . . . . . . . . . . . . . . . . . . . . . . . 60

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Security analysis of Kasumi and UMTS’ encryption and in-
tegrity schemes 62
8.1 Security of Kasumi and its building blocks . . . . . . . . . . . 62

8.1.1 General description of Kasumi . . . . . . . . . . . . . 63
8.1.2 Rationale of Feistel networks . . . . . . . . . . . . . . 63
8.1.3 The s-boxes . . . . . . . . . . . . . . . . . . . . . . . . 63
8.1.4 FI and FO functions . . . . . . . . . . . . . . . . . . . 67
8.1.5 Complexity of linear and differential attacks . . . . . . 68
8.1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.2 Cryptanalysis of Kasumi . . . . . . . . . . . . . . . . . . . . . 69
8.2.1 Differential cryptanalysis . . . . . . . . . . . . . . . . 70
8.2.2 Linear cryptanalysis against Kasumi . . . . . . . . . . 71
8.2.3 Side channel attacks on Kasumi . . . . . . . . . . . . . 71
8.2.4 Statistical evaluation . . . . . . . . . . . . . . . . . . . 71
8.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 72

8.3 Pseudo-randomness of Kasumi . . . . . . . . . . . . . . . . . 72
8.3.1 Outline of proof . . . . . . . . . . . . . . . . . . . . . 72

8.4 Security of 3GPP encryption and integrity schemes . . . . . . 73
8.4.1 On the construction of f8 . . . . . . . . . . . . . . . . 73
8.4.2 On the construction of f9 . . . . . . . . . . . . . . . . 74
8.4.3 Proving the security . . . . . . . . . . . . . . . . . . . 74
8.4.4 Cryptanalysis of f9 . . . . . . . . . . . . . . . . . . . 75
8.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

August 2, 2004



CONTENTS vi

9 Rijndael - AES 79
9.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
9.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10 Milenage 81
10.1 Design criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.2 Milenage - the example implementation . . . . . . . . . . . . 82

10.2.1 Meeting the requirements . . . . . . . . . . . . . . . . 82
10.2.2 Functional description . . . . . . . . . . . . . . . . . . 82

10.3 Security analysis of Milenage . . . . . . . . . . . . . . . . . . 84
10.3.1 f1 and f1∗ . . . . . . . . . . . . . . . . . . . . . . . . 84
10.3.2 f2, f3, f4, f5 and f5∗ . . . . . . . . . . . . . . . . . . 85
10.3.3 Separation between f1, f1∗ and f2 → f5∗ . . . . . . 85

III Conclusion 87

11 Thesis conclusion 88

12 Further work 90
12.1 A more thorough review of AES/Rijndael . . . . . . . . . . . 90
12.2 Finding the more exact complexity for a differential attack

on Kasumi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
12.3 A more thorough review of the proof of Kasumi’s pseudo-

randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
12.4 Security of USIM/UICC . . . . . . . . . . . . . . . . . . . . . 91

IV Appendix 92

*

August 2, 2004



Introduction

The world today has become a place were ”everybody” needs to be available
anywhere, anytime. Available to receive a phone call, read e-mail or get the
latest news anywhere you like. Availability through portable solutions has
become a large business, and thus many make a profit from it. However,
availability and portability has a prize. With wireless networks and mobile
phones a whole new set of intrusions may be possible. It has therefore
become more important to protect connection points, the transmitted data,
and the terminals.

Different technologies have different solutions, with different degrees of suc-
cess. Within the mobile phone technology we have reached the third gen-
eration. Each generation has learned from the previous, and hopefully the
developers have been able to create a technology that can keep the user
available while simultaneously protecting the user information, the data,
and the radio network.

During the last few years we have also seen a major development within
the area of cryptography. New strong ciphers have been developed with
immunity against several cryptanalytic attacks. However, new attacks have
been made, stronger and more effective than the old ones.

Problem description

To be able to assess whether or not the third generation of mobile technology
(3G) keeps it’s promise or not (secure for the next 20 years), I wanted to take
a closer look at the technology of 3G, especially at the security mechanisms
and features.

I wanted to describe how block ciphers where used within UMTS and see
what kinds of proofs of security and possible threats that existed. Thereby
verifying whether the security mechanisms (and features) of 3G/UMTS pro-
vided sufficient security, and whether there were any weaknesses/attacks
that compromised this security. Thus, investigate what the state-of-the-art

vii



Introduction viii

research within the field of cryptology could tell us about the security of the
block ciphers, operation modes and other security functions of the UMTS.

In order for the reader to appreciate this security analysis, I have incor-
porated enough background information to make the theory of provable
security more accessible to the reader.

Thus, this thesis describes and assesses the encryption, integrity and au-
thentication of UMTS, and in addition brings the reader up-to-date within
the best proofs of block cipher security that today’s cryptology science can
provide.

Thesis justification

At the time when I started this thesis (spring 2003), no complete or even
half complete security assessment of the security mechanisms of UMTS and
their building blocks existed. Several individual papers describing different
attacks and the assessment of individual UMTS security functions did exist,
but no complete guide.

In addition, proving the security of block ciphers is a relatively new area
of science, and thus notations, expressions etc. may vary from paper to
paper. No complete background theory for this science seemed to have been
gathered - it was just assumed that everyone knew it.

Thus, the need for a state-of-the-art overview with a thorough background
theory was imminent both for the UMTS security functions and the provable
security of block ciphers (Kasumi).

It is my hope that this thesis can help cryptographic beginners to get a
better and easier start learning the topics of block ciphers, their security,
and how to use the security in a larger scale, such as the UMTS environment.

Thesis outline

Chapter 1 trough 6 are “background theory” for the reader to understand
chapter 7 trough 10.

Chapter 1 - Introduction to cryptography Contains an introduction
to the art of cryptography, where the basic vocabulary of cryptography
is discusses.

Chapter 2 - Block ciphers Describes and defines block ciphers, their de-
sign and security.

August 2, 2004



Introduction ix

Chapter 3 - Pseudo-random functions and permutations Gives a thor-
ough background theory of pseudo-random functions and permuta-
tions and their role within the art of cryptography.

Chapter 4 - Operation Modes This chapter gives an overview the op-
eration modes most relevant to the operations modes of UMTS.

Chapter 5 - Introduction to cryptanalysis Chapter 5 gives a introduc-
tion to cryptanalysis with an overview of the most common attacks
(and most relevant) on block ciphers.

Chapter 6 - UMTS - Universal Mobile Telecommunications System
The UMTS chapter describes the architecture and security architec-
ture of UMTS. It also describes the different security mechanisms and
features needed within the 3G environment.

Chapter 7 - Kasumi Describes the Kasumi block cipher, all the way from
the design principles to implementations aspects.

Chapter 8 - Security of Kasumi and the f8 and f9 functions This chap-
ter analyzes and describes how to prove Kasumi immune to some types
of cryptanalysis and gives a description of the best possible attacks
published against Kasumi existing today.

Chapter 9- Rijndael - AES Gives a small description of the new Ad-
vanced Encryption Standard (AES), and tries to explain why it was
chosen as a kernel function for the Milenage example set.

Chapter 10 - Milenage Milenage is the authentication and key agree-
ment functions example set provided by the 3GPP. This chapter will
describe the functions and give an overview of possible attacks that
are published.

Chapter 11 - Thesis conclusion This chapter is dedicated to give a sum-
mary and a conclusion of the whole thesis.

Chapter 12 - Further work Chapter 12 presents recommendations for
further work, such as for a Ph.D or in an another masters thesis.

August 2, 2004



Part I

Background material

1



Chapter 1

Introduction to cryptography

Cryptology is the collective term of cryptography and cryptanalysis (see chap-
ter 5 for the introduction to cryptanalysis). Cryptology is an old art running
all the way from the ancient Egyptians 4000 years ago an up until today[1].
Humans have always had, and will always have, an urge to keep important
information to them self and only available to those intended. Cryptology
has also played an important role in many wars, and has often swayed the
outcome into the direction to the side with the most clever cryptographers
or cryptanalysts. Knowledge and the use of cryptology will probably play
an equally (or probably more) important role in the future as it has in the
past.

The practitioners of the two terms, cryptography and cryptanalysis, are
in a constant struggle to get a lead on each other. Cryptographers shall
provide confidentiality, integrity and authentication between the authorized
entities, while the cryptanalysts try to break down what the cryptographers
have built up. However, at the same time it is the two struggling forces that
drive each other and thus cryptology forward; one branch obsolete without
the other.

This chapter will give the reader a short introduction to cryptography and
the basic concepts and terms. In addition we will see how the Symmetric-key
trust model is used to provide confidentiality, integrity and authentication.

1.1 Cryptography

As mentioned cryptography is the study of techniques for providing the
authorized entities with confidentiality, integrity and authentication in and
around their information flow through insecure channels[1]. The entities are
often two parties A (Alice) and B (Bob) that want to “speak” to each other

2



Symmetric-key trust model (STM) 3

without any other O (Oscar, the opponent/adversary) entities hearing the
words (confidentiality), impersonating as A/B (authentication) or changing
the contents of the information (integrity).

There are two models or protocols that try to provide confidentiality, in-
tegrity and authentication between two entities, and these are called Symmetric-
key trust model and Asymmetric-key trust model (Public-key model)[2].
Only the first one will be discussed here, due to the fact that it is just
this model that is used in the world of UMTS and in this thesis. However,
[2] contains information about asymmetric-key trust model for the curious
reader.

My description of the Symmetric-key trust model is mainly based on [2] and
[1].

1.2 Symmetric-key trust model (STM)

STM is a model where the entities (Alice and Bob) share a secret key un-
known to the adversary (Oscar), thus the name symmetric. It is the knowl-
edge of this key that allows Alice and Bob to transmit their information
securely.

The security of STM relies fully on the secrecy of the key K. The key is a
string of bits that we trust is unknown to the adversary. However, the STM
does not concern itself with how the entities got the key, only that they have
it.

To provide the entities with the goals of cryptography (confidentiality, in-
tegrity and authentication) two main protocols or schemes are available
within the Symmetric-key trust model. To provide confidentiality we have
the Symmetric-key encryption scheme, and for integrity and authentication
we have the Message authentication scheme.

1.2.1 Symmetric-key encryption scheme (SES)

The symmetric-key encryption scheme (see figure 1.1) is a method or pro-
tocol for providing confidentiality, by encryption, between Alice and Bob.

SES consists of three rules/algorithms (E, D, K). E is the encryption rule,
D is the decryption rule and K is the key that is shared between Alice and
Bob. E and D uses the key K in order to encrypt/decrypt. E and D is
known to all parties, Alice, Bob and Oscar, but the key is known only to
Alice and Bob.

August 2, 2004



Symmetric-key trust model (STM) 4

M’E
M

K
Alice BobOscar

secret key sender
access to sent information
adversary reciever

K
M

plaintext encryption rule ciphertext decryption rule

D

insecure channel

secret key

plaintext

Figure 1.1: Symmetric-key encryption scheme

1.2.1.1 Functional description:

Alice wants to send a secret message M (plaintext) to Bob. She sends the
plaintext and her secret key K shared with Bob as input to the encryption
rule E. As output from E comes the encrypted message M ′ (ciphertext).
The ciphertext is then transmitted over an insecure channel (such as the
internet) to Bob. When Bob receives the message he applies the decryption
rule D with the ciphertext from Alice and his version of the key K as input,
and gets the plaintext M as output1

1.2.1.2 Encryption/decryption algorithms:

In the symmetric-key encryption scheme the encryption/decryption algo-
rithm can be implemented as two types of algorithms/ciphers. The two
are block and steam ciphers, where the block cipher is most common. The
encryption algorithms used in UMTS (Kasumi and AES, chapter 7 and 9
respectively) are both block ciphers.

Block cipher (bc): The bc takes a block of plaintext bits and a key as
input and returns a block of ciphertext bits (block ciphers are described in
chapter 2). However, to become a adequate encryption rule the bc needs a
operation mode (see chapter 4 for more information) to encrypt more than
one block.

Stream cipher: The stream cipher creates a continues stream of bits,
with length equal to the plaintext, that is xored (⊕) with the plaintext to
create the ciphertext.

1The decryption rule D is often implemented as E−1

August 2, 2004



Symmetric-key trust model (STM) 5

1.2.2 Message authentication scheme/code (MAC)

With the MAC scheme we want to accomplish two things; authentication
and integrity. I.e. we want to know that the message sent is not tampered
with, and that the message originates from the acclaimed entity. In order
to accomplish this the scheme consists of three rules/algorithms (K, T , V ),
where the K is the shared key, T is the one-way function and V is the
verification rule.

1.2.2.1 Functional description:

Alice wants to send her message M to Bob, but first she sends M and
the secret shared key K as input to the one-way function T creating the
“fingerprint” P , P = T (M, K). Then she sends (M ,P ) to Bob.

Bob, upon receiving (M ,P ), sends M , P and his K to the verification rule
V , true/false = V (P, M, K). If V returns true or 1, M and P matches
and he know that M is not tampered with and that the message originates
from Alice, due to the fact that only Alice(or those with knowledge of the
key K) can make the fingerprint P . If V returns false or 0 the fingerprint
does not match, Bob knows that either M or P is tampered with.

1.2.2.2 MAC algorithms:

To create this MAC or fingerprint special functions are designed that take
any string (with any length) as input and creates output with a fixed output
length. Thus, it is an infinite number of plaintexts per output. It is therefore
vital to makes sure that it is infeasible to forge or modify the output.

1.2.3 Remarks

An important word here is trust. Often the key is selected from a large set,
say with 2l different keys, and it is therefore possible for the adversary to
guess the right key. Typically l = 128, in this case the probability p for a
correct guess is small p = 2−128, but existing.

The length n of the plaintext is preserved when converted into ciphertext.
It is therefore possible to guess the correct plaintext by randomly selecting
n bit. Here the probability is 2−n.

The important lesson here is that the upper bound for the security and trust
is defined by probability.

August 2, 2004



Summary 6

1.3 Summary

The symmetric-key trust model provides the entities with confidentiality
(symmetric-key encryption scheme), authentication and integrity (message
authentication scheme). The security of these schemes lies with the secrecy
of the shared key.

This chapter has given the reader an introduction to symmetric-key encryp-
tion and some basic cryptography terms uses throughout this report. The
notions and concepts of cryptology used in this report grows rapidly and
it is therefore vital to get the basic understanding of how cryptography is
applied to the message flow.

August 2, 2004



Chapter 2

Block ciphers

If you look up the two words block and cipher in the dictionary they will
both have several meanings. Block may mean “a collection of objects seated
near each other”, and cipher can mean “a message written in a secret code”
or “make a mathematical calculation or computation”. Combined, these
three definitions give a good description of what block ciphers really are. A
possible definition of a block cipher can be “a collection of bits written in
secret code created by a mathematical calculation.”

In the symmetric-key encryption model the block cipher is used as a tool
to provide confidentiality between two or more parties, and is currently the
most popular way[2]. However, a block cipher in it self does not provide
any confidentiality. The cipher has no practical use without the assistance
of operation modes (See chapter 4). It is also vital that the secret key, used
for encryption, remains secret and that the mode of operation used, does
not contain any known weaknesses.

To better understand what block ciphers are and how they are designed, the
remainder of this chapter will focus on design principles, requirements and
“best practices” for block ciphers.

2.1 Definitions of block ciphers

The mathematical definition of a block cipher is that the block cipher is a
function E, defined in equation 2.1:

E : {0, 1}k × {0, 1}n → {0, 1}n (2.1)

that takes two inputs, key K and plaintext P . K having length k and P
having length n. The output from E is the ciphertext C, also with length
n.

7



Security of block ciphers 8

In other words the block cipher is a set of many functions 1 mapping blocks of
plaintext to blocks of ciphertext. When deciding for a key, what you really
do is selecting one of the 2k different mappings/functions. Each of these
mappings is one-to-one, i.e. only one plaintext gives a specific ciphertext for
the chosen key and visa versa. This one mapping is often denoted EK(P ) =
C, whereas the mathematical notation is given in equation 2.2. By definition
the inverse function E−1

K does also exist, and is used when decrypting.

EK : {0, 1}n → {0, 1}n (2.2)

This means that EK is a permutation (See section 3.1.1 for more informa-
tion) on the plaintext block. This permutation, EK is one of 2n! different
possible mappings of a block of plaintext to a block of ciphertext.

To calculate this number we know that the plaintext space contains 2n dif-
ferent blocks. Each block can correspond to one and only one block of the
ciphertext space. For the first plaintext block you can choose between 2n

cipher blocks, for the second 2n − 1, for the third 2n − 2, ..., for the last 1
block, resulting in equation 2.3

2n! = (2n) ∗ (2n − 1) ∗ (2n − 1) ∗ ... ∗ 1 (2.3)

2.1.1 A block ciphers goal

The number 2n! is vast and out of bounds for today’s polynomially bound
computers, even for n ≥ 6. The ultimate goal for a block cipher is that
it may be able to blend in amongst the 2n! mappings and thereby become
undistinguishable from a random chosen mapping, from all the 2n! possible
mappings. A block cipher with this property is called a pseudo random
permutation and is covered in section 3.

2.2 Security of block ciphers

2.2.1 Security levels

When discussing the security of block ciphers three levels are often defined.
They are used when classifying the level of security that a cipher provides.

A cipher evaluated to be in the provable security level is also computational
secure, but not visa versa. Each new level is a step up the security ladder.

As mentioned above, if the goal of a block cipher is to be undistinguishable
from a random chosen permutation, the ultimate goal is to be unconditional

1The number is 2k, equal to the number of different keys

August 2, 2004



Security of block ciphers 9

secure. However, the ultimate goal is not (yet) practical, see example of the
one-time-pad in section 2.3.

computational security If a cipher is computational secure the amount
of computations required to break the cipher is larger than a large
integer N . All possible known attacks are considered, but computa-
tional security gives no guarantees against unknown attacks. This N
is determined by how fast modern day computers can process infor-
mation. DES was previously considered computationally secure with
a key space of 256 different keys, but today’s computers have made
DES insecure.

provable security When a cipher is provable secure the breaking of the
cipher is equal to breaking a known hard problem. The security of
the cipher is linked to the given problem and is no harder than the
problem. Solve the problem and the cipher is broken.

unconditional security A unconditional secure cipher cannot be broken.
Even if the adversary is given unlimited computational power, space
and/or time.

2.2.2 Security requirements

For a block cipher even to be considered secure some basic requirements
must be fulfilled. The first and perhaps the most obvious is the size of the
key.

2.2.2.1 Key size

The key size, k, must at least long enough such that it is impossible, with
today’s computers, to do an exhaustive search through all 2k different keys.
The reason for this is that the key size is the upper bound for the complexity
of an attack on the block cipher.

The key size should also be the lower bound for the security, i.e. no attack
exists that is better than exhaustive search. If such attack should exist, we
say that the cipher is broken, or that the attack was able to break the cipher.

On the other hand, the key must not be too large either, increasing the
complexity of the cipher and the key handling, ultimately decreasing the
speed of the cipher. A key size of k ≥ 128 bits is considered enough.

Example: AES has a key size of 128, 192 or 256 bits. Kasumi has a key
size of 128 bits.

August 2, 2004



Design principles 10

2.2.2.2 Block size

The block size is the amount of bits (input) that the block cipher can process
in one computation. Some of the same considerations as for key size also
apply here. The block size must not be to small, the reason for this is
that the statistical dependencies, between plain- and ciphertext, will shine
through.

A too large block size will make it harder to mix all bits in the plaintext,
and thereby decreasing the encryption/decryption speed.

A block size of either 64 or 128 bits is the norm today.

Example: AES has a block size of 128 bits. It was expressed wishes to also
include the block sizes 192 and 256 to AES, but the wish was not granted[3].

Kasumi has a block size of 64 bit.

2.3 Design principles

The perfect block cipher with unconditional security does exist, having the
property that no statistical relations exist between the cipher- and the plain-
text. Then it is not possible to know any more about the plaintext after you
have seen the ciphertext, than before. This definition was given by Shannon
in [4]. Some ciphers fulfill this property, but they all require an unreasonable
large key.

Example - The one-time-pad: The one-time-pad is an un-
conditional secure cipher, where the key size is as long as the
plaintext. The ciphertext is the xor product of the key and
the plaintext. In addition to the impractical size of the key,
each key is only usable once, due to the fact that (C ⊕ C ′) =
(K ⊕ P )⊕ (K ⊕ P ′) = P ⊕ P ′.

Instead of searching for unconditional secure ciphers the scientists searched
for the best possible approximation. Combined with that the design of
block ciphers also have been strongly influenced by the types of attacks that
existed, the scientists tried to find a block cipher secure against all known
attacks. They were less interested in finding a cipher fulfilling the one notion
of security, that guaranteed for the confidentiality of the information, and
more in finding a computational secure cipher that could be implemented
in practice.

With Shannon’s theory in mind, the notions of confusion and diffusion where
adopted in the design of many block ciphers.

August 2, 2004



Design principles 11

2.3.1 Confusion and Diffusion

Confusion is the principle of hiding the statistical relations between the
plaintext, key and the ciphertext. This is often accomplished by the use of
substitutions.

Diffusion is the principle of that every bit of the ciphertext should depend
on every bit of the plaintext and the key. A change in one bit of the plain-
text should result in a change of approximately 50% of the ciphertext bits.
The tool for applying diffusion to the cipher is permutations (xoring with a
subkey), rearranging the bit order.

Normally one need to apply more than one permutation and substitution to
establish the satisfactory level of security (computational secure). The most
common procedure is to create a round function consisting of one permuta-
tion and one substitution, and then apply this function several times. Each
round has it’s own subkey/roundkey derived from the original K. The result-
ing cipher is called an iterated cipher. One of the most popular constructions
for creating an iterated cipher is the Feistel network.

2.3.2 Feistel networks (FN)

The Feistel network was originally introduced with the Lucifer cipher, later
adopted as DES, and was created by Horst Feistel while working for IBM.

The Feistel network gained popularity fast, due to the easy implementation
in hardware; when decrypting, it is only necessary to invert the order of
the roundkeys reducing the number of needed functions from two to one.
Both block ciphers used in UMTS (Kasumi, AES) are built upon the Feistel
network.

2.3.2.1 Number of rounds

The number of rounds in a Feistel networks is determined by a compromise
between the security and the speed of the cipher. We want sufficient security,
but the cipher cannot be too slow, because no one would use it.

2.3.2.2 Feistel network description

The FN splits the input into a left and right side (L0, R0), then sends the
right part through the round function f , with roundkey rki and xors the
output with L0. Then the frk0(R0) ⊕ L0 is named R1 and the unchanged
R0 is named L1. This procedure is repeated until all rounds are done.

August 2, 2004



Summary 12

rk

rk

1

2

rk

R

R

1

0

2

3

0

1

2

f

f

f

L

L

L

L

R0

R3

Figure 2.1: Three round Feistel network

2.4 Summary

This chapter has given a overview of what block ciphers are and an overview
of the most commonly used ways for creating them. We have also seen some
basic requirements of a block cipher, and seen how small permutations and
substitutions can be fitted together in order to create larger, more secure
ciphers using the Feistel network.

2.4.1 Conclusion

These apparently simple principles of confusion, diffusion and Feistel net-
works has given cryptographic designers a good “recipe” for creating secure
block ciphers. Although these ciphers are not unconditional secure, many
are conditional secure which suffices in most cases.

Other types of block cipher designs do also exist, but I have chosen to

August 2, 2004



Summary 13

emphasize this method, due to the fact that both block ciphers of 3GPP are
designed this way.

August 2, 2004



Chapter 3

Pseudo-random functions
and permutations

Pseudo-randomness of a block cipher is a step towards the ultimate goal of
the one notion of security. Here we take the block cipher to a higher level
by disregarding the individually possible attacks a cipher can be exposed to,
and search of a property that can protect towards all known and unknown
attacks.

This section will therefore concern about the background theory of functions,
permutations and their randomness, and how they can be used to prove the
security of block ciphers on a general higher level, without examining the
internal of the block cipher, just the behavior.

As mentioned in section 2.3, the inspiration comes from the properties of
the unconditional secure one-time-pad cipher and from Shannon’s theory[4],
where no information about the plaintext can be derived from the ciphertext.
While the one-time-pad needs a key with the same length as the plaintext
and a new key for every encryption, the output from the one-time-pad ap-
pears totally random. So when searching for the one notion of security it
is preferable to keep this property, while using a smaller key. The whole
idea behind pseudo-randomness is that if no one can distinguish your cipher
from a random function, it is highly unlikely that any information about the
plaintext leaks from the ciphertext.

In order to understand what pseudo-random functions and permutations
are, and why they are so important, we need to take a look at some of the
key definitions concerning the subject. My presentation is mainly based on
Chapter 3 of Introduction to modern cryptology [2].

14



Function family 15

3.1 Function family

A function family is a set of functions F taking two inputs K ∈ Keys(F )
and X ∈ Domain(F ), of given lengths, and outputs F (K, X) ∈ Range(F ).
Domain(F ) is the set of all possible input to F and is also denoted {0, 1}i,
where i is the length of the input. Further Keys(F ) = {0, 1}k is the set of
all possible keys to F , where k is key length. Range(F ) = {0, 1}j is the set
of all possible output from the function family F with the length j.

Before deciding on a key K, F is a set of mappings from Domain(F ) to
Range(F ), but when drawing a key K we create an instance of a map,
denoted FK . The formal definition is that the function family is a map
F : Keys(F )×Domain(F ) → Range(F ).

3.1.1 Permutation

In the case that the lengths of Domain and Range are equal, i.e the same
set, and FK is a one-to-one correspondence between the Range and the
Domain sets, we call the map (FK) a permutation. Subsequently we call
F : Keys(F )×Domain(F ) → Domain(F ) a family of permutations.

Example: Kasumi is a family of permutations Kasumi is a family of
permutations where Range(Kasumi) = Domain(Kasumi) = {0, 1}64 and
Keys(Kasumi) = {0, 1}128

3.1.2 Important families

When discussing block ciphers and random functions/permutations, there
are two families that are especially important. Why these are so important
is discussed in section 3.2, 3.3 and 3.4. We will define them here and they
will be used throughout this chapter.

The first is the set of all possible functions, F , from the set of Domain
(plaintexts) to the set of Range (ciphertexts).

F : Domain(X) → Range(X) (3.1)

The second is a much smaller family, but equally as important. It is the set
of all possible permutations on the Domain set

P : Domain(X) → Domain(X) (3.2)

August 2, 2004



Random functions 16

3.2 Random functions

A random function is a function that is randomly chosen, with uniform
probability, from all possible functions in the family of functions F (See
equation 3.1). And can be thought of as drawing (by flipping a coin) a
random output (Range) for every possible input (Domain). i.e. for any of
the values in the set Domain randomly select i output bits and tie together
input and output.

It is important to clarify that it is not the output from a chosen function
that is random, but it is the function that is chosen at random from all
possible functions of the family of functions F of equation 3.1.

3.3 Pseudo-random functions (PRF)

A pseudo-random function family g is a function family which input/output
behavior is difficult to distinguish from a random function f . By difficult
we define that with polynomially many computations no one can tell which
function is which (gk or f) using the adaptive distinguisher model.

3.3.1 Adaptive distinguisher model

There are two main participants in the adaptive distinguisher model. We
have the Distinguisher which task is to distinguish whether the function
π is implemented as a random function f (world 0) or a function from the
given function family g (world 1). The distinguisher can probe, polynomial
many times, the Oracle with different input strings xi from the Domain
domain, where upon the oracle returns a string y = π(xi) from the Range
domain.

The function π is chosen randomly, by the oracle, from either the f or the g
function. If the oracle has chosen world 0 a random function from Domain
to Range are drawn. If world 1 is chosen a function gk is drawn by randomly
selecting, with uniform probability, a key k from Keys(g). The distinguisher
has only access to the functions through the oracle via input and output. If
the advantage the distinguisher has, for distinguishing whether y is output
from f or gk, is negligible, the block cipher is a pseudo-random function
[5, 2].

August 2, 2004



Pseudo-random functions (PRF) 17

II

?

Random
function

Block
cipher g

DistinguisherX

y= (X)

Oracle

k

Figure 3.1: Oracle and distinguisher model

3.3.1.1 Advantage

The advantage (ADVD) is measured by calculating the probability that the
oracle (O) is in world 1 and the distinguisher D thinks that it is in world 1
minus the probability that the oracle is in world 0 and the distinguisher
still thinks that it is in world 1. The advantage of the distinguisher has,
is formalized in Definition 1. This definition is retrieved from reference [5]
Definition 2.
Definition 1. ADVD = |Pr(D outputs 1|O ← f)−Pr(D outputs 1|O ← g)|
where O ← g indicates that the oracle O implements g, and vis versa.

Different distinguishers may have different advantages, but it is always the
best possible distinguisher that is taken into accord when deciding whether
a function is secure as a PRF. A distinguisher may be better than an other if
it designed in better way, asking smarter questions, or it may use more time
calculating the answers from the oracle. We are interested in the distinguish-
ers that give the greatest advantage using the least amount of resources.

In order to find the most clever/best distinguisher it is customary to restrict
the resources available to the distinguisher. These resources are often time-
complexity, number of oracle queries and the sum of the lengths of the
queries. By doing so we create equal terms for the distinguishers allowing
us to find the best distinguisher with these limited resources.

August 2, 2004



Pseudo-random permutation (PRP) 18

Secure PRFs To define what advantage that is small enough for a PRF to
bee deemed secure the term negligible is introduced. So by a secure PRF we
mean that the advantage is negligible for any adversary whose computational
powers are polynomially-bounded [2].
Definition 2. To clarity what we mean with negligible I will use [5]’s ver-
sion:

A function h : N → R is called negligible if for any constant c > 0 and all
sufficiently large n ∈ N, h(n) < 1

nc .

3.4 Pseudo-random permutation (PRP)

Using the definition for a permutation it is easy to see that a family of
pseudo-random permutations is a family of PRFs where Domain and Range
are the same set. F : {0, 1}k × {0, 1}i → {0, 1}i.

Or that a family of PRPs is a family of permutations difficult (under the
Adaptive distinguisher model) to distinguish from the family defined in equa-
tion 3.2.

By using our acquired knowledge about PRP and PRF we will be able to
tell something about the “strongness” of a block cipher.

3.5 Block ciphers and pseudo-randomness

Every block cipher is a family of permutations F . The cipher maps a block
with length i to a new block with length i, using a key K. The currently
chosen key draws a function f from F (f ∈ F ).

When you design a new block cipher, it is not enough for your block cipher
to be a family of permutations, you also want the cipher to be a family of
pseudo-random permutations (PRP). The reason for this is mentioned above,
and the benefits are derived from the Shared-random-function model.

3.6 Shared-random-function model (SRF)

One of the main reasons to why your block cipher needs to be a family of
PRPs, is that when others are designing encryption schemes or protocols
using block ciphers, they (usually) design and prove it secure in the shared-
random-function model [2].

August 2, 2004



Summary 19

In the usual symmetric-key encryption model the participants share a short
secret key, but in the SRF model the parties share a long string created from
a random function, and thus it is possible to create an unconditional secure
scheme (see section 2.2.1). However, a random function is too large to be
stored on any computer[2], and thus the SRF becomes a conceptual model
which models a symmetric-key cryptography system (see section 1.2) where
each participant shares a random function f , which maps l bits to L bits.

In [2] they use an example with the CTR encryption scheme (See 4.3 for
more details) where the Ek is substituted with the random function f . Im-
mediately the CTR scheme is transferred to a one-time-pad with perfect
secrecy. This is the essence of the SRF; create a scheme that gives perfect
secrecy by using a random function.

Regrettably this f function is nonexistent so the perfect secrecy is not au-
tomatically transferable to the real world. Nevertheless, by exchanging f
with your new PRP block cipher the scheme is still secure, given that the
adversary does not have enough resources to do a exhaustive key search.

3.7 Summary

This section has given us the background theory in order to verity whether
a block cipher is a “pseudo-random permutation” or not. If no one can
separate the block cipher from a random permutation, it can be labeled
pseudo-random and then be used with any scheme or protocol proven to be
secure under the shared-random-function model. With the notion of pseudo-
randomness, the scientists have taken a great step towards the ultimate goal
for the modern cryptography, where we will have a ONE notion for the
security of a block cipher.

August 2, 2004



Chapter 4

Operation Modes

Up until now, in our discussion of block ciphers, we have only discussed
encryption of one plaintext block, but when the plaintext exceeds the block
size, for a given block cipher, the need for operation modes emerges. If the
plaintext is 140 bit long and the block size is 128, the remaining bits after
the first block is encrypted are 12 bits. What are to become of the last
12 bits? Should there be a padding added to the remaining bits in order
to create a whole block? Is there to be a relation between the 1st and the
2nd block, i.e. should the outcome of one block depend on the previous?
Different operation modes have different answers/solutions depending on
the intended area of usage and the designers assessments.

In this chapter I have chosen to present the most common operations modes
and especially those which are used as foundations for the operation modes
in UMTS. The confidentiality mode of UMTS is called f8, while the integrity
mode is called f9.

4.1 Electronic Code Book (ECB)

ECB is the simplest (most straightforward) of all operation modes. Each
plaintext block corresponds to a ciphertext block, similar to the old hand-
written code books where one instance of, for example, a letter was replaced
by another letter. The only difference is that with ECB we have a large set
of “letters” to choose from.

20



Cipher Block Chaining (CBC) 21

fK

C

X

fK

C

X

fK

C

X

2 3

1 32

1

Figure 4.1: Electronic Code Book (ECB)

4.1.1 Input

The inputs to the ECB mode are the plaintext blocks x1, x2, ..., xn and the
secret key K.

4.1.2 Functional description

Encryption The plaintext is divided up into blocks, of size matching the
block size of the algorithm used, and each block is then encrypted, with the
block cipher f , individually and independently. See figure: 4.1.

Decryption Each ciphertext block is decrypted with the key K and the
plaintext is found.

4.1.3 Properties

The ECB design has some advantages; Since the blocks are independent,
errors are contained within the one block, and the other blocks are not
affected. The design of ECB makes it possible to encrypt/decrypt multiple
blocks simultaneously.

A great disadvantage is that two identical plaintext blocks will encrypt to
the same ciphertext under the same key[1].

4.2 Cipher Block Chaining (CBC)

As the name indicates, this operation mode chains each neighboring blocks
together, creating a dependency between a cipher block ci and all it’s pre-

August 2, 2004



Cipher Block Chaining (CBC) 22

fK

C

fK

C

fK

C21

X X X1 2

...

IV=C0

n

n

Figure 4.2: Cipher Block Chaining - Encryption

decessors. However, the first block x1 has no predecessor, which leads to
the introduction of an “initial value” (IV ) [1]. The IV is used as c0. The
secrecy of the IV is not required for the confidentiality that the mode pro-
vides, although extra security may be gained from it. The correct IV must
also be known to decrypt the ciphertext.

4.2.1 Input

The inputs to the CBC mode is the plaintext blocks, x1, x2, .., xn each of
length equal to the block size of the block cipher used, the IV with size
of one block size, and then the secret key K. The output is the ciphertext
blocks c1, c2, .., cn.

4.2.2 Functional description

Encryption For each plaintext block xi, xor xi with ci−1 (c0 = IV ) then
the result sent through one round with the chosen block cipher f and be-
comes ci. This procedure is continued until all n blocks are encrypted.

Decryption The decryption starts with the leftmost cipher block c1 and
it is sent through one round of f . Then the result is xored with ci−1 and xi

is found.

August 2, 2004



Counter (CTR) mode 23

4.2.3 Properties

As discussed in the ECB section 4.1 the problem with identical plaintext
blocks being encrypted to identical ciphertext blocks are somewhat reduced
for the CBC mode. For collision to occur, using the CBC mode, the exact
same input to the mode must be used. A single bit change in the IV , first
plaintext block or the key results in that the hole ciphertext will change[1].
This is often done by implementing IV as a counter.

Since the IV is xored with the first plaintext block (or xored with the first
decrypted cipher block), an adversary that changes the IV may invert some
bits in this block and alter the content of this single block[6].

An error occurring in one block, during transmission, does not compromise
the whole ciphertext. The correct decipherment of ci depends only on ci and
ci−1. Thus an error in ci only influences the xi and xi+1. If ci+1 is received
correctly, xi+2 will be correctly deciphered.

4.3 Counter (CTR) mode

The CTR mode is an improvement of the Electronic code book mode (section
4.1), with one additional property: Every plaintext block is xored with a
string, of length equal to the block. This string is increased with one for
each block, and therein becomes a counter.

This extra xoring with a counter removes one disadvantage from the ECB
mode, that identical plaintext blocks result in the same ciphertext blocks.

As mentioned, the f8 mode adopts this property in its design. Practically
the f8 mode is an OFB mode where each feedback Si is xored with the
counter Ci and the IV and sent as input to the kernel algorithm EK , EK(Si⊕
Ci ⊕ IV .

4.3.1 Input

The inputs to the CTR mode are the plaintext blocks and the secret key.
In addition, the start value of the counter is needed for decryption.

4.3.2 Functional description

Encryption Each block of plaintext is xored with the counter and is then
encrypted, with block cipher f , using the secret key, resulting in the cipher-
text. The counter is then increased by one for each encryption.

August 2, 2004



Output Feedback (OFB) mode 24

Decryption Each block of ciphertext is decrypted with the secret key,
and then xored with the counter.

fK

C

fK

C

fK

C21

X X X1 2

n

n

Counter Counter +1 Counter+(n−1)

Figure 4.3: Counter mode - Encryption

4.3.3 Properties

In addition to the advantages of the ECB mode (parallel encryption/decryption,
easy implementation), the CTR mode has, as mentioned, the property that
identical plaintext blocks encrypt to different ciphertext blocks.

4.4 Output Feedback (OFB) mode

The Output Feedback mode represents an important branch of the opera-
tion modes; turning a block cipher into a stream cipher. This is done by
specifying a number of desired bits, r, to be encrypted at a time1.

Due to OFB properties, error correction and the preprocessing option (dis-
cussed later), the mode becomes useful when transmitting a large quantity
of data over an insecure and unstable channel. Thus OFB is the preferred
mode for satellite transmission.

4.4.1 Input

The inputs to the OFB mode are the secret key K, the initial vector IV
and the r bit plaintext blocks (x1, x2, ..., xn).

1usually 1 or 8 bits[1], where the 8 bits are for encrypting a whole character.

August 2, 2004



Output Feedback (OFB) mode 25

4.4.2 Functional description

Encryption Encrypt, with block cipher f , the IV using the block cipher,
yielding s1. Extract the r leftmost bits, from s1, to be xored with the
plaintext block x1 creating the ciphertext. Send the s1 as input to the next
encryption, and continue the operation until all n blocks are encrypted.

Decryption The decryption is based on the reconstruction of the key
stream (s1, s2, ..., sn), and is very similar to the encryption, except that the
key stream is xored with the ciphertext, not the plaintext.

C1 C2

S

X

S

X

Cn

S

Xn1 2

fK fK fK

...

r−leftmost bits r−leftmost bits r−leftmost bits

1 2 n

IV

Figure 4.4: Output feedback mode - Encryption

4.4.3 Properties

The design of the OFB mode makes sure that, when transmitting data
through an insecure and unreliable channel, transmitting errors or interfer-
ence doesn’t corrupt the whole message. This is due to that the key stream
is created without knowledge of the cipher/plaintext, and an error affects
just the corresponding plaintext bit(s).

It is also possible to preprocess a long string of bits (multiple of r) and then
apply the xoring with the message bits, realtime. However, it is important
that the IV is changed every time for the same secret key. This is due to
the nature of the OFB mode where the preprocessed key stream is xored to
the plaintext blocks and the same key stream are produced using the same

August 2, 2004



Cipher block chaining - message authentication code (CBC-MAC) 26

K and IV . For two different ciphertexts (ci and zi) created using the same
K and IV it is possible to derive the xor difference of the corresponding
plaintexts: zi ⊕ ci = (x1i ⊕ si) ⊕ (x2i ⊕ si) = x1i ⊕ x2i. This is something
we want to avoid.

Due to the independent calculation of the key stream, it is vital that no
public key algorithm is used. If so, the regeneration of the key stream is
possible with only the public known information.

4.4.4 Creating the f8 mode from OFB and counter mode

The OFB mode, combined with the Counter mode, creates the basis for
the integrity function f8 of UMTS. As with satellite transmissions, the en-
crypted bits from f8 are sent through the air to the nearest receiver (Node-B,
see section 6.2.2 for more details). It is therefore vital that f8 inherits this
property from the OFB mode.

From the Counter mode the f8 adopts the property where each input to the
block cipher is xored with the counter, and thereby adding a extra assurance
that equal plaintext blocks doesn’t result in the same ciphertext.

Practically, the f8 mode is an OFB mode where each feedback is xored with
the counter and the IV. See section 6.3.3.1 and 8.4.1 for more information
on f8.

4.5 Cipher block chaining - message authentica-
tion code (CBC-MAC)

The CBC-MAC scheme creates a “fingerprint”, a MAC, of the plaintext
using a block cipher. CBC-MAC is the currently most popular scheme for
this purpose, and is considered secure if the block cipher is a pseudo-random
permutation[7].

The resemblance to the CBC mode is apparent (see figure 4.5), the only
difference is that a MAC is created by extracting just the last encrypted
block.

The input to the CBC-MAC mode is a string of any length. While the
output is equal to one block length of the used cipher f .

August 2, 2004



Summary 27

fK

C

fK

C

fK

C21

X X X1 2

...

IV=C0

n

n

CBC−MAC

Figure 4.5: Cipher block chaining - Message Authentication Code

4.5.1 Creating the f9 from the CBC-MAC mode

The design of f9, the integrity mode of UMTS, is based on the CBC-MAC.
f9 has some additional computations (xor) where each c1 → cn (see figure
4.5) is xored together and sent through one extra round of the block cipher.
This is done to add some extra security to the f9 mode. See section 6.3.3.2
and 8.4.2 for more information about the f9 mode.

4.6 Summary

This chapter has given an overview of some available operation modes when
providing both integrity and authentication using block ciphers. Other
modes do also exist, but the selected modes in this chapter are used as
foundations for the modes of UMTS, and thus given a priority.

Some modes create a key stream that is xored with the plaintext, other send
the plaintext through the cipher. One must choose a mode that suites the
intended area of use, not all modes are suitable for all purposes. An example
is the OFB mode where it has a great advantage when the information is
transmitted over unstable channels, as the air, due to the fast error recovery.

Operation modes are very important tools when providing encryption and
authentication, and it is important to be aware of that an excellent cipher

August 2, 2004



Summary 28

is nothing without a proper operation mode.

August 2, 2004



Chapter 5

Introduction to cryptanalysis

Cryptanalysis is the second main half of the term Cryptology. It is vital for
the user of an integrity system to know that no method of analysis exists
able to break the cipher. Therefore there is an ongoing struggle between the
crypt designers and the crypt analysts to come up with an immune cipher
or a new powerful attack (respectively).

To clarify the meaning of the notion cryptanalysis, I would like to present
the definition retrieved from [1] page 15:

Cryptanalysis is the study of mathematical techniques for at-
tempting to defeat cryptographic techniques, and, more gener-
ally, information security services.

In other words, cryptanalysis tries to undo the work done by the crypto-
graphic cipher either by finding the plaintext (the original text) or the key
which was used. Given the key an adversary can always find the plaintext.

Due to the wide variety of different cryptographic techniques there also
exists a wide variety of different counter techniques. However it is a usual
assumption that the opponent knows which cryptographic method that is
used. This is usually called Kerchoff’s principle or Kerchoff’s assumption[1].
Without this knowledge the job of a cryptanalyst becomes harder. It is also
accustomed for the opponent to have access to all the data sent between the
participants in the symmetric-key encryption scheme (see section 1.2.

This chapter will first discuss the classes of attacks that exist, where each
class gives restrictions to what kind of information that is available to the
adversary. Further, the chapter will give a general overview of different
attacks that are commonly used to analyze block ciphers, and the properties
(of block ciphers) that the attack exploits.

29



Classification of attacks 30

5.1 Classification of attacks

There are to main classes of attacks, active and passive. Where in the
passive attack model the adversary only observes the information flow and
tries to retrieve knowledge about the observed information offline. While in
the active attack model the adversary actively tries to change, delete or add
information to the flow[1].

5.1.1 Passive attacks

The passive attacks are split into four classes. The goal of these attacks is
to find the key, primarily, secondly to find the plaintext. The first attack
(ciphertext only) is the hardest, where the analyst gains little information,
but for each new attack he gains more and more information. This escalates
to the chosen plaintext attack, where the adversary can probe the crypto-
graphic cipher with his own texts. The four classes are:

ciphertext only The adversary knows only the ciphertext and which ci-
pher is used for encryption.

known plaintext In addition to the ciphertext only attack the opponent
now also knows the plaintext, or parts of the plaintext, that where
encrypted. This attack is not unlikely, due to the fact that we may
often know some initial standard coding of the plaintext. One example
is a html file which often starts with “< html >< head >< title >...”
etc.

chosen plaintext Here the adversary can also, in addition to the properties
of a known plaintext attack, get his plaintexts encrypted under the
current key.

chosen ciphertext In the final class of attack the opponent can choose
ciphertexts that he/she wants decrypted with the correct key.

A cipher secure from a given attack is also secure against those attacks using
less information. I.e. a cipher secure against a chosen plaintext attack is
also secure against known plaintext attacks and ciphertext only attacks.

5.1.2 Active attacks

The class of active attacks is a less used class compared to the passive,
when attacking a block cipher. This is due to the fact that the opponent is
actively changing the information sent through the channel, and is therefore
more easily compromised. The active attacks are nevertheless used when

August 2, 2004



Types of Passive attacks 31

attacking encryption protocols or schemes, but not against the block cipher
alone.

As the attacks studied against Kasumi are all passive attacks, the topic of
active attacks will not be discussed further outside this section. However,
in section 8.4.4.2 a forgery attack against f9 is discussed.

5.2 Types of Passive attacks

5.2.1 Definitions

Before discussing the details concerning each type of attack, some basic def-
initions needs to be clarified to better understand differential cryptanalysis.
First is the notion of a characteristic and then a differential, both which are
properties of an iterated block cipher. Differential attacks depend on these
properties to exist.

5.2.1.1 Characteristics

Take any two plaintexts and xor them together, the result will be a xor
difference. A one-round-characteristic is created from a pair of plaintexts
(P1, P2) and the corresponding pair of ciphertexts (C1, C2), i.e. input and
output of the function E. Then take the xors of the plaintexts (∆P ) and
the xor of the ciphertexts (∆C) and you will have what is called a one-
round-characteristic. I.e. a one-round-characteristic is the tuple (∆P , ∆C)
1.

∆P = P1 ⊕ P2 (5.1)

∆C = C1 ⊕ C2 (5.2)

A n-round-characteristic, in addition to the one-round, also includes the xor
differences (∆IM ) of the intermediate rounds in a Feistel network. The ∆IM

is in itself a tuple. If the Feistel network has i rounds, then ∆IM has i− 1
items. The n-round-characteristic is the tuple (∆P , ∆IM , ∆C). See figure
5.1.

The probability of a characteristic is the probability that a randomly chosen
input pair with a fixed xor difference, produces the “correct” ciphertext-
and intermediate round differences. [8].

1In practice one selects just a random P1 and then xor P1 with the desired ∆P to
obtain the P2

August 2, 2004



Types of Passive attacks 32

E

E

E

Input P or 1 P

IM3

IM2

IM1

11

Figure 5.1: N -round-characteristic

5.2.1.2 Differentials

A differential is more or less a characteristic, or a part of a characteristic, but
a differential disregards if the characteristics of the intermediate rounds are
followed or not. By definition in [9] a n-round-differential (i.e. differential)
is the tuple of (∆P , ∆N ), where ∆N is the xor difference of the output of
the n-th round.

The probability of a n-round-differential is the probability that a randomly
chosen input pair with a fixed xor difference, produces the “correct” output
difference after the n-th round.

5.2.2 Differential cryptanalysis

Differential cryptanalysis is a chosen plaintext attack against an iterated
block cipher f , introduced in 1990 by Biham and Shamir[10]. It requires lots
of input and output pairs, where each pair has a given xor difference. The
pairs are often collected in tuples (X, X ′, Y, Y ′), where X and X ′ are inputs

August 2, 2004



Types of Passive attacks 33

with the given xor difference ∆X, encrypted under the same, unknown key
K, deriving Y and Y ′, respectively.

After collecting the large number of tuples we decrypt the last round of
f with a possible subkey for all the tuples for both X and X ′ deriving C
and C ′ respectively. If the decryption yields the right differential, C ⊕ C ′

then this subkey’s count is increased by one. After running through the
probable subkeys, the subkey with the highest frequency is probably the
correct subkey.

Differential cryptanalysis depends on the probability of a n-round-differential
being significant, i.e. large enough so that the amount of needed tuples does
not grow to large. If the complexity (time consuming data collection and cal-
culations) of a differential attack outgrows the complexity of an exhaustive
key search, no one will attempt a plain differential attack.

5.2.2.1 Differential cryptanalysis using impossible differentials

This type of analysis uses differentials with zero probability, to find subkeys
that are incorrect. First select a huge amount of plaintexts with a difference
that is impossible to occur. Select a subkey, and check the i’th round (usually
i = n− 1, where n is the number of rounds in the cipher) of the cipher if an
impossible difference has actually occurred. If so, you will know that your
subkey was incorrect and you can remove it from your list of possible subkeys
[11]. It is then possible to either reduce the list to only one remaining subkey,
or discard the majority of the subkeys and perform an exhaustive search on
the remaining subkeys.

5.2.2.2 Xor-restricted related-key attacks(RKA)

The xor-restricted related-key attack is a chosen plaintext attack where you
are allowed to get your plaintext encrypted with a pair of related keys, K
and K’. These two keys differs normally only in one bit or.

5.2.2.3 Higher order differential attacks

A standard differential attack has order 1, Ek(x) = Ek(y) ⊕W where y =
x ⊕ a, k is the key to the function E. A differential of order 2 is where
Ek(x)⊕Ek(y) = Ek(z)⊕Ek(v)⊕W ′, where, in addition, z = y⊕a′, v = z⊕a′′.
Where a, W , a′, a′′ are any strings.

So by using differentials with higher order (than 1) it is possible to find other
differentials with higher probability.

August 2, 2004



Types of Passive attacks 34

5.2.3 Linear cryptanalysis

Linear cryptanalysis was first introduced by Matsui in 1993 [12], for the
DES cipher as a known plaintext attack. Linear cryptanalysis uses linear
approximations between a subset of plaintext bits and a subset of the out-
put bits of the final substitution (before the last key mixing). The linear
approximation is calculated for the xors of some subset bits of the plaintext,
which gives a probability for one output bit, having the value 1, away from
1
2 .

The course of action is as follows: Find the linear approximations, guess on a
subkey, do a reverse keymixing with this subkey with your ciphertexts. Then
check and see if your linear approximation holds. If so increase the count
of this subkey with one. After running through all our plaintext/ciphertext
pairs, the subkey with the highest count is probably the correct one.

Linear cryptanalysis depends on the possibility of the creation of a linear
approximation between some input bits and some output bits. Without a
high probability for the creation of this approximation, linear cryptanalysis
becomes to complex and demands too many computations.

5.2.4 Side channel attacks

Side channel attacks exploit information that the hardware crypt-unit gives
up, other than the usual inputs (plaintext) and outputs (ciphertext). A
hardware crypt-unit uses electricity and time, and radiates heat. By ma-
nipulating additional input, such as the voltage to the unit, or simply by
monitoring the time the unit uses for each operation, one may be able to
withdraw information from the unit which was not originally intended by
the designers. Side channel attacks can also be used in addition to other
“regular” attacks.

5.2.4.1 Timing attacks

A timing attack measures the time the unit uses for its operations, and uses
this information as input to a statistical model that may be able to guess
some key bits. Type of hardware (RAM, processor) and other variables must
be taken into consideration for the model to be as accurate as possible.

5.2.4.2 Simple power analysis (SPA)

Power consumptions attacks exploit the fact that all hardware units needs
electricity, and produce electromagnetic radiation. The attack, when used

August 2, 2004



Summary 35

in accordance with other regular cryptanalysis, may recover the secret key.

Simple power analysis uses a device (resistor) which is able to monitor the
units power consumption while performing an encryption. By interpreting
this information the adversary may be able to identify what kind of instruc-
tions that are used, the order that they are performed in etc.

5.2.4.3 Differential power analysis (DPA)

Differential power analysis is similar to the Simple power analysis, but uses
a more sophisticated approach, and may therefore be harder to prevent.
In addition to the visual attack of the SPA, the DPA also uses statistical
analysis and methods in order to gain extra information about the current
secret key.

5.3 Summary

This chapter has tried to give an introduction of the most commonly used
attacks of today. Especially the differential and linear attack are important
and widely used. They are also probably the most effective methods of
analysis that exists.

August 2, 2004



Chapter 6

UMTS - Universal Mobile
Telecommunications System

6.1 Introduction

In the evolution of mobile technology we are now entering the third genera-
tion, known as the 3G. For the earlier generations (1G and 2G) the number
of different systems and standards were many. Different regions had different
mobile systems and technology, and travelling outside your region with your
cell phone could easily prove difficult. Though we saw a big improvement
from the first to the second generation, the situation was far from perfect.
(i.e. one global system)

In 1998, a group of telecommunications standard bodies joined in a project
which goal was to develop specifications for a global mobile system. This
project was named Third Generation Partnership Project (3GPP). The spec-
ifications for 3G were to be based on the specifications and reports from the
existing 2G Global System for Mobile communication (GSM) core network,
and the Universal Terrestrial Radio Access (UTRA)[13]. The sum of all
these specification has, in Europe, been given the name Universal Mobile
Telecommunications System (UMTS) by the European Telecommunications
Standards Institute (ETSI). In USA and Japan it has been named Interna-
tional Mobile Technology (IMT-2000), by the International Mobile Union.

This chapter will try to give an overview of UMTS architecture, security
architecture and in addition give the reader an understanding of what we
need to protect (security features), where we want that protection and how
the protection is implemented (security mechanisms).

36



UMTS architecture 37

Figure 6.1: The UMTS architecture from the users point of view

6.2 UMTS architecture

6.2.1 Designing the UMTS architecture

When designing the 3G/UMTS architecture the designers wanted to reuse,
and remain compatible with, the 2G/GSM architecture. Using the 2G as a
building block the designers kept the features proven to be necessary and
secure enough for 3G, while adding new and modifying others, in order to
meet the demands of the 3G and it’s new network architecture[14].

6.2.2 The architecture

To an end user of UMTS the architecture seems quite plain and simple.
See figure 6.1. You just go to your local supplier of electronic devices and
purchase your User Equipment (UE). Normally the UE will consist of a
UMTS mobile phone (ME) and a UMTS Secure Identity Module (USIM).
Other types of UEs are also possible depending on which services and ap-
plications that will be provided. The USIM is user dependent and holds the
information needed to connect to and be authorized by a UMTS network.
The USIM is implemented, as an application, on a Smart card called Uni-
versal Integrated Circuit Card (UICC). UICC can hold multiple USIM’s,
together with their encryption and authorization keys, or store other rele-
vant applications.[14]

As we explore the network things gets more complicated. What we up un-
til now has called ”the network” consists of two underlying domains. The
first domain we encounter is the UMTS Terrestrial Radio Access Network
(UTRAN or AN). Its task is to physically connect the USIM, in the UE do-
main, with the UMTS service provider. UTRAN makes sure that the signals,

August 2, 2004



Security Architecture 38

sent through the air, is converted and delivered to your UMTS provider via
the antenna/base station (Node-B/BS) and the Radio Network Controller
(RNC). The RNC controls several Node-Bs and serves as an access point for
the Core Network (CN) domain.

The CN does also consist of multiple smaller parts. One of the first tasks it
performs when a UE tries to log on, is to authenticate the USIM. The in-
formation needed in order to perform the authentication lies in the Authen-
tication Center (AuC), which is seated in the Registers Home Environment
(HE). In fact the AuC does also hold the information needed to conduct sev-
eral other security services such as confidentiality, decryption and integrity.
See section 6.3 for more details. AuC is the opponent of the USIM, and
must contain enough information in order to perform the mentioned tasks.

The HE does also contain a list over UEs that are not welcome, i.e. the
USIM are not allowed to be authenticated to the AuC because the ME is
black listed. This list is called the Equipment Identity Register (EIR). The
third part/register of HE is the Home Location Register (HLR). The HLR
stores user profile information and the users current location (which Node-B
the UE is currently connected to).

Besides the HE, CN does also consist of the Circuit Switched (CS - voice)
and Packet Switched (PS - data) domain. These two domains uses the HE
when providing and supporting a wide variety of services to the end user.
The CS and PS domain are intended to be as universal as possible in order
to handle the variety of services and changes (additions) that may surface
in the future.

The last functionalities of the HE, that we discuss here, are those provided
by the Serving GPRS Support Node (SGSN), Mobile Services Switching
Centre (MSC) and the Visited Location Register (VLR). SGSN is seated in
the PS domain and performs the services when the USIM is in PS mode,
and visa versa the MSC in the CS domain. SGSN/MSC serves the 3G and
2G connections respectively, and they use the VLR when performing the
authentication and key agreement, between the RNC and the USIM (see
section 6.3.2.1 for further details).

6.3 Security Architecture

The section 6.2 gives a short introduction to the UMTS architecture, but
it hardly mentions the security aspects. While 6.2 talks about the physical
components, the security architecture lies in the communication between
the components, and can be thought of as the sum of all security features
and mechanisms “protecting” the communication [15]. When protecting

August 2, 2004



Security Architecture 39

Figure 6.2: The UMTS architecture

information three keywords keep reappearing; confidentiality, integrity and
authentication. Here the UMTS security does not differ. The difference,
however, lies in where and how these terms are applied. The security fea-
tures of the UMTS security architecture deals with where we need to apply
security, and the security mechanisms tells us how we implement these de-
sired features. This section will give an overview of the security features
and mechanisms, and hopefully, give you a better understanding of what
the designers of 3G wanted to protect/secure and the means they used to
accomplish their goals.

6.3.1 Security Features

The 3GPP has conducted an assessment on the security threats to the 3G
system and came up with a list of the most significant types of threats (see
[16] for more information). Based on this assessment they have defined what
kind of protection we need where in order to withstand possible attacks and
meet the security requirements.

6.3.1.1 User domain security

One of the threats that was rated most significant were the use of a stolen
USIM/UICC/ME, i.e. unauthorized users gaining access to another users

August 2, 2004



Security Architecture 40

account and/or terminal. Thus, when designing the security features, the
3GPP added a feature that concentrated around the User domain, i.e. the
security between the entities that the user has physical contact with. This
resulted in that the user must authenticate to the USIM and the USIM must
authenticate to the mobile terminal (ME).

6.3.1.2 Network access security

The results from the risk assessment showed that the need for several fea-
tures protecting the radio interface was imminent. Hence the features in the
Network access security are supposed to take care of the security between
the user domain and the 3G services with emphasize on the radio access
link. By security we mean protection from eavesdropping, masquerading as
a network component (USIM, Node-B, RNC), passive traffic analysis etc.
[16].

User identity confidentiality Each user has his own unique digital rep-
resentation of his/hers identity called International Mobile Subscriber Iden-
tity (IMSI). This identity needs to be protected from masquerading, replay
etc, and three features are described in [15] in order to provide the necessary
security.

user identity confidentiality The first property has the task of hiding
the identity from eavesdropping on a radio link when the user is ac-
cessing a service.

user location confidentiality The ”user location confidentiality” is sup-
posed to protect the user from ”announcing” his/hers arrival to a
specific area, through the radio link.

user untraceability And the final user identity confidentiality property
shall protect from an adversary who’s goal is to find out what kind of
services a given identity is accessing.

Entity authentication As the headline suggests, this paragraph is fo-
cused on the authentication of the entities. The entities in this context are
the USIM in the UE and the serving network. A major upgrade from 2G
is that the authentication runs two ways, i.e. that the network knows the
”true” identity of the user, and the user knows that the current network and
it’s services are authorized by the user’s Home Environment (HE).

Confidentiality To protect the information sent between the UE and the
RHE, we need some form of confidentiality, and the four features below

August 2, 2004



Security Architecture 41

address the issues discovered in the risk assessment.

cipher algorithm agreement Two parties, the UE and the RHE, has the
need for agreement, in a secure matter, on a cipher algorithm that;
they both have knowledge of and one that they are going to use until
their next agreement.

cipher key agreement As above, but now they need to exchange a new
cipher key.

confidentiality of user data The property that it’s possible to protect
the user data transmitted to/from the radio access link.

confidentiality of signaling data The signaling data must not be over-
heard on the radio access interface.

Data Integrity The features of authentication and confidentiality are not
in itself enough to provide complete security. The missing ingredient is
a conformation that the data received has not been tampered with. The
features in this paragraph will give an outline of the integrity we need.

integrity algorithm agreement Two parties, the mobile station (MS)
(MS consists of the pair ME and USIM) and the current Serving Net-
work (SN), has the need for agreement, in a secure matter, on an
integrity algorithm that; they both have knowledge of and one that
they are going to use until their next agreement.

integrity key agreement As above, but now they need to exchange a new
integrity key.

data integrity and origin authentication of signaling data The prop-
erty that the receiver of information knows for sure that the data has
not been tampered with in any unintended way.

6.3.2 Security Mechanisms

Based on the security features, the 3GPP has defined a bundle of mecha-
nisms that will fulfill the requirements and provide the necessary security.
The foundation for all other security mechanisms is the Authentication and
key agreement, from which all keys are derived.

6.3.2.1 Authentication and key agreement (AKA)

Many of the security mechanisms of 3G depend on keys distributed only
between the RNC and the UE. The AKA is to provide the entities with a

August 2, 2004



Security Architecture 42

secure distribution of the keys given that the UE and the RNC has achieved
mutual authentication. The 3G AKA is based on a challenge/response pro-
tocol, but it gets some help from a sequence number-based one-pass protocol
[15].

In order to perform the AKA the entities need some common secrets (in-
formation). Below you will find a list of the common information shared
between the AuC and the USIM.

• user specific secret key

• MAC functions f1, f1∗
• Response generator function f2

• key generation functions f3, f4, f5

Based on this information we are now able to perform the AKA between
RNC and the USIM. Some important “by-products” results from the AKA
and are generated from the key generation functions f3, f4, f5, respectively.
These are the integrity key (IK), cipher key (CK) and the anonymity key
(AK). Immediately after an AKA, the USIM and the RNC start using these
new keys.

AKA Challenge/Response overview The mutual authentication of
RNC and UE is triggered by the RNC. When the need for an AKA arises,
the RNC sends a request to the VLR. The VLR responds with an Authen-
tication Vector (AV) containing authentication information and the confi-
dentiality and integrity keys. The AV is previously generated by the AuC
for a given IMSI. After receiving the response from the VLR, parts of the
message (RAND||AUTN) is sent to the UE. Based on these parts the UE
is able to authenticate (or reject) the SN, and generate a response (RES)
with the function f2. Upon receiving the answer from the UE, the RNC
compares the response with the expected response (XRES), derived from
the AV. If they match then the UE has also been authenticated.

By using the challenge/response protocol along with the fx functions, one
achieves the AKA just (more or less) by sending a random number through
the radio access link. This means that no one can produce the IK, CK or
AK without knowledge of the user secret key.

In the introduction to the AKA I said that the challenge response protocol
receives some help from a sequence number. By adding the SQN number to
the challenge/response protocol, and storing previously used SQNs in the
USIM and the VLR, the AKA gets more robust and can withstand possible
replay attacks.

August 2, 2004



Security Architecture 43

Generation of the authentication vectors It’s the AuC that has the
required information needed to create the Authentication Vector (AV) needed
in the AKA. The AuC combines this information, shared between the AuC
and the UE, and several functions to pile up a list of AVs by increasing the
SQN number. The list is then stored in the VLR such that the AuC doesn’t
need to be contacted every time the UE is to be authenticated. See figure
6.3. The steps the AuC performs to create one AV are:

1. Generate a NEW sequence number (SQNAuC)

2. Generate a random number (RAND)

3. Use the f1 function with input SQN , AMF 1 , RAND and the user
specific key (k) to generate a MAC

4. Based on the RAND and the functions f3, f4, f5 generate a confi-
dentiality key (CK), an integrity key (IK) and an authentication key
(AK), accordingly.

5. the f2 generates the expected response (XRES) from the UE.

6. Concatenate the strings AUTN = SQNAuC ⊕ AK||AMF ||MACAuC

and AV = RAND||RES||CK||IK||AUTN

Both the USIM and the AuC keeps track of the previous used SQNs, but
they allow “old” unused sequence numbers within the last 32 SQNs. This
is to ensure that synchronization failure doesn’t happen to often.

Authentication vectors in the UE After receiving the AV vector from
the VLR, the RNC sends RAND||AUTN to the UE/USIM. The USIM must
perform the tasks, from previous paragraph, in a slightly different order than
the AuC to retrieve the information. See also figure 6.4.

1. From the RAND, generate the AK with the f5 function.

2. Calculate the SQNUSIM by xor’ing the SQNAuC ⊕AK with the gen-
erated AK

3. Generate IK, CK, RES and MACUSIM and verify that your MACUSIM
is identical with the received MACAuC. This implies that your key
k, RAND and SQN is identical to the AuC versions.

4. Verify that the SQN is in range.
1AMF is used to defining operator specific options during the authentication

August 2, 2004



Security Architecture 44

Figure 6.3: Generation of the authentication vectors [15]

6.3.2.2 The AKA functions

Previously I have only mentioned the functions that are used in the AKA
of the UMTS, but in this section we will dig a bit deeper.

The functions are build as a framework and are based on a 128 bit block
cipher and a 128 bit Operator Variant Algorithm Configuration Field (OP)
[17]. Both can be individually specified by a UMTS provider/operator, but
the 3GPP provides an example implementation, Milenage, using the block
cipher named Rijndael. See chapter 9 for more details about Rijndael, and
chapter 10 for the example implementation.

3GPP also provides some guidelines for choosing a secure enough block
cipher. The value of OP, however, is entirely up to each provider, but it
provides a separation between different providers for the fx functions. The
OP value is not used directly, but a OPC value is computed by sending the
OP value through the chosen block cipher. We denote the block cipher Ek.

August 2, 2004



Security Architecture 45

Figure 6.4: User generation of the authentication vectors [15]

General 3GPP guidelines for the AKA functions It should be com-
putational infeasible to calculate the secret key K from the input and output
of the functions. Further it should be possible to exchange the kernel func-
tion.

Design criteria

• The functions should be secure for the next 20 years. Secure means
that exhaustive key search is infeasible, and that no attack, with fewer
computations than exhaustive search exists. [18]

• It should be possible for each UMTS provider to personalize the ex-
ample set. [19].

• The functions should be designed in such a way that the kernel cryp-
tographic block cipher could be replaced, by any other suitable cipher
[19].

August 2, 2004



Security Architecture 46

Requirements for the block cipher

• Key size of 128 bit, input size of 128 bit.

• Resistance against side channel attacks

• Efficient implementation on a smart card with a 8 bits processor.

• It can be replaced with any other kernel function, matching the above
criteria.

f1: The f1 function is the message authentication function (MAC). Its job
is to create a ”finger print” of a message mixed with the secret user key by
using the block cipher function Ek. By applying a MAC,to a message, the
receiver knows that only a entity with knowledge to the secret key K can
create the MAC, i.e. the receiver can verify that the message is authentic
and comes from the entity that claims to have sent the message.

The inputs to the function, except the key, are the 128 bit random number
RAND, generated by the f0 function, the 48 bit sequence number (SQN),
a 16 bits authentication management field (AMF). The output from the
function is a 64 bits authentication code.

f1∗: The f1∗, is identical to the f1, i.e. the same input and output, but
f1∗ is only used when the SQN number is re-synchronized.

f2: The inputs to the f2 function are the 128 bits secret key K and the
128 bits random number RAND. The function mixes these two together, by
using E, such that the output is a unique combination of the inputs. f2 is
used to generate RES and XRES such that the UE and the RNC, during
the AKA, can prove that they are who they claim to be.

f3: Based on the key K and the random number RAND the f3 derives a
cipher key (CK) with the help from Ek. The CK is the confidentiality key
and is used as input to the encryption function f8.

f4: Identical to the f3 function but f4 generates the integrity key (IK).
IK is used as input to the integrity function f9.

f5: Identical to the f3 function but f5 generates the Anonymity Key (AK).
AK is used when masking (xor) the SQN when it is transmitted through the
radio access network.

August 2, 2004



Security Architecture 47

f5∗: Identical to the f5 function but f5∗ is only used when the SQN
number is re-synchronized.

6.3.2.3 Identification by temporary identities

As the three features in paragraph “User identity confidentiality” in section
6.3.1.2 states, we need to protect the IMSI. To accomplish this, the VLR
creates a Temporary Mobile Subscriber Identity (TMSI) based on the IMSI.
Only the VLR has access to the link between the IMSI and the TMSI. As the
TMSI is only valid within the area where the user is registered, the TMSI
needs to be accompanied by a Location Area Identification (LAI) outside
this area. So by using the pair TMSI/LAI, we are now able to identify the
user without sending the IMSI.

When it is not possible to be identified by a TMSI/LAI pair, the VLR may
request the ME/USIM to identify itself by the IMSI. This happens the first
time the user register in a SN or when VLR cannot retrieve the IMSI from
the TMSI. This mechanism, however, does not fulfill the features in 6.3.1.2.

6.3.2.4 Initiating integrity and confidentiality

The AKA, see 6.3.2.1, produces an integrity and encryption key, IK and CK
respectively. Immediately after the first AKA it is possible to perform both
integrity check and encryption, given that the identity (IMSI/TMSI) of the
USIM is known. But first, the two entities (MS and RNC) need to agree
on a common algorithm both for the integrity and the confidentiality. The
USIM provides the VLR with a list of algorithms it supports, whereupon
the VLR chooses the preferred algorithms.

Each pair of IK and CK is given a Key set identifier (KSI) such that when
the pair is to be reused only the KSI is exchanged.

6.3.2.5 Lifetime of CK and IK

In addition to new keys after each new AKA, the CK and IK keys are pro-
tected with a mechanism that restricts each key extended use. The threshold
is set by each operator and stored in the USIM. If the encrypted information
under the current CK exceeds the threshold, the CK and IK are deleted,
and thus forcing the creation of a new AKA.

August 2, 2004



Security Architecture 48

6.3.3 Confidentiality and integrity functions

On the contrary to the AKA functions, the confidentiality and integrity
functions are specified by the 3GPP as f8 and f9 respectively. These func-
tions use the Kasumi algorithm as a building block to provide the required
services between the UE and the RNC.

One reason to why the AKA functions are not specified, while the f8 and
f9 are, is that the UE connects to other operators Node-Bs and RNCs
when the UE’s own network is not available. It is therefore vital that the
confidentiality and integrity is kept when entering other networks than your
own. With the AKA, it is always your own Home Environment that is
contacted and that performs the AKA, while the confidentiality and integrity
is terminated at the RNC.

Figure 6.5: Function f8 and it’s inputs [20].

6.3.3.1 Confidentiality function - f8

The f8 function, see figure 6.7, is the confidentiality function of UMTS. It’s
task is to provide confidentiality, of user and signaling data, between the UE
and the RNC on the radio access link. f8 supports message lengths from 1
to 20000 bits and is based on a combination of the Output feedback mode
(OFB) and Counter mode, see details in section 4.4 and 4.3 respectively.

The inputs to f8 are:

BEARER 5 bits identifying the bearer

August 2, 2004



Security Architecture 49

Figure 6.6: Function f9 and it’s inputs [20].

COUNT 32 bits time dependent input

DIRECTION 1 bit identifying the direction of the transfer (upload/download)

LENGTH The length of the message (plaintext) to be encrypted. The bit
size differ, but in the c-code implementation it is 32 bits.

MESSAGE The plaintext to be encrypted, with size LENGTH, max 20000
bits.

KEY The 128 bits key CK derived from the AKA.

Based on these inputs, the f8 creates a key stream (KS) which is xor’ed with
the message. Because the COUNT will probably never repeat itself while
the current CK is used, the key stream will always differ from previously
generated key streams. 2

Creating the key stream: The inputs BEARER, COUNT and DIRECTION
are concatenated, and zeros are added as padding to create a 128 bit string

S = COUNT ||BEARER||DIRECTION ||0..0 (6.1)

Then a CK ′ is created by xor’ing the Key modifier (KM ; every second bit
a 0 or 1, beginning width the rightmost bit as a 1) with the CK. Then S
and CK ′ are sent as input to the Kasumi algorithm E.

IV = ECK′(S) (6.2)
2By xor’ing two ciphered messages (CM) one can get the xor of to messages, i.e.

CM1 ⊕ CM2 = (KS1 ⊕M1)⊕ (KS1 ⊕M2) = M2 ⊕M1

August 2, 2004



Security Architecture 50

This IV is then used as an input to the Counter/OFB mode, see figure 6.7 3.
The counter mode part of f8 uses a counter named BLKCNT, that counts
the number of blocks we have created up until now. The key stream blocks
(KSBn) is then created by:

KSBn = ECK(IV ⊕BLKCNT ⊕KSBn−1) (6.3)

where KSB0 = 0..0. By repeating this operation we create n = LENGTH/64
(rounded up to the nearest integer) number of blocks to be xor’ed with the
MESSAGE to create the cipher text C.

C = KSB1→n ⊕MESSAGE (6.4)

Figure 6.7: Function f8 [21].

Properties: The design of the f8 has maintained the advantages of
the OFB mode, i.e. when transmitting information over an insecure and
unstable line (UTMS: air), errors in the transmission are not conveyed to
the rest of the message, just this one block of size 64 bits.

3By sending the IV through the Kasumi algorithm the designers prevent an attacker
from designing an IV that will annul the counter part of the f8 function.

August 2, 2004



Security Architecture 51

6.3.3.2 Integrity function - f9

The integrity function of Kasumi, f9, verifies the authenticity of the data
sent between the UE and the RNC. f9 produces a 32 bits Message Au-
thentication Code by using the Kasumi block cipher. The f9 is based on
a Cipher block chaining MAC, see 4.2, in order to create the fingerprint of
the message. The integrity function can handle messages up to 5000 bits.

The inputs to the function f9 are:

FRESH Random number of 32 bits

COUNT-I 32 bits time dependent input

DIRECTION 1 bit identifying the direction of the transfer (upload/download)

LENGTH The length of the message (plaintext) to be encrypted. The bit
size differ, but in the c-code implementation it is 32 bits.

MESSAGE The plaintext to be encrypted, with size LENGTH, max 20000
bits.

KEY The 128 bits key IK derived from the AKA.

Creating the MAC First we concatenate parts of the input to a long
string, and add a 1 followed by zeros to create a string with length which is
a multiple of 64.

S = COUNT − I||FRESH||MESSAGE||DIRECTION ||1||0..0 (6.5)

Then we divide the string S into n parts of 64 bits(S1, ..., Sn). Each part
Si is xored with Si−1 and sent through the Kasumi algorithm (E). The
outputs are then xor’ed together to a string of 64 bits. This string is then
used as input to E, but now the key IK has been xor’ed with the KM. 4 And
leftmost 32 bits from the final calculation is the output from the f9 function.

Properties: The f9 function has preserved the main shape of the CBC-
MAC, and thus inheriting the advantages. In addition all intermediate out-
puts (which are pseudo-random) are xored together and sent through one
more round of Kasumi. This was done to add some extra security to the f9
function. For a thorough security assessment see section 8.4.3.2.

4KM here is the flipped version of the f8’s KM

August 2, 2004



Summary 52

Figure 6.8: Function f9 [21].

6.4 Summary

In this chapter we have been given an overview of the UMTS architecture
and security architecture. The UMTS network consists of several smaller
parts which has a complex collaboration.

The main issues of this chapter are that the confidentiality and authenti-
cation runs from the User equipment to the RNC, and that they run both
ways. Then the UMTS network knows whom the User Equipment belongs
to, and the User/subscriber knows that the current network is authorized
by its Home environment/operator.

6.4.1 Conclusion

We have seen the need of security features and mechanisms in UMTS, and
we have been shown the functions and protocols needed to implement these.
In particular the f8 and f9 functions, along with Kasumi play a vital part.
The analysis of these functions will therefore play a big part in the remaining
chapters.

August 2, 2004



Part II

Block ciphers in UMTS

53



Chapter 7

Kasumi

In the context of 3GPP, the designers needed a secure algorithm for use
in the f8 and f9 functions. The designers wanted a cipher that was fast
and easy to implement in hardware. So, when designing against known
attacks, resistance against theoretical attacks were deliberately left out, and
the designers “only” wanted the algorithm secure enough.

The Kasumi chapter will try to give the reader a better understanding of how
the cipher really works by breaking the cipher up into smaller parts. Then
give some implementation aspects. First, we will discuss the background of
Kasumi and it’s predecessor.

7.1 Designing Kasumi

In the block cipher Misty[22] the designers found a good foundation for
Kasumi. Misty is designed to be provable secure against the two most
prominent methods of cryptanalysis; linear and differential cryptanalysis
(see section 5.2.3 and 5.2.2 respectively). The Misty algorithm is an iterated
cipher consisting of several smaller functions which contained the desirable
qualities.

The Misty algorithm was originally designed by Mitsuru Matsui to be fast
on all types of platforms, hardware or software, not limiting the use of Misty
to only one type of machine. Matsui also wanted Misty to be provable secure
(see section 8.1.3.1) against linear and differential cryptanalysis.

Provable security was first introduced by Nyberg and Knudsen in [23] where
the main idea was to prove small (in input and output) components secure,
and then use a Feistel network to build larger block sizes. Matsui was the

54



Algorithm description 55

first to create an algorithm intended for extended use that actually had
adopted these qualities.

7.1.1 From Misty to Kasumi

Nevertheless, the 3GPP designers did not want to adopt Misty without
further ado. They did in fact make a few changes. The largest change
was done to the key scheduling part, where functions (FL) was replaced
by shift operations and by xoring in some constants (See table 7.3). The
motivation was found in that the changes lead to less hardware consumption
and saved time when generating the keys from the key schedule. A second
change made, was the replacement of the substitution table for the S9 box.
This was also done in order to decrease hardware use and probably save
some computational time. The need to increase hardware speed came due
to the relocation of the FL function, which made the hardware simpler,
but slower[24]. The FL function was also changed with the addition of
rotate shift functions, no effect on the hardware, but it was conjectured
that cryptanalysis became more difficult.

7.2 Algorithm description

Kasumi is a block cipher built on an eight round Feistel network[25]. The
Kasumi algorithm takes two inputs K and P and gives one output C, where
C = KASUMI(P, K) The input K is a key with length 128 bit and P , the
plaintext to be ciphered, is of length 64 bit. C is also of length 64.

Kasumi is then a family of functions (See section 3.1), indexed by the key
K:

KASUMI : {0, 1}128 × {0, 1}64 → {0, 1}64 (7.1)

7.2.1 The journey through Kasumi

As with other Feistel based algorithms, the input P is split into two halves
L0||R0, each of length 32 bit. (P = L0||R0) For each Feistel round i, 1 ≤ i ≤
8, the algorithm computes the following tasks using f as the round function:

Ri = Li−1 (7.2)

Li = Ri−1 ⊕ fi(Li−1, RKi) (7.3)

The output from the eighth Feistel round is L8||R8.

August 2, 2004



Algorithm description 56

Figure 7.1: The internal of Kasumi[25]

August 2, 2004



Algorithm description 57

For each Feistel round a unique round key RK is constructed from some
of the initial parameters and the algorithm itself (see section 7.3 for more
information on key handling).

7.2.2 The round function (f)

The function f , as shown above, takes two inputs, text I and roundkey RK.
I is 32 bit long and RK is 128 bit. The round key is then split into three
subkeys KIi,KOi, KLi.

Sub key Bit length Sub function
KLi 32 FL
KOi 48 FO
KIi 48 FO

Table 7.1: Sub keys and corresponding sub functions

The round function f takes on two different forms, depending on if i is even
or odd, with the help from two new subfunctions FL and FO.

Even rounds:

fi(I,RKi) = FO(FI(I, KLi),KOi,KIi) (7.4)

Odd rounds:
fi(I, RKi) = FI(FO(I, KOi,KLi),KLi) (7.5)

7.2.3 FL

The security of Kasumi does not depend on this light weight function. FL is
included in Kasumi in order to scramble the output, making each bit harder
to track through Kasumi.

The input to FL, is as described above, the key KLi and the text I. KLi

is split into two halves KLi = KLi,1||KLi,2 and so is the input I. I = l||r.
The output, l′||r′, from FL is the result from the following equations and
is based on the subfunction, ROL, which is the circular shifting of each bit
one step to the left:

r′ = r ⊕ROL(l ∩KLi,1) (7.6)

l′ = l ⊕ROL(r′ ∪KLi,2) (7.7)

August 2, 2004



Algorithm description 58

7.2.4 FO

The FO function is the non-linear part of Kasumi, it uses a subfunction FI,
see section 7.2.5, and xor’s parts of the input with the result from FI. The
keys KOi and KIi are split into three subkeys, each of length 16 bit, and the
input I is split into two (l0||r0). The FI subfunction is ran three times as a
round function in a modified Feistel network. The modified Feistel network
is designed by Matsui [26] and is called a Misty type transformation[22]. For
1 ≤ j ≤ 3 :

rj = FI(lj−1 ⊕KOi,j ,KIi,j)⊕ rj−1 (7.8)

lj = rj−1 (7.9)

The output from the FO function is the concatenation of r3||l3.

7.2.5 FI

The inputs are text I and key KIj,i. This function also splits up the input,
but now in unequal parts. The left part consists of 7 bits and the right of
9 bits. The inputs are then passed on to the substitution boxes (s-box) S7
and S9.

FI serves as the randomizing part of Kasumi, it uses the Misty type trans-
formation in it’s design, with the S7 and S9 functions as a basis for the FI
round function. FI does also consist of two other small functions ZE(x),
which adds two zeros to the most significant end of the 7 bit input x, and
TR(x), which removes two bits of the most significant end of the 9 bit input
x. See also figure 7.1.

L1 = R0 R1 = S9[L0]⊕ ZE[R0]
L2 = R1 ⊕KIi,j,2 R1 = S7[L1]⊕ TR[R1]⊕KIi,j,1

L3 = R2 R3 = S9[L3]⊕ ZE[R3]
L4 = S7[L3]⊕ TR[R3] R4 = R3

Table 7.2: FI function

7.2.5.1 S7 - S9

These two s-boxes take, correspondingly, 7 and 9 bits as input, and they
have a one-to-one relation with the output. S7({0, 1}7) → {0, 1}7. This
mapping is designed in such a way that it is easy to implement either as a
lookup table or by using gate logic. See the appendix for the lookup table.

August 2, 2004



Key schedule 59

The s-boxes of Kasumi, how small and insignificant they may seem, is the
foundation of the security of Kasumi. It is therefore vital for the s-boxes to
be as secure as possible (See section 8.1.3.1 for more details) in order for the
whole of Kasumi to be as secure as possible.

7.3 Key schedule

As mentioned before, the individual keys used in the different functions are
derived from the original 128 bit key K. Each bit of the 128 bit key is used
once and only once for each round, and in addition each bit is used in a
different way for each round[21]. K, given as input to Kasumi, is divided
into 8 smaller parts, each of size 16 bit (see equation 7.10).

K = K1||K2||...||K8 (7.10)

Then a second array of keys K ′ is derived from the keys in equation 7.10
(for 1 ≤ j ≤ 8):

Kj′ = Kj ⊕ Cj (7.11)

where the constants C1 → C8 are defined in table 7.3 and written in hex-
adecimal. The use of the constants prevents chosen plaintext attacks that
are more effective than exhaustive search. This is due to the fact that the
relations between the keys, in two rounds r and r+1, are not fixed, resulting
in that key bits becomes more difficult to track through the rounds[21].

C1 0123
C2 4567
C3 89AB
C4 CDEF
C5 FEDC
C6 BA98
C7 7654
C8 3210

Table 7.3: Key scheduling constants in hexadecimal[25]

All subkeys are derived from K and K ′ and can be found in figure 7.2, where
<<< n is the left circulation of n bits.

7.4 Implementation aspects

We recall that one of Matsui’s intentions was to make Misty fast both in
hardware and software, and as a result Matsui developed the Misty-type-

August 2, 2004



Summary 60

Figure 7.2: The Subkeys of Kasumi[25]

transformation instead of using the well used and documented Feistel net-
work. He has also assessed which types of operations that provides both
safety and speed, his conclusion was that logical operations (AND, OR,
XOR) and lookup tables provides some of both properties given above. How-
ever, not all optimizations are available both in hardware and software, some
small differences to the implementation of Kasumi may exists.

7.4.1 Parallel computing

When Kasumi is implemented in hardware or software it is possible to run
some functions in parallel, and thereby decreasing the calculation time. In
FI it is possible to run the first and the last S7 and S9 together in parallel
and two consecutive rounds of the FI in the FO function[24](See figure 7.3).

7.4.2 Lookup tables

The functions S9 and S7 are possible to implement as a lookup table/array.
However, the efficiency of a lookup table may vary from computer to com-
puter depending on the memory access speed[22]. In hardware it is possible
to stream line the lookup table using logic gates, which removes the delay
when accessing the computers memory[22, 24]

Lookup table example: S7[1] = 54 and S7−1[54] = 1

7.5 Summary

In this chapter we have seen how the Kasumi algorithm was designed from
the Misty cipher as an iterated cipher using a Feistel network. Kasumi

August 2, 2004



Summary 61

Figure 7.3: Optimization of FI and FO in Kasumi[24]

consists of several smaller parts with the s-boxes S7 and S9 as the smallest.
These parts create a 64 bits block cipher, with a 128 bit key creating the 64
bit output of Kasumi.

Both Misty and Kasumi are built on the basis of the theory of provable
security against differential and linear attacks. And should therefore be
“immune” to these attacks.

August 2, 2004



Chapter 8

Security analysis of Kasumi
and UMTS’ encryption and
integrity schemes

Security is all about trust. Who and what do we trust? Scientists have for
a long time searched for the ONE notion of security, the absolute proof of
security that operates without trust. Unfortunately no such notion exists
(today) that can be applied in practice. Therefore we have to take a look
at the best possible proofs of security and resilience against known attacks
existing today.

This chapter will give an overview of what kind of principles and results Ka-
sumi and the UMTS operation modes are built upon. The proper amount
of background theory (See section 3) is given in order for the reader to
understand the types of “proofs” that are available to deem UMTS’ encryp-
tion (f8) and integrity (f9) functions strong enough to endure the next 20
years. In addition there will be a large section concerning possible attacks
on Kasumi and the UMTS schemes.

8.1 Security of Kasumi and its building blocks

The users of UMTS need to know whether they can trust the f8 and f9
functions. In order to give them an answer we need to take a closer look at
the security these functions provide.

The cornerstone of both the f8 and f9 functions is the Kasumi block cipher,
and in order for the functions to be secure, the Kasumi also needs to be
secure. Therefore this section will first concern about the security of Kasumi;

62



Security of Kasumi and its building blocks 63

the design principles, the smaller building blocks of Kasumi and then how
the whole Kasumi, based on the smaller parts, can prove itself worthy.

8.1.1 General description of Kasumi

We recall from Chapter 7 that Kasumi is built on an eight round Feistel
network, where each round consists of two functions (FL and FO). FO
is also built as a modified Feistel network (3 rounds) with the FI as the
round function. This modified Feistel network is called by [5], a Misty-type
transformation. FI consists of two s-boxes (S7 and S9) in a four round
Misty type transformation.

8.1.2 Rationale of Feistel networks

The main advantage of using Feistel networks (See 2.3.2 for description) is
that the round function f doesn’t need to be invertible [1], you only have
to invert the order of the round keys.

More important for the security is that each round of the Feistel network is
a permutation of the original input, making the whole Feistel network one
big permutation. Feistel networks are very important when proving security
against linear and differential cryptanalysis. This will be discussed later in
this chapter.

8.1.3 The s-boxes

We recall that Kasumi uses two s-boxes, one which takes 7 bits of input
(S7) and the second that takes 9 bits (S9). Both boxes can be thought
of as a lookup table, where each input corresponds to the same amount of
output bits. The s-boxes are defined as bijective1 mappings of one Galois
Field(GF)2 to another; f : GF (2n) → GF (2n).

The s-boxes are the smallest components of Kasumi, which upon the whole
security against linear and differential cryptanalysis lies. We will therefore
in this section discuss the background and rationale of the s-boxes any why
they were designed as they are. However, first we need to explain how we can
provide security, as there are two main approaches for a block cipher to be
secure. These two properties come in addition to the general requirements,
of section 2.2.2.

1one-to-one correspondence
2Given a prime p and a natural number n it is possible to create a field with pn elements

August 2, 2004



Security of Kasumi and its building blocks 64

The first and most obvious way is to show that no known attack existing
today is able to break your cipher, by actually mounting an attack of each
kind at the block cipher, or proving specific resistance against an attack.
However, resilience against one attack does not protect against other at-
tacks. The second way is for the cipher’s output to appear totally random,
undistinguishable in polynomial time from a random function/permutation
(See section 3.2 for more details).

For the remainder of this chapter we will take Kasumi through both these
two approaches. First by showing that Kasumi is provable secure against
linear and differential cryptanalysis, then by giving an overview over the
best possible attacks against Kasumi and finally showing that Kasumi does
behave as a pseudo random permutation.

8.1.3.1 Provable security of s-boxes

The notion of provable security of DES like ciphers against differential crypt-
analysis was defined by Nyberg and Knudsen in [23] as the property of a
function F having a small enough probability for differentials and linear
structures to occur. The definitions of linear (LP) and differential (DP)
probability are found in [23, 26]:
Definition 3. Let Fk(x) be the function F with input x and k. x having
length n and k having length l.

DPF def
=

1
2l

∑

k ∆x 6=0,∆y

max
#{x|Fk(x)⊕ Fk(x⊕∆x) = ∆y}

2n
(8.1)

Here we are counting the number of x’s that yield the same output difference
∆y when used in Fk(x) ⊕ Fk(x ⊕∆x) for a given difference ∆x. If two or
more x’s derives the same ∆y, the number of possible used values for ∆y
decreases. The goal is that no two x yields the same ∆y (Perfect nonlinear,
see below).

LPF def
=

1
2l

∑

k Γx 6=0,Γy

max(2
#{x|x • Γx = Fk(x) • Γy}

2n
− 1)2 (8.2)

Where x•y is the parity of the bitwise product (x AND y). Γx and Γy
represent the approximation.

The numerator is counting the number of successful approximations (Γx,Γy),
between the input x to the function F and the output Fk(x) for each key k.
The numerator will be a number between 0, when no approximation has been
found, and 2n when all approximations succeeds. However, most counts will
have a value of approximately 2n−1. If the numerator has a count that differs

August 2, 2004



Security of Kasumi and its building blocks 65

from 2n−1 LP grows larger. This is what we want to avoid when designing
a function with resistance against Linear cryptanalysis.

The rest of the calculations of LP (2( ..
2n − 1)2) are just to transform the

count to a number between 0 and 1.

Almost perfect nonlinear permutations Now that we have defined
how to calculate the probabilities, we can introduce a notion defined by
Nyberg and Knudsen in [23], almost perfect nonlinear permutations, but
first we will define perfect nonlinear functions.

The lowest possible probability (perfect nonlinear) for DP , of equation 8.1
(and LP ), appears when every x gives a unique ∆y in the Fk(x⊕∆x) = ∆y.
This probability is calculated in equation 8.3, where |k| = 2l:

DPF =
1
2l
∗ 2l ∗ 1

2n
= 2−n (8.3)

However, the Kasumi s-boxes are not functions, but permutations and can-
not obtain lesser LP and DP than 21−n [23]. Permutations obtaining this
LP and DP is called almost perfect nonlinear.

The reason why permutations cannot be perfect nonlinear is that they only
obtain half of the possible values in the definition of DP . Take a closer look
at the equation 8.1. We are trying to count the number of x’s that gives
a specified output ∆y. There are at least two, the number depends on the
permutation, x values that yields the same ∆y in Fk(x⊕∆x)⊕Fk(x). This
is due to the fact that when ∆x is fixed and x varies, then x will eventually
be equal to x⊕∆x which yields:

Fk((x⊕∆x)⊕∆x)⊕ Fk(x⊕∆x) = Fk(x)⊕ Fk(x⊕∆x) (8.4)

Therefore two different x values give the same ∆y and the equation of 8.3
now obtains twice the probability:

DPF =
1
2l
∗ 2l ∗ 2

2n
= 21−n (8.5)

In here lies also the reason to why the s-boxes have uneven numbers (7
and 9, not 8 and 8). This is because odd numbers in a bijective function
has a possible minimal LP and DP of 21−n (see equation 8.5), while it is
conjectured that when the functions have even numbers the minimal LP
and DP are 22−n[22]. Therefore by choosing an odd number for your s-box
you are getting the lowest possible linear and differential probability.

August 2, 2004



Security of Kasumi and its building blocks 66

8.1.3.2 S7

The S7 box is chosen in such a way that the corresponding input and output
bits are maximally non-linear (almost perfect nonlinear), for a permutation.

To find functions for GF (27) that are maximally nonlinear we turn to
Kasami exponents[21] (not to be confused with Kasumi). Kasami found a
set of exponents that give the function of GF (27) maximal nonlinear prop-
erties. The function chosen for Kasumi’s S7 box is x81.

To verify the maximal nonlinearity of S7 we will check whether 81 of x81

is a Kasami exponent. The calculation and theorem are retrieved from the
“3GPP Kasumi Evaluation Report” section 9.2.1.3.1 [21].
Theorem 1. A linear transformation xd over GF (2n) has optimal nonlinear
probabilities if for n = 2m + 1 such that 2 ≥ k ≥ m, gcd(k,m) = 1 and
d = 22k − 2k + 1(mod 2n − 1).

Two exponents are equivalent if d′ = 2td.

In our case n = 7, d′ = 81. k is either 2 or 3, and if we factorize 81 to

81 = 80 + 1 = 64 + 16 + 1 = 26 + 24 + 1 (8.6)

and uses that two exponents can be equivalent, we see that

d′ = 81 = 26 +24 +1 = 28− 26 +24(mod 127) = 24(24− 22 +1)(mod 27− 1)
(8.7)

d is then 24 − 22 + 1(mod 27 − 1) which gives k = 2. The gcd(2, 3) = 1 and
all the conditions of Theorem 1 are fulfilled.

Through this calculation we have verified that the S7 box of Kasumi is a
almost perfect linear permutation, setting S7’s DP and LP to 2−6.

It is also proven that it is virtually impossible to create a probabilistic ap-
proximation of the S7 box [21].

8.1.3.3 S9

As S9 is a composition of x5 and a linear output transformation over GF (29)
the Kasami exponents are not valid here, and no calculation is available.
However, the S9 box does provide maximal non-linearity (LP = DP =
2−8)[21]. It contains 511 linear structures. To compensate for this small
weakness the S9 is constructed in such a way that this property is not
passed on to the FI and FO functions [21].

August 2, 2004



Security of Kasumi and its building blocks 67

8.1.4 FI and FO functions

In 1993 Nyberg and Knudsen proved that small, secure (differential and
linear resistant) components can be merged by a Feistel network in order to
create larger, secure block sizes [23]. This theorem is denoted as Theorem
2.
Theorem 2. It is assumed that in a DES-like cipher3 with f : GF (2)m →
GF (2)n the inputs to f at each round are independent and uniformly ran-
dom. Then the probability p of an r-round differential, r ≥ 4, is less than
or equal to q2. Where q=LP or DP.

Originally Nyberg and Knudsen proved p to be 2q2, but later Aoki and Ohta
improved this limit to q2[27].

It is this theorem that Matsui has taken advantage of when designing Misty
(Kasumi’s predecessor). The s-boxes have small differential/linear probabil-
ities [21, 22], and can thus be used in the way that Nyberg and Knudsen
suggested.

In [26] Matsui adapts Theorem 2 to also cover two other types of networks
(Misty type transformations) different than the Feistel network, but keeping
the probability to q2. These two other networks are used in FI and FO [22].

So what Matsui does is using Theorem 2 and his modified Feistel networks,
three times, in order to compose the larger Kasumi from the small s-boxes.
First by concatenating the two s-boxes in the FI function (7+9=16 bits),
then in the FO function where three FI functions are added to create 32
bits, and then finally in the outer Feistel network of Kasumi where 8 rounds
of FO creates a 64 bits permutation.

What the theorem from Nyberg and Knudsen tells us is that it suffices to
prove the small components secure against differential/linear attacks for the
whole Kasumi function to be differential/linear secure.

By knowing the linear (LP ) and differential(DP ) probabilities of the s-
boxes and using Theorem 2 we can calculate the LP and DP of FI, FO
and Kasumi.

DPFI = LPFI = 2−8 ∗ 2−6 = 2−14 (8.8)

DPFO = LPFO = (2−8 ∗ 2−6)2 = 2−28 (8.9)

DPKASUMI = LPKASUMI = ((2−8 ∗ 2−6)2)2 = 2−56 (8.10)
3DES-like meaning built on a Feistel network

August 2, 2004



Security of Kasumi and its building blocks 68

In comparison we can calculate the DP and LP for a Kasumi constructed
variant using two s-boxes defined over GF(28): DP and LP are then calcu-
lated to (((2−8+2)2)2)2 = 2−48. Which is considerably larger than DPKASUMI .

8.1.5 Complexity of linear and differential attacks

Now that we have calculated the probabilities of a possible differential/linear
structure to occur (see equation 8.10), we can find the time and data com-
plexity of an attack on Kasumi using these structures.

8.1.5.1 Differential complexity

The relationship between differential probabilities and the lower bound of
the complexity can be found in [9] Theorem 1. The simplified version is
given as Theorem 3
Theorem 3. Let Comp(r) denote the lower bound on the complexity of a
differential cryptanalysis of an r-round iterated cipher, which following [11],
is defined as the number of encryptions used.

Comp(r) ≥ 2
DP− 1

2m−1

,

where DP is the equation of 8.1 and m is the block length of the cipher.

Using theorem 3, we can calculate the number of encryptions needed to
launch a differential attack on a full 8 round Kasumi.

CompKasumi(8) ≥ 2
2−56 − 1

264−1

≥ 257 (8.11)

I would like to emphasize that equation 8.11 only gives the lowest possible
bound, the actual required number of chosen plaintexts may be substantially
higher. Only a more thorough investigation can reveal the true number.

In comparison to the real number of chosen plaintexts needed to “break”
Kasumi, the authors of [9] has conducted a complete investigation of PES
which has a DPPES = 2−58. Where the true number of chosen plaintext was
calculated to be 264, while Theorem 3 only gives a lower bound of 259[9].

It is therefore highly likely that a linear attack on Kasumi requires more
than 257 chosen plaintexts.

8.1.5.2 Linear complexity

Adopting the method used by Matsui in his paper Linear Cryptanalysis
Method of DES Cipher [12] we can calculate the required number of known

August 2, 2004



Cryptanalysis of Kasumi 69

plaintexts N needed to conduct a linear attack on Kasumi. Where p is the
probability of a linear structure with a deviation furthest away from 1

2 .

N = |p− 1
2
|−2 = |(1

2
+ LP )− 1

2
|−2 = |LP |−2 = 2112 (8.12)

Even though this formula gives N = 2112 it is not necessary to find them
all4. This is due to the fact that when we reach 264 known plaintexts we
have a complete lookup table for Kasumi with the current key, and we do
not need the key to decipher any messages.

However, to find all 264 known plaintexts, even outside the 3GPP environ-
ment, is virtually impossible. So the provable security of linear cryptanalysis
leads to a complexity of the attack which is impossible to handle.

8.1.6 Summary

This section has given a thorough review of how small provable secure s-
boxes can be fitted together to create larger functions which preserve their
provable security. Secondly, we have shown how to transform the provable
security of differential and linear probability into computational complexity.

Kasumi, with it’s provable security, has been shown to have a complexity, of
regular differential and linear attacks, out of bounds for today’s polynomially
bound computers. Kasumi can therefore be reckoned as secure against these
types of attacks.

Remarks The same conclusion was also drawn by Alex Biryukov in his
Block Ciphers and Stream Ciphers: The State of the Art [3] where he states
on page 12, and I quote without his references: At the present moment
there is no known weaknesses in this cipher in-spite of considerable research
efforts around its predecessor MISTY1 and on KASUMI itself.

8.2 Cryptanalysis of Kasumi

Due to the fact that we have no strong proof of security of block ciphers,
a block ciphers gains trust, among the crypt-engineers, proportionally with
the amount of analysis done to the block cipher. Kasumi (and it’s pre-
decessor Misty), even though it is a young block cipher, has undergone a
quite substantial amount of cryptanalysis. In this section I will provide an
overview of the most significant attacks on Kasumi.

4Recall that Kasumi takes 64 bit input and yields 64 bit output. There are “only” 264

different possible plaintexts and ciphertexts

August 2, 2004



Cryptanalysis of Kasumi 70

8.2.1 Differential cryptanalysis

Although Kasumi was designed to provide provable security from differential
cryptanalysis (See section 5.2.2), there still exists some more sophisticated
differential attacks on a reduced-round Kasumi.

8.2.1.1 Impossible differentials attack on Kasumi

In the 3GPP Kasumi Evaluation Report from SAGE [21] it is stated that
the FI functions does not contain any impossible differentials (see section
5.2.2.1), while the FO function does. These differentials are transferred to
a 2 or 3 round Kasumi without the FL function. Adding the FI function
most of the impossible differentials are wiped out, and they become key-
dependent.

Best known impossible differential attack The best known attack
using impossible differentials are against a 6 round Kasumi using 253.3 chosen
plaintexts and using 2100 encryptions, exploiting the impossible differential
and the structure of the FO function[21].

No attack on the full 8 round Kasumi has been found using impossible
differentials.

8.2.1.2 Best known xor-restricted related-key attack (RKA) on
Kasumi

An RKA (see section 5.2.2.2) attack on a six round Kasumi (reduced) re-
quires a chosen plaintext attack with 3 ∗ 217 plaintext pairs (X and X ′) and
a maximum of 2112 trials to find the current key.

The attacks described in [28], are the best xor-restricted related-key attacks
known, yet they pose no real threat against the security of Kasumi. This is
due to the fact that they rely on a reduced round Kasumi (5 or 6 rounds)
and the use of a special type of related keys.

These type of related keys are, accordingly to the authors, regarded as im-
possible to implement, due to the 3GPP environment.

8.2.1.3 Higher order differential attack on Kasumi

Kasumi’s predecessor Misty has undergone much analysis using 6th and 7th

order differentials[21] (see section 5.2.2.3 for more details). The best known

August 2, 2004



Cryptanalysis of Kasumi 71

attack to Misty, given in [21] is an attack using 1408 chosen plaintexts
on a 5 round Misty by Tanaka et al. in Strength of MISTY1 without Fl
function for Higher Order differential Attack. However, this attack is not
transferable to Kasumi [21], due to the fact that the FI function is modified.
No higher order differential has neither been found for the full 8 round
Kasumi/Misty[21].

8.2.2 Linear cryptanalysis against Kasumi

As mentioned, Kasumi is designed with provable security against linear
cryptanalysis (section 5.2.3 contains more information). However, it may be
possible to increase the probability for LPFI (See definition 8.2 in 8.1.3.1) to
2−12 by exploring some specific keys[21], lessening the amount of complexity
and workload.

8.2.2.1 Best known linear attack

Using these keys it is possible to mount a five round attack on Kasumi using
258 known plaintexts and doing 295 calculations, but this attack can only be
used for a fraction of 2−3 of the keyspace.

8.2.3 Side channel attacks on Kasumi

According to [21], Kasumi has undergone analysis against timing attacks,
simple power analysis and differential power analysis without finding any
significant vulnerabilities. (See section 5.2.4 for more details against the
individual attacks.)

8.2.4 Statistical evaluation

Although it was proven by Iwata and Kurosawa in [29], that the integrity
(f9) and confidentiality (f8) functions of UMTS was indistinguishable from
a random permutation, there was conducted a series of statistical evaluations
both on the Kasumi algorithm and the f8/f9 functions to verify this proof.
The tests on Kasumi were performed on the whole function, FI, FO and
on the two s-boxes[21].

The results confirmed that the s-boxes indeed were almost perfect nonlinear,
and for FO and FI no linear structures where found. The bit sequences
generated with Kasumi did not deviate from random behavior[21]. Neither
did the bit sequence generated by f8. The f9 function did also pass all

August 2, 2004



Pseudo-randomness of Kasumi 72

dependency tests (That every bit of the output depends on every bit of the
key and input).

8.2.5 Conclusion

No known attack is able to break the full 8 round Kasumi. Still the best pos-
sible attack is the exhaustive key search. Nevertheless, one cannot disregard
that a new unknown attack is able to break Kasumi in the future. However
it is appropriate to conclude that Kasumi is safe enough for the next 20
years, due to the fact that no known successful attack against Kasumi exists
today.

8.3 Pseudo-randomness of Kasumi

While the chapter 3 gave the theory of pseudo-randomness, this section we
will apply this theory to Kasumi to see if Kasumi behaves as a family of
pseudo-random permutations or not.

The proof for Kasumi’s pseudo-randomness is found in [5], where the authors
provide a rigid proof, using the adaptive distinguisher model, of that a four
(or more) round Kasumi is a 64 bit pseudo-random permutation (PRP),
while the three round is not. See [5] for complete proof. In this section I
will give you an outline (short version) of this proof.

8.3.1 Outline of proof

As mentioned above, Kasumi is a 64 bits permutation consisting of 2 main
functions FL and FO. The FL function is omitted in the proof, due to the
fact that this function is only a linear round key mixing. FO still remains,
and it is a 32 bits permutation. FO’s security relies on the two s-boxes used
in the 16 bits permutation of FI .

In [30] Luby and Rackoff proved that a DES-type transformation with three
rounds, with a n-bit pseudo-random permutation as the round function,
generates a 2n-bit permutation. However, Matsui created his own Misty-
type transformation (used in FO and FI ) so the proof of Luby and Rackoff
cannot automatically be applied to the whole of Kasumi. Further, Sakurai
and Zheng in [31] showed that the three round Misty network used in the
FO function is not a PRP, while the four round, used in FI, is [32, 33].

The authors of [5] wanted first to verify that the four round Misty-type
transformation and the two s-boxes together created a PRP. In order to find

August 2, 2004



Security of 3GPP encryption and integrity schemes 73

the distinguishers advantage, the probability of a bad event was derived.
By bad we mean the functions (S9 and S7) having equal differences for
different outputs. The result of the advantage calculation showed that it
was negligible. FI was indeed a (9+7) bit PRP.

Unable to prove the FO a PRP, due to Sakurai and Zheng in [31], Yi et al.
had to use the same procedure with the four round Kasumi as with the FI
function. They could not apply the Luby and Rackoff theorem, and used
only the fact that FI was a PRP. Each round of their simplified Kasumi
then contained three FI functions. After calculating the bad events, the
results showed that Kasumi was a 4n bit PRP. Where n = 16 bits of the FI
function.

8.4 Security of 3GPP encryption and integrity schemes

8.4.1 On the construction of f8

As mentioned earlier the design of f8 is based on the OFB operation mode
(see section 4.4), however slightly modified. So in addition to having the
properties of an regular OFB scheme the f8 mode has a pre-computation
using the kernel function of the inputs to the scheme (see section 6.3.3.1,
and figure 6.5 for more detailed information). This pre-computation gives
two advantages[21]:

Protection against chosen plaintext With the initial round of Kasumi,
the inputs to the normal OFB, are not longer known. This makes it
more difficult for the chosen plaintext attack to be carried out. This is
due to the fact that the inputs are sent through one round of Kasumi
with the use of the unknown key.

Protection against collision attacks For a f8 construction f8′ without
the initial Kasumi round, it is possible to distinguish f8′ from a ran-
dom generator. We are able to distinguish between f8′ and a random
generator if the probability for a collision is “large,” however for the
f8 this probability is low enough[21]. A collision is under the notion
of birthday attacks5

5A birthday attack comes from the surprising result that in a class of 23 pupils, the
probability that two persons have the same birthday is greater that 50%. This is used
when searching for two different plaintexts having the same fingerprint from a MAC. This
is called a collision.

August 2, 2004



Security of 3GPP encryption and integrity schemes 74

8.4.2 On the construction of f9

As discussed in 6.3.3.2 the construction of f9 is built as a modified CBC-
MAC mode. With standard CBC-MAC a birthday attack5 would be possible
to implement using 233 messages, but with the f9 construction one needs 265

messages. This number of messages is out of reach. f9 has therefore gained
a significant improvement without getting any additional weaknesses.

8.4.3 Proving the security

In 1997, Bellare et al. showed in [34] that an encryption scheme or a mode
of operation (CBC, CTR) is secure, within and upper and lower bound
of calculations, if the encrypted block cannot be separated from a random
permutation from an oracle (left-or-right indistinguishability (LOR)). Given
that the underlying primitive, i.e. the block cipher in use, was a pseudo-
random permutation (PRP).

The term secure is given in the context of the notion of left-or-right indis-
tinguishability. LOR is similar to the Adaptive distinguisher model, but int
LOR the adversary queries the oracle with two inputs (x0,x1). The oracle
then replies with either Ek(x0) or Ek(x1). Where E is an encryption scheme
and k is the currently chosen key. The encryption scheme is regarded as se-
cure if the adversary cannot obtain significant advantage in distinguishing
between the left and the right output.

It was under this assumption Yi et al. “proved” the f8 function secure in [5].
This proof was later proven to be false by the authors of [35, 29], where they
showed that it was impossible to prove whether f8 or f9 were secure under
the assumption that Kasumi was a PRP. To show the proofs false, Iwata
and Kurosawa constructed a PRP F with the property that for a constant
C and any key K, FK(x) = F−1

K⊕C(x). By applying F to f8 and f9, the
schemes are easily broken with a probability of 100%. The authors stress
that their results do not show that f8 and f9 are insecure using Kasumi,
but only that the provable security of f8 and f9 are nonexistent under the
PRP assumption.

Recently (January 2004) Iwata and Kurosawa did in fact prove in [29]that
the f8 and f9 functions were secure, but now under the assumption that
the underlying cipher was secure against xor-restricted related-key attacks.

8.4.3.1 Security of f8

As the authors of [35] proved, it was not enough for the underlying primi-
tive (Kasumi) to be a PRP. So Iwata and Kurosawa wanted to see if there

August 2, 2004



Security of 3GPP encryption and integrity schemes 75

existed any way to prove f8 and f9 secure under the notion of the Adaptive
distinguisher model. Because of the f8’s use of the key-modifier (See section
6.3.3.1), the minimum assumption was to see whether f8 was secure against
xor-restricted related-key attacks (See section 8.2.1.2 for more details).

To prove the security of the f8 encryption scheme against RKA’s, Iwata
and Kurosawa designed a weaker, but more flexible version of f8. This
version (f8’) made the adversary’s job a bit easier, but still, the advantage
the distinguisher had, when using the “Adaptive distinguisher model”, were
negligible. So if the f8 function is combined with a RKA resistant primitive
the whole scheme is secure. Since the best possible RKA attack on Kasumi
pose no real threat against a full 8 round, 3GPP’s encryption scheme f8 can
be regarded as secure.

8.4.3.2 Security of f9

In [36] the authors proved that if the underlying block cipher was a PRP
and this cipher was used in a CBC-MAC (See 4.2) the property of the PRP
was preserved by the CBC-MAC and transformed into a PRF. Further the
authors proved that if the MAC was a secure PRF, then the whole scheme
is unforgeable. The PRP property of Kasumi was proven by [5] and the f9
integrity scheme is based on a CBC-MAC. (See sub-section 6.3.3.2)

But Iwata et al., the authors of [29], wanted to prove that the f9 scheme
was indeed a PRF. Again they used that the Kasumi cipher was secure
against xor-restricted related-key attacks and showed that the advantage
the distinguisher had was small by definition and therefore negligible.

8.4.4 Cryptanalysis of f9

Lars Knudsen and Chris Mitchell have in [37] described three types of attacks
on the 3GPP-MAC-scheme f9. These three types are chosen MAC, known
MAC and the last uses MAC verifications. Several attacks emerge from each
type and their goal is to recover the key or to forge a MAC.

In this section you will find the outlines of these attacks including their
complexity.

Throughout this section 8.4.4, m is the block length of the cipher used, and
n is the length of the MAC.

August 2, 2004



Security of 3GPP encryption and integrity schemes 76

8.4.4.1 Exhaustive search

The exhaustive search is a known MAC attack. The attack uses very few
known MACs, due to the fact that the f9 scheme uses two keys in the
calculation of a MAC, K and K ′ = K ⊕KM where KM is a Key Modifier
(See section 6.3.3.2 for more details.), and thus lessening the probability for
a collision.

The main idea is that you know some plaintexts and their MACs, then you
run the plaintexts through f9 using all possible keys (K, K ′) to see if you
can find a match between the derived MAC and your original. If you find a
match, it can be the right key k, or you have found a collision.

The probability of a collision is 2−m, where m is equal to 32. The reason for
this is that after the final round of Kasumi in f9, the 32 rightmost bits are
truncated. Therefore 232 blocks will have the same 32 leftmost bits, while
the 32 rightmost differ. To rule out those keys that only yields a collision we
need to check the key k with other known MACs. The process is continued
until k has been found.

This attack has a complexity of (N + 3) ∗ 2|K| = (N + 3)2128 encryptions,
where N is the number of 64 bits blocks of the plaintext, and 3 because; one
Kasumi encryption at the end using K ′ and two for key derivations[37].

The exhaustive attack is easy to implement, but 2128 computations of Ka-
sumi is not possible to accomplish on today’s polynomial bounded comput-
ers.

8.4.4.2 A forgery attack

A forgery attack is a chosen MAC attack where it is possible to forge a
message into having the same MAC as another message. In so doing it is
possible to change the content of the message, but (without knowing the
key) keeps the MAC derived from the original message.

In order to conduct this attack you have to collect enough messages and their
corresponding MACs to find a collision. For the f9 function this number q
is
√

2 ∗ 2n/2[37]. For f9 and Kasumi n = 64 (block size) and q =
√

2 ∗ 232.
When you have found the two colliding messages M and M ′, construct
2n/2 messages M(i) = M |Rand(i) and 2n/2 messages M ′(j) = M ′|Rand′(j)
and their MACs. Where Rand(i) and Rand′(j) are randomly chosen n-bits
blocks.

Again one expects to find a collision among these newly constructed MACs.
Then take their Rand(i) and Rand′(j) from this collision and xor them

August 2, 2004



Security of 3GPP encryption and integrity schemes 77

together, the result is denoted ∆. Then every new n-bit block Z, M(i)|Z
and M ′(j)|Z ⊕∆ will have the same MAC[37].

The complexity for implementing this forgery attack on f9 is 2(3n/2)−m+1 =
267 different messages, which under the 3GPP environment are out of bounds
within the use of one IK/CK (See chapter 6.3.2.5).

8.4.4.3 A key recovery attack using known MACs

This attack uses the fact that for a collision to occur, every intermediate
state of f9, for the two messages, before the last Kasumi encryption must
be equal. Knowing this it is possible to find the K key, using an exhaustive
search, independently of K ′. Later one also does an exhaustive search to
find K ′. The attack is split up into three stages:

Find the known MACs Find 2(n+m)/2 = 248 known MACs and split
them into 2m = 232 classes where each member has the same MAC value.

Exhaustive search to find K Take the dk/me = 4, where k is the
key length, largest classes. Then compute the input to the last Kasumi
encryption in f9 for each message and for every key in the current class.
If the derived input yields a collision with the original MAC of the current
class then increase the key’s count with one. It is highly likely that the key
with the highest count is the correct one.

Exhaustive search to find K ′ Now that we know the value of K, an
exhaustive search for K ′ can be conducted. However, in the context of
3GPP we know that the xor difference between K and K ′ is the KM (Key
Modifier). K ′ can therefore easily be extracted.

Complexity of the attack The attack needs 2k+(n−m)/2 ∗ q = q ∗ 280

encryptions and 2(n+m)/2 known MACs, where q is the number of blocks of
size n of the plaintext.

This is of course out of bounds in the 3GPP environment.

8.4.4.4 A key recovery attack using MAC verifications

For this attack a large number of verifications and only a few known MACs
are required.

August 2, 2004



Conclusion 78

The attacker knows a MAC(X) = M for a message X = X0, ..., X1. With
this knowledge he/she can add a block A, with length of one block, to the
beginning of X such that X ′ = A|X, and verify if the MAC(A|X) equals
M . If this is true then we know that we either have found a collision or that
KasumiK(A) = 0. This operation has a cost of 264 verifications.

If only one A gives the desired result, we can proceed, or else we have to
check all our candidate As with another known MAC.

When we have only one block A left we can carry on with the attack. We
know now that KasumiK(A) = 0, and we may find K and K ′ with exhaus-
tive search.

As you may have understood these attacks required a great deal of ver-
ifications and encryptions where the number of encryptions of Kasumi is
2129[37]

8.4.5 Summary

We have seen several types of attacks against the f9 integrity scheme, but
none which are implementable in the context of 3GPP and Kasumi. How-
ever, there may still be unknown attacks that are implementable and may
break the f9 scheme, but until such an attack is shown we regard the f9 as
secure enough for the 3GPP environment.

8.5 Conclusion

This chapter has first of all proved that the Kasumi block cipher is provable
secure against linear and differential attacks by using the theory of Nyberg
and Knudsen. This was done by showing that the complexity of any such
attack is beyond reach for today’s computers. In addition none of the pub-
lished attacks (until today August 2, 2004) is a able to break Kasumi, not
even produce a small threat.

We have also seen that Kasumi is undistinguishable from a random function,
and thus we can label Kasumi pseudo-random. Any block cipher that is
pseudo-random has taken a step towards a higher level of security. Thus
it is fair to conclude that Kasumi is a strong and secure cipher that will
perform well and as intended within the UMTS environment.

August 2, 2004



Chapter 9

Rijndael - AES

The block cipher Rijndael (AES)[38] was created by Joan Daemen and Vin-
cent Rijmen and submitted as a candidate for the Advanced Encryption
Standard (AES) in 1998. Rijndael was made AES in November 2001[38].

This description and review of AES is on a high level, without many details
of the construction of AES, only those vital for the use in Milenage (see
chapter 10). For a full description of AES please see Federal Information
Processing Standard (FIPS) for the Advanced Encryption Standard, FIPS-
197[38].

9.1 Description

AES is an iterated block cipher build on a Feistel network. The AES cipher
takes two inputs; a key K and a block of plaintext P . The output from AES
is the ciphertext C. P and C are 128 bits, while K can be either 128, 192
or 256 bits. Depending on the size of the key AES has respectively 10, 12,
14 rounds in it’s Feistel network[38].

C = AES(P, K) (9.1)

In the 3GPP environment AES is only used in encryption mode.

9.2 Properties

Rijndael was not yet made AES when the choice of using Rijndael in Mile-
nage was taken. However, Rijndael fulfilled many of the properties/requirements

79



Conclusion 80

needed for the Milenage kernel algorithm. The arguments for choosing Ri-
jndael as the kernel in Milenage are listed in [39].

First of all AES was fast both in hardware and software, and it was suitable
for smart card implementations with an 8-bit processor[40, 39]. It uses a
small amount of code and takes a small amount of cycles to execute[38].
AES has also a very low memory requirement and a short set-up-time[3].
On a Motorola 68HC08 8-bit processor with key length 128, AES uses 8390
cycles, 36 bytes of RAM and a code length of 919 bytes[38].

In addition, it could be protected against side channel attacks without sig-
nificant speed loss, and it has the required input/output interface. I.e. 128
bit input and output.

It is also relative easy to understand how it functions, making cryptanalysis
easier and as a contestant for the AES it has been well studied for some time,
without the analysts finding any weaknesses. It was also freely available
without cost, do to the enrollment in the competition for the AES title.

9.3 Conclusion

[39] and [41] list several attacks on Rijndael, but no known attack is able
to break AES. This is supported by [3] which contains several references to
resent attempts to break AES without any luck.

It is therefore safe to consider AES as secure, and can be used within the
3GPP environment. In addition, it is fast and requires only small resources
on a smart card (8-bit processor), and can thus be declared close to ideal
for UMTS.

August 2, 2004



Chapter 10

Milenage

In section 6.3.2.1 we discussed the properties of the authentication and key
agreement framework. The vital parts of the AKA framework are the eight
cryptographic functions (f0 → f5∗), seated in the USIM and the AuC.

Earlier we did not mention the implementation of these functions, only each
functions inputs, outputs and requirements (See section 6.3.2.2). This is
due to the fact that the 3GPP organization left the implementation, of the
functions, to the UMTS operators. However 3GPP did provide an example
implementation, for those operators which didn’t have the money, time and
or capability to implement one for them self.

The presentation of this chapter is mainly based on [39].

10.1 Design criteria

For the general 3GPP requirements to the AKA functions and the crypto-
graphic kernel, please see section 6.3.2.2.

The designers of Milenage added some criteria to the requirements already
specified by the 3GPP, and these were:

• The functions shall be indistinguishable from a random source.

• It should be impossible to derive any information, from the output of
any function, about the inputs (key, OP)

81



Milenage - the example implementation 82

10.2 Milenage - the example implementation

With the use of the example implementation Milenage the UMTS operators
know that it is without major flaws, and that it has undergone thorough
testing. Without the proper knowledge and/or resources it may prove diffi-
cult to create the AKA functions from scratch, without making any mistakes
which can lessen the security.

10.2.1 Meeting the requirements

10.2.1.1 Choice of kernel algorithm

The decision for kernel algorithm landed on, at the time, one of the five
finalists for the Advanced Encryption Standard (AES), namely Rijndael.
Rijndael is a fast and strong block cipher that had undergone much analysis
during the AES contest. In addition Rijndael was highly suitable for smart
card implementation, it has good resistance against side channel attacks and
it was free of charge. See Chapter 9 for more details about AES.

10.2.1.2 Operator Variant Algorithm configuration Field (OP)

The designers chose to add a 128 bit constant OP to the Milenage algorithm
set. The value of OP is for each operator to decide.

The main reason for adding this constant is to create operator specific func-
tions even when using the example functions. This makes the functions
different from the other operators, and thus preventing that one USIM can
be used on several UMTS networks. In addition, by keeping the value of
OP secret, one gains some additional security.

There are two alternatives for storing the value of OP in the USIM. The
first alternative is to store the actual value of OP and for each processing
derive the value OPC = OP ⊕ E[OP ]. Or one can store the preprocessed
value of OPC . Then the value of OP is still hidden even if the USIM is
compromised.

10.2.2 Functional description

The Milenage algorithm set takes four inputs (K, RAND, SQN , AMF )
(see section 6.3.2.1) and creates seven outputs. Only f1 and f1* uses all four
inputs, while the rest only uses K and RAND. The OP is stored on the

August 2, 2004



Milenage - the example implementation 83

USIM as OPC where OPC = OP ⊕ E[OP ]K . The OPC is then xored with
RAND and used as input to the kernel function E.

TEMP = E[RAND ⊕OPC ]K (10.1)

Figure 10.1: Milenage

10.2.2.1 f2, f3, f4, f5 and f5∗

These functions then xors the TEMP , from equation 10.1, variable with
OPC before rotating the result (ROT = TEMP ⊕OPC) a different number
of times to the left (r2 = 0, r3 = 32, r4 = 64, r5 = 96). See figure 10.1.
The reason for this is to vary the input, making the output of the functions
different. In addition, to this rotation, each rotation result is xored with
different constants (c2, c3, c4, c5) to once more apply some variations. The
product of ROT ⊕ cX is then sent through the kernel algorithm E[ROT ⊕
cX]⊕OPC , and then finally xored once more with OPC .

Each output is xored three times with OPC and ran two times through the
kernel algorithm.

August 2, 2004



Security analysis of Milenage 84

10.2.2.2 f1 and f1∗

The derivation of f1 and f1∗ differs from the rest of the functions in some
aspects. Two new inputs to the functions are used, SQN and AMF .

ROT = SQN ||AMF ||SQN ||AMF ⊕OPC (10.2)

Equation 10.2 creates the input to the rotate function where ROT is rotated
64 bits to the left (r1 = 64). The output from the rotate function is then
xored with TEMP (equation 10.1 and the c1 constant. The product is then
sent in to the kernel function.

10.2.2.3 f0

The random function f0 is not included in the Milenage specification, due to
the fact that the design and implementation is entirely up to each operator.

10.3 Security analysis of Milenage

When analyzing the Mileage algorithm set it was important to verify two
main criteria[39]; The first was to make sure that it was infeasible to retrieve
any information about the secret key, or that it is possible to forge output
for a given key for a substantial number of RAND values. Secondly to verify
that it is infeasible to distinguish the functions from each other.

It should also be taken into consideration that the only probable way that
an adversary may gain access to the algorithms is through the USIM. The
USIM applies restrictions to what the adversary can control and the speed of
the input/output to the algorithms. In the USIM environment the adversary
can control the values of RAND, SQN and AMF . But only approximately
10 input- output pairs can be generated per second. To mount an attack
which requires 264 pairs will be infeasible.

10.3.1 f1 and f1∗

The design of f1 and f1∗ resembles the design of the CBC-MAC operation
mode (See section 4.5 for more details about CBC-MAC.), and can be proven
equivalent[39]. The CBC-MAC is proven to be secure in the context of
3GPP, as the best possible attack, an internal collision attack (See section
10.3.1.1), requires 264 plain- and ciphertext pairs.

August 2, 2004



Security analysis of Milenage 85

The value of f1 is never sent as output from the USIM, and therefore the
mentioned attack becomes even more infeasible.

Further, it was proven by the authors of [42] that the CBC-MAC scheme
is secure under the notion of the Adaptive distinguisher model (See section
3.3.1) if the underlying kernel function is a pseudo-random function(PRF)[42]
(See section 3 for more information.), i.e. cipher block chaining a PRF gives
a PRF. So with AES as kernel function the f1 and f1∗ are considered secure.

10.3.1.1 An internal collision attack on f1/f1∗

The internal collision attack is possible due to the fact that the constructions
of f1 and f1∗ are based on the CBC-MAC, and the attack is possible to
mount on “any” CBC-MAC construction.

Step one of the attack is to collect 264 input pairs of xi = RAND and
ti = SQN ||AMF ||SQN ||AMF , where x and t is distinct within each pair.
Then collect the output zi.

With a large probability there will exist a collision, i.e. two equal zi = zj , i 6=
j with different input pairs (xi 6= xj , ti 6= tj). Find this collision, and then
it is possible to forge (xor with any 128 bit ∆t) new outputs with the help
from equation 10.3.

f1(xi, ti ⊕∆t) = f1(xj , tj ⊕∆t) (10.3)

Complexity Due to that the attack has a complexity of 264 derivations
of f1, pairs (xi, ti) and comparisons, it becomes infeasible to mount within
the 3GPP environment.

10.3.2 f2, f3, f4, f5 and f5∗

As with the f1 and f1∗ functions, the f2 → f5∗ functions are proven
secure under the notion of Adaptive distinguisher model. [39] proves that
the advantage the distinguisher has is negligible. The proof thereby gives
some assurance that no attack with significantly less calculations than 264

exists.

10.3.3 Separation between f1, f1∗ and f2 → f5∗

[39] has investigated the difference in output between the f1,f1∗ and f2 →
f5∗ functions. Their conclusion was that the construction of the functions

August 2, 2004



Security analysis of Milenage 86

and the introduction of the constants (c2 → c5), in the f2 → f5∗ functions,
provides enough separation.

10.3.3.1 Forgery attack against combinations of several modes

Several variations of these attacks exists, but here I will only take one of
them as an example. This attack is possible on any of the f2 → f5∗. All
different forgery attacks in [39] have a complexity of approximately 264.

Collect 264 different inputs xi, and the corresponding outputs of any two
functions fI, fJ from f2 → f5∗. Find a collision among the output from
different functions.

fI(xi) = fJ(xj), i 6= j (10.4)

Then, accordingly to [39] it is possible to invert the inputs fI(xj) = fJ(xi),
and thereby obtaining the possibility for forging the output from fI or fJ .
This forgery would be highly unlikely if the two functions were independent
permutations.

However, these forgery attacks are to be considered infeasible in the 3GPP
environment and is no stronger than anticipated[39]

August 2, 2004



Part III

Conclusion

87



Chapter 11

Thesis conclusion

The specified security mechanisms of UMTS are the f8 and f9 functions.
The f8 function shall provide confidentiality while the f9 function provides
integrity. The design of them both is built upon known operation modes
with a solid background. However, some small modifications where made,
and in addition they use a relative new kernel algorithm, Kasumi. Kasumi
is a Feistel block cipher, build satisfying the requirements for the provable
security against linear and differential attacks. Kasumi is also a pseudo-
random permutation (PRP), adding to the trust we have in it for delivering
the required security. No attack has either been found that may threaten
the confidentiality or integrity of UMTS.

The authentication and key agreement functions can be individually speci-
fied by each UMTS provider, however the 3GPP has created an example set;
Milenage. Milenage consists of seven different functions required to perform
the authentication and key agreement. They all use the AES block cipher
as the kernel function. No attack has been found that is able to compromise
the Milenage functions, the AKA protocol or the AES block cipher to this
date August 2, 2004.

Nevertheless, the security does not rely on these functions alone (f8, f9,
Milenage, AES and Kasumi). They are required, but the security is easily
compromised if the keys are not hidden from the adversary. The confiden-
tiality and integrity keys are renewed each time the Authentication and Key
Agreement is initiated, but the long term user key is not. All keys are
stored on the USIM, and the USIM along with the mobile equipment are
easily stolen or simply lost or forgotten on the train etc. It is therefore vital
that the USIM (stored on the UICC) is kept secret even to an adversary
with physical access to the USIM.

This thesis has examined the different security mechanisms of UMTS, using

88



89

block ciphers, to see if they could provide their tasks securely, during the
next 20 years, without being compromised. To this question there are no
strict yes or no answer, it all depends. It depends on our trust in the
security the mechanisms provide. Do we trust that the users long term
key is “impossible” to retrieve from the USIM? Do we trust that there is
no attack able to break the f8, f9, Milenage, Kasumi or AES, existing
today or to be found/created within the next 20 years? Is the provable
security of Kasumi really provable? f8 and f9 was “proved” secure under
the assumption that the kernel used was a PRP, but this was later proved
to be false. Similar “accidents” may happen again.

The description and security assessment of Kasumi has also been given
much space in this thesis. As already mentioned the Kasumi cipher is prov-
able secure against linear and differential cryptanalysis. But this gives no
protection against other types of attacks. However, it is here the pseudo-
randomness steps in. The fact that Kasumi is a family of PRPs tells us
that is behaves as a random function, and thus is somewhat protected
against known and unknown attacks1. Kasumi fulfills all the security prop-
erties/requirements we have for block ciphers today , and it is thus safe to
consider Kasumi secure, if treated right.

However, should one or more of these functions be compromises, the 3GPP
has made sure that almost all functions are replaceable. The Milenage al-
gorithm set are replaceable by definition, the AES as well. The cost will be
much higher to replace f8, f9 and Kasumi, but nothing is impossible. On
the other hand, no other block ciphers or operation modes published today
can provide significant better security than the ones used by 3GPP. And
thus the UMTS providers and users have gotten the best security modern
cryptography can provide today for the next 20 years.

1Remember that perfect secrecy comes from a cipher which has the property that there
exist no statistical relations between the plaintext and the ciphertext.

August 2, 2004



Chapter 12

Further work

This chapter contains some possibilities for further work that can be done
within the problem area of this thesis. The work can either be done as a
Master thesis or in a Ph. D, in combination with parts of this thesis or with
each other.

12.1 A more thorough review of AES/Rijndael

From the time when the cipher Rijndael entered the competition for be-
coming the Advanced Encryption Standard (AES) it has undergone a great
amount of cryptanalysis. The complete overview of different attacks and a
full description of the properties, functionality and implementation aspects
is a Cand Scient thesis all by itself. The complete review was out of scope
for this thesis, but Rijndael is worth a closer look.

12.2 Finding the more exact complexity for a dif-
ferential attack on Kasumi

As mentioned in section 8.1.5.1 Differential complexity the exact differential
complexity of an attack against Kasumi requires a significant more thorough
study than I had time to conduct during this thesis.

90



A more thorough review of the proof of Kasumi’s pseudo-randomness 91

12.3 A more thorough review of the proof of Ka-
sumi’s pseudo-randomness

The proof given in [5] for Kasumi being a pseudo-random permutation is
quite complex and inaccessible for the regular cryptographer. Some time
should have been spent to give a more educational description. However,
once again out of scope and time for this thesis.

12.4 Security of USIM/UICC

The security of UMTS does not rely solely on the f8, f9 and AKA func-
tions. The long term user key is stored on the USIM and a more thorough
assessment of how the key etc. are protected on the USIM is vital for the
whole security picture.

August 2, 2004



Part IV

Appendix

92



S-boxes

The Decimal tables are retrieved from [25].

S7 - Decimal Table

54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18, 123, 33, 55, 113, 39, 114,
21, 67, 65, 12, 47, 73, 46, 27, 25, 111, 124, 81, 53, 9, 121, 79, 52, 60, 58, 48,
101, 127, 40, 120, 104, 70, 71, 43, 20, 122, 72, 61, 23, 109, 13, 100, 77, 1, 16,
7, 82, 10, 105, 98, 117, 116, 76, 11, 89, 106, 0, 125, 118, 99, 86, 69, 30, 57,
126, 87, 112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35, 103, 32, 97, 28, 66, 102, 31,
26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29, 115, 44, 64, 107, 108, 24, 110, 83,
36, 78, 42, 19, 15, 41, 88, 119, 59, 3

Example: S7[1] = 50

S9 - Decimal Table

167, 239, 161, 379, 391, 334, 9, 338, 38, 226, 48, 358, 452, 385, 90, 397, 183,
253, 147, 331, 415, 340, 51, 362, 306, 500, 262, 82, 216, 159, 356, 177, 175,
241, 489, 37, 206, 17, 0, 333, 44, 254, 378, 58, 143, 220, 81, 400, 95, 3, 315,
245, 54, 235, 218, 405, 472, 264, 172, 494, 371, 290, 399, 76, 165, 197, 395,
121, 257, 480, 423, 212, 240, 28, 462, 176, 406, 507, 288, 223, 501, 407, 249,
265, 89, 186, 221, 428, 164, 74, 440, 196, 458, 421, 350, 163, 232, 158, 134,
354, 13, 250, 491, 142, 191, 69, 193, 425, 152, 227, 366, 135, 344, 300, 276,
242, 437, 320, 113, 278, 11, 243, 87, 317, 36, 93, 496, 27, 487, 446, 482, 41,
68, 156, 457, 131, 326, 403, 339, 20, 39, 115, 442, 124, 475, 384, 508, 53,
112, 170, 479, 151, 126, 169, 73, 268, 279, 321, 168, 364, 363, 292, 46, 499,
393, 327, 324, 24, 456, 267, 157, 460, 488, 426, 309, 229, 439, 506, 208, 271,
349, 401, 434, 236, 16, 209, 359, 52, 56, 120, 199, 277, 465, 416, 252, 287,
246, 6, 83, 305, 420, 345, 153, 502, 65, 61, 244, 282, 173, 222, 418, 67, 386,

i



ii

368, 261, 101, 476, 291, 195, 430, 49, 79, 166, 330, 280, 383, 373, 128, 382,
408, 155, 495, 367, 388, 274, 107, 459, 417, 62, 454, 132, 225, 203, 316, 234,
14, 301, 91, 503, 286, 424, 211, 347, 307, 140, 374, 35, 103, 125, 427, 19,
214, 453, 146, 498, 314, 444, 230, 256, 329, 198, 285, 50, 116, 78, 410, 10,
205, 510, 171, 231, 45, 139, 467, 29, 86, 505, 32, 72, 26, 342, 150, 313, 490,
431, 238, 411, 325, 149, 473, 40, 119, 174, 355, 185, 233, 389, 71, 448, 273,
372, 55, 110, 178, 322, 12, 469, 392, 369, 190, 1, 109, 375, 137, 181, 88, 75,
308, 260, 484, 98, 272, 370, 275, 412, 111, 336, 318, 4, 504, 492, 259, 304,
77, 337, 435, 21, 357, 303, 332, 483, 18, 47, 85, 25, 497, 474, 289, 100, 269,
296, 478, 270, 106, 31, 104, 433, 84, 414, 486, 394, 96, 99, 154, 511, 148,
413, 361, 409, 255, 162, 215, 302, 201, 266, 351, 343, 144, 441, 365, 108, 298,
251, 34, 182, 509, 138, 210, 335, 133, 311, 352, 328, 141, 396, 346, 123, 319,
450, 281, 429, 228, 443, 481, 92, 404, 485, 422, 248, 297, 23, 213, 130, 466,
22, 217, 283, 70, 294, 360, 419, 127, 312, 377, 7, 468, 194, 2, 117, 295, 463,
258, 224, 447, 247, 187, 80, 398, 284, 353, 105, 390, 299, 471, 470, 184, 57,
200, 348, 63, 204, 188, 33, 451, 97, 30, 310, 219, 94, 160, 129, 493, 64, 179,
263, 102, 189, 207, 114, 402, 438, 477, 387, 122, 192, 42, 381, 5, 145, 118,
180, 449, 293, 323, 136, 380, 43, 66, 60, 455, 341, 445, 202, 432, 8, 237, 15,
376, 436, 464, 59, 461

August 2, 2004



Abbreviations

In order of appearance.

3G - Third Generation

UMTS - Universal Mobile Telecommunications System

AES - Advanced Encryption Standard

STM - Symmetric-key trust model

MAC - Message Authentication Code/Scheme

A - Alice/Sender

B - Bob/Reciever

O - Oscar/Opponent/Adversary

SES - Symmetric-key encryption Scheme

DES - Data Encryption Standard

FN - Feistel network

PRF - Pseudo-Random Functions

PRP - Pseudo-Random Permutation

SRF - Shared-Random Function model

CTR - Counter mode (encryption scheme)

ECB - Electronic Code Book

CBC - Cipher Block Chaining

OFB - Output Feedback mode

CBC-MAC - Cipher Block Chaining - Message Authentication Code

SPA - Simple Power Analysis

DPA - Differential Power Analysis

iii



iv

1G - First Generation

2G - Second Generation

3GPP - Third Generation Partnership Project

GSM - Global System for Mobile communication (2G)

UTRA - Universal Terrestrial Radio Access

ETSI - European Telecommunications Standards

IMT-2000 - International Mobile Technology

UE - User Equipment

ME - Mobile Equipment

USIM - UMTS Secure Identity Module

UICC - Universal Integrated Circuit Card

UTRAN - UTRA Network

AN - Access Network (short for UTRAN)

Node-B - UMTS Base station

BS - Base Station

RNC - Radio Network Controller

CN - Core network

AuC - Authentication Center

HE - Registers Home Environment

EIR - Equipment Identity Register

HLR - Home Location Register

CS - Circuit Switched

PS - Packet Switched

SGSN - Serving GPRS Support Node

GPRS - General Packet Radio Service

MSC - Mobile Services Switching Centre

VLR - Visited Location Register

IMSI - International Mobile Subscriber Identity

AKA - Authentication and Key Agreement

August 2, 2004



v

IK - Integrity Key

CK - Confidentiality Key

AK - Anonymity Key

AV - Authentication Vector

MS - Mobile Station (ME + USIM)

SN - Serving Network

OP - Operator Variant Algorithm Configuration Field

AMF - Authentication Management Field

TMSI - Temporary Mobile Subscriber Identity

LAI - Location Area Identification

KSI - Key Set Identifier

RKA - xor-restricted Related-Key Attack

LOR - Left-Or-Right indistinguishability

FIPS - Federal Information Processing Standard

August 2, 2004



Bibliography

[1] A. Menezesa and P van Oorschot and S. Vanstone, Handbook of Applied
Cryptography (CRC Press, 1996).

[2] P. R. Mihir Bellare, Introduction to Modern Cryptography .

[3] A. Biryukov, Block Ciphers and Stream Ciphers: The State of the Art
(IACR ePrint, 2004).

[4] C. E. Shannon, Communication Theory of Secrecy Systems (, 1949).

[5] O. Yi, J.-S. Kang, S.-U. Shin, and D. Hong, Provalbe Security of KA-
SUMI and Encryption Mode f8 .

[6] W. Stallings, Network security essentials: Application and standards
(Prentice Hall, 2000).

[7] D. R. Stinson, Cryptography - Theory and Practice (Chapman &
Hall/CRC, 2002).

[8] E. Biham and A. Shamir, Differential Cryptanalysis of DES-like Cryp-
tosystems (, 1990).

[9] X. Lai and J. L. Massey, Markov Ciphers and Differential Cryptanalysis
(, 1991).

[10] E. Biham and A. Shamir, Differential Cryptanalysis of DES-Like Cryp-
tosystems (, 1990).

[11] E. Biham, Differential Cryptanalysis (, 2000).

[12] M. Matsui, Linear cryptanalysis method for DES cipher (, 1993).

[13] . G. P. Project, About 3gpp.

[14] Michael Walker, On the Security of 3GPP Networks (, 2000).

[15] 3rd Generation Partnership Project, TS 33.102 Security architecture,
v5.2.0 ed. .

vi



BIBLIOGRAPHY vii

[16] 3rd Generation Partnership Project, 3GPP TR 21.905. Technical Speci-
fication Group Services and System Aspects. Vocabulary for 3GPP Spec-
ifications, v6.3.0 ed. .

[17] 3rd Generation Partnership Project, TS 35.206 Specification of
the Milenage Algorithm Set; An exaple algorithm set for the 3GPP
authentication and key generation functions f1, f1*.f2.f3.f4.f5 and
f5*;Document 2: Algorithm Specification, v5.1.0 ed. (, 2003).

[18] 3rd Generation Partnership Project, TS 33.105 Cryptographic Algoritm
Requirements, v4.1.0 ed. .

[19] 3rd Generation Partnership Project, TS 35.205 Specification of
the Milenage Algorithm Set; An exaple algorithm set for the 3GPP
authentication and key generation functions f1, f1*.f2.f3.f4.f5 and
f5*;Document 1: General, v5.0.0 ed. (, 2002).

[20] 3rd Generation Partnership Project, TR 33.908 General Report on the
Design, Speification and Evaluation of 3GPP Standard Confidentiality
and Integrity Algorithms, v5.2.0 ed. .

[21] 3rd Generation Partnership Project, Report on the Evaluation of 3GPP
Standard Confidentiality and Integrity Algorithms, Sage version 2 ed. .

[22] M. Matsui, New Block enctyption Algorithm MISTY .

[23] K. Nyberg and L. R. Knudsen, Provable Security Against a Differential
Attack (, 1995).

[24] K. Nyberg, Chapter Three: Cryptographic Algorimtms for UMTS (,
2004).

[25] 3rd Generation Partnership Project, TS 35.202 Specification of the
3GPP Confidential and Integrity Algorithm. Document 2: KASUMI
specification, v5.0.0 ed. .

[26] M. MatsuiOn a Structure of Block Ciphers with Provable Security
against Differential and Linear Cryptanalysis Vol. E82-A (, 1999).

[27] K. Aoki and K. Ohta, Stricter Evaluation for the Maximum Average of
Differential Probability and the Maximum Average of Linear Probability
(, 1996).

[28] M. Blunden and A. Escott, Related key attacks on reduced round Ka-
sumi (, 2002).

[29] T. Iwata and K. Kurosawa, New Security Proofs for the 3GPP Confi-
dentiality and Integrity Algoritms (, 2004).

[30] M. Luby and C. Rackoff, How to construct pseudorandom permutations
and pseudorandom functions (SIAM J. Comput, 1988).

August 2, 2004



BIBLIOGRAPHY viii

[31] K. Sakurai and Y. Zheng, On non-pseudorandomness from block ciphers
with provable immunity against linear cryptoanalysis (IEICE Trans.
Fundamentals, 1997).

[32] J.-S. Kang, O. Yi, D. Hong, and H. Cho, Pseudorandomness of MISTY-
Type Transformations and the Block Cipher KASUMI (Springer-Verlag,
2001).

[33] H. Gilbert and M. Minier, New results on the pseudoransomness of
some block cipher constructions (Preproceedings of Fast Encryption
workshop 2001, 2001).

[34] M. Bellare and A. Desai and E. Jokipii and P. Rogaway, A Concrete
Security Treatment of Symmetric Encryption (, 1997).

[35] K. Kurosawa and T. Iwata, On the correctness of security proofs for
the 3GPP confidentiality and integrity algoritms (, 2003).

[36] M. Bellare, J. Kilian, and P. Rogaway, The security of the cipher block
chaining message authentication code .

[37] L. R. Knudsen and C. J. Mitchell, An analysis of the 3GPP-MAC-
scheme (, 2000).

[38] N. I. of Standards and T. (NIST), Federal Information Processing Stan-
dards Publication 197 Announcing the ADVANCED ENCRYPTION
STANDARD (AES) (NIST, 2001).

[39] 3rd Generation Partnership Project, TR 33.909 Report on the Design
and Evaluation of the MILENAGE Algorithm Set; Deliverable 5: An
Example Algorithm for the 3GPP Authentication and Key Generation
Functions, v4.0.1 ed. .

[40] J. Nechvatal et al., Report on the Development of the Advanced En-
cryption Standard (AES) (, 2000).

[41] J. Daemen and V. RijmenAES Proposal: Rijndael Vol. Document ver-
sion 2 (, 1999).

[42] M. Bellare, J. Kilian, and P. Rogaway, The security of Cipher Block
Chaining (, 1994).

August 2, 2004



List of Figures

1.1 Symmetric-key encryption scheme . . . . . . . . . . . . . . . 4

2.1 Three round Feistel network . . . . . . . . . . . . . . . . . . . 12

3.1 Oracle and distinguisher model . . . . . . . . . . . . . . . . . 17

4.1 Electronic Code Book (ECB) . . . . . . . . . . . . . . . . . . 21
4.2 Cipher Block Chaining - Encryption . . . . . . . . . . . . . . 22
4.3 Counter mode - Encryption . . . . . . . . . . . . . . . . . . . 24
4.4 Output feedback mode - Encryption . . . . . . . . . . . . . . 25
4.5 Cipher block chaining - Message Authentication Code . . . . 27

5.1 N -round-characteristic . . . . . . . . . . . . . . . . . . . . . . 32

6.1 The UMTS architecture from the users point of view . . . . . 37
6.2 The UMTS architecture . . . . . . . . . . . . . . . . . . . . . 39
6.3 Generation of the authentication vectors [15] . . . . . . . . . 44
6.4 User generation of the authentication vectors [15] . . . . . . . 45
6.5 Function f8 and it’s inputs [20]. . . . . . . . . . . . . . . . . 48
6.6 Function f9 and it’s inputs [20]. . . . . . . . . . . . . . . . . 49
6.7 Function f8 [21]. . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.8 Function f9 [21]. . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.1 The internal of Kasumi[25] . . . . . . . . . . . . . . . . . . . 56
7.2 The Subkeys of Kasumi[25] . . . . . . . . . . . . . . . . . . . 60
7.3 Optimization of FI and FO in Kasumi[24] . . . . . . . . . . 61

10.1 Milenage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

ix


