
UNIVERSITY OF OSLO

Department of Informatics

Web Services /
Distributed Systems

Can Web Services Be Used as

Foundation for Distributed

Systems?

Solvor Jenny B. Skaaden

June 2004

Abstract

Distributed systems have been a part of computer science for decades.
They are systems where one or more computers or devices communicate
with other computers or devices. Such a system ideally has a dynamic
life where other systems may join or quit at any time without the whole
system failing. The communication between the components happens
only by passing messages. The technology of web services on the other
hand, is a relatively new development. It is based upon the principles of
distributed systems. A web service is a set of functions that are published
to a network for use by other programs. Many people regard web services
as a technology only for publishing software services on the Internet via
browsers, while others regard them as the "new big thing" in distributed
computing that is working as general purpose architectures. This thesis
will analyse both technologies to see if web services can be used as a
foundation for distributed systems.

Preface

The thesis

In this thesis I will analyse distributed systems and web services to see
if web services can be used as a foundation for distributed systems. I will
look at the theoretical and practical aspects of both distributed systems and
web services.

Problem description and organising

The given problem description was web services / distributed systems. Can
web services be used as foundation for distributed systems? The following
topics should also be included in the thesis: Overview of distributed systems,
overview of web services, attempt to develop web services, and evaluation. I have
used the given problem description and contents as a basis for dividing the
topic into chapters.

Distributed systems

Distributed systems are described in chapter 1. They are defined to be
system where different components in a network, communicate with each
other and coordinate their actions only by passing messages. A component
may be a program execution on a computer or a device such as a computer
or a printer. It is a rather simple definition, but it covers the entire
range of systems that can be called distributed systems. In chapter 1
both the general characteristics and some of the specific characteristics of
distributed systems are explored.

Web services

Web services are described in chapter 2. It is a relatively new development.
Web services are based upon the principles of distributed systems and are
defined to be sets of functions that are published to a network for use
by other programs. Many people regard web services as a technology
only for publishing software services on the Internet via browsers, while

i

others regard them as the "new big thing" in distributed computing that
is working as general purpose architectures. In chapter 2 both the general
characteristics and some of the specific characteristics of web services are
explored.

Web services development

Chapter 3 will describe my attempts to develop two distributed systems
and their web services counterpart. The distributed applications will be
developed using Java RMI which I have previous practical knowledge
of. The web service solutions will be my first attempt to develop web
service applications. The applications and their complete source code are
on the enclosed CD. In chapter 4 I will look at the development solutions
in chapter 3 and try to evaluate them.

Evaluation

In chapter 5 I will evaluate the previous chapters. I will look at both the
theoretical, chapters 1 and 2, and the practical, chapters 3 and 4. The
intention is to try to find an answer to the given problem description can
web services be used as foundation for distributed systems. I will also evaluate
the process of writing this thesis. Here I will try to sum up the process as
well as try to comment on my own work.

Acknowledgements

Many people have been of great help and support during the work on this
thesis. A great deal of thanks goes to my supervisor Birger Møller-Pedersen
for guiding and helping me completing the thesis. I would like to thank
the Department of Informatics at the University of Oslo where this thesis is
undertaken. Many thanks also to Geir Martin Haarberg for his help with
the linguistics.

ii

Contents

Preface i

The thesis . i
Problem description and organising i

Acknowledgements . ii

1 Distributed Systems 1

1.1 Introduction . 1
1.2 General Characteristics . 2
1.3 Specific Characteristics . 12

2 Web Services 23

2.1 Introduction . 23
2.2 General Characteristics . 24
2.3 Specific Characteristics . 28

2.3.1 Data representation . 29
2.3.2 SOAP . 30
2.3.3 WSDL . 33
2.3.4 UDDI . 36

3 Practical 39

3.1 Poker . 39
3.1.1 Problem description 40
3.1.2 Solution description 40

3.2 Bulletin board . 45
3.2.1 Problem description 46
3.2.2 Solution description 46

4 Results and Discussion 53

4.1 Implementation solutions . 53
4.1.1 Poker . 53
4.1.2 Bulletin board . 54
4.1.3 Deployment and running 55

4.2 Challenges and problems . 55
4.2.1 Documentation . 55

iii

4.2.2 Variable storage . 57
4.3 Alternative Solutions . 58

4.3.1 Development process 58
4.3.2 Poker . 58
4.3.3 Bulletin board . 59
4.3.4 Poker expansion . 59

4.4 Conclusion . 60

5 Evaluation 63

5.1 Distributed systems and web services 63
5.1.1 Comparison . 64
5.1.2 Conclusion . 70

5.2 Writing process . 71

A Running the applications 77

A.1 Poker . 77
A.1.1 Original . 77
A.1.2 Distributed . 77
A.1.3 Web service . 78
A.1.4 Hands examples . 78

A.2 Bulletin board . 79
A.2.1 Distributed . 79
A.2.2 Web service . 79

B References 81

iv

List of Figures

1.1 Transparencies . 9

1.2 Security threats. 10

1.3 System patterns. [Min01] . 15

1.4 Middleware layer. [Won03, Lec. 4] 16

1.5 RPC, RMI and Event-based programming model. 17

1.6 Typical portion of the Internet. [C+01, p. 3] 20

1.7 Typical intranet. [C+01, p. 5] 20

1.8 Portable and handheld devices. [C+01, p. 7] 21

2.1 Web service architecture. [W3C04b, Nov. 2002] 25

2.2 Web services security specifications. [CC02] 28

2.3 XML . 29

2.4 SOAP structure overview. [Nat03] 32

2.5 WSDL structure overview. [W3C03c] 33

2.6 UDDI technology overview. [Mac03] 36

2.7 Registry datatypes. [Roe03, Lec. 11] 37

3.1 The code files . 40

3.2 The IPoker interface . 40

3.3 The Poker implementation, server and client 41

3.4 Poker client running . 42

3.5 Downloading RMI stubs. [Sun04a] 43

3.6 The code files . 44

3.7 Create Service and Call objects and Invoking the service . . 44

3.8 Deploy and undeploy files . 45

3.9 SOAP request . 46

3.10 The code files . 47

3.11 The interfaces . 47

3.12 The Bulletin Board implementation, server and client 48

3.13 Bulletin board example . 49

3.14 The code files . 50

3.15 The interfaces . 50

3.16 The Bulletin Board implementation, exception and client . . 51

3.17 Create service and call objects and invoking a service 52

v

3.18 SOAP request . 52

4.1 Poker: distributed and web service 54
4.2 Bulletin Board: distributed and web service 54
4.3 Web Service Deployment Descriptor (WSDD) 56
4.4 Possible use of the poker web service 60

vi

List of Tables

1.1 Classes of failures. [C+01, Ch. 2] 5
1.2 Types of locks and conflicts. [C+01, Ch. 12] 6
1.3 Network comparisons. [C+01, p. 72] 14

2.1 Web service overview. [Roe03, Lec. 11] 28
2.2 SOAP Roles defined by this specification. [W3C03b] 31

5.1 Benefits in distributed systems (DS) and web services (WS) . 64
5.2 Challenges in distributed systems (DS) and web services (WS) 65
5.3 Characteristics in distributed systems (DS) and web services

(WS) . 68
5.4 Comparison of Distributed Computing Technologies 69

vii

viii

Chapter 1

Distributed Systems

1.1 Introduction

In this chapter I will describe distributed systems. I have used the book by
Coulouris et al [C+01] as a basis for the chapter, and it is used as a reference
where nothing else is indicated. I will recommend this book to those who
are interested in learning more about distributed systems.

A distributed system is defined to be a system consisting of different
components in a network. These components communicate with each
other and coordinate their actions only by passing messages. A component
may be a program execution on a computer, a computer, a printer or some
other device. It is a rather simple definition, but it covers the entire range
of systems that can be called distributed systems.

The design and construction of distributed systems are highly moti-
vated by the desire to share resources. Resources are the "things" that one
can share in a networked computer system. It may be hardware compo-
nents, such as printers, or software components, such as files.

The system appears to the user as one centralized system although it
may be spread out through multiple and independent systems that are
working together. This makes management and administration a lot more
complex compared to centralized systems. It is also more difficult to locate
problems or failures since these may be located in any part of the system,
which requires relatively advanced error detection and handling. However
the advantages will in many cases make up for the disadvantages. The
distributed systems are much more flexible than the centralized systems. It
is easy for devices to connect to the system. The system can easily be scaled
up by adding new components, and upgrades can be done incrementally.
Since the distributed systems are based on several computers, the systems
can tolerate failures at multiple locations. When an error has occurred,
they will still continue to function, although usually in a reduced manner.
[Mum01, Ch 1.2]

1

There are some key characteristics and consequences of distributed
systems which give a more detailed description than the limited definition
above. I will try both to highlight the general characteristics and
consequences of all distributed systems as well as describe in more detail
some examples of distributed systems.

1.2 General Characteristics

The distributed systems work outside the normal boundaries of a single
system. Although it appears as if it is running only on a single processor,
it can be spread out across a network consisting of several machines and
processors. The computers work together as one system even if they
are situated remotely from each other. This way the resources are more
available and reliable, and can therefore be used better and more efficiently.
If one of the computer crashes, the others continue working. By storing
data in multiple locations, the reliability is improved. [Won03, Lec. 1]

Resource sharing Resources can be shared so anyone in the system can
make use of accessible data, software and hardware anywhere in the
system. The various systems do not need all the features of a centralized
system; they can receive what they lack from the other systems in the
network. This way one can use relatively simple computers, which is both
cheaper and easier to build than the more complex ones. The sharing of
hardware resources, such as printers and hard disks, reduces cost greatly
and makes it possible to share data resources and other software resources,
such as files, shared databases and web pages. These resources are all
implemented on the shared disks and processors.

The resource may be shared in only small closed groups or on the
Internet throughout the world. Various resource managers, called service,
keep control on access and synchronization. These managers are in reality
program modules which manage and control resources of certain types.
The managers use models for describing how the resources are available,
how they can be used, and how the service provider and user can interact.
The model can either be client-server based or object based. In a client-
server based model, the servers provide certain services (procedures or
subroutines) and the clients send queries to the servers asking for these
services. In an object based model the resources are modelled as objects,
and the operations of the entities in the objects are accessed through
interfaces. [C+01, Ch 1.3] [LE03, Lec. 1]

Heterogeneity There may be variations and differences between compo-
nents in a distributed system. These may cause challenges which ought
to be defeated in order for the system to work properly. The systems may

2

handle these challenges in a variety of ways depending on the design and
implementation of the system. The variations and differences may apply
to the following:
Network: The network protocol may be implemented over various net-
works.
Computer hardware: There may be differences in data representation on dif-
ferent processors.
Operating system: The API to the Internet protocol may vary.
Programming languages: There may be differences in data structures and
characters.
Implementation by different developers: There must be ways for the programs
to communicate with each other. Programs made by different developers
must use a common standard to make this possible.
[C+01, Ch 1.4] [LE03, Lec. 1]

Openness A computer system’s ability to expand and re-implement is
determined by the systems openness. In a distributed system this is usually
measured by how well new resources can be added and made available
for use by everyone in the network. Since the computers are working
together as one system, it is easier to add more resources and power by
adding it step by step to the various computers. This requires that new
components must be able to integrate with existing components, which
requires a uniform inter process mechanism. This is usually done by well
defined and published interfaces. However this is just one step in adding
and extending resources in a distributed system. There may be a high
complexity in a system that involves a variety of components that are
designed, implemented and managed by different people. This represents
a challenge for the designers. It may also be difficult to keep a clean
program structure due to the integration. [C+01, Ch 1.4] [LE03, Lec. 1]
[WH03, Lec. 1]

Scalability Distributed systems operate on different scales ranging from
small intranets with just two computers to the whole Internet. The
systems scalability is the systems ability to handle increase in the amount
of resources and number of users. And it is described as scalable if it
will remain effective, both in performance and in resource use, after a
significant increase of resources and users.
There is some challenges in designing and implementing a scalable
distributed system:

Controlling costs of resources: It should be possible to expand the systems
resources without increasing the costs dramatically. For a system to be
resource-scalable, the amount of physical resources should be proportional
to the number of users in the system. To use Coulouris et al’s example: "if

3

a single file server can support 20 users, then two such servers should be
able to support 40 users." [C+01, p. 20] This may seem obvious, but it may
not be so easy to accomplish in reality.

Controlling performance loss: The increase in size in any distributed
system will result in some performance loss. Performance is measured by
the time it takes to access a resource. In hierarchical structured system, this
should not exceed O(log n), where n is the data set size, if the system is to
be performance-scalable.

Preventing the systems software resources from running out: When a
distributed system is designed, considerations should be made concerning
the dimensions of the resources in the future. This is to ensure that
the system can handle future requirements. For example the supply of
available Internet addresses will probably run out in the near future, this
is because it was decided to use 32 bits for this purpose. The address
space will now be expanded to 128 bits to mend the problem. One should
be careful with overcompensating for future expansion, as this may cause
other problems such as demands for more storage.

Avoiding bottlenecks: There may be a challenge in maintaining scalability
in a system by avoiding bottlenecks. For example may a single server or
directory for all users in a system be a serious bottleneck. To avoid this,
decentralized algorithms is needed. Partitioning, caching and replication
are good examples of relatively efficient remedies to avoid bottlenecks.
[C+01, Ch 1.4] [LE03, Lec. 1] [WH03, Lec. 1]

Fault tolerance Hardware, software and networks may fail. A failure
may produce incorrect results, no results at all or prevent information from
reaching its desired destination. Classes of failures are listed in table 1.1.
It is not desirable that a fault which occurred in one part of the system
will affect the other parts. In a distributed system faults occur partially,
some components may fail while others continue working. Because of this
the handling of failures will happen partially and is more difficult than in
centralized systems. There are various techniques for dealing with faults.
Here are some of them:

Detecting failures: There are ways of detecting some failures while other
failures are more or less impossible to detect. One of the ways to detect
failures such as corrupted data is to use checksums in messages and files.

Masking failures: Some detected failures can be masked or made less
severe, although the various techniques may not work in worst case
scenarios. Two examples of hiding failures are to retransmit messages that
fail to arrive and to write file data to two disks instead of just one. A way of
making a failure less severe is to simply drop a corrupted message; it may
be retransmitted if the sender has not received a confirm message.

Tolerating failures: Some faults can just be tolerated without trying to

4

mask them in any way. For example, a web browser which cannot obtain
contact with a web server informs the users about this instead trying to
make contact while the user waits.

Recovery: Some software is designed to be able to recover stored data
in case of a failure. For example in a database one can "roll back" to the
previous committed state without any new changes taking effect, or one
can store the changes by committing.

Redundancy: A service should be replicated independent of faults. To
use one of Coulouris et al’s examples: "There should always be at least two
different routes between any two routers in the Internet." [C+01, p. 22]
[C+01, Ch 1.4] [LE03, Lec. 1]

Class of failure Affects Description

Fail-stop Process Process halts and remains halted.
Other processes may detect this state.

Crash Process Process halts and remains halted.
Other processes may detect this state.

Omission Channel A message inserted in an outgoing
message buffer never arrives at the
other end’s incoming message buffer.

Send-omission Process A process completes a send,
but the message is not put in the
outgoing buffer.

Receive-omission Process A message is put in a process’s
incoming message buffer, but that
process does not receive it.

Arbitrary Process or Process/channel exhibits arbitrary
(Byzantine) channel behaviour: it may send/transmit

arbitrary messages at arbitrary
times, commit omissions; a process
may stop or take an incorrect step.

Table 1.1: Classes of failures. [C+01, Ch. 2]

Concurrency In a distributed system various components can be exe-
cuted simultaneously and these components may try to access and update
the same resources at the same time. Hence access to resources must be
managed to maintain integrity of the system. If not simultaneous updates
can occur, which can result in lost updates and inconsistent analysis. One
way to do this is to process only one client request at the time, but this
reduces throughput. Thus most services and applications allow multiple
client requests to be processed simultaneously. To maintain integrity in a
distributed system concurrency control is required to synchronize concur-

5

rent access to the same resources. [C+01, Ch 1.4] [LE03, Lec. 1]

Transactions A sequence of operations that transfers data from one
consistent state to another is called a transaction. They are used in both
clients and servers. Several transactions can occur at the same time and
some of them may try to access the same resources, see the paragraph
above about concurrency. The goal of a transaction is to control access
to shared resources and that either the transaction is completed or that
nothing has happened to the data. This is ensured by the transactions ACID
characteristics. They are:
A - Atomicity - Either all the actions of the transaction are applied, or
none at all. This also means that the transaction is to take place without
interference.
C - Consistency - The system is at a consistent state when the transaction
has completed.
I - Isolation - The temporary results of a transaction are not visible to other
transactions.
D - Durability - All the effects of the transaction are saved in permanent
storage when it is completed.
To guarantee all of these characteristics, state logs are kept and locks,
timestamps, and optimistic concurrency control are used during the
transaction. When the system uses locks, there is a chance of deadlock and
this must be prevented. See table 1.2 for a list of the various types of locks.
When using timestamps, the server records the time of each reading and
writing request. Then it uses the time to determine whether it should be
done immediately, be delayed, or be rejected. The optimistic concurrency
control assumes that conflicts rarely happen, and does not use locks. If
a conflict has occurred, the server aborts and the client usually restarts.
[C+01, Ch 12-13] [LE03, Lec. 8] [WH03, Lec. 18] [Won03, Lec. 11]

Operations of different Conflict Reason
transactions

read read No Because the effect of a pair of read
operations does not depend on the
order in which they are executed.

read write Yes Because the effect of a read and a write
operation depends on the order of
their execution.

write write Yes Because the effect of a pair of write
operations depends on the order of
their execution.

Table 1.2: Types of locks and conflicts. [C+01, Ch. 12]

6

Time In a computer system, time is important. In a distributed system
this is no less important, but it is somewhat problematic. Algorithms
and applications depend on time to coordinate events and timestamps
are used to serialize transactions, validate authentication certificates, keep
consistency of distributed data, and to remove duplicates. Every computer
has its own physical clock, but it is not possible to synchronize clocks
perfectly. However there are several algorithms for synchronizing clocks
approximately. All these algorithms have similar properties: relevant
information is distributed, processes make decisions on local information,
and single point of failure should be avoided. As an alternative to using
physical clocks, logical clocks are used as a tool for distributing events
without knowing exactly when they happened. The principle is that two
events in a process have occurred in the sequence which was recorded by
the process and when a message is sent between processes, the send message
event will always happen before the receive message event. [C+01, Ch 10]
[LE03, Lec. 7] [WH03, Lec. 16] [Won03, Lec. 9]

Transparency The consequences of distribution in a distributed system
are hidden by the systems transparency. It hides the separation of
components and the system is perceived as one whole system instead of a
collection of independent components. Transparency can be either at user,
system manager, application programmer, or system programmer level,
just depending on what is most efficient for the system.

There are many types of transparency which all are important for a
distributed system. See figure 1.1 for relations between the transparencies.
The figure is translated from slides by Olav Lysne. [LE03, Lec. 1]

Access Transparency: Access to local and remote components and
resources by using the same operations is possible due to a system’s
access transparency. It hides the way a resource is accessed and various
differences in data representation. Olav Lysne gives three examples of
the use of access transparency: the file handling system-operations in
Network File Systems, the navigation on the World Wide Web, and SQL-
queries in distributed databases. [LE03, Lec. 1] Components without
access transparency can not easily be moved from one machine to another.
Coulouris et al gives an example of a lack of access transparency: "a
distributed system that does not allow you to access files on a remote
computer unless you make use of the ftp program to do so." [C+01, p. 24]

Location Transparency: The location of resources is hidden by a system’s
location transparency. The users need not to know the exact physical
location of the resources to access them. Olav Lysne gives three examples
of the use of location transparency: the file handling system-operations in
Network File Systems, the use of URLs on web pages on the World Wide
Web, and tables in distributed databases. [LE03, Lec. 1]

7

Persistence transparency: Whether objects are located in memory or on
disk should not be of any concern to applications or users. This is hidden
by the persistence transparency. It should be regarded in close relation with
location transparency.

Relocation transparency: An object, like resources or clients, may be
moved from one part of the system to another without the need for
changes in applications or user operations. This is due to the relocation
transparency which works on resources in use. It hides the fact that a
resource may be moved to another location while in use. An example of
relocation transparency given by Coulouris et al [C+01, p. 24] is the use
of mobile phones. It does not matter for the person I talk to where I am
as long as my mobile phone has contact with a base station. Relocation
transparency is also known as migration and mobility transparency, and
should be regarded in close relation with location transparency.

Concurrency Transparency: Users may access the same resource. Concur-
rency transparency organizes the resources in a hidden manner so the users
are allowed to access resources without worrying about interference from
others trying to use the same resources.

Replication Transparency: Like concurrency transparency, the replication
transparency hides the fact that users may access the same resource. There
may be multiple copies of a shared resource to make the resource sharing
possible. An example of replication transparency given by Coulouris et al
is the Domain Name System (DNS). Although it "allows a domain name
to refer to several computers, it picks just one of them when it looks up a
name." [C+01, p. 24]

Failure Transparency: Failures may occur in a system, but the users
should not be aware of those failures and recovery of such in the system.
The failure transparency hides the failures and allows the users and
applications to complete their tasks without interference. Coulouris et
al gives an example of failure transparency by using electronic mail. If
severs or communication links fail, delivering an email may fail. But the
system will try to retransmit the messages, and the email will eventually
be delivered, even though this may take several days. [C+01, p. 24]

Performance Transparency: The work load of the system is hidden by the
performance transparency. The system may keep the same performance
level as earlier when the load increases. Sometimes reconfiguration is
required, but this is hidden from the various users of the system by the
performance transparency.

Scaling Transparency: The size of the system is hidden by the scaling
transparency. If the size of the system changes, the systems structure and
application algorithms are not affected.
The most important transparencies are the access and location trans-
parency. They are sometimes referred to as one transparency called network
transparency. If either one is absent it will reduce the utilization of the dis-

8

tributed resources. [C+01, Ch 1.4] [LE03, Lec. 1] [WH03, Lec. 1] [Won03,
Lec. 1]

Figure 1.1: Transparencies

Security For most users of a system, security is very important, and it is
likely that they will not use the system if they feel it is too insecure. This
is especially important for systems that handle transactions where security
and integrity are essential, for example financial transaction systems and
military systems. The security issues that are of concern are confidentiality,
integrity and availability. Or like Dr On Wong said it: "The main goal
of security is to restrict access to information and resources to just those
principals that are authorized to have access". [Won03, Lec. 12]

Security threats There are three classes of security threats: leakage,
where unauthorized recipients get hold of information, tampering, where
information is altered without authorization, and vandalism, where the
perpetrator interferes with the operations of a system without any gain.
The security in a distributed system is complex due to the need to secure
information during transmission from one part of the system to another.
Some of the threats to a distributed system in the various classifications
are:

Denial of service: When a resource or message channel is flooded with
messages so no others may use the channel, the channel is under a Denial of
Service (DoS) attack. Lately the use of viruses has been a "popular" way of
doing this. The perpetrator makes a virus that uses the affected machine to
send messages to a particular site in the network. At the time of the attack,
the system is so swamped with messages that it can no longer receive and
interpret them. The system may then crash or fail in some other way. See
figure 1.2.

9

Eavesdropping: A perpetrator may eavesdrop by listening to "conversa-
tions" between users of the system and obtain copies of the conversation
without authorization. Information within a system should be protected
from eavesdropping by unauthorized persons. This may include informa-
tion on who is talking to whom as well as the matter itself. For military
communication and businesses this is especially important. See figure 1.2.

Masquerading: To impersonate someone else without their knowledge,
is called masquerading. This is sometimes used to gain access to other parts
of the system than the authorization for the perpetrator allows or to gain
secrets that other parties hold without their knowledge. It may also be used
for discrediting the user being impersonated. See figure 1.2.

Message tampering: When tampering with a message, it is intercepted
and altered before it is passed on to the intended recipient. The man in
the middle attack is a type of message tampering where the perpetrator
intercepts the first message in an exchange of encryption keys to establish a
secure channel. The perpetrator then changes the message by substituting
the key with her own before she sends the message to the intended
recipient. This way the perpetrator will be able to listen to or take part
in a conversation between other users without authorization and without
the others knowledge. See figure 1.2.

Replaying: If a perpetrator stores intercepted messages, they can be used
in a replay attack. Replaying attacks should be regarded in close relation
with masquerading as they can be used for the same purpose. This type of
attack may even be effective for encrypted or authenticated messages. See
figure 1.2.

Figure 1.2: Security threats.

10

Security techniques When designing a distributed system, the secu-
rity should be an important issue. One should design it as to avoid disasters
and minimizing mishaps. One way to do this is to assume the worst case:
* Interfaces are exposed
* Networks are insecure
* Limit the lifetime and scope of each secret
* Algorithms and program code are available to attackers
* Attackers may have access to large resources
* Minimize the trusted base

Every distributed system should have a security policy. The security
policy determines what should be done and by whom, and who have
access to what and when. A policy can both be global for the whole system
and local for parts of the system. Ian S. Welch lists eight points concerning
global policy [WH03, Lec. 9]:
1. The environment consists of multiple administrative domains.
2. Local operations are subject to a local domain security policy.
3. Global operations require the initiator to be known in each domain in
which the operation is carried out.
4. Operations between entities in different domains require mutual
authentication.
5. Global authentication replaces local authentication.
6. Controlling access to resources is subject to local security only.
7. Users can delegate rights to processes.
8. A group of processes in the same domain can share credentials.
He also lists some points concerning local policy:
Discretionary: based on identity of requestor and access rules
Mandatory: based on mandated regulations determined by a central
authority
Multilevel: prevents information flows down a hierarchy
Multilateral: prevents information flowing across a hierarchy

There are three widely used techniques used for security today:
cryptography, authentication mechanisms and access control mechanisms.

Cryptography: Is used to conceal the message so only the intended com-
municating parties can understand it. It uses encryption and decryption
of messages. The idea is to encrypt a message with a secret key, Ka, and
send it to the intended recipient where the encrypted message is decrypted
with a secret key, Kb. The secret keys Ka and Kb may be identical or they
may be a pair. If the keys are complex enough and distributed between
the two communicating parties in a secure manner, the original message is
safe. There are several methods of cryptography, which I will not discuss
here. For those who are more interested in the topic I will recommend the
book by Nigel Smart. [Sma03]

Authentication mechanisms: Is used to make sure that all the commu-
nicating parties can be identified and that they are who they claim to be.

11

Certificates are very often used for this. They use cryptography by the use
of private/public key. Here messages are encrypted with the private key
Ka, and can only be decrypted by the use of the public key Kb. Since Ka is
private, one can be sure that the sender is who she claims. I will also here
recommend the book by Nigel Smart for those who are more interested in
the topic. [Sma03]

Access control mechanisms: Is used to limit the access of the users to
ensure that only the ones with the correct authorization enter specific
locations. There are many types of access control. Most widely used are
the Role Based Access Control (RBAC) and Access Control Lists (ACL).
The RBAC divides users into groups based on their roles in a system, for
example lecturers and students. Each group is then given certain access
rights to parts of the system. The ACL gives access rights directly to each
user. It is possible to combine these two access control mechanisms
[C+01, Ch. 7] [Won03, Lec. 12] [WH03, Lec. 9-11] [Cro96, Ch. 4]

1.3 Specific Characteristics

Although there are many different types of distributed systems, there are
few basic system patterns which the systems are based upon. The most
familiar and widely used distributed systems are the Internet, intranets and
networks based on mobile devices. These systems take advantages of other
distributed systems like the naming service and the distributed file system.

Networks Distributed systems use networks for communication. The un-
derlying networks have impact on the performance, reliability, mobility
and quality of service of a distributed system. The hardware components of
a network are composed of communication circuits, connections, routers,
switches, interfaces, etc. The software components of a network are com-
posed of protocol managers and stacks, communication handlers, drivers,
etc. Some of the features of a network are:
Bridge: The link between two networks of different types.
Communication subsystem: The collection of hardware and software compo-
nents which provides the facilities for communication.
Data transfer rate: The speed of transferring data between two components
in the network, once a connection is established. The speed is measured in
bits per second.
Gateway: The link from one network to another. It can be a router or other
dedicated device.
Host: A device that uses the network; can be a computer or any other type
of device.
Hub: A suitable way of connecting hosts.
Latency: The time it takes to send an empty message, the time it takes to

12

access the network at both ends. There are software delays at the sender
and receiver, delays in accessing the physical network and delays within
the network which all have effect on the latency.
Message transfer time: The time it takes to transfer a message. It is measured
as: latency + data length / data transfer rate
Node: A device attached to a network, can be a computer or switching de-
vice.
Router: A link between two or more networks. It passes data packets from
one network to another by using routing tables to get to a distant network.
Subnets: A collection of nodes which are located and can be reached on the
same physical network, a unit of routing.
Switch: Similar as a router, but is only used for local networks.
Total system bandwidth: The total amount of data that can be transferred at
any given time, it may involve more than one channel.

The performance of a network is given by the hardware and software
used in the network. The two most important issues here are the latency
and the data transfer rate, they affect the speed at which a message can
be transferred between to components of the system. There is a variety of
types of networks which are classified by size and usage. Se table 1.3 for
comparison.

Local area networks (LANs): LANs are used within relatively small areas,
they can contain as few as two computers. Direct transmission is used
on single communication means, like twisted copper wire, coaxial cable
or optical fibre. These can be connected by hubs or switches, but no routers
are used. The speed used is relatively high, since high bandwidth is used
and the latency is low except when the traffic is heavy. The technologies
used here is usually Ethernet, token rings and slotted rings.

Metropolitan area networks (MANs): MANs can be used on areas up to
50 km and is usually used in a city or community. It has some of the same
advantages as LANs, for example the speed is relatively high, as well as
covering some of the aspects that used to be done by WANs. The network is
based upon copper and fibre optical cables. The technology used is usually
Ethernet and Asynchronous Transfer Mode (ATM). Good examples of a
widely used MANs today are the ADSL and the cable modem connections.

Wide area networks (WANs): WANs are used on larger areas, up to
thousands of km. The connection speed is lower than for LANs and MANs
since the area is wider and the communication means are based on various
technologies and have different bandwidth. The host computers are
connected to the WAN by packet switches or packet switching exchange.
The switches forward the packets to their destination and the transmission
time depends on the route.

Wireless networks: Network connections to portable and handheld
devices, such as laptops using wireless connection and mobile phones, are
called wireless networks. Some of the networks are Wireless Local Area

13

Networks (WLAN) intended for use instead of wired LANs and can be
connected at distances over 150 meters. Some are Wireless Personal Area
Networks (WPAN) intended for connecting mobile devices to other mobile
devices or connecting fixed devices in close proximity of another, these can
be connected at distances just over 10 meters. Other Wireless Wide Area
Networks (WWANs) are intended for usage across wider area. Mobile
phones typically use this type.

Internetworks: Internetworks are communication subsystems. They rely
on devices such as routers and bridges and allow for expansion with
different network, link and physical layer protocols. The internetworks
relies on a unified addressing scheme, on that the components are
connected, and on a protocol defining the format of communication, the
ones that exist today rely on the Transmission Control Protocol / Internet
Protocol (TCP/IP).
[C+01, Ch. 3] [Won03, Lec. 2]

Range Bandwidth (Mbps) Latency (ms)

LAN 1-2 kms 10-1000 1-10
WAN worldwide 0.010-600 100-500
MAN 2-50 kms 1-150 10
Wireless LAN 0.15-1.5 km 2-11 5-20
Wireless WAN worldwide 0.010-2 100-500
Internet worldwide 0.010-2 100-500

Table 1.3: Network comparisons. [C+01, p. 72]

System patterns The system pattern or topology defines how the com-
ponents in the system fit together. There are some basic patterns that are
widely used, these are centralized, decentralized, hierarchical and ring sys-
tems, and various hybrids of these. See figure 1.3.

Centralized: This is probably the most familiar pattern. It is typically
seen as the client/server pattern used by simple distributed systems. It is
the historically most important and it is still the most widely used. In a
centralized system there is one server where all functions and information
are located. The clients connect to the server by sending and receiving
messages in order to utilize the functions and information located there.
The primary advantage of these types of systems is their simplicity.
They are easy to manage and relatively easy to secure, since all data is
concentrated in one place. The drawback is that if the central server
crashes, the whole system breaks down. Hence, there is no fault tolerance.
Another major drawback is lack of scalability. A centralized system can
only be extended to a certain degree since the central server has a limitation.

Decentralized: This is a typical peer-to-peer (p2p) type of pattern. All the

14

components communicate symmetrically and have equal roles. Many file
sharing systems are designed as p2p systems. The primary advantage of a
decentralized system is their extensibility. Any component may be added
to any part of the system. However this makes it very difficult to manage.
In addition, messages may carry a lot of overhead and the system may end
up being slow and unpractical. Another advantage is the system’s fault
tolerance; it will not affect the whole system if just one node crashes.

Ring systems: A common solution to the problem of high client load is to
use clusters of components arranged in a ring. A component communicates
directly with only the two closest components, one on each side. To use this
type of pattern, the components should be located at a close proximity of
each other. These types of systems are like the centralized system, relatively
easy to manage and to secure. It also has the advantage of being scalable;
one can easily add another component without too much hassle. However
there may be a problem with speed, as a message may need to pass through
several components to arrive at the intended receiver.

Hierarchical: This pattern is similar to centralized, but here the central
server may be a client in another centralized system in addition to its server
capabilities in the system. The hierarchical systems use a tree-like structure.
The primary advantage of the hierarchical systems is their scalability. A
component can be added at any level. Although they are only partially
fault tolerant in that if a server crashes, the clients below may easily be
affected. They may also be somewhat hard to manage.

What type of system pattern one should choose for a distributed
system, depends entirely on what kind of distributed system it is meant
to be and what its usage is intended to be. Often a hybrid system is chosen,
as there are almost no limits in how to combine the various system patterns.
[Min01] [Min02] [C+01, Ch. 2] [LE03, Lec. 2]

Figure 1.3: System patterns. [Min01]

Remote communication Some applications depend on cooperating pro-
grams running in other processes, often located on other computers. These
applications need a way of communicating and invoking operations in

15

those other processes. In order to achieve this some extensions have been
made to familiar programming models and they now apply to distributed
programs. These extensions all work on middleware layers. Middleware is a
term used for "a software layer that provides a programming abstraction as
well as masking the heterogeneity of the underlying networks, hardware,
operating systems and programming languages." [C+01, p. 16-17] See fig-
ure 1.4.

Figure 1.4: Middleware layer. [Won03, Lec. 4]

Remote procedure call (RPC): Procedure calls invoke procedures. They
use the procedures interface which describes the procedures input, output,
or both. Not all procedures return values. RPC allows a program to
call procedures on another program running in a separate process. The
program that issues the request is called a client and the responding
program is called a server. The client and server rely on the use of
request and reply messages, and very often they are running on different
computers. See figure 1.5.

Remote method invocation (RMI): Object oriented programs consist of
objects communicating with each other. The objects encapsulate their data
and code of methods so the communication take place by invoking others
methods. When dealing with distributed objects systems, the objects are
managed by servers and the clients use RMI for invoking the servers’
methods. RMI is similar to RPC since it is dealing with communication
between different processes, very often running on different computers,
but in RMI it is between objects instead of programs. And like RPC, the
client and server rely on the use of request and reply messages. See figure
1.5.

Event-based programming model: An object may register its interest for
particular events which may occur in other objects. The object then receives
notification when such an event has occurred. In distributed event-based
systems the same happens, but here it may also happen with remote
objects. See figure 1.5.
[C+01, Ch. 5] [LE03, Lec. 3] [WH03, Lec. 3 - 6] [Won03, Lec. 4]

16

Figure 1.5: RPC, RMI and Event-based programming model.

Distributed programming Distributed applications run in distributed
environments and make use of the characteristics of distributed systems.
There are no restrictions to what programming languages the developers
must use, but some languages and architectures have built in functionali-
ties which may make the source code less complex.

CORBA: The Common Object Request Broker Architecture, CORBA, is
an architecture specified by the Object Management Group. It is a powerful
API for realising distributed systems of objects and it is programming
language and operating system neutral. CORBA specifies how software
objects are distributed over a network and how they can work together
as clients and servers. The client uses the local CORBA Object Request
Broker (ORB) to take care of the details of locating the objects, routing the
requests, invoking the methods on the other object, and returning results.
The client application then only needs to know the objects name and how
to use the objects interface. The ORB is one of two system components
and handles all the communication between the components. It lets the
objects interact in a platform and implementation in a neutral way. The
other system component is the object service. It performs the general object
management tasks such as creating the objects and controlling access to the
objects. The components of the application are the common facilities, which
deal with configurable standard application functions, and the application
objects deal with application domain functions and specific services.

Java: The Java programming language by Sun Microsystems has several
functionalities for distributed programming, as this is one of the bases for
its existence. Sun Microsystems declare that "The Java platform is the ideal
platform for network computing." [Sun04b] The Java Interface Definition
Language (Java IDL) is based on CORBA. It enables objects to cooperate in
spite of differences in programming languages. The Java IDL provides an
ORB, a class library, which enables CORBA-compliant applications to have
a low-level communication with Java IDL applications. The Java 2 Platform
Enterprise Edition (J2EE), a platform in the Java family, enables solutions
for developing and managing multi-tier server-centric applications. The
Enterprise JavaBeans (EJB) is the server-side component architecture J2EE.
It encapsulates the business logic of an application.

DCOM: The Component Object Model (COM) is Microsoft Corpora-

17

tions framework for developing and supporting program component ob-
jects. COM objects are separate components with a unique identity. They
publish their interfaces to allow applications and other components to ac-
cess their features. Distributed COM (DCOM) is an extension of COM that
allows the components to communicate in a distributed environment. The
Active Template Library (ATL) is a library of template-based software rou-
tines. These can be used when creating COM and DCOM objects. COM+ is
an extension of COM which adds a new set of system services for running
application components. It is viewed as Microsoft’s answer to the Sun Mi-
crosystems’ EJB.
[Won03, Lec. 5-6] [IT03, Lec. 10-11] [C+01, Ch. 5 +17] [Tec04] [Jup04]

Name service When communicating with a resource its name, address
and attributes are important. Names are used for referring to resources.
They may be local or stretch across the whole system. A name can be a
textual identifier, such as human readable username, or a system identifier.
Addresses refer to the location of a resource, not to the resource itself. When
a resource changes its location, the address is changed as well. Attributes
are values of properties associated with a resource. To use Coulouris et
al’s example: the Domain Name System (DNS), which is a global naming
service whose principal naming database is used across the Internet, "maps
domain names to the attribute of a host computer: its IP address, the type of
entry (...) and, for example, the length of time the host’s entry will remain
valid." [C+01, p. 355] When using general names there may be several
names for one address or several addresses for one name, while unique
identifiers refers to one single entry, each identity has at most one identifier,
and the identifiers are never reused.

A name server provides clients with data about named objects in
distributed systems. It stores a collection of one or more naming context.
And its main function is to link a name and an attribute. The query may
be by the name or on the attribute value or type, and it filters on all of
these. The name server uses name spaces and name resolutions. A name
space is a collection of the valid names recognized by a service. This means
that it will try to look these up. It may use aliases to substitute a complex
name with a more convenient one. A name resolution is a process where
a name is continually presented to the naming contexts. The context then
either maps the name directly on a set of attributes or on an additional
naming context. When the name server queries for a name, if the name is
not located in the first naming context, it will continue into the next, and so
on until the name is found or there is no more contexts where to perform
the query.
[C+01, Ch. 9] [LE03, Lec. 5] [WH03, Lec. 13] [Won03, 10]

18

Distributed file system Persistent data are data that survive power
outages. A file system stores this type of data. In a distributed file system
persistent data is available across a network. The file services provide
access to files stored at a server. If the file service is well designed the
performance and reliability is similar or even better than with files stored
on a local disk. The users may access shared files from any computer
in a network since the "distributed file system enables programs to store
and access remote files exactly as they do local ones." [C+01, p. 309]
Consequently the users may also perform read and write operations. The
users do not necessarily know that the files are remotely stored, since this
is transparent through the distributed file system. Disks are relatively slow,
so files recently accessed are typically cached in memory. Whether to have
the caching at the server, at the client or both places usually depends on
usage of the file system. The best examples of distributed files systems are
the Network File System (NFS) from Sun, the Andrew File System (AFS)
developed at Carnegie Hall, and the Digital Multimedia Server (DMS).
[C+01, Ch. 8] [Won03, Lec. 1] [Cro96, Ch. 10]

Internet The Internet is one of the most typical distributed systems,
although people may not generally think of it as one. Some think of the
Internet as just the World Wide Web (www), although this is just one of
the enabled services. Other services, such as email and files transfer, are
widely used and just as important. The Internet is a world-embracing set
of computer networks, all linked together as one. See figure 1.6 for a typical
portion of the Internet. This figure shows a set of intranets (description
in the paragraph below). These are subnetworks to the Internet network
and are operated by companies or organisations. ISP is an abbreviation
for Internet Service Providers, which are companies that provide Internet
access to individual users and small companies or organizations. The
backbones are network links; they have high transmission capacity and
are based upon fibre optic cables, high bandwidth circuits, and satellite
connections. Many of the distributed systems and distributed applications
today communicate through the Internet and the various services it
provides. [C+01, Ch. 1]

Intranet The intranets are, as described above, subnetworks to the
Internet network and are operated by companies or organisations. They
have boundaries towards the Internet and are able to enforce local security
policies. Typically an intranet is composed of several LANs. These are
linked together through backbones just as the Internet. The intranet is then
connected to the Internet through a router. The router allows the users
inside to make use of various services outside of the intranet as well as
limiting the access to the intranet from the outside. The router then acts

19

Figure 1.6: Typical portion of the Internet. [C+01, p. 3]

as a firewall. A firewall prevents unauthorized messages from entering or
leaving by filtering the messages, for example by their source or destination
address. Some organizations may not even connect their intranet to the
Internet at all, for example military constellations and hospitals. These
intranets have the same infrastructure as other intranets except for the
router/firewall. Intranet may be of various sizes they may range from large
ones in large companies, consisting of hundreds of computers, to small
ones in private homes, maybe consisting of no more than two computers.
See figure 1.7 for a typical intranet. [C+01, Ch. 1]

Figure 1.7: Typical intranet. [C+01, p. 5]

Mobile devices The advances in technologies of device miniaturization
and wireless networking have helped in increasing the interest and use of
small and portable computing devices. Today it is very common to own

20

and use at least one of these devices, such as
* laptop computers;
* handheld devices, like mobile phones, pagers, personal digital assistants
(PDAs), and digital or video cameras;
* wearable devices, like smart watches;
* devices embedded into appliances, such as refrigerators and cars.
These devices are called mobile devices because of their ability to connect
to networks in different places as well as their portability. These devices
can move between various technology environments with differences in
bandwidth, latency, loss, etc. Some of these devices are present and so
closely linked to a user’s physical environment that she may hardly notice
it, so-called ubiquitous devices. See figure 1.8 for example of portable and
handheld devices in a distributed system. The figure illustrates the home
intranet and the visiting site of a user who is visiting a host organization.
The user accesses three types of wireless connection: the laptops connection
to the hosts wireless LAN, the mobile phone using the Wireless Application
Protocol (WAP) to connect to the Internet, and a digital camera which
communicates with a printer using an infra-red link. The wireless LAN
in this network would usually cover a few hundred meters, typically the
floor of a building, and would be connected to the rest of the host’s intranet
through a gateway. [C+01, Ch. 1]

Figure 1.8: Portable and handheld devices. [C+01, p. 7]

21

22

Chapter 2

Web Services

2.1 Introduction

In this chapter web services are described. I have used the book by Graham
Glass [Gla01] as a basis for the chapter, and it is used as a reference where
nothing else is indicated. I will recommend this book to those who are
interested in learning more about web services and to those who want to
start to develop their own web services.

Web Services is a relatively new development. It is based upon the
principles of distributed systems. And like in distributed systems, the
components communicate with each other only by passing messages.
Many people regard web services as a technology only for publishing
software services on the Internet via browsers, while others regard them
as the "new big thing" in distributed computing that is working as general
purpose architectures.

The World Wide Web Consortium (W3C) describes web services and
the interaction between the components: "A Web service is a software
system designed to support interoperable machine-to-machine interaction
over a network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the Web service
in a manner prescribed by its description using SOAP-messages, typically
conveyed using HTTP with an XML serialization in conjunction with other
Web-related standards." [W3C04c]

Before web services were introduced, information was exchanged
through presentations. A presentation was then made in Hypertext
Markup Language (HTML) or some other presentation language and appli-
cations on the web were made in a pre-chosen technology. The applications
could rarely interact because of limitations in these technologies.

Web services typically use standard network protocols like Hyper-
text Transfer Protocol (HTTP) for transmitting messages and Extensible
Markup Language (XML) as format for the message content. HTTP is an

23

application protocol which runs on top of TCP/IP (regarded under net-
works in section 1.3).

The use of web services is increasing rapidly in accordance with the in-
crease of development and use of application-to-application communica-
tion and interoperability. Web services provide standards for communica-
tion between applications over a network. I will try both to describe these
standards as well as highlight the general characteristics of web services.

2.2 General Characteristics

A web service is a set of functions that is published to a network for use
by other programs. This is possible by enclosing the functions into one
single entity, the web service. The communication is done only by passing
messages and enables the programs and web services to be implemented
on any platform and in any programming language.

The web service architecture models the communication between the
software components. It is based upon exchanging messages between the
component that provides the web service (service provider), the compo-
nent that requests the web service (service requestor), and the component
where the information about the service is published (discovery agency).
The service provider publishes descriptions of each service it provides to a
discovery agency. The service requestor then obtains the description of a
desired service from the discovery agency and sends a request to the ser-
vice provider based on this description. The service provider executes the
service and sends the appropriate response to the service requestor. See
figure 2.1.

Challenges and Concerns In order for web services to be successful, there
are some technical challenges which need to be met and some concerns
which should be diminished.

Quality of Service: Availability and performance are some of the
concerns when using web services. A web service is based on XML, which
is text-based. Hence it entails more data for the systems to process than if it
were binary-based. This can cause the web service to run relatively slowly
over the HTTP. If additional security protocols are added (see paragraph
below), the web service would run even slower. Another concern is the
quality of a web service. Today a lot of the publicly available web services
are open source; hence the developers are not paid. The end users may
therefore be used to getting services for free, and will not be willing to pay
for the service to be enhanced or upgraded. These versions may be beta-
versions with much raw code and there is no support service if needed.
There is also the concern about reliability when using an externally made
web service. It may be difficult to know which host is reliable, whether it is

24

Figure 2.1: Web service architecture. [W3C04b, Nov. 2002]

when distributing and advertising web services or when locating and using
them. A system which involves several externally made web services, may
collect them from different vendors. And they may be hosted in different
environments and on different operating systems. Such a system may not
be as predictable as desired. Due to this, challenges concerning testing,
debugging, and performance may arise.

Scalability: It is possible to expose existing component systems as web
services, many of which are scalable. It may be a challenge to preserve the
desired scalability in the web services as well.

Security: Privacy and security are potential sources of concern in any
computer system. This is treated more closely in the paragraph about
security (see below).

Transactions: Many traditional systems use the two-phase commit
control approach in transactions. Here all the participating resources are
gathered and locked until the transaction is finished. This is unpractical in
open environment systems where transactions can last for hours or days,
such as in systems which use web services. IBM developerWorks specifies
two types of web service transactions: Atomic transaction (AT) and
Business activity (BA). ATs are used on transactions with short duration
and limited trust domain. They are similar to the transaction specification
in the distributed systems chapter (section 1.2). BAs are examples of
compensating transactions. These transactions have two scenarios: A
normal scenario which performs the operations specified by the transaction
and a compensating scenario which performs operations to remove the
effects of the normal scenario if this is required.

25

[Gla01, Ch. 1] [dev02c] [VN02] [Lou01] [Roe03] [Jen01]

Benefits The web service standards (see section 2.3) are relatively young
standards and there are still some challenges (see above) that needs to
be overcome. Even so web services are greatly used in today’s business-
to-business web-based solutions. The main reason for this is their many
benefits:

Discrete: Web services support a more loosely coupled architecture than
most traditional system architectures. And each web service typically only
provides a single piece of functionality and is completely independent.
Because of this an application can be broken down into a set of other
web services. Each of these can in turn be offered as an independent web
service.

Easy to implement, understand and use: Developers may use the com-
ponent object model, architecture, implementation strategy, and program-
ming language of their own choice, as long as they respect the web service
standards. This makes it possible for a developer to make a web service
without previous knowledge of the target system’s environment. And web
services based on different languages can be incorporated into a system
and communicate with each other without problems. It is easy to find a
web service and include it in an application. This is due to the publication
of the web service’s description and because they are independent

Industry support: Almost all major hardware and software vendors
support the web service standards, ensuring that components may easily
be deployed as web services or consumed by them. For instance the
Microsoft .NET platform is based on web services. And because a web
service access and communication happens in real time, data can be
immediately updated. This ensures data integrity at all times.

Interoperable: A web service can interact with any other web service.
This is because they communicate only by sending messages, in XML
format. Hence the developers need not worry about what programming
language or platform other web services are based on when designing a
web service that may communicate with these. A web service can run
on any kind of machine and with any kind of platform that supports web
services. This includes rather small hand held devices.

Reusable: A web service can be extended and reused whenever
necessary. Thus a developer does not need to make a web service from
scratch when it should be extended. The developer may extend her existing
web service by adding the desired functionality. In addition a web service
can incorporate existing systems and applications in order to make them
accessible and usable in new areas and systems.

Ubiquitous: Since web services usually use HTTP for communicating
over a network and XML as format for the communication, any device

26

which supports these technologies can access or host a web service. In
addition, web services respect existing security systems, because of the
development standard, and can therefore use the existing infrastructure at
the time and location of access.

Understandable: Web services are understandable for both humans and
computers. A human can for example understand a web service through an
application while the computer understands the same web service through
an Application Programming Interface (API).
[Gla01, Ch. 1] [Lou01] [W3C03c, v. Mar. 2003] [VN02] [Cap01] [Epi03]

Security There are two ways of securing a web service, by using existing
external security measures or the web service security standard.

External measures: There are several external security measures that may
be used with web services. Transport security: Existing technologies
such as Secure Socket Layer (SSL) and Transport Layer Security (TLS)
provide a simple point-to-point integrity and confidentiality for a message
during transport. TLS is the introduced successor to SSL and it "is
a protocol that ensures privacy between communicating applications
and their users on the Internet. When server and client communicate,
TLS ensures that no third party may eavesdrop or tamper with any
message." [Tec04] Public key infrastructure (PKI): Enables users of a
traditionally insecure public network to exchange data in a secure and
private manner. "At a high level, the PKI model involves certificate
authorities issuing certificates with public asymmetric keys and authorities
which assert properties other than key ownership (for example, attribute
authorities). Owners of such certificates may use the associated keys to
express a variety of claims, including identity." [CC02] Kerberos: Makes
possible the secure authentication of requests for services in a computer
network. "The Kerberos model relies on communication with the Key
Distribution Center (KDC) to broker trust between parties by issuing
symmetric keys encrypted for both parties and "introducing" them to one
another." [CC02]

Web service security standard (WS-Security): The WS-Security standard
is an industry standard from IBM, Microsoft, and VeriSign [dev02b]. It
describes enhancements to the SOAP messaging (See subsection 2.3.2) and
uses the other security measures as a design basis. It intends to protect the
integrity and confidentiality of a message and authenticating the sender.
The standard also specifies how to associate an unspecified security token
with a message and how to encode certificates and Kerberos tickets.
Donald Flinn proposes the use of the WS-Security as countermeasure to
the following threats [Fli03]:
Un-authenticated sender - Use tokens and digital signature
Unauthorized receiver - Use XML encryption

27

Replay - Digital signatures alone are not enough to defeat replay. Other
parts of the specification must be used with d-sig, such as timestamp,
sequence number and nonce.
Token Substitution - Sign both the security header and the body.
Message modification - Sign the message
Message substitution - Sign both the security header and message body
Man-in-the-middle - Sign both the request and response
Multiple tokens using the same key - Require that the token be included in
WS-Security header.
See figure 2.2 for overview of web services security specifications. [Gla01,
Ch. 5] [dev02b] [dev02a] [CC02] [Tec04]

Figure 2.2: Web services security specifications. [CC02]

2.3 Specific Characteristics

A web service consists of four basic elements: global discovery, metadata,
encoding, and transport (See table 2.1). As stated earlier, web services
typically use existing transport protocols like HTTP and XML is the
standard way of representing data.

Global Discovery UDDI: Universal Description, Discovery and
Integration www.uddi.org (also ebXML)

Metadata WSDL: Web Service Definition Language
(XML) www.w3.org/2002/ws/

Encoding SOAP: XML encoded messaging / RPC
www.w3.org/2002/ws

Transport HTTP / HTTPS

Table 2.1: Web service overview. [Roe03, Lec. 11]

28

2.3.1 Data representation

Datatype, message format, and structure specifications should be based
on the specifications of structures and datatypes in the W3C XML
specification. However, other schema languages, such as RELAX NG and
DTD may also be used. [W3C03c]

XML Extensible Markup Language (XML) is a descriptive meta-
language. It is used to define the structure of documents and the names of
the attributes. XML documents uses tags in data items to identify the data
and attributes, and if their names are well chosen, to define their meaning.
The document is composed of storage units called entities designed in a
tree structure, beginning with a root or "document entity". The document
is logically composed of character references, comments, declarations, ele-
ments, and processing instructions. The W3C defines that "Each XML doc-
ument contains one or more elements, the boundaries of which are either
delimited by start-tags and end-tags, or, for empty elements, by an empty-
element tag. Each element has a type, identified by name, [...], and MAY
have a set of attribute specifications." [W3C04a] An attribute is defined by
its name and value. XML is designed to be directly usable over the Inter-
net and to support a variety of applications. XML documents are human
readable and easy to create, it is also easy to write programs to process
them. See figure 2.3 for a simple example of the XML structure. [W3C04a]
[W3C04b] [Edm02, Lec. 4] [Fer02]

Figure 2.3: XML

29

DTD Document type definition (DTD) may be used as the schema
language for WSDL (subsection 2.3.3). It can not be embedded, hence it
must be imported, and a namespace must be assigned. The W3C defines
DTDs as grammars for a class of documents. The grammars are composed
of markup declarations which are declarations of element types, attribute
lists, entities or notations. The DTDs may point to external declarations or
contain the markup declarations, or both. [W3C03c] [W3C04a]

RELAX NG A RELAX NG schema may, like DTDs, be used as the schema
language for WSDL (subsection 2.3.3). It can be either embedded or
imported, but imported is preferred. And like for DTDs, a namespace must
be specified. RELAX NG is a simple schema language for XML and is itself
an XML document. It specifies patterns for content and structure of an
XML document. [W3C03c] [OAS01]

2.3.2 SOAP

Simple Object Access Protocol (SOAP) is the messaging protocol for web
services. It is used to encode the information in the request and response
messages. A SOAP message is operating system independent and it is a
way for one program to communicate with other programs independently
to the operating systems of the other programs. The SOAP messaging
framework consists of four parts, the SOAP processing model, the SOAP
extensibility model, the SOAP protocol binding framework, and the SOAP
message construct. The processing model defines "the rules for processing
a SOAP message". [W3C03b] The extensibility model defines "the concepts
of SOAP features and SOAP modules". [W3C03b] The underlying protocol
binding framework describes "the rules for defining a binding to an
underlying protocol that can be used for exchanging SOAP messages
between SOAP nodes". [W3C03b] And the message construct defines "the
structure of a SOAP message". [W3C03b] When an application receives a
SOAP message, it must process that message. This is done by identifying
all parts of the message that are intended for the application and verifying
that all mandatory parts identified are supported by the application and
process them accordingly. The message is discarded if not all mandatory
parts are supported; any unsupported optional parts are ignored. If
the message is to be forwarded, the parts identified are removed before
forwarding the message.

SOAP extensibility model The core functionality of SOAP deal with
providing extensibility. The extensibility model gives two means of
expressing features: the SOAP processing model and the SOAP protocol
binding model (both described below). The specification of a feature must

30

include: a URI to name it, the information or state required to implement it,
information about the processing required to fulfil the features obligations,
and the information to be transmitted from node to node. A Message
Exchange Pattern (MEP) is a type of feature in a template form which
establishes a pattern message exchange between nodes. A SOAP module
can realize several features. It is a specification of the semantics and syntax
of header blocks. [W3C03b] [Nat03]

SOAP processing model This model describes what actions a SOAP
node should take on receiving a SOAP message. A node can be the
initial sender, the ultimate receiver or an intermediary, and is identified
by a Uniform Resource Identifier (URI). The URI contains certain node
attributes. The optional role attribute is to be played by the intended target
of the header block. There are three standard roles: none, next, and ultimate
receiver (see table 2.2 for description). The mustunderstand attribute is
used to ensure that the nodes do not ignore important header blocks, and
is set to true if the block must be processed. The relay attribute indicates
whether a header block targeted at intermediary nodes must be relayed if
not processed. [W3C03b] [Nat03]

Short-name Name Description

next "http://www.w3.org/ Each SOAP
2003/05/soap-envelope/ intermediary and the
role/next" ultimate SOAP receiver

MUST act in this role.
none "http://www.w3.org/ SOAP nodes

2003/05/soap-envelope/ MUST NOT
role/none" act in this role.

ultimateReceiver "http://www.w3.org/ The ultimate receiver
2003/05/soap-envelope/ MUST
role/ultimateReceiver" act in this role.

Table 2.2: SOAP Roles defined by this specification. [W3C03b]

SOAP protocol binding framework is a specification of how messages
can be passed from one node to another using an underlying protocol. It
provides rules for the specification of protocol bindings and descriptions
of the relationship between the bindings and the nodes which implement
these bindings. There are several types of bindings that can be used. A
feature which is not available through a binding may be implemented
using header blocks containing SOAP modules. According to the W3C
[W3C03b], a SOAP binding specification has the following features; it:
* Declares the features provided by a binding.

31

* Describes how the services of the underlying protocol are used to transmit
SOAP message infosets.
* Describes how the services of the underlying protocol are used to honor
the contract formed by the features supported by that binding.
* Describes the handling of all potential failures that can be anticipated
within the binding.
* Defines the requirements for building a conformant implementation of
the binding being specified.
[W3C03b] [Nat03]

SOAP message construct The structure of a SOAP message includes an
envelope, a header, a body, and a fault definition. See figure 2.4 for a
structure overview.

Figure 2.4: SOAP structure overview. [Nat03]

The envelope has the element name Envelope and it is the top element
in the message. It is a mandatory part of the message which defines
the overall framework of the message. The framework expresses what a
message is, who should deal with it and if it is optional or mandatory. The
envelope may contain additional attributes and namespace declarations.
The attributes may contain sub elements. Both the attributes and its sub
elements must be namespace qualified.

The envelope’s first child in a hierarchic structure is the header. It is
an optional element in the message and its element name is Header. Its
function is to add features to a message without prior agreement between
the communicating parties. The header element is identified by its element
name, which consists of a namespace URI and a local name. All its children
must also be namespace-qualified. The header has a few attributes that can
be used to specify what role (see paragraph about SOAP processing model)
should deal with a feature and whether it is optional or mandatory.

32

The other child of the envelope is the body. It has the element name
Body and is a mandatory element. It is either located as the first child of
the envelope or as the second child if the header element is present. The
body may contain children as a set of body entries. These children may
be namespace-qualified. The Body contains for mandatory information
intended for the ultimate recipient of the message.

The fault element is used for indicating and reporting errors within the
message. Its element name is Fault. The fault element contains two or
more child element information items to describe the fault. The code and
reason items are mandatory, the node, role, and detail items are optional.
An element information items may appear within a header block or as a
descendant of a child within the body, then the element has no SOAP-
defined semantics.
[Won03] [W3C04b] [W3C03a] [W3C03b] [Edm02, Lec. 9] [YS02]

2.3.3 WSDL

Web Services Description Language (WSDL) is an XML language for
describing web services. WSDL describes a web service at both an abstract
and a concrete level. At the abstract level, the web service is described by
the messages it sends and receives. Typically an XML Schema is used for
this. At the concrete level, the web service’s transport and wire format for
one or more interfaces are described. Both the WSDL components and type
system components are to be described.

Component model The conceptual model for WSDL is described as a set
of mandatory or optional elements with properties. The W3C describes
these elements as components. See figure 2.5 for structure overview.

Figure 2.5: WSDL structure overview. [W3C03c]

Definitions: This is the top level component and is similar to the
envelope in the SOAP structure. At the abstract level, this component is
just a container for the WSDL components and type system components.
The WSDL components are interfaces, bindings and services. The type

33

system components are element declarations and type definitions for some
type systems. There are several properties of the definitions component:
a local name (definitions), a namespace name, one or more attributes,
and zero or more element information items. The attributes includes the
mandatory targetNamespace as well as other namespace qualified attribute
information items. The targetNamespace which is a logical namespace
for information about the service. It is a convention of XML Schema and
enables the WSDL document to refer to itself. Element information items
are children of the definitions component and include interface, binding,
service, types, include, import, and documentation which are described
below, as well as other namespace-qualified element information items.

Interface: This component describes collections of messages a service
sends or receives. Related messages are grouped into operations where
an operation is a group of input and output messages. An interface is a
set of operations and can optionally extend to one or more interfaces. An
interface is defined by the following properties: a local name (interface),
a namespace name, one or more attributes, and zero or more element
information items. Attributes include a mandatory name and the optional
extends and styleDefault as well as other namespace qualified attribute
information items. The name together with the targetNamespace defined in
definitions identifies the interface. The extends lists what interface this
one is derived from. The styleDefault defines the default style used
to construct the message. Element information items include operation,
feature and property, as well as other namespace-qualified element
information items. The operation is a collection of interface operation
definitions. The feature is a collection of feature definitions. The property
is a collection of property definitions.

Binding: This component describes a concrete message format and
transmission protocols that may be used to define an endpoint (see under
service below in this paragraph). The component may describe the
information in a specific manner for a specific interface or in a general
manner for any interface. The component may also define operation
specific binding details, but then the component must define an interface.
A binding is defined by: a local name (binding), a namespace name, one or
more attributes, and zero or more element information items. Attributes
include a mandatory name and an optional interface as well as other
namespace qualified attribute information items. The name together with
the targetNamespace defined in definitions identify the binding. The
interface refers to an interface component. Element information items
include operation, feature and property, as well as other namespace-
qualified element information items. The operation is a collection of
binding operation definitions. The feature is a collection of feature
definitions. The property is a collection of property definitions.

Service: This component describes a set of endpoints at which the

34

interface of the service is provided. The endpoint specifies the location
for accessing the service. There are several properties of the definitions
component: a local name (service), a namespace name, two or more
attributes, and one or more element information items. Attributes
include a mandatory name and a mandatory interface as well as other
namespace qualified attribute information items. The name together
with the targetNamespace defined in definitions identifies the service.
The interface refers to an interface that the service is an instantiation
of. Element information items include an optional documentation and
the mandatory endpoint as well as other namespace-qualified element
information items. The documentation element information item is
described below in this paragraph. The endpoint is a set of endpoint
components containing at least one endpoint component.

Types: This component is an optional component to declare all the
data types the service uses that are not built-in the service, like arrays
and structures. It is a collection of imported and embedded schema
components, of any schema language. A type is defined by the following
properties: a local name (types), a namespace name, zero or more
attributes, and zero or more element information items. Attributes
may be any namespace qualified attribute information items. Element
information items include an optional documentation as well as other
namespace-qualified element information items. The documentation

element information item is described below in this paragraph.
Include: This component is a mechanism to help make the WSDL

descriptions clearer. It allows for the separation of various components
of a service definition, which originate from the same target namespace,
into independent WSDL documents. These documents can later be merged
as needed. An include component is defined by: a local name (binding),
a namespace name, one or more attributes, and zero or more element
information items. Attributes include a mandatory location as well as
other namespace qualified attribute information items. The location

is the location of the relevant information. Element information items
include an optional documentation as well as other namespace-qualified
element information items. The documentation element information item
is described below in this paragraph.

Import: This component is like include, a mechanism to help make the
WSDL descriptions clearer. It also allows for the separation of various
components of a service definition into independent WSDL documents.
But in this case the components have different target namespaces, which
can be imported when required. There are several properties of the
definitions component: a local name (import), a namespace name, one or
more attributes, and zero or more element information items. Attributes
include a mandatory namespace and an optional location as well as other
namespace qualified attribute information items. The namespace "indicates

35

that the containing WSDL document MAY contain qualified references
to WSDL definitions in that namespace." [W3C03c] The location is the
location of the relevant information. Element information items include
an optional documentation as well as other namespace-qualified element
information items. The documentation element information item is
described below in this paragraph.

Documentation: This component contains human readable or machine
processable documentation, or both. The documentation component is
defined by: a local name (documentation), a namespace name, zero or more
attributes, zero or more child element information items, and zero or more
character information items.
[W3C03c] [Gla01, Ch. 3]

2.3.4 UDDI

If a web service is to be used, the information about how to access it
must be published. Universal Description, Discovery, and Integration
(UDDI) allow a web service’s access information, like location, WSDL, and
owner, to be published. The main purpose of UDDI is to provide an API
for publishing and discovering information about a web service. UDDI
specifies a framework that "will enable businesses to:
* Discover each other
* Define how they interact over the Internet
* Share information in a global registry that will more rapidly accelerate
the global adoption of B2B eCommerce " [Mac03]

The UDDI technology "is a layer on top of standards-based technologies
such as TCP/IP, HTTP, XML, and SOAP to form a uniform service
description format and service discovery protocol." [Mac03] See figure 2.6
for the relationship between UDDI and these other technologies.

Figure 2.6: UDDI technology overview. [Mac03]

36

UDDI types There are three types of UDDI: public, protected, and
private.

Public: This is probably the most known type of UDDI. Here anyone can
access the UDDI registry to publish web service and business information
or retrieve information about other web services and businesses. Access
to the registry is typically free. Companies that want to publish general-
purpose web services use this UDDI type.

Protected: These UDDI registries are typically industry specific and only
accessible to certain businesses. The UDDI servers are often owned by an
industry consortium and only the members of the consortium may access
the registry due to performance and security reasons.

Private: Some companies have an internal UDDI server and registry.
Here web services for internal use are published.
[Gla01, Ch. 6] [Mac03]

Data types The UDDI registries store information divided into various
types. These are called entities. The entities are stored in a data registry
similar to a phone book, which is split into White Pages, Yellow Pages, and
Green Pages. There is also a section for Service Type Registration, service
types are defined by tModels. See figure2.7 for overview of the registry
datatypes.

Figure 2.7: Registry datatypes. [Roe03, Lec. 11]

Business entity: Information about the business or organization that
provides the web service. The entity is searchable in the UDDI White Pages.
A business entity contains business services.

Business service: Descriptive information about a collection of related
web services that are offered by the business entity. The entity is searchable
in the UDDI Yellow Pages. A business service contains binding templates.

Binding template: Technical information about a single web service. It
contains all the information necessary to locate and invoke the web service,

37

including the URL of the web service, an optional description, and tModel
references. The entity is searchable in the UDDI Green Pages.

tModels: Technical specification about a web service. The tModel has a
name, a unique key, an overview URL to associated data, and may have
sets of descriptions. The main purpose of a tModel is to represent a WSDL
interface type.

Publisher assertion: This is an optional entity. It describes a business
entity’s relationship with another business entity, from the first business
entity viewpoint. The publisher assertion may be relevant if a business is
not effectively represented by a single business entity.

Subscription: This is also an optional entity. It is for keeping track of
changes to entities described by the subscription.
[Gla01, Ch. 6] [Mac03] [UDD03]

38

Chapter 3

Practical

In this chapter I will look at the development aspect of both distributed
systems and web services. I have tried to develop both a distributed and a
web service application for the same problem. I have chosen two problems
which are more closely described in the sections below.

In the poker problem, I have developed a distributed and a web service
application from a non-distributed application. In the bulletin board
problem, I have developed a web service application based on an existing
distributed application. The source code, SOAP and WSDL documents to
all applications are on the enclosed CD.

All applications are written in TextPad 4.7.2 [Hel] and compiled by
JavaTM 2 SDK Standard Edition v 1.4.2 [Sunb]. The platform was Microsoft
Windows XP Professional [Mic]. For help I have used the JavaTM 2 SDK
Standard Edition Documentation v 1.4.0 and 1.5.0 [Sunb], especially the
API specifications, Java programs I have previously made, and searched
on www.google.com for help if needed.

In the web service applications I also used the server Apache Tomcat
5.0.19 from the Apache Jakarta Project [Apaa] and the Apache Axis
1.1 technology from the Apache Web Services Project [Apab]. The
documentation provided with both was used for help.

3.1 Poker

In this problem I first developed a simple non-distributed application. I
then developed a distributed application and a web service application
based upon the existing application. I tried to change as little as possible
from the original application. This is to illustrate the transition from a
non-distributed application to a distributed application or a web service
application. The development process and implementation is similar to
what would be done if the applications were to be implemented from
scratch.

39

3.1.1 Problem description

The task is to develop a program for comparing hands of poker and a client
program to communicate with a user.

In a poker game to or more players have five cards each. I have put a
limit of players to no more than six. A standard deck of 52 playing cards
is used, with four suits and 13 ranks, and no joker. Card ranks are ordered
as follows: 2, 3, 4, 5, 6, 7, 8, 9, Ten, Jack, Queen, King, and Ace. Different
combinations of cards have different values.

3.1.2 Solution description

Distributed

The application adopts a client/server architecture using Java RMI.
IPoker.java - The poker remote interface,
Poker.java - The remote object implementation,
PokerException.java - Exception class,
PokerServer.java - The poker server,
PokerClient.java - The poker client,
policy - The policy file granting usage permission to the poker game.
See figure 3.1 for an illustration of the classes.

Figure 3.1: The code files

Interface IPoker describes the poker remote interface, see figure 3.2.
It describes what the public can access, and contains only one method,
winnerHand.

Figure 3.2: The IPoker interface

40

Implementation Poker is a remote object implementation that imple-
ments the IPoker interface, see figure 3.3.Here the abstract method is made
specific. The Poker class also contains other methods for helping in the
evaluation of which of the submitted hands is the winning hand. I decided
that if an error occurred the server should throw a RemoteException in-
stead of just printing the error as in the original application. This was in
order for the client to see the error in case the error was due to incorrect
card values.

A skeleton class, Poker_Skel.class, and stub class, Poker_Stub.class
were automatically created when compiling Poker with the Java RMI
stub compiler, rmic. The skeleton class is "a JRMP protocol server-side
entity that has a method that dispatches calls to the actual remote object
implementation." [Sun04c] The stub class is "client-side proxy for a remote
object which is responsible for communicating method invocations on
remote objects to the server where the actual remote object implementation
resides." [Sun04c] The Poker class extends UnicastRemoteObject which
is used for exporting remote objects with Java Remote Method Protocol
(JRMP) and obtaining the stub.

The hands are to be submitted as a double String array containing one
hand (five cards) for each player. From there the application evaluates and
compares two and two hands, these hands are stored as separate String
arrays containing the five cards.

The methods in Poker are relatively straight forward and self explain-
ing. There are methods for evaluating a given hand to find its score and for
comparing two previously evaluated hands.

Figure 3.3: The Poker implementation, server and client

41

Server PokerServer makes an IPoker instance of the Poker and runs it,
see figure 3.3. The Naming.rebind method binds a name to the references
of the IPoker objects. Clients can look up the object by the reference name
and remotely invoke the winnerHand method on the object.

Client PokerClient has the user interface and keeps the contact with the
server, see figure 3.3. I chose to make a console based program, since a
graphical user interface is not relevant to the functionality of the poker
application. See figure 3.4 for an example of the client running.

Figure 3.4: Poker client running

The Naming.lookup method returns a reference, the stub, for the object
associated with the name. This reference is then used when invoking the
winnerHand method of Poker.

Compiling and running When the files were compiled, the Poker was
compiled once more using the Java RMI stub compiler, rmic, to generate
the stub and skeleton classes.

Before starting the server, the Java remote object registry, rmiregistry,
must be started. It provides the methods used for storing and retrieving
the remote object references when rebind and lookup is used.

When starting the server the servers codebase and the policy location
must be specified. The server’ codebase allows the stub class to be
dynamically downloaded to the registry and subsequently to the client.
See figure 3.5 for an illustration. The server’ codebase property is set to the
location of the implementation stubs. To start the server, open a console
and type:
java -Djava.rmi.server.codebase=<codebase location>

-Djava.security.policy=<policy location>\policy
poker.PokerServer

The codebase location is typically http://myhost/~myusrname/poker/.

In the same way as for the server, when starting the client the server’
codebase and the policy location must be specified. To start the client, open

42

Figure 3.5: Downloading RMI stubs. [Sun04a]

a console and type:
java -Djava.rmi.server.codebase=<codebase location>

-Djava.security.policy=<policy location>\policy
poker.PokerClient

Web Service

This application is a web service version of the distributed application
poker. Even if the implementation of this application is completely
independent to the implementation of the distributed application, much
of the implementation is the same since they are based upon the same
application. I will not describe the similarities in the implementation.
Poker.java - The main file,
PokerClient.java - The poker client,
PokerException.java - Exception class,
PokerDeploy.wsdd - Deployment descriptor,
PokerUndeploy.wsdd - Undeployment descriptor,
poker.wsdl - WSDL of the poker web service.
See figure 3.6 for an illustration of the classes

Implementation Poker is the implementation file, or the file to be
deployed as a web service, see figure 3.6. It is very similar to the
implementation in the distributed version. The major difference is that this
is basically the original application file. Because the file is to be distributed
with a deployment descriptor, see paragraph Compiling, deploying and
running, nothing needed to be changed. I decided that if an error occurred
an exception should be thrown (PokerException) instead of just printing
the error as in the original application. This was in order for the client to
see the error in case the error was due to incorrect cards in the hand.

43

Figure 3.6: The code files

Client The web service PokerClient is very similar to the distributed
PokerClient, see figure 3.6. The only difference is the communication
with Poker. In the distributed version this is done by communication
with PokerServer, but in the web service version the communication is
done via the Apache Tomcat server [Apaa] by use of the Apache Axis
technology [Apab]. The client creates new Service and Call objects. These
are standard JAX-RPC (Java API for XML-based RPC) objects and are used
for storing metadata about the service to invoke. The JAX-RPC can be
used to build web applications and web services, by incorporating the
functionality of XML-based RPC according to the SOAP 1.1 specification.
The location of the service to be invoked is set by the Call objects
setTargetEndpointAddress method. When invoking the service to utilize
the deployed method in Poker, information about the method is set before
invoking it. See figure 3.7 for code.

Figure 3.7: Create Service and Call objects and Invoking the service

44

Compiling, deploying and running When the files were compiled and
moved to the appropriate directory (when using Tomcat it is
Tomcat directory\webapps\axis\WEB-INF\classes), the web service
needed to be made available for use or deployed. When using Axis in Tomcat
this is done by using a deployment descriptor while Tomcat is running. The
descriptor is written in Axis Web Service Deployment Descriptor (WSDD)
format. It contains relevant information about what to be made available
to the Axis engine. There should also be a file for removing the availabil-
ity of the service, or undeployment. I used the files PokerDeploy.wsdd and
PokerUndeploy.wsdd, see figure 3.8.

Figure 3.8: Deploy and undeploy files

The client can be run from any location. The location of the service is to
be given as an argument in URL format when starting PokerClient. If the
server where the poker web service is located is not running, the client will
not be able to connect to it.

When the client’s Call object try to invoke the deployed method in the
poker web service, a SOAP request is sent to the server. See figure 3.9 for
the SOAP request generated by the code in figure 3.7. I was regrettably not
able to monitor the SOAP response from the server.

3.2 Bulletin board

In this problem I first developed a distributed application without any
regard to how it could be implemented in web services. Then I developed
the same application using web service technology. I tried to change as
little as possible from the original application. This is to illustrate the
transition from a distributed application to web service application and the
challenges or problems in doing so.

45

Figure 3.9: SOAP request

3.2.1 Problem description

The task is to develop a bulletin board or newsgroup. The bulletin board
will maintain groups or threads of messages and users may post and read
messages and replies.

The bulletin board is to adopt client/server architecture. Java interfaces
to define the overall design of the server are to be used with an
implementation class and a server class. There is also a need of a client
class to communicate with the server and to implement the user interface.

3.2.2 Solution description

Distributed

The application adopts a client/server architecture using Java RMI.
IMessage.java - The message remote interface,
IBulletinBoard.java - The bulletin board remote interface,
BulletinBoard.java - The remote object implementation,
BulletinBoardServer.java - The bulletin board server,
BulletinBoardClient.java - The bulletin board client,
policy - The policy file granting usage permission to the bulletin board.
See figure 3.10 for an illustration of the classes

Interfaces IMessage describes the message remote interface. It describes
the design of the messages, the set and get methods. IBulletinBoard is
the interface of the bulletin board itself. It gives an interface for keeping

46

Figure 3.10: The code files

track of the messages in the bulletin board and how these are related to
each other. See figure 3.11 for an illustration of the interfaces.

Figure 3.11: The interfaces

Implementation BulletinBoard.java is a remote object implementation
that implements both interfaces, see figure 3.12. Here the abstract methods
in the two interfaces are made specific.

As with the Poker application, section 3.1.2, a skeleton class,
BulletinBoard_Skel.class, and stub class, BulletinBoard_Stub.class

were automatically created when compiling BulletinBoard with the Java
RMI stub compiler, rmic.

To keep track of the messages added to the bulletin board, I chose to use
vectors. Their greatest advantages are, in my view, that they can contain
mixed objects and their size can be expanded during runtime. When a
new message is submitted and stored in the vector, it is also stored in
a RandomAccessFile for later use even if the server is stopped. I chose

47

RandomAccessFile for storage since it is easy to add new elements at the
end of an existing file. The vectors can then be updated by retrieving all
the messages in the file and adding them to the vectors.

The methods in BulletinBoard are relatively straight forward and
self explaining. There are IMessage methods (set and get) and
IBulletinBoard methods for posting messages and retrieving messages
and information relative to the messages. I chose not to send the mes-
sage itself because the client may not be aware of the structure of the
BulletinBoard class, instead vectors are used for transporting the message
objects, where one object in the vector corresponds to one information item
in the message.

Figure 3.12: The Bulletin Board implementation, server and client

Server The structure of the BulletinBoardServer is similar to the
structure of the PokerServer in section 3.1.2. The server makes a bulletin
board and a message instance of BulletinBoard and runs these. The
Naming.rebind methods bind names to the references of the IMessage and
IBulletinBoard objects. Clients can look up these objects by the reference
names and remotely invoke methods on the objects. See figure 3.12.

Client BulletinBoardClient has the user interface and keeps contact
with the server, see figure 3.12. The communication with the server is

48

similar to the communication described in the Client paragraph in section
3.1.2. I chose to make a console based program, since a graphical user
interface is not relevant to the functionality of the bulletin board. See figure
3.13 for an example of the client running.

Figure 3.13: Bulletin board example

Compiling and running When the files were compiled, the
BulletinBoard was compiled once more using the Java RMI stub compiler,
rmic, to generate the stub and skeleton classes.

Before starting the server, the Java remote object registry, rmiregistry,
must be started. And when starting the server the server’ codebase and the
policy location must be specified. See section the Compiling and running
paragraph in section 3.1.2. The server’ codebase property is set to the
location of the implementation stubs. To start the server, open a console
and type:
java -Djava.rmi.server.codebase=<codebase location>

-Djava.security.policy=<policy location>\policy
bulletin.BulletinBoardServer

In the same way as for the server, when starting the client the server’
codebase and the policy location must be specified. To start the client, open
a console and type:
java -Djava.rmi.server.codebase=<codebase location>

-Djava.security.policy=<policy location>\policy
bulletin.BulletinBoardClient

Web Service

The application is a web service version of the distributed application
bulletin board. As little as possible is changed from the original application.
I will not describe these similarities.
BulletinException.java - Exception class
BulletinBoard.java - The object implementation,
BulletinClient.java - The bulletin board client,
IBulletinBoard.java - The bulletin board interface,
IMessage.java - Message object interface,

49

BulletinDeploy.wsdd - Deployment descriptor,
BulletinUndeploy.wsdd - Undeployment descriptor,
bulletinBoard.wsdl - WSDL of the bulletin board web service.
See figure 3.14 for an illustration of the classes

Figure 3.14: The code files

Interfaces These are very similar to the interface classes in the distributed
version. IMessage describes the message interface. IBulletinBoard

describes the interface of the bulletin board itself. See figure 3.15 for an
illustration of the interfaces.

Figure 3.15: The interfaces

Implementation BulletinBoard is the implementation of the two inter-
faces, see figure 3.16. It is also very similar to the implementation in the dis-
tributed version, BulletinBoard.java. The major difference is the trans-
portation of the message objects.

When transporting the message objects or other objects consisting of
several items, I used vectors in the distributed application. But this was

50

not adopted easily in the web service application. I therefore decided to
use object arrays in these cases in the web service application. Numbers
for identifying some information about a message, like the message id, are
transported as the primitive type int in the distributed application. In the
web service application I used integers since they are objects that can be
transported in a SOAP message.

As in the distributed version I used vectors to keep track of the mes-
sages and stored them in a RandomAccessFile for later use. The methods
in BulletinBoard are relatively straight forward and self explaining. They
are the same as in the distributed version although parts of the method
bodies are changed due to the fact that primitive types like int and vectors
are not used for transporting information in the SOAP messages.

Figure 3.16: The Bulletin Board implementation, exception and client

Client The web service BulletinBoardClient is very similar to the
distributed BulletinBoardClient, see figure 3.16. The user interface is
the same and the structure is the same, but the communication with the
bulletin board is different. As in the Poker web service, the client creates
new Service and Call objects. And when invoking the service to utilize
the methods of the BulletinBoard, information about the method is set
before invoking it. See figure 3.11 for code. There are also some other
differences in the code. In the web service application, arrays are used for
transporting objects consisting of several items, while vectors were used in
the distributed application.

51

Figure 3.17: Create service and call objects and invoking a service

Compiling, deploying and running Just as in the Poker web ser-
vice, when the files were compiled and moved to the appropriate di-
rectory, the web service needed to be made available for use or de-
ployed. See section 3.1.2, Compiling, deploying and running. I used the files
BulletinDeploy.wsdd and BulletinUndeploy.wsdd for deployment and
undeployment.

As with the Poker web service, the client can be run from any location
if the service location is given. And a SOAP request is sent to the server,
when the client’s Call object tries to invoke some method in the bulletin
board service. See figure 3.18 for the SOAP request generated by the code
in figure 3.17.

Figure 3.18: SOAP request

52

Chapter 4

Results and Discussion

In this chapter I will look at the solutions from chapter 3, especially the web
service applications. The distributed applications were based on earlier
knowledge on how to develop distributed applications using Java RMI,
but the web service solutions are my first attempt to develop web service
applications. I had previously only examined web services at a theoretical
level. The challenges and problems I encountered may be typical for first
time developers of web services.

4.1 Implementation solutions

I chose the user interface to be console based in both the distributed and the
web service applications. A graphical user interface (GUI) is not relevant
to the functionality of the applications. On the other hand it is possible
to make applications with GUIs or applets to be used on web for all the
applications.

4.1.1 Poker

Both poker applications are based on a non-distributed application with a
main file (Poker) and a client (PokerClient). The source code for these is
listed on the enclosed CD, the source code for the original, the distributed
and the web service applications are all listed on the CD. See figure 4.1
for an illustration of the connection between the distributed and the web
service version of Poker. The files which are distinctive for the distributed
application are in the grey area, the files which are distinctive for the web
service application are in the white area, and the files which are common
are in the grey and white shaded area.

The main workload in the development is on the client side. On the
server side, the Poker class just evaluates the best of the submitted hands.
The game information is to be handled by the client.

53

Figure 4.1: Poker: distributed and web service

The development of the applications was not very difficult. Only small
changes from the original non-distributed application were necessary on
both the server and client side to make the distributed and the web service
applications.

4.1.2 Bulletin board

The web service bulletin board application is based on the distributed
bulletin board application. The source codes for both applications are on
the enclosed CD. See figure 4.2 for an illustration of the connection between
the distributed and the web service version of Bulletin Board. The files
which are distinctive for the distributed application are in the grey area, the
files which are distinctive for the web service application are in the white
area, and the files which are common are in the grey and white shaded area.

Figure 4.2: Bulletin Board: distributed and web service

The main workload in the development is on the server side. The client

54

just sends or displays messages and communicates with the user. On the
server side the messages are added, retrieved, and evaluated in various
ways.

The development of the distributed application was not very difficult.
I had previously made client/server Java RMI applications on the same
size as the bulletin board application. In addition there is a lot easier to
understand documentation of how to make such applications.

The web service application was not difficult, but I encountered a
challenge on how to make sure that the variables in the BulletinBoard are
not lost. I chose to only use the existing feature of storing and retrieving
messages from a RandomAccessFile. However this solution may not be
sufficient because data may be lost due to poor concurrency control.

4.1.3 Deployment and running

The deployment of the distributed applications is simply to run the
application server. The public methods of the application are accessible
to the client as long as the application server is running.

Details on how to compile and run the distributed applications are
described in the Compiling and running sections (3.1.2 and 3.2.2).

The deployment of the web service applications is to deploy them
to a running server, I chose the open source server Apache Tomcat
[Apaa] since it is free of charge and easy to use. The deployment
was done using a deployment descriptor written in Axis Web Service
Deployment Descriptor (WSDD) format, see figure 4.3 for an illustration of
the structure. When deploying the poker web service, a WSDL document
is automatically generated for the published web service (files Poker.wsdl
and BulletinBoard.wsdl). When using other server types and other
technologies, there may be other ways to deploy and undeploy a web
service. See the Compiling, deploying and running sections (3.1.2 and 3.2.2)
for more details. The public methods of a web service application are
accessible to the client as long as the Tomcat server is running.

4.2 Challenges and problems

During the implementation of the web service applications I encountered
some challenges and problems which may be typical for first time
developers of web services.

4.2.1 Documentation

The major challenge in the development process was the lack of good and
relevant documentation. There is much documentation on how to make

55

Figure 4.3: Web Service Deployment Descriptor (WSDD)

distributed application using the programming language and development
environment of your choice. But the documentation on how to make a web
service is mostly for small web services like the poker application. When
developing a medium or large sized web service you are basically on your
own.

Since I chose the Java 2 Platform, Standard Edition (J2SE) [Sunb] in
the distributed applications, I decided to do the same in the web service
applications to better highlight the differences. Most of the documentation
I could find for web services based on Java J2SE was either for small web
services or unsuitable for my web service applications. This is due to the
desired comparison to the distributed applications. Parts of the web service
code may therefore be influenced by the fact that the solution worked well
in the distributed application and there was some trial and error in the
beginning of the development of the web services.

56

The poker web service application is similar in size and implementation
as many of the examples on how to make web services using Java J2SE.
Most other Java examples were on how to make web services using
Enterprise JavaBeans (EJB) or Java Servlets from Java 2 Platform, Enterprise
Edition (J2EE) [Suna], or Java Web Services [Sunc]. These technologies were
not as suitable for the comparison with the distributed applications as the
Java J2SE.

If I had chosen the programming language and environment for the
web service applications independently of the distributed applications, the
documentation may have been better and more relevant to the application
solution. Other programming languages and environments, like the
Microsoft .NET platform, may have better documentation on how to make
medium or larger sized web services than what I could find for my web
service solutions. Hence the solutions to the problems may have been
better or more illustrating of the web service technology.

In my opinion, the documentation provided with Apache Tomcat
and Apache Axis was too thin, especially the documentation provided
with Axis. The installation instructions and the API were good. But
the explanation and examples of how various aspects of web services in
Axis should be implemented and how they work, were not satisfactory.
However, this is probably due to the fact that it is open-source and the
documentation was at the time of the development partly still under
construction.

4.2.2 Variable storage

Another challenge in the development of the web service applications was
how to preserve variables. In the distributed application a java RMI server
is running and makes sure that the variables are not lost during runtime.
But in the web service application, the only running server is the Tomcat
server [Apaa].

The task of the Tomcat server in this context is to pass on the incoming
messages to the correct web service and the responses to the correct
requester (client). It has no other connection to the web service application
and will not be able to preserve the variables unless extra features have
been added. The web service application itself is dormant between each
time it is called and the variables are lost between each call. In the
development of the poker web service this caused no problem because
it only evaluates the incoming hands and responds with an appropriate
value. But in the bulletin board web service, the messages must be kept for
later use.

My solution to the problem was to use the existing feature of storing
in and retrieving messages from a RandomAccessFile. I could also have
chosen other types of storage, for example a database. Another solution

57

could have been to implement BulletinBoard as a running application
which could preserve the messages, and to add additional features to the
web service to make sure that Tomcat sends the incoming messages to the
running BulletinBoard. However this is only a theory, I have not explored
how this would be done in practice.

4.3 Alternative Solutions

There are possibly several alternative solutions to the problems in chapter
3. The most obvious alternative is to use another programming language
or environment. Some of them may be better suited for developing the web
service applications, especially the bulletin board web service.

4.3.1 Development process

The description of problems to be implemented were quite vague and did
not have many clear requirements. If the problems had been specified in
more detail, the solutions could have been different.

During the implementation process, I first designed the class diagrams
displayed in chapter 3. Then I started to develop the programs based on
these diagrams and the problem description. If the given problems had
been larger, the problem descriptions better, there had been others involved
in the development process, or the designated time for the development
process longer, the planning would have been better. The planning
would then probably have a longer and more thorough problem analysis
and implementation design process. Such a development process would
probably be based on a software engineering process like the Rational
Unified Process, see the book by Philippe Kruchten [Kru04] for more
information.

4.3.2 Poker

There are lots of examples, on the web and elsewhere, of small and simple
web services on the same size as the poker web service using various
programming languages and environments. The structure of many of them
could probably be a good alternative to the poker web service.

Other alternatives to the poker web service could be how the hands
submitted to Poker are evaluated to find the winner. My solution is based
on information found when searching on www.google.com about poker
games and the rank of different combinations of cards.

The PokerClient could also be structured differently or have other
options. It contains few methods where the main method is a large method.
This method has a large switch-case part which may be partly split up and

58

much of the functionality put in separate methods. This solution would
probably be a much cleaner solution than the existing one. The same goes
for the distributed PokerClient.

4.3.3 Bulletin board

The examples I could find on web services on the same size as the bulletin
board web service, were based upon other programming languages and
platforms. I believe the development process and the implementation of
the web service would be less complicated and perhaps more true to the
web service technology if I had chosen another programming language or
platform.

I believe that the best solution to the bulletin board problem is to have
either a class or an interface defining the structure of the messages and a
class or an interface defining the structure of the bulletin board itself. The
alternative solutions to the problem would probably have changes in the
keeping and storage of the variables and messages, the deployment of the
web service, the communication between the client and the service, or in
all these three areas.

For example there could be a running bulletin board server, somewhat
similar to the distributed BulletinBoardServer, that would take care of
keeping and storage of the variables and messages. How this web service
should to be deployed and the communication between the client and the
web service would depend on the programming language and platform
chosen.

The BulletinBoardClient could also be structured differently. It
contains only two methods where the main method is a large method
containing a large switch-case structure. Much of the functionality of the
switch-case could perhaps be put into separate methods, and the switch-
case only call these methods. This solution would probably be a much
cleaner solution than the existing one. The same goes for the distributed
BulletinBoardClient.

4.3.4 Poker expansion

The poker web service can be used as a basis to other distributed or web
service applications. For instance a poker game application may be the
client to the poker web service and call it to evaluate the winner in a
game. It will then be possible to combine distributed and web services, for
instance by calling the poker web service from a distributed application.
See figure 4.4 for an illustration. If I were to develop other solutions than
the centralized poker and bulletin board solutions, they would probably be
similar in structure to this solution.

59

Figure 4.4: Possible use of the poker web service

This web service or the distributed application would need to store
game variables during runtime. Such variables could be a deck of cards,
the waste cards, the various players and the cards dealt to them. How
these variables should be kept during runtime and stored depends on the
programming language and platform chosen, but the challenge would be
similar to the one in the bulletin board web service. However, it would not
be a practical solution to store all the variables permanently. Variables like
the hands will only be necessary during a round in a game, so these should
not be stored. On the other hand, the winner of a round or a game could be
stored in a high-score list.

The poker game web service could also include some of the features
from the bulletin board web service to allow for chat between the players in
the game. The challenge of how to store the variables only during runtime
would also apply to this.

4.4 Conclusion

As stated in the beginning, the web service solutions in chapter 3 were
my first attempts to develop web service applications. I believe the
solutions are influenced by that I had previously only examined web
services at a theoretical level, but had knowledge about how to develop
distributed applications using Java RMI. If I had knowledge about web

60

service applications development as well, the web service solutions and
the challenges and problems I encountered would possibly have been
different.

61

62

Chapter 5

Evaluation

In this chapter I will evaluate the content of previous chapters. I will look
at both the theoretical, chapters 1 and 2, and the practical, chapters 3 and 4.
The intention is to evaluate distributed systems and web services to see if
web services can be used as foundation for distributed systems.

I will also evaluate the process of writing this thesis. Here I will try to
sum up the process as well as try to comment on my own work.

5.1 Distributed systems and web services

In chapter 1 I defined distributed systems to be systems where different
components in a network, communicate with each other and coordinate
their actions only by passing messages. A component was defined to
be a program execution on a computer or a device such as a computer
or a printer. Web services are based upon the principles of distributed
systems. In chapter 2 a web service was defined to be a set of functions
that are published to a network for use by other programs. Like for
distributed systems, the communication in web services is done only by
passing messages. A web service and communicating programs may be
implemented on any platform and in any programming language.

By only looking at this it may seem as if web services are only applicable
to some areas of distributed computing. Many regard these areas to only
involve publishing software services on the Internet via browsers, while
others regard these areas to possibly apply to any area of distributed
computing. In my opinion the realities and possibilities are probably
somewhere in between.

When referring to distributed systems in this section, I mean distributed
systems in general except web services unless otherwise stated.

63

5.1.1 Comparison

Web services have inherited some of the characteristics from distributed
systems. Hence some characteristics are very similar for distributed
systems and web services, however others are quite different.

Advantages and disadvantages

There are advantages and disadvantages in both distributed systems and
web services. Some of these are the same in both while others are different
from distributed systems to web services, in addition some are advantages
with challenges or disadvantages. See tables 5.1 and 5.2 for a listing of
benefits and challenges in distributed systems and web services, and in
which sections these are described. The common benefits, the common
disadvantages and challenges, and the differences in advantages and
disadvantages are described in corresponding paragraphs below.

Benefit Applies to Described in

Discrete WS 2.2
Easy to implement, understand and use WS 2.2
Heterogeneity WS 1.2
Industry support DS & WS 2.2
Interoperable WS 2.2
Openness DS & WS 1.2
Resource sharing DS & WS 1.2
Reusable WS 2.2
Scalability DS & WS 1.2
Transparency DS & WS 1.2
Ubiquitous DS & WS 2.2
Understandable WS 2.2

Table 5.1: Benefits in distributed systems (DS) and web services (WS)

Common benefits Some of the advantages which are common for
distributed systems and web services are:

Industry support: There are several leading hardware and software
vendors which support distributed systems and the web service standards.

Openness: A system’s ability to expand and re-implement, for example
how well new resources can be added to it, defines the system’s openness.
It may be a clear advantage that a system has a high degree of openness.
However the openness may be difficult to implement, hence it presents a
challenge for both distributed systems and web services.

Resource sharing: The desire to share resources is one of the key
motivations for any distributed system. What resource is to be shared and

64

to what extent, depends on the system.

Scalability: If a system is able to remain efficient, both in performance
and in resource use, after a significant increase in the number of resources
and users, it is described as scalable. Such scalability is favourable although
it may present a challenge to developers.

Transparency: The consequence of distribution is hidden by the system’s
transparency. There are many types of transparency which all are
important and beneficial to the system. The various transparency types
are: access, location, persistence, relocation, concurrency, replication,
failure, performance, and scaling transparency. However, it may present
a challenge to design and implement the transparencies.

Ubiquitous: Any device which supports the technologies used in a
distributed system or web service can access it. On the other hand, if the
device is to host the distributed system or web service some additional
features may be required.

Challenge Applies to Described in

Concurrency DS & WS 1.2
Fault tolerance DS & WS 1.2
Heterogeneity DS 1.2
Openness DS & WS 1.2
Quality of service DS & WS 2.2
Scalability DS & WS 1.2
Security DS & WS 1.2 & 2.2
Time DS & WS 1.2
Transaction DS & WS 1.2
Transparency DS & WS 1.2

Table 5.2: Challenges in distributed systems (DS) and web services (WS)

Common disadvantages and challenges Some of the disadvantages and
challenges which are common for distributed systems and web services
are:

Concurrency: It is desirable to maintain resource integrity in a system.
This is handled by a system’s concurrency control which synchronizes
concurrent access to the same resources. In the bulletin board web services
the concurrency control to the RandomAccessFile is somewhat sufficient
since the application is trivial and just an example. However, if the
application had been more relevant, the concurrency control would be
insufficient.

Fault tolerance: How to deal with failures represents a challenge for
any system. Classes of failures are listed in table 1.1. There are various
techniques for dealing with faults: detecting failures, masking failures,

65

tolerating failures, recovery, and redundancy.

Openness: It is an advantage to have a system with a high degree
of openness. But the openness may cause a challenge for the system
designers, especially if the system is complex and is implemented and
managed by various people.

Quality of service: To ensure the quality of transferred data and that
it is processed in a specified amount of time is important in any system.
But it may be a challenge to ensure the quality of service characteristics
in distributed systems and in web services, especially if a web service is
accessed from an external source, since the quality of the web service may
be unknown.

Scalability: It is beneficial to have a scalable system, although there are
challenges in designing and implementing such a system. Some of these
challenges include controlling costs of resources, controlling performance
loss, preventing the systems software resources of running out, and
avoiding bottlenecks.

Security For most users of a system, security is very important, and it is
likely that they will not use the system if they feel it is too insecure. There
are several types of potential threats which are divided into three classes:
leakage, tampering, and vandalism. Most of these threats are applicable
to both distributed systems and web services, as are the various security
techniques used for dealing with them. Web services have an additional
security measure in the web service security standard (WS-Security).

Time: Algorithms and applications depend on time for coordinating
events and timestamps that are used in various system tasks. Every com-
puter has its own physical clock, and it may be a challenge to synchronize
them. Fortunately there are several algorithms for approximate synchro-
nizing of clocks.

Transactions: In section 1.2 I stated that the goal of a transaction is to con-
trol access to shared resources and that either the transaction is completed
or that nothing has happened to the data. This is ensured by the transac-
tions ACID characteristics. They are atomicity, consistency, isolation, and
durability. It may be a challenge in design and implementation to ensure
these characteristics.

Transparency: To hide the consequences of distribution may present
a challenge in design and implementation. Fortunately not all the
transparency types may be applicable to a system, and need not be
implemented.

Differences There may be some characteristics in distributed systems
and web services which may be an advantage in one and a disadvantage
or present challenges in the other. Some of these characteristics are:

Discrete: Web services are discrete in that each web service typically

66

only provides a single piece of functionality and is completely indepen-
dent. For this reason, a web service may not be practical as a large system.
Distributed systems on the other hand, may be larger systems providing
multiple functionalities and may be dependent on other parts or systems.

Easy to implement, understand and use: When implementing parts of a
distributed system, knowledge of the other parts of the system is necessary
to communication between the various parts. Web services may be
implemented without previous knowledge of the target system as long
as the web service standards are respected. However I did not find it
easy to implement parts of the bulletin board web service because of the
challenge of preserving the variables during runtime. On the other hand,
this challenge may not have arisen if I had more practice in developing web
services.

Heterogeneity: To ensure that system works properly even if there are
variations and differences between components, may be a challenge in
distributed systems. These challenges are trivial when using web services.
The communication with a web service takes place by passing messages.
The structure of these messages is described in the web service’ WSDL
document and published via UDDI. The messages are sent via the SOAP
messaging protocol. See section 2.3 for descriptions of WSDL, UDDI and
SOAP.

Interoperable: A web service can interact with any other web service as
long as the web service standards are used and respected. But before a
distributed system or parts of a distributed system to interact with other
distributed systems, a common communication channel and means must
be agreed upon.

Reusable: A web service can be extended and reused whenever
necessary. This is only partially true for distributed systems, as some
distributed systems can only be used for their initial indented purpose.

Understandable: Web services are understandable for both humans and
computers due to the characteristics of web services. Distributed systems
are obviously understandable to computers, but they require additional
documentation to be understandable to humans. Detailed documentation
and descriptive comments in the source code are examples.

Other characteristics

There are other characteristics in distributed systems and web services than
just the advantages and disadvantages. Some of these are similar for both
while others are unique for distributed systems or web services. I will not
describe the all characteristics, nor in detail, as this is done in the previous
chapters. See table 5.3 for a listing of the characteristics of distributed
systems and web services, and the sections where these are described.

67

Characteristic Applies to Described in

Data representation DS & WS 2.3.1
Distributed file system DS 1.3
Distributed programming DS & WS 1.3
Internet DS & WS 1.3
Intranet DS & WS 1.3
Mobile devices DS & WS 1.3
Name service DS & WS 1.3
Networks DS & WS 1.3
Remote communication DS & WS 1.3
SOAP WS 2.3.2
System patterns DS & WS 1.3
UDDI WS 2.3.4
WSDL WS 2.3.3

Table 5.3: Characteristics in distributed systems (DS) and web services
(WS)

Communication Both distributed systems and web services take advan-
tage of some of the following features:

Name service: Names are used for referring to resources. When
communicating with a resource its name, address and attributes are
important. There are various name services which are used for retrieving
the names, addresses and attribute; the Domain Name System (DNS) is
probably the most known. A name service is in principle a distributed
service and is used by other distributed services and web services as well.

Networks: Both distributed systems and web services use networks for
communication. There is a variety of types of networks which are classified
by size and usage. Se table 1.3 for comparison.

Internet: The Internet is a world-embracing set of computer networks,
all linked together as one. It is one of the most typical distributed
systems and is used by other distributed services and web services for
communication purposes.

Intranet: The intranets are subnetworks to the Internet network which
are operated by companies or organisations. They are, like the Internet,
distributed systems themselves and are used by both other distributed
services and web services for communication purposes.

Mobile devices: Portable devices which are able to connect to networks in
different places are called mobile devices. They can be part of a distributed
system. Some of these mobile devices support the technologies used in web
service, and can be used to access a web service.

Remote communication: There are several technologies for remote
communication which are used by both distributed systems and web

68

services communicating and invoking operations elsewhere. Remote
procedure call (RPC), remote method invocation (RMI), and event-based
programming model are examples of such technologies. Hamish Taylor
[IT03, Lec. 14]gives a good comparison of some of the characteristics in
some of the remote computing technologies, see table 5.4.

Architecture Payload Endpoint Wire Interfaces
Format Address Protocol

ONC RPC eXtensible host & ONC RPC
Data program protocol specification
Representation number (binary)

RMI serializable URL JRMP Java
Java datatypes (binary) interfaces

CORBA Common Data IOR IIOP IDL
Representation (binary)

Web Services XML URL SOAP WSDL
(textual)

Table 5.4: Comparison of Distributed Computing Technologies

Data representation Data sent when communicating with or in a dis-
tributed system or with a web service should conform to predefined
datatypes, message format, and structure specification. When communi-
cating with a web service it is predefined that this should be based on the
specifications of structures and datatypes in the W3C XML specification.
But when communicating with or in a distributed system, the specification
must be set individually for each system.

Distributed file system In a distributed file system persistent data are
available across a network. A distributed file system is itself a distributed
system, and there are several examples of well functioning distributed file
systems. Web services may use distributed file systems, but I think it is
impractical and slightly pointless to make a distributed file system by only
using web service technology.

Distributed programming Distributed applications run in distributed
environments and make use of the characteristics of distributed systems.
There are no restrictions with respect to technology, platform or program-
ming language. Some programming languages and architectures, like
CORBA, Java, and DCOM, have built in functionalities which make the
source code less complex. Web service applications can use the functionali-
ties of such programming languages and architectures. Additionally a web

69

service application can be described as a distributed application using web
service technology.

System patterns The system pattern or topology defines how the compo-
nents in the system fit together. There are some basic patterns which are
widely used in distributed systems. These are the centralized, decentral-
ized, hierarchical and ring systems, there are also various hybrids of these.
Web services typically use the centralized system pattern, but can poten-
tially use other patterns as well.

5.1.2 Conclusion

As stated in the beginning of this section, by only looking at the definitions
of distributed systems and web services it may seem as if web services
are only applicable to some areas of distributed computing. Web services
contain many features which satisfy the goals of distributed systems. And
in many cases they will probably be the appropriate way of designing a
distributed system. However in my opinion there are limits to when web
services can be used as foundation for distributed systems. My views are
probably influenced by the fact that the web service solutions in chapter 3
were my first attempts to develop web service applications and that I had
previously only examined web services at a theoretical level.

I believe that web services are best suited for smaller applications with
the same size as the poker application. In larger applications and in file
and database sharing, one should be able to trust the server side. Since
one may not know if the server application or the publisher is reliable, web
services could be too risky to be trusted in major applications. However it
is important to point out that the technology itself is not risky.

In my opinion there is no single correct answer to the question of
whether to use a distributed or web service solution for any given task. I
believe it is better to use a distributed solution internally in an organisation
or system and to use a web service solution in smaller and less trivial
solutions, especially if the web service is made by an external party.
However, designers and developers should analyse each problem or task
individually to evaluate whether to use a distributed or web service
solution. I believe that as the technology evolves and new and better ideas
are developed, the interest for and the quality of web services will probably
grow. This may produce better and faster web services and less trivial
publicly available web services.

70

5.2 Writing process

Finally it is time to look at the work process and the solution approach to
the thesis.

As stated in the preface, the given problem description was web services
/ distributed systems. Can web services be used as foundation for distributed
systems?. It was also given that the thesis should cover: overview of
distributed systems, overview of web services, attempt to develop web services,
and evaluation. The chapters are more or less based on the given problem
description and contents.

Looking back Early in the work process I made a rough sketch of the
work process, where each progress step was outlined for each month. For
each step I made a more detailed plan outlined for each week. I have tried
to stick to this plan as much as possible. In the original plan the goal was
to finish early in case anything unexpected occurred. This was fortunate,
because the gap between the expected finish and the thesis due date was
reduce due to external reasons.

The steps to the work process and their sequence were similar to the
chapter division. The writing itself was not very difficult. At times
the writing was slow, but that was mainly because there was too much
information to be included in the thesis.

In the practical portion I encountered some challenges. These chal-
lenges were probably due to the fact that I had previously only examined
web services at a theoretical level and the web service solutions were my
first attempts to develop web service applications that. The practical por-
tion is more closely described in chapter 4.

The evaluation of both the practical aspect and the whole process was
not difficult, but required more profound thinking and some self-criticism.
However, if the evaluations were good is not for me to decide.

Looking ahead In my opinion a continuation of the thesis and the
exploration of the subject can web services be used as foundation for distributed
systems should be to explore in more detail the practical aspect. As stated
in the conclusion in 5.1.2, web services contain many features which satisfy
the goals of distributed systems. However, there is no single correct answer
to the question of whether to use a distributed or web service solution to
any given task.

One approach could be to analyse a given distributed system to
evaluate if it is possible to replace the existing system solution with a web
service solution. It should also be evaluated if it is desirable to replace the
existing system solution due to factors like security, efficiency, and quality
of service. The system to be evaluated should be larger than the small ones

71

I developed in chapter 3, to better analyse further sides than what I could.
The system should also be an existing system to avoid spending time on
analysis and design for a distributed solution as well as the web service
solution.

Another approach could be to try to develop a distributed system using
web service technology. The requirement description of the system should
be given to ensure that the quality of the system requirement and the
system size are satisfactory.

An additional approach could be a practical thesis based upon this
thesis. The thesis would not include much theory as this is already done in
this thesis.

I believe that if possible the continuation should be a long thesis,
regardless of the chosen approach. This thesis is a short one, and I found
the time to be insufficient to explore various aspects in more detail.

Conclusion Both the subject and the writing process were interesting. I
have learned a good deal from the writing process itself in addition to what
I learned about distributed systems and web services, perhaps especially
from minor slips and misjudgements during the process. In my opinion the
subject of distributed systems and web services and whether web services
can be used as a foundation for distributed systems, is an interesting subject
which should be explored further.

72

Bibliography

[Apaa] Apache Jakarta Project. Apache Tomcat 5.0.19. Downloadable
from jakarta.apache.org/tomcat.

[Apab] Apache Web Services Project. Apache Axis 1.1. Downloadable
from ws.apache.org/axis.

[C+01] George Coulouris et al. Distributed Systems - Concepts and Design.
Addison-Wesley, third edition, 2001.

[Cap01] CapeClear Software Ltd. Cape Connect Three
Concepts. Understanding Web Services, 2001.
www.capeclear.com/products/manuals/three/Concepts/html.

[CC02] IBM Corporation and Microsoft Corporation. Security
in a web services world: A proposed architecture and
roadmap. IBM developerWorks: Web services, 2002. www-
106.ibm.com/developerworks/webservices.

[Cro96] Jon Crowcroft. Open Distributed Systems. Artech
House, 1996. Also published on web on
www.cs.ucl.ac.uk/staff/J.Crowcroft/ods/ods.html.

[dev02a] IBM developerWorks. Web services security policy (ws-
securitypolicy). IBM developerWorks: Web services, 2002. www-
106.ibm.com/developerworks/webservices.

[dev02b] IBM developerWorks. Web services security (ws-
security). IBM developerWorks: Web services, 2002. www-
106.ibm.com/developerworks/webservices.

[dev02c] IBM developerWorks. Web services transaction (ws-
transaction). IBM developerWorks: Web services, 2002. www-
106.ibm.com/developerworks/webservices.

[Edm02] David Edmond. E-commerce technologies. Lecture 1-13,
Queensland University of Technology, School of Information
Systems, Brisbane, Australia, Semester 2 2002. Subject ITN262.

73

[Epi03] Epionet. Web Services: A Business and Technical Guide, 2003.
www.epionet.com.

[Fer02] Dr. Eduardo B. Fernandez. Distributed object-oriented systems.
Lecture 9, Florida Atlantic University, Department of Computer
Science and Engineering, Florida, USA, Fall 2002. Subject
COP6632.

[Fli03] Donald Flinn. What security concerns does ws-security
address? SearchWebServices.com: Ask the experts:
Web Services Security, December 2003. searchwebser-
vices.techtarget.com/ateExperts.

[Gla01] Graham Glass. Web Services: Building Blocks for Distributed
Systems. Prentice Hall PTR, 2001.

[Hel] Helios Software Solutions. TextPad 4.7.2. Downloadable from
www.textpad.com.

[IT03] Andrew Ireland and Hamish Taylor. Distributed systems
programming. Lecture 1 - 15, Heriot-Watt University, School
of Mathematical and Computer Sciences, Edinburgh, Scotland,
Term 2 2003. Subject F29NM1.

[Jen01] Dieter E. Jenz. Web services - a reality check. WebServices.Org,
2001. www.webservices.org.

[Jup04] Jupitermedia Corp. Wĕbopēdia, 2004. www.webopedia.com.

[Kru04] Philippe Kruchten. The Rational Unified Process an Introduction.
Addison-Wesley, third edition, 2004.

[LE03] Olav Lysne and Frank Eliassen. Introduksjon til distribuerte
system (ds). Lecture 1 - 11, University of Oslo, Department of
Informatics, Oslo, Norway, autumn 2003. Subject INF5040, in
Norwegian.

[Lou01] Steve Loughran. Modern development processes crises. Guest
lecture, Oregon State University, Bristol, England, march 2001.
www.iseran.com, www.oregonstate.edu.

[Mac03] Sean MacRoibeaird. Universal description, discov-
ery & integration (uddi), an executive summary.
XML at Sun: Developer Connection, December 2003.
wwws.sun.com/software/xml/developers/uddi.

[Mic] Microsoft Corporation. Windows XP Professional. Product
information on www.microsoft.com/windowsxp/pro.

74

[Min01] Nelson Minar. Distributed systems topologies: Part 1. O’Reilly
Network, 2001. www.oreillynet.com.

[Min02] Nelson Minar. Distributed systems topologies: Part 2. O’Reilly
Network, 2002. www.oreillynet.com.

[Mum01] David Alan Mumford. Jini and distributed systems resource
monitoring. Final year project, University of Portsmouth, The
Distributed Systems Group, Portsmouth, UK, 2001. Project unit:
PJE40.

[Nat03] Maitreya Natu. Soap. Graduation project presentation 1,
Deptartment of Computer and Information Science, Unversity
of Delaware, Newark, USA, December 2003. Published on
www.cis.udel.edu/~natu.

[OAS01] OASIS RELAX NG TC. RELAX NG Specification, December 2001.
ww.oasis-open.org.

[Roe03] Assoc. Prof. Paul Roe. Software development for the web.
Lecture 11 & 13, Queensland University of Technology, School
of Software Engineering and Data Communications, Brisbane,
Australia, Semester 1 2003. Subject ITN471.

[Sma03] Nigel Smart. Cryptography: An Introduction. McGraw-Hill
Education, 2003.

[Suna] Sun Microsystems, Inc. Java 2 Platform, Enterprise Edition (J2EE).
Downloadable from java.sun.com/j2ee.

[Sunb] Sun Microsystems, Inc. Java 2 Platform, Standard Edition (J2SE).
Downloadable from java.sun.com/j2se.

[Sunc] Sun Microsystems, Inc. Java Technology and Web Services.
Downloadable from java.sun.com/webservices.

[Sun04a] Sun Microsystems, Inc. Dynamic code downloading using Ja-
vaTM RMI (Using the java.rmi.server.codebase Property), 2004.
java.sun.com/j2se/1.5.0/docs.

[Sun04b] Sun Microsystems, Inc. Java Technology, 2004. www.sun.com.

[Sun04c] Sun Microsystems, Inc. rmic - The Java RMI Compiler, 2004.
java.sun.com/j2se/1.5.0/docs.

[Tec04] TechTarget. WhatIs.com, 2004. whatis.techtarget.com.

[UDD03] UDDI Spec Technical Committee. UDDI Version 3.0.1, October
2003. uddi.org/pubs/uddi_v3.htm.

75

[VN02] Steven J. Vaughan-Nichols. Web services: Beyond the
hype. Computer, Vol. 35, No. 2:18–21, February 2002.
wwww.computer.org/computer.

[W3C03a] W3C Working Group. SOAP Version 1.2 Part 0: Primer, June
2003. www.w3.org/TR/soap12-part0.

[W3C03b] W3C Working Group. SOAP Version 1.2 Part 1: Messaging
Framework, June 2003. www.w3.org/TR/soap12-part1.

[W3C03c] W3C Working Group. Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language, November 2003.
www.w3.org/TR/wsdl20.

[W3C04a] W3C Working Group. Extensible Markup Language (XML) 1.0
(Third Edition), February 2004. www.w3.org/TR/REC-xml.

[W3C04b] W3C Working Group. Web Services Architecture, February 2004.
www.w3.org/TR/ws-arch.

[W3C04c] W3C Working Group. Web Services Glossary, February 2004.
www.w3.org/TR/ws-gloss.

[WH03] Ian S. Welch and John H. Hine. Distributed systems. Lecture 1 -
24, Victoria University of Wellington, School of Mathematical
and Computing Sciences, Wellington, New Zealand, Term 1
2003. Subject Comp 413.

[Won03] Dr. On Wong. Distributed systems. Lecture 1 - 12, Queensland
University of Technology, School of Software Engineering &
Data Communications, Brisbane, Australa, Semester 1 2003.
Subject ITN484.

[YS02] Yehuda and Tomer Shiran. Web services, part i - xi.
Doc JavaScript, Column 96 - 106, November 2001 - 2002.
www.webreference.com.

76

Appendix A

Running the applications

This appendix describes how to run the various applications. This is also
described on the enclosed CD.

My web service applications demand their own running server, I used
the server Apache Tomcat 5.0.19 from the Apache Jakarta Project [Apaa],
while my distributed applications provide their own server.

A.1 Poker

A.1.1 Original

To run the application: Simply start the client from the directory of the
classes:
java PokerClient

A.1.2 Distributed

To run the application: First start the rmi registry and the server, then start
the client. When starting the server and the client the server’ codebase and
the policy file location must be specified. The code base location is typically
http://myhost/~myusrname/poker/ for this application.

Server side:
Windows: start rmiregistry

Solaris: rmiregistry &

java -Djava.rmi.server.codebase=<codebase>

-Djava.security.policy=<policy location> poker.PokerServer

Client side:
java -Djava.rmi.server.codebase=<codebase>

-Djava.security.policy=<policy location> poker.PokerClient

77

To compile the application: In case you may want to recompile the
application.

Compile all the files:
javac -d <class files directory> IPoker.java Poker.java

PokerServer.java PokerClient.java

Compile the Poker class once more using the Java RMI stub compiler:
rmic poker.Poker

A.1.3 Web service

To run the application: The server must be started and the web service
deployed before the web service can be accessed.
In Apache Tomcat this is done by first installing Tomcat and Apache Axis
and copying the class file directory to the
<Tomcat directory>\webapps\axis\WEB-INF\classes.

Then the web service is deployed using a deployment descriptor while the
Tomcat server is running:
java org.apache.axis.client.AdminClient pokerDeploy.wsdd

Undeployment is done by using a undeployment descriptor:
java org.apache.axis.client.AdminClient pokerUndeploy.wsdd

To run the client:
java PokerClient -l<service url>

To compile the application: In case you may want to recompile the
application.
javac -d <class files directory> *.java

A.1.4 Hands examples

Example of hands that can be used when running the application:
3c,5h,As,5d,Kh

5s,5c,3s,Ad,Qs

6c,2c,Qc,4c,7c

7s,Js,8s,9d,Jc

78

A.2 Bulletin board

A.2.1 Distributed

To run the application: First start the rmi registry and the server, then start
the client. When starting the server and the client the server’ codebase and
the policy file location must be specified. The code base location is typically
http://myhost/~myusrname/bulletin/ for this application.

Server side:
Windows: start rmiregistry

Solaris: rmiregistry &

java -Djava.rmi.server.codebase=<codebase>

-Djava.security.policy=<policy location>

bulletin.BulletinBoardServer

Client side:
java -Djava.rmi.server.codebase=<codebase>

-Djava.security.policy=<policy location>

bulletin.BulletinBoardClient <nick>

To compile the application: In case you may want to recompile the
application.

Compile all the files:
javac -d <class files directory> IMessage.java

IBulletinBoard.java BulletinBoard.java

BulletinBoardServer.java BulletinBoardClient.java

Compile the Poker class once more using the Java RMI stub compiler:
rmic bulletin.BulletinBoard

A.2.2 Web service

To run the application: The server must be started and the web service
deployed before the web service can be accessed.
In Apache Tomcat this is done by first installing Tomcat and Apache Axis
and copying the class file directory to the
<Tomcat directory>\webapps\axis\WEB-INF\classes.

Then the web service is deployed using a deployment descriptor while the
Tomcat server is running:
java org.apache.axis.client.AdminClient bulletinDeploy.wsdd

Undeployment is done by using a undeployment descriptor:

79

java org.apache.axis.client.AdminClient bulletinUndeploy.wsdd

To run the client:
java BulletinClient -l<service url> <nick>

To compile the application: In case you may want to recompile the
application.
javac -d <class files directory> *.java

80

Appendix B

References

The reference sources I believe may be difficult to retrieve are listed in
this appendix chapter. Other sources should be easy to access from the
publisher. The reference sources in this appendix chapter are:

[Fli03] Donald Flinn. What security concerns does WS-Security address?
[Nat03] Maitreya Natu. SOAP
[VN02] Steven J. Vaughan-Nichols. Web Services: Beyond the Hype

81

Donald Flinn. What security concerns does WS-Security address? [Fli03]

82

83

Maitreya Natu. SOAP [Nat03]

84

85

86

87

88

Steven J. Vaughan-Nichols. Web Services: Beyond the Hype [VN02]

89

90

91

92

