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Abstract
Cod Gadus morhua and capelin Mallotus villosus play an important ecological and com-
mercial role in the Barents Sea. Capelin provide high lipid energy to many of its predators
in the Barents Sea including cod, which is capelin’s main predator. Exploring cod and
capelin’s interaction is instrumental when assessing the stocks and provides improved
understanding about the Barents Sea Ecosystem. Studies concerning their interaction
and overlap, have been conducted on a large scale, using survey data collected over the
course of several years, but few studies have addressed their interaction on a finer scale.

Therefore, the main aim of this thesis was to assess small scale interactions by inves-
tigating whether abundance of cod affects capelin’s schooling dynamics, namely packing
density and minimum distance to bottom. To do this, one of the objectives of this study
was to establish a method to enable the use of acoustic data to evaluate capelin school
features.

Acoustic data was collected onboard the Barents Sea Ecosystem Survey in August/Septem-
ber, when cod and capelin have undergone migrations to the northern Barents Sea. The
original interpretations of acoustic data were made on board by scientific personnel and
I further examined the capelin school data using the program Large Scale Survey System
(LSSS) and its multi-extension toolbox Korona, enabling for school detection.

Through sensitivty testing I found that the Korona school detection settings acousitc
threshold in particular, but also minimum school length, strongly influenced the capelin
school detection. I found a setting which was successful in detecting and delineating
capelin schools and this setting can be utilized for future studies on capelin schooling
dynamics, for instance using time-series data.

I found that abundance of cod had no direct impact on capelin’s packing density and
minimum distance to bottom. However, previous studies has demonstrated that light
and bottom depth play an integral role in fish schooling dynamics and were therefore
considered here. Testing a set of linear mixed models, the best model, showed that
bottom depth and sun altitude contributed to significant variations in schooling dynam-
ics. Packing density increased with increasing sun altitude and was higher at shallow
banks, whereas minimum distance to bottom increased with increasing bottom depth
and decreased with increasing sun altitude.

Although abundance of cod did not directly impact capelin’s schooling dynamics,
the results suggests that capelin’s schooling dynamics is rooted in a trade-off between
engaging in activities such as feeding and avoiding predators such as cod. The increase
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in packing density along shallow banks during daytime suggests that capelin may have
been responding to cod that are typically associated with shallow banks when feeding.
The results from this study indicates that capelin adjusts their position in the water
column to a depth where light gradients provide enough light to detect prey, but also
avoid predation.
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1. Introduction

Northeast Arctic cod (Gadus morhua; hereafter cod) and Barents Sea capelin (Mallotus
villosus ; hereafter capelin) play an important commercial and ecological role in the Bar-
ents Sea (Gjøsæter, 1998; Sakshaug, 1997). Capelin provide a high energy rich (lipids)
prey (Benoit et al., 2010; Hop and Gjøsæter, 2013) for fish, sea mammals and seabird
predators, such as herring Clupea harengus (Hamre, 1994), harp seal Pagophilus groen-
landicus (Dolgov, 2002), common guillemot Uria aalge and minke whale (Balaenoptera
acutorostrata, as well as the most important predator on capelin, cod (Gjøsæter, 1998).
In the Barents Sea, capelin is the main prey item for cod and studies have shown that
cod’s fitness and reproductive success is effected by capelin’s population (Gjøsæter et al.,
2009; Johannesen et al., 2012). Because capelin are semelparous (die after a single spawn-
ing event) and are vulnerable to predation by juvenile herring and cod, they have expe-
rienced dramatic fluctuations in their population size over the past decades (Gjøsæter
and Bogstad, 1998; Gjøsæter et al., 2009). In periods with collapse in the capelin stock,
serious cascade effects have been observed in the Barents Sea ecosystem. For example,
during 1987, due to lack of food, thousands of hungry seals invaded the coastline and
were caught in fishing gear, increased cannibalism was also recorded amongst cod in
the 1980’s and poor fitness and reproduction were observed amongst seabird popula-
tions such as kittiwakes and puffins, who have capelin as essential food (Hamre, 1994;
Gjøsæter, 1998). These ripple effects caused by the capelin collapse after the 1980s have
since been considered in fisheries management of capelin, in particular estimations on
cod’s predation of capelin (Gjøsæter et al., 2002).

When the Barents sea becomes increasingly ice-free, cod and capelin migrate north-
wards during the summer, reaching their maximum northernmost distribution in Au-
gust/September (Bogstad et al., 2013; Fauchald et al., 2006). Capelin congregate to feed
on concentrations of zooplankton along banks and shelves (Carscadden and Vilhjálms-
son, 2002) and in turn, cod migrate to feed on organisms such as capelin. Large scale
studies have previously been conducted, during this feeding season, using aggregated
data to study cod and capelin’s interaction and spatial overlap (Fall et al., 2018, 2021;
Johannesen et al., 2012).

Schooling amongst fish has been investigated using theoretical explanations and models
and observational studies (Aoki, 1984; Misund, 1993; Parrish et al., 2002; Pitcher, 1973;
Vabø and Nøttestad, 1997), to understand the complex responses and internal behaviour
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1. Introduction

of each individual and school as a whole. The consensus is that schooling behaviour is
modulated by reproduction, migration and feeding, but tends to be largely regarded as an
anti-predation response. Studies have shown that shooling fish can respond to predation
by performing evasive tactics, such as shifting their position in the water column and
minimizing their inter-distance to their neighbours by increasing packing density, to
maximize their chances of survival. The level of reaction displayed may reflect the
threat level detected (Helfman, 1989). In a study conducted off Newfoundland, Mowbray
(2002), found that capelin demonstrated anti-predatory behaviour by increasing their
distance to the bottom when cod density. Additionally, several studies have also shown
that herring’s packing density responds to predation (Rieucau et al., 2014; Vabø et al.,
2002).
This thesis addresses cod and capelin’s fine-scale predator/prey interaction. More

specifically, it does this by investigating capelin school’s packing density and minimum
distance to the bottom(seafloor), as a response to the presence and abundance of cod.
This will be been done by analysing original raw acoustic data from a survey conducted
in August/September when the two species overlap and interact. By using the post-
processing system, Large Scale Survey System (LSSS), acoustic data can be utilized to
determine what factors effect schooling dynamics.

1.1. The predator and the prey

1.1.1. Cod and capelin interaction

Prey and predator interaction are dependent on overlap and ultimately, proximity (Fall
et al., 2018, 2021). Understanding cod and capelin interaction and overlap more thor-
oughly is essential in understanding how capelin schooling dynamics will respond to
possible predation. During the months of August and September, cod are present in the
northern ice-free areas and overlap to feed on pelagic fish such as polar cod Boreogadus
saida and capelin. In a study conducted in early October, In the northern Barents Sea
(West of the Great Bank), samples and acoustic measurements demonstrated that light
was the main driver in affecting the spatial dynamics of cod, capelin and zooplankton
(Skaret et al., 2020). Cod are both demersal and visual predators and rely on pelagic
fish consumption. They must therefore expend energy moving vertically in the water
column or wait patiently for capelin to approach closer to the sea bottom (Skaret et al.,
2020).
Capelin’s diel vertical migration pattern is generally determined by light intensity and

can also be affected by the availability of zooplankton, temperature, bottom depth and
predation (Mowbray, 2002). Capelin’s school behaviour is rooted in a trade-off between
avoiding predators, as well as feeding on zooplankton that are abundant during this time
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1.1. The predator and the prey

of year. During daytime aggregations of krill submerge down into the water column,
close to cod occupying the seafloor, in order to avoid predation from organisms such
as capelin (Skaret et al., 2020). Here cod take advantage of vertically migrating capelin
who descend into the depths after dawn commences, without expending significant energy
(Skaret et al., 2020). Although cod are demersal fish, they can occasionally be found in
the open water masses (Strand and Huse, 2007). As a possible anti-predatory response
to predators such as cod, capelin’s position themselves vertically at intermediate depths,
away from the sea bottom, where light increasingly attenuates with depth, forming
pelagic schools during daytime (Benoit et al., 2010; Mowbray, 2002).

Whilst cod may take advantage of prey density and optimal lighting, other environ-
mental factors also affect this cod-capelin interaction, including bathymetric and topo-
graphical factors (Fall et al., 2021). Shallow bathymetry attracts plenty of fish and in
the Barents Sea, cod consequently aggregate on the banks (Fall et al., 2018). Light pen-
etrates to the sea floor in shallow shelves and the likelihood of detecting prey, for visual
predators such as capelin and cod, increases. Currents carry zooplankton to shallower
depths, where they are unable to descend into deeper, darker depths to avoid predation
(Aarflot et al., 2019). When the zooplankton are trapped along these shallow banks, it
provides a favorable feeding ground for capelin, who use light to detect prey. The capelin
that aggregate to feed on zooplankton are consequently in closer proximity to cod and
the shallow bank areas provide optimal feeding grounds for cod, who spend less energy
foraging for pelagic fish (Skaret et al., 2020). Capelin density does not necessarily equate
to an increase in cod predation, instead optimal lighting coupled with shallow depths,
where capelin are more easily detected and vertically closer to the sea floor, can increase
cod predation on capelin (Aarflot et al., 2020; Fall et al., 2021).

1.1.2. Using acoustics to tell a story

Interactions amongst predator and prey can be documented in many ways. Filming is
often used to study and capture interactions that can provide informative stories about
the dynamics between organisms. The ocean is vast and dark and to counter that, sound
has been used to investigate and document what stirs beneath the ocean surface. Sound
travels around 343 m/s on land and travels about 1500 m/s in water (Santucci et al.,
2006). The application of sound waves, referred to as acoustics, have been used for
many years to observe and monitor fish dynamics in an effective way as well as observe
ecosystem interactions (Simmonds and MacLennan, 2007).

During hydro-acoustic surveys, several sound signals are sent out from the ship simul-
taneously. These sound signals are referred to as pings, which emit an echo when they
come in contact with various objects in the sea. With the help of the same transducers
that emitted the sound, the returning echoes are perceived as sound waves. The strength
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1. Introduction

or weakness of an echo, and the time that it takes for a ping to be sent out, to when an
echo is returned, tells us about the characteristics and position of the acoustic targets
in the water column as well as characteristics and position of the depth of the sea floor.
This information can be displayed as an echogram and further interpreted as biological
components, such as plankton or fish. On board the Ecosystem survey, this acoustic
technology is essential when estimating capelin abundance. These measurements have
been further utilized in this thesis to extrapolate data associated to each individual
capelin school’s packing density and minimum distance to bottom

1.2. Schooling

Understanding how capelin schools respond to predation, means understanding a school’s
function and purpose. Existing literature demonstrates that schooling may provide hy-
drodynamic advantages (Weihs, 1973) and also happens when fish reproduce, migrate,
feed or respond to predation (Pavlov and Kasumyan, 2000; Parrish et al., 2002; Pitcher,
1973). Definitions of schools differ, but the general consensus is that individuals within
a school are mutually attracted to each other and exhibit coordination in movement and
orientation, that benefit the individuals in a school (Pavlov and Kasumyan, 2000; Shaw,
1978). Schooling is in fact a social behaviour that is typically observed in aggregations
of fish, some of whom spend their whole life in schools (Pitcher and Partridge, 1979).
School behaviours and functions vary depending on species of fish, ontogeny, stimuli,
feeding behaviour, detection of predation as well as other abiotic and biotic factors such
as habitat and light (Pavlov and Kasumyan, 2000). Fish schools have developed ways
of exchanging information within these formations which helps improve the fitness and
survival of individuals. Maintaining flows of information can also signal to individual
fish whether danger is looming nearby or if there is food available. In order to maximize
the information input, fish within a school formation, position themselves at a particular
distance to their neighbour (Parrish et al., 2002). Information is received through visual
cues from the fish in their periphery as well as non-visual cues such as displacement of
water (Pavlov and Kasumyan, 2000). Although the lateral side line of the fish may detect
displacement in water (Partridge and Pitcher, 1980), the main cues are received through
visual information (Partridge and Pitcher, 1980), making light an important component
of school responses and formation (Misund, 1993; Pavlov and Kasumyan, 2000).

1.2.1. Schooling as an anti-predatory response

Schooling has been largely regarded as a response to risk of predation (Pitcher and
Parrish, 1993). The capelin have larvae that are transparent and small in order to
remain inconspicuous from potential predation (Fuiman and Magurran, 1994). How-
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1.2. Schooling

ever, as capelin grow in size and become more visible to predation, they must resort to
other anti-predatory strategies, such as schooling (Pavlov and Kasumyan, 2000; Fuiman
and Magurran, 1994; Ritz et al., 2011). When schooling fish forage, migrate or repro-
duce they can form large aggregations that may cause them to be more detectable to
predation (Ritz, 1994). Yet, when migrating or reproducing in schools, a "safety in num-
bers" strategy provides more advantages than disadvantages for individual fish (Connell,
2000). When schools detect or respond to predation, they may respond in several ways
and undergo various strategies by shifting shape and size (Misund, 1993; Pavlov and
Kasumyan, 2000). The names of these given shapes and sizes vary, but schools may
compress, reorganize, elongate, dive, surface and even form rings as a response to preda-
tion or food (Nottestad et al., 2002; Pavlov and Kasumyan, 2000). Capelin’s response to
predation can be detected by looking at schooling characteristics such as packing density
and vertical distribution.

Packing density

Investigating capelin’s schooling packing density in response to cod abundance, provides
insight into how capelin respond to threat. The packing density of a school is altered
as a response to external and internal drive and light is a significant external and visual
cue (Misund, 1993; Partridge and Pitcher, 1980). Light also determines an individu-
als ability to form schools and to detect danger from predators (Shaw, 1978). It also
provides an opportunity for visual predators to detect and capture their prey (Rickel
and Genin, 2005). Moving in a tight knit school confers anti-predation advantages and
incites effective information flow (Parrish et al., 2002). When predation is looming, it
may cause schools to pack tighter and organize themselves strategically (Misund, 1993).
This can be explained by the "selfish herd" model (Hamilton, 1971), which assumes that
when individuals pack tighter to their neighbour, they selfishly reduce their risk of being
attacked by a predator. Investing in anti-predatory behaviour is also energy costly and
increasing packing density is not necessary if risk of predation is not detected. Packing
density tends to be more loose during night and during feeding or reproduction (Fréon
et al., 1996) when fish can invest in activities that increase their fitness. Fish are ob-
served deeper in the water column during daylight, to avoid visual predators. These
schools also tend to pack tighter during daytime, as an anti-predatory response (Fréon
et al., 1996). Thus, packing density intensifies with increasing light, but is ultimately
labile and fluctuates as a response to external and internal cues such as competition,
feeding and predation.
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1. Introduction

Minimum distance to bottom

Investigating capelin’s vertical distribution (minimum distance to bottom) in the water
column in relation to cod may provide insight into capelin school’s response to preda-
tion. One of the most effective ways of avoiding predation is to simply limit encounters
with predators, which means positioning themselves strategically to avoid proximity to
predators. For many schooling fish, such as capelin, this entails avoiding light that can
further expose them to visual predators. In such instances, school’s vertical distribution
is typically determined by a trade-off between enough light to detect prey as well as
enough darkness to hide from visual predators (Pearre, 2003; Giske et al., 2013) referred
to as the "light comfort zone" (Røstad et al., 2016). Thus, light is a proximate factor
in determining the vertical distribution and proximity to bottom depth, for schooling
fish. Vertical distribution adjustment based on light is exhibited with fish that per-
form diel vertical migration (DVM) as an anti-predatory tactic to avoid visual predators
(Dalpadado and Mowbray, 2013). The onset of a more distinct day and night during
spring and autumn, means the amplitude of vertical distribution increases (Geoffroy and
Priou, 2020). However, during periods of midnight sun, the perpetual onset of light
diminishes the benefits of undergoing DVM (Olsen et al., 2009). Alternatively, schooling
becomes even more important, as an anti-predator response. Additionally, responding
to danger is also relative to the threat level fish detect known as "threat sensitivity"
(Helfman, 1989). Seghers (1981) distinguishes between the distance a school permits
when the predator is spotted and the evasive response distance it creates when it reacts
to predation. This tactful strategy is intended to avoid expending unnecessary energy
towards response manoeuvres, such as evasive fast swimming, which require more energy
than engaging in school behaviour, where the risk of predation decreases (Pavlov and
Kasumyan, 2000). Depending on the direction of the predatory risk, fish may invest
energy in moving away from the danger, by adjusting their vertical distribution in the
water column. For schooling fish such as capelin, increasing vertical distribution to the
seafloor, where cod reside, would thereby limit encounters.

1.3. What to expect

I will in my thesis, seek to examine how the abundance of cod aggregations impact
capelin’s fine-scale behaviour and schooling. This will be done by assessing acoustic
raw data collected during a survey conducted in August- September, 2017 (Ecosystem
Survey) in the Barents Sea.
Other studies have covered large spatial and geographical distribution and overlap of

capelin and cod (Fall et al., 2018; Johannesen et al., 2012) yet few studies attempt to
look at the small scale interaction between them. In particular, existing studies have not
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1.3. What to expect

examined how school behaviour and characteristics of capelin, in the Barents sea region,
is affected by the local density of cod.

I will seek to examine how the schooling behaviour of capelin, represented by school
packing density and school minimum distance to bottom, will be affected by density of
cod. Based on the previous literature, it is expected that packing density will increase in
response to abundance of cod. Minimum distance to bottom is also expected to increase
as a response to increasing abundance of cod. Studies have demonstrated that light and
bottom depth have an impact on schooling dynamics. Consequently, I will be considering
these factors in my investigation.

1.3.1. Objectives

(a) I will establish a method using acoustic data to robustly assess the effect cod abun-
dance has on capelin schooling dynamics.

Predictions

(b) I will assess the potential influence of cod abundance on capelin schooling dynamics
by looking at number of cod, light and bottom depth.

• P1 : Packing density increases with number of cod

• P2 : Packing density increases with increasing light

• P3 : Packing density increases with bottom depth

• P4 : Minimum distance to bottom increases with number of cod

• P5 : Minimum distance to bottom decreases with increasing light

• P6 : Minimum distance to bottom increases with increasing bottom depth
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2. Material & Methods

2.1. The Barents Sea ecosystem

2.1.1. Survey area description

The Barents Sea is a shallow shelf ecosystem, situated north of Norway and stretches east-
west from Russia (Novaya Zemlya) to the Norwegian Sea (Sakshaug, 1997). The region
extends from the Arctic ocean down to Norway and Russia (Ottersen et al., 2014). The
sea is characterized by its influx of water masses originating from a cold Arctic current
(northern parts), relatively warmer North Atlantic Current as well as the North Coastal
Current (Loeng et al., 1997). The Polar front created along the east of the Norwegian
Sea, form temperature and salinity gradients, where warm Atlantic water and cold Arctic
water masses meet (Oziel et al., 2016). The Barents Sea ice cover varies seasonally and
inter-annually, reaching a maximum around March/April and retreats to a minimum
in September (Koenigk et al., 2009). Seasonal variation is prominent, in high-latitude
environments affected by midnight sun during summer and polar nights in winter (Loeng,
1991). As the light returns in early March, melting ice causes vertical stabilization of
water masses, to sustain a short period of phytoplankton production (Hegseth, 1998).
Seasonal warming in the Atlantic water masses, sustains a longer pelagic phytoplankton
production (Skjoldal, 1989) which provide zooplankton more time for grazing (Eriksen
et al., 2018). The ecosystem is also dependant on zooplankton species that provide
sustenance to several organisms such as capelin and polar cod (Orlova et al., 2009). In
turn, the Barents Sea is an important feeding and nursery area supporting some of largest
stocks of commercial fish such as cod, herring and haddock Melanogrammus aeglefinus
as well as seabirds and mammals (Dalpadado et al., 2014; Sakshaug, 1997) that depend
on the productivity of the Barents Sea.
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2. Material & Methods

2.1.2. Species description

Capelin

Capelin is silvery, pelagic schooling fish belonging to the smelt family Osmeridae (see
Fig: 2.3), can attain a length of 21cm and live up to 6 years (Jourdain et al., 2021).
They have a circumpolar distribution in the Arctic and Sub-Arctic region (Rose, 2005).
Capelin exhibit high spawning mortality and spawning tends to peak in March-April
(Gjøsæter, 1998). Capelin conduct migration in large schools to spawn on shallow ocean
shelves off the North-East coast of Norway in Troms, Finnmark and Russia (Gjøsæter,
1998). In summer, capelin begin migrating towards the central and north of Barents
Sea where they feed on zooplankton. The preference for copepod species (Calanus.spp.)
decreases with capelin length, while adults feed on amphipods and varying amounts
of euphausiid crustaceans (krill) such as Meganyctiphanes norvegica and Thysanoessa
inermis (Dalpadado et al., 2002; Panasenko, 1981).

Cod

Northeast Arctic Cod belong to the family Gadidae (see Figure 2.4), can grow up to
1,5 meters and live more than 20 years (Kvamme and Bogstad, 2007). Northeast Arctic
cod is the largest cod stock in the world (Rose, 2019) and lives mainly in the Barents
Sea (Michalsen et al., 1998). Around the same time as the capelin spawning migra-
tion, cod travel thousands of kilometres in order to spawn in their native area (around
Vesterålen/Lofoten), seeking favourable temperatures for spawning. Although cod are
opportunist feeders, at an age of 3-4 years, their diet follows the availability of capelin
(Nakken, 1994). Capelin is their main and preferred prey (Fall et al. 2018) and during
summer, cod migrate to the Barents Sea to feed. Relatively high overlap between cod and
capelin occur during winter and summer/early autumn (Fall et al., 2018), after which
cod and capelin have conducted a large northbound feeding migration (Gjøsæter, 1998)
(see Figure 2.1 and 2.2), reaching their most northern distribution in August/September.
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2.1. The Barents Sea ecosystem

Figure 2.1.: This figure shows capelin
distribution in Barents Sea. During
spawning eggs are deposited on the
ocean floor for about a month’s time.
The eggs later hatch and ascend to
the upper layers where they drift with
the strong Northeast-bound Norwegian
Coastal Current and towards the Barents
Sea. Maps by Horneland, Skulstad and
Gjertsen/IMR.

Figure 2.2.: This figure shows the cod
distribution in Barents Sea. Cod spawn
in waters with high salinity and their
pelagic eggs and larvae drift with cur-
rents towards the north and east Norwe-
gian coastline. It is a migratory species
which swims from Barents Sea to the Nor-
wegian coast for breeding.

Figure 2.3.: Pictured here is capelin.
Photo by: Erling Svensen/IMR.

Figure 2.4.: Pictured here is North-
east Arctic cod. Photo by: Jan de
Lange/IMR.
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2. Material & Methods

2.2. Survey and data collection

2.2.1. Survey design

In my thesis, I will assess data collected during "the Barents Sea Ecosystem Survey"
(BESS) to determine whether abundance of cod impacts capelin school dynamics. The
BESS was established in 2004 and runs from August-September collecting a range of
data on the Barents Sea ecosystem, including synoptic data collection on cod and capelin
during feeding season. It is a joint survey led by Norway and Russia, by the Institute of
Marine Research (IMR) and the Knipovich Polar Institute of Marine Fisheries (PINRO),
respectively.
The survey runs annually, using four to five ships, and its main objective is to collect

a variety of data to monitor the status of the Barents Sea Ecosystem. In particular,
it aims to collect data for the abundance estimate for the capelin stock assessment and
quota advice, which can also be used for making general assessments about capelin abun-
dance and distribution. Additionally, the data collected is used to assess key ecosystem
interactions, such as the one between cod and capelin.
The sampling method for the BESS was standardized by specialists from IMR and

PINRO to ensure consistent monitoring. The sampling stations are placed approxi-
mately 35 nautical miles (65km apart) within the grid design. During BESS, acoustic
data are collected continuously along standard transects (Figure 2.5). To acquire more
information about the adult capelin, additional acoustic transects were implemented in
2017, roughly 15 nautical miles (27 km) apart in the main capelin area.

2.2.2. Data collection

Acoustic data are consistently collected throughout the BESS survey. For each vessel
utilized in the survey, the echo-sounder, Simrad EK-60/80- 18, 38, 120, 200 and 333 kHz
split beam transducers sent out pings that essentially detected the sea floor and recorded
fish echoes, such as capelin (Simrad EK-80 replaced Simrad EK60 in 2017/2018). Trans-
ducers were additionally mounted on drop keels to prevent bubble noise on both "Johan
Hjort" and "G.O. Sars".
In order to monitor the pelagic and benthic communities, pelagic and demersal trawl-

ing are conducted at fixed positions in a regular grid on board all the ships. At each
fixed station, the Campelen 1800 demersal trawl is towed around 15 minutes at 3 knots
(kts) in order to collect demersal biological samples, such as cod samples. The demersal
trawl has a 20mm mesh size in the cod end with a trawl sweep width of around 25
meters during towing and a height of up to 4.5 meters (see IMR-PINRO 2017 report:
Prozorkevich and van der Meeren, 2008).
At each fixed station, a pelagic "Harstad" trawl is also used to collect pelagic samples
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2.2. Survey and data collection

Figure 2.5.: Ecosystem survey, August-October 2017. Research vessel tracks and trawl stations for
pelagic and bottom trawl stations (Eriksen et al., 2018).

of 0-group at three standard depths (0, 20 and 40 m). Also, when strong acoustic signals
are recorded, additional pelagic trawling is conducted to support the acoustic readings
and ensure high quality interpretation of acoustic data (see section below).

For each fixed station, the conductivity (salinity), temperature and depth (pressure)
was also measured using a CTD.

For my analysis, BESS data from 2008-2018 were used to establish a method for capelin
school detection and delineation (see section below). The method was further applied
on selected BESS data from the year 2017 to investigate how abundance of cod would
impact on capelin schooling dynamics.
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2. Material & Methods

2.3. Analysis of acoustic data

2.3.1. Onboard scrutiny of acoustic data

A key data input to this study was acoustic data collected during the BESS. The Norwe-
gian and Russian vessels, that carry out the Barents Sea ecosystem survey, are equipped
with the post-processing program, Large Scale Survey System (LSSS, www.marec.no)
(Korneliussen et al., 2016). This is a package developed by MAREC to process large
quantities of multi-frequency acoustic data (18 kHz to 364 kHz). The echosounder Sim-
rad EK60/EK80 generate files on the .raw format, which are used by LSSS to carry out
echo integration and the data is displayed in echograms for further data processing.
On board during BESS, the acoustic data displayed in LSSS are allocated to different

groups, for instance target groups like capelin and herring and non-target groups like
plankton. This is done by experienced scientific and instrument personnel. The alloca-
tion of acoustic data is often termed scrutiny of acoustic data and is done in conjunction
with periodic trawling. In addition, general knowledge of echo characteristics of differ-
ent targets like capelin schools, biology and back-scattering energy of species as well as
physical/chemical data are used as background for the scrutiny. Distinguishing between
species on the echogram can be difficult and there is always an element of subjectivity
in the scrutiny. To reduce the uncertainty of the scrutiny, trawl samples are taken if
the echogram is picking up strong echo recordings and supplementary biological samples
are needed to resolve any ambiguity. Additionally, onboard the Norwegian vessels, it is
common to use the information from different acoustic frequencies in order to improve
to improve the quality of the scrutiny. In the typical distribution areas for capelin, the
cruise leader normally has years of experience and has knowledge in recognizing capelin
schools, which is crucial in the final analysis used for the capelin assessment.
In order to improve data quality, false echoes, echo contributions from the seabed

as well as noise and bubbles are usually removed during pre-processing. Figure 2.6
below shows an example of the graphical user interface of LSSS where acoustic data are
analysed.
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2.3. Analysis of acoustic data

Figure 2.6.: Graphical user interface (GUI) of LSSS for interpreting backscatter data: The main
window displays the pelagic view of the acoustic data at the frequency 38 kHz. To pinpoint where the
acoustic information is recorded, the longitude, latitude and map of the ships track, is also displayed
on LSSS. Additionally, the time is displayed at the bottom of the pelagic window together with the
sailed distance, shown in nautical miles (nm).The toolbox allows the interpreter to correct the lower
integration line as well as draw layer lines to separate acoustic returns. The back-scatter regions encircled
in red are being scrutinised and the windows in the bottom right corner display sA values (see text for
explanation) corresponding to the encircled regions. The colour scale on the right hand side displays
the volume back-scattering strength (Sv) (dBre1m−1). At 38 kHz, knowledge about the back-scattering
response for specific groups of species aids in the post-processing and manual species allocation. The
sA values displayed on the right-hand corner of each block indicate the mean sA value for last 0.5 nm,
as well as the whole echogram. Figure is taken from: Korneliussen et al. 2016.

2.3.2. Quantification of acoustic backscatter

Integrated echo from echo sounders can be used for quantification in fisheries acoustics,
and the scattering properties have special names, definitions and symbols (Maclennan,
2002).

The backscattering cross-section (σbs;m2) is typically the smallest acoustic entity used
and is normally derived from the echo of a single acoustic target (target strength or TS):

TS = 10log10(σbs) (2.1)

The volume backscattering coefficient (sv; m−1) can be derived from the (σbs) as:

sv = (σbs)/V (2.2)

This quantity describes acoustic backscatter for a given volume (V ), and the sv on
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2. Material & Methods

logarithmic form, the Sv (Mean volume backscattering strength) (Maclennan, 2002),
is used to quantify and display acoustic backscatter on all the echograms scrutinised
during BESS and echograms used in my study. In the present study I also use the
volume backscattering coefficient as a proxy of schooling packing density (see later).
It is often relevant to integrate echo over an area and the sa - Area backscattering

coefficient (m2m−2) is defined as:

sa =

∫ z2

z1

sv dz (2.3)

which is the volume backscattering coefficient (sv) integrated between two depth layers,
z1 and z2 in the water column. The sa can be converted to sA - Nautical area scattering
coefficient m2nm−2 as:

sA = 4π (1852)2 sa (2.4)

sA is a standard quantification used in fisheries acoustics, for instance for abundance
estimation of fish (Maclennan, 2002; Simmonds and MacLennan, 2007).
During BESS, after acoustic backscatter is assigned to available acoustic target cate-

gories in layers or boxes, the acoustic backscattering data are stored in an LSSS database
as sA values at a horizontal resolution of 1 nautical mile and a vertical resolution of 5
meters. The values are further stored at this resolution in reports, which are used for
my analysis for this study.

2.3.3. Capelin school detection

In order to analyse capelin schooling dynamics using acoustic data, I applied the Korona-
module in LSSS. Korona is LSSS’ multi-frequency extension toolbox which I used to pre-
process raw data files (Korneliussen et al., 2016). It was developed with the intention
of analyzing echograms more time effectively as well as objectively. Korona provides
standard modules that can be selected and altered. It is possible for the user to edit
the settings and parameters within this modules, such as settings for detecting schools
within a school detection module. Selected raw-files can be uploaded to Korona and
further processed with the new settings. The post-processed files can then be viewed on
the LSSS’ pelagic echogram.
For my thesis, my selected modules and settings in Korona were used to detect capelin

schools. BESS acoustic reports from LSSS containing the original interpretations from
the years 2008-2018 were made available from IMR’s database. To view the original
interpretations made onboard the survey, EK60 raw-files, Korona-files and work-files
were selected in the survey configuration window of LSSS. Transducer data, Korona
processing setup, LSSS survey setup files and Export files were also made available in
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2.4. Sensitivity testing to decide on a school detection setting

order to set up a project and execute the school detection using Korona. It was then
possible to edit the Korona configuration modules including school detection. A selection
of Korona modules that were not necessary for school detection were removed and only
modules that influenced school detection kept were edited. The available parameters
in the Korona module "school detection" can be seen in in Appendix A. The main
parameters that were altered was frequency, minimum acoustic threshold for detection,
blind zone depth, minimum length, area and thickness of schools. Korona traces a
distinct pink line around the aggregations that correspond to schools detected, according
to a given set of parameters.

2.4. Sensitivity testing to decide on a school detection

setting

In order to explore how cod impact capelin school dynamics, it was essential to detect
and delineate capelin schools in an efficient and representative manner. Therefore, a
sensitivity test was conducted to evaluate how school detection in Korona was affected
when changing some key parameter settings in the Korona school detection module
including the acoustic threshold, minimum school length as well as blind zone depth.

I first reviewed the LSSS report files from the various BESS surveys which were carried
out in the main capelin distribution area from 2008-2018 in conjunction with looking at
the echograms and the original scrutiny that was available in the interpretation window
in LSSS. In doing so, it was possible to distinguish where capelin schools had been found
and select capelin schools for my sensitivity test, that were largely separated from other
acoustic backscattering organisms.

It was clear that capelin schools aggregated in various shapes, forms and sizes (See
Appendix A). Three main types of schools were observed that had different sizes, shapes
and packing density. I observed both small and large schools in the water column. Addi-
tionally, I observed loser assemblages of fish scattered across the water column which was
detected and formed during night-time. Their shape can be characterized as amorphous
and the schools stretched horizontally. Since all these were capelin schools, but differed
considerably in characteristics, it was imperative to find a single school detection setting
that would detect these different capelin schools as effectively as possible. An overview
of the different types of schools mentioned can be seen in Appendix A.

The first settings that was altered in the school detection module was minimum school
detection threshold, which was altered to -60, -70 and -80 dB re 1 m−1. The second
setting that was altered was minimum school length which was changed to 5, 10 and
15 m. Both combination of settings were tested on the three different types of capelin
schools for the same data-set. The output for each setting was compared by a) observing
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2. Material & Methods

on the echogram how effective the setting was in detecting and delineating the capelin
schools and b) comparing school features from the output for each of the settings. The
exact same region on the echogram was used when testing the different settings. The
following school output parameters were compared:

1. Mean Area of Schools (m2)

2. School Height (m)

3. Packing Density (Median sv (dB re 1 m−1)

4. Nautical Area Scattering Coefficient (sA (m2nm−2))

5. Number of objects (schools)

The mean sA (m2nm−2), outlined in equation 2.4, is influenced first and foremost by
packing density and size of the school. The average median of sv (4 π 18522m2/m3)
were transformed to logarithmic domain for the presentation by using R script (See in
Appendix C). The mean median Sv (dB re 1 m−1) is based on the acoustic samples going
into a given school (pixels on the echogram) and is a proxy for how densely packed a
school is on average. The height (m) and mean area (m2) of the schools, indicate the size
of the schools detected using the settings. The number of objects detected indicate how
many schools are detected using the given settings. Based on this information it was
therefore possible to evaluate the performance of the Korona school detection settings
in detecting and delineating capelin schools.

2.4.1. Impact of settings on capelin school detection

After testing the different acoustic thresholds and minimum school lengths on various
types of schools, it was evident that these parameters had a significant impact on capelin
school detection. When changing the threshold, Korona’s ability to detect schools was
drastically changed and this was evident on the echogram (See appendix A). When
altering the setting to a threshold of -60 dB re 1 m−1, Appendix A (Fig A.0.1), shows
how little capelin school visible on the echogram which is traced by Korona. This is
because only objects with a strong echo are detected when threshold is changed to -
60 dB re 1 m−1. Thus, number of schools detected with this setting was considerably
lower compared to the other thresholds that were tested. When changing the threshold
to -80 dB re 1 m−1, many more schools are detected, also objects with a weak echo.
Comparison with the original interpretation showed that the detected schools included
backscatter sA assigned not only to capelin, but other categories such as plankton mixed
0-group fish. The two thresholds, -60 and -80 dB re 1 m−1, were therefore not optimal
when selecting a setting that would effectively outline the capelin region. When viewing
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2.4. Sensitivity testing to decide on a school detection setting

-70 dB re 1 m−1, the threshold outlined the capelin region more effectively, as well as
not compromising too much of the capelin schools.

When changing the minimum school-length setting, differences in detection and de-
lineation between the various settings were less evident than when comparing threshold
settings. However, upon close observation there are clear differences. These differences
became more evident when assessing loser assemblages of fish (fish veils). When setting
the smallest minimum length to 5 m, very tiny parts of the assemblages were included
in very high numbers. This was considered not to reflect the feature of lose assemblages
in an ideal way going forward. It can seen on the echogram images in Appendix A, (Fig
A.0.10), the minimum length of 5 m traces a lot more of the smaller objects compared
to the other two figures. Whereas the largest minimum length, 15 m, Appendix A (Fig
A.0.12), excluded potential capelin schools assemblages.

Because the differences in school detection due to minimum length are difficult to
detect with the naked eye, the exported parameters of detected schools (shown in Ap-
pendix A) was also instrumental in assessing output from the different settings of mini-
mum school lengths. When comparing the export data, it is clear that a setting of 15 m
detected far fewer schools. Whereas, a minimum distance of 5 m detected more. Thus,
a compromise of minimum length 10 m was selected.

2.4.2. Golden setting

As outlined, deciding on a setting to use in the thesis would have an impact on the data
I would further analyze. The golden setting was chosen based on critical analysis of
echogram images and exported data. Although no setting was successful in detecting
capelin schools perfectly, the golden setting decided was -70 dB re 1 m−1 and minimum
length 10m. To consolidate this, a former study looking at frequency-dependent acoustic
back-scatter differentiating between juvenile pollock and capelin aggregations, (Wilson
et al,2004) found that -69 dB re 1 m−1 as a threshold for capelin, was optimal when
discriminating between the two species. Essentially, the golden threshold selected would
inevitably compromise some capelin school data. If the threshold is set too high (-
60 dB re 1 m−1), capelin school are excluded. If it is too low (-80 dB re 1 m−1),
plankton and other objects with a weak echo are included. The default upper blind
zone boundary (depth of blind zone below surface) was also an important component
that needed to be considered. The default setting sometimes excluded capelin schools
from school detection. The blind zone is evident on the echogram and is the area in
front of the transducer that cannot detect an object (Simmonds and MacLennan, 2005).
This is because the transducer cannot emit and receive sound at the same time. The
default blind zone was marginally conservative and after close observation, the blind
zone was moved up to 12 m, in order to include as many capelin schools as possible in
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school detection. The scrutiny of acoustic data during BESS is done at 38 kHz and I
therefore selected only this frequence for the school detection. Below are the settings
that I proceeded to use for my thesis for school detection (Table 2.1).

Table 2.1.: Table showing the default and new settings for Korona school detection
Settings Default New
Blind zone Depth (m) 15 12
Frequency (kHz) All Channels 38
Threshold (dB re 1 m−1) -65 -70
Minimum Length (m) 20 10
Minimum Thickness (m) 5 0
Minimum Area (m2) 50 0
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2.5. Selecting cod and capelin data

2.5. Selecting cod and capelin data

To effectively proceed testing how bottom depth, light and ultimately, abundance of cod
affect the capelin school anti-predatory dynamics, I had to select a data-set to apply
my settings to. Since cod was sampled using demersal trawls, the golden settings were
eventually selected to detect capelin aggregations in areas where bottom trawling had
also occurred.

In 2017 the overall capelin abundance was high, and therefore LSSS files from the
2017 Ecosystem Survey, was used in my thesis. I used data from the vessel Johan Hjort
since this vessel covered the main capelin distribution. I then used the trawling station
form to get specific details as to where and when bottom trawling took place. By noting
the start and stop trawling time as well as the longitude and latitude from the demersal
trawling form, it was possible to use the numerical window available in LSSS echogram
to pinpoint the trawling regions. Additionally, the numerical window showed the vessel
speed along the echogram. This information combined with trawling data allowed me to
deduce, with certainty, where bottom trawling had taken place. The trawl stations where
capelin schools were present were noted down before deciding to process the original LSSS
files in Korona, using the golden settings I had decided on beforehand.

At the stations where capelin occurred, a feature on LSSS then allowed me to mark 1
nmi pre and post- trawling. The capelin schools detected in Korona were then converted
to LSSS schools and exported. In total 26 files pertaining to the 26 stations, were
exported from the 2017 survey and further analyzed. Cod density (individuals per nm2)
at the 26 stations were estimated using standard swept area methods applied in cod
index calculation for cod stock assessment (Mehl et al., 2019) and was provided by my
supervisors.

Figure 2.7 below shows the position of the 26 stations, used for further analysis. The
data was taken in September from 05.09.2017 - 28.09.2017. The minimum and maximum
latitude was 76.818 ◦ and 79.861 ◦. The map also displays the topographic properties of
the study area, showing continental shelves, depths and banks varying in depth.

2.6. Data analysis

It was decided, before conducting a statistical analysis that the following predictors would
be used to build my model; number of cod, bottom depth, sun altitude and time of day
categories (which is explained below). Data on cod abundance was collected by demersal
trawling. The bottom depth data was attained by acoustic readings. Sun altitude served
as a proxy for light and was calculated using the date, time, longitude and latitude for
each observation. The two variables packing density and minimum distance to bottom
were based on acoustic data and exported from LSSS and have previously been used
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2. Material & Methods

Figure 2.7.: Map of stations used for the analysis

in studies to quantify and describe anti-predation schooling responses. Additionally a
random effect was added to the models: stations, which refers to the transect area where
a block of observations was made. An overview of these variables can be seen in table
2.2.
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2.6. Data analysis

Light as an independent variable

Because light was one of the variables I was interested in testing, sun altitude was
calculated for each observation using the factors mentioned above. Sun altitude was also
converted into categories, ’time of day’; daytime, twilight and night-time. Universally,
there are three main phases of twilight, civil (sun altitude between 0 and -6 ◦), nautical
(-6 to -12 ◦) and astronomical (-12 to -18 ◦) occurring below the horizon. Considering the
time of year (September) and high latitudinal area of study (76.8 - 79.86◦), civil twilight
was applied to the sun altitude data (see script in Appendix C). Below in figure 2.8, is
a representation of what time of the day the observations were made at the 26 stations.

Figure 2.8.: Boxplots showing when each observation occurred during the day with sun altitude (shown
in degrees (◦)) on the y-axis. Each boxplot represents the observations for each of the 26 stations. The
ablines are shown as horizontal red lines. The upper line represents the horizon at 0 ◦ whereas the lower
line represents the civil twilight delineation -6 to 0 ◦. Daytime is when the sun is above the horizon and
night is shown on the figure below -6 ◦.
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Table 2.2.: Overview of the response and predictor variables. Response Variables: Packing Density
(Logarithmic transformation of sv mean (4 π 18522m2/m3)) and capelin school minimum distance to
bottom (m). Predictors: Bottom Depth = Depth at station (m). Sun Altitude = position of sun in
relation to the horizon (radians). Cod Abundance = the logarithmic value of cod log(x+1) (nm2). Time
of Day= Night, Twilight and Daytime (converted from radians to degrees and then made to categories)

.

Responses Predictors Included
Packing Density or Min Dist. to
bottom

Cod

Packing Density or Min Dist. to
bottom

Cod, Sun Alt.

Packing Density or Min Dist. to
bottom

Cod, Sun alt.,Bottom Depth

Packing Density or Min Dist. to
bottom

Sun Alt.

Packing Density or Min Dist. to
bottom

Sun Alt., Bottom Depth

Packing Density or Min Dist. to
bottom

Cod, Time of Day

Packing Density or Min Dist. to
bottom

Cod, Time of Day, Bottom Depth

Packing Density or Min Dist. to
bottom

Time of Day

Packing Density or Min Dist. to
bottom

Time of Day, Bottom Depth

Packing Density or Min Dist. to
bottom

Bottom Depth

Packing Density or Min Dist. to
bottom

Cod, Bottom Depth
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2.6. Data analysis

2.6.1. Modelling the data

The variables were viewed as plots and histograms in order to observe their distribution
and decide thereafter if transformation was necessary, in order to better fit a linear model
(See Fig 3.1).

To test my predictions, assumptions of the linear model had to met. Firstly, the
distribution of the response variables had to be normally distributed. The response
variables minimum distance to bottom and the logarithmically transformed response
variable, packing density were approximately normally distributed. A second assump-
tion is multicollinearity which can be detected by testing if the explanatory variables are
highly correlated (> 0.5), where the higher the correlation between independent vari-
ables, the greater the sampling error (Blalock, 1963). For my data correlation between
the independent variables were below 0.5.

Another assumption is multivariate normality, which assumes that the residuals of
the model are normally distributed, which was also approximately met. This is also
shown by testing a model’s homogeneity of residual variance, homoscedasticity (Goldfeld
and Quandt, 1965) which can generally be done in two ways; graphically and through
statistical tests. Because my data set exceeded 5000 observations, common tests such
as Shapiro Wilk and Levene test would be futile. Therefore, normality of residuals was
checked using the diagnostic plot, QQ-plots (See Appendix B. for QQ-plots). These plots
were produced with every model to test for significant deviations of the residuals from
the linearity of the model. Deviations, indicated that the model’s residuals were not
normally distributed. The linear model that was selected to test minimum distance to
bottom deviated slightly (seen on the QQ-norm in Appendix B, Fig. B.0.3) and through
testing, I found that residuals belonging to station 2395 caused the linearity of the
model to stray. I proceeded to test the linearity of the model without station 2395 data
and found that my model’s residuals were approximately normally distributed. When
comparing both model’s (with and without data from station 2395) and their output,
there were no significant differences that would deter me from using the best model for
analysis. I therefore proceeded to use the model with data from station 2395 data to
further investigate what factors effect minimum distance to bottom. The steps in this
process can be seen in Appendix B.

My data set contained more than 5000 of capelin schools, each of them assigned to one
of the 26 stations with information on cod abundance. Provided that the assumptions of
a linear model were approximately met, stations were added to the models, as a random
effect. By implementing station as a random effect, the assumption that observations are
independent of each other, is also met. Station as a random effect was also implemented
to avoid pseudo-replication which can provide optimistic outputs for p-values and stan-
dard error. By adding the random effect of the sampling blocks (which in this case, is
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stations) to the models, I could assess how much variance in the model was attributed
to factors within the station or from the stations.
Furthermore, I tested all the possible combinations of predictor and response variables

and selected the best statistical model based on minimisation of the AIC criterion (AIC:
Akaike’s An Information Criterion) to explain variation in each of my two dependent
school variables: packing density and minimum distance to bottom. The Likelihood ratio
test was conducted on models with similar small AIC values (<2 in AIC value)(Burnham,
1998) to select the model that represents the data adequately.

2.6.2. Statistical analysis

All data analyses were conducted in R, version 3.6.1 (R Core Team, https://www.r-
project.org/), with Rstudio (RStudio version. 1.2.1335 (RStudio, Inc, Boston, MA, US)
and the packages used for my study is outlined in Appendix C.1.

26



3. Results

3.1. Looking at the data

Upon observation of the final aggregated data, the 26 stations varied in packing density,
minimum distance to bottom, bottom depth, sun altitude and cod abundance. The max-
imum number of cod caught at one of the stations was 7707.28 nm2 and zero cod were
found at 3 stations. The shallowest station had a mean depth of 47.20 m and deepest
mean depth was 324.82 m. Sun altitude varied from a mean minimum of -0.21 (night)
to mean maximum of 0.26 (day). Minimum distance to bottom of capelin schools varied
from 23.55 m to maximum 249.43 m. And packing density went from mean minimum
-66.63 to mean maximum -54.1 dB re 1 m−1. The final aggregated data is presented in
Appendix B, table B.5.

The distribution of the variables can be seen in figure 3.1. At first glance it is clear that
cod and packing density (sv mean) is skewed more heavily to the left hand side of the
histogram. Minimum distance to bottom follows a satisfactory normal distribution. Ad-
ditionally, sun altitude has negative values so a logarithmic transformation will produce
NA values. I proceeded to transform cod and packing density logarithmically to assess
its distribution. Because the logarithmic transformation of cod produced NA values and
the cod log (x+1) did not, the latter was used in the formulas when testing the various
models. The remaining variables, bottom depth and sun altitude and minimum distance
to bottom remained unchanged. The transformed distribution of cod abundance and
packing density can be seen in figure 3.2.
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Figure 3.1.: Histogram showing distribution of variables

Figure 3.2.: Histogram showing distribution of transformed variable: cod log (x+1) and sv mean log
(4 π 18522m2/m3)
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3.2. Exploring what impacts capelin school dynamics

3.2.1. Choosing the best model to test packing density

Linear mixed models with a random effect was used to test what variables effect capelin’s
packing density. Below in table 3.1 an overview of the models that were tested can be
seen. The table also provides an overview of which combination of predictor variables
provided the lowest AIC values.

Table 3.1.: Overview of lmer models with their corresponding AIC value (lowest to highest AIC
model shown). Response Variable = Packing Density (Logarithmic transformation of sv mean (4 π
18522m2/m3)). Predictor explanations: Bottom Depth = Depth measured at station in (m). Sun
Altitude = position of sun in relation to the horizon (shown in radians). Cod = the logarithmic value
of cod is used with log(x+1). Time of Day = Night, Twilight (civil) and Daytime (Made into categories
using degrees)

.

Response Predictors Included AIC
Packing Density Sun Alt., Bottom Depth 13771.36
Packing Density Sun Alt. 13773.77
Packing Density Cod, Sun alt., Bottom Depth 13776.56
Packing Density Cod, Sun Alt. 13779.58
Packing Density Time of Day, Bottom Depth 13809.96
Packing Density Time of Day 13810.41
Packing Density Bottom Depth 13813.09
Packing Density Cod, Time of Day, Bottom Depth 13815.96
Packing Density Cod, Time of Day 13816.54
Packing Density Cod 13816.61
Packing Density Cod, Bottom Depth 13819.41

The main output for the best linear mixed model is shown in table B.3 in Appendix B.
The lowest AIC value was allocated to a model that did not include cod as a predictor,
but only bottom depth and sun altitude. Cod showed very little significant effect on
packing density (p > 0.005) in the other models. The best selected model showed that
sun altitude and bottom depth were both very significant (p.value < 0.005) in affecting
packing density. The model shows that when packing density increases, bottom depth
decreases, as seen in figure 3.3. The model also shows that when sun altitude increases,
packing density increases, seen in figure 3.4. Table B.4 in Appendix B, shows there is
little difference in contribution to variance between and within the stations. The residual
variance between schools is 0.63, more than residual variance between stations, which is
0.53.
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Bottom Depth Effect Plot
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Figure 3.3.: Effect plots shows predicted values of the model outcome for certain values for the
independent variables. Since the effect of the predictor, bottom depth, is being calculated here, sun
altitude is being held constant. The plot shows that packing density (sv 4 π 18522m2/m3) decreases
with increasing bottom depth (m). The blue ribbon shows the range of the prediction intervals for my
model.

Sun Altitude Effect Plot
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Figure 3.4.: Effect plot shows predicted values of the model outcome for certain values for the indepen-
dent variables. The effect of sun altitude, is being calculated and bottom depth, is being held constant.
The plot shows that packing density increases (sv 4 π 18522m2/m3) with sun altitude (radians). The
blue ribbon shows the range of the prediction intervals for my model.
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3.2.2. Choosing the best model for minimum distance to bottom

Exploring what predictors would impact minimum distance to bottom, table 3.2 outlines
which models were tested and which combination of predictor variables provided the
lowest AIC.

Table 3.2.: Overview of lmer models with their corresponding AIC value (lowest to highest AIC model
shown). Response Variable = Minimum distance to bottom (m). Predictor explanations: Bottom Depth
= Depth measured at station in (m). Sun Altitude = position of sun in relation to the horizon (shown
in radians). Cod = the logarithmic value of cod is used with log(x+1). Time of Day = Night, Twilight
(civil) and Daytime (Made into categories using degrees)

.

Response Predictors Included AIC
Minimum Distance to Bottom Cod, Sun alt., Bottom Depth 54527.18
Minimum Distance to Bottom Sun Alt., Bottom Depth 54528.26
Minimum Distance to Bottom Cod, Time of Day, Bottom Depth 54574.12
Minimum Distance to Bottom Time of Day, Bottom Depth 54575.92
Minimum Distance to Bottom Cod, Bottom Depth 54588.62
Minimum Distance to Bottom Bottom Depth 54590.73
Minimum Distance to Bottom Cod, Sun Alt. 54692.21
Minimum Distance to Bottom Sun Alt. 54697.09
Minimum Distance to Bottom Cod, Time of Day 54710.41
Minimum Distance to Bottom Cod 54714.39
Minimum Distance to Bottom Time of Day 54715.48

Table B.1 in Appendix B shows the main output for the best linear mixed models where
minimum distance to bottom is the response variable. In this case, the lowest AIC value
was allocated to a model that included cod as an explanatory variable. However, this
model showed that cod had no significant impact on minimum distance to bottom (p >
0.005). Additionally, the two models with lowest AIC value differed with <2. Therefore
a likelihood ratio test was used to compare the model with the lowest AIC value, which
includes bottom depth, sun altitude and cod with the next lowest AIC value model
that included bottom depth, sun altitude and cod abundance. The likelihood ratio test
comparing the two models, showed that chisq had a significance over pr > chisq of 0.53
for the first model and thus the model with the next lowest AIC value was selected. The
script and steps can be seen in Appendix B.

The selected model, showed that sun altitude and bottom depth were both very signif-
icant (p.value < 0.005) in affecting minimum distance to bottom. The model also shows
that when sun altitude increases, packing density increases, seen in 3.6. The model also
shows that when bottom depth increases, minimum distance to bottom increases, seen
in figure 3.5. Table B.2 in Appendix B shows there is little difference in contribution
to variance between and within the stations. The residual variance between schools is
486.20 and the residual variance between stations is 786.40, meaning that most of the
variances is contributed by the stations.
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Bottom Depth Effect Plot
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Figure 3.5.: Effect plot shows predicted values of the model outcome for certain values for the inde-
pendent variables. Since only the effect of the predictor, bottom depth (m), is being calculated, sun
altitude is being held constant. The plot shows that minimum distance to bottom (m) increases with
increasing bottom depth. The blue ribbon shows the range of the prediction intervals for my model.

Sun Altitude Effect Plot
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Figure 3.6.: Effect plot shows predicted values of the model outcome for certain values for the in-
dependent variables. Since only the effect of the predictor, sun altitude (radians), is being calculated,
bottom depth is being held constant. The plot shows that minimum distance to bottom (m) decreases
with increasing sun altitude. The blue ribbon shows the range of the prediction intervals for my model.
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3.3. Summary of results

The results show that number of cod had little to no affect on the schooling dynamics;
packing density and minimum distance to bottom. Light and bottom depth however did
have an impact on these school dynamics.

• Packing density (sv mean (4 π 18522m2/m3)) increased when with decreasing bot-
tom depth and increasing sun altitude.

• Minimum distance to bottom (m) decreased with increasing sun altitude and in-
creased with increasing bottom depth.

Ultimately capelin schools packed tighter when bottom depth became shallower, es-
pecially when when the sun was situated higher in the sky (daytime). Additionally,
minimum distance to bottom was not fixed to a depth and increased with increasing
bottom depth. Minimum distance also decreased during daytime.
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4. Discussion

This is the first study to directly investigate how capelin’s schooling dynamics respond
to the presence of cod in the Barents Sea. Large scale studies on cod-capelin inter-
action have examined the spatial association between the two, which is a prerequisite
for predation to occur (Fall et al., 2018, 2021). Studies conducted in Newfoundland,
Canada, have assessed how capelin’s schooling behaviour responds to various predators,
such as common murres Uria aalge and cod (Dalpadado and Mowbray, 2013; Mowbray,
2002; Crook and Davoren, 2014). Other studies on fish schooling behaviour have used
theoretical models and experiments to study the effect of predation (Aoki, 1984; Pavlov
and Kasumyan, 2000; Pitcher, 1973). Together, these studies have highlighted how light
gradients, bottom depth, topography, the availability of prey, competition, temperature
and predation play an essential role in determining predator and prey spatial interaction
and behaviour.

In my study, I sought to determine whether cod, bottom depth and light influenced
capelin’s fine-scale school dynamics by analysing acoustic data collected throughout the
BESS survey. By using the post-processing program, LSSS, it was possible to utilize the
multi-extension toolbox, Korona, to detect capelin schools. My study demonstrates that
although cod and capelin may overlap, capelin’s packing density and minimum distance
to bottom, which are two important aspects of schooling dynamics, were not affected by
the abundance of cod. Light and bottom depth are also considered in this study and
were both found to contribute significantly to changes in capelin’s schooling dynamics.
The study showed that the interplay between light and bottom depth are essential to
consider in order to understand changes in capelin’s schooling dynamics.
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4.1. Establishing a method to assess cod-capelin

interaction

One of the main objectives of this thesis was to establish a method that would enable
me to utilize the acoustic data to assess the impact that the abundance of cod has on
capelin schooling dynamics. My approach was to use a sensitivity test on different school
detection settings and evaluate the result based on a combination of visual inspection of
the echogram, comparison with the original scrutiny from the survey as well as comparing
the exported school characteristics for the different settings. After testing the different
acoustic thresholds and minimum school lengths on three different types of schools in
Korona’s school detection, it was evident that these school detection settings had a
significant impact on capelin school detection.
Other studies which have used similar tests in order to discriminate between species

from acoustic descriptors have also found that varying acoustic threshold and minimum
school length can significantly impact the results. One study conducted in the Gulf of
Alaska by Logerwell and Wilson, (2004) used frequency dependant acoustic backscatter
to successfully distinguish between juvenile pollock and capelin and found the highest
integration threshold distinguishing the two fish to be -69 dB. Another study on the
South African continental shelf by Lawson et al., (2001) used both acoustic descriptors
and ancillary information to distinguish between anchovy Engraulis capensis, sardine
Sardinops sagax and round herring Etrumeus whiteheadi schools. This study found
that changing the acoustic threshold from -65 dB to -60 dB had little effect on the
ability to distinguish schools. However, their study found that their original minimum
school length may have excluded additional school and that decreasing their length
threshold would have detected more schools. In this study ancillary information such
as latitude, longitude, sea temperature and bottom depth was included in identifying
acoustic schools. The inclusion of this type of data, reportedly contributed to improving
the accuracy of identifying the species significantly.
When using the golden settings with a minimum school length of 10 m and an acoustic

threshold of -70 dB re 1 m−1 in my final analysis of the 2017 BESS data-set, I could
observe on the echogram that the settings effectively outlined the capelin schools. This
means that the exported data could successfully provide information about the capelin
school dynamics such as packing density and minimum distance to bottom.
These settings can be adopted for future studies to learn more about how schools

respond to changes in their environment using time series data. For improved school
detection in a wider context, ancillary environmental information, such as the ones men-
tioned in the section above could help identify different types of schools, in particular in
areas where capelin strongly interact with species having similar acoustic characteristics
such as polar cod.
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4.2. Changes in capelin school packing density

4.2.1. Cod’s impact on capelin’s school packing density

This investigation found that abundance of cod did not have a significant impact on pack-
ing density of capelin. This was unexpected, as the literature suggests that fish schools
increase in packing density, as a response to predation, by reducing their inter-fish dis-
tance (Misund, 1993; Pavlov and Kasumyan, 2000). This result could be explained by
several factors, as will be discussed below, including capelin’s packing density reflecting
feeding activity over predator avoidance, capelin’s generally slow response behaviour to
predation, capelin’s response to threat being rooted in a fitness trade-off and/or the dis-
tance between capelin and cod being too far away to incite an anti-predatory response.
Additionally, the results may have been affected by the sampling method and type of
data-set used in this study.

Fluctuations in a school’s packing density have been reported to reflect changes in
conditions for feeding, reproduction and survival (Crook et al., 2014). Changes in pack-
ing density can be observed in pelagic fish which tend to dissociate for some time, when
feeding (Pavlov and Kasumyan, 2000). This may have been the case for capelin schools,
who in this period, are normally engaged in extensive feeding rituals, mainly on krill
(Gjøsæter, 1998). Amongst fish that are highly motivated to feed, the attraction to
neighbours is expected to diminish (Katz et al., 2011). Low packing densities in fish
schools can also be explained by competition for prey. This is because hunger can moti-
vate some fish to risk predation or incite more individualistic behaviour (Hensor et al.,
2003; Sogard and Olla, 1997). Capelin schools with lower packing density (increased
inter-distance) may thus be focusing their energy on activities such as feeding.

Capelin’s generally slow response to predation may also explain why abundance of cod
had no significant impact on school packing density. Capelin’s reaction to an approaching
vessel may provide insight into how capelin responds to predation. In a study conducted
by Jørgensen et al., (2004), capelin demonstrate little or no vessel avoidance which
suggests that capelin display a slow and non-reactive response to predation. Observations
of capelin’s sluggish response has been reported by Johansen, (2003) who suggests that
capelin have a relatively slower swimming speed and less distinct schooling behaviour
than herring. Although these anecdotal observations would need to be supported by
further studies, they could explain the lack of response in capelin’s school packing density
to changing abundance of cod.

Furthermore, capelin’s energy expenditure is rooted in survival and fitness and in order
to engage in feeding activity, the response to predation is relative to the threat level
detected (Lima and Dill, 1990). In my study, cod may have exhibited non-threatening
behaviour and this could explain the lack of response in capelin’s packing density. It
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may take several days for cod to digest their food in these cold waters (Temming and
Herrmann, 2003), meaning that cod’s satiation (gut limitation) could have been a factor
in determining whether capelin detected a passiveness from cod. This could have caused
capelin to spend less energy on schooling. Although capelin are cod’s preferred prey,
cod are also generalist predators and their diet include many other prey species (Holt
et al., 2019) that could have been present at the time. A study conducted by Johannesen
et al., (2016) during the winter and autumn 2003-2014, showed that cod’s feeding diet
was more diverse during the autumn than in the winter. While outside the scope of
this thesis, it would be interesting to study stomach content from cod to properly test
whether alternative prey in their stomachs was a factor that played a role in capelin’s
schooling response to cod.
My results on how capelin school behaviour was affected by cod abundance is depen-

dant on my data-set that include 26 trawl stations from one year (2017). If this study
had looked at data from another year or used a time-series data-set (from several years),
capelin’s packing density response to cod abundance may have been different. Further-
more, the data-set I used could have provided insufficient data to give a representative
indication of capelin’s response behaviour to cod abundance. In a future study, it would
therefore have been interesting to see whether the inclusion of more data would have
given different results that what I found here.
However, cod and capelin’s overlap around August/September is prominent in the

study area where my data was collected, and therefore provided an excellent opportunity
to study cod-capelin interactions within a cod and capelin ecosystem.
The observed lack of response in capelin’s packing density to changing cod abundance

could also be caused my limitations in the use of demersal trawl data. When using
demersal trawl data to assess cod’s general distribution, there is an assumption that cod
are associated with the seafloor throughout the day. However, a study conducted by
Skaret et al., 2020, demonstrated that cod traversed 5-10 meters from the seafloor in the
water column during daytime. There may similarly have been cod in the pelagic water
column in my study that were not detected. More importantly, the fine scale distribution
of cod was not recorded in my study. Since the cod abundance data is from trawl hauls
covering a distance of 0.75 nautical miles, the actual local density of cod associated with
each capelin school is unknown.

4.2.2. Light’s effect on capelin’s school packing density

This study demonstrates that light plays a more significant role in affecting capelin
school’s packing density than the number of cod itself. Studies have shown that fish
use light as a visual cue to form schools (Partridge and Pitcher, 1980) and that pelagic
schools form during daytime (Fréon et al., 1996). Therefore it was expected that increas-
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ing light would increase capelin’s schooling tendency and increase packing density. As
discussed below, increased packing density as a response to light may occur both because
fish can detect each other more easily, and because less attacks from visual predators
occur during night-time which may cause fish to relax schooling and increase distance
to neighbours (Brown and Magnavacca, 2003; Pavlov and Kasumyan, 2000).

Light is an important component influencing school responses and formation (Misund,
1993; Pavlov and Kasumyan, 2000) especially for capelin that are visual predators (Fall
et al., 2021). Fish organize themselves by positioning themselves at a particular distance
from their neighbour (Parrish et al., 2002). Although the lateral side line of the fish
may detect displacement in water, visual information provides the main cues to form
schools (Partridge and Pitcher, 1980). Light irradiance decreases with depth due to
attenuation (Fiksen and Carlotti, 1998) and capelin’s ability to detect cod and vice-
versa are therefore sensitive to diffuse lighting and water clarity. This may play a role in
affecting capelin’s detection distance and threat detectability response. With increased
light intensity, capelin’s chances of not only detecting predation, but also responding to
it, may explain why capelin’s packing density increased with sun altitude.

Packing density increasing during daytime can also be explained by visual predators
utilizing light to detect and hunt for their prey, presenting more of an imminent threat
to fish. Pelagic schools tend to disperse during night time (Fréon et al., 1996) and
although capelin school are less able to detect each other, a decrease in light means some
visual predators are less of a threat to fish at night time. This may incite a less vigilant
schooling behaviour and result in reduced packing density amongst capelin.

Although the best model from my study shows that light contributes significantly to
changes in school packing density it is also worth mentioning that capelin have many
predators (Hop and Gjøsæter, 2013). These include organisms such as whales and seals
in addition to cod (Gjøsæter, 1998), which may attack from all angles. The packing
density variation in capelin, detected in my study, might have been a response to other
predators for which data were lacking. Hence, it is difficult to distinguish whether
increased packing density during daytime is a result of schools forming more effectively,
since individual capelin cannot see each other or whether it is a response to other forms
of potential predation that are more distinguishable for capelin, with increased lighting.

Light is ultimately a proximate for schooling and as anti-predatory response to their
environment, schooling can ensure survival for individual fish. During midnight sun (24-
hour periods of sunlight), DVM stops for many species including polar cod Boreogadus
saida, who undergo these movements to avoid predation. The lack of day and night
triggers an increase in schooling, as an anti-predatory alternative to their environment.
Although September in the Barents Sea does not experience mightnight sun, in this study
it is not surprising that increasing light conditions increased capelin’s school packing
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density and consequently attribute advantages for capelin whose visual predators use
the light to hunt for their prey.

4.2.3. Bottom depth’s impact on capelin school packing density

In my study, packing density decreased with increasing bottom depth. School packing
density is affected by factors such as food resources (Craig et al., 1982) and predation
as well as light conditions. As light diminishes with depth, so does capelin’s ability
to detect each other and other predators. Therefore, packing density was expected to
decrease with increasing depth as a combination of food resources, diminishing light
and decreased predation overlap attribute to capelin’s packing density diminishing. In
deeper depths, capelin are able to distribute themselves in the water column. Capelin’s
increasing packing density with decreasing bottom depth, suggests that capelin schools
observed in shallow banks may have displayed an anti-predatory behaviour by packing
tighter, in particular because light penetrates to the seafloor and potentially exposes
them to demersal visual predators. Capelin’s distance to their predators also impacts
their school packing density and be affected by demersal predators in closer proximity
at shallow depths. The need to pack tightly in schools as an anti-predator strategy may
not be so urgent for capelin in deeper areas where the vertical distance from cod to
capelin is larger. Decreasing packing density with depth could therefore reflect capelin’s
schooling dynamics in response to a smaller vertical overlap with predators, where capelin
could invest energy in feeding vs. investing in anti-predation behaviour, such as packing
tighter.
The interplay between light and depth also play a role in capelin’s packing density.

At shallow depths, light can penetrate to the seafloor (Aarflot et al., 2020), providing
optimal conditions for capelin to detect each other and form schools and thus pack
tighter. Capelin are also more vulnerable to predation at shallow depths and their
inability to seek refuge in the darkness, may cause the capelin to form denser schools as an
anti-predation response. Capelin’s packing density may have been affected by numerous
factors that are associated with increasing depth, such as diminishing light, changes in
temperature, oxygen levels as well as predation (some of which will be discussed below).

4.2.4. The interplay of factors that impacts capelin school

packing density

Capelin’s packing density increased at shallow depths along with increasing light. A mul-
titude of factors impact fishing school packing density, such as inter- and intra-specific
competition (Fernö et al., 1998) prey availability (Dalpadado and Mowbray, 2013), pre-
dation and temperature in addition to bottom depth and light (Misund, 1993). Although
this study demonstrated that the number of cod did not impact packing density directly,
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capelin’s reaction to light and bottom depth might display an anti-predatory response
that can be better understood by considering what factors impact packing density. By
looking at the interplay between cod, light and bottom depth, it is possible to investigate
what contributes to modulating packing density during capelin’s diel cycle, around this
time of year.

To understand why capelin aggregate in banks, and thereby expose themselves to
predation, it is important to consider the hydrographical and bathymetrical factors that
play a role in determining cod and capelin’s overlap. In commercial fishing, banks and
shallow depths attract fish (Fall et al., 2021). Foraging fish are dependant on advection
of prey from deeper waters (Genin, 2004) and currents direct zooplankton towards the
shallow shelves where light penetrates to the seafloor. This provides an opportunity for
capelin to catch their prey more easily (Aarflot et al., 2020) as zooplankton are trapped
and left more detectable to predators (Aarflot et al., 2019). Consequently, it also provides
an optimal opportunity for cod to feed on capelin. Density of cod has been observed to
be higher at shallow banks where cod adopt a sit- and pursue- feeding approach waiting
for capelin to descend into the water column, without cod spending too much energy
searching for food (Fall et al., 2018; Skaret et al., 2020). The aggregation of krill along
the shallow banks entice capelin, and consequently cod, and therefore play a critical role
in cod and capelin’s overlap by forcing them into close proximity (Skaret et al., 2020).
While outside the scope of this thesis, the impact of krill on capelin’s schooling dynamic
response would be an interesting factor to consider for future studies.

In a study conducted in Newfoundland, cod’s consumption of capelin decreased with
depth (Fahrig et al., 1993) and in the study conducted by (Fall et al., 2018) cod from
the Barents Sea consumed most capelin on the banks, especially when capelin was in
close proximity to the seafloor. Capelin’s increasing packing density, at shallow banks
during daytime, may exhibit capelin’s threat sensitivity response to their environment.
Additionally, capelin have many predators that may attack from all angles. On the
banks, capelin are unable to migrate to a light level, where they can disperse or remain
undetected. Therefore, capelin may be unable to distribute vertically in the water column
as it may expose them to other predators in the water column. Packing tighter may
therefore be one of the few anti-predatory responses left in their arsenal in order to
maximize individual chances of survival and fitness.

In this study, packing density increased during daytime, which happens to be the
time of the day where cod feed on capelin (Skaret et al., 2020). As a visual predator,
the combination of light and capelin availability may in turn be beneficial to cod, that
take advantage of the light to feed on capelin. This may have contributed to packing
density increasing during daytime, as an anti-predatory response. Moreover, capelin may
respond to cod when light gradients are optimal and provide visual cues for capelin to
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not only form schools, but also provide an optimal window for cod and capelin to detect
each other. Thus, the interplay between light and bottom depth can explain capelin’s
schooling dynamic response to the presence of cod.
Furthermore, as bottom depth increased, the need for capelin to school, may also

have decreased. For example, schooling as an anti-predator response to cod may not be
necessary in deeper areas where the vertical distance from cod to capelin is larger. Cod
are visual predators who use light to hunt their prey (Brawn, 1969) and although cod
have light sensitive eyes (Anthony and Hawkins, 2009) as light diminishes rapidly in the
water column, reduced consumption on capelin is expected (Fall et al., 2021). This was
however not the case here since cod density were dispersed throughout 43-324 meters.
Yet, studies have shown that bottom depth plays an important role in cod’s feeding
success. A potential factor limiting the interaction between cod and capelin in the deep
is that cod’s energy intake decreases with increasing depth (Johannesen et al., 2012).
Ultimately, packing density may therefore have been affected by a combination of light
and capelin’s threat sensitivity to cod, who were possibly exhibiting non-threatening
behaviour.
Increased packing density in shallow depths could reflect a cautious anti-predatory

response, which is expected when a combination of predation, light and shallow depth
exposes capelin to predation. Furthermore, decreasing packing density with increasing
bottom depth could suggest that capelin did not detect immediate threats that would in-
crease their packing density and instead spent energy investing in other forms of activity
such as feeding.

4.3. Changes in capelin’s minimum distance to bottom

4.3.1. Cod’s impact on capelin’s minimum distance to bottom

I found that capelin’s minimum distance to bottom was not impacted by abundance of
cod. This was unexpected since several studies have shown that fish schools exhibit an
evasive response when attempting to escape from approaching predators (Rieucau et al.,
2014; Vabø et al., 2002). This response is one of the more frequent responses to danger
amongst animals (Jøgensen et al., 2004) and as a consequence, fish schools tend to adjust
their vertical distribution in response to threat (Rieucau et al., 2014). In a study con-
ducted off Newfoundland, Mowbray (2002), demonstrated that capelin schools shifted
vertically in the water column away from the sea floor when cod density increased. Mov-
ing away from danger, is also a behaviour observed in herring schools (Pitcher et al.,
1996), that also dive down into the water column as a response to a simulated predator
(Rieucau et al., 2014) or an approaching vessel (Vabø et al., 2002). Cod are demersal
fish which associate to the seafloor (Ottersen et al., 2014) and therefore capelin was ex-
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pected to alter their distance from the seafloor when cod numbers increased. However,
my results may have reflected capelin’s modified response to different types of predation
as well as balancing the risk of predation with the need to engage in feeding in order to
maximize fitness.

Capelin may also be capable of assessing potential threats based on experience or other
innate behaviour in evading predation (’risk allocation hypothesis’) (Lima and Dill, 1990;
Lima and Bednekoff, 1999), which could explain their lack of response to abundance of
cod. In a study conducted off Newfoundland, common murres that dove into the water,
tended to target individual fish as opposed to schools (Crook and Davoren, 2014). Ad-
ditionally, capelin swam away from common murres exhibiting a more active foraging
behaviour (attempted approaches) compared to murres with a more passive foraging
behaviour (i.e search or travel). This suggests that capelin are capable of distinguishing
between the two behaviours and spend energy on evading predation when necessary.
Frequently being exposed to predation may also cause fish behaviour to be more effec-
tive in evading danger as result of increased experience with the predator (Wood and
Hand, 1985). Energy being spent on anti-predatory behaviour, in this case evasiveness
(increasing minimum distance to bottom) may be too costly. Energy may therefore be
spent on other activities, such as foraging (Lima and Bednekoff, 1999), in particular if
predators do not present an immediate threat. This could explain why capelin’s vertical
distribution did not change with changing abundance of cod.

Another possible explanation for why abundance of cod did not incite a response in
capelin’s minimum distance to bottom, is that capelin’s evasive behaviour is modified
as a response to changes in the environment. Interactions amongst fish are modified
through experience, general environmental conditions, or by the number of prey and
predator looming around (Crook and Davoren, 2014). In a study conducted by Clarke
et al., (1967) jack mackerel Trachurus symmetricus tended to modify their response de-
pending on the type of predator they interacted with. When attacked from above they
dashed off as a unit whereas from below only certain individuals responded. A response
similar to the one observed in jack mackerel could explain why the number of cod did
not incite an evasive response amongst capelin schools. Capelin face potential threat
from several predators (Gjøsæter, 1998) and so far, there is little literature that assesses
capelin’s evasive response to specific predators. Therefore, it would be interesting to
investigate capelin’s interactions with other predators.

Similar arguments made for cod’s impact on capelin packing density could be made
for minimum distance to bottom when it comes to how the selection of data for this
study could affect the results (see above).
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4.3.2. Light’s impact on capelin’s minimum distance to bottom

In this study, minimum distance to bottom decreased with increasing sun altitude.
Capelin’s distance to the seafloor is strongly affected by diel vertical migrations (DVM),
(Dalpadado and Mowbray, 2013) meaning they tend to descend down during daytime
and ascend upwards into the water column, by night (Skaret et al., 2020). Therefore,
capelin’s minimum distance to bottom was expected to decrease during daytime and
increase during night, as shown in this study. The results display capelin’s balance be-
tween engaging in feeding and reducing risk, by adjusting their position in the water
column to depths where certain light gradients provide a balance between detecting prey
and hiding from predators.

Capelin’s vertical distribution in the water column is affected by the availability of
prey and detection of predation which is significantly modulated by light gradients. In
a study conducted by Skaret et al., (2020) just after the BESS in autumn pelagic fish
such as capelin were found to avoid light intensities above 0.001m-2s-1µmol photons
when traversing up and down the water column around dusk and dawn. This eludes
to the idea that capelin associate to certain light gradients which can be referred to as
the "light comfort zone" (LCZ) (Røstad et al., 2016). LCZ describes the position in
the water column where aquatic organisms position themselves in a light gradient dark
enough to remain conspicuous from visual predators and light enough to detect their
own prey. Capelin’s position in the water column and thus minimum distance to bottom
is therefore modulated by light gradients that affect their migration up and down the
water column during the day (DVM).

4.3.3. Bottom depth’s impact on capelin’s minimum distance to

bottom

In this study, capelin’s minimum distance to bottom increased with increasing bottom
depth. It is expected that capelin select a habitat that provides optimal conditions with
regards to factors such as light gradients (Dalpadado and Mowbray, 2013), presence of
predators and prey (Mowbray, 2002) and temperature (Methven and Piatt, 1989) sug-
gesting that capelin would not gain advantages from descending too far down into the
water column. Therefore, the results in my study may reflect the different factors that
determine capelin’s vertical distribution in the water column as a trade-off between at-
taining energy and avoiding predation.

Capelin’s minimum distance to bottom increasing with increasing bottom depth means
that capelin’s vertical distribution is not fixed relative to the bottom and reflects their
response to prey, predation, light and temperature. Capelin may have been foraging on
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zooplankton in the upper water column independent of the bottom depth, which could
explain why capelin’s distance to the bottom increased with increasing depth. Traversing
further into the water columns could prove beneficial in avoiding predators from above.
Conversely, capelin’s distribution in this study could reflect an anti-predatory response
to their predator, cod, residing on the seafloor. Also, traversing into deeper depths may
be unnecessary for capelin if there is too little light and little prey. Their position is as
mentioned, influenced by the light comfort zone and so by descending outside this light
gradient may be futile and pose more risk than reward.

4.3.4. The interplay of factors that impacts capelin’s minimum

distance to bottom

Capelin’sminimum distance to bottom increased with increasing bottom depth and de-
creased with increasing sun altitude. Generally, capelin’s vertical distribution and posi-
tion relative to the seafloor is a good example of their habitat selection (Mowbray, 2002).
Their selection of habitat is modulated by a combination of temperature, prey, bottom
depth, inter-intra-specific competition, and predation risk. Despite abundance of cod
not having a significant effect on capelin’s minimum distance to bottom, the interplay
between light and bottom depth exhibit capelin’s position in the water column as a bal-
ance between risk and reward.

In this study, minimum distance to bottom is strongly modulated by light. As men-
tioned, capelin’s position in the water column exhibits an anti-predatory strategy that
could be effective in avoiding predation from cod. Hence, probably as a response to light
illuminating the upper water column during the day and making capelin more vulnerable
to predation by visible predators, the capelin are closer to the seafloor during daytime.
However, capelin schools examined here kept a minimum distance of 13 meters distance
from the seafloor. This suggests that capelin’s position in the water column is modulated
by the LCZ and possible evasiveness from cod residing on the ocean floor.

Capelin’s DVM behaviour means that cod feed on capelin during daytime, when
capelin is closer to the ocean floor. Their proximity may play a role in determining
capelin’s evasive behaviour, which could have been exhibited along shallow banks, where
abundance of cod is high and proximity to cod and capelin is close. If the capelin can-
not disperse in the water column as a refuge, due to the potential threats from other
predators, they may resort to increasing packing density instead, which was the case in
my study
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4.4. Conclusion

Based on the data provided by IMR, the abundance of cod did not contribute to sig-
nificant changes in the two aspects of capelin schooling dynamics, that I chose to look
at; packing density and minimum distance to bottom. However the best models showed
that sun altitude and bottom depth played a significant role in altering packing density
and minimum distance to bottom.
Capelin were found to invest their energy in packing tighter along shallow banks during

daytime where cod reside in highest abundance. This suggests that the combination of
cod abundance and proximity to cod affect capelin’s school packing density, especially
when light provides a visual cue to detect approaching predators and enables effective
schooling. In particular, at shallow depths, capelin is unable to respond by moving
vertically in the water column, thereby making packing density one of the few anti-
predatory response’s capelin is able to deploy. Minimum distance to bottom was a
proxy for measuring capelin’s evasive behaviour and response to cod, by increasing the
vertical distance from the seafloor where cod reside. Minimum distance to bottom varied
and capelin avoided close proximity to the seafloor when bottom depth increased, either
because they were feeding in the upper water column and/or because deeper areas allowed
capelin to distribute themselves vertically in the water column and avoid cod residing
in the seafloor. The result that capelin increased minimum distance to bottom with
increasing bottom depth suggests that capelin stay within an light comfort zone, where
they avoid visual predators whilst having sufficient light for hunting.
There are several ways of assessing fish school dynamic interactions (experiments,

filming, computer simulations, etc.) The use of acoustics in my study was advantageous
because it covers vast spaces, provides data with high resolution and is a non-invasive
approach to collecting data. By utilizing the data collected onboard the vessel and
subsequently using school detection methods to extract data pertaining to biological
characteristics, we can investigate how capelin respond to cod predation in the Barents
Sea.
My findings suggest that capelin seek to improve feeding success whilst avoiding pre-

dation and that several factors impact capelin’s schooling behaviour. Being able to un-
derstand capelin’s adaptive behaviour to predation can provide insight into how capelin
invest their energy and how they adapt to their environment. Very little is known about
capelin and cod’s fine-scale interaction and although cod follow capelin to the north of
Barents Sea and migrate thousands of km, the study area (see Figure 2.7) where my data
was collected, makes is possible to study cod and capelin’s interaction on a small-scale.
Although the combination of acoustic data and Korona school detection settings made it
possible to study capelin school characteristics within a scale of hundreds of meters, cod
abundance data from trawl hauls covered a larger scale of 0.75 nautical miles. Therefore,
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it was not possible to know whether the schooling responses reflected immediate local
pressure around the capelin schools. However, the data are on a smaller scale than what
is usually applied in such studies, and this is the first study to use this methodology
to study how cod abundance impacts capelin schooling dynamics. The approach is an
important step in gathering information about predator/prey interactions provides data
about capelin’s response to their environment, which is rooted in maximizing fitness
through activities such as feeding whilst avoiding predation.

As the ocean becomes warmer, it will have consequences for the Barents Sea marine life
(Roderfeld et al., 2008; Skagseth et al., 2020) including predator-prey interactions. Mod-
elling what factors impact capelin’s schooling dynamics helps our general understanding
of how capelin responds to predators. Studies from Canada have shown that prey avail-
ability and number of cod can affect the vertical distribution in capelin (Mowbray, 2002).
Recording Barents Sea capelin’s vertical distribution and schooling packing density over
time can be helpful in determining how capelin are affected by environmental changes
as a response to conditions that may take a longer time to recognize.
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A. Data collected from the 2012- 2018
ecosystem cruise

In order to test the response different thresholds had on the schools that had been
interpreted to capelin, the following thresholds were altered and tested on the three
different types of schools; -60 -70 and -80 dB re 1 m−1.

Examples of how different Thresholds detect capelin schools

The capelin schools were detected differently with different settings in the school detec-
tion algorithm:
Threshold (dB re 1 m−1) remained the parameter that attributed to the most noticeable
change in threshold as shown in the figures below.

Shown below is an example of how Korona detects and outlines schools differently
depending on the threshold provided in the korona configuration setting "school detec-
tion". For each setting, the minimum length was set to 5 meters. Minimum thickness
was set to 0. Additionally the blind zone remained at 12 m.

The different graphs show an evident difference in outlining. The schools that were
outlined were converted from korona regions to LSSS schools for which features like
length and packing density can be exported. Using the exported data, the table also
shows how the different thresholds effects the mean length, height, area, sA, sV median
as well as number of object (schools):

Table A.1.: Effect of varying Threshold dB re 1 m−1

Variables -60 -70 -80
Mean Area (m2) 21.59 76.79 96.94
Mean Height (m) 1.35 1.65 1.39
Mean Length (m) 52.93 31.63 28.38
Mean sV median (dB re 1 m−1) -55.62 -64.24 -75.62
Mean sA (m2 nm−2) 185.87 41.70 5.37
No. of schools 2464 9955 34109
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A. Data collected from the 2012- 2018 ecosystem cruise

Figure A.0.1.: Echogram displaying a fish veil with the school detection setting being
changed to a threshold of -60 dB re 1 m−1.

Figure A.0.2.: Echogram displaying a fish veil with the school detection setting being
changed to a threshold of -70 dB re 1 m−1.

Figure A.0.3.: Echogram displaying a fish veil with the school detection setting being
changed to a threshold of-80 dB re 1 m−1.
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A.0.1. How Length Affects Detection of Capelin Schools

Big, small and lose fish aggregations were also sensitive to changes in minimum length.
Length was altered to 5, 10 and 15 meters. The following figures and tables illustrate how
length effected the detection of capelin schools. This table compares the data exported
for each of the minimum lengths: 5, 10 and 15 meters. Mean area, height, sV median,
sA and number of schools were compared.

If the ship is cruising at a speed of 10 knots. There is around 5 meters distance
between each ping, that is sent out from the vessel. Therefore, the minimum length for
each setting increases subsequently with 5 meters. Settings were changed to 5, 10 and
15 meters.

Settings: Length

The following figures show how each setting outlines the small, big and fish veil schools
(shown in this order).
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A. Data collected from the 2012- 2018 ecosystem cruise

Figure A.0.4.: Echogram displaying small schools in the school detection settings with min. length = 5 m

Figure A.0.5.: Echogram displaying small schools in the school detection settings with min. length = 10m

Figure A.0.6.: Echogram displaying small schools in the school detection settings with min. length= 15m
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Figure A.0.7.: Echogram displaying big schools in the school detection setting with min.
length= 5m

Figure A.0.8.: Echogram displaying big schools in the school detection setting with min.
length= 10m

Figure A.0.9.: Echogram displaying big schools in the school detection setting with min.
length=15m
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A. Data collected from the 2012- 2018 ecosystem cruise

Figure A.0.10.: Echogram displaying fish veils in the school detection setting with
min. length= 5m

Figure A.0.11.: Echogram displaying fish veils in the school detection setting with
min. length= 10m

Figure A.0.12.: Echogram displaying fish veils in the school detection setting with
min. length= 15m
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A.0.2. Tables Comparing Minimum Length Settings

The tables show how each setting individually effects the mean area (m2), height (m),
length (m), (sv) median, (sA) and number of schools. As shown in the table the number
of schools decreases with each setting.

Table A.2.: Small Schools, displaying school detection, minimum length = 5, 10, 15 m.
Settings L= min.5m L= min.10m L= min.15m
Mean Area (m2) 25.66 45.67 60.43
Mean Height (m) 1.36 2.10 2.56
Mean Length (m) 19.68 29.32 35.65
Mean sV median (dB re 1 m−1) -64.19 -61.80 -60.88
Mean sA (m2 nm−2) 325.49 637.73 939.69
No. of schools 24 12 8

Table A.3.: Big Schools, displaying school detection, minimum length = 5, 10, 15 m.
Settings L=min.5m L= min.10m L= min.15m
Mean Area (m2) 512.65 993.12 1163.96
Mean Height (m) 5.47 9.84 11.15
Mean Length (m) 151.19 272.09 317.84
Mean sV median (dB re 1 m−1) -56.19 -54.25 -53.87
Mean sA (m2 nm−2) 1021.42 1923.90 2241.15
No. of schools 86 46 39

Table A.4.: Fish Veil, displaying school detection, minimum length = 5, 10, 15 m.
Settings L=min.5m L= min.10m L= min.15m
Mean Area (m2) 76.79 146.63 220.87
Mean Height (m) 1.65 2.35 2.93
Mean Length (m) 31.63 54.48 77.04
Mean sV median (dB re 1 m−1) -64.24 -63.89 -63.61
Mean sA (m2 nm−2) 41.70 57.08 73.78
No. of schools 9955 4915 3048
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B. Output for results: LMM summary,
QQ-norm plots, pearson residual
plots

Finding the outlier

When testing how packing density responded to number of cod, as well as bottom depth
and light, in the other models, the QQ-norm plots illustrated a seemingly straight linear
model. However, when testing how cod, bottom depth and light effected minimum
distance to bottom, a less then favourable normal distribution was displayed in the QQ-
norm plot window. After testing which residuals stood out, it was clear that observations
from station 2395 effected the QQ-norm plot distribution. Therefore I compared two
models, where one model included the data from station 2395 and the other model
excluded data from station 2395. The QQ-norm plot for the first model showed a more
acceptable linear model that could be used to in my testing. I then compared the two
models and their output values. I observed very few differences (See script and output in
figure B.0.1 and figure B.0.2. Therefore, the original model including data from station
2395 could still be used to test minimum distance to bottom against cod, bottom depth
and light.
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B. Output for results: LMM summary, QQ-norm plots, pearson residual plots

Figure B.0.1.: Shows the script where residuals below 150 (only station 2395 had residuals below)
were removed from the original data set in order to test if the output or interpretation of the model
changed.

Figure B.0.2.: Shows the output for the two models. The differences are relatively small.
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Figure B.0.3.: QQ-norm Plot Showing Model with Station 2395

Figure B.0.4.: QQ-norm Plot Showing Model without Station 2395
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B. Output for results: LMM summary, QQ-norm plots, pearson residual plots

Figure B.0.5.: Pearson residual plot showing model with station 2395

Figure B.0.6.: Pearson residual plot showing model without data from station 2395
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B.0.1. Does Bottom Depth and Light Effect Minimum Distance

in Capelin

This model was used to assess capelin’s minimum distance to bottom. The output for
the best model selected for this study, is shown below in table B.1 and table B.2.

Table B.1.: Output for lmer(minDistBottom bottomDepth + sunalt + (1|serienr), data =
cod.capelin2)

Fixed Effects Estimate SE Lower CI Upper CI Pr(>|t|)
Intercept*** -34.004 10.368 -54.330 -13.680 5.80E-09
Sun Alt.*** -119.947 15.622 -150.570 -89.330 1.90E-04
Bottom Depth
***

0.846 0.05 0.750 0.950 7.10E-03

Table B.2.: Random Effect for lmer(minDistBottom bottomDepth + sunalt+ (1|serienr)
Groups Name Variance Std.Dev
Station (Intercept) 486.200 22.05
Residual 786.4 28.04
Number of
Obs.

5725 Groups: station nr.,
26

QQ-norm plot and pearson’s residual graph for minimum distance model selected for
this study, can be seen in the section above when comparing the two best models without
residuals below 150 in figure B.0.3 and figure B.0.4. Pearson’s residual graph is seen in
figure B.0.5 and fig B.0.6.
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B. Output for results: LMM summary, QQ-norm plots, pearson residual plots

B.0.2. Does bottom depth and light effect packing density in

capelin

This is the output for the best model selected for this study. This model was used to
assess capelin’s packing density, shown in table B.1 and table B.4.

Table B.3.: Output for lmer(svMean38log bottomDepth+ sunalt+ (1|serienr), data = cod.capelin2)

Fixed Effects Estimate SE Lower CI Upper CI Pr(>|t|)
Intercept *** 4.400 0.324 3.765 5.035 2.0E-16
Sun Alt.*** 3.166 0.463 2.259 4.073 6.5E-11
Bottom Depth
***

-0.006 0.001 -0.008 -0.004 0.000171

Table B.4.: Random Effect for lmer(svMean38log bottomDepth+ sunalt+ (1|serienr)
Groups Name Variance Standard

Deviation
Station (Intercept) 0.530 0.728
Residual 0.634 0.796
Number of
Obs.

5725 Groups: station nr.,
26

The qq-norm plot and pearson’s residual plot can be seen here in figure B.0.7 and
figure B.0.8.
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Figure B.0.7.: QQ-norm plot showing lmer(svMean38log bottomDepth+ sunalt+ (1|serienr)

Figure B.0.8.: Pearson residual plot showing residual distribution for model: lmer(svMean38log bottomDepth+
sunalt+ (1|serienr)
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Table B.5.: Aggregated Overview of cod and capelin data from 26 Stations (3.s.f)
Station
num-
ber

Area (m2) Bottom
Depth
(m)

Sv (dB re
1 m−1)

Cod
(nm−2)

Min.distance
(m)

Sun Alt
(Radians)

Time of
Day

Temperature
(c◦)

2340 31.43 164.14 -61.12 0 117.52 0.20 Day -1.85
2342 50.33 157.85 -61.94 340.66 117.98 0.26 Day -0.41
2345 43.47 178.92 -66.28 79.25 154.18 -0.10 Night 1.00
2347 17.72 116.56 -62.33 664.02 94.17 -0.16 Night 0.11
2349 21.41 160.46 -62.37 3851.35 87.35 0.14 Day 1.17
2351 42.35 227.53 -64.51 3394.39 115.29 0.22 Day 1.50
2353 131.63 131.09 -65.49 846.13 86.33 -0.09 Twilight -1.17
2356 21.34 47.20 -60.28 58975.26 23.55 -0.14 Night 3.61
2358 48.75 77.56 -59.21 77072.28 39.65 0.06 Day/Twilight 3.61
2366 57.76 184.31 -60.09 521.43 159.67 -0.14 Night -0.73
2368 43.46 138.52 -60.95 1246.25 65.36 -0.15 Night 1.08
2370 123.32 199.55 -62.44 2429.17 78.87 0.23 Day -0.68
2374 100.09 124.48 -60.32 0 97.39 -0.10 Twilight -1.61
2377 71.89 172.20 -56.27 153.13 138.20 -0.17 Night -1.22
2388 61.72 100.53 -54.10 167.93 49.70 -0.11 Twilight -1.13
2390 99.23 162.53 -60.98 7687.62 66.66 0.17 Day 0.65
2392 16.48 321.23 -66.55 2911.33 249.43 0.12 Day -1.24
2395 17.78 324.79 -66.37 257.98 241.89 -0.21 Night -1.42
2399 115.50 130.44 -61.54 159.72 50.01 0.10 Day -1.22
2408 88.41 213.01 -63.16 2318.78 176.82 -0.16 Night 1.21
2412 62.47 250.09 -63.02 4169.15 147.71 0.08 Day -0.46
2416 269.78 146.17 -65.50 132.33 98.97 -0.21 Night -1.60
2418 53.23 255.53 -63.21 64.84 180.98 0.10 Day -1.25
2420 43.59 324.82 -64.39 0 206.48 0.05 Day -1.59
2423 563.02 249.53 -64.00 70.00 191.69 -0.21 Night -1.35
2429 12.40 250.57 -66.63 1190.66 202.17 -0.18 NIght 0.76
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C. R scripts

C.0.1. Script for sun altitude

This script was used to convert time start of trawling per station to sun altitude and
sun azimuth, using the suncalc package. The script shows also shows how sun altitude
was further made into categories using by converting radians to degrees and splitting the
categories into "Day", "Twilight" and "Night". As shown, civil twilight was used in this
study as a definition of twilight.

Figure C.0.1.: Calculating Standard Error and Confidence Intervals

C.0.2. Script for Likehlihood Ratio Test

This script was used to test two models with similar AIC values.

Figure C.0.2.: Likelihood ratio test to compare two models with similar AIC value

C.0.3. Script for json. to csv. conversion

This script was used to convert .json files to csv.files that could be used in R for further
analysis.

79



C. R scripts

Figure C.0.3.: Script used to convert .json files to csv.

C.0.4. Script to convert sv to Sv

This script was used to convert sv to Sv for visual presentation.

Figure C.0.4.: Script used to convert .json files to csv.

C.0.5. Calculating standard error and confidence intervals

The upper and lower confidence interval (Lower and Upper CI, respectfully) and standard
Error (SE) was calculated using the following method:

Figure C.0.5.: Calculating Standard Error and Confidence Intervals
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R Packages

In my study, the following packages were used in R, see table C.1:

Table C.1.: Overview of packages in R used in this thesis
Name of
Package

Purpose Citation

jsonlite convert j.son file from LSSS to "csv."file (Ooms, 2014)
effects Displays interactions for the statistical models, with the lin-

ear predictions.
(Fox and Weis-
berg, 2019)

lm4e Used to run linear mixed models (LMM) with random effect
(lmer)

(Bates et al.,
2015)

lmerTest Provides a summary of lmer output (p-values etc.) as well
as a summary

(Kuznetsova
et al., 2017)

AIC Generic function calculating Akaike’s ‘An Information Cri-
terion’ for one or several fitted model objects for which a
log-likelihood value can be obtained,

(Sakamoto
et al., 1986)

suncalc Used to calculate sun altitude based on time and geograph-
ical position

(Benoit Thieurmel,
2019)

ggOceanMaps Used to make map (Vihtakari,
2021)

ggplot2 Used to make histograms of variables (distribution and
transformation)

(Wickham,
2016)

lmtest Used to run a likelihood ratio test between two models with
similar AIC value

(Zeileis and
Hothorn,
2002)

R and
R.Studio

Data analyses and visualization of results conducted in this
program

(R Core Team,
2020; RStudio
Team, 2020)
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