
Simulation-Based Inference for Parameter Identification in
Mechanistic Models of Neural Dynamics

by

Nicolai Haug

Thesis

for the degree of

Master of Science

Department of Informatics

Faculty of Mathematics and Natural Sciences

University of Oslo

November 2021

This master’s thesis is submitted under the master’s program Computational Science,
with program option Imaging and Biomedical Computing, at the Department of
Informatics, University of Oslo. The scope of the thesis is 60 credits.

Z Nicolai Haug, 2021

www.duo.uio.no

Print production: Reprosentralen, University of Oslo

https://www.duo.uio.no/

Abstract

A central challenge in building a mechanistic model of neural dynamics is to
identify the model parameters consistent with experimental data. Due to intractable
likelihoods, traditional methods in the toolkit of statistical inference are inaccessible
for many mechanistic models. To overcome intractable likelihoods, simulation-based
inference provides a framework for performing rigorous Bayesian inference by just
requiring forward simulations of the model. The objective of this thesis is to
investigate the viability of simulation-based inference, in particular approximate
Bayesian computation (ABC) and neural density estimation (NDE), for identifying
parameters in mechanistic models of neural dynamics. Specifically, we infer the
conductance parameters in the Hodgkin-Huxley model for initiation and propagation
of action potentials and the synaptic weight parameters in the Brunel network
model for activity dynamics in local cortical networks.

We develop the generic Python library pyLFI which uses ABC with quantile-
based rejection sampling and local linear regression adjustment for estimating the
posterior distributions of model parameters. As the curse of dimensionality forces
ABC to require a compression of data into low-level summary statistics, we use
expert-crafted statistics of spiking activity. The choice of summary statistics is
crucial, and we carry out a correlation analysis to select and weight summary
statistics. On synthetic data, pyLFI efficiently estimates posterior distributions
and recovers ground truth parameters. We vary tuning parameters, and find that,
with regression adjustment, we can accept more simulations without sacrificing
substantial accuracy for the model parameters that are the most constrained by
the summary statistics. The approach of pyLFI is compared to the recent NDE
algorithm Sequential Neural Posterior Estimation (SNPE), which trains an artificial
neural network to map features of observed data to posteriors over parameters by
using adaptively proposed model simulations. Inference on the Brunel network
model demonstrates the power and flexibility of SNPE; by training on simulations
that includes two of the network states, SNPE is able to accurately predict posteriors
that correspond to the network’s state in the observed data.

In conclusion, we find that simulation-based inference is a powerful tool that
can be applied to a wide range of computational investigations in neuroscience, which
may help to both bridge the gap between mechanistic hypotheses and experimental
neural data, and design better models of neural dynamics. However, there are
challenges (and opportunities) ahead in scaling and automating simulation-based
inference approaches, and the methods are simulation intensive.

i

Acknowledgements

The present work was conducted at the Centre for Integrative Neuroplasticity
(CINPLA) and the Department of Informatics at the University of Oslo, under the
supervision of professor Gaute T. Einevoll, associate professor Joakim Sundnes,
professor Aslak Tveito and Dr. Alexander Stasik.

First of all, I want to thank my excellent supervisors. To Alex, thank you for
providing valuable guidance and insight in the planning and development of this
thesis. To Aslak, my sincere gratitude for all the help with the formalities. To
Joakim, I am deeply grateful for the support and also the constructive suggestions
on the code. To Gaute, I want to give a special thanks for both introducing me
to the fascinating field of computational neuroscience and your great support. I
appreciate the great amount of freedom you gave me to explore the aspects that
interested me the most. Our regular meetings have been of invaluable help. Thank
you for taking the time.

I want to extend a thanks to the friendly group of fellow students, especially
Kristian Wold and Christer Dreierstad, for the teamwork, inspiring conversations
and good times. I also want to thank the members of CINPLA for creating such a
friendly environment and pleasant place to be.

I would like to thank my friends and family, especially my parents for their uncon-
ditional support and love in my years as a student in physics and computational
science. I would also like to express my gratitude towards my partner Oda Hovet
for her endless support throughout my degree.

Nicolai Haug
Oslo, November 2021

ii

Abbreviations

ABC Approximate Bayesian Computation
AI Asynchronous Irregular

ANN Artificial Neural Network
AP Action Potential
HDI Highest Density Interval
HH Hodgkin-Huxley
IF Integrate-and-Fire
iid Independent and Identically Distributed

KDE Kernel Density Estimation
LIF Leaky Integrate-and-Fire
LFI Likelihood-Free Inference

MAF Masked Autoregressive Flow
MAP Maximum a Posteriori Probability

MCMC Markov Chain Monte Carlo
MDN Mixture-Density Network
NDE Neural Density Estimation
NF Normalizing Flows
pdf Probability Density Function

PPC Posterior Predictive Check
RMSPE Root-Mean-Square Percentage Error

SBI Simulation-Based Inference (alias LFI)
SEM Standard Error of the Mean

SI Synchronous Irregular
SNL Sequential Neural Likelihood

SNPE Sequential Neural Posterior Estimation
SR Synchronous Regular

iii

Contents

Abstract i

Acknowledgements ii

Abbreviations iii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Why Bayesian? . 3
1.2 Objective of the Study . 3
1.3 Code . 5
1.4 Notation . 6
1.5 Structure of the Thesis . 7

I Theoretical Background 8

2 Bayesian Inference 9
2.1 Bayes’ Theorem . 10
2.2 Prior and Posterior Predictive Distributions 11
2.3 Parameter Inference . 12

2.3.1 The Beta-Binomial Model and the Effect of Priors 12
2.4 Bayesian Computation . 16

2.4.1 Markov Chain Monte Carlo 16
2.4.2 The Metropolis Algorithm 17

2.5 Density Estimation . 19
2.5.1 Histograms . 19
2.5.2 Kernel Density Estimation 20

2.6 Summarizing the Posterior . 22
2.6.1 Visualization . 23
2.6.2 Bayesian Point Estimates 23
2.6.3 Posterior Uncertainty . 24
2.6.4 Posterior Predictive Checks 24

3 Simulation-Based Inference 26

Contents v

3.1 Likelihood-Based vs. Simulation-Based 26
3.2 Approximate Bayesian Computation 27

3.2.1 The ABC of Approximate Bayesian Computation 28
3.2.2 Rejection ABC . 28
3.2.3 Markov Chain Monte Carlo ABC 31

3.3 Regression Adjustment . 32
3.3.1 Linear Regression Adjustment 32
3.3.2 Local Linear Regression Adjustment 35

3.4 Neural Density Estimation . 36
3.4.1 Sequential Neural Posterior Estimation 36

4 Introduction to Neurobiology 39
4.1 Neural Circuits and Networks . 39
4.2 Neurons . 40
4.3 Ion Channels and Action Potentials 40
4.4 Synapses . 43

5 Models of Neural Dynamics 44
5.1 The Hodgkin-Huxley Model . 44

5.1.1 Electrical Properties of Neurons 44
5.1.2 Biophysical Model of Ionic Mechanisms 45
5.1.3 Simulation of Action Potentials 48

5.2 The Brunel Network Model . 49
5.2.1 Integrate-And-Fire Neurons 50
5.2.2 A Sparsely Connected Recurrent Network 51
5.2.3 States of Spiking Activity 53

II Methodology & Computational Approach 57

6 Methodology 58
6.1 Outline of Analyses . 58
6.2 Summary Statistics of Spiking Activity 59

6.2.1 Spike Statistics . 59
6.2.2 Spike Train Statistics . 60

6.3 Correlation Analysis & Importance Weights 61
6.4 Configuration of ABC Algorithm 63

6.4.1 Choice of Priors . 63
6.4.2 Discrepancy Metric . 63
6.4.3 Semi-Automatic Tolerance Selection 64

6.5 Performance Metrics . 65

7 Computational Approach 66
7.1 Computational Strategies . 66

7.1.1 Log Densities . 66

Contents vi

7.1.2 Parameter Transformations 66
7.1.3 Sample from the Prior and Posterior Predictive 67
7.1.4 vtrap . 67
7.1.5 A More Efficient Metropolis Sampler 68
7.1.6 Parallelization . 68

7.2 Software Development . 69
7.2.1 NeuroModels . 69
7.2.2 pyLFI . 74

III Results & Discussion 81

8 Inference on the HH Model 82
8.1 Observation and Feature Extraction 82

8.1.1 Correlation Analysis & Importance Weights 85
8.2 Study of ABC Settings . 89
8.3 Summarizing Posteriors . 92

8.3.1 Posteriors from Informative Priors 92
8.3.2 Posteriors from Noninformative Priors 95

8.4 SNPE Posteriors . 96
8.5 Noisy Observation . 97

9 Inference on the Brunel Model 101
9.1 Inference with ABC . 101

9.1.1 Observation from AI State 101
9.1.2 Correlation Analysis & Importance Weights 103
9.1.3 ABC Settings . 105
9.1.4 Summarizing Posteriors . 106
9.1.5 Posterior Predictive Checks 108

9.2 Inference with SNPE . 110
9.2.1 Training the Neural Density Estimator 110
9.2.2 Inference in the AI State . 110
9.2.3 Inference in the SR State . 111

IV Summary & Conclusions 115

10 Summary 116

11 Conclusions 120

12 Future Research 122

Contents vii

Appendices 125

A Additional Results 125

B Derivations 133
B.1 Alternative Hodgkin-Huxley Formulation 133
B.2 Derivation of vtrap . 134

References 135

1
Introduction

The human brain contains billions of neurons, and each interact, by exchanging
electrical signals, with thousands of other neurons to create countless circuits
that, together with the nerves throughout our bodies, form our nervous system
[1]. To understand the complex mechanisms of the nervous system, and in par-
ticular the brain’s behavior, computational neuroscientists construct and analyze
computational models at many different levels [2]. In this thesis, we study the
problem of inverse modelling, that is, the process of gathering information on a
model and its parameters from measurements of what is being modelled. Inverse
modelling is important because it tells us about parameters that we cannot directly
observe.

1.1 Motivation
Mechanistic models in neuroscience aim to explain neural or behavioral phenomena
in terms of causal mechanisms, and candidate models are validated by investigating
whether proposed mechanisms can explain how experimental data manifests. The
mechanistic modelling is generally through the use of differential equations, and
these models often have non-measurable parameters. A central challenge in building
a mechanistic model is to identify the parametrization of the system which achieves
an agreement between the model and experimental data. Finding well-fitted
parameters by inspection becomes more difficult as the complexity of both data
and models increase, and automated identification of data-compatible parameters
becomes necessary.

Chapter 1. Introduction 2

Statistical inference provides the mathematical means and procedures for auto-
mated parameter identification. Statistical inference uses the likelihood function
to quantify the match between parameters and data by deriving estimators of the
parameters from the data. In statistical inference, there are, broadly speaking, two
paradigms for the analysis of sampled data: frequentist inference and Bayesian
inference. In Bayesian inference, prior beliefs about parameters are updated ac-
cording to Bayes’ theorem upon observing data. Bayesian inference differs from the
traditional frequentist inference by the fundamental interpretation of probability.
In terms of parameter inference, the frequentist view is to regard the value of some
parameter as fixed but unknown, whereas the Bayesian approach to inference is to
regard the parameter as a random variable having a prior probability distribution.
Consequently, a posteriori knowledge will also have a probability distribution,
known as the posterior distribution. This is one of the most important features of
Bayesian inference, as it allows for uncertainty quantification of predictions.

Many mechanistic models are defined through simulators, which describes how
the process generates data and can be run forward to generate samples from
the likelihood. Likelihoods can be derived for purely statistical models, but are
generally intractable or computationally infeasible for simulator models. Hence
are traditional methods in the toolkit of statistical inference inaccessible for many
mechanistic models. To overcome intractable likelihoods, there have been devised
a suite of methods that bypass the evaluation of the likelihood function, known as
simulation-based inference (SBI), or likelihood-free inference (LFI), methods. These
methods seek to directly estimate either the posterior or the likelihood, and require
only the ability to generate data from the simulator to analyze the model in a fully
Bayesian context.

Approximate Bayesian Computation (ABC) constitutes a class of computational
algorithms rooted in Bayesian statistics that can be used to evaluate posterior
distributions of model parameters without having to explicitly evaluate likelihoods.
At its heart, the ABC approach is quite simple; evaluation of the likelihood is
replaced by comparing simulated data (generated by the simulator model) to
observed data, in order to assess how likely it is that the model could have produced
the observed data. The curse of dimensionality forces ABC algorithms to measure
the discrepancy between the simulated and observed data by using summary
statistics of the data. Therefore, the success of an ABC algorithm largely depends
on whether or not the summary statistics capture enough information from the
data that are relevant for the parameters of interest. The original ABC algorithm,
proposed by Tavaré et al. in [3] and later developed by Pritchard et al. in [4], is
built around the standard rejection sampling algorithm; the model parameters of
simulations that do not reproduce the summary statistics of the observed data
within a distance specified by a tolerance are discarded, but those that do are
accepted as posterior samples. The term Approximate Bayesian Computation
was first established by Beaumont et al. in [5], who also extended the ABC
approach by using Markov chain Monte Carlo (MCMC) sampling methods and
post-sampling regression adjustment for correcting the posterior samples based on

Chapter 1. Introduction 3

distances between the corresponding simulated summary statistics and the observed
ones.

Recently, there have been developed simulation-based inference machine learning
algorithms using conditional neural density estimators (NDEs), that is, density
estimators based on artificial neural networks (ANNs). In particular, the Sequential
Neural Posterior Estimation (SNPE) algorithm targets parametrically learning the
posteriors over model parameters by using adaptively proposed model simulations
instead of likelihood calculations. More specifically, the algorithm trains a NDE,
such as a mixture-density network (MDN) or normalizing flow (NF), to learn
the association between data, or summary statistics of the data, and underlying
parameters. Instead of filtering out simulations, as ABC algorithms do, SNPE uses
all simulations to train the NDE to identify admissible parameters. Once trained,
the network can then be applied to observed data to derive the posterior densities
over the parameters of the simulator model. The strategy behind SNPE was first
proposed by Papamakarios and Murray in [6] and further developed to the SNPE
algorithm by Lueckmann et al. in [7]. SNPE was later refined by Greenberg et
al. in [8]. In the literature, the authors refer to the variant by Papamakarios and
Murray as SNPE-A, the variant by Lueckmann et al. as SNPE-B and the variant
by Greenberg et al. as SNPE-C. Unless the distinction is made clear, SNPE will in
the following refer to the variant by Greenberg et al.

1.1.1 Why Bayesian?
The frequentist approach to parameter identification yields a single best-fit. How-
ever, such a local point estimate:
(i) is potentially a poor representation of the true parameter;

(ii) hides the fact that many similar parameter values could be capable of de-
scribing the data equally well.

The Bayesian approach to parameter identification, on the other hand, yields a
probability distribution (the posterior) of all data-compatible parameters. Thus,
the Bayesian approach has the advantage that the uncertainty of an estimate can be
quantified due to being encoded in a probability distribution. In addition, we can
characterize the model by examining the posterior over model parameters, which
can inform us about the ability of the data, or, as in the case of simulation-based
inference, summary statistics of the data, to constrain the model. Being able to
robustly characterize the model might also aid us in designing a better model to fit
the data.

1.2 Objective of the Study
The overall objective of this thesis is to investigate the ability and utility of
simulation-based inference for identifying parameters in mechanistic models of

Chapter 1. Introduction 4

neural dynamics. Specifically, we will investigate the performance of ABC using
rejection sampling with post-sampling regression adjustment and the machine
learning algorithm SNPE on two neuroscientific models; the Hodgkin-Huxley model
[9] and the Brunel network model [10]. The primary focus of the study will be on
ABC, and SNPE will be used mostly for comparison.

The seminal Hodgkin-Huxley model is a biophysically detailed description of the
ionic mechanisms underlying the initiation and propagation of action potentials in
squid giant axons. We will assess the identifiability of the potassium and sodium
conductance parameters by examining the width and location of the resulting
posterior estimates. As many biophysically detailed neuron models use the Hodgkin-
Huxley formalism, the original Hodgkin-Huxley model becomes an ideal case for
assessing and illustrating the application of simulation-based inference.

We also consider the Brunel network model for activity dynamics in local cortical
networks. Much effort in computational neuroscience today concerns mechanistic
models at the network level and the Brunel network is thoroughly analyzed in
the literature. The Brunel network is a sparsely connected recurrent network
consisting of one excitatory and one inhibitory population of leaky integrate-and-
fire (LIF) neurons. The network may be in several different states of spiking activity,
largely dependent on the values of the synaptic weight parameters. For the current
investigation, we limit our analysis to two of these states; the synchronous regular
(SR) state, where the neurons fire almost fully synchronized at high rates; and the
asynchronous irregular (AI) state, where the neurons fire mostly independently at
low rates. We will assess and compare the identifiability of the synaptic weight
parameters with the network both in the SR and AI state.

The choice of summary statistics is crucial for the performance of simulation-based
inference algorithms, in particular ABC, as they need to constrain the model
well. Therefore, we will also investigate summary statistics of spiking activity in
detail.

We divide the overall objective into six parts:

1. Implement simulators for both the Hodgkin-Huxley and Brunel network model
in Python.

2. Implement a general ABC rejection sampler with post-sampling regression
adjustment in Python.

3. Determine suitable summary statistics of the spiking activity using domain
knowledge and develop or find methods for extracting them from the simulated
neural data.

4. Assess how well the summary statistics constrain the model parameters by
examining sensitivity through a correlation analysis. Based on the correlation
analysis, implement an importance weighting procedure for the statistics.

Chapter 1. Introduction 5

5. Estimate the model parameter posteriors with both ABC and SNPE by
using synthetic observed data generated by the simulators, and examine the
performance of the simulation-based inference approach.

6. Compare the results obtained via ABC and SNPE and insights they might
provide about the neuroscientific models.

1.3 Code
As part of the thesis, we developed the Python packages pyLFI and NeuroModels.

pyLFI uses likelihood-free inference (LFI), also known as simulation-based infer-
ence, methods for estimating the posterior distributions over model parameters.
Specifically, we have implemented parallelized ABC rejection and Markov chain
Monte Carlo (MCMC) samplers as well as procedures for linear and local linear
regression adjustment. As a side note: We ended up not using the ABC MCMC
sampler or the linear regression adjustment in the present work, as they did not
provide any additional insights into the objective of the thesis. The package is
made publicly available in the GitHub repository:

https://github.com/nicolossus/pylfi

We chose to implement our own ABC software for several reasons:

1. This being a thesis under a computational science master programme, pro-
gramming and software development are central aspects.

2. Obtaining “under the hood” knowledge about a method might provide insights
about its weaknesses and strengths, as well as a thorough understanding in
general.

3. Flexibility. Other software might not facilitate the means for the particular
analyses we want to carry out.

The NeuroModels toolbox provides a framework for the simulator models and
methods for extracting summary statistics from the simulated neural data. The
package is located in a separate repository:

https://github.com/nicolossus/neuromodels

Both pyLFI and NeuroModels are available via the Python Package Index (PyPI).
Implementation details are given in Chapter 7.

The SNPE algorithm(s) is implemented in the sbi Python package [11]:

https://github.com/mackelab/sbi

All code used to carry out the present study is also made publicly available in the
GitHub repository:

https://github.com/nicolossus/Master-thesis

https://github.com/nicolossus/pylfi
https://github.com/nicolossus/neuromodels
https://github.com/mackelab/sbi
https://github.com/nicolossus/Master-thesis

Chapter 1. Introduction 6

1.4 Notation
In general, only standard and common mathematical notation will be used in
this thesis, and special symbols will always be introduced where necessary. The
notational convention in this thesis is based on a combination of the ones used in
[12] and [13].

General Notation

As general notation, we let θ denote unobservable vector quantities or population
parameters of interest, y denote the observed data, and ỹ denote unknown, but
potentially observable, quantities. In general these symbols represent multivariate
quantities. Observed or observable scalars and vectors are generally denoted by
lower case Roman letters, and observed or observable matrices by upper case Roman
letters. Parameters of models and distributions will mostly be denoted by Greek
letters. However, due to notational conventions in the field, this will not be strictly
followed when dealing with neuroscientific models. For example, a conductance
of a neuroscientific model is usually indicated by g, although it may represent a
model parameter from a statistical perspective. When using matrix notation, we
consider vectors as column vectors throughout; for example, if u is a vector with n
components, then uTu is a scalar and uuT an n× n matrix. Statistical estimates
of model parameters are indicated by a hat “ˆ”, as standard in statistics, e.g., θ̂.
Sometimes the hat symbol is also used to indicate a predicted value, as in ŷ.

Probability Notation

We let p(· | ·) denote a conditional probability density and p(·) amarginal distribution.
The conditional probability p(A | B) is the likelihood of event A occurring given
that B is true, and the marginal probability p(A) is the probability of observing A.
The terms distribution and density are used interchangeably. For brevity, the term
probability density will often be condensed into density. A probability mass function,
which gives the probability that a discrete random variable is exactly equal to
some value, is abbreviated pmf. Similarly, a probability density function, associated
with continuous rather than discrete random variables, is abbreviated pdf. The
same notation is used for continuous density functions and discrete probability
mass functions. Furthermore, we refer to both pdf and pmf as pdf, when the
nomenclature makes no difference.

In a statistical analysis, the assumption is usually that the n values yi may be
regarded as exchangeable, meaning that we express uncertainty as a joint density
p(y1, ..., yn) that is invariant to permutations of the indices. We commonly model
data from an exchangeable distribution as independently and identically distributed
(iid) given some parameter vector θ with distribution p(θ). The tilde symbol “∼” is
used in the sense of “distributed according to”, as common in statistics. When using
a standard distribution, we use notation based on the name of the distribution. For

Chapter 1. Introduction 7

example, if θ is distributed according to a normal distribution with mean µ and
variance σ2, we write θ ∼ N(µ, σ2) or p(θ) = N(µ, σ2).

Bayesian Inference

In Bayesian inference we encounter conditional densities called posterior and
likelihood. In order to make the distinction clear, we will denote the former by
π(· | ·) and the latter by p(· | ·). We also encounter a marginal density called prior,
which we will denote by π(·).

1.5 Structure of the Thesis
The thesis is organized into four parts.

In Part I we provide the theoretical background. First, we introduce Bayesian
inference in general in Chapter 2 and then simulation-based inference along with
the algorithms we will use in Chapter 3. Next, we give a brief introduction to
neurobiology in Chapter 4 before presenting the neuroscientific models that will be
used in the study in Chapter 5.

In Part II we discuss the methodologies we will use in the study. The specifics of
the methodologies are given in Chapter 6 and the specifics of the computational
approach in Chapter 7.

In Part III we present and discuss the results. Chapter 8 presents the results
on the Hodgkin-Huxley model and Chapter 9 the results on the Brunel network
model.

In Part IV we summarize our findings and conclusions. In Chapter 10 we put our
findings in perspective before concluding in Chapter 11. In Chapter 12 we provide
an outline of potential future research.

Part I

Theoretical Background

2
Bayesian Inference

A decision was wise, even though it
led to disastrous consequences, if
the evidence at hand indicated it
was the best one to make; and a
decision was foolish, even though it
led to the happiest possible con-
sequences, if it was unreasonable to
expect those consequences.

Herodotus, around 500 BC

The aim of statistical inference is to learn about underlying properties of a popula-
tion from observed data. In statistical inference, there are, broadly speaking, two
paradigms for the analysis of observed data: frequentist inference and Bayesian
inference. These often differ with each other on the fundamental interpretation of
probability. In the frequentist view, the probabilities of events are defined as their
relative frequencies in a repeatable objective process, and are thus ideally devoid of
opinion. From a Bayesian perspective, probabilities are measures that quantifies
the uncertainty level of statements based on the degree of belief about the state of
the world. Probabilities can be assigned to any statement, even when a random
process is not involved. Bayesian inference is the process of revising beliefs about
the state of the world in the light of new evidence.

This chapter introduces the fundamentals of Bayesian inference, with a particular
focus on parameter inference. The content of this chapter is mainly based on the
material in the Bayesian textbooks [13], [14] and [15].

Chapter 2. Bayesian Inference 10

2.1 Bayes’ Theorem
In terms of parameter inference, the Bayesian approach differs from the frequentist
in that unknown parameters θ are treated as random variables rather than fixed
quantities. In the Bayesian paradigm, all available information about an unknown
parameter is incorporated in a prior probability distribution, expressing our beliefs
before some evidence is taken into account. We usually have a prior probability
density function (pdf), π(θ), since there will typically be a continuum of possible
values of a parameter rather than just a discrete set. In the case of substantial
prior knowledge about a parameter θ, the prior pdf is narrow and concentrated
about some central value, whereas a lack of information yield a wider and relatively
flat prior pdf as shown in Figure 2.1. The prior is often specified by a particular
distribution among a set of well-known and tractable distributions, with the purpose
of making evaluation of prior probabilities and random generation of θ values
straightforward.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

θ

0.0

0.5

1.0

1.5

2.0

π
(θ

) Narrower prior

Wider prior

Figure 2.1: Two prior distributions π(θ). A narrow concentrated
prior (more certainty) about some central value and a wider less
informative prior (less certainty).

Our prior state of knowledge is modified by data y, obtained by performing
experiments, through the conditional sampling distribution p(y | θ). When regarded
as a function of θ, for fixed y, p(y | θ) is called the likelihood function. In order to
make probability statements about θ given sample data y, a probabilistic model
representing the joint probability distribution for θ and y must be provided. The
joint pdf can be written as a product of the prior distribution π(θ) and the likelihood
function p(y | θ):

Chapter 2. Bayesian Inference 11

p(θ, y) = p(y | θ)π(θ).

At this point, Bayes’ theorem is used to produce the posterior distribution, which
represents our state of knowledge about θ in the light of y. A common incarnation
of Bayes’ theorem is:

π(θ | y) = p(θ, y)
p(y) = p(y | θ)π(θ)

p(y) , (2.1)

where the marginal probability of the data p(y) =
∫
p(y | θ)π(θ)dθ in the case

of continuous parameters, or, in the case of a discrete set of parameters, p(y) =∑
θ p(y | θ)π(θ), where the sum is over all possible values of θ.

p(y) is the same for all possible θ, as it does not depend on θ. With fixed y, this
factor can thus be omitted in parameter inference since it constitutes a normalizing
constant and does not enter into determining the relative posterior probabilities of
different values of θ. Omitting the factor p(y) yields the unnormalized posterior
distribution:

π(θ | y) ∝ p(θ, y) = p(y | θ)π(θ). (2.2)

In this formulation, p(y | θ) is taken as a function of θ and not y.

The core of Bayesian inference is encapsulated in Equation 2.1 and Equation 2.2.
The principal task is to develop the joint probability model p(θ, y) and perform the
computations to obtain the posterior π(θ | y).

2.2 Prior and Posterior Predictive Distributions
Before observing any data y, we simply have the chosen model, i.e., the likelihood,
p(y | θ), and the prior distribution of θ, π(θ). To make predictive inference about
the expected future data, ŷ, encoded in the prior assumptions, we calculate the
marginal distribution of y, that is, the distribution of y | θ averaged over all possible
values of θ:

p(ŷ) =
∫
p(y | θ)π(θ) dθ . (2.3)

Equation 2.3 is called the prior predictive distribution.

Once we have a posterior, it is possible to generate predictions ŷ following a
similar logic. The posterior predictive distribution is calculated by marginalizing
the distribution of ŷ | θ over the posterior distribution:

Chapter 2. Bayesian Inference 12

p(ŷ | y) =
∫
p(ŷ | θ)π(θ | y) dθ . (2.4)

Thus, the posterior predictive distribution is an average of conditional predictions
over the posterior distribution of θ.

2.3 Parameter Inference
The way in which Bayes’ theorem operates is best seen through examples. In the
following we discuss Bayesian inference in the context of a statistical model where
the closed form is available.

2.3.1 The Beta-Binomial Model and the Effect of Priors
The beta-binomial model is one of the simplest Bayesian models, and useful for
introducing important concepts and computational methods in Bayesian analy-
sis. The model is often illustrated in the context of the classical coin-flipping
problem, where only a single scalar parameter, the success probability θ, is to be
estimated.

In the coin-flipping problem, we toss a coin n times and record the observations:
either heads or tails. Based on this data, we try to answer questions such as is the
coin fair? Or, more generally, how biased is the coin? In order to estimate the bias
of a coin in a Bayesian setting, we need observed data, a probabilistic model of the
data generating process, i.e., the likelihood, and a prior placed on the unknown
model parameter. For this example, we assume that the data-gathering part is
already done and we have recorded the number of heads after a number of coin
flips. The bias of the coin is represented by the θ parameter, and we say that a
coin with θ = 1 will always land heads, one with θ = 0 always tails and one with
θ = 0.5 has an equal chance of landing either heads or tails. Assuming that only
two outcomes are possible, heads or tails, and the random variable coin toss is
independent and identically distributed (iid), a candidate for the likelihood is the
binomial distribution:

p(y | θ) =
(
n

y

)
θy(1− θ)n−y. (2.5)

This is a discrete distribution returning the probability of getting y heads (or in
general, successes) out of n coin tosses (or in general, trials or experiments) given a
fixed value of θ (probability of success).

Figure 2.2 illustrates the binomial distribution for different θ. From the figure we
see that θ indicates how likely it is to obtain a head when tossing a coin, making
the binomial distribution a reasonable choice for the likelihood.

Chapter 2. Bayesian Inference 13

0 5 10 15 20 25 30 35 40

y (number of heads)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

p
(y
|θ

)

θ = 0.25

θ = 0.50

θ = 0.75

Figure 2.2: Binomial distributions with n = 40 coin flips and
different success probabilities θ. The coin is biased towards tails when
θ < 0.5 (blue) and heads when θ > 0.5 (green). For θ = 0.5 (orange)
the coin is unbiased (or fair). The legend indicates the values of the θ.

If the value of θ is known, the binomial distribution tells us the expected distribution
of heads. However, θ is an unknown model parameter, and thus we need to place a
prior on it. For mathematical convenience, we choose a family of prior densities
that lead to simple posterior densities. Considered as a function of θ, Equation 2.5
is of the form:

p(y | θ) ∝ θa(1− θ)b.

If the prior density is of the same form, with its own parameterization of a and b,
then the posterior will also be of this form. Such a prior density can be parameterized
as:

π(θ) ∝ θα−1(1− θ)β−1,

which is the beta distribution with shape parameters α > 0 and β > 0. The
parameters of the prior distribution are often called hyperparameters. In order to
ensure that the total probability is 1, the beta function,

B(α, β) = Γ(α)Γ(β)
Γ(α + β) ,

Chapter 2. Bayesian Inference 14

where Γ(z) is the gamma function, can be used as a normalizing constant:

π(θ) = 1
B(α, β)θ

α−1(1− θ)β−1. (2.6)

The beta distribution is defined on the interval [0, 1]. Figure 2.3 shows the beta
distribution with different shape parameters. The figure displays the versatility of
the beta distribution; the distribution adopts several shapes, determined by the
shape parameters, including the uniform distribution with α = β = 1. The uniform
(blue) prior represents all the possible values for θ being equally likely a priori. The
Gaussian-like (orange) prior is concentrated about θ = 0.5, and reflects a belief that
the coin is equally probable to land heads or tails. The reverse J-shaped (green)
prior is skewed towards a tail-biased outcome.

0.0 0.2 0.4 0.6 0.8 1.0

θ

0

1

2

3

4

5

π
(θ

)

α = 1, β = 1

α = 20, β = 20

α = 1, β = 4

Figure 2.3: The beta prior probability distribution with different
parameterizations by the two positive shape parameters. The beta
distribution adopts several shapes controlled by the shape parameters;
α = β = 1 gives a uniform distribution (blue), α = β = 20 gives a
bell curve centered at θ = 0.5 (orange) and finally α = 1 and β = 2
gives a reverse J-shaped distribution with a right tail (green).

Bayes’ theorem, Equation 2.2, states that the posterior is proportional to the
product of the likelihood and the prior. Thus, for our problem the posterior density
for θ is given as:

π(θ | y) ∝
(
n

y

)
θy(1− θ)n−y 1

B(α, β)θ
α−1(1− θ)β−1.

Chapter 2. Bayesian Inference 15

With fixed n and y, the factor
(
n
y

)
does not depend on the unknown parameter θ,

and neither does the beta function B(α, β). Thus can both be treated as constants
when calculating the posterior distribution of θ:

π(θ | y) ∝ θy(1− θ)n−yθα−1(1− θ)β−1

= θα+y−1(1− θ)β+n−y−1,

or, more concisely:

π(θ | y) ∝ θα
′−1(1− θ)β′−1, (2.7)

with α′ = α+ y and β′ = β+n− y. We recognize that the expression above has the
same functional form as the unnormalized beta distribution. The property that the
posterior distribution follows the same parametric form as the prior distribution is
called conjugacy, and we say that the beta distribution is a conjugate prior for the
binomial likelihood.

Figure 2.4 shows how the posteriors for the priors in Figure 2.3 evolve as more
and more data become available. For easier comparison, they have all been scaled
vertically to have the same maximum value. Figure 2.4 clearly reveals the effect of
the different priors; when there are few data, the shape of the posteriors vary in
detail; as the number of data increases, the shape and location of the posteriors
tend to converge and they all become sharply peaked. Since the priors reflect
the different information or assumptions before the results, and the posteriors the
updated knowledge in the light of data, this seems quite reasonable. If the data
only are the outcome of a few flips, the analysis of these data is dominated by the
prior information. However, as the data increases, the posterior is dominated by
the likelihood and we are eventually led to the same conclusions regardless of our
initial beliefs. In the limit of infinite data, all priors will provide the same posterior.
From a practical point of view, we could obtain nearly indistinguishable posteriors
for a finite amount of data. Thus, the choice of the prior becomes largely irrelevant
given a sufficiently large amount of data.

Priors are often categorized by the information they incorporate about parame-
ters as either noninformative, weakly informative or informative. If the prior is
noninformative, the posterior is data-driven, as illustrated by the uniform (blue)
prior in Figure 2.4. On the other hand, if the prior is informative, as illustrated
by the bell curve (orange) prior in Figure 2.4, the posterior is a mixture of the
prior and the data. However, as mentioned and seen in the figure, the data will
overwhelm the prior and dominate the posterior in the case of large amounts of
data. Weakly informed priors are constructed to purposely include less information
than we actually have. They can be useful if we want to let the data speak but not
model complete ignorance.

Chapter 2. Bayesian Inference 16

0.00 0.25 0.50 0.75 1.00

θ

0 flips
0 heads

1 flips
1 heads

2 flips
1 heads

3 flips
2 heads

4 flips
1 heads

8 flips
3 heads

16 flips
5 heads

100 flips
40 heads

500 flips
236 heads

1000 flips
504 heads

Figure 2.4: The effect of different priors on the posterior as the
number of data available increases. To aid in the comparison, they
have all been scaled vertically to have the same maximum value. The
number of data analyzed is indicated at the upper right-hand corner
of each panel. In the first panel there are zero flips, and thus the
densities represent the priors from Figure 2.3. The ground truth,
θ = 0.5 (the coin is indeed fair), is indicated by the black vertical line.

2.4 Bayesian Computation
While conceptually simple, Bayesian analysis can be mathematically and numerically
challenging. For a long time, Bayesians restricted their attention to conjugate
families where posteriors can be computed analytically in closed form. However,
realistic probabilistic models often lead to analytically intractable expressions. The
arrival of the computational era and development of sampling-based numerical
methods have transformed the Bayesian analysis practice. In this section we discuss
estimating the posterior numerically using algorithms from the Markov Chain
Monte Carlo (MCMC) family.

2.4.1 Markov Chain Monte Carlo
There have been devised a suite of methods for constructing and sampling from
arbitrary posterior distributions, but Markov chain Monte Carlo (MCMC) methods
have become the predominant computational strategy for Bayesian inference. The
term Monte Carlo refers to methods that rely on the generation of random samples
from a distribution of interest. In general, a Markov chain is a sequence of states

Chapter 2. Bayesian Inference 17

for which the probability of transitioning to the next state depends only on the
present state. That the next state is only conditional on the present state and thus
independent of the previous states is known as the Markov property. By providing
a starting point, such a chain can perform a random walk between the states
according to the transition probabilities. Hence, the main idea of MCMC is to draw
samples of θt sequentially with the distribution of sampled draws depending on the
previous sample θt−1 to construct a Markov chain {θt, t = 0, 1, 2, ...}. The key to
the method’s success is finding a Markov chain with transitions proportional to the
target posterior distribution, π(θ | y). In other words, the success is determined by
whether the chain is able to improve the sampling distribution at each step in the
simulations, in the sense of converging to the posterior distribution.

2.4.2 The Metropolis Algorithm
The Metropolis algorithm is one of the most established MCMC sampling methods
and was originally proposed in [16]. It was later generalized by Hastings in [17] into
the Metropolis-Hastings algorithm. In its original form, the Metropolis algorithm
is an adaptation of a random walk that explores the local neighborhood of the
current value of the Markov chain. It uses an acceptance/rejection rule to converge
to the specified target distribution. The algorithm proceeds as follows:

1. Initialize the Markov chain with a starting point θ0 for which π(θ0 | y) > 0.
Conceptually, it makes most sense to draw θ0 from the prior π(θ), though it
can be chosen by making an educated guess.

2. For each iteration of t, with t = 1, 2, ...:

(a) Sample a proposal parameter θ∗ from the proposal distribution (also
called the jumping distribution) q(θ∗ | θt−1) from which sampling is easily
done. For the Metropolis algorithm (but not the Metropolis-Hastings
algorithm), the proposal distribution must be symmetric, satisfying the
condition q(θ∗ = θa | θt−1 = θb) = q(θ∗ = θb | θt−1 = θa) for all θa, θb and
t. Both the normal and uniform distributions are examples of symmetric
distributions that satisfies this condition.

(b) Evaluate the quality of the proposal θ∗ by calculating the ratio of
posterior densities:

r = π(θ∗ | y)
π(θt−1 | y) = p(y | θ∗)π(θ∗)

p(y | θt−1)π(θt−1) . (2.8)

Note that we do not actually use the posterior directly, but rather the
proportionality given by Bayes’ theorem (Equation 2.2). If the posterior
density of θ∗ is greater than that of θt−1, the ratio of the posterior
densities will be greater than 1 and we will accept the proposal as the
next state of the chain. If the posterior density is greater for θt−1, we

Chapter 2. Bayesian Inference 18

will not necessarily discard the proposal θ∗. Less probable parameter
values are accepted probabilistically:

(c) Calculate the Metropolis acceptance criterion:

α = min (1, r), (2.9)

and set

θt =
θ∗ with probability α
θt−1 with probability 1− α

.

In this way, the Metropolis algorithm ensures that the chain tends to
move towards the highest density regions of the posterior, but it can
still move away from these high-density regions and towards the tails of
the posterior. The chain being able to assume all possible states, given
enough time, is called ergodicity, and is an important feature of the
Metropolis algorithm.

To implement the algorithm in a computer program, step (c) requires, after com-
puting α for θ∗, the generation of a uniform random number u ∼ U(0, 1). If u ≤ α,
we accept the proposal and set θt = θ∗. If u > α, we reject the proposal and set
θt = θt−1 instead. Note that when the proposal is not accepted, this still counts as
an iteration of the algorithm.

The normal distribution, N(µ, σ2), is an example of a symmetric proposal distribu-
tion. Conditioning the normal distribution on the previous value θt−1 of the chain
means that the location parameter µ = θt−1. The scale parameter σ is a tuning
parameter that we increase or decrease if the acceptance rate of the simulations
is too high or low, respectively. According to [13], the optimal acceptance rate is
0.44 for single parameter inference problems and 0.23 for for inference problems
concerning several parameters.

Algorithm 2.1 summarizes the Metropolis algorithm.

Chapter 2. Bayesian Inference 19

Algorithm 2.1: Metropolis sampling
Inputs :

• A target posterior density π(θ | y) ∝ p(y | θ)π(θ) consisting of a prior π(θ)
and likelihood p(y | θ).

• A symmetric Markov proposal density q(θ∗ | θ).
• An integer N > 0.

Initialize :
1 Sample θ0 ∼ π(θ).

Sampling :
for t = 1, ..., N do

2 Generate proposal θ∗ ∼ q(θ∗ | θt−1).

3 Calculate acceptance criterion α = min
(

1, p(y | θ∗)π(θ∗)
p(y | θt−1)π(θt−1)

)
.

4 Sample u ∼ U(0, 1).
if u ≤ α then

5 θt = θ∗

else
6 θt = θt−1

2.5 Density Estimation
The probability density function (pdf) is a fundamental concept in statistics. When
we estimate the posterior numerically, we obtain random samples of θ drawn from
the posterior density π(θ | y) but not the posterior pdf itself. In this section, we
briefly discuss density estimation, that is, methods for constructing an estimate
of the pdf from sample data. The focus will be on nonparametric approaches to
density estimation. It will be assumed that we are given a sample of n univariate
observations x1, ..., xn whose underlying density is to be estimated. The density
estimators will be denoted by p̂. The content of this section is based on the material
in the statistical learning textbooks [18], [19] and [20].

2.5.1 Histograms
The most basic density estimator is the histogram. Standard histograms simply
partition x into k bins of width h and then count the number of observations of x
falling in each bin:

h(x) =
n∑
i=1

B(x− x̃i;h),

where x̃i is the center of the bin in which observation xi lies and

Chapter 2. Bayesian Inference 20

B(x;h) =
1 if x ∈ (−h/2, h/2)

0 otherwise
.

The histogram estimator for the pdf is then:

p̂(x) = h(x)
nh

(2.10)

This definition gives a density estimate p̂(x) that is constant over the width of each
bin, and all bins have the same width h. The number of bins k can be assigned
directly or calculated from a suggested bin width h as:

k =
⌈max x−min x

h

⌉
,

where the braces indicate the ceiling function. The amount of smoothing inherent
in the procedure is primarily controlled by the bin width. Too small bin widths can
give a density model with structure not present in the underlying data-generating
density, and too large bin widths a density model that is too smooth for capturing
the nuances of the underlying density. There are no hard-and-fast rules concerning
the bin width, but there are some rules of thumb for setting h based on n and the
dimensionality of the problem, such as Scott’s rule [21] and Freedman–Diaconis’
rule [22].

In practice, the histogram density estimator can be useful for quickly visualiz-
ing data in one or two dimensions, but is unsuited for most density estimation
applications. For higher dimensional data, histograms are likely to run into the
curse of dimensionality as the number of bins have an exponential scaling with the
dimension. Another major issue is that the density has discontinuities that are
due to the bin edges. Figure 2.5 in the next section provides an example of the
histogram density estimator which illustrates this. However, the two important
principles of density estimation are encapsulated in the histogram approach. First,
in order to estimate the density at a particular location we should smooth the local
neighborhood of that point. Second, the smoothing parameter should be neither
too small nor too large to obtain an accurate estimate. The concept of locality
requires some form of distance measure, and we have here assumed the Euclidean
distance.

2.5.2 Kernel Density Estimation
Kernel density estimates (KDEs) are closely related to histograms, but avoid some
of the drawbacks. For instance, they have better scaling with dimensionality and
can provide continuous density estimates. This is achieved by replacing the indicator
function B of the histogram density estimator with a standard smoothing kernel
function, defined by:

Chapter 2. Bayesian Inference 21

Kh(‖x− xi‖) = 1
h
K

(
‖x− xi‖

h

)
, (2.11)

where h > 0 is the smoothing parameter, ‖·‖ denotes the Euclidean distance and
K(u) the kernel of a pdf. A kernel with subscript h is usually referred to as a scaled
kernel. The kernel estimator for the pdf is thus:

p̂(x) = 1
n

n∑
i=1

Kh(‖x− xi‖) = 1
nh

n∑
i=1

K

(
‖x− xi‖

h

)
. (2.12)

The smoothing parameter h is often called the bandwidth in the context of kernel
smoothing, and corresponds to the scale of the kernel. There are also rules-of-thumb
for setting the bandwidth, such as Silverman’s rule [23]. Intuitively, the kernel
estimator is a sum of “bumps” placed at the sample points. The kernel determines
the shape of the bumps and the bandwidth their width. Figure 2.5 provides an
illustration of this, and also compares the histogram and kernel density estimate
using the same data. The smoothness of the KDE compared to the discreteness of
the histogram illustrates how KDEs converge faster to the underlying pdf.

Figure 2.5: Comparison of the histogram (left) and kernel density
estimate (right) constructed using the same six data samples. For
the histogram, the data is partitioned into k = 6 bins, each of width
h = 2. If more than one data point falls inside the same bin, the
density (height) of the bin increases. Note the discontinuities that
are due to the bin edges. For the kernel density estimate (KDE), the
kernel is Gaussian with bandwidth h = 2.25. The kernel is placed
on each of the six data samples (indicated by the red dashed curves),
and the kernels are summed to make the KDE (solid blue curve). The
data samples are shown as the rug plot on the horizontal axis.

Source: [24].

Chapter 2. Bayesian Inference 22

The kernel of a pdf is the form of the pdf in which any factors that are not functions
of any of the variables in the domain are omitted. Kernels are symmetric functions
such that K(u) ≥ 0 for all u,

∫
K(u) du = 1 and

∫
u2K(u) du <∞. Some common

choices of kernels are the Gaussian kernel:

K(u) ∝ exp
(
−1

2u
2
)
, (2.13)

and the Epanechnikov kernel:

K(u) ∝
1− u2 if |u| ≤ 1

0 otherwise
. (2.14)

Figure 2.6 shows the Gaussian and Epanechnikov kernels. Kernels may or may not
have finite support. Kernels with finite support are defined on a domain such as
[−1, 1], and kernels without on (−∞,∞). The Gaussian kernel does not have finite
support, while the Epanechnikov kernel has.

−4 −3 −2 −1 0 1 2 3 4

u

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en

si
ty

Gaussian kernel

Epanechnikov kernel

Figure 2.6: The Gaussian and Epanechnikov kernels defined by
Equation 2.13 and Equation 2.14, respectively.

2.6 Summarizing the Posterior
The result of a Bayesian analysis is a posterior distribution which contains all the
current information about the parameters θ. The focus of this section will be on
how we can summarize the obtained posteriors.

Chapter 2. Bayesian Inference 23

2.6.1 Visualization
Visualizing the posterior is a useful first-step in assessing the results of an inference,
as the shape of the posterior quickly tells us how well the procedure was. However,
we generally obtain estimated posterior samples and not the posterior density itself.
In order to examine the location and width of the posterior, we therefore have to
generate a visual representation by using density estimation, in particular KDE. If
θ is a one- or two dimensional vector, we can simply plot the full posterior, which
will be a joint posterior in the latter case. If the parameter vector has more than
two dimensions, we can plot the marginal posterior for each parameter.

However, it is useful to also derive summary statistics from the posterior, as numeri-
cal summaries often are easier to present and interpret than the full posterior.

2.6.2 Bayesian Point Estimates
Bayesian point estimates are properties of the posterior. The most common point
estimates, θ̂, are the:

• Posterior mean:
θ̂mean = E[θ | y] =

∫
θπ(θ | y) dθ , (2.15)

which simply is the expected value of the posterior distribution.

• Posterior median:
θ̂median = F−1

θ|y(0.5), (2.16)

where the cumulative posterior distribution Fθ|y
(
θ̃q
)

=
∫ θ̃q
∞ π(θ | y) dθ. Here,

θ̃q is the value of θ at the q-quantile. For example, the median is the
0.5-quantile and the value of the cumulative posterior distribution is thus
Fθ|y

(
θ̃0.5

)
= 0.5. The median being the 0.5-quantile entails that it is the value

of θ which divides the posterior in half.

• Posterior mode which is also called the maximum a posteriori probability
(MAP) estimate:

θ̂MAP = max
θ
π(θ | y), (2.17)

and is the point at which the density is highest.

As seen by the definitions above, each of the location summaries has its own
interpretation. In general, there is no particular summary statistic that is preferred,
and there will be different reasons to use each summary statistic. The mean is often
used because it is a simple and familiar concept, or the observable is truly believed
to be the average of some process. However, the mean might be a misleading point
estimate for more complex and skewed distributions, such that θ̂ ends up in a
region of low posterior density. The median is more robust to outliers than the
mean, and we might prefer an estimate in the middle of the distribution. However,

Chapter 2. Bayesian Inference 24

as with the mean, the median might also end up in regions of low density for
more complex posteriors. The MAP estimate is closely related to the frequentist
maximum likelihood estimate (MLE), and may be interpreted as the single “most
likely” value. Providing an estimate of the MAP is more involved as we need to
construct a KDE, which also may affect the quality of the estimate, based on the
posterior samples and then find the mode of the KDE. The MAP estimate is most
sensible to use for unimodal posteriors that have well-defined peaks. The MAP of
a multimodal posterior might happen to be at one extreme and if the posterior is
mostly flat the MAP might end up at an arbitrary location.

2.6.3 Posterior Uncertainty
In addition to posterior point estimates, it is important to report posterior un-
certainty. The uncertainty can be characterized by the posterior standard devia-
tion,

sd(θ | y) =
√

var(θ | y) =
√∫ (

θ − θ̄
)2
π(θ | y) dθ,

where var(θ | y) is the posterior variance and θ̄ = E[θ | y] the posterior mean.
The standard deviation works well for Gaussian-like distributions, but can be
misleading for other, in particular skewed, distributions. An alternative is to use
credible intervals to quantify the posterior uncertainty. In the Bayesian paradigm,
a credible interval is an interval within which θ falls with a particular probability.
They are the Bayesian analogue of a frequentist confidence interval, though the
interpretation, as usual, is different. In the Bayesian setting, an interval having a
posterior probability .95 gives a 95% probabilistic belief that the parameter is in
that interval. A 100(1− α)% credible interval is a subset of θ such that

∫
π(θ | y) dθ = 1− α,

where α is the confidence level. If the confidence level is α = 0.05, we have a 95%
credible interval.

Credible intervals are not unique on a posterior. This means that we have to define
a condition to construct a suitable interval. A common condition is to use the set
of points for which the posterior density is higher than for any outside this set.
This will be the narrowest interval on the posterior for some given confidence level,
and is often referred to as the highest posterior density interval (HPDI) or just the
highest density interval (HDI).

2.6.4 Posterior Predictive Checks
The generated predictions ŷ from the posterior predictive distribution, Equation 2.4,
can be used to validate and criticize the model by comparing them with the observed

Chapter 2. Bayesian Inference 25

data y. This is known as posterior predictive checks (PPCs). The main idea of a
PPC is to check for auto-consistency. The predicated data are simulated by typical
posterior parameter values. If the predictions do not fit the observed patterns of
interest, this might inform us on potential limitations of the model.

3
Simulation-Based Inference

Computational neuroscientists have developed complex mechanistic models to
describe neural phenomena of interest. Many mechanistic models are defined
through simulators which describe how the process generates data. However,
simulators are poorly suited for inference and lead to challenging inverse problems.
Standard Bayesian inference is performed within the context of a statistical model
from which the likelihood can be derived. Likelihoods are generally intractable or
computationally infeasible for simulator models, which makes the typical approach
to inference inaccessible.

In this chapter we discuss simulation-based inference (SBI), that is, algorithms that
avoid explicit likelihood evaluations by instead using model simulations. SBI is
perhaps best known under the moniker likelihood-free inference (LFI). Nevertheless,
we prefer the term SBI to LFI as the latter indicates that the likelihood is not
present at all, which we will see is not the case.

From this chapter and onwards, there will be a minor notational tweak. In order
to avoid ambiguity, observed data will be denoted by yobs and simulated data,
generated by the simulator model, by ysim.

3.1 Likelihood-Based vs. Simulation-Based
In this section, we detail the differences between likelihood-based and simulation-
based inference. The content of this section is based on [25], [26] and [27].

Suppose a data-generating process is controlled by parameters θ, and the process
generates data y when run forward. We assume that the process defines the

Chapter 3. Simulation-Based Inference 27

conditional likelihood function p(y | θ) for every setting of θ. Given an observation
yobs, the problem of interest is to infer parameter settings compatible with yobs.
That is, we want to compute the posterior density π(θ | yobs) obtained by Bayes’
theorem (Equation 2.2). The choice of inference algorithm primarily depends on
how the data-generating process is modelled.

A purely statistical model, or an explicit model, describes the likelihood p(yobs | θ)
of the process given values for yobs and θ. With an explicit model, the posterior
π(θ | yobs) is, in general, easily evaluated using Bayes’ theorem. Samples from the
posterior can be generated using Bayesian computation methods such as Markov
chain Monte Carlo algorithms, as discussed in Section 2.4. Such methods are
referred to as likelihood-based inference methods, as they explicitly evaluate the
likelihood.

On the other hand, a simulator model, or an implicit model, describes how the
process generates data. Many mechanistic models are defined through simulator
models. For any parameter setting θ, a simulator model can be run forward
to generate samples from the likelihood p(yobs | θ). Unlike for explicit models,
implicit simulator models generally have intractable or computationally infeasible
likelihoods. The complexity or absence of the associated likelihood typically arises
from it involving computationally expensive or intractable integrals, or that the
simulator’s internal states are unavailable. In order to perform inference on a
simulator model, methods using simulations from the model rather than likelihood
evaluations are needed. Such methods are referred to as simulation-based inference
methods.

In general, simulation-based methods are less efficient than likelihood-based as
the former can require lots of simulations to produce accurate results. One of the
main topics of research in simulation-based inference is how to reduce the required
number of simulations without sacrificing inference quality.

3.2 Approximate Bayesian Computation
Approximate Bayesian Computation (ABC) constitutes a class of computational
algorithms rooted in Bayesian statistics that can be used to evaluate posterior
distributions of model parameters without having to explicitly calculate likelihoods.
In this section we discuss ABC and its two fundamental algorithms: the original
rejection ABC algorithm and the more sophisticated Markov chain Monte Carlo
(MCMC) ABC algorithm.

The content of this section is mainly based on material from [25].

Chapter 3. Simulation-Based Inference 28

3.2.1 The ABC of Approximate Bayesian Computation
Given observed data yobs, a simulator model M(θ) with parameters θ having prior
π(θ), we seek an algorithm to sample from the posterior π(θ | yobs) ∝ p(yobs | θ)π(θ).
This can be achieved by using the rejection sampling algorithm:

Algorithm 3.1: Rejection sampler
1 Sample θ ∼ π(θ).
2 Accept θ with probability proportional to the likelihood p(yobs | θ).

Algorithm 3.1 can be made more general and avoid the need to explicitly compute
probabilities by using the following, stochastically equivalent, formulation:

Algorithm 3.2: General rejection sampler
1 Sample θ ∼ π(θ).
2 Simulate data ysim from M(θ).
3 Accept θ if ysim = yobs.

Algorithm 3.2 is due to Rubin [28]. The chance of the outcome ysim = yobs will,
however, be vanishingly small for most problems, and thus vastly time consuming
to compute. Algorithm 3.2 will therefore, typically, not be an efficient algorithm.
This is where the approximation to Bayesian computation comes into play. We
define a discrepancy metric ρ(·, ·) to compare the simulated and observed data and
a tolerance ε ≥ 0. The approximate Bayesian computation (ABC) algorithm is
then:

Algorithm 3.3: Approximate rejection sampler
1 Sample θ ∼ π(θ).
2 Simulate data ysim from M(θ).
3 Compute ρ ≡ ρ(ysim, yobs), and accept θ as an approximate draw from

π(θ | yobs) if ρ ≤ ε.

Algorithm 3.3 is called the rejection ABC algorithm and was first proposed by
Tavaré et al. in [3] and developed by Pritchard et al. in [4]. In the scheme of
Pritchard et al., the simulated and observed data were compared through a choice
of summary statistics. We will discuss the algorithm in more detail in the next
section.

3.2.2 Rejection ABC
Rejection ABC, as outlined in Algorithm 3.3, is a rejection sampling algorithm for ob-
taining independent samples from the approximate posterior πABC(θ | ρ(ysim, yobs) ≤ ε),
where ρ(·, ·) is a discrepancy metric, e.g. the Euclidean distance, and ε ≥ 0 a tol-
erance. The algorithm proceeds by first sampling a set of parameters θ from the
prior, then generate simulated data ysim under the simulator model M(θ) specified
by the sampled θ, and finally accepting and retaining θ if the distance between

Chapter 3. Simulation-Based Inference 29

ysim and yobs is no more than ε. If ρ(ysim, yobs) = 0, then ysim = yobs, and the
accepted θ is a sample from the true posterior. The tolerance parameter ε thus
controls the trade-off between estimation accuracy and computational efficiency.
With sufficiently small ε, the accepted samples follow the exact posterior more
closely, though the algorithm accepts less often. On the other hand, the algorithm
accepts more often with a large ε, but the accepted samples might yield a replica
of the prior.

Stochastically matching ysim and yobs becomes increasingly difficult with increasing
dimensionality of the data. In order to operate efficiently, ABC algorithms require
a compression of the data into low-dimensional summary statistics s = S(y). A
summary statistic that contains the same amount of information about model
parameters as the whole dataset, is referred to as being a sufficient statistic s̃.
Thus,

π(θ|yobs) = lim
ε→0

πABC(θ | ρ(ysim, yobs) ≤ ε)

= lim
ε→0

πABC(θ | ρ(s̃sim, s̃obs) ≤ ε)

≈ lim
ε→0

πABC(θ | ρ(ssim, sobs) ≤ ε)
(3.1)

The choice of summary statistics is crucial for the performance of ABC algorithms,
and the optimal choice is a minimal sufficient summary statistic. It is common to use
the Fisher-Neyman factorization theorem to determine whether or not a summary
statistic is sufficient. The theorem is based on being able to re-express the likelihood
as a function of the sufficient summary statistic and data. Unfortunately, in the
context of simulation-based inference, the likelihood is unavailable and we cannot
examine a summary statistic to determine if the Fisher-Neyman factorization
theorem holds. However, if powerful low-dimensional summary statistics are
established, ABC algorithms can still offer a reasonable performance. The dimension
of the vector of summary statistics s should be large enough so that it capture as
many important features of the observed data as possible, but also low enough so
the curse of dimensionality of matching ssim and sobs is avoided.

Figure 3.1 gives a conceptual overview of the rejection ABC algorithm in a two-
dimensional summary statistic space. Having observed data yobs provided by nature
and reduced it to a summary statistic sobs (the blue dot), we sample parameter
values θ ∼ π(θ), generate simulated data ysim through the simulator M(θ), compute
the simulated summary statistic ssim and compare with the observation. Here, the
discrepancy metric is the Euclidean distance, and the acceptance region amounts
to a circle (indicated by the shaded grey circle) with center according to the
observation and radius determined by the tolerance ε. The θ that correspond to
ssim within this circle are accepted (the green dots), and those outside the circle
are rejected (the red dots).

Chapter 3. Simulation-Based Inference 30

𝝅 𝜽
𝜽

M 𝜽
𝒚𝐬𝐢𝐦

ssim = 𝑺 𝒚𝐬𝐢𝐦

Observation
𝝐

r s s
im
, 𝒔 ob

𝐬

Summary statistic space

Rejected

Accepted

sob𝐬 = 𝑺 𝒚𝐨𝐛𝐬
𝒚𝐨𝐛𝐬

Figure 3.1: A conceptual overview of rejection ABC in 2D summary
statistic space. The discrepancy metric is the Euclidean distance,
which has a circular acceptance region with the observed summary
statistic sobs as center (blue dot) and tolerance ε as radius. The
parameters θ with corresponding simulated summary statistics ssim
that fall within the acceptance region are accepted (green dots), and
those outside are rejected (red dots). See text for additional details.

Source: Adapted from Fig. 3 in [29].

Algorithm 3.4 summarizes the full rejection ABC algorithm.

Algorithm 3.4: Rejection ABC
Inputs :

• An observation yobs.
• A simulator model M(θ) with parameters θ having prior π(θ).
• A discrepancy metric ρ(·, ·) and threshold ε ≥ 0.
• A summary statistics function S(y).
• An integer N > 0.

Sampling :
for i = 1, ..., N do

1 Sample θ ∼ π(θ).
2 Simulate data ysim from M(θ).
3 Calculate ρ ≡ ρ(S(ysim), S(yobs)) = ρ(ssim, sobs).

if ρ ≤ ε then
4 Accept θ.

else
5 Go to 1.

Chapter 3. Simulation-Based Inference 31

3.2.3 Markov Chain Monte Carlo ABC
In Rejection ABC, the proposal parameters are sampled from the prior. Although
sampling from the prior is efficient, the efficiency of the overall procedure will be
determined by whether the prior is chosen so that it is of a similar shape and
location as the desired posterior. The acceptance rate will be low if the approximate
posterior is significantly narrower than the prior, as is often the case. The rejection
ABC algorithm will thus become more computationally inefficient as more of the
expensive data generation becomes necessary. In this case, we might choose to
develop a recursive strategy where the quality of previous candidates in our sampling
algorithm can be used to guide the candidate generation process. Basing proposal
samples off of previous states is precisely the strategy behind conventional Markov
chain Monte Carlo (MCMC) methods, as we introduced in Section 2.4.

Beaumont et al. [5] were the first to both extend the ABC approach to use MCMC
methods and use the term Approximate Bayesian Computation. Algorithm 3.5
summarizes the MCMC ABC algorithm with Metropolis sampling (also discussed
in Section 2.4). To perform Metropolis sampling in the simulation-based context,
we calculate the probability of accepting the proposal θ∗ by evaluating:

α =
min

(
1, π(θ∗)

π(θt−1)

)
if ρ(ssim, sobs) ≤ ε

0 if ρ(ssim, sobs) > ε
(3.2)

Similarly to rejection ABC, the acceptance probability of MCMC ABC decreases
as ε becomes small. Moreover, the performance of MCMC ABC strongly depends
on the selection of proposal and prior density.

Chapter 3. Simulation-Based Inference 32

Algorithm 3.5: Markov chain Monte Carlo ABC with Metropolis sampler
Inputs :

• An observation yobs.
• A simulator model M(θ) with parameters θ having prior π(θ).
• A symmetric Markov proposal density q(θ∗ | θ).
• A discrepancy metric ρ(·, ·) and threshold ε ≥ 0.
• A summary statistics function S(y).
• An integer N > 0.

Initialize :
1 Sample θ0 by performing one iteration of rejection ABC (Algorithm 3.4).

Sampling :
for t = 1, ..., N do

2 Generate proposal θ∗ ∼ q(θ∗ | θt−1).
3 Simulate data ysim from M(θ∗).
4 Calculate ρ ≡ ρ(S(ysim), S(yobs)) = ρ(ssim, sobs).
5 Calculate acceptance criterion α (Equation 3.2).
6 Sample u ∼ U(0, 1).

if u ≤ α and α 6= 0 then
7 θt = θ∗

else
8 θt = θt−1

3.3 Regression Adjustment
In this section, we discuss a post-sampling refinement called regression adjustment,
first proposed by Beaumont et al. in [5]. The goal of the method is to improve the
posterior approximation. Usually, we choose summary statistics with a systematic
relationship to the model parameters. The idea behind regression adjustment is to
correct the accepted posterior samples based on this relationship and the distance
between the simulated and observed summary statistics. The content of this section
is based on material from [5], [25] and [30].

3.3.1 Linear Regression Adjustment
Let sobs = (sobs,1, ..., sobs,m) be the vector of observed summary statistics, where
we let sobs,j denote the jth summary statistic and assume appropriate scaling of
the summary statistics, e.g., to equalize variances. An ABC algorithm generates
a vector of parameters θ = (θ1, ..., θl) by comparing the vectors of simulated
summary statistics ssim = (ssim,1, ..., ssim,m) with the observation. The posterior
approximation of the kth model parameter, θk, is a vector consisting of n accepted
samples, θk =

(
θ

(1)
k , ..., θ

(n)
k

)
. In the following, we let θ(i) indicate the ith accepted

Chapter 3. Simulation-Based Inference 33

sample of model parameters with i = 1, ..., n. Furthermore, assume we retain the
simulated summary statistics associated with the accepted θ(i) sample, such that
we also have the vector s(i)

sim, i = 1, ..., n. Thus, we have n pairs of
(
θ(i), s

(i)
sim

)
.

It is convenient to start our discussion of regression adjustment based on standard
linear regression to explain the main ideas. The first objective is to model the
relationship between the m-dimensional vector of summary statistics and the l-
dimensional vector of model parameters, where each vector component itself is
an n-dimensional vector consisting of the associated accepted samples. A model
for linearly regressing the summary statistics on the obtained posterior samples
is:

θ(i) = α +
(
s

(i)
sim − sobs

)T
β + ξ(i), i = 1, ..., n (3.3)

where α is the intercept, β the vector of regression coefficients and ξ(j) the residual
assumed to be uncorrelated with mean zero and common variance. No other
distributional assumptions are made about ξ(i) and hence θ(i). When s(i)

sim = sobs,
the θ(i) are samples from the desired posterior with mean α. The least squares
estimate of (α, β) is:

(
α̂, β̂

)
=
(
XTX

)−1
XTθ, (3.4)

where X is the matrix of summary statistics augmented with a column of ones:

X =

1 s

(1)
sim,1 − sobs,1 s

(1)
sim,2 − sobs,2 . . . s

(1)
sim,m − sobs,m

1 s
(2)
sim,1 − sobs,1 s

(2)
sim,2 − sobs,2 . . . s

(2)
sim,m − sobs,m

...
1 s

(n)
sim,1 − sobs,1 s

(n)
sim,2 − sobs,2 . . . s

(n)
sim,m − sobs,m

 .

The strategy is then to adjust the set of posterior samples θ to have mean α while
simultaneously correcting for the trend in the relationship between parameters
and summary statistics. It follows from Equation 3.3 that the corrected posterior
sample θ̃(i) defined by

θ̃(i) = θ(i)
(
s

(i)
sim − sobs

)T
β̂ (3.5)

form an approximate random sample from the posterior π(θ | sobs). If the relation-
ship between the model parameters and the summary statistics is truly linear, which
also implies that the summary statistics are sufficient, this will be exact (assuming
that also the distributional assumptions about ξ(i) are met and the sample size is
large so that

(
α̂, β̂

)
= (α, β)). It should be noted that α̂ can be interpreted as a

point estimate of θ since it is an estimate of the posterior mean.

Chapter 3. Simulation-Based Inference 34

It may not be immediately evident how this correction helps to improve the posterior
approximation, so here comes an explanation: A crucial limitation of the ABC
algorithms is that they can only handle a small number of summary statistics.
However, in order to constrain the model parameters accurately we might need
several informative summary statistics. As a consequence, we usually have a trade-
off between prohibitively low acceptance rates or large tolerances which can distort
the approximation. This arises from the fact that ssim are treated equally whenever
ρ(ssim, sobs) ≤ ε, regardless of the proximity between ssim and sobs. The idea of
regression adjustment is to learn a regression model and then correct the accepted
simulations as if they were sampled from πABC(θ | ρ(ssim, sobs) ≤ ε) with ε = 0.
With this insensitivity to ε, we can also increase the number of summary statistics
and thus potentially extract more information from the data. Figure 3.2 illustrates
linear regression adjustment of a univariate parameter θ.

Figure 3.2: Illustration of linear regression adjustment of a univariate
parameter θ. The vertical blue dashed line indicates the observed
summary statistic, sobs. First, a regression model f̂ is learned and
then, based on f̂ , all accepted posterior samples θ(i) are corrected as
if they were sampled from πABC(θ | ρ(ssim, sobs) ≤ ε) with ε = 0. Note
that the residuals ξ(i) are preserved. Corrected samples are denoted by
θ̃(i), and the shift in values are indicated by the black arrows pointing
to the positions of the corrected values (green circles). The original
posterior density is shown on the right (black curve) together with
the adjusted posterior (green curve).

Source: Modified from Fig. 9 in [31].

Chapter 3. Simulation-Based Inference 35

3.3.2 Local Linear Regression Adjustment
Linear regression adjustment works well if the relationship between the parameters
and the summary statistics is approximately linear, however this is rarely true in
practice. Although, approximate linearity may be true in a localized region around
sobs. Thus, we can perform local linear regression, which applies kernel smoothed
(see Section 2.5.2) weights to each θ(i) based on the distance between s(i)

sim and sobs.
That is, we localize the regression problem by defining a kernel K

(∥∥∥s(i)
sim − sobs

∥∥∥/ε),
where ‖·‖ is the Euclidean distance and the tolerance ε is the bandwidth of the
kernel. This guarantees that θ(i) associated with s(i)

sim close to sobs are weighted more
heavily. The kernel can assume many forms, such as the Gaussian kernel:

K

(
‖ssim − sobs‖

ε

)
= exp

−1
2

(
‖ssim − sobs‖

ε

)2
, (3.6)

and the Epanechnikov kernel:

K

(
‖ssim − sobs‖

ε

)
=
1−

(
‖ssim−sobs‖

ε

)2
if ‖ssim − sobs‖ ≤ ε

0 otherwise
. (3.7)

The weighted least squares estimate for (α, β) is:

(
α̂, β̂

)
=
(
XTWX

)−1
XTWθ, (3.8)

whereW is the n×n weight matrix whose ith diagonal element isK
(∥∥∥s(i)

sim − sobs

∥∥∥/ε)
while all other elements are zero:

W =

K

∥∥∥s(1)

sim−sobs

∥∥∥
ε

 0 . . . 0

0 K

∥∥∥s(2)

sim−sobs

∥∥∥
ε

 . . . 0

...

0 0 . . . K

∥∥∥s(n)

sim−sobs

∥∥∥
ε

The correction is then done according to Equation 3.5, but with the weighted
estimate for β (Equation 3.8).

Chapter 3. Simulation-Based Inference 36

3.4 Neural Density Estimation
We reviewed some standard methods for nonparametric density estimation in
Section 2.5. Here, we introduce neural density estimation (NDE), a parametric
density estimation method where the density estimator is an artificial neural
network (ANN). Since the posterior is a conditional density, we are in particular
interested in conditional neural density estimators. One class of conditional NDEs
is normalizing flows (NF), which is a transformation of a simple base distribution,
e.g., the normal distribution, into a more complex distribution by a sequence of
invertible transformations that are differentiable. NFs were popularized for density
estimation by Dinh et al. in [32]. Another general framework for modelling arbitrary
conditional densities is mixture density networks (MDNs), see e.g. Bishop [19],
which combines a conventional feedforward ANN with a mixture density model of
the target (the posterior in our case).

3.4.1 Sequential Neural Posterior Estimation
Sequential Neural Posterior Estimation (SNPE) is a novel algorithm for simulation-
based inference based on NDE. Dissecting all of the intricacies of SNPE, and NDE
in general, is beyond the scope of this thesis. We will in this section provide an
overview of the algorithm(s). For full details, we refer the reader to the original
articles [6], [7] and [8].

SNPE targets directly learning the posterior π(θ | y) by training a conditional
NDE on adaptively proposed simulations of the simulator model. Using adaptive
proposals means that the parameters are not drawn from the prior π(θ), but rather
a proposal distribution π̃(θ) that is updated over a number of training rounds. In
each round, the proposal is taken to be the approximate posterior distribution
itself from the previous round. The idea behind this approach is to increase sample
efficiency, as sampling parameters from the prior can lead to wasteful simulations.
The use of a proposal π̃(θ) different from the prior π(θ) does, however, require a
correction step, as samples drawn from π̃(θ) no longer yield the target posterior
π(θ | y) but rather the proposal posterior :

π̃(θ | y) = π(θ | y) π̃(θ)p(y)
π(θ)p̃(y) , (3.9)

where p̃(y) =
∫
p(y | θ)π̃(θ) dθ. Note that for π̃(θ) = π(θ), it directly follows that

π̃(θ | y) = π(θ | y).

There have been developed three main approaches to the correction step so far,
leading to three versions of SNPE; SNPE-A by Papamakarios and Murray [6],
SNPE-B by Lueckmann et al. [7] and SNPE-C by Greenberg et al. [8]. All
algorithms have in common that they train a neural network F (y, φ), i.e., a network
with weights φ that takes as input data y, to learn the parameters of a family
of densities qψ, where ψ are distribution parameters, to estimate the posterior.

Chapter 3. Simulation-Based Inference 37

They differ in what is targeted by qψ and which loss is used for F . With this
notation, qF (y,φ)(θ) represents an estimate of π(θ | y), and q̃F (y,φ)(θ) an estimate of
π̃(θ | y).

SNPE-A trains F, which is required to be a Gaussian MDN in this algorithm,
to target the proposal posterior π̃(θ | y) by minimizing the log likelihood loss
L = −∑n log qψ(θn | yn). The learned proposal posterior q̃F (y,φ)(θ) is then corrected
analytically by dividing it by π̃(θ) and multiplying it by π(θ). The analytical
post-hoc step restricts π̃(θ) to be Gaussian and π(θ) to be either Gaussian or
uniform.

SNPE-B also trains a MDN and deals with the correction step by adjusting the
parameters θn by assigning them weights wn = π(θn)/π̃(θn). During training SNPE-
B minimizes the importance weighted loss L = −∑nwn log qψ(θn | yn), which
allows for direct recovery of π(θ | y). Since there is no need for post-hoc correction,
SNPE-B lifts the restrictions on π(θ), π̃(θ) and qψ placed by SNPE-A. However,
the weights can have high variance, which can lead to slow or inaccurate inference
due to high-variance gradients and instability during training.

SNPE-C circumvents the issues of SNPE-A and SNPE-B by reparameterizing
Equation 3.9 such that it is possible to automatically transform between estimates
of π(θ | y) and π̃(θ | y). Since π̃(θ | y) ∝ π(θ | y)π̃(θ)/π(θ), SNPE-C defines:

q̃y,φ(θ) = qF (y,φ)(θ)
π̃(θ)
π(θ)

1
Z(y, φ) , (3.10)

where Z(y, φ) =
∫
qF (y,φ)(θ) π̃(θ)

π(θ) dθ is a normalization constant. The network is
trained by minimizing the loss L = −∑n log q̃y,φ(θn), such that both the target and
proposal posteriors are recovered. SNPE-C supports a wide range of proposals and
conditional NDEs, including MDNs and NFs. Its only requirement is a closed form
solution of Equation 3.10 for q̃F (y,φ), to be optimized during training and sampled
from afterwards.

SNPE will in the following refer to the SNPE-C variant. Figure 3.3 gives a
conceptual overview of the SNPE algorithm. Perhaps the two most notable features
of SNPE is that it uses all model simulations to train the network and, once trained,
it can be used to predict posteriors over model parameters on any empirical data
with just one forward pass through the network.

Chapter 3. Simulation-Based Inference 38

Figure 3.3: A conceptual overview of posterior estimation via the
Sequential Neural Posterior Estimation (SNPE) algorithm. SNPE
takes three inputs: a simulator of the mechanistic model, priors over
model parameters and observed data, either as summary statistics of
or the raw data itself. The algorithm then proceeds by: (1) Sample
parameters from (i) the priors in the first rounds, and (ii) the proposal
distribution in subsequent rounds, and feed them to the simulator
to generate simulated data; (2) Train a conditional neural density
estimator (a neural network) to learn the probabilistic association
between data (or summary statistics of the data) and the underlying
parameters; (3) Use the density estimation network to predict the
posterior distributions over model parameters consistent with the
observed data; (4) Under training, the approximate posterior on
simulated data is used to adaptively update the proposal distribution
so that more informative simulations become likely.

Source: [33].

4
Introduction to Neurobiology

The aim of this chapter is to give a brief introduction to neurobiology, with focus
on the aspects useful for understanding the biological background of the models
of neural dynamics presented in the next chapter. The content of this chapter is
based on material from [1], [2] and [34].

4.1 Neural Circuits and Networks
The central organ of the human nervous system is the brain, which contains roughly
86 billion nerve cells, or neurons, organized in different brain regions specialized at
analyzing different subsets of information encoded in nerve signals. Brain activity
is made possible by the interconnections of neurons. A population of neurons
interconnected to carry out a specific function is called a neural circuit. Neural
circuits interconnect to one another to form elaborate neural networks that route
signals through the different regions of the brain, analyzing and organizing different
types of information within fractions of a second. Neurons are either excitatory
or inhibitory. Excitatory neurons are predominant, comprising about 80% of the
neurons in the brain, and send signals to neighboring neurons that increase activity.
By contrast, inhibitory neurons, comprising about 20% of the neurons in the brain,
send signals that suppress the activity of neighboring neurons. Every neural circuit
contains both excitatory and inhibitory neurons that work together to regulate the
activity in response to stimuli.

Chapter 4. Introduction to Neurobiology 40

4.2 Neurons
The fundamental unit of neural circuits and networks is the neuron, which is a
specialized cell that generates electrical signals in response to stimuli and transmits
them to other cells. Although neurons come in a wide variety of shapes and sizes,
they have common morphological specializations called dendrites and axon. Like
other cells, a neuron consists of a cell body (soma) that contains the neuron’s
nucleus and molecular machinery critical to the cell’s function, and the soma is
confined by a cell membrane that consists of a lipid bilayer. The axon and dendrites
are filaments that extrude from the soma, as illustrated by Figure 4.1. Dendrites
receive incoming signals from other neurons and propagate them to the soma. The
branching structure of the dendritic tree allows a neuron to receive signals from
many other neurons. The soma processes the collected input signals and generates
an output signal if the total input exceeds a certain threshold. The axon carries
the output signal and branch out to deliver the signal to other cells through the
axon terminals.

Figure 4.1: Schematic illustration of a neuron. A neuron can be
divided into three functionally distinct parts called dendrites, the
cell body (soma) and the axon. The dendrites receive signals from
other neurons and transmit them to the cell body, which can generate
an output signal if the total input exceeds a threshold. The output
signal propagates down the axon which branch out and end in axon
terminals that deliver the signal to other cells.

Source: [35].

4.3 Ion Channels and Action Potentials
The neuronal membrane is composed of a lipid bilayer, that is made up of two
layers of lipids, which have their hydrophilic heads pointing outwards and their
hydrophobic tails pointing inwards. It is virtually impermeable to water molecules
and ions. Ion channels are protein pores in the neuronal membrane that allow
ions, predominantly sodium (Na+), potassium (K+), calcium (Ca2+) and chloride
(Cl−), to flow into and out of the neuron. Most ion channels are permeable only to

Chapter 4. Introduction to Neurobiology 41

specific types of ions, and are either active or passive. Passive channels, also called
leakage channels, are always permeable, whereas active channels have gates that can
open and close the channel. Some active ion channels are voltage-gated, meaning
that whether the channel is in an open or closed state is controlled by voltage,
while others are chemically-gated, meaning they open and close by interactions
with chemicals. The neuronal membrane also contains membrane-spanning protein
structures that actively pump certain types of ions into and out of the neuron, called
ion pumps. Ions tend to flow from regions of high concentration toward regions
of low concentration, thus diminishing the concentration gradient. Ion pumps
counteract this by pumping ions against the concentration gradient. For instance,
the Na+– K+pump exchanges three Na+from inside the cell with two K+from
outside using energy provided by hydrolysis of ATP into ADP and a phosphate ion.
Figure 4.2 illustrates the constituents of the neuronal membrane.

Figure 4.2: Constituents of the neuronal membrane. The lipid
bilayer forms a virtually impermeable barrier for inorganic ions. Ion
channels form pores in the neuronal membrane, allowing certain ions
to flow into and out of the neuron. Ion pumps exchange certain ions
across the neuronal membrane.

Source: [2].

Due to the ion channel and pump machinery, there is typically a greater concentra-
tion of Na+in the extracellular space and K+inside the neuron. Moreover, there are
slightly more positive ions on the outside of the neuron and slightly more negative
ions on the inside. Hence, there is a small electrical potential difference across
the neuronal membrane, called membrane potential. The membrane potential of a
resting neuron, known as the resting membrane potential, typically lies between
−60 and −70 mV, because the potential is more negative inside the neuron than
on its outer surface. The membrane potential is affected by signals received from
other neurons in its circuit, which can make the membrane potential less negative
(depolarized) or more negative (hyperpolarized). If a neuron is depolarized suffi-
ciently to raise the membrane potential above the membrane’s threshold voltage, a
positive feedback process is initiated which triggers an electrical impulse called an

Chapter 4. Introduction to Neurobiology 42

action potential (AP). The temporal evolution of APs can be divided into different
phases, as shown by Figure 4.3. First, stimulus from other neurons connecting to

Figure 4.3: The temporal evolution of the membrane potential
during a typical action potential. The membrane potential is initially
in its resting state when (1) a stimulus pushes it over the threshold.
(2) This results in a rapid rise (depolarization) in membrane potential
caused by opening of voltage-gated sodium (Na+) channels that give
in an influx of Na+ions. (3) This is followed by a sharp decrease
(repolarization) in membrane potential caused by closing of sodium
channels and opening of potassium (K+) channels that give an efflux
of K+ions. (4) The membrane potential typically undershoots the
resting potential (hyperpolarization) before it gradually recovers to
the (5) resting state.

Source: [36].

the neuron depolarizes the soma, and increase the membrane potential towards the
threshold potential. If the threshold potential is reached, voltage-gated sodium
channels open and an influx of sodium ions takes place. This phase is called
depolarization. During depolarization, the inside of the neuron becomes increasingly
electropositive. Once the membrane potential becomes positive, the membrane
potential continues to depolarize, commonly referred to as AP overshoot, until
it reaches the electrochemical equilibrium, known as the reversal potential, and
peaks. After the overshoot, sodium channels decrease the sodium permeability
by closing. The overshoot also opens voltage-gated potassium channels, which
cause a potassium efflux that decreases the neuron’s electropositivity. This phase
is called repolarization, and decreases the membrane potential towards the resting

Chapter 4. Introduction to Neurobiology 43

state. Repolarization may be followed by hyperpolarization, in which the neuron’s
membrane potential falls below the resting potential before gradually recovering to
the resting potential. The hyperpolarizing phase where the membrane falls below
the resting potential is commonly referred to as afterhyperpolarization (AHP) or
AP undershoot.

The resulting AP will propagate along the axon towards the next neurons in the
circuit. APs are also known as spikes, and a temporal sequence of APs generated by
a neuron is called a spike train. A neuron that emits an AP is often said to fire, and
the frequency a neuron emits APs is therefore called the firing rate of the neuron.
Generation of APs depends on the recent history of the neuron firing. In the brief
absolute refractory period after an AP, it is virtually impossible to initiate another
AP, regardless of the amplitude of the stimulus. For a longer interval known as the
relative refractory period, the threshold for firing is higher than when the membrane
is at rest, and APs initiated in this period have lower peak voltage.

4.4 Synapses
APs are passed from a neuron to next at junctions called synapses, which are
usually formed between axon terminals on the sending neuron and the dendrites
of the receiving neuron, with a space between the two called the synaptic cleft.
It is common to refer to the sending neuron as the presynaptic neuron and the
receiving as the postsynaptic neuron. The cleft of most synapses is too wide for
APs to directly impact the postsynaptic neuron. Instead, chemical signals called
neurotransmitters cross the synapse. Excitatory neurons release neurotransmitters
to increase the activity of the postsynaptic neuron, making it more likely to generate
an AP, while inhibitory neurons release neurotransmitters to suppress the activity,
making the postsynaptic neuron less likely to generate an AP.

5
Models of Neural Dynamics

Understanding the complex mechanisms of the nervous system requires the construc-
tion and analysis of models of neural dynamics at different levels. In this chapter,
we discuss the seminal Hodgkin-Huxley model [9] that is a biophysically detailed
description of the ionic mechanisms underlying the initiation and propagation of
action potentials in squid giant axons. We also consider the Brunel network model
[10] for activity dynamics in local cortical networks. The content of this chapter is
mainly based on [2], [34] and [37].

5.1 The Hodgkin-Huxley Model
The Hodgkin-Huxley (HH) model was the first quantitative model of active mem-
brane properties, and gave a biophysically detailed description of the mechanisms
that give rise to action potentials (APs) in neurons. The model was used to com-
pute the shape of action potentials in the squid giant axon. The model, and the
experimental work that led up to it, earned its authors a share of the 1963 Nobel
Prize in Physiology or Medicine, establishing a new framework for thinking about
the electrical activity of neurons. Before we present the model itself, we first briefly
discuss the basics of mathematical modeling of neurons.

5.1.1 Electrical Properties of Neurons
The basis of electrical activity in neurons is the flow of ions into and out of the
neuron through ion channels in the neuronal membrane. As ions are electrically
charged, they exert forces on and experience forces from other ions. The force
acting on an ion is proportional to the ion’s charge, q. As we established in the

Chapter 5. Models of Neural Dynamics 45

previous chapter, there is typically an excess negative charge on the inside surface
of the neuron and a balancing positive charge on its outer surface. The lipid bilayer
forms an insulating barrier between the outside and interior of the neuron. As such,
the neuronal membrane behaves as a capacitor, described by:

q = CmV, (5.1)

where V is the membrane potential and the constant of proportionality Cm the
membrane capacitance, which indicates how much charge can be stored on a
particular capacitor for a given potential difference across it. All current passing
through the membrane either charges or discharges the membrane capacitance, so
the rate of change of charge, dq / dt, on the membrane is the same as the net current,
I, flowing through the membrane: I = dq / dt. By differentiating Equation 5.1, we
can use the membrane capacitance to determine how much current is required to
change the membrane potential at a given rate:

Cm
dV
dt = dq

dt = I. (5.2)

Equation 5.2 is fundamental in the mathematical modeling of neurons, as it relates
how the membrane potential evolves over time with the net flow of current through
ion channels. It should be noted that in the context of modeling the entire neuron,
Cm is technically the membrane capacitance per unit area. The current IX per unit
area through an ion channel of type X is modelled by the quasi-ohmic relation:

IX = gX(V − EX), (5.3)

where gX is the conductance of the specific ion channel per unit area and EX the
reversal potential of ion X. (V − EX) is called the driving force, and when the
membrane potential is at the reversal potential for ion X, the driving force is zero.
The conductance is a measure of the ease with which an electric current passes,
and is the reciprocal of the resistance. The total current per unit area across the
neuronal membrane, I, is the sum of the contributions from the different types of
ion channels:

I =
∑
X
gX(V − EX). (5.4)

5.1.2 Biophysical Model of Ionic Mechanisms
From a biophysical point of view, APs are the result of ionic currents that pass
through the neuronal membrane. In an extensive series of electrophysiology ex-
periments on the squid giant axon, Hodgkin and Huxley succeeded to measure
these currents and to describe their dynamics in terms of differential equations.

Chapter 5. Models of Neural Dynamics 46

Hodgkin and Huxley treated the squid giant axon as an equivalent electrical circuit,
see Figure 5.1, with the current across the membrane being carried by either a
capacitor current, IC, current of potassium ions, IK, current of sodium ions, INa or
a catch-all leakage current, IL.

Figure 5.1: The HH equivalent circuit.
Source: [2].

Thus, the fundamental total current equation is:

I = IC + IK + INa + IL

= Cm
dV
dt + gK(V − EK) + gNa(V − ENa) + gL(V − EL)

(5.5)

In voltage-gated ion channels, the channel conductance gX is a function of both volt-
age and time, gX(V, t). We can write the time-dependent conductances like:

gX(V, t) = ḡXpX(V, t),

where ḡX is the total conductance when all channels of type X are fully open, i.e.,
the maximum conductance, and pX(V, t) is the fraction of channels of type X that
are open, i.e., the channel density (a number between 0 and 1). Hodgkin and
Huxley suggested that the opening and closing of the voltage-gated ion channels
were controlled by one or more gating particles. Using a series of voltage clamp
experiments, i.e., where the membrane potential is held at a level determined
by the experimenter, and clever ionic substitutions, they were able to isolate the
voltage-gated conductances of potassium and sodium. They obtained rate constants
for the opening, closing and inactivation of the conductances by analyzing the
voltage-dependence using first-order kinetics, and reduced these rate constants to a
set of four ordinary differential equations:

Chapter 5. Models of Neural Dynamics 47

Cm
dV
dt = −ḡKn

4(V − EK)− ḡNam
3h(V − ENa)− ḡL(V − EL) + I (5.6a)

dn
dt = αn(V)(1− n)− βn(V)n (5.6b)

dm
dt = αm(V)(1−m)− βm(V)m (5.6c)
dh
dt = αh(V)(1− h)− βh(V)h (5.6d)

where the gating variables n, m and h are dimensionless quantities that are asso-
ciated with potassium channel activation, sodium channel activation and sodium
channel inactivation, respectively. The gating variables n and m range from 0
(not activated) to 1 (fully activated) and h ranges from 0 (fully inactivated) to 1
(no inactivation). The voltage-dependent rate constants αx(V) and βx(V), where
x ∈ {n,m, h}, represent the activation and inactivation rates, respectively, for gate
x. Equation 5.6 describes how the membrane potential V across a membrane with
capacitance Cm responds to an input current I. Note that Equation 5.6a has been
slightly reorganized from the formulation of the total current equation (Equation 5.5)
to better reflect this. The potassium current, IK, is controlled by four identical
gating particles, whereas the sodium current, INa, is controlled by three identical
and one distinct gating particle. The leak current, IL, is not voltage-dependent,
and no gating particles are therefore associated with its conductance.

The forms of the αx and βx functions were empirically proposed by the authors
to fit the experimental recordings, yielding the following equations for the rate
constants associated with the potassium activation gating variable;

αn(V) = 0.01 V + 55
1− exp (−(V + 55)/10) (5.7a)

βn(V) = 0.125 exp (−(V + 55)/10) (5.7b)

and for the sodium activation and inactivation gating variables:

αm(V) = 0.1 V + 40
1− exp (−(V + 40)/10) (5.8a)

βm(V) = 4 exp (−(V + 65)/18) (5.8b)
αh(V) = 0.07 exp (−(V + 65)/20) (5.8c)

βh(V) = 1
exp (−(V + 35)/10) + 1 (5.8d)

Here, we use a formulation of the model where the membrane voltage has been
reversed in polarity from the original HH convention and shifted to reflect a resting

Chapter 5. Models of Neural Dynamics 48

potential of −65 mV. An example of how to arrive at the alternative formulation is
provided in Appendix B. The original model parameter values are summarized in
Table 5.1.

Table 5.1: The original parametrization of the HH model.

Parameter Value Description

Cm 1.0µF cm−2 Membrane capacitance
ḡK 36.0 mS/cm2 Maximum potassium channel conductance
ḡNa 120.0 mS/cm2 Maximum sodium channel conductance
ḡL 0.3 mS/cm2 Maximum leakage channel conductance
EK −77.0 mV Potassium reversal potential
ENa 50.0 mV Sodium reversal potential
EL −54.4 mV Leak reversal potential

5.1.3 Simulation of Action Potentials
Figure 5.2 shows the numerical solutions of a simulation of the HH model. As seen in
the top panel, the shape of the simulated action potentials match the description of
an action potential (see Section 4.3) well. Besides reproducing action potentials, the
HH model offers insights into the mechanisms underlying them. The middle panel
shows how the gating variables change during the temporal evolution of the action
potentials. At stimulus onset (starting at t = 10 ms), the initial depolarization of
the membrane potential is due to the input current. When the depolarization is
above the threshold (at about −55 mV), the sodium current activates, as reflected
in the increase in m. As the sodium reversal potential is far higher than the resting
membrane potential, the driving force of the sodium current pushes the membrane
potential to sharply increase. The slower potassium conductance, reflected by
the gating variable n, activates after the sharp rise in membrane potential and
allows potassium ions to flow out of the neuron because of the low potassium
reversal potential. In addition, the repolarization of the membrane potential is
also assisted by the inactivating sodium gating variable, h, which shuts off the
sodium current. This drives the membrane potential quickly back down towards
its resting state, but undershoots somewhat, due to the slow de-inactivation of
the sodium current, to hyperpolarize the neuron. The final recovery involves a
rapid deactivation of the sodium current and a slower deactivation of the potassium
current. Eventually all the state variables and the membrane potential return to
their resting states. The HH model also explains the refractory period. Relative
to the duration of an action potential, the gating variables recover to their resting
states slowly. During this period, it is harder to generate an action potential.
In the initial recovery phase, an increasing voltage will not increase the sodium
conductance, and hence the membrane potential, considerably due to the ongoing
inactivation of the sodium current and the prolonged activation of the potassium

Chapter 5. Models of Neural Dynamics 49

current. As the state variables advances in their recovery toward the resting states,
an action potential can be initiated but will have a lower peak voltage.

−75

−50

−25

0

25

M
em

b
ra

n
e

P
ot

en
ti

al
(m

V
)

ḡK = 36.0
ḡNa = 120.0

0.0

0.5

1.0

S
ta

te

n

m

h

0 10 20 30 40 50 60

Time (ms)

0

5

10

S
ti

m
u

lu
s

(µ
A
/
cm

2
)

Figure 5.2: Simulated dynamics of V , n, m and h in the HH model
during the firing of action potentials in the squid giant axon. The top
panel shows the numerical solution of Equation 5.6a and the middle
panel the numerical solutions of Equations (5.6b) to (5.6d). The
system is simulated for T = 60 ms with time resolution ∆t = 0.025 ms.
The input stimulus received by the neuron (bottom panel) is a step
current with amplitude I = 10µA/cm2, and onset and offset at 10 ms
and 50 ms, respectively. The parametrization of the model is given by
Table 5.1.

5.2 The Brunel Network Model
Many neural networks of interest consist of thousands or millions of neurons, and,
generally, it is infeasible to include all in the model. Neural network models are
usually scaled down according to the ratio of different neuron populations in the

Chapter 5. Models of Neural Dynamics 50

network that the model tries to mimic. Furthermore, they often use simplified
neuron models to reduce computational cost. Still, neural network models may
exhibit a high diversity of spiking dynamics. In this section, we present one such
model that is thoroughly analyzed in the literature; the Brunel network model [10].
Before we present the network model itself, we first discuss the central building
block of the network: the leaky integrate-and-fire (LIF) neuron model.

5.2.1 Integrate-And-Fire Neurons
While the ionic mechanisms behind APs are quite complicated, the conditions
for AP generation are often quite straightforward: When the membrane potential
reaches a specific threshold, a spike is generated and the membrane potential returns
to the background state. Simulations of APs can be accelerated significantly by
not explicitly modeling the responsible biophysical mechanisms. Integrate-and-
fire (IF) models are simplified neuron models with a spike generation and reset
mechanism. In these models, whenever the membrane potential of a neuron reaches
a threshold value θ, a spike is generated and the membrane potential is reset to a
value Vreset below the threshold potential, Vreset < θ. In the simplest IF model, all
active membrane conductances are ignored and the entire membrane conductance
is modeled as a single passive leakage conductance:

IL = ḡL(V − Em),

where Em is the resting membrane potential. Since the conductance is the reciprocal
of the resistance, the above equation can be equivalently formulated as:

IL = V − Em
Rm

,

where Rm is the membrane resistance. Furthermore, we assume that the model
neuron behaves like an electric circuit consisting of a resistor and a capacitor in
parallel, i.e., an RC circuit, driven by a current I. In addition, the circuit needs
a switch, representing the reset mechanism, which is open until the membrane
potential reaches θ and then closes to short-circuit the membrane resistance, bringing
the membrane potential back to rest. The switch opens again after a refractory
period τrp, allowing the membrane to charge. This neuron model is often called
the leaky integrate-and-fire (LIF) model. The circuit diagram and the RC circuit
response to input stimulus is shown in Figure 5.3. When the membrane potential is
below the threshold, its value is determined by the equation for an RC circuit:

Cm
dV
dt = −V − Em

Rm

+ I.

The above equation is usually written in terms of the membrane time constant,
τm = CmRm:

Chapter 5. Models of Neural Dynamics 51

Figure 5.3: The LIF neuron model as an RC circuit diagram (left)
with a switch (in blue on the diagram) and the response of the
LIF neuron to input stimulus (right). When the switch is open,
the membrane can charge. When the membrane potential reaches
the threshold θ (indicated by the dashed line in the voltage trace),
the neuron fires a spike (indicated by the vertical blue line in the
voltage trace) and the switch closes. This short-circuits the membrane
resistance, bringing the membrane potential back to its resting state.
After a refractory period, the switch opens, allowing the membrane
to charge again.

Source: [2].

τm
dV
dt = −V + Em +Rm + I.

Furthermore, the leak battery is often omitted from the circuit, with the only effect
of making the resting membrane potential 0 mV instead of Em:

τm
dV
dt = −V +Rm + I. (5.9)

The simple LIF neuron model only captures the timing of each spike, but is fast
to simulate compared to biophysically detailed neuron models. This makes it
especially useful for simulating large networks, as these often contain thousands of
neurons.

5.2.2 A Sparsely Connected Recurrent Network
The local cortical network consists of a population of excitatory neurons and a
population of inhibitory neurons, with a ratio of about 80% excitation and 20%
inhibition. The Brunel model characterizes the local cortical network as a network of
N identical LIF neurons, from which NE are excitatory and NI = NE/4 inhibitory.

Chapter 5. Models of Neural Dynamics 52

Each neuron, be it excitatory or inhibitory, receives C randomly connections from
other neurons in the network, from which CE = εNE are from the excitatory
population and CI = εNI from the inhibitory population. Here, ε denotes the
fraction of incoming connections, and we consider a sparsely connected network
with ε = CE/NE = CI/NI << 1. In addition to the sparse recurrent inputs from
within the local network, each neuron receives excitatory synaptic input from a
population of CE randomly firing neurons outside the network with activation
governed by identical, independent Poisson processes (PGs) with fixed-rate νext.
The randomly firing population mimics input from the rest of cortex. An illustration
of the network is shown in Figure 5.4.

Figure 5.4: Illustration of the Brunel network model. The network
consists of two local populations, one with NE excitatory neurons
(circle labeled E) and one with NI inhibitory neurons (circle labeled
I), and one external population of identical, independent Poisson pro-
cesses (PGs). The connections between network nodes are indicated
by arrows, where triangular arrow-heads represent excitatory and
round arrow-heads inhibitory connections. The numbers at the start
and end of each arrow indicate the multiplicity of the connection.

Source: [38].

The subthreshold dynamics of LIF neuron i in the network (i = 1, ..., N) evolves in
time according to:

τm
dVi(t)

dt = −Vi(t) +RmIi(t), (5.10)

where Ii are the synaptic inputs arriving at the soma. These synaptic inputs are the
sum of spike contributions from both local and external synapses, and are modeled
as δ-current inputs, i.e., discontinuous voltage jumps:

RmIi(t) = τm
∑
j

Jij
∑
k

δ
(
t− tkj −D

)
, (5.11)

Chapter 5. Models of Neural Dynamics 53

where the first sum is over all the presynaptic neurons j with postsynaptic potential
amplitude (voltage jump) Jij, while the second sum is over the spike times of
those neurons. Here, D is the synaptic delay, δ(x) the Dirac δ function, with
δ(x) = 0 for x 6= 0 and

∫∞
−∞ δ(x) dx = 1, and tkj represents the emission time of

the kth spike of presynaptic neuron j. For simplicity, we assume the synaptic
connection strengths are constant for each population. We let Jij = J > 0, and
for excitatory neurons and external input JE = J , while for inhibitory neurons
JI = −gJE, where g determines the relative strength of the inhibitory synapses
compared to the excitatory synapses. The amount of input the local neurons receive
from the external population is determined by the parameter η = νext/νthr, where
νthr = θ/(JECEτm) is the minimum constant rate input needed for a neuron to
reach threshold in absence of feedback. Thus, the external input rate is given by
νext = (ηθ)/(JECEτm).

When the membrane potential Vi(t) of LIF neuron i reaches the firing threshold θ,
the neuron fires a spike, the synapses onto all its postsynaptic neurons are activated
after a time delay D and the neuron’s membrane potential is clamped to the reset
potential Vreset for a refractory period τrp.

5.2.3 States of Spiking Activity
The Brunel network may be in several different states of spiking activity, largely
dependent on the values of the synaptic weight parameters. In the context of a
biological neural network, synaptic weight parameters refer to parameters that
determines the influence the firing of one neuron has on another. With particular
fixed values for J and D and varying values for η and g, Brunel [10] characterized
the spiking activity of the network by phase diagrams. An example of these is
shown in Figure 5.5. The spiking activity can be in a state of synchronous regular
(SR), asynchronous irregular (AI) or synchronous irregular (SI), with either fast
or slow oscillations, activity. It can be seen from the phase diagram that g = 4
corresponds to balance between excitation and inhibition, while η = 1 corresponds
to external input, in the absence of recurrent input from the network, just sufficient
to reach the firing threshold. Stability of the AI state breaks down at the dashed
or solid lines and can lead to SR or SI (either fast or slow) activity.

Figure 5.6 illustrates an example of each of the states of the Brunel network.
For each state, the figure shows the firing times (rasters) of 20 randomly chosen
excitatory neurons, the temporal evolution of the activity in the network (time
resolved firing rate computed in bins of 10 ms) together with the mean firing rate
(horizontal axis line), and the pairwise Pearson’s correlation coefficient matrix
(described in the next chapter) of the recorded neurons. The particular values for
η and g are stated in the subplot titles. In the SR state, the network is almost
fully synchronized and the neurons fire at high rates. It is characterized by fast
periodic oscillations of the spiking activity. In the AI state, neurons fire mostly
independently at low rates. It is characterized by that neurons in the population fire
at different times (asynchronous firing) and at irregular intervals. In the SI states,

Chapter 5. Models of Neural Dynamics 54

Figure 5.5: Phase diagram of different network states which arise
depending on the parameters η = νext/νthr and g. In the present
example, a fixed synaptic delay D = 1.5 ms and voltage jump (ampli-
tude of excitatory synaptic input currents) JE = 0.1 mV is used. The
simulation is of a network consisting of NE = 10, 000 excitatory and
NI = 2, 500 inhibitory neurons with connection probability ε = 0.1,
which corresponds to a network where each neuron has CE = 1, 000
and CI = 250 randomly selected connections to excitatory and in-
hibitory neurons, respectively. The phase diagram shows four states
of spiking activity: synchronous regular (SR), asynchronous irregular
(AI) and of synchronous irregular (SI), fast and slow.

Source: [10].

the spiking activity of the network is characterized by either fast or slow synchrony,
but individual neurons fire irregularly. It can be traced back to an instability of the
AI firing regime towards oscillatory activity. The pairwise Pearson’s correlation
coefficient measures the correlation between spike trains of two neurons in the
network, and can be used to examine how synchronous the spiking of a network
is. We see that in the SR state, the correlation coefficients are much higher than
in the AI state. The SI state with fast oscillations, however, is only scarcely more
synchronous than the AI state. The SI state with slow oscillations, on the other
hand, has increased synchrony compared to the AI state.

Chapter 5. Models of Neural Dynamics 55

1
5

10

15

20

N
eu

ro
n

SR
η = 2.0, g = 3.0

AI
η = 2.0, g = 5.0

SI (fast)
η = 4.0, g = 6.0

SI (slow)
η = 0.9, g = 4.5

100 400 700 1000

Time (ms)

50

175

300

S
p

ik
e

ra
te

(H
z)

100 400 700 1000

Time (ms)

100 400 700 1000

Time (ms)

100 400 700 1000

Time (ms)

0 10 20

Neuron

0

10

20

N
eu

ro
n

0 10 20

Neuron

0 10 20

Neuron

0 10 20

Neuron

−1

0

1

−1

0

1

−1

0

1

−1

0

1

Figure 5.6: Simulation of the network specified by Table 5.2, with
the values of η and g stated in each subplot’s title along with the
network state. The network is simulated for Tsim = 1, 000 ms, and
we record the output from Nrec = 20 excitatory neurons. To avoid
transient effects, we start recording after Ttransient = 100 ms. The top
row shows the firing times (raster) of the recorded neurons. Each
point in the raster corresponds to the firing of a neuron. The second
row shows the network activity as a time resolved firing rate computed
in bins of 10 ms. The mean firing rate is indicated by the horizontal
(red) axis line. The third row shows the pairwise Pearson’s correlation
coefficient matrix of the recorded neurons.

Table 5.2 summarizes the parametrization of the Brunel model used in the above
simulations.

Chapter 5. Models of Neural Dynamics 56

Table 5.2: The parametrization of the Brunel model. Specific values
are not provided for the parameters derived from the varying η and g.

Parameter Value Description
N 12, 500 Total number of neurons
NE 10, 000 Number of excitatory neurons
NI 2, 500 Number of inhibitory neurons
ε 0.1 Connection probability
CE 1, 000 Excitatory synapses per neuron
CI 200 Inhibitory synapses per neuron
Em 0 mV Resting membrane potential
Cm 1 pF Membrane capacitance
τm 20 ms Membrane time constant
θ 20 mV Firing threshold
Vreset 10 mV Reset membrane potential
τrp 2 ms Refractory period
D 1.5 ms Synaptic delay
JE 0.1 mV Excitatory synapse strength
JI −gJE Inhibitory synapse strength
νext (ηθ)/(JECEτm) External firing rate

Part II

Methodology & Computational
Approach

6
Methodology

6.1 Outline of Analyses
Here, we provide an outline of the analyses that will be carried out, in order to
motivate the following methodologies and give the reader an overview of what is to
come. We keep this brief, as we will reiterate the objectives and expand on details
as we go along.

The overall objective of this thesis is to investigate the ability and utility of
simulation-based inference (SBI) for identifying parameters in mechanistic models
of neural dynamics. Specifically, we will investigate the performance of approxi-
mate Bayesian computation (ABC) using rejection sampling with post-sampling
regression adjustment and the neural density estimation (NDE) algorithm SNPE
(see Chapter 3). The primary focus will be on ABC, and SNPE will only be used
for comparison.

For the assessment of the strengths and weaknesses of SBI, we mainly use the original
Hodgkin-Huxley (HH) model for the potassium (K+), sodium (Na+) and leakage
channels found in the squid giant axon membrane (see Section 5.1). The objective of
the inferential task on the HH model is to identify the maximum conductance of the
K+channel, ḡK, and the maximum conductance of the Na+channel, ḡNa. As such,
the remaining parametrization will be kept fixed according to their original values,
as tabulated in Table 5.1. The observed data will primarily be a synthetically
generated voltage trace recording, free of any noise, in order to not have the results
overshadowed by noisy data. We will, however, also investigate the impact a noisy
recording has on the inference, as real-world neural data are quite noisy.

Chapter 6. Methodology 59

Much effort in computational neuroscience today concerns mechanistic models at
the network level. We also consider the Brunel network model for activity dynamics
in local cortical networks (see Section 5.2). Here, the inferential task will be to
identify the synaptic weight parameters η and g. The remaining parametrization of
the Brunel model will be as given in Table 5.2. For the current study, we primarily
limit our analysis to infer the parameters in the asynchronous irregular (AI) state.
However, we will try to utilize the flexibility of SNPE by training on simulations
from both the AI and synchronous regular (SR) state, to investigate whether the
predicted posteriors, when using observed data from one of these states, match the
expected parameter ranges from the phase diagram (Figure 5.5).

We broadly divide the analyses in two parts, one part concerning the inferential
task on the HH model and the other the Brunel network model. In the introduction,
we divided the overall objective into six parts:

1. Implement simulators for both the Hodgkin-Huxley and Brunel network model
in Python.

2. Implement a general ABC rejection sampler with post-sampling regression
adjustment in Python.

3. Determine suitable summary statistics of the spiking activity using domain
knowledge and develop or find methods for extracting them from the simulated
neural data.

4. Assess how well the summary statistics constrain the model parameters by
examining sensitivity through a correlation analysis. Based on the correlation
analysis, implement an importance weighting procedure for the statistics.

5. Estimate the model parameter posteriors with both ABC and SNPE by
using synthetic observed data generated by the simulators, and examine the
performance of the simulation-based inference approach.

6. Compare the results obtained via ABC and SNPE and insights they might
provide about the neuroscientific models.

6.2 Summary Statistics of Spiking Activity
The choice of summary statistics is vital in determining the outcome of the inverse
modelling with SBI, particularly with ABC algorithms. In the following, we present
summary statistics of spiking activity based on domain knowledge.

6.2.1 Spike Statistics
In order to characterize the voltage response of a HH model neuron to depolarizing
stimulus, we project the response to low-dimensional summary statistics related to
action potential (AP) shape and firing behavior. We will use the spike statistics
suggested by Druckmann et al. [39]:

Chapter 6. Methodology 60

(i) Spike rate – calculated as the number of spikes divided by the duration of
the stimulus;

(ii) Average AP overshoot – calculated by averaging the absolute peak voltage
of all APs;

(iii) Average AP width – calculated by averaging the width of every AP at the
midpoint between its onset and its peak;

(iv) Average AHP depth – calculated by averaging all minima voltage throughs,
i.e., afterhyperpolarization (AHP) depths, between two consecutive APs;

(v) Latency to first spike – calculated as the time between stimulus onset and
first AP peak;

(vi) Accommodation index – calculated as the normalized difference in length
of two consecutive interspike intervals (ISIs), i.e., the time between subsequent
APs:

A = 1
N − k − 1

N∑
i=k

ISIi − ISIi−1

ISIi + ISIi−1
, (6.1)

where N is the number of spikes and k determines the number of ISIs that
will be disregarded to protect against possible transient behavior. The value
for k = min (4, NISI/5), where NISI is the total number of ISIs.

6.2.2 Spike Train Statistics
From the Brunel network, we record the spike trains from multiple neurons. Spikes
are events characterized by their firing time tk, where k = 1, 2, ... labels a spike by
the spike count. We define the spike train of a neuron i as the sequence of firing
times:

Si(t) =
∑
k

δ
(
t− tki

)
, (6.2)

where δ(x) is the Dirac δ function (defined in Section 5.2.2). Thus, spikes are
reduced to points in time. In a population of N neurons, we calculate the proportion
of active neurons by counting the number of spikes in a small time interval ∆t and
dividing by N . Further division by ∆t yields the population activity:

ν(t) = lim
∆t→0

1
∆t

∫ t+∆t
t

∑
i

∑
k δ
(
t− tki

)
dt

N
(6.3)

In practice, we usually have to bin the spike trains in bins of ∆t to obtain the time
resolved firing rate.

Chapter 6. Methodology 61

To characterize the network activity, we will use three summary statistics that aim
to capture different aspects of the activity:

(i) Mean firing rate. We characterize the mean firing rate of the network
as a time and population averaged firing rate. This is calculated by first
determining the average firing rate of each single spike train by counting its
spikes and dividing by a time window, then the population average is found
by averaging over all the recorded neurons.

(ii) Mean CV. The regularity of spike trains can be summarized by the spike
interval statistic coefficient of variation (CV), defined as the standard de-
viation of the ISIs divided by their mean. The mean CV is calculated by
averaging the CV of each neuron’s ISIs over all recorded neurons. A regularly
spiking neuron would have CV of 0, since there is no variance in the ISIs,
whereas a Poisson process has a CV of 1.

(iii) Fano factor. The Fano factor is a statistic across spike trains that measures
the variability. It is defined as the variance-to-mean ratio of spike counts
in a time window. The Fano factor is typically computed for spike trains
representing the activity of the same neuron over different trials. However,
since all neurons in the network have identical properties, we can think of
the activity of each recorded neuron as a single trial.

6.3 Correlation Analysis & ImportanceWeights
Some summary statistics may carry more information about a model parameter
than others. As the ABC methodology is based on comparing simulated and
observed summary statistics, the most informative summary statistics will typically
be those with higher variability relative to movement of model parameter values.
If we weight the summary statistics in accordance with the variability they exhibit
relative to changes in model parameter values, the inferential algorithm might be
able to constrain the model parameter better. The notion of weighting the summary
statistics in this manner can be said to be a form of importance weighting. We
would then give larger weights to the summary statistics that are most sensitive to
changes in model parameter value and smaller weights to those less sensitive.

There are numerous robust approaches to base the construction of importance
weights on, for instance parameter sensitivity analysis [40] or analysis of curvature
of an objective function [39]. We will, however, develop a rather simplistic approach
where the importance weights are constructed based on correlation analysis. We
landed on this approach simply because of the limited time available for carrying
out a master project, and this aspect is of lesser importance than others in the
study. Nevertheless, the idea behind basing the importance weights on correlation
analysis follows.

Correlation analysis is a method to measure the strength of the linear relationship
between the relative movements of two variables X and Y . A common measure is

Chapter 6. Methodology 62

the pairwise Pearson’s correlation coefficient r, which is defined as the ratio between
the covariance of the variables and the product of their standard deviations:

r = cov(X, Y)
σXσY

. (6.4)

As r essentially is a normalized measurement of the covariance, the magnitude
of the correlation will be a value between -1 and 1, where the sign indicates the
direction of the relationship. A high correlation, i.e., when r is close to 1 or -1,
indicates a strong relationship, while r = 0 points to no relation between the
variables.

Correlation analysis, in particular examination of the pairwise Pearson’s correlation
coefficient matrix, can be used to assess sensitivity by examining which model
parameters contribute the most variability to the summary statistics. Thus, corre-
lation analysis may indicate which of the summary statistics might constrain the
model parameters the best, though one should keep the assumption of linearity in
mind. In practice, assessing the sensitivity via a correlation analysis requires us
to perform a pilot study where we sample parameters from the prior predictive
distribution, given by Equation 2.3, and generate the corresponding summary
statistics with the simulator model.

Furthermore, we can use the results from the correlation analysis to construct
importance weights for the summary statistics. Given a vector of summary statistics
s = (s1, ..., sm) and a vector of model parameters θ = (θ1, ..., θl), the following
procedure will generate a vector of importance weights w = (w1, ..., wm):

1. Given paired samples
{(
θ

(1)
k , s

(1)
i

)
, ...,

(
θ

(n)
k , s

(n)
i

)}
consisting of n pairs where

we let
(
θ

(j)
k , s

(j)
i

)
indicate the jth sample, we first compute the Pearson

correlation coefficient as:

ri,k =
∑n
j=1

(
θ

(j)
k − θ̄k

)(
s

(j)
i − s̄i

)
[∑n

j=1

(
θ

(j)
k − θ̄k

)2∑n
j=1

(
s

(j)
i − s̄i

)2
]1/2 ,

where θ̄k and s̄i are the sample means of the kth model parameter and the
ith summary statistic, respectively.

2. The squared Pearson correlation coefficient, r2
i,k, indicates the proportion of

variance in si that is accounted for by (or shared with) θk. By definition,
r2
i,k will be a number between 0 and 1 that can be used to weight the
summary statistics. The summary statistics most sensitive to model parameter
movements, will in this way be given a larger weight. Thus, we set the
importance weight for ith summary statistic for the kth model parameter as:

wi,k = r2
i,k.

Chapter 6. Methodology 63

3. Since the ABC algorithms do not facilitate comparison of summary statistics
for individual model parameters, we need to average over all model parameters
to obtain the importance weight of the ith summary statistic:

wi = 1
l

l∑
k=1

wi,k.

4. After obtaining all weights, we ensure that ∑m
i=1wi = 1 by setting each

wi = wi/
∑m
i=1wi.

6.4 Configuration of ABC Algorithm
Configuring an ABC algorithm for inference requires some choices. In particular,
for the rejection ABC algorithm we need to set priors over the model parameters,
select a discrepancy metric and a tolerance. In this section we discuss the particular
choices we will make.

6.4.1 Choice of Priors
In practice, the choice of priors over unknown model parameters is a study in
and of itself. Mimicking such a choice is beyond the scope of this thesis. For
the present inferential tasks, the choice of priors will regardless be artificial since
we actually know the ground truths. For most inferences, we will therefore use
noninformative priors to demonstrate the accuracy of the methods based on data
alone. For the HH model parameters, we will use priors with about ±10% range
around the ground truth parameters. We will, however, also investigate the effect
slightly more informative priors have on the convergence of the posterior with the
HH model. For the Brunel model, we will only use noninformative priors. For a
given observed state, the prior ranges will be set according to the corresponding
ranges in the phase diagram of network states (Figure 5.5).

6.4.2 Discrepancy Metric
In ABC algorithms, each simulation is converted to a vector of summary statistics
ssim =

(
s

(1)
sim, s

(2)
sim, ..., s

(m)
sim

)
. We need to define a discrepancy metric that compares

each of the simulated statistics in ssim to the corresponding ones in the vector of
observed summary statistics sobs. As discrepancy metric, we will use the Euclidean
distance:

ρ(ssim, sobs) = ‖ssim − sobs‖2 =
[
m∑
i=1

(
s

(i)
sim − s

(i)
obs

)2
]1/2

.

As illustrated by Figure 3.1, the Euclidean distance amounts to a circular acceptance
region, which implies identical scales of the summary statistics. However, the

Chapter 6. Methodology 64

summary statistics of spiking activity tend to be on quite different scales, and we
will thus be in danger of comparing apples with oranges. The summary statistics
with largest scales can dominate any distance calculation unless we normalize the
summary statistics so that they vary roughly over the same scale. Scaling the
summary statistics in such a manner can be achieved by using a weighted Euclidean
distance:

ρ(ssim, sobs) =

 m∑
i=1

s(i)
sim − s

(i)
obs

σ(i)

2

1/2

,

where σ(i) is an estimator of the ith summary statistic scale. In practice, we need to
sample parameters from the prior predictive, feed the parameters to the simulator
model and then calculate the empirical scale from the resulting summary statistics.
We will scale the summary statistics according to their standard deviation (SD)
estimated from the prior predictive samples. We could have chosen e.g. the median
absolute deviation (MAD) as scale instead, which is a more robust estimator of scale
than SD. However, if more than 50% of the prior predictive samples for a particular
summary statistic have identical values, MAD will equal zero. We therefore opt for
the more reliable SD as scale.

To extend the above distance metric to include the importance weighting of the
summary statistics, the distance metric will be on the form:

ρ(ssim, sobs) =

 m∑
i=1

w(i)

s(i)
sim − s

(i)
obs

σ(i)

2

1/2

, (6.5)

where w(i) is the importance weight of the ith summary statistic. If all w(i) = 1,
then the summary statistics are equally weighted. We will use the Euclidean
distance on the particular form given by Equation 6.5.

6.4.3 Semi-Automatic Tolerance Selection
Determining the tolerance parameter ε in the ABC algorithms can be quite finicky,
as we usually do not know in advance exactly what a reasonable cutoff might be.
Conceptually, it is easier to require the algorithm to accept some small proportion
of the simulations rather than setting ε by hand. If we define the tolerance as the
q-quantile of the distances from n simulations, we avoid manually setting ε. With
this quantile-based rejection scheme, defining the tolerance as the 0.5-quantile of
the distances amounts to accepting 50% of the simulations, the 0.3-quantile 30% of
the simulations etc.

Chapter 6. Methodology 65

6.5 Performance Metrics
Choice of suitable performance metrics are central to any analysis. We discussed
methods for summarizing posteriors in Section 2.6. Using KDE (see Section 2.5.2)
to create a visual representation of obtained posterior samples is a useful first-step,
as KDE plots quickly inform us about the shapes and locations of the posteriors.
In addition, we should use numerical summaries of the posterior. For each posterior
over a model parameter we will both indicate in the KDE plot and provide the
value(s) of the MAP estimate and the 95%-HDI. We will also perform posterior
predictive checks (PPCs).

While all of these summaries enable us to assess the goodness of fit, we will also
take advantage of the fact that we have access to the ground truth parameters. Just
comparing a point estimate with a ground truth is not a particularly good error
measure, since this will not account for the width of the posterior. That is, a wide
posterior and a narrow posterior might have nearly identical point estimates close
to the ground truth, but the narrow posterior will then clearly be more accurate.
We will therefore define an error measure that takes the width of the posterior into
account. By definition, there will be more posterior samples in the regions of high
density in the KDE representation of the posterior. Thus, by averaging over all the
posterior samples, we obtain an implicitly weighted error estimate where the width
is accounted for. We will use the root-mean-square percentage error (RMSPE) as
performance metric, defined as:

RMSPE =

√√√√√ 1
n

n∑
i=1

θtrue − θ̂i
θtrue

2

· 100 (6.6)

where the sum is over all n posterior samples, θtrue is the ground truth and θ̂i is
the ith posterior sample. The RMSPE thus evaluates the accuracy of a posterior
in terms of the percentage difference between the ground truth parameter and the
weighted posterior estimate.

We aim to investigate different settings of tuning parameters, and will generate
several posteriors for the same settings in order to assess variability. In these
analyses, we take the RMSPE to be the mean of the RMSPEs of all posteriors for
a particular setting. The variability can then be assessed through the standard
error of the mean (SEM), which is the expected value of the standard deviation of
means of several samples. This is estimated from a single sample as:

SEM = s√
k
, (6.7)

where s is standard deviation of the sample mean and k is the sample size.

7
Computational Approach

7.1 Computational Strategies
In this section, we present an assortment of computational strategies we will
use.

7.1.1 Log Densities
Whenever possible, we compute with logarithmic densities in order to avoid compu-
tational overflows and underflows. Exponentiation is performed only when necessary.
The Metropolis algorithm (Algorithm 2.1) is an example of where log densities
should be used, as it requires evaluation of two densities in the calculation of the
ratio. With log densities, the ratio is actually computed as the exponential of the
difference of the log densities.

7.1.2 Parameter Transformations
Before regression adjustment, positive parameters should be log transformed. This
will both stabilize the variance of the regression model and make it more ho-
moscedastic. In addition, the log transform guarantees that the adjusted parameter
values lie in the range of the prior distribution [41]. The final adjusted values are
obtained by exponentiation of the r.h.s. of Equation 3.5.

Chapter 7. Computational Approach 67

7.1.3 Sample from the Prior and Posterior Predictive
When we want to do posterior predictive checks, we need to sample from the
posterior predictive distribution defined by Equation 2.4. This involves an integral
which can be completely avoided by the following iterative two-step process:

1. Sample a value of θ from the posterior π(θ | y).

2. Generate a prediction ŷ by feeding the value of θ to:

(a) The likelihood p(y | θ) in the case of likelihood-based inference;

(b) The simulator model M(θ) in the case of simulation-based inference.

The result of one iteration will be one sample from the posterior predictive distri-
bution.

Following a similar logic, we can sample from the prior predictive distribution
defined by Equation 2.3 via:

1. Sample a value of θ from the prior π(θ).

2. Generate a prediction ŷ by feeding the value of θ to:

(a) The likelihood p(y | θ) in the case of likelihood-based inference;

(b) The simulator model M(θ) in the case of simulation-based inference.

7.1.4 vtrap
The HH model contains rate equations that are equivalent to expressions on the
form:

rate = x

exp (x/y)− 1 .

However, such expressions are prone to computational overflow. If x/y = 0 or
close to zero, then the denominator is zero or really small which leads to infinite or
extremely large output. From Taylor series approximation, we can find that the
above expression is approximated by:

rate = y

(
1− x

2y

)

if x/y << 1. See Appendix B for the derivation. This expression is similar to how
the NEURON simulator [42] handles indeterminate cases for HH style rate equations,
and is called vtrap in their software. We will also refer to this approximation as
vtrap. The HH model rate equations on this form will thus be computed by:

Chapter 7. Computational Approach 68

vtrap =
y
(
1− x

2y

)
if x

y
<< 1

x
exp (x/y)−1 otherwise

(7.1)

7.1.5 A More Efficient Metropolis Sampler
Due to complex simulator models, it is not uncommon for the data generation
step in ABC algorithms to be expensive and thereby dominate the computational
overheads of the algorithms. In the MCMC ABC algorithm (Algorithm 3.5), there
is actually no need to run forward the simulator model if the proposal parameter
is rejected by the Metropolis acceptance criterion, which typically will be less
expensive to evaluate. Therefore, the MCMC ABC algorithm can, in general,
be formulated in a more efficient manner by changing the order of the required
computations, as shown in Algorithm 7.1.

Algorithm 7.1: Efficient MCMC ABC with Metropolis sampler
Initialize :

1 Sample θ0 by performing one iteration of rejection ABC (Algorithm 3.4).

Sampling :
for t = 1, ..., N do

2 Generate proposal θ∗ ∼ q(θ∗ | θt−1).
3 Calculate acceptance criterion α = min

(
1, π(θ∗)

π(θt−1)

)
.

4 Sample u ∼ U(0, 1).
if u ≤ α then

5 Simulate data ysim from M(θ∗).
6 Calculate ρ ≡ ρ(S(ysim), S(yobs)) = ρ(ssim, sobs).

if ρ ≤ ε then
7 θt = θ∗

else
8 θt = θt−1

else
9 θt = θt−1

7.1.6 Parallelization
The ABC algorithms are so-called embarrassingly parallelizable, which means there
is little to no effort to divide the workload as the computations are independent.
We will therefore parallelize the ABC samplers we implement ourselves. In the case
of rejection ABC, we sample independent posterior samples. Hence, the prescribed
number of posterior samples the sampler has to generate can be fairly divided
between all available workers. In the case of MCMC ABC, the posterior samples are
not independent due to the dependent Markov chains. Parallelizing a single chain is

Chapter 7. Computational Approach 69

not a straightforward task, but we could let multiple chains sample independently
in parallel. As each chain needs sufficient time to converge towards the stationary
distribution, each will need a sufficient number of posterior samples to generate in
its workload.

7.2 Software Development
As part of the thesis, we developed two Python packages; pyLFI1 for the imple-
mentation of ABC algorithms and regression adjustment, and NeuroModels2 for
the implementation of the neural simulator models and methods for summary
statistic extraction. Both packages are available via the Python Package Index
(PyPI)3. Besides personal preference, Python was chosen as programming language
for several reasons; it is open source, allows for easy, flexible coding and have
a plethora of available packages for analysis and visualizations. Moreover, for
heavier computations, many Python packages interface with procedures written in
faster languages like C. Most of the code is written using either Python’s standard
library or the standard scientific libraries NumPy [43], SciPy [44], Matplotlib [45],
pandas [46] and seaborn [47]. For parallelization we used Pathos [48], which is a
convenient wrapper of the multiprocessing package in the standard library. For
implementations regarding the Brunel network model, we used NEST [49], Neo [50]
and Elephant [51]. In addition, SNPE is implemented by its creators in a Python
package called sbi [11].

We will not dive into too much detail regarding the implementation of pyLFI
and NeuroModels, as the code itself is fairly documented and available for those
interested. In the following, we instead focus on a broader overview of the imple-
mentation and brief demonstrations of usage.

7.2.1 NeuroModels
NeuroModels is toolbox for simulating neuroscientific models, post-simulation
analysis and feature extraction. Here, we provide some implementation details and
examples of usage of the different modules.

HH Solver

We made a general and flexible solver class of the HH model. The coupled differen-
tial equations are solved by using scipy.integrate.solve_ivp. The numerical
integration method can be selected by the user, but in the present study we use the
default explicit Runge-Kutta method of order 5(4) (RK45) [52]. Listing 7.1 shows
an example of usage.

1https://github.com/nicolossus/pylfi
2https://github.com/nicolossus/neuromodels
3https://pypi.org

https://github.com/nicolossus/pylfi
https://github.com/nicolossus/neuromodels
https://pypi.org

Chapter 7. Computational Approach 70

Listing 7.1: Example usage of the HH solver.
import neuromodels as nm

The simulation parameters needed are the simulation time ,
time step and input stimulus :
T = 50. # Simulation time [ms]
dt = 0.01 # Time step

Stimulus can be provided as either a scalar , array or callable
stimulus = nm. stimulus . Constant (I_amp =10 ,

t_stim_on =10 ,
t_stim_off =40
)

Initialize the Hodgkin - Huxley system ; model parameters can either
be set in the constructor or accessed as class attributes :
hh = nm. solvers . HodgkinHuxleySolver (V_rest = -65)
hh. gbarK = 36.0

The system is solved by calling the class method `solve `:
hh. solve (stimulus , T, dt , method ='RK45 ')

The solutions can be accessed as class attributes :
t = hh.t
V = hh.V
n = hh.n
m = hh.m
h = hh.h

HH Simulator

The HH solver is wrapped into a HH simulator class with a call method that takes
the conductance parameters as arguments and returns the simulated data. The
simulator class also has methods for post-simulation analysis. Listing 7.2 shows an
example of usage.

Listing 7.2: Example usage of the HH simulator.
import matplotlib . pyplot as plt
import neuromodels as nm

The simulation parameters needed are the simulation time ,
time step and input stimulus :
T = 50. # Simulation time [ms]
dt = 0.01 # Time step
stimulus = nm. stimulus . Constant (I_amp =10 ,

t_stim_on =10 ,
t_stim_off =40
)

Initialize the Hodgkin - Huxley simulator ; simulation and fixed
model parameters are passed to the constructor :
hh = nm. models . HodgkinHuxley (stimulus ,

T,
dt ,
method ='RK45 ', # integration method
pdict ={} , # dict of model params
solver_options ={} # dict of solver opts
)

Calling the instance solves the HH system for the passed values
of the active conductances , and the voltage trace is returned :
V, t = hh(gbar_K =36. , gbar_Na =120.)

Chapter 7. Computational Approach 71

The simulator class has methods for post - simulation analysis , e.g.:
hh. plot_voltage_trace (with_stim =True)
plt.show ()

Spike Statistics

The output voltage trace from the HH simulator needs to be reduced to a set of
low-dimensional summary statistics. We implemented procedures for extracting the
summary statistics outlined in Section 6.2.1. The extraction of the summaries are
based on using scipy.signal.find_peaks for identifying spikes that are above a
specified firing threshold and separated by a distance greater than the refractory
period. Having found the spike positions, most summary statistics can be derived
by clever indexing of the voltage and time arrays. Average AP width is extracted
via scipy.signal.peak_widths, and average AHP depth by passing the negative
voltage array (i.e., the flipped voltage trace) to scipy.signal.find_peaks. The
spike statistics extractor class has a call method that takes the voltage trace as
argument and returns the summary statistics specified in the constructor. Listing 7.3
shows an example of usage.

Listing 7.3: Example usage of spike statistics extraction class.
import neuromodels as nm

The simulation parameters :
T = 50. # Simulation time [ms]
dt = 0.01 # Time step
t_stim_on = 10 # Stimulus onset
t_stim_off = 40 # Stimulus offset
stimulus = nm. stimulus . Constant (I_amp =10 ,

t_stim_on =t_stim_on ,
t_stim_off = t_stim_off
)

Initialize the Hodgkin - Huxley simulator :
hh = nm. models . HodgkinHuxley (stimulus , T, dt)

Call simulator to solve system for passed conductances :
V, t = hh(gbar_K =36. , gbar_Na =120.)

Create a list of summary statistics to extract :
stats = [" average_AP_overshoot ",

" spike_rate ",
" average_AP_width ",
" average_AHP_depth ",
" latency_to_first_spike ",
" accommodation_index "]

Initialize spike statistics extraction class ; stimulus onset
and offset as well as statistics to extract must be passed
to the constructor :
sps = nm. statistics . SpikeStats (t_stim_on =t_stim_on ,

t_stim_off = t_stim_off ,
stats =stats ,
threshold =0 # find only spikes above 0 mV
)

The SpikeStats instance is callable ; the voltage trace must be
passed as argument . The extracted summary statistics are returned :
sum_stats = sps(V, t)

Chapter 7. Computational Approach 72

Brunel Solver

We implemented a flexible solver for the Brunel network model using NEST inside a
Python class. The output of the network is returned as neo.SpikeTrain objects,
which in turn are specified as Quantity objects; these are essentially arrays (or
numbers) with a unit of measurement attached. The solver is parallelized through
NEST. Listing 7.4 shows an example of usage.

Listing 7.4: Example usage of the Brunel network model solver.
import neuromodels as nm

Initialize the Brunel network ; the `order ` parameter determines
the number of neurons and connections in the network . Model
parameters can either be set in the constructor or accessed as
class attributes :
bnet = nm. solvers . BrunelNetworkSolver (order =2500 , J =0.35)
bnet.eta = 2.0
bnet.g = 4.5

The system is solved by calling the class method `simulate `.
Simulation parameters have default values , but can also be set:
bnet. simulate (T=1000 , # Simulation time [ms]

dt =0.1 , # Time step
N_rec =20 , # Number of neurons to record from
threads =8, # Number of threads
)

The output of the network is returned as `neo. SpikeTrain ` objects .
Whether to return spike trains from excitatory ('exc ', default) or
inhibitory ('inh ') neurons is controlled by the `n_type ` keyword :
spiketrains = bnet. spiketrains (n_type ="exc")

The `summary ` method gives a simple summary of the simulation :
bnet. summary ()

Brunel Simulator

The Brunel simulator is similar in construction to the HH simulator. It wraps
the Brunel solver class and is callable. The call method takes the synaptic weight
parameters η and g as arguments. The simulator also has methods for post-
simulation analysis. Listing 7.5 shows an example of usage.

Listing 7.5: Example usage of the Brunel simulator.
import matplotlib . pyplot as plt
import neuromodels as nm

Model parameters
order = 2500 # -> NE =10 ,000 ; NI =2500 ; N_tot =12 ,500 ; CE =1000 ; CI =250
epsilon = 0.1 # Connection probability
T = 1000 # Simulation time [ms]
N_rec = 20 # Record output from N_rec neurons
n_type = 'exc ' # Record excitatory spike trains
D = 1.5 # Synaptic delay [ms]
J = 0.1 # Excitatory synapse weight [mV]

NEST settings
threads = 16 # Number of threads to use in simulation
print_time = False # Print simulated time or not

Simulator model class constructor :

Chapter 7. Computational Approach 73

bnet = nm. models . BrunelNet (order =order ,
epsilon =epsilon ,
T=T,
N_rec =N_rec ,
n_type =n_type ,
D=D,
J=J,
threads =threads ,
print_time = print_time ,
)

The call method takes the synaptic weight parameters `eta ` and `g`
as arguments and returns the output spike trains :
spiketrains = bnet(eta =2.0 , g =4.5)

The simulator class has methods for post - simulation analysis , e.g.:
bnet. rasterplot_rates ()
plt.show ()

Spike Train Statistics

The output spike trains from the Brunel simulator also need to be reduced to
a set of low-dimensional summary statistics. We used Elephant to extract the
summary statistics outlined in Section 6.2.2. The usage of the spike train statistics
extractor class is similar to its counterpart for the HH simulator, as shown in
Listing 7.6.

Listing 7.6: Example usage of the spike train statistics extraction
class.

import neuromodels as nm
import quantities as pq

Simulator model class constructor :
bnet = nm. models . BrunelNet (order =2500 ,

epsilon =0.1 ,
T=1000 ,
N_rec =20 ,
n_type ='exc ',
D=1.5 ,
J=0.1 ,
threads =16 ,
)

Simulator call method :
spiketrains = bnet(eta =2.0 , g =4.5)

Create a list of summary statistics to extract :
stats = [" mean_firing_rate ", # rate estimation

" mean_cv ", # spike interval statistic
" fanofactor " # statistic across spike trains
]

Define start and end time as `Quantity ` objects :
t_start = 100. * pq.ms # Cutoff to avoid transient effects
t_stop = 1000 * pq.ms # End time

Initialize spike train statistics extraction class ;
start and end time as well as statistics to extract
must be passed to the constructor :
sts = nm. statistics . SpikeTrainStats (t_start =t_start ,

t_stop =t_stop ,
stats = stats

Chapter 7. Computational Approach 74

)

The SpikeTrainStats instance is callable ; the spike trains must be
passed as argument . The extracted summary statistics are returned :
sum_stats = sts(spiketrains)

7.2.2 pyLFI
pyLFI is a Python toolbox using likelihood-free inference (LFI) (also known as
simulation-based inference) for estimating the posterior distributions over model
parameters. We have implemented both rejection ABC (Algorithm 3.4) and MCMC
ABC (Algorithm 7.1), as well as post-sampling regression adjustment. We made
the software general and flexible, so that it can accommodate other algorithms as
well. The price to pay for the generality and flexibility is that the simulation of
data and calculation of summary statistics are left entirely to the user. To perform
parameter identification with pyLFI, there are generally four inputs that need to
be specified:

1. A simulator model. The mechanistic model needs to be specified through a
simulator model that can generate simulated data ysim for any parameters θ.

2. A summary statistics calculator. The ABC algorithms require the use of
low-dimensional summary statistics s = S(y) calculated from the raw data y.

3. Observed data yobs. This must be on the same form as ysim.

4. A prior π(θ) for each unknown parameter that describes the range of possible
parameter values.

For each problem, the objective is to estimate the posterior distribution π(θ | yobs).
In general, setting up the inference procedure requires three design choices:

1. A distance metric.

2. Tuning parameters. The number of tuning parameters depend on which ABC
algorithm is being used. The central tuning parameter for all algorithms
is the threshold ε, for which we introduced the alternative quantile-based
approach. For MCMC algorithms, there are additional tuning parameters
like proposal density scale, burn-in iterations etc.

3. Either a simulation budget, i.e. a prescribed number of simulations to run,
or a prescribed number of posterior samples the ABC sampler must obtain.
Running the simulator is generally the costliest step of the procedure, and
many simulator runs might be needed to accurately produce the posterior.

Example Usage

In the following, we demonstrate pyLFI on a toy example. We will infer the mean µ
and standard deviation σ of a Gaussian distribution with likelihood p(yobs | µ, σ) =
N(µ = 163, σ = 15), The observed data are sampled from the likelihood:

Chapter 7. Computational Approach 75

mu_true = 163
sigma_true = 15
likelihood = scipy . stats .norm(loc=mu_true , scale = sigma_true)
obs_data = likelihood .rvs(size =1000)

We assume that the likelihood is unknown, and formulate a model to describe the
observed data. The model needs to be implemented as a Python callable, i.e., a
function or a call method in a class, that is parametrized by the unknown model
parameters we aim to infer, here µ and σ:
def simulator (mu , sigma , size =1000) :

y_sim = stats .norm(loc=mu , scale = sigma).rvs(size=size)
return y_sim

Next, we need to reduce the raw data into low-dimensional summary statistics.
The summary statistics calculator also needs to be implemented as a Python
callable. The function must return the summary statistics as a Python list or
numpy.ndarray. Here, we take the mean and standard deviation to be summary
statistics of the data (these are actually sufficient summary statistics):
def stat_calc (y):

sum_stats = [numpy .mean(y), numpy .std(y)]
return sum_stats

We then place priors over the unknown model parameters using the pylfi.Prior
class. The signature of the class constructor is:
pylfi . Prior (distr_name , *params , name=None , tex=None , ** kwargs)

Here, distr_name is passed as a string that correspond to any distribution from
scipy.stats. params are the parameters of the distribution, typically these would
be shape parameters or loc and scale passed as positional arguments. kwargs are
keyword arguments passed to the SciPy distribution methods. The name keyword
argument is required, and is used by pyLFI to keep track of the parameter. The tex
keyword argument is optional, and can be used to provide the LATEX typesetting
for the parameter name. pyLFI includes procedures for automatically plotting
priors and posteriors, and will use the tex name of the parameter as axis labels
if provided. The name string is used to access the parameters further down the
pipeline and is also used as axis labels if tex is not provided.

In the present example, we define the priors:
mu_prior = pylfi . Prior ('norm ',

loc =165 ,
scale =2,
name='mu ',
tex='μ '
)

sigma_prior = pylfi . Prior ('uniform ',
loc =12 ,
scale =7,
name='sigma ',
tex='$\ sigma$ '
)

priors = [mu_prior , sigma_prior]

Chapter 7. Computational Approach 76

Note that the priors must be collected in a Python list. By providing points
x to evaluate the prior pdf at, the pylfi.Prior class also lets us visualize the
priors:
import matplotlib . pyplot as plt
fig , axes = plt. subplots (nrows =1, ncols =2, figsize =(5 , 2) , tight_layout =True)

x = np. linspace (159 , 171 , 1000)
mu_prior . plot_prior (x, ax=axes [0])

x = np. linspace (11 , 20, 1000)
sigma_prior . plot_prior (x, ax=axes [1])

plt.show ()

Figure 7.1: Priors over µ and σ in the toy example with a Gaussian
model.

Now, all components needed for inference with pyLFI are in place, and we can
initialize the ABC sampler:
sampler = pylfi . RejABC (obs_data , # observed data

simulator , # simulator model
stat_calc , # sum stat calculator
priors , # priors over params
log=True. # display logger or not
)

The constructors of the ABC samplers are identical, as each sampler inherit most
methods from a general parent class (pylfi.ABCBase).

As mentioned above, there are two approaches for configuring the ABC sampler; we
either set a simulation budget or the number of posterior samples to obtain. The
latter approach requires a pilot study if we want to estimate ε and the summary
statistic scales from the prior predictive distribution. The signature of the pilot
study method is:
pylfi . ABCBase . pilot_study (nsims ,

quantile =None ,
stat_scale =None ,
stat_weight =1. ,
n_jobs =-1,
seed=None ,
)

The pilot study runs the simulator nsims times with parameters sampled from
the prior predictive distributions, and sets the tolerance ε automatically as the

Chapter 7. Computational Approach 77

quantile, specified by the quantile keyword, of the simulated distances. If the
stat_scale keyword is passed as one of the strings sd or mad, the pilot study
also provides an estimate of each summary statistic scales, which are used in
the weighted Euclidean distance. stat_scale=’sd’ scales the summary statistics
according to their standard deviation (SD) estimated from the prior predictive
samples, and stat_scale=’mad’ according to their median absolute deviation
(MAD). The stat_weight keyword can be used to provide importance weights to
the summary statistics. The computational demanding ABC sampler methods are
parallelized, and the n_jobs keyword can be used to set the number of workers.
The default, n_jobs=-1, sets the number of workers automatically as the number
of found CPUs in the system. Furthermore, the ABC sampler can be seeded via
the seed keyword. The seed is just provided as an integer. pyLFI has procedures
for parallel random number generation (PRNG) based on the provided seed, and
ensures correct advancement of the underlying PRNG states. This means that the
ABC sampler themselves are reproducible, but a caveat of PRNG is that exact
reproducibility only is possible when using the same seed and same number of
workers.

For our toy example, performing a pilot study is done as follows:
nsims = 1000
sampler . pilot_study (nsims ,

quantile =0.2 ,
stat_scale ="sd",
stat_weight =1,
n_jobs =4,
seed =4
)

To sample from the posterior, we must call the sample method, which is specific
for each algorithm. For the rejection ABC sampler when a pilot study has been
performed, the call becomes:
nsamples = 3000
journal = sampler . sample (nsamples ,

use_pilot =True ,
n_jobs =4,
seed =42 ,
return_journal =True
)

Here, the first positional argument is the number of posterior samples we want.
By setting use_pilot=True, the sampler will use the tolerance and summary
statistic scales found in the pilot study automatically. The results of an inference
are stored as a pylfi.Journal object, which can be returned by setting the
return_journal=True. The journal can also be accessed through the method:
nsamples = 3000
sampler . sample (nsamples ,

use_pilot =True ,
n_jobs =4,
seed =42
)

journal = sampler . journal ()

Chapter 7. Computational Approach 78

pylfi.Journal objects can be both saved to and loaded from disk:
Save journal
filename = 'my_journal .jnl '
journal .save(filename)

Load journal
journal = pylfi . Journal .load(filename)

Post-sampling regression adjustment can be performed via a base ABC class method
with signature:
pylfi . ABCBase . reg_adjust (method =" loclinear ",

transform =True ,
kernel ='epkov ',
return_journal = False
)

The method keyword selects the regression method, either linear (’linear’) or
local linear (’loclinear’), the transform keyword determines whether or not
to take the log transform of the target (the log transform usually gives better
regression results) and the kernel keyword selects the smoothing kernel, either the
Gaussian kernel (’gaussian’) or the Epanechnikov kernel (’epkov’).

Thus, performing a local linear regression for our toy example with Epanechnikov
kernel and log transform of the the target is coded as:
journal = sampler . reg_adjust (method =" loclinear ",

transform =True ,
kernel =" epkov ",
return_journal =True
)

The obtained posterior samples can be retrieved as a pandas.DataFrame from the
pylfi.Journal class:
df = journal .df # pandas DataFrame with posterior samples

Furthermore, posteriors can be plotted with the pylfi.Journal.plot_posterior
method. The first positional argument is required and expects a string with the
name of a parameter, corresponding to the name keyword argument passed to the
pylfi.Prior constructor. Other options are hdi_prob which can be used to set
the probability (1− α) of the HDI, point_estimate which point estimate to use,
either ’map’, ’mean’ or ’median’, and theta_true to set the ground truth (if
available). If theta_true is set, then the RMSPE will also be included in the plot.
For our present example:
fig , axes = plt. subplots (nrows =1, ncols =2, figsize =(8 , 3) , tight_layout =True)
journal . plot_posterior ('mu ',

hdi_prob =0.95 ,
point_estimate ='map ',
theta_true =mu_true ,
ax=axes [0]
)

journal . plot_posterior ('sigma ',
hdi_prob =0.95 ,
point_estimate ='map ',
theta_true = sigma_true ,

Chapter 7. Computational Approach 79

ax=axes [1]
)

plt.show ()

Figure 7.2: Posteriors over µ and σ in the toy example with a
Gaussian model.

Listing 7.7 lists a complete script for the usage of pyLFI with rejection ABC on
the Gaussian toy example:

Listing 7.7: Example usage of the pyLFI on a Gaussian toy model.
import matplotlib . pyplot as plt
import numpy as np
import pylfi
import scipy . stats as stats

Observed data
mu_true = 163
sigma_true = 15
likelihood = stats .norm(loc=mu_true , scale = sigma_true)
obs_data = likelihood .rvs(size =1000)

Simulator model
def simulator (mu , sigma , size =1000) :

y_sim = stats .norm(loc=mu , scale = sigma).rvs(size=size)
return y_sim

Summary statistics calculator
def stat_calc (y):

sum_stat = [np.mean(y), np.std(y)]
return sum_stat

Priors
mu_prior = pylfi . Prior ('norm ',

loc =165 ,
scale =2,
name='mu ',
tex='μ '
)

sigma_prior = pylfi . Prior ('uniform ',

Chapter 7. Computational Approach 80

loc =12 ,
scale =7,
name='sigma ',
tex='$\ sigma$ '
)

priors = [mu_prior , sigma_prior]

Initialize sampler
sampler = pylfi . RejABC (obs_data ,

simulator ,
stat_calc ,
priors ,
log=True
)

Pilot study
nsims = 1000
sampler . pilot_study (nsims ,

quantile =0.2 ,
stat_scale ="sd",
stat_weight =1,
n_jobs =4,
seed =4
)

Sample posterior
nsamples = 3000
sampler . sample (nsamples ,

use_pilot =True ,
n_jobs =4,
seed =42
)

Local linear regression adjustment
journal = sampler . reg_adjust (method =" loclinear ",

kernel =" epkov ",
transform =True ,
return_journal =True
)

Plot posteriors
fig , axes = plt. subplots (nrows =1, ncols =2, figsize =(8 , 3) , tight_layout =True)
journal . plot_posterior ('mu ',

hdi_prob =0.95 ,
point_estimate ='map ',
theta_true =mu_true ,
ax=axes [0]
)

journal . plot_posterior ('sigma ',
hdi_prob =0.95 ,
point_estimate ='map ',
theta_true = sigma_true ,
ax=axes [1]
)

plt.show ()

Part III

Results & Discussion

8
Inference on the HH Model

In this chapter, we present the results from simulation-based inference on the
Hodgkin-Huxley (HH) model’s conductance parameters ḡK and ḡNa.

8.1 Observation and Feature Extraction
Let us assume we current-clamped a neuron and recorded the voltage trace in
Figure 8.1. This voltage trace was not actually measured experimentally but
synthetically generated by simulating the HH model through the HH simulator in
NeuroModels. The model was simulated for T = 120 ms with step size ∆t = 10 ms
and stimulus I = 10µA/cm2 turned on at 10 ms and off at 110 ms. The conductance
parameters were set as ḡK = 36 mS/cm2 and ḡNa = 120 mS/cm2. The rest of the
HH model’s parametrization is given in Table 5.1. The idealized voltage trace
recording, free of any noise, will be used as the observed data in our first analyses.
Hopefully, we can then more easily assess strengths and weaknesses of the algorithms
themselves, and not have the results overshadowed by noisy data. Furthermore,
the present trace allows us to verify whether the computational implementations
are accurate. The ground truth parameters will therefore be the particular values
of ḡK and ḡNa used in the simulation.

By visual inspection of the trace in Figure 8.1, the expected shape of an action
potential (AP) is reproduced by the numerical solution, which indicates that the
implementation of the simulator is accurate. Moreover, since the voltage trace does
not display any unexpected abrupt behavior, the time resolution of ∆t = 0.025 ms
seems to be sufficient.

Chapter 8. Inference on the HH Model 83

−80

−60

−40

−20

0

20

40

M
em

b
ra

n
e

P
o
te

n
ti

al
(m

V
)

0 20 40 60 80 100 120

Time (ms)

0

5

10

S
ti

m
u

lu
s

(µ
A
/
cm

2
)

Figure 8.1: Observed voltage trace of a current clamped neuron
synthetically generated by the HH simulator simulated for T = 120 ms
with time resolution ∆t = 0.025 ms. The stimulus is a step cur-
rent I = 10µA/cm2 with onset and offset at 10 ms and 110 ms, re-
spectively. Here, the conductance parameters ḡK = 36 mS/cm2 and
ḡNa = 120 mS/cm2. The present voltage trace being the observation,
these conductance parameters are thus the ground truths for the
subsequent analyses.

From the voltage trace, we extract spike statistics by the computational algorithms
outlined in Section 7.2. Figure 8.2 shows the locations in the voltage trace that form
the basis of the spike statistic calculations. In fact, the annotations on the voltage
trace are set automatically according to the positions found by the extraction
algorithms. By the definitions of the different summary statistics provided in
Section 6.2.1, we see that the extraction locations are placed correctly on the voltage
trace. Consequently, the extraction algorithms seem to function as intended.

Table 8.1 summarizes the calculated summary statistics from the observed voltage
trace; (i) spike rate, calculated as the number of spikes divided by the duration of
the stimulus; (ii) average AP overshoot, calculated by averaging the absolute peak
voltage of all APs; (iii) average AP width, calculated by averaging the width of
every AP at the midpoint between its onset and its peak; (iv) average AHP depth,
calculated by averaging all minima voltage throughs between two consecutive APs;
(v) latency to first spike, calculated as the time between stimulus onset and first
AP peak; (vi) accommodation index, which measures the local variance in ISIs and
is calculated by Equation (6.1). Comparing the values of the tabulated summary

Chapter 8. Inference on the HH Model 84

0 20 40 60 80 100 120

Time (ms)

−80

−60

−40

−20

0

20

40

M
em

b
ra

n
e

P
o
te

n
ti

al
(m

V
)

Voltage trace

AP overshoot

AHP depth

ISIs

AP width

Lat. to first spike

Spike rate

Figure 8.2: Locations found by the feature extraction algorithms
for spike statistic calculations on the observed voltage trace. The
locations are annotated by different markers, with labels stated in the
legend, which indicate the particular summary statistic calculation
they are affiliated with.

statistics with the information in Figure 8.2, we find agreement. There are 7
spikes over the course of the stimulus duration of 100 ms, so the spike rate must be
0.07 mHz. Furthermore, the value of the average AP overshoot and width, as well
as the average AHP depth, seem reasonable when compared with the voltage values
at the extracted locations. A latency to first spike of about 2 ms also matches what
is seen in the voltage trace. There is practically no difference in length between
two consecutive ISIs in the voltage trace, and the accommodation index should
therefore reflect, as it does, the lack of variability. All in all, this indicates that
also the summary statistic calculations are implemented correctly.

Table 8.1: Observed voltage trace reduced to a set of summary
statistics. See text for details on the statistics.

Summary statistic Observed value
Spike rate 0.0700 mHz

Average AP overshoot 30.7316 mV
Average AP width 2.0501 mV
Average AHP depth -74.2234 mV
Latency to first spike 2.3000 ms
Accommodation index 2 · 10−17

Chapter 8. Inference on the HH Model 85

8.1.1 Correlation Analysis & Importance Weights
Next, we carry out the correlation analysis outlined in Section 6.3. The objective
of the analysis is to characterize the effects of parameter variability on the output
of the model in terms of the summary statistics. The analysis is done by sampling
from the prior predictive distribution, and the priors for ḡK and ḡNa are shown in
Figure 8.3. For each parameter, we use a noninformative prior (orange density)

30 32 34 36 38 40 42

ḡK

0.0

0.1

0.2

D
en

si
ty

114 116 118 120 122 124 126

ḡNa

0.0

0.1

0.2

D
en

si
ty

Prior

Informative

Noninformative

Ground truth

Figure 8.3: Priors over ḡK (top) and ḡNa (bottom). We use both an
informative (blue) and noninformative (orange) centered about the
ground truth parameter value (red line) for each parameter.

with about ±10% range around the ground truth parameter and a slightly more
informative prior (blue density). While technically the informative priors could be
classified as weakly-informative (as per the definition given in Section 2.3.1), we
will refer to them as informative.

For each category of priors, we sampled 2000 parameter pairs, fed them to the HH
simulator model and calculated the summary statistics from the simulated data for
each pair. The spike statistics are only well-defined in the presence of spikes, and
accommodation index and average AHP depth need at least two and three spikes,
respectively, to be defined. As such, we need to remove samples if they contain
ill-defined statistics.

With Informative Priors

Of the 2000 summary statistics samples simulated under the informative priors,
1881 were well-defined. Scatter plots for a subset of these are shown in Figure 8.4,
where the summary statistics are shown as functions of the pairs of parameter
values. Thus, the scatter plots enable us to see the variability the different summary
statistics exhibit relative to change in model parameter values. Each point indicates

Chapter 8. Inference on the HH Model 86

the relative magnitude of the statistic by its size and color, with a reference table
stated in the legend along with the name of the particular statistic.

30 32 34 36 38 40

ḡK

114

116

118

120

122

124

126
ḡ N

a
Avg. AP overshoot

27.0

28.5

30.0

31.5

33.0

30 32 34 36 38 40

ḡK

114

116

118

120

122

124

126

ḡ N
a

Spike rate

0.03

0.06

0.07

0.08

30 32 34 36 38 40

ḡK

114

116

118

120

122

124

126

ḡ N
a

Avg. AP width

1.00

1.25

1.50

1.75

2.00

2.25

30 32 34 36 38 40

ḡK

114

116

118

120

122

124

126

ḡ N
a

Avg. AHP depth

−74.4

−73.8

−73.2

−72.6

−72.0

−71.4

30 32 34 36 38 40

ḡK

114

116

118

120

122

124

126

ḡ N
a

Lat. to first spike

2.10

2.15

2.20

2.25

2.30

2.35

30 32 34 36 38 40

ḡK

114

116

118

120

122

124

126

ḡ N
a

Accomm. index

0.000

0.004

0.008

0.012

0.016

Figure 8.4: Scatter plots of summary statistics simulated with
different pairs of model parameter values. The summary statistics
were simulated under the joint informative prior predictive distribution.
Of 2000 generated samples, 1881 were well-defined. Here, a subset of
470 samples are shown. Each summary statistic is assigned to its own
panel, with the particular statistic stated in the legend. Each point
represents the value of a summary statistic for a pair of parameter
values, (ḡK, ḡNa). The color of a point indicates the relative magnitude
of the statistic, for which bright colors represent small and dark
colors large values, also indicated in each subplot legend. The scatter
plots thus indicate the variability of summary statistics relative to
movement of the pairs of model parameter values.

Chapter 8. Inference on the HH Model 87

In addition to displaying the variability, the scatter plots also indicate if there is
a systematic relationship between a parameter and summary statistic. By fixing
the value of one of the parameters and following its line-of-sight, we can assess
whether the other parameter systematically increments or decrements a summary
statistic. Average AP overshoot exhibits a steady variability and seems to follow
an approximately linear trend. This also applies to the average AP width, though
to a lesser extent. The approximate linear relationship is most apparent for ḡK in
both cases. In terms of the underlying biophysical mechanisms, we would expect
average AP overshoot to be most sensitive to ḡNa and average AP width to ḡK. The
role of the Na+channel in AP generation is well-established, and AP overshoot is
tied to the fast Na+channel dynamics. Likewise, given the role of the K+channel in
repolarizing the neuron after an AP, the average AP width is tied to the duration
of the recovery period. While these expectations are not clearly present in the
scatter plots, we should keep in mind that we only explore a fairly limited region
of the parameter space. We should therefore be cautious in our interpretation of
how well the scatter plots indicate sensitivity. Accommodation index has almost
no variation, which might be unsurprising since it measures the local variance in
ISIs. The constant current protocol does not facilitate much variation in spike
trains. Thus, for the observed voltage trace at hand, accommodation index is not an
informative summary statistic. However, it could be useful in characterizing spike
trains generated under more complex current protocols. Average AHP depth also
exhibits little variation, whereas latency to first spike an ample amount. Though, for
latency to first spike there is no apparent systematic relationship, as it increments
and decrements right and left. This might not be optimal for constraining the model
parameters. Finally, the spike rate, though it does not vary much, seem to have a
more systematic and stable relationship with the model parameters, predominantly
ḡK. It behaves more like a step function, where it retains a particular value for a
prolonged range of ḡK values. In conclusion, how well this set of summary statistics
will constrain the model parameters needs to be investigated further down the
line.

In order to not rely solely on visual inspection of the sensitivity, Figure 8.5 provides
the pairwise Pearson’s correlation coefficients of each model parameter and summary
statistics, as well as the importance weights derived from the correlation coefficients.
As was indicated by the scatter plots, ḡK has a stronger (approximately) linear
relationship with the summary statistics than ḡNa. The interpretation of these
results are that the summary statistics related to the shape of an AP encode the
most information, with average AP overshoot being the most dominant. Moreover,
the results indicate that ḡK will be constrained better than ḡNa by these summaries
when performing regression adjustment. Since the relationship between ḡK and the
summary statistics is much stronger than for ḡNa, the weighting scheme also becomes
biased towards ḡK. The weighting is therefore a bit unfair for ḡNa. For instance,
even though the spike rate is weakly correlated with ḡNa, it receives a heavy weight
because it is strongly correlated with ḡK. The weight of the spike rate even surpasses
that of average AP width, which shows a decent amount of correlation with both

Chapter 8. Inference on the HH Model 88

A
v
g
.

A
P

ov
er

sh
o
o
t

S
p

ik
e

ra
te

A
v
g
.

A
P

w
id

th

A
v
g
.

A
H

P
d

ep
th

L
a
t.

to
fi

rs
t

sp
ik

e

A
cc

o
m

m
.

in
d

ex

ḡ K
ḡ N

a

-0.83 -0.59 -0.44 -0.58 0.35 0.13

0.4 0.14 0.32 -0.19 -0.16 -0.041

−1.0

−0.5

0.0

0.5

1.0

(a)

Weight

Avg. AP overshoot

Spike rate

Avg. AP width

Avg. AHP depth

Lat. to first spike

Accomm. index

0.42

0.18

0.14

0.18

0.072

0.0095

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 8.5: (a) The pairwise Pearson’s correlation coefficients for
the model parameters and summary statistics. (b) The importance
weights calculated from the correlation coefficients, see Section 6.3 for
details. Note that the weights sum to one.

ḡNa and ḡK. The pairwise Pearson’s correlation coefficients strong assumption
about linearity again necessitates the need to be wary of the interpretation of which
summary statistics are the most informative. As the weighting scheme prefers ḡK,
we should also investigate the effects importance weights have on the inference
further down the line.

With Noninformative Priors

The findings with noninformative priors are similar to the ones discussed above.
This is perhaps unsurprising, since a prior does not alter the intrinsic relationship
between a parameter and summary statistic, just how the samples are distributed
in the parameter space. The corresponding figures with samples from the joint
noninformative prior distribution can be found in Appendix A.

Chapter 8. Inference on the HH Model 89

8.2 Study of ABC Settings
We now turn to a study concerning the tuning parameters in the rejection ABC
algorithm. As the generation of one posterior amounts to a single stochastic trial,
we will generate several posteriors for the same settings in order to assess potential
variability in the results. Here, we use the rejection sampler in pyLFI to infer the
conductance parameters in the HH model. The performance metrics RMSPE and
SEM, defined in Section 6.5, will be used to assess the accuracy and variability,
respectively, of a particular inference setting.

In our first tuning parameter analysis, we study the effect of the tolerance parameter
ε in terms of the pε-quantile of the distances. For each quantile, we generate 10
posterior with 1000 posterior samples in each. As discussed in Section 7.2, this
means that the tolerance will be set via a pilot study. For each quantile, the pilot
study performs 2000 simulations to estimate both the tolerance and the scale of the
summary statistics. In this analysis, the summary statistics are equally weighted.
Having obtained a posterior, we perform local linear regression adjustment with
the Epanechnikov kernel and log transformation of the parameters to obtain a
corresponding adjusted posterior. We do the above using both the informative
and noninformative priors. Figure 8.6 shows the results. RMSPE measures the
percentage difference between the ground truth and a weighted estimate that
accounts for the width of the posterior. Increasing pε-quantiles amount to accepting
simulated data that are increasingly further away from the observed data. As such,
we expect the error to increase with pε, due to more distorted approximations. This
is also the general trend, though the differences in error between posteriors are
generally small. Here, the posterior error estimates of ḡK and ḡNa differ. Focusing
on the estimates of error in the original posterior samples, i.e., the samples obtained
solely with the rejection ABC algorithm, ḡK has larger errors than ḡNa. The errors
of ḡNa remain almost constant as pε increases, and are actually slightly larger for
the lowest pε. The reason for this may be intricate, but most likely it has to
do with correlation between the posterior samples of ḡNa and ḡK and that the
simulated summary statistics accepted under a strict tolerance happen to shift
the ḡNa estimate for the worse (by a little amount) and ḡK for the better. In
terms of variation, the SEM of all the mean RMSPE shows that the inferred
posteriors for the same settings are practically indistinguishable. We also see that
estimates with informative priors converge better than those with noninformative
priors, as expected. The RMSPE of the regression adjusted posterior estimates are
significantly more accurate than the original posterior estimates. The improvement
is most prominent for ḡK, and aligns with the expectation obtained from the
correlation analysis; since ḡK has a stronger linear relationship with the summary
statistics than ḡNa, the local linear regression model will give better adjustment of
the ḡK posterior samples. The difference in error when pε increases are tiny for ḡK,
which suggests that the regression approach manages to correct the ḡK samples as
if they were sampled from πABC(ḡK | ρ(ssim, sobs) ≤ ε) with ε = 0. For ḡNa, however,
this breaks down and the error increases with pε, with a particular jump between the

Chapter 8. Inference on the HH Model 90

0

2

4

6

R
M

S
P

E
(%

)

ḡK

0.1 0.3 0.5 0.7 0.9

pε

0.5

1.0

1.5

2.0

2.5

R
M

S
P

E
(%

)

ḡNa

Informative prior

Orig. posterior samples

Adj. posterior samples

Noninformative prior

Orig. posterior samples

Adj. posterior samples

Figure 8.6: The RMSPE in posteriors over ḡK (top) and ḡNa (bottom)
against the pε-quantile as a measure of tolerance. Each point is the
mean RMSPE over 10 posteriors, each consisting of 1000 posterior
samples, and the SEM is shown as a vertical bar. The posteriors were
generated by the rejection ABC algorithm and then adjusted with
local linear regression adjustment. Whether an estimate of error had
informative/noninformative priors or is from the original/adjusted
posterior is color coded (see legend).

0.1 and 0.5-quantiles. Nevertheless, with regression adjustment, more simulations
can be accepted without sacrificing substantial accuracy, especially for the model
parameters that are the most constrained by the summary statistics. In addition,
the difference in error between using informative and noninformative priors is also
reduced when performing regression adjustment.

Next, we investigate error in the estimates against the number of summary statistics
used to constrain the model parameters. We start with only a single statistic,
average AP overshoot, and increment by one more according to the following
order; spike rate, average AP width, average AHP depth, latency to first spike and
accommodation index. Again, we use the quantile-based rejection ABC algorithm
with local linear regression adjustment using the Epanechnikov kernel to estimate the
posteriors. We use the 0.4-quantile as a compromise between accuracy and run time
(see Figure A.4). From the preceding result (Figure 8.6) we found that the posteriors
generated for the same settings are practically identical. Here, we therefore only

Chapter 8. Inference on the HH Model 91

generate a single posterior for each number of summary statistics. This is, however,
done for both the informative and noninformative priors. In addition, we generate
posteriors for both cases of weighting of the summary statistics; either equally or
importance weighted (we ensure the importance weights sum to one). The results
are shown in Figure 8.7. The figure shows that the HH model is more tightly

0

1

2

3

4

5

R
M

S
P

E
(%

)

ḡK

1 2 3 4 5 6

Number of summary statistics

0.5

1.0

1.5

2.0

R
M

S
P

E
(%

)

ḡNa

Informative prior

Equally weighted

Importance weighted

Noninformative prior

Equally weighted

Importance weighted

Figure 8.7: The RMSPE in posteriors over ḡK (top) and ḡNa (bottom)
against the number of summary statistics. The first, single statistic
is (i) average AP overshoot, and then the number of statistics is
incremented by one more according to the following order; (ii) spike
rate, (iii) average AP width, (iv) average AHP depth, (v) latency to
first spike and (vi) accommodation index. Each point is the RMSPE
in a regression adjusted posterior consisting of 1000 posterior samples.
Whether an estimate of error had informative/noninformative priors
or equally/importance weighted the summary statistics is color coded
(see legend).

constrained by increasing the number of summary statistics, particularly ḡK as we
have already discussed. Though, if we use summary statistics that do not capture
relevant information for the parameters, it might lead to worse inference. The
set of summary statistics that gives the most accurate posteriors consists of: (i)
average AP overshoot, (ii) spike rate, (iii) average AP width and (iv) average AHP
depth. For ḡK, inclusion of the remaining two statistics, (v) latency to first spike
and (vi) accommodation index, does not lead to a noticeable difference in accuracy.
Neither does using equally or importance weighted summary statistics. For ḡNa, on

Chapter 8. Inference on the HH Model 92

the other hand, the error becomes moderately worse by including (v) latency to
first spike and (vi) accommodation index. Here, using importance weights actually
helps to constrain ḡNa and improves the error in the posterior.

8.3 Summarizing Posteriors
We can assess the identifiability of the HH model’s active conductance parameters
by examining the locations and widths of the resulting posterior estimates. A
wide, flat posterior on a parameter indicates a large number of equally optimal
values, which suggests that the parameter may be unidentifiable. As outlined
in Section 6.5, the goodness of fit of the inferred posteriors will be considered
through the MAP estimate, 95% highest density interval (HDI) and, since we have
access to the ground truths, RMSPE. We will also use posterior predictive checks
(PPCs) to check for auto-consistency. To reiterate the settings of the rejection ABC
sampler; we generate the following posteriors using the 0.4-quantile to determine
the tolerance and the set of importance weighted summary statistics (i) average AP
overshoot, (ii) spike rate, (iii) average AP width and (iv) average AHP depth.

Informed by the preceding findings, going forward we will use the set of sum-
mary statistics labelled (i)-(iv) above and also keep the inclusion of importance
weights.

8.3.1 Posteriors from Informative Priors
Figure 8.8 shows the original posteriors over ḡK and ḡNa, with summarizing metrics
stated in the legends. Compared with the informative priors over the model
parameters (see Figure 8.3), the updated state of knowledge represented by the
posteriors is more constrained. The MAP estimates are centered close on the
ground truth parameters, which, by the definition of MAP, means that the ground
truth parameters are in regions of high posterior density. Compared to the ḡNa
posterior, the RMSPE of the ḡK posterior is slightly larger, even though the 95%
HDI of ḡK is narrower than that of ḡNa. This might be a bit surprising, but can
be explained by noticing the sharpness of the posterior peaks. The peak of the ḡK
posterior is more flat compared to the peak of the ḡNa posterior, which is quite
sharp about the ground truth, and this is reflected in the RMSPE measure.

Chapter 8. Inference on the HH Model 93

32 34 36 38 40

ḡK

D
en

si
ty

Posterior RMSPE: 2.82%

θtrue : 36.0

θ̂MAP : 35.892

95.0% HDI: [33.996, 37.918]

115.0 117.5 120.0 122.5 125.0 127.5

ḡNa

D
en

si
ty

Posterior RMSPE: 1.50%

θtrue : 120.0

θ̂MAP : 120.034

95.0% HDI: [116.364, 123.292]

Figure 8.8: Original rejection ABC posteriors over the Hodgkin-
Huxley model parameters ḡK (top) and ḡNa (bottom). Here, the
parameter proposals were sampled from the joint informative prior
distribution. The dark shaded region indicates the 95% HDI and the
dotted line the MAP estimate. The ground truth is indicated by the
red line. The legend states the numerical values for each of these, in
addition to the RMSPE in the posterior.

Figure 8.9 maps the correlation, in terms of pairwise Pearson’s correlation coeffi-
cients, between the posterior samples of ḡK and ḡNa. It shows that the parameter
samples are indeed strongly correlated. Consequently, for predictive sampling from
the posteriors, we need to sample from the joint posterior, also shown in the figure.

Figure 8.10 shows the regression adjusted posterior. Here, ḡK is constrained to
the interval [35.986, 36.029] with 95% probability, and ḡNa to the [120.001, 120.423]
with 95% probability. The RMSPE in both posteriors are consequently reduced
significantly compared with RMSPE in the original posteriors (Figure 8.8). Again,
we see that the corrected ḡK samples become more constrained than the ḡNa samples,
due to the stronger linear relationship ḡK has with the summary statistics. The
regression adjustment overshoots the ground truth of ḡNa by a tiny amount, but
the estimated parameter range could be equally capable of describing the observed
data. The regression adjusted posteriors are able to identify the conductance
parameters remarkably well, which is promising for using ABC algorithms to
identify parameters in other conductance-based neural models based on the HH
formalism as well.

Chapter 8. Inference on the HH Model 94

ḡK ḡNa

ḡ K
ḡ N

a

0.80

0.85

0.90

0.95

1.00

(a)

32 34 36 38 40

ḡK

114

116

118

120

122

124

126

ḡ N
a

(b)

Figure 8.9: (a) The pairwise Pearson’s correlation coefficients for the
posterior samples of ḡK and ḡNa. (b) The joint posterior distribution
of ḡK and ḡNa. Darker regions correspond to higher density, and the
ground truth is indicated by the red marker and axis lines. Since the
marginal posteriors over model parameters (shown on the marginal
axes) are highly correlated, predictive posterior samples need to be
sampled from the joint posterior.

35.98 36.00 36.02 36.04 36.06 36.08

ḡK

D
en

si
ty

Posterior RMSPE: 0.03%

θtrue : 36.0

θ̂MAP : 36.002

95.0% HDI: [35.986, 36.029]

120.0 120.2 120.4 120.6 120.8 121.0

ḡNa

D
en

si
ty

Posterior RMSPE: 0.16%

θtrue : 120.0

θ̂MAP : 120.074

95.0% HDI: [120.001, 120.423]

Figure 8.10: Regression adjusted rejection ABC posteriors over the
Hodgkin-Huxley model parameters ḡK (top) and ḡNa (bottom). Here,
the parameter proposals were sampled from the joint informative prior
distribution. The dark shaded region indicates the 95% HDI and the
dotted line the MAP estimate. The ground truth is indicated by the
red line. The legend states the numerical values for each of these, in
addition to the RMSPE in the posterior.

Chapter 8. Inference on the HH Model 95

To verify that the parameter ranges in the regression adjusted posteriors are able to
describe the observed data well, we perform a PPC. We draw 100 samples from the
joint posterior predictive distribution and feed the parameters to the HH simulator.
We then take the average of the simulated voltage traces. The result can be seen
in Figure 8.11, where we plot the predicted simulations and their mean together
with the observed voltage trace. As can be seen from the figure, the samples from

0 25 50 75 100 125

Time (ms)

−80

−60

−40

−20

0

20

40

M
em

b
ra

n
e

P
o
te

n
ti

al
(m

V
)

Observation

Posterior predictive

Posterior predictive mean

Figure 8.11: Graphical posterior predictive check comparing the
observed voltage trace to simulated data predicted by the Hodgkin-
Huxley model under the regression adjusted joint posterior predictive
distribution.

the inferred joint posterior lead to simulations that are virtually identical to the
observed data, confirming that the procedure succeeds at capturing the observed
data and identifying the underlying parameters.

8.3.2 Posteriors from Noninformative Priors
By now, it has been demonstrated that regression adjustment of the posteriors is
crucial for improving the accuracy of estimates from the rejection ABC sampler.
Figure 8.12 shows the regression adjusted posteriors over ḡK and ḡNa when we use
noninformative priors. Compared with the regression adjusted posteriors where we
used informative priors, the present posteriors are only marginally less accurate.
This means that, even with data-driven ABC inference, the HH conductance
parameters can be accurately identified.

Chapter 8. Inference on the HH Model 96

35.95 36.00 36.05

ḡK

D
en

si
ty

Posterior RMSPE: 0.07%

θtrue : 36.0

θ̂MAP : 36.004

95.0% HDI: [35.964, 36.055]

120.0 120.5 121.0 121.5

ḡNa

D
en

si
ty

Posterior RMSPE: 0.38%

θtrue : 120.0

θ̂MAP : 120.135

95.0% HDI: [119.992, 120.968]

Figure 8.12: Regression adjusted rejection ABC posteriors over the
Hodgkin-Huxley model parameters ḡK (top) and ḡNa (bottom). Here,
the parameter proposals were sampled from the joint noninformative
prior distribution. The dark shaded region indicates the 95% HDI
and the dotted line the MAP estimate. The ground truth is indicated
by the red line. The legend states the numerical values for each of
these, in addition to the RMSPE in the posterior.

8.4 SNPE Posteriors
Rejection ABC is one of simplest simulation-based inference algorithms. We have
added certain refinements to the standard rejection ABC sampling procedure, such
as regression adjustment, weighted Euclidean distance and quantile-based rejection.
Now, we will compare the posteriors obtained through our implementation of ABC in
pyLFI to one of the more recent advancements in the field; neural density estimation
(NDE). In particular, the NDE algorithm SNPE introduced in Section 3.4. The
objective here is not to perform an exhaustive analysis of SNPE and its capabilities,
as this is demonstrated in the original papers [6], [7] and [8]. Here, and in subsequent
analyses with SNPE, the aim is to compare how its estimated posteriors compare
with the ABC posterior under similar settings. This means that we will train the
neural density estimator to learn the association between summary statistics of
the data and the underlying parameters. As neural density estimator we use a
particular normalizing flow (NF) called masked autoregressive flow (MAF) that is
developed by Papamakarios et al. [53]. SNPE is given a modified HH simulator,
which returns the same set of summary statistics we used in the preceding analyses;
(i) average AP overshoot, (ii) spike rate, (iii) average AP width and (iv) average
AHP depth. Moreover, we use the same noninformative priors as in Figure 8.3, and

Chapter 8. Inference on the HH Model 97

train the network on 1000 simulations. The resulting posteriors over ḡK and ḡNa
are shown in Figure 8.13.

33 34 35 36 37

ḡK

D
en

si
ty

Posterior RMSPE: 0.64%

θtrue : 36.0

θ̂MAP : 36.036

95.0% HDI: [35.700, 36.448]

117 118 119 120 121 122

ḡNa

D
en

si
ty

Posterior RMSPE: 0.33%

θtrue : 120.0

θ̂MAP : 120.187

95.0% HDI: [119.392, 120.831]

Figure 8.13: SNPE posteriors over the Hodgkin-Huxley model pa-
rameters ḡK (top) and ḡNa (bottom). The dark shaded region indicates
the 95% HDI and the dotted line the MAP estimate. The ground
truth is indicated by the red line. The legend states the numerical
values for each of these, in addition to the RMSPE in the posterior.

Both posteriors we obtain are narrow and sharply peaked about the ground truth
parameters, meaning that SNPE is able to identify admissible parameters as well.
The summaries of the estimated posteriors are similar to the ones for the regression
adjusted ABC posteriors. Though it is a close competition, the ABC posteriors are
actually slightly more narrow than the SNPE posteriors. Moreover, the outliers
observed in the tails of the SNPE posterior are not present in the ABC posteriors.
This comparison might not be entirely fair to SNPE, as it is difficult to pin-point
exactly how many training simulations that measure up to be “under similar
settings”. By training the network on even more simulations, the SNPE posteriors
could perhaps be made even more narrow. Furthermore, it is likely that the
parameter ranges in the SNPE posteriors all are compatible with the observed data,
which will be illuminated in more detail in the next section.

8.5 Noisy Observation
So far we have only used an idealized voltage trace, free of any noise, as the observed
data. However, real-world neural data are quite noisy. Here, we will examine the

Chapter 8. Inference on the HH Model 98

impact a noisy observed recording has on the inference with the rejection ABC
sampler. There are several sources to noise in cellular dynamics, and, in extension,
ways to introduce noise to the Hodgkin-Huxley equations, see e.g. [54] for a review.
We will introduce noise to the observed voltage trace by using a stochastic version
of the HH model that incorporates current noise as a Gaussian white noise process.
Besides the inclusion of current noise, we use the same settings for the HH simulator
as earlier and record the voltage trace seen in Figure 8.14. The corresponding

−80

−60

−40

−20

0

20

40

M
em

b
ra

n
e

P
o
te

n
ti

a
l

(m
V

)

0 20 40 60 80 100 120

Time (ms)

0

5

10

S
ti

m
u

lu
s

(µ
A
/
cm

2
)

Figure 8.14: Noisy voltage trace generated with the HH simula-
tor by introducing Gaussian white noise to the input stimulus. The
parametrization of the HH model and simulation parameters are iden-
tical to the ones used in preceding noise-free voltage trace (Figure 8.1).

summary statistics are tabulated in Table 8.2.

Table 8.2: Summary statistics extracted from the noisy observed
voltage trace.

Summary statistic Observed value
Number of spikes 7

Spike rate 0.0700 mHz
Average AP overshoot 30.7223 mV
Average AP width 2.0679 mV
Average AHP depth -74.3394 mV
Latency to first spike 2.2750 ms
Accommodation index -0.0067

Chapter 8. Inference on the HH Model 99

We then use the rejection ABC sampler in pyLFI and a HH simulator that generates
noise-free simulations to infer the underlying parameters in the observed voltage
trace. Though our observation is not a particularly noisy recording, it still distorts
the regression adjusted ABC posteriors significantly compared to when we used
noise-free observed data, as seen in Figure 8.15. As can be seen, the ground truth

36.0 36.5 37.0 37.5

ḡK

D
en

si
ty

Posterior RMSPE: 4.51%

θtrue : 36.0

θ̂MAP : 37.635

95.0% HDI: [37.583, 37.655]

120 121 122 123 124

ḡNa

D
en

si
ty

Posterior RMSPE: 3.00%

θtrue : 120.0

θ̂MAP : 123.456

95.0% HDI: [123.357, 123.984]

Figure 8.15: Regression adjusted rejection ABC posteriors over
the Hodgkin-Huxley model parameters ḡK (top) and ḡNa (bottom)
with noisy observed voltage trace. Here, the parameter proposals
were sampled from the joint informative prior distribution. The dark
shaded region indicates the 95% HDI and the dotted line the MAP
estimate. The ground truth is indicated by the red line. The legend
states the numerical values for each of these, in addition to the RMSPE
in the posterior.

parameters are no longer in regions of high posterior density – they are not actually
included in the posteriors at all. Though both the ḡK and ḡNa posteriors are narrow
and sharp, their locations in parameter space are shifted toward a completely
different set of parameter values, especially ḡNa, than we found with the noise-free
observation. However, if we do a graphical PPC, as seen in Figure 8.16, we find
that the simulations predicted by the joint posterior match the observed voltage
trace surprisingly well. This example bolster the motivation for why the Bayesian
approach to inference should be considered; there might be multiple parameter
settings that are consistent with the observed data.

Chapter 8. Inference on the HH Model 100

0 25 50 75 100 125

Time (ms)

−80

−60

−40

−20

0

20

40

M
em

b
ra

n
e

P
ot

en
ti

al
(m

V
)

Observation

Posterior predictive

Posterior predictive mean

Figure 8.16: Graphical posterior predictive check comparing the
noisy observed voltage trace to simulated data predicted by the
Hodgkin-Huxley model under the regression adjusted joint poste-
rior predictive distribution. The posterior predictive mean is the
average of 100 predicted simulations.

9
Inference on the Brunel Model

In this chapter, we present the results from simulation-based inference on the Brunel
network model’s synaptic weight parameters η and g.

We will first try to identify the synaptic weight parameters with the quantile-based
rejection ABC sampler in pyLFI and post-sampling local linear regression adjust-
ment with the Epanechnikov kernel. The observed data will be from the network’s
AI state, synthetically generated from the Brunel simulator in NeuroModels. The
parametrization of the Brunel network will be as given in Table 5.2.

We will then try to identify the parameters with SNPE. Here, we will try to utilize
the flexibility of SNPE by training on simulations from both the AI and SR states,
and see what posteriors it will predict when presented with observed data from one
of these states.

9.1 Inference with ABC

9.1.1 Observation from AI State
We create a Brunel network with 10, 000 excitatory and 2, 500 inhibitory neurons.
Each neuron is randomly connected with 1000 excitatory and 250 inhibitory neurons.
The synaptic weight parameters are set as η = 2 and g = 5, which according to
the phase diagram of the network (Figure 5.5) corresponds to the AI state. We
simulate the network for 1, 000 ms and record the output spike trains from 20
excitatory neurons. We start recording after 100 ms to avoid transient effects. The
observed network activity is shown in Figure 9.1. As seen in the figure, neurons in
the AI state are weakly correlated and fire irregularly at low rates. The observed

Chapter 9. Inference on the Brunel Model 102

1

5

10

15

20

N
eu

ro
n

100 400 700 1000

Time (ms)

0

20

40

60

S
p

ik
e

ra
te

(H
z)

0 10 20

Neuron

0

10

20

N
eu

ro
n

−1.0

−0.5

0.0

0.5

1.0

Figure 9.1: Observed network activity recorded from 20 excitatory
neurons in the Brunel network’s AI state. The synaptic weight pa-
rameters are set as η = 2 and g = 5, and the remaining parameters
according to Table 5.2. The network is simulated for 1, 000 ms and
recording start after 100 ms. The top left panel shows the firing times
(raster) of the recorded neurons, and the bottom left panel the network
activity as a time resolved firing rate computed in bins of 10 ms. The
mean firing rate is indicated by the horizontal (red) axis line. The
right panel shows the pairwise Pearson’s correlation coefficient matrix
of the recorded neurons, which is a measure of how synchronous the
spiking of the network is.

activity is reduced to the set of low-dimensional summary statistics outlined in
Section 6.2.2; (i) mean firing rate; (ii) mean CV; (iii) Fano factor. Table 9.1
tabulates the calculated summary statistics from the observed AI activity. Each

Table 9.1: Observed summary statistics in the AI state.

Summary statistic Observed value
Mean firing rate 0.0366 kHz

Mean CV 0.4250
Fano factor 0.2341

statistic captures different aspects of the activity. The mean firing rate is a direct

Chapter 9. Inference on the Brunel Model 103

measure of the population’s spiking activity, mean CV measures the regularity of
spike trains and Fano factor the variability across spike trains.

9.1.2 Correlation Analysis & Importance Weights
As we did for the inference on the HH model, we first assess how sensitive the
summary statistics are to movement in parameter values, and then measure the
relationship between them with a correlation analysis. This analysis is done by
sampling from the prior predictive distribution, and the priors for η and g are
shown in Figure 9.2. We have here chosen noninformative priors, with parameter

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

η

0.0

0.2

0.4

D
en

si
ty

3 4 5 6 7 8 9

g

0.0

0.1

0.2

D
en

si
ty

Prior

Uniform

Ground truth

Uniform

Figure 9.2: Priors over η (top) and g (bottom). We use noninfor-
mative priors with ranges corresponding to the AI state. The ground
truth parameters are indicated by the red lines.

ranges that correspond to the AI state, as seen in the phase diagram over the
Brunel network’s states (Figure 5.5). We then draw 2000 samples from the joint
prior predictive distribution, feed each parameter pair to the Brunel simulator and
calculate the resulting summary statistics from each simulation. Figure 9.3 shows a
subset of the generated samples as scatter plots, where each point is the simulated
statistic for a given pair of parameter values. The relative magnitude of a statistic is
indicated by its size and color, with a reference table stated in the legend along with
the name of the particular statistic. The scatter plots show that all the summary
statistics exhibit a steady variability. In particular, for the model parameter g,
which controls the amount of inhibition in the network, the relationship with each of
the statistics seems to follow an approximately linear trend. However, for η, which
determines the strength of the external drive, a distinct systematic relationship
with the statistics is less pronounced. From a biophysical point of view, this is
not entirely surprising. AI activity is a hallmark of recurrent networks, and arise
from that excitation is balanced by inhibition. It can persist even in the absence of
external input. As such, the dynamics of the network tend to be more dependent

Chapter 9. Inference on the Brunel Model 104

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

g

2

3

4

η

Mean firing rate

0.04

0.08

0.12

0.16

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

g

2

3

4

η

Mean CV

0.2

0.4

0.6

0.8

1.0

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

g

2

3

4

η

Fano factor

0.3

0.6

0.9

1.2

1.5

Figure 9.3: Scatter plots of summary statistics simulated with
different pairs of model parameter values. The summary statistics
were simulated under the joint prior predictive distribution. Here a
subset of 500 samples out of 2000 is shown. Each summary statistic
is assigned to its own panel, with the particular statistic stated in the
legend. Each point represents the value of a summary statistic for a
pair of parameter values, (g, η). The color of a point indicates the
relative magnitude of the statistic, for which bright colors represent
small and dark colors large values, also indicated in each subplot
legend. The scatter plots thus indicate the variability of summary
statistics relative to movement of the pairs of model parameter values.

on g than η, and we can expect, at least with this set of summary statistics, that g
will be constrained better than η.

The pairwise Pearson’s correlation coefficients in the left panel of Figure 9.4 confirm
the observation of a stronger linear relationship between the summary statistics
and g than with η. Furthermore, as seen in the right panel, the importance weights
for the summary statistics calculated from the correlation coefficients have roughly
the same magnitude. This implies that all the summary statistics encode useful
information about the activity for constraining the model parameters, and that the
information they encode is nearly equally important.

Chapter 9. Inference on the Brunel Model 105

Mean firing rate Mean CV Fano factor

η
g

0.45 0.25 0.28

-0.76 0.88 0.72

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a)
Weight

M
ea

n
fi

ri
n

g
ra

te
M

ea
n

C
V

F
a

n
o

fa
ct

or

0.35

0.38

0.27

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 9.4: (a) The pairwise Pearson’s correlation coefficients for
the model parameters and summary statistics. (b) The importance
weights calculated from the correlation coefficients, see Section 6.3 for
details. Note that the weights sum to one.

9.1.3 ABC Settings
The Brunel simulator has costly simulations. We will therefore use the approach
where we set a simulation budget, discussed in Section 7.2. This means that the
simulator only will run the specified amount of times and the number of posterior
samples we retain depend on which quantile is set. This is in contrast to the
approach we used for the HH model, where a pilot study was used to estimate the
tolerance based on the provided quantile and the ABC sampler used this tolerance
for obtaining the specified amount of posterior samples. To examine the impact the
choice of quantile has on the accuracy of the posteriors, we use a simulation budget
of 2, 000 model simulations and compute the RMSPE for different choices of quantile.
The result is shown in Figure 9.5. As expected, increasing the pε-quantile gives an
increase in the RMSPE, since simulations further away from the observed data are
accepted. Moreover, we see once more that regression adjustment of the posteriors
is necessary to obtain accurate estimates. We also see that g is more constrained
by the summary statistics than η, which falls in line with our expectations from the
previous analysis. However, regression adjustment significantly helps to constrain
η as well.

In the subsequent analyses, we keep the simulation budget of 2, 000 simulations.
As a compromise between accuracy and the number of samples in the posterior, we
will use the 0.3-quantile as a measure of tolerance.

Chapter 9. Inference on the Brunel Model 106

10

20

30

40
R

M
S

P
E

(%
)

η

0.1 0.3 0.5 0.7 0.9

pε

5

10

15

20

25

30

R
M

S
P

E
(%

)

g

Posterior

Original

Regression adj.

200 samples

600 samples

1000 samples

1400 samples

1800 samples

Figure 9.5: The RMSPE in posteriors over η (top) and g (bottom)
against the pε-quantile as a measure of tolerance. A simulation budget
of 2, 000 was used, and the number of posterior samples that are
retained for a particular pε-quantile is indicated by the marker inside
the point. The corresponding label in the legend states the number of
posterior samples retained for that particular quantile. The posteriors
were generated by the rejection ABC algorithm and then adjusted
with local linear regression adjustment. Whether an estimate of error
is from the original/adjusted posterior is color coded (see legend).

9.1.4 Summarizing Posteriors
The regression adjusted posteriors over η and g are shown in Figure 9.6. In the
updated state of knowledge, the prior range of η ∈ [1.5, 4.0] has been constrained
to ∼ η ∈ [1.6, 2.1] with 95% probability, whereas the prior range of g ∈ [4.0, 8.0]
has been constrained to ∼ g ∈ [4.7, 5.3] with 95% probability. Even though both
ground truth parameters lie in regions of high posterior density, it is only g that is
identified moderately accurate. The posterior over g is sharply peaked, though it is
not particularly narrow. The posterior over η, on the other hand, has a relatively
flat peak compared to g, and the identification of η is therefore less successful as a
wide and flat posterior indicates a large number of equally optimal values. Although
this aligns with our biophysical expectations, these results illustrate the limitation of
the rejection ABC approach where proposal parameters are only sampled from the
prior. By using a sampler which updates the proposals recursively, like the MCMC

Chapter 9. Inference on the Brunel Model 107

1.6 1.8 2.0 2.2 2.4

η

D
en

si
ty

Posterior RMSPE: 7.84%

θtrue : 2.0

θ̂MAP : 1.935

95.0% HDI: [1.623, 2.128]

4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8

g

D
en

si
ty

Posterior RMSPE: 3.10%

θtrue : 5.0

θ̂MAP : 5.068

95.0% HDI: [4.689, 5.305]

Figure 9.6: Regression adjusted rejection ABC posteriors over the
Brunel network model parameters η (top) and g (bottom) with ob-
served data from the AI state. The dark shaded region indicates the
95% HDI and the dotted line the MAP estimate. The ground truth
is indicated by the red line. The legend states the numerical values
for each of these, in addition to the RMSPE in the posterior.

ABC algorithm discussed extensively in this thesis (see e.g. Section 3.2), more
efficient sampling of parameters from high density regions can be achieved.

Figure 9.7 illustrates the joint posterior over η and g. It can be seen that the joint
ground truth (red marker) lies in a region of high posterior density.

Chapter 9. Inference on the Brunel Model 108

4.50 4.75 5.00 5.25 5.50 5.75

g

1.6

1.8

2.0

2.2

η

Figure 9.7: The regression adjusted joint posterior distribution over
η and g in the AI state. Darker regions correspond to higher density,
and the ground truth is indicated by the red marker and axis lines.
Since the marginal posteriors over model parameters (shown on the
marginal axes) are highly correlated, predictive posterior samples need
to be sampled from the joint posterior.

9.1.5 Posterior Predictive Checks
To see whether particular summaries of the network activity are mapped accurately
by the posterior predictions, we perform a graphical PPC. We draw 50 samples
from the regression adjusted joint posterior predictive distribution and feed the
parameters to the Brunel simulator. We then calculate the summary statistics,
i.e., (i) mean firing rate; (ii) mean CV; (iii) Fano factor, for each of the output
spike trains. The simulated summary statistics and their average together with the
corresponding observed summary statistic are then plotted in summary statistic
space. The result can be seen in Figure 9.8. From the figure it can be seen that
most of the predicted summary statistics are in the neighborhood of the observation,
but they can also be relatively far away. This is not unexpected though. Due to the
stochastic nature of spike generation in networks, activity simulated under the exact
same settings will differ among themselves to a significant degree. This intrinsic
variability may have an important functional role in biological neural networks, but
pose a challenge for fitting models to data. Since the target observations themselves
are variable, the approach used here, where we fit to just a single observation,
might not be the best method. Even though we are able to constrain the model
parameters to some extent, the intrinsic variability of the observation, and hence

Chapter 9. Inference on the Brunel Model 109

0.026 0.028 0.030 0.032 0.034 0.036 0.038

Mean firing rate

0.36 0.38 0.40 0.42 0.44 0.46 0.48

Mean CV

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Fano factor

Observation

Posterior predictive

Posterior predictive mean

Figure 9.8: Graphical posterior predictive check comparing the ob-
served summary statistics with simulated summary statistics predicted
by the Brunel model under the regression adjusted joint posterior
predictive distribution. The posterior predictive mean is the average
of 50 predicted simulations.

the underlying data generating process, should be taken into account before any
general insights can be proclaimed.

Chapter 9. Inference on the Brunel Model 110

9.2 Inference with SNPE

9.2.1 Training the Neural Density Estimator
Next, we will infer the Brunel network model’s synaptic weight parameters with
SNPE. We use the same configuration as for the HH model, i.e., MAF as neural
density estimator and training on 1000 model simulations. The objective of the
neural density estimator is to map an association between the simulated summary
statistics, (i) mean firing rate; (ii) mean CV; (iii) Fano factor, and the underlying
parameters η and g. As priors we use π(η) = U(1.5, 4) and π(g) = U(1.5, 8), where
the latter corresponds to network dynamics in both the AI and SR states (see
Figure 5.5). As mentioned before, the goal is to examine whether SNPE will be
able to predict posteriors that fall within the parameter ranges of the state it is
presented with as observed data.

9.2.2 Inference in the AI State
Figure 9.9 shows the posteriors over η and g when the SNPE density estimator
is presented with the same observed activity from the AI state as earlier. The

1.6 1.8 2.0 2.2 2.4

η

D
en

si
ty

Posterior RMSPE: 5.89%

θtrue : 2.0

θ̂MAP : 1.987

95.0% HDI: [1.762, 2.204]

4.25 4.50 4.75 5.00 5.25 5.50

g

D
en

si
ty

Posterior RMSPE: 3.70%

θtrue : 5.0

θ̂MAP : 4.987

95.0% HDI: [4.616, 5.314]

Figure 9.9: SNPE posteriors over the Brunel network model param-
eters η (top) and g (bottom) with observed data from the AI state.
The dark shaded region indicates the 95% HDI and the dotted line
the MAP estimate. The ground truth is indicated by the red line.
The legend states the numerical values for each of these, in addition
to the RMSPE in the posterior.

SNPE and regression adjusted ABC posteriors for the Brunel model parameters are

Chapter 9. Inference on the Brunel Model 111

almost identical, as we also found with the HH model. A minor difference is that
the peaks of the SNPE posteriors are slightly more centered about the ground truth
parameters, which means that the ground truth parameters are in regions of slightly
higher posterior density. The minimal differences between the posteriors of SNPE
and ABC are not our primary interest here. Rather, we take notice of the fact that
SNPE is able to accurately place the posteriors in a range corresponding to the AI
state. Figure 9.10 shows the PPC for the joint SNPE posterior. Compared with
the PPC for the joint ABC posterior, the mean SNPE predictions are closer to the
observations. However, the same variability due to the stochastic nature of spike
generation is also seen here.

0.032 0.034 0.036 0.038 0.040 0.042 0.044

Mean firing rate

0.38 0.40 0.42 0.44 0.46

Mean CV

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Fano factor

Observation

Posterior predictive

Posterior predictive mean

Figure 9.10: Graphical posterior predictive check comparing the ob-
served summary statistics with simulated summary statistics predicted
by the Brunel model under the regression adjusted joint posterior
predictive distribution. The posterior predictive mean is the average
of 50 predicted simulations.

9.2.3 Inference in the SR State
We create another Brunel network with the same number of neurons and connections
as earlier, but this time we set the synaptic weight parameters as η = 2 and g = 3,
which according to the phase diagram of the network (Figure 5.5) corresponds to
the SR state. We again simulate the network for 1, 000 ms and start to record the
output spike trains from 20 excitatory neurons after 100 ms. The observed network

Chapter 9. Inference on the Brunel Model 112

activity is shown in Figure 9.11. As seen in the figure, neurons in the SR state are

1

5

10

15

20

N
eu

ro
n

100 400 700 1000

Time (ms)

0

100

200

300

S
p

ik
e

ra
te

(H
z)

0 10 20

Neuron

0

10

20

N
eu

ro
n

−1.0

−0.5

0.0

0.5

1.0

Figure 9.11: Observed network activity recorded from 20 excitatory
neurons in the Brunel network’s SR state. The synaptic weight
parameters are set as η = 2 and g = 3, and the remaining parameters
according to Table 5.2. The network is simulated for 1, 000 ms and
recording start after 100 ms. The top left panel shows the firing times
(raster) of the recorded neurons, and the bottom left panel the network
activity as a time resolved firing rate computed in bins of 10 ms. The
mean firing rate is indicated by the horizontal (red) axis line. The
right panel shows the pairwise Pearson’s correlation coefficient matrix
of the recorded neurons, which is a measure of how synchronous the
spiking of the network is.

strongly correlated and fire regularly at high rates. The observed activity is reduced
to the same set of low-dimensional summary statistics as earlier; (i) mean firing
rate; (ii) mean CV; (iii) Fano factor. Table 9.2 tabulates the calculated summary
statistics from the observed SR activity.

Table 9.2: Observed summary statistics in the SR state.

Summary statistic Observed value
Mean firing rate 0.3333 kHz

Mean CV 0.0121
Fano factor 0.007

Chapter 9. Inference on the Brunel Model 113

Figure 9.12 shows the posteriors over η and g when the SNPE density estimator is
presented with the observed activity from the SR state. We see that the SNPE

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

η

D
en

si
ty

Posterior RMSPE: 50.01%

θtrue : 2.0

θ̂MAP : 3.132

95.0% HDI: [1.554, 3.838]

1.5 2.0 2.5 3.0 3.5 4.0 4.5

g

D
en

si
ty

Posterior RMSPE: 20.26%

θtrue : 3.0

θ̂MAP : 2.840

95.0% HDI: [1.752, 3.396]

Figure 9.12: SNPE posteriors over the Brunel network model pa-
rameters η (top) and g (bottom) with observed data from the SR
state. The dark shaded region indicates the 95% HDI and the dotted
line the MAP estimate. The ground truth is indicated by the red line.
The legend states the numerical values for each of these, in addition
to the RMSPE in the posterior.

posterior over g again matches the parameter range of the observed activity state.
Though the posterior is wide, it has a well-defined peak centered about the ground
truth parameter. The SNPE posterior over η, on the other hand, is outstandingly
flat and wide, which means that SNPE is unable to identify η in the SR state. There
is, however, a biophysical explanation to this unidentifiability. In the SR state,
the recurrent input from the network is high due to the low inhibition, and can
become self-sustaining. In this state of activity, the role of external inputs, which
are described by η and typically of a much lower magnitude, virtually vanishes. If
a model parameter is not a primary driver for the observed dynamics, we will not
be able to identify it accurately either. Figure 9.13 shows the PPC for the joint
SNPE posterior. Here we see that the predictions are close to the observations,
even though neither posterior is particularly constrained. This indicates that there
are other model parameters than η and g that are the primary drivers for the
dynamics observed in the SR state.

Chapter 9. Inference on the Brunel Model 114

0.27 0.28 0.29 0.30 0.31 0.32 0.33

Mean firing rate

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Mean CV

0.000 0.002 0.004 0.006 0.008 0.010 0.012

Fano factor

Observation

Posterior predictive

Posterior predictive mean

Figure 9.13: Graphical posterior predictive check comparing the ob-
served summary statistics with simulated summary statistics predicted
by the Brunel model under the regression adjusted joint posterior
predictive distribution. The posterior predictive mean is the average
of 50 predicted simulations.

Part IV

Summary & Conclusions

10
Summary

Mechanistic models of neural dynamics are poorly suited for inference and lead
to challenging inverse problems. The objective of this thesis is to investigate
the ability and utility of simulation-based inference for identifying parameters
in mechanistic models of neural dynamics. We have used two simulation-based
inference algorithms; (i) Approximate Bayesian Computation (ABC) with quantile-
based rejection sampling and post-sampling regression adjustment; (ii) Sequential
Neural Posterior Estimation (SNPE), a neural density estimation algorithm; to
infer model parameters in the Hodgkin-Huxley (HH) model [9] and the Brunel
network model [10]. The primary focus of the study was on ABC, and SNPE results
are mostly for comparison. In the following, we summarize our findings.

As part of this thesis, we implemented a framework for simulation-based inference
using rejection ABC with post-hoc corrections through regression adjustment in
the Python package pyLFI. We characterized the properties of this method when
applied to models typically used in computational neuroscience; a biophysically
detailed neuron model (the HH model) and a recurrent network model of point
neurons (the Brunel network model). Examination of the rejection ABC sampler’s
estimated posteriors revealed that model parameters can be identified accurately.
The level of accuracy largely depends on choosing a set of nearly sufficient low-
dimensional summary statistics. We were particularly successful in identifying the
active conductance parameters in the HH model, which suggests that simulation-
based inference may be a valuable tool for computational investigations concerning
the many models that use the HH formalism. Daly et al. [55] carried out a similar
study where they used ABC to identify the rate parameters in the HH model.
Identification of the synaptic weight parameters in the Brunel network model posed
a more challenging inferential problem. Due to the stochastic nature of spike

Chapter 10. Summary 117

generation in neural networks, there is an intrinsic variability in both observed
and simulated data. We only fitted the model to a single observation, and did
thus not account for the intrinsic variability. However, whether one should aim
to fit the model to a specific recording or a recording with averaged behavior
depends on the objective of the investigation. Our aim was to assess identifiability
of model parameters, which was achievable by only using a single recording. For
a parameter to be identified, we found that it must be a primary driver of the
underlying data generating process, such that it plays a role in determining the
summaries extracted from the data. Thus, if we are unable to identify a parameter
it does not necessarily imply that the inference procedure failed, as it can imply a
structural unidentifiability of the parameter instead. Simulation-based inference can
therefore be used to characterize the function of biophysical parameters. This may
aid in designing better models of neural dynamics and comparison of mechanistic
hypotheses with neural data.

Rejection ABC is one of simplest simulation-based inference algorithms. Since
the proposal parameters are sampled from the prior, sampling is efficient and
easily parallelizable. Efficiency of the overall procedure, however, is determined
by whether the prior is chosen such that it is of a similar shape and location as
the desired posterior. By using a sampler which updates the proposals recursively,
both sampling efficiency and accuracy can be improved. An example of such
a sampler, is the Markov chain Monte Carlo (MCMC) ABC algorithm. We
discussed both MCMC in general and MCMC ABC in detail in the thesis, and
also implemented a MCMC ABC sampler in pyLFI. However, in order to focus
on the overall objective, we decided to not include investigations with the MCMC
ABC sampler in the study. MCMC methods require a great deal of tuning and
diagnosis in order to ensure that the chains sample efficiently and converge toward
the stationary distribution. The use of MCMC ABC would thus have added an
unnecessary layer of complexity to the study. We did nonetheless discuss the
MCMC methods in such detail because they have been instrumental in advancing
Bayesian statistics. The accurate results we were able to obtain with the simple
rejection sampler implies that even better results can be expected by using more
advanced samplers. Though, with the inclusion of regression adjustment, we found
rejection ABC to be on par with the far more advanced SNPE method. However,
in the present study we only investigated low-dimensional problems with synthetic
observed data. One should therefore be cautious about generalizing insights
this non-exhaustive study might suggest. As with all optimization algorithms,
ABC suffers from the curse of dimensionality [56]. With each new parameter to
identify, the volume of the parameter space the ABC sampler must search increases
exponentially, leading to potentially intractable computational investigations for
higher-dimensional problems. The machine learning revolution, to which SNPE
belong, has allowed for working with higher-dimensional problems [26]. An applied
study of the capabilities of SNPE on models of neural dynamics was carried out
by Lueckmann et al. in [33]. Perhaps the most notable difference between the
approach of ABC and SNPE, is that SNPE uses all model simulations to train

Chapter 10. Summary 118

the neural density estimator opposed to ABC that usually ends up rejecting most
of the simulations. Another important difference is that once the neural density
estimator is trained, it can be used to predict posteriors on any empirical data with
just one pass through the neural density estimator, whereas ABC would need to be
performed again when presented with another set of empirical data.

The choice of summary statistics is vital in determining the outcome of the inverse
modelling with ABC. The set of statistics must be low-dimensional and effectively
encode phenomena of the original data in order to constrain the model parameters.
We used expert-crafted statistics of spiking activity, and studied their ability to
isolate informative behaviors in great detail. Some heuristic is usually necessary to
single out the most useful statistics, and we used a correlation analysis to assess
the sensitivity of the summary statistics to movement in model parameter values.
Based on the relationship between the summary statistics and model parameters
measured by the pairwise Pearson’s correlation coefficients, we created importance
weights where those with the strongest relationships were given heavier weights.
Though we found the importance weights to help constrain the model parameters
better, this weighting procedure is not particularly robust. The pairwise Pearson’s
correlation coefficient only reflects linear correlation of variables, and ignores other
types of relationship or correlation. There are numerous robust approaches to base
both the choice of summary statistics and construction of importance weights on,
for instance parameter sensitivity analysis, see e.g. Tennøe et al. [40], or analysis
of curvature of an objective function, see e.g. Druckmann et al. [39].

While the choice of summary statistics is of primary importance, the choice of
distance metric can also have a substantial impact on the quality of the posterior
approximation. In the present study, we used the Euclidean distance. This
amounts to a circular acceptance region, as illustrated by Figure 3.1, which implies
independence and identical scales of the summary statistics. In order to suppress
domination of the summary statistics with largest scale, we used a weighted version
of the Euclidean distance that scaled the summary statistics with their respective
standard deviation estimated from the prior predictive distribution. Moreover, we
also weighted the importance of the summary statistics based on the correlation
analysis. Despite these efforts, the Euclidean distance might not have the acceptance
region that results in the most accurate ABC posterior approximation. If we,
reasonably, suppose that the different summary statistics are dependent and on
different scales, their true distribution under the model may be better represented
by an elliptical acceptance region rather than a circular. The Mahalanobis distance
is an example of a distance metric with elliptical acceptance region. However, the
different levels of information encoded by the different summary statistics make
finding the optimal acceptance region a challenge. Even with different scales and
dependences, a circular acceptance region might result in a more accurate ABC
posterior approximation than an elliptical region if the circular is better tied up
with the most informative statistics. How the best acceptance region is connected
with the choice of summary statistics is discussed in detail by Prangle in [57].

Chapter 10. Summary 119

A crucial limitation of ABC algorithms is that only a small number of summary
statistics can be handled before the curse of dimensionality enters. We used
regression adjustment to make the approximated posteriors more insensitive to the
tolerance, which in turn permits the use of more summary statistics. In particular,
we used local linear regression adjustment, which weight the parameter sets resulting
in simulations close to the observation more heavily. In our implementation,
individual components of a parameter set are treated separately. Thus, correlations
between them are not accounted for, and we found the sets of posterior samples
to be strongly correlated. Moreover, given the complex relationships between the
model parameters and summary statistics we used, nonlinear regression approaches,
see e.g. [25], may be better at ensuring the key insensitivity regression adjustment
aims for.

11
Conclusions

We investigated how simulation-based inference can be applied to inverse modelling
of mechanistic models of neural dynamics, where the likelihood is unavailable or
intractable. In particular, we explored the ability of approximate Bayesian compu-
tation (ABC) and neural density estimation (NDE) to identify the conductance
parameters in the Hodgkin-Huxley model and the synaptic weight parameters in
the Brunel network model.

We discussed an implementation of the rejection ABC algorithm with quantile-
based tolerance and post-sampling local linear regression adjustment. Even though
rejection ABC just sample proposal parameters from the prior densities, we were,
in general, successful in identifying the model parameters of interest. By applying
local linear regression adjustment, we obtained narrow posterior densities with
the ground truth values of the parameters in regions of high posterior density.
The posterior error decreases in the limit of small tolerances. With regression
adjustment, we found that we could accept more simulations without sacrificing
substantial accuracy for the model parameters that were the most constrained by the
summary statistics. The choice of summary statistics is crucial for the performance
of ABC. In practice, the success of ABC relies on expert-crafted low-dimensional
summary statistics that constrain the model parameters of interest. Although
the rejection ABC approach were able to perform efficiently, in particular on the
Hodgkin-Huxley model, and recover the ground truth parameters, more advanced
sampling algorithms with better proposal mechanisms should be considered. The
accurate results we were able to obtain with the simple rejection sampler implies
that even better results can be expected by using more advanced samplers.

Chapter 11. Conclusions 121

We compared the rejection ABC algorithm with the NDE machine learning tool
Sequential Neural Posterior Estimation (SNPE), which trains an artificial neural
network to map features of observed data to posteriors over parameters by using
adaptively proposed model simulations. Inference on the Brunel network model
demonstrates the power and flexibility of SNPE; by training on simulations that
included the parameter ranges for two of the network states, SNPE was able
to accurately predict posteriors that corresponded to the network’s state in the
observed data. The advantage of the SNPE approach is that once trained, the
network can be applied to any observed data and estimate the posterior densities
over model parameters with only a single pass through the network.

A limiting factor of the simulation-based approach to inference is that the algorithms
are simulation intensive. Consequently, the efficiency of an algorithm predominantly
depends on the computational demands of the simulator. There are also challenges
(and opportunities) ahead in scaling and automating simulation-based inference
approaches. However, the frontier of simulation-based inference as a methodological
research field is rapidly advancing. This activity is promising for the numerous
inverse modelling problems in neuroscience. The generality of the simulation-based
inference methods allows them to be applied to a wide range of computational
investigations in need of improved inference quality. In addition to being able to
aid in designing better models of neural dynamics, simulation-based inference may
ultimately help to bridge the gap between mechanistic hypotheses and experimental
neural data.

12
Future Research

We here provide an outline of potential future research building off of the present
work.

Simulation-based inference opens up many interesting avenues for inverse problems
with complex simulators. In this study, we have only investigated low-dimensional
problems, i.e., inferential tasks with few parameters to identify. However, most
models typically have several unknown parameters. The inferential task will likely
become more difficult as the number of parameters to identify increases. Building
off of the present results on the HH model, a more complex model to perform a
similar procedure on is the multi-compartment model of a thalamic interneuron
proposed by Halnes et al. in [58]. A sensitivity analysis of this particular model,
using the same set of summary statistics as for the HH model in this study, was
carried out by Tennøe et al. in [40] and could be used to help constrain the model
parameters.

Skaar et al. in [59] estimated the synaptic weight parameters of the Brunel network
model from local field potentials (LFPs) using a convolutional neural network (CNN).
LFPs are unavailable for point neuron networks, such as the Brunel network, but a
hybrid scheme developed by Hagen et al. [60] allows LFPs to be modeled from point
neuron networks and was used by Skaar et al. LFP has become a popular measure
of neuronal activity, and an interesting study could be to use the simulation-based
inference algorithms on the Brunel network model with summary statistics from
the LFP.

Until recently, simulation-based (or likelihood-free) inference was synonymous with
ABC. The advent of machine learning methods, in particular deep learning, has
introduced powerful algorithms for density estimation. Though SNPE and ABC

Chapter 12. Future Research 123

have already been compared by Lueckmann et al. in [61], there are many comparison
studies that can be done. ABC is a principled approach for Bayesian parameter
identification, and should not be ruled out as of yet.

Deep learning has also introduced powerful algorithms for learning features from
data. The ABC algorithms rely on expert-crafted summary statistics to obtain
accurate posterior estimates. Therefore, automated approaches using e.g. deep
learning to extract summary statistics with approximate sufficiency would be
attractive. Thus, another interesting study could be to compare the results from
this study with expert-crafted summary statistics to ones obtained with features
learned from the raw neural data generated by the models.

Since simulation-based inference as a methodological research field is rapidly advanc-
ing, most case studies use synthetic data. The ultimate goal of simulation-based
inference is to enable researchers to identify the model parameters consistent with
experimental data. Interesting studies would therefore be ones trying to make
contact between real-world experimental data and mechanistic models of neural
dynamics.

Appendices

A
Additional Results

−80

−60

−40

−20

0

20

40

M
em

b
ra

n
e

P
ot

en
ti

al
(m

V
)

ḡK = 32.0, ḡNa = 120.0

ḡK = 40.0, ḡNa = 120.0

ḡK = 36.0, ḡNa = 115.0

ḡK = 36.0, ḡNa = 125.0

0 10 20 30 40 50 60 70

Time (ms)

0

5

10

S
ti

m
u

lu
s

(µ
A
/c

m
2
)

Figure A.1: Simulation of action potentials with the Hodgkin-Huxley
simulator for different values of ḡK and ḡNa (stated in the legend).
The rest of the parametrization is given by Table 5.1.

Appendix A. Additional Results 126

32 34 36 38 40

ḡK

116

118

120

122

124

ḡ N
a Avg. AP overshoot

27.0

28.5

30.0

31.5

33.0

32 34 36 38 40

ḡK

116

118

120

122

124

ḡ N
a Spike rate

0.03

0.05

0.06

0.07

0.08

32 34 36 38 40

ḡK

116

118

120

122

124

ḡ N
a

Avg. AP width

1.00

1.25

1.50

1.75

2.00

2.25

32 34 36 38 40

ḡK

116

118

120

122

124

ḡ N
a

Avg. AHP depth

−74.4

−74.3

−74.2

−74.1

−74.0

−73.9

32 34 36 38 40

ḡK

116

118

120

122

124

ḡ N
a

Lat. to first spike

2.10

2.15

2.20

2.25

2.30

2.35

32 34 36 38 40

ḡK

116

118

120

122

124

ḡ N
a

Accomm. index

0.000

0.004

0.008

0.012

0.016

0.020

Figure A.2: Similar to Figure 8.4, only with summary statistics
simulated under the joint noninformative prior distribution. Of the
2000 samples generated, 1703 were well-defined. Here a subset of 425
samples is shown.

Appendix A. Additional Results 127

A
v
g
.

A
P

ov
er

sh
o
o
t

S
p

ik
e

ra
te

A
v
g
.

A
P

w
id

th

A
v
g
.

A
H

P
d

ep
th

L
a
t.

to
fi

rs
t

sp
ik

e

A
cc

o
m

m
.

in
d

ex

ḡ K
ḡ N

a

-0.82 -0.73 -0.6 -0.71 0.43 0.21

0.32 0.059 0.24 -0.23 -0.2 -0.0051

−1.0

−0.5

0.0

0.5

1.0

(a)

Weight

Avg. AP overshoot

Spike rate

Avg. AP width

Avg. AHP depth

Lat. to first spike

Accomm. index

0.3

0.21

0.16

0.22

0.086

0.018

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure A.3: Similar to Figure 8.5, but with samples from the joint
noninformative prior distribution. (a) The pairwise Pearson’s cor-
relation coefficients. (b) Importance weights calculated from the
correlation coefficients (summed to 1).

Appendix A. Additional Results 128

0.1 0.3 0.5 0.7 0.9

pε

50

100

150

200

250

300

R
u

n
ti

m
e

(s
)

Figure A.4: Illustration of computational run time for obtaining
1000 posterior samples with the HH simulator vs. tolerance quantile,
i.e., the proportion of simulations that are accepted.

250 500 750 1000 1250 1500 1750 2000

Number of simulations

0.9

1.0

1.1

1.2

1.3

1.4

1.5

ε

Noninformative prior

Informative prior

Figure A.5: Estimated tolerance ε vs. the number of simulations in
the pilot study. Here, both summary statistic scales and weights are
set to 1 when calculating the distance, so the estimates might not be
representative for all use cases.

Appendix A. Additional Results 129

32 34 36 38 40

ḡK

D
en

si
ty

Posterior RMSPE: 4.50%

θtrue : 36.0

θ̂MAP : 35.435

95.0% HDI: [32.866, 38.718]

112.5 115.0 117.5 120.0 122.5 125.0 127.5

ḡNa

D
en

si
ty

Posterior RMSPE: 2.32%

θtrue : 120.0

θ̂MAP : 119.036

95.0% HDI: [115.396, 124.850]

Figure A.6: Original rejection ABC posteriors over the Hodgkin-
Huxley model parameters ḡK (top) and ḡNa (bottom) with noise-free
observed voltage trace. Here, the parameter proposals were sampled
from the joint noninformative prior distribution. The dark shaded
region indicates the 95% HDI and the dotted line the MAP estimate.
The ground truth is indicated by the red line. The legend states the
numerical values for each of these, in addition to the RMSPE in the
posterior.

Appendix A. Additional Results 130

0 25 50 75 100 125

Time (ms)

−80

−60

−40

−20

0

20

40

M
em

b
ra

n
e

P
ot

en
ti

al
(m

V
)

Observation

Posterior predictive

Posterior predictive mean

Figure A.7: Graphical posterior predictive check comparing the
observed voltage trace to simulated data predicted by the Hodgkin-
Huxley model under the regression adjusted joint posterior predictive
distribution that is shown as marginal posteriors in Figure 8.12.

Appendix A. Additional Results 131

35 36 37 38 39 40

ḡK

D
en

si
ty

Posterior RMSPE: 2.98%

θtrue : 36.0

θ̂MAP : 36.157

95.0% HDI: [35.342, 38.252]

116 118 120 122 124 126 128

ḡNa

D
en

si
ty

Posterior RMSPE: 1.49%

θtrue : 120.0

θ̂MAP : 120.408

95.0% HDI: [118.090, 123.879]

Figure A.8: Original rejection ABC posteriors over the Hodgkin-
Huxley model parameters ḡK (top) and ḡNa (bottom) with noisy
observed voltage trace. Here, the parameter proposals were sampled
from the joint informative prior distribution. The dark shaded region
indicates the 95% HDI and the dotted line the MAP estimate. The
ground truth is indicated by the red line. The legend states the
numerical values for each of these, in addition to the RMSPE in the
posterior.

Appendix A. Additional Results 132

1.0 1.5 2.0 2.5 3.0 3.5 4.0

η

D
en

si
ty

Posterior RMSPE: 33.49%

θtrue : 2.0

θ̂MAP : 2.017

95.0% HDI: [1.501, 3.354]

4.0 4.5 5.0 5.5 6.0 6.5 7.0

g

D
en

si
ty

Posterior RMSPE: 13.83%

θtrue : 5.0

θ̂MAP : 5.383

95.0% HDI: [4.463, 6.411]

Figure A.9: Original rejection ABC posteriors over the Brunel
network model parameters η (top) and g (bottom) with observed data
from the AI state. The dark shaded region indicates the 95% HDI
and the dotted line the MAP estimate. The ground truth is indicated
by the red line. The legend states the numerical values for each of
these, in addition to the RMSPE in the posterior.

B
Derivations

B.1 Alternative Hodgkin-Huxley Formulation
We here provide an example on how the alternative formulation of the original
Hodgkin-Huxley model with reversed polarity of the membrane potential and
shifted resting potential to −65 mV can be derived. In its original formulation, the
potassium channel rate coefficient is on the form:

αn = 0.01 · V + 10
exp

(
V+10

10

)
− 1

.

If we let A = 0.01, x = V + 10, and y = 10, such that

αn = A · x

exp
(
x
y

)
− 1

,

we easily find that an alternative form is:

αn = A · x

exp
(
x
y

)
− 1
· (−1)

(−1) = A · −x
1− exp

(
x
y

)
Reversing the polarity and shifting the resting membrane changes x = (V + 10)
into x = −(V + 55). Inserted into the last equation, we obtain the alternative
formulation:

Appendix B. Derivations 134

αn = 0.01 · V + 55
1− exp

(
−V+55

10

) ,

B.2 Derivation of vtrap
Here, we provide a derivation of vtrap (Equation 7.1). The point of departure
is

rate = x

exp (x/y)− 1 .

The Taylor series expansion of exp (x/y) is

exp (x/y) =
∞∑
n=0

(x/y)n

n! ,

and truncation at the second-order approximation gives

exp (x/y) ≈ 1 + x

y
+ (x/y)2

2 + ...

Thus,

rate ≈ x

1 + x
y

+ (x/y)2

2 − 1
= 1

1
y

(
1 + x

2y

) = y

1 + x
2y
.

Next, we manipulate the expression further:

rate ≈ y

1 + x
2y
·

1− x
2y

1− x
2y

=
y
(
1− x

2y

)
1−

(
x
2y

)2 .

If x/y << 1, then the term (x/2y)2 → 0 much faster than (x/2y). Thus, we can
make the approximation:

rate ≈ y

(
1− x

2y

)
for x/y << 1.

References

[1] Society for Neuroscience. Brain Facts: A Primer on the Brain and Nervous
System. 8th ed. Washington, DC: Society for Neuroscience, 2018 (cit. on pp. 1,
39).

[2] David Sterratt et al. Principles of Computational Modelling in Neuroscience.
1st ed. Cambridge, UK: Cambridge University Press, 2011 (cit. on pp. 1, 39,
41, 44, 46, 51).

[3] S Tavare et al. “Inferring Coalescence Times From DNA Sequence Data.” In:
Genetics 145.2 (1997), pp. 505–518 (cit. on pp. 2, 28).

[4] Jonathan K Pritchard et al. “Population growth of human Y chromosomes:
A study of y chromosome microsatellites.” In: Molecular biology and evolution
16.12 (1999), pp. 1791–1798 (cit. on pp. 2, 28).

[5] Mark A Beaumont, Wenyang Zhang, and David J Balding. “Approximate
Bayesian Computation in Population Genetics.” In: Genetics 162.4 (2002),
pp. 2025–2035 (cit. on pp. 2, 31, 32).

[6] George Papamakarios and Iain Murray. Fast ε-free Inference of Simulation
Models with Bayesian Conditional Density Estimation. 2016. arXiv: 1605.
06376 [stat.ML] (cit. on pp. 3, 36, 96).

[7] Jan-Matthis Lueckmann et al. Flexible statistical inference for mechanistic
models of neural dynamics. 2017. arXiv: 1711.01861 [stat.ML] (cit. on pp. 3,
36, 96).

[8] David S. Greenberg, Marcel Nonnenmacher, and Jakob H. Macke. Automatic
Posterior Transformation for Likelihood-Free Inference. 2019. arXiv: 1905.
07488 [cs.LG] (cit. on pp. 3, 36, 96).

[9] A. L Hodgkin and A. F Huxley. “A quantitative description of membrane
current and its application to conduction and excitation in nerve.” In: The
Journal of physiology 117.4 (1952), pp. 500–544 (cit. on pp. 4, 44, 116).

[10] Nicolas Brunel. “Dynamics of Sparsely Connected Networks of Excitatory
and Inhibitory Spiking Neurons.” In: Journal of Computational Neuroscience
8.3 (2000), pp. 183–208 (cit. on pp. 4, 44, 50, 53, 54, 116).

[11] Alvaro Tejero-Cantero et al. “sbi: A toolkit for simulation-based inference.”
In: Journal of Open Source Software 5.52 (2020), p. 2505 (cit. on pp. 5, 69).

[12] Scott A. Sisson, Yanan Fan, and Mark A. Beaumont. “Overview of ABC.”
In: Handbook of Approximate Bayesian Computation. Ed. by Scott A. Sisson,
Yanan Fan, and Mark A. Beaumont. 1st ed. Handbooks of Modern Statistical
Methods. Boca Raton, Fl: CRC Press, 2019. Chap. 1, pp. 3–54 (cit. on p. 6).

https://arxiv.org/abs/1605.06376
https://arxiv.org/abs/1605.06376
https://arxiv.org/abs/1711.01861
https://arxiv.org/abs/1905.07488
https://arxiv.org/abs/1905.07488

References 136

[13] Andrew Gelman et al. Bayesian Data Analysis. 3rd ed. Texts in statistical
science. Boca Raton, Fl: CRC Press, 2014 (cit. on pp. 6, 9, 18).

[14] Osvaldo Martin. Bayesian Analysis with Python. 2nd ed. Texts in statistical
science. Birmingham, UK: Packt Publishing, 2018 (cit. on p. 9).

[15] D. S. Sivia and J. Skilling. Data Analysis - A Bayesian Tutorial. 2nd ed.
Oxford Science Publications. New York, NY: Oxford University Press, 2006
(cit. on p. 9).

[16] Nicholas Metropolis et al. “Equation of State Calculations by Fast Computing
Machines.” In: The Journal of chemical physics 21.6 (1953), pp. 1087–1092
(cit. on p. 17).

[17] W. K Hastings. “Monte Carlo sampling methods using Markov chains and
their applications.” In: Biometrika 57.1 (1970), pp. 97–109 (cit. on p. 17).

[18] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. Springer
Series in Statistics. New York, NY: Springer New York, 2009 (cit. on p. 19).

[19] Christopher M Bishop. Pattern recognition and machine learning. 1st ed.
Information science and statistics. New York, NY: Springer New York, 2006
(cit. on pp. 19, 36).

[20] Ilya Narsky and Frank C Porter. Statistical Analysis Techniques in Particle
Physics: Fits, Density Estimation and Supervised Learning. 1st ed. Weinheim:
John Wiley & Sons, Incorporated, 2013 (cit. on p. 19).

[21] David W Scott. “On optimal and data-based histograms.” In: Biometrika
66.3 (1979), pp. 605–610 (cit. on p. 20).

[22] David Freedman and Persi Diaconis. “On the histogram as a density estimator:
L2 theory.” In: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete 57.4 (1981), pp. 453–476 (cit. on p. 20).

[23] B.W Silverman. Density estimation for statistics and data analysis. 1st ed.
Monographs on statistics and applied probability. London, UK: Chapman
and Hall, 1986 (cit. on p. 21).

[24] Drleft. Comparison of 1D histogram and KDE. 2010. url: https://commons.
wikimedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png
(visited on 10/30/2021) (cit. on p. 21).

[25] Scott A. Sisson, Yanan Fan, and Mark A. Beaumont, eds. Handbook of
Approximate Bayesian Computation. 1st ed. Handbooks of Modern Statistical
Methods. Boca Raton, Fl: Chapman and Hall/CRC, 2018 (cit. on pp. 26, 27,
32, 119).

[26] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. “The frontier of simulation-
based inference.” In: Proceedings of the National Academy of Sciences 117.48
(2020), pp. 30055–30062 (cit. on pp. 26, 117).

[27] George Papamakarios. Neural Density Estimation and Likelihood-free Infer-
ence. 2019. arXiv: 1910.13233 [stat.ML] (cit. on p. 26).

[28] D. B Rubin. “Bayesianly justifiable and relevant frequency calculations for the
applied statistician.” In: The Annals of statistics 12.4 (1984), pp. 1151–1172
(cit. on p. 28).

https://commons.wikimedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png
https://commons.wikimedia.org/wiki/File:Comparison_of_1D_histogram_and_KDE.png
https://arxiv.org/abs/1910.13233

References 137

[29] Lorenzo Pacchiardi et al. “Distance-learning For Approximate Bayesian Com-
putation To Model a Volcanic Eruption.” In: Sankhya B 83.1 (2021), pp. 288–
317 (cit. on p. 30).

[30] James J Palestro et al. Likelihood-Free Methods for Cognitive Science. 1st ed.
Cham: Springer International Publishing, 2018 (cit. on p. 32).

[31] Jarno Lintusaari et al. “Fundamentals and Recent Developments in Approx-
imate Bayesian Computation.” In: Systematic biology 66.1 (2017), e66–e82
(cit. on p. 34).

[32] Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: Non-linear Inde-
pendent Components Estimation. 2015. arXiv: 1410.8516 [cs.LG] (cit. on
p. 36).

[33] Pedro J Goncalves et al. “Training deep neural density estimators to identify
mechanistic models of neural dynamics.” In: eLife 9 (2020), e56261 (cit. on
pp. 38, 117).

[34] Peter Dayan and L.F. Abbott. Theoretical neuroscience : computational and
mathematical modeling of neural systems. 1st ed. Cambridge, Mass: MIT
Press, 2001 (cit. on pp. 39, 44).

[35] Molecular Devices. What is an action potential? url: https://cs231n.github.
io/neural-networks-1/ (visited on 10/30/2021) (cit. on p. 40).

[36] Standford University. CS231n: Convolutional Neural Networks for Visual
Recognition. url: https://www.moleculardevices.com/applications/patch-
clamp-electrophysiology/what-action-potential (visited on 10/30/2021) (cit.
on p. 42).

[37] Wulfram Gerstner et al. Neuronal dynamics : from single neurons to networks
and models of cognition. 1st ed. Cambridge: Cambridge University Press, 2014
(cit. on p. 44).

[38] Marc-Oliver Gewaltig, Abigail Morrison, and Hans Ekkehard Plesser. “NEST
by Example: An Introduction to the Neural Simulation Tool NEST.” In:
Computational Systems Neurobiology. Dordrecht: Springer Netherlands, 2012,
pp. 533–558 (cit. on p. 52).

[39] Shaul Druckmann et al. “A novel multiple objective optimization framework
for constraining conductance-based neuron models by experimental data.” In:
Frontiers in Neuroscience 1.1 (2007), pp. 7–18 (cit. on pp. 59, 61, 118).

[40] Simen Tennøe, Geir Halnes, and Gaute T Einevoll. “Uncertainpy: A Python
Toolbox for Uncertainty Quantification and Sensitivity Analysis in Compu-
tational Neuroscience.” In: Frontiers in Neuroinformatics 12 (2018), p. 49
(cit. on pp. 61, 118, 122).

[41] Michael G.B. Blum. “Regression Approaches for ABC.” In: Handbook of
Approximate Bayesian Computation. Ed. by Scott A. Sisson, Yanan Fan, and
Mark A. Beaumont. 1st ed. Handbooks of Modern Statistical Methods. Boca
Raton, Fl: CRC Press, 2019. Chap. 3, pp. 71–85 (cit. on p. 66).

[42] Nicholas T Carnevale and Michael L Hines. The NEURON Book. Cambridge:
Cambridge University Press, 2006 (cit. on p. 67).

[43] Charles R. Harris et al. “Array programming with NumPy.” In: Nature
585.7825 (2020), pp. 357–362 (cit. on p. 69).

https://arxiv.org/abs/1410.8516
https://cs231n.github.io/neural-networks-1/
https://cs231n.github.io/neural-networks-1/
https://www.moleculardevices.com/applications/patch-clamp-electrophysiology/what-action-potential
https://www.moleculardevices.com/applications/patch-clamp-electrophysiology/what-action-potential

References 138

[44] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python.” In: Nature Methods 17 (2020), pp. 261–272 (cit. on
p. 69).

[45] J. D. Hunter. “Matplotlib: A 2D graphics environment.” In: Computing in
Science & Engineering 9.3 (2007), pp. 90–95 (cit. on p. 69).

[46] Wes McKinney et al. “Data structures for statistical computing in python.” In:
Proceedings of the 9th Python in Science Conference. Ed. by Stéfan van der
Walt and Jarrod Millman. Vol. 445. 2010, pp. 56–61 (cit. on p. 69).

[47] Michael L. Waskom. “seaborn: statistical data visualization.” In: Journal of
Open Source Software 6.60 (2021), p. 3021 (cit. on p. 69).

[48] Michael M. McKerns et al. Building a Framework for Predictive Science. 2012.
arXiv: 1202.1056 [cs.MS] (cit. on p. 69).

[49] Tanguy Fardet et al. NEST 2.20.2. Version 2.20.2. Aug. 2021. doi: 10.5281/
zenodo.5242954 (cit. on p. 69).

[50] Garcia S. et al. “Neo: an object model for handling electrophysiology data
in multiple formats.” In: Frontiers in Neuroinformatics 8:10 (2014) (cit. on
p. 69).

[51] M. Denker, A. Yegenoglu, and S. Grün. “Collaborative HPC-enabled work-
flows on the HBP Collaboratory using the Elephant framework.” In: Neu-
roinformatics 2018. 2018, P19. doi: 10 .12751/ incf .ni2018 .0019 (cit. on
p. 69).

[52] J.R Dormand and P.J Prince. “A family of embedded Runge-Kutta formulae.”
In: Journal of computational and applied mathematics 6.1 (1980), pp. 19–26
(cit. on p. 69).

[53] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Autoregres-
sive Flow for Density Estimation. 2018. arXiv: 1705.07057 [stat.ML] (cit. on
p. 96).

[54] Joshua H Goldwyn and Eric Shea-Brown. “The what and where of adding
channel noise to the Hodgkin-Huxley equations.” In: PLoS computational
biology 7.11 (2011), e1002247–e1002247 (cit. on p. 98).

[55] Aidan C Daly et al. “Hodgkin-Huxley revisited: reparametrization and iden-
tifiability analysis of the classic action potential model with approximate
Bayesian methods.” In: Royal Society open science 2.12 (2015), pp. 150499–
150499 (cit. on p. 116).

[56] Mikael Sunnåker et al. “Approximate Bayesian Computation.” In: PLOS
Computational Biology 9.1 (2013), pp. 1–10 (cit. on p. 117).

[57] Dennis Prangle. “Adapting the ABC Distance Function.” In: Bayesian Analysis
12.1 (2017), pp. 289–309 (cit. on p. 118).

[58] Geir Halnes et al. “A Multi-Compartment Model for Interneurons in the
Dorsal Lateral Geniculate Nucleus.” In: PLOS Computational Biology 7.9
(2011), pp. 1–12 (cit. on p. 122).

[59] Jan-Eirik W. Skaar et al. “Estimation of neural network model parameters
from local field potentials (LFPs).” In: PLOS Computational Biology 16.3
(2020), pp. 1–30 (cit. on p. 122).

https://arxiv.org/abs/1202.1056
https://doi.org/10.5281/zenodo.5242954
https://doi.org/10.5281/zenodo.5242954
https://doi.org/10.12751/incf.ni2018.0019
https://arxiv.org/abs/1705.07057

References 139

[60] Espen Hagen et al. “Hybrid Scheme for Modeling Local Field Potentials from
Point-Neuron Networks.” In: Cerebral cortex (New York, N.Y. 1991) 26.12
(2016), pp. 4461–4496 (cit. on p. 122).

[61] Jan-Matthis Lueckmann et al. “Benchmarking Simulation-Based Inference.”
In: Proceedings of The 24th International Conference on Artificial Intelligence
and Statistics. Ed. by Arindam Banerjee and Kenji Fukumizu. Vol. 130.
Proceedings of Machine Learning Research. 2021, pp. 343–351 (cit. on p. 123).

	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Motivation
	Why Bayesian?

	Objective of the Study
	Code
	Notation
	Structure of the Thesis

	I Theoretical Background
	Bayesian Inference
	Bayes' Theorem
	Prior and Posterior Predictive Distributions
	Parameter Inference
	The Beta-Binomial Model and the Effect of Priors

	Bayesian Computation
	Markov Chain Monte Carlo
	The Metropolis Algorithm

	Density Estimation
	Histograms
	Kernel Density Estimation

	Summarizing the Posterior
	Visualization
	Bayesian Point Estimates
	Posterior Uncertainty
	Posterior Predictive Checks

	Simulation-Based Inference
	Likelihood-Based vs. Simulation-Based
	Approximate Bayesian Computation
	The ABC of Approximate Bayesian Computation
	Rejection ABC
	Markov Chain Monte Carlo ABC

	Regression Adjustment
	Linear Regression Adjustment
	Local Linear Regression Adjustment

	Neural Density Estimation
	Sequential Neural Posterior Estimation

	Introduction to Neurobiology
	Neural Circuits and Networks
	Neurons
	Ion Channels and Action Potentials
	Synapses

	Models of Neural Dynamics
	The Hodgkin-Huxley Model
	Electrical Properties of Neurons
	Biophysical Model of Ionic Mechanisms
	Simulation of Action Potentials

	The Brunel Network Model
	Integrate-And-Fire Neurons
	A Sparsely Connected Recurrent Network
	States of Spiking Activity

	II Methodology & Computational Approach
	Methodology
	Outline of Analyses
	Summary Statistics of Spiking Activity
	Spike Statistics
	Spike Train Statistics

	Correlation Analysis & Importance Weights
	Configuration of ABC Algorithm
	Choice of Priors
	Discrepancy Metric
	Semi-Automatic Tolerance Selection

	Performance Metrics

	Computational Approach
	Computational Strategies
	Log Densities
	Parameter Transformations
	Sample from the Prior and Posterior Predictive
	vtrap
	A More Efficient Metropolis Sampler
	Parallelization

	Software Development
	NeuroModels
	pyLFI

	III Results & Discussion
	Inference on the HH Model
	Observation and Feature Extraction
	Correlation Analysis & Importance Weights

	Study of ABC Settings
	Summarizing Posteriors
	Posteriors from Informative Priors
	Posteriors from Noninformative Priors

	SNPE Posteriors
	Noisy Observation

	Inference on the Brunel Model
	Inference with ABC
	Observation from AI State
	Correlation Analysis & Importance Weights
	ABC Settings
	Summarizing Posteriors
	Posterior Predictive Checks

	Inference with SNPE
	Training the Neural Density Estimator
	Inference in the AI State
	Inference in the SR State

	IV Summary & Conclusions
	Summary
	Conclusions
	Future Research

	Appendices
	Additional Results
	Derivations
	Alternative Hodgkin-Huxley Formulation
	Derivation of vtrap

	References

