UiO © Department of Mathematics
University of Oslo

Invertible and Pseudo-Invertible

Encoders

An Approach to Inverse Problems with Neural
Networks

Marius Aasan
Master’s Thesis, Autumn 2021

~ Oy AR
< 2 4 s L3 9
XL \
7 \d S
= ==
I\ /] -
N /] = 74|
Q > b % iy Q|
7
>
& =
/|
Zi
)
8
8
S8
A 7
7 0
e WELR
S Wia
7 T\fi
7 {
AR
\ NN )
) ) O Rde (
o T (V 4§ 3
A §i%
RN 4
= T
¥ L7
7
i
N
i
)
T
X
= =
N
e ]
=
¥ = -
N\ W . 23




This master’s thesis is submitted under the master’s programme Data Science,
with programme option Statistics and Machine Learning, at the Department
of Mathematics, University of Oslo. The scope of the thesis is 60 credits.

The front page depicts a section of the root system of the exceptional
Lie group FEg, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842-1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.



Abstract

While neural networks have been demonstrated to be highly successful in
mathematical and statistical modelling of a comprehensive selection of problems,
their application to inverse problems is not without complications. Recent works
have shown that neural networks are especially prone to stability issues — both
in a classical sense, and in the context of so called adverserial attacks which
has come to be regarded as the most pervasive source of instability in modern
neural network models.

Concomitantly, methods of constructing invertible neural networks with
diffeomorphic layer structures with normalizing flows have been proposed
as an interesting method for approaching inverse problems by probabilistic
augmentation of latent variable models to induce full-rank in a conditional
setting. However, these models can often be prohibitively expensive in terms
of computational efficiency and memory usage while displaying sufficiently
different architectures as to not be trivially extendable to tools for commonly
defined feed-forward neural networks.

In this thesis, we motivate the theory of inverse problems via integral
equations and spectral theory and discuss the connection of statistical learning
theory to neural networks with special focus on encoder-decoder models.
Furthermore, in the context of neural networks, we will discuss the underlying
theory of epistemic and aleatoric uncertainty, discuss the role of probabilistic
modelling, and evaluate the idea of latent probabilistic completion as a remedial
method for undercomplete modelling tasks.

Our contribution to the subject of invertible neural networks can be
summarized as follows. We propose a relatively simple architectural modification
of existing encoder-decoder models using both implicit and explicit orthogonal
constraints using Riemannian manifold learning and resolvent operators to
construct a wider class of invertible neural networks which are compatible with
classic feed-forward architectures. We show that these models provide both
a significant decrease in the parameter space compared to standard encoder-
decoder networks, as well as theoretical guarantees of robustness and stability
without significant loss to model performance. We apply these architectures
in combination with existing variational Bayesian methods for a generative
approach to underdetermined inverse problems. To this end, we introduce a
class of piecewise diffeomorphic activation functions and a bijective Gaussian to
Dirichlet transformation for latent variables as an alternative to the canonical
Softmax transformation, and propose the application of simple conditional
additive coupling layers to improve conditioning in generative models.
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CHAPTER 1

Preliminaries

1.1 Introduction

An inverse problem is a product of a seemingly reasonable inquiry. Assume
we have a mathematical model which provides reliable outputs for some
mapping. Furthermore, assume that we are provided a set of measured out-
puts for this particular mapping, and for which we are uncertain of what
inputs are generated through these specific outputs. Is it then possible to
compute the causal inputs using the effective outputs, or in other words; is
it possible to invert the mapping to give reasonable estimates of the input values?

Connecting effects to causes has certainly satiated minds as far back as
rational thought itself, and prominent mathematicians have long been utilizing
the power of inversion methods. Carl Gustav Jacobi is attributed the quote
‘'man muss immer umkehren’ or ’invert, always invert’ . His preferred
approach to a new problem was to reformulate an inverse representation, which
he stated would often lead to the solution coming to him in a more effortless
manner. The advent of such important disciplines as quantum mechanics and
the general theory of nonlinear systems succoured the need for new paradigms in
mathematics. The most important of these methods was pioneered by Andrey
Tikhonov , whose research directly ushered the theory of regularization
for robust solutions of inverse problems. At the same time, the Bayesian
approach to statistical modelling provides a probabilistic framework for robust
modelling of inverse problems.

Inverse problems find a natural formulation in image reconstruction tasks.
Until recently, models for data-driven image analysis have been computationally
expensive and relied heavily on specialized hand-crafted algorithms for each
individual problem. The current resurgence of neural network models, originally
conceived by McCullough and Pitts , have completely revolutionized the
field of image analysis. Much of the success of neural network models stem from
the development of Convolutional Neural Networks (CNNs), whose origins go
back to the neocognitron [Fuk79], further developed in [LeC+89]. Even more
recently, the application of invertible neural networks has been proposed as a
particularly interesting approach to modelling inverse problems . This
thesis is an investigation of the intersection of inverse problems in the context
of image reconstruction and invertible neural networks.
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1.2 Project Description and Goals

The project description of the master thesis outlined four main goals of the
thesis. The focus of the thesis is

1. to exposition inverse problems and the related mathematical framework,

2. to exposition statistical learning and neural networks in the context of
inverse problems,

3. to examine current methods for modelling inverse problems with neural
networks,

4. to investigate potentially new models for solving inverse problems, and
comparing these with comparative models.

In Part I, we discuss the general fundamental theoretical background of inverse
problems, introduce statistical learning and data-driven methods for solving
inverse problems, and provide an exposition of neural networks with particular
focus on encoder-decoder models. In Part II, we discuss methods for solving
inverse problems in the context of neural networks, and present and motivate
our approach of invertible- and pseudo-invertible encoders. In Part III, we
present experimental results, discuss the implications, strengths and weaknesses,
and provide relevant discussion on further research opportunities for this class
of models.

1.3 Implementations and Software

We exclusively used the Python programming language using PyTorch (v1.1.0
through v1.10.0) for our implementations and experiments. The
PyTorch framework provides tools and modules for constructing neural networks,
although most of our proposed models cannot be implemented using the standard
tools provided in the framework. There was therefore a need for custom classes
and modules for neural networks with methods for adjoint- and inverse operators.
We will briefly discuss our implementation and methods.

We programmed custom modules for adjoint and invertible operators
for dense, convolutional, as well as seperable patch layers .
Additionally, special modules were programmed for orthogonal layer structures
with specific methods for updating their weight and base operators via
Riemannian gradient descent, as well as the resolvent layers (see.
To easily combine these modules for invertible networks, we also developed
specific tools for inverse splitting, permutation, and composition of sequential
blocks with specific methods for adjoint and inverse computation. Furthermore,
all proposed activation functions (see and were programmed
as modular layer structures, and we implemented specific tools for computing
relevant metrics and objectives.

Most of the challenges we faced during the programming of these structures
were in relation to convolutional layer modules. When we started our work, the
version of PyTorch we used (v.1.1.0) did not have specific modules for circular
boundary conditions, which was essential for our purposes. Furthermore, the
built-in tools for the Fourier transform were limited and did not allow for gradient

2



1.4. Summary of Contributions

computations. We initially implemented convolution operators explicitly by
constructing sparse circulant Toeplitz matrices, which were computationally
expensive. Furthermore, sparse matrix representations could not be successively
applied to built-in optimization methods. As we progressed, the PyTorch
framework received updates which featured circular boundary conditions for
convolution as well as gradient computation for the Fourier transform (v.1.7.0).
However, circular boundary conditions with transposed convolution operators
are still not implemented. As these are coded in low-level implementations
in C using the CUDA framework [NVF20], we did not have the resources to
construct specialized code for this purpose. These difficulties limited the scope
of our experiments on convolutional invertible encoders.

Furthermore, the computation of network Jacobians in PyTorch has certain
stability issues, which manifests as errors if the computational graph for
backpropigation becomes too complex, which is the case for invertible encoder
networks, as the same parameters feature multiple times in a graph. This
leads to issues in computing the relative condition numbers via the Jacobian in
certain models. Another issue is that our implementations of these computations
are quite memory expensive, sometimes requiring 100+ GB of RAM, so any
researcher who wants to individually verify our results should be aware of the
computational overhead involved.

The source code of our repository is available on GitHuHT and our
experiments were conducted using the Jupyter Notebook format with fixed
seeding of the random number generator to promote reproducibility. Note
that seeding is often dependent on the underlying operating system as well as
CPU/GPU. Our experiments were conducted on the ML-Nodes at UiO with
RTX2080Ti GPUs and Intel Xeon CPUs.

1.4 Summary of Contributions

« Our definition of the so-called seperable patch layers (Definition 4.3.3)) are
directly inspired by the model proposed in |Tol421|. Our contribution
is limited to the generalized formulation as composable single network
layers.

e The conditional additive coupling layers from |Definition 4.3.6] which are
constructed via convex combinations to act as a conditional bias term for
stochastic sampling layers is an original contribution.

e The results from [Proposition 4.4.4] and |Definition 4.4.3| for estimating
sensitivity imbalance based on the notion of a sensitivity equilibrium
between forward and inverse compact operators are original contributions.

o Invertible encoder networks (Corollary 6.1.7)) and the related results
on invertible and pseudo-invertible encoder networks (Definitions 6.4.1]
and [6.1.2] [Propositions 6.1.5 and [6.1.6} and [Lemma 6.1.3)) are — to the
best of our knowledge — a new approach to invertible neural networks.

e All bi-Lipschitzian piecewise diffeomorphic activation functions proposed
in are original contributions.

https://github.com/PolterZeit/invertible_encoders
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e Our proposed invertible Dirichlet-Softmax transform from
is an original contribution.

o The theory of Riemannian manifold learning is based on [AMS08 ,

and our contribution is limited to the software implementation for manifold
learning on SO(n),St(n, k) and the applications of these methods for
constructing invertible neural networks.

e The results on invertible resolvent operators in neural networks (Proposi;
[tions 6.4.15|and [6.4.16)) are original contributions.

o Lastly, we note that all our custom modules and software for applying
invertible encoders in neural networks in PyTorch are original contribu-
tions.

1.5 Prerequisites and Fundamentals

When writing a thesis in a field as broad as Data Science, one needs to consider
the variation in the mathematical background of possible readers. Thus, certain
definitions and results that may be familiar to some might be unknown to others.
To accommodate for this, we outline some fundamental results in
to properly define the mathematical tools behind the argumentation in the text,
and to adhere to a level of rigour.

However, anyone who finds themselves sifting through a summary of
mathematical definitions is almost certainly going to find the reading experience
tedious, so the the appendix is accompanied by a summary of the most relevant
results, as well as a list of notational conventions used in this thesis with
references to relevant definitions and results. Interested readers will find a
more comprehensive discussion on these topics in [AMS08} Bil95; [Hall5} [Linl7}
IMW99; [Rud87; [RY08} [Sch95].

Selected Fundamental Results

Hilbert Space Definition A.1.15D.
Compact Operator Definition A.2.9)).
Adjoint Operator Definition A.2. (|:
Unitary Operator Definition A.2.12)).
o-algebra Definition A.3.2)).
Measurable Space Definition A.3.3).
Measure Space Definition A.3.6|).
LP space Definition A.3.15).
Probability Space Definition A.4.2)).
Probability Distribution Definition A.4.4]).
Fourier Transform Definition A.5.1)).
Plancherel’s Theorem and the Fourier Operator  (Theorem A.5.2]).
Lie Groups and Manifolds

Lie Algebras and Tangent Spaces Theorem 6.4.
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1.6 Notation

Placeholder for a variable in an expression.

K A field, either R or C.

K The closure of the field K, e.g. R = RU {—00, c0}.
A The complement of a set A.

Asp, The set {a € A:a > k}.

B(z,e) A ball of radius epsilon, centered at .

C™(A)  Space of functions of nth order continuity on A.

fog The function composition of functions f,g.
focg  fis proportional to g up to a constant ¢, f(x) = cg(x)
T The complex conjugate of = € C.

Jw(z) The Jacobian of W evaluated at .

Tr(W)  The trace of W.

TOY The pointwise Hadamard product (z;y;)" .
Ok The pointwise exponentiation (z¥)7_;.
e~P ¢ is distributed as P.

e ~ P ¢ is approximately distributed as P.

Ok The pointwise exponentiation (z¥)7 ;.

T An index set. Definition A.1.1)).
Ia(z)  The indicator function. Definition A.1.4]
d(xz,y) A metric. Definition A.1.6
1| A norm. Definition A.1.8)).
(z,y) An inner product. Definition A.1.13
zly Orthogonal relation. Definition A.1.16
At Orthogonal complement. Definition A.1.17)
W Adjoint operator. Theorem A.2.5|
B A Dasis. Definition A.2.11D
ZP(A)  The power set of A. Definition A.3.1
v-a.e. Almost everywhere w.r.t. a measure v. Definition A.3.7
M(A)  Space of measurable functions on A. Definition A.3.8
B Borel o-algebra. Definition A.3.10
||| The LP norm. Definition A.3.14]
LP(A)  The LP space on A. Definition A.3.15
0:(A)  The Dirac measure. Definition A.3.17
o(x) The Dirac-¢ function. Remark A.3.18
0ij The Kronecker-9. Remark A.3.18
#(A) The counting measure. Definition A.3.19
KN Sequence space. Definition A.3.21
fev A pushforward measure w.r.t. f,v. Definition A.4.1
P A probability measure. Definition A.4.2
X,Y,Z Random elements or variables. Definition A.4.3
P A probability distribution. Definition A.4.4
fx A probability density function. Definition A.4.5
Fx A cumulative distribution function. Definition A.4.6
E[X] The expected value of X. Definition A.4.9
x The Fourier transform of x. Definition A.5.1
F The Fourier operator. Theorem A.5.2
U®V  Kronecker tensor product of U and V. m%{)
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1.7 Abbreviations, Nomenclature, and Data

SVE/SVD Singular value expansion / decomposition.
TSVD Truncated singular value decomposition.
MLE Maximum likelihood estimate.
MAP Maximum a posteriori estimate.
ELBO Evidence lower bound.
RELU/BIRELU Regular and bi-Lipschitz rectified linear unit activation.
ELU/BIELU Regular and bi-Lipschitz exponential linear unit activation.
CELU/BICELU  Regular and bi-Lipschitz continuous exp. linear unit activation.
ADAM Moment based optimization algorithm for gradient descent.
AE Autoencoder, or general encoder-decoder network.
VAE Variational autoencoder network.
PIE Pseudo-invertible encoder network.
IE Invertible encoder network.
IRE Invertible resolvent encoder network.
CNJ Relative condition number by Jacobian.
CNA Relative condition number by adverserial perturbation.

Abbr. Name Function

RE Mean relative error % i 7“y|f;ﬂill

MSE Mean squared error 1 Zl(yL — 94)2

ABS Mean absolute error % Zl|y7 — Gil

LHC Mean log.hyperbolic cosine %ﬂ Ez Incosh (B(y: — 9:))

§ . . . max (V)2
PSNR Peak signal-to-noise ratio 10log,, Wu} e be,
o gy n te) (200

SSIM Structural Similarity i Zl Zw (u5)+“gy+€)(a#}igg+6)

BCE Mean binary cross-entropy 1 21 Zj —yi; In 9y

ACC Accuracy 1 21 I(arg max, = arg maxg%)

5
ACH Top-5 Accuracy 1 ZZ argmax, pcy. g, 2_7‘:1 I(a; = bj)
REID Relative error to identity matrix %

Table 1.5: Overview of applied empirical risk functions and metrics.

Source Abbr. No.Train No.Val. Classes Spat.Dim Chan. Scaling Blur
CIFAR100 CIFAR 50000 10000 100 32 x 32 1 1:1 None
CIFAR100 CIFARAyg. 50000 10000 100 32 x 32 1 1:1 Avg. 3 x 3
EMNIST EMNIST 112800 18800 47 28 x 28 1 1:1 None
MS-COCO coco 96336 4002 80 384 x 384 1 1:1 None
MS-COCO cOCO6:1 96336 4002 80 96 x 96 1 16:1 None

Table 1.6: Overview of all datasets used in our experiments and examples. More
details can be found in [Coh+17; [KHO09; [Lin+14] as well as
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CHAPTER 2

Inverse Problems

In this chapter we provide an outline of the basic framework associated with
inverse problems posed as integral equations, and discuss what it means for a
problem to be inherently ill-posed. We discuss the mathematical tools used in
the context of these problems and show their relation to spectral theory and
harmonic analysis. Much of the foundations for this chapter is built on and
around the work in [Gro93; Hanl0} [HNOOG} Kol02].

2.1 lll-Posedness

Semantically, the notion of an inverse requires some initial structure for such
a concept to be meaningful. We encounter these concepts in mathematics via
relations and mappings where an inverse maps elements from the co-domain
of some initial map to elements or sets of the domain. An inverse problem
similarly requires an initial problem which maps some unobserved cause to an
observed, measured effect. We call such an initial problem a forward problem
or alternatively a direct problem. Given normed spaces X',) as well as an
unknown probability distribution P, a forward problem consists of the following
components.

o An input element or input state x € X.

o An output element or output state y € ).
o A mapping ®: X = ).

o A noise component & ~ P.

The general form of a forward problem is then given by
O(z)+e=y. (2.1)

The noise component ¢ is the result of general uncertainty related to the output
state being observed via a measurement process. We consider this noise inherent
to the measurement process, and thus characteristic of the forward problem.
Given a forward problem, there are two natural formulations of an inverse
problem. The first and most common is the task of approximating an input state
x using the measured output state y under affection of the noise ¢, requiring
assumptions on the form of the mapping ®. In the nomenclature of this thesis,
we refer to these problems as causal inverse problems.



2. Inverse Problems

The second formulation originates from approximating an inverse operator
&)Y — X which may or may not exist given the forward problem, using
observations of inputs and outputs in a data driven approach. These are
problems which we will refer to as inverse problems of model identification, and
problems on this form is at the center of this thesis. This approach differs

from [Equation (2.1)|as we instead look for an optimal parametrization for an

estimate of ' given the forward problem
®(z;0) +e =y, (2.2)

where we let 6 be an element in a parameter space © encode the set of relevant
variables for the model, and refer to 8 as a parameter state of ®.

The above exposition may strike the reader as too fleeting to be of much
use in a mathematical context. It seems that in most available mathematical
literature on the subject of inverse problems there is a certain reluctance
towards providing a formal definition — in fact there does not seem to be any
acknowledged mathematical definition for inverse problems at all. Instead, the
conventions and terminology for inverse problems have been directly adopted
from the physical sciences. Thus, it might not be sufficiently clear why inverse
problems should be any more challenging to solve than a forward problem. The
fundamental difference between a forward problem and its corresponding inverse
problem coincides with the pivotal classification of mathematical problems

formulated by Jacques Hadamard |[Had4§|.

Definition 2.1.1 (Well-posedness). The problem ®(z) = y is called a well-posed
problem if

(i) (Existence) for all y € Y there exists z € X s.t. ®(x) =y,
(ii) (Uniqueness) for all y € ) there is at most one z € X s.t. ®(x) =y,

(iil) (Stability) for all (x,)neny C X, 1i_{n O(x,) = O(x) implies lim z, = x.

n—oo

Any problem that fails to meet any of the aforementioned criteria is consequently
defined as ill-posed.

While this set of criteria are undeniably reasonable in order to constructively
solve a problem, this definition exposes an adherence to a belief that any
physical phenomena universally had well-posed mathematical equivalents. Today
however, we know that this is not necessarily the case. Generally, most inverse
problems fail to meet one or more of the aforementioned criteria, and we consider
stability (Property 2.1.1.iii) to be especially challenging.

Mathematically, this is what we generally consider to be the defining
characteristic of inverse problems, namely, that they are inherently ill-posed,
while a forward problem is on the other hand assumed to be well-posed. This
biformity makes them particularly challenging and coincidentally mathematically
interesting.

10



2.2. Integral Equations

2.2 Integral Equations

We have established that the motivation behind our understanding of inverse
problems originates from physical models, thus many inverse problems are
naturally phrased in the setting of continuous Euclidean space, and in this
domain the natural manifestation of inverse problems are equations known as
integral equations. The first recorded inverse problem that applied integral
equations is the Tautochrone problem by Abel in 1823, using Abel’s integral
equation |Abe81|. This was later developed into a comprehensive theory by
Fredholm [Fre03|, now eponymously known as Fredholm Theory.

Definition 2.2.1 (Fredholm Equation, First Kind). Let S, T be open, connected
subsets of K and let w: § x 7 — K. Furthermore, let z: S — K,y: 7 — K,
and assume that y is known, and x is unknown. Then

y(t) = / w(s, t)x(s) ds (2.3)
s
is called a Fredholm equation of the first kind.

The function w(s,t) is often referred to as a kernel function. The forward
problem of a Fredholm equation can thus be stated as solving [Equation (2.3)
for y given x, and the inverse problem is contrarily determining = given y. In
this context, it is evident that the solution to the forward problem is a matter
of computation, while the inverse problem requires a more comprehensive
approach.

In we define the linear operator. By restricting the kernel,

input and output functions to be square-integrable, a Fredholm equation can
be expressed as a linear operator called the Hilbert-Schmidt integral operator.

Definition 2.2.2 (Hilbert-Schmidt Integral Operator). Let S, T be open,
connected subsets of K and let w € L?(S x T). Furthermore, let € L?(S) and
y € L?(T). The Hilbert-Schmidt integral operator W is then given by

(W) () = /S w(s, )a(s) ds. (2.4)

The operator W from is a special case of a wider class of
Hilbert-Schmidt operators.

Definition 2.2.3 (Hilbert-Schmidt Operator Norm). Let Z C N be an index
set. Given an orthonormal basis & = (v, )nez (Definition A.2.11)) for a Hilbert
space X, if for any bounded operator W € B(&X) (Definition A.2.2)) we have

IWllas = Y _[IWon* < oo, (2.5)
neZl

then W is a Hilbert-Schmidt operator, and we call ||¢||gs the Hilbert-Schmidt
norm.

This class of operators form a linear subspace of B(X) — the space of all
bounded operators on X . Moreover, this subspace is a Hilbert
space [Con90, p.267], and Hilbert-Schmidt operators share the property of all
being compact (Definition A.2.9|and [Theorem A.7.6). The following important
theorem allows us to effectively treat compact operators as infinite dimensional
extensions of matrices.

11



2. Inverse Problems

Theorem 2.2.4 (Spectral Theorem for Compact Self-adjoint Operators). Let X
be a Hilbert space and let W : X — X be a self-adjoint operator. Then W has
an orthonormal basis of eigenvectors or eigenfunctions corresponding to real
etgenvalues.

A proof is provided in [MW99, pp.517-518]. [Theorem 2.2.4| allows the

application of spectral theory in functional analysis. As we will see, spectral
theory is a powerful tool for solving inverse problems.

In addition to homogeneous integral equations introduced in [Definition 2.2.1]
we also have inhomogeneous integral equations, often referred to as equations
of the second kind.

Definition 2.2.5 (Fredholm Equation, Second Kind). Let S,7 be open,
connected subsets of K and let w: S x 7 — K. Furthermore, let z: K —
K,y: T — K, A € K\ {0}, and assume that y is known, and z is unknown.
Then

y(t) = x(t) — Xl/Sw(s,t)x(s) ds (2.6)

is called a Fredholm equation of the second kind.

The kernel w(s, t) for an inhomogeneous Fredholm equation induces a Hilbert-
Schmidt integral operator, and can be expressed as a linear operator equation on
the form y = (I — A\'W)z. It turns out that the solution of an inhomogeneous
integral equation is closely related to the spectrum of the operator W. We
discuss this further in

If the kernel of a homogeneous integral equation can be expressed as w(t —s),
the resulting equation defines a convolution. Convolution operators see a variety
of applications in physics, statistics, and signal processing. They also happen
to play an important role in modern neural network architectures.

Definition 2.2.6 (Convolution). A Fredholm equation is a convolution if the
kernel can be expressed as w(s,t) = w(t — s), and we denote it by

(wxz)(t) = /Sw(t — s)z(s) ds. (2.7)

A convolution can be viewed either as a binary operator acting on two
elements from distinct univariate function spaces, or an integral operator as per

When a forward problem is given by convolution operators,

the inverse problem becomes a deconvolution problem.

The convolution theorem (Theorem A.7.7)) makes deconvolution problems

with a known kernel more or less straightforward to solve in Fourier space.
Consider the convolution given by

§(&) = w(&) - 2(¢), (2.8)
which can be rewritten as
(&) = y(&)/w(€). (2.9)

This greatly simplifies the solution, as the input signal can then simply be
recovered by & = F1(§/@). In the following example, we will see how issues
with ill-posedness generally prevent us from simply applying this method in
practice.

12
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Figure 2.1: Tllustration of deblurring problem. Original image (left), blurred
image (middle) and noisy blurred image (right) in spatial domain (above) and
frequency domain (below).

Example 2.2.7 (Deblurring in Fourier Space). A common inverse problem in
image processing is reconstructing an original image from a low-pass filtered
image using deconvolution, called a deblurring problem. Deblurring is a inverse
problem of model identification with a compact operator, where we assume a
forward problem with a parametrized operator Wy of the form

y=Wyxr+e
and we want to estimate

0 = argmin||W;'y — x|
0

For this task, we apply an average smoothing filter to images from the
CIFAR dataset (see [Table 1.6|and [Section 7.1} for details). For digital
images, the convolution kernel is a discrete 3 x 3 moving average filter given by
0;; = 1/9 for i,j € {1,2,3}. In addition, we apply a minor level of Gaussian

noise € ~ N(0,0.01%), resulting in the observed images in [Figure 2.1 We
compute the filter w(§) by

w (&) = g(§)/x(8)

which we then apply to the image point wise in the Fourier domain using
The results can be observed in

To evaluate the reconstructions, we apply the commonly used peak signal-
to-noise ratio (PSNR) and structural similarity (SsiM) metrics (Table 1.5). The
the reconstruction of the blurred image without noise (left) achieves a PSNR
of 141.95 and a sSIM of 1.0, indicating a more or less perfect reconstruction of
the original image. However, the noisy image only achieves a PSNR of 5.64 and
a SSIM of 0.27. We conclude that even with full knowledge of the kernel used
in the convolution, an almost imperceptible amount of added noise will result
in poor reconstruction with this approach. This demonstrates the inherent
ill-posedness of deconvolution problems.

13



2. Inverse Problems

Figure 2.2: Reconstructed images in Fourier domain (left) and spatial domain
(right) from deblurring problem. The deconvolution with the applied blur kernel
results in a barely recognizable reconstruction for the noisy image.

If we now consider convolutions with square integrable kernel functions in

terms of i.e. operators of the form
(Wa)(t) = / w(t — s)x(s) ds
S

and derive the eigenfunctions, we get an interesting result.

Proposition 2.2.8. The eigenfunctions of the convolution operator are given by

v(t) = *mitE,

Proof. Let v(s) = €>™*'¢. A consequence of [Theorem A.7.7|is that convolution

is commutative. We thus have w % v = v * w, S0 we can write

(Wo)(t) = / w(s)e?™=)€ g

S
:62m't~§/w(5)672m‘s-§ ds
S

= w(&)v(t).

Evaluating w(€) for a fixed frequency & yields a scalar, which we denote as
w(€) = A¢ € C. We consequently have A¢v(t), so the eigenfunctions of W are
on the form €273, |

The family of functions v(t) are the complex exponentials which form an
orthonormal basis for Fourier space corresponding with specific frequencies,
and these functions are fundamental in the field of harmonic analysis. We
can interpret the result of [Proposition 2.2.8| as the Fourier transform acting
as a diagonalization of convolution operators. In the next section, we discuss
how this result can be generalized to solve inverse problems for other integral
equations with kernels yielding compact operators.

14



2.3. Expansion Methods and Spectral Theory

2.3 Expansion Methods and Spectral Theory

In this section, we connect the generalized Fourier series and singular value
expansion, and show how these tools are applied to solve homogeneous linear
integral equations. We also discuss some fundamental spectral theory on
Banach spaces, and show how these are useful for solving inhomogeneous
integral equations.

Recall that the most common application of the Fourier transform
(Definition A.5.1)) is Fourier series expansion, the premise for which can be
derived from the properties of the sequence

eint
%]—' = (U’I’L . 'Un(t) = m) .
nez

Given the canonical L?-norm and inner product (Lemma A.1.14 and [Defini{
[(ion A.T.13), we have ||v,|| = 1 with (v, V) = dpm denoting the Kronecker
delta (Remark A.3.18). Then % is an orthonormal basis (Definition A.2.11)
for L?([—m,n]), or equivalently an orthonormal basis for L?(R/27Z), the space
of functions with periodicity 27 which are square integrable over their period.

Definition 2.3.1 (Fourier Coefficients). Let x € L?(R/27Z). Let (cn)nez be a
sequence with elements given by

<fE, e*int>

== (2.10)

Cp =

Then (¢, )nez are the Fourier coefficients of x.

Definition 2.3.2 (Fourier Series). Let x € L?(R/27Z) with Fourier coefficients
(¢n)nez. Then

1 -
z(t) = T > cne™ (2.11)

is called the Fourier series expansion of x.

Thus, we can decompose the reconstruction of a Fourier series expansion
into two steps; a analysis step where we determine the Fourier coefficients,
and a synthesis step where we reconstruct the function by the Fourier series.
Appropriate scaling and shifting can be applied to functions on domains outside
the periodic interval [—, 7].

15



2. Inverse Problems

|[Proposition 2.2.8|tells us that the Fourier transform acts as a diagonalization
of convolution operators, in the sense that it decomposes the operator into an
orthogonal basis of Fourier coefficients. The series expansion of Fourier series
can be further generalized to alternate bases. We call these expansion methods
a generalized Fourier series.

Definition 2.3.3 (Generalized Fourier Series). Let (¢, ¢),. be some inner product
with an induced norm |¢||.. Let & be a connected subset of K and let
% = (vn)nen be an orthogonal basis for L(S). For z € L(S), let (¢,)nez be
a sequence with elements given by

<Jf,’l]n>*
Cp = Tt (2.12)
T el

Then we call (¢, )nez the generalized Fourier coefficients, and we call

T = chvn (2.13)

neZ

the generalized Fourier series expansion of x.

The generalized Fourier transform is useful precisely because it allows for a
more flexible choice of basis and inner product space.

From the spectral theorem (Theorem 2.2.4)) we know that we can construct

a countable orthonormal basis for self-adjoint operators, which can be extended
to compact operators by considering the self-adjoint W*W. This allows to
diagonalize a compact operator by generalizing the spectral decomposition in
terms of singular values.

Definition 2.3.4 (Singular Values). Let X', ) be Hilbert spaces, and let W: X —
Y be a compact operator with adjoint operator W*: ) — X’. Then the square
roots of the eigenvalues ¢; = \/A; € Rx for j € N of the self-adjoint operator
W*W: X — X are called singular values of W.

Note that the singular values are necessarily nonnegative as W*W is a
positive operator (Definition A.2.8)) by (z, W*Wa) = (Wa,Wz) > 0, so its
eigenvalues must be nonnegative. Singular values are commonly encountered in
linear algebra via singular value decomposition of a matrix. It turns out that
the singular value decomposition for finite rank operators can be generalized by
the singular value expansion in functional analysis.
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2.3. Expansion Methods and Spectral Theory

Corollary 2.3.5 (Singular Value Expansion). Let X,) be Hilbert spaces, let
W: X — Y be a compact linear operator with adjoint operator W*: Y — X.
Let ¢ > 6o > --- > 0 be an ordered sequence of singular values of W. Then
there exist orthonormal systems (vy)nen C Y and (Up)neny C X where

Wwu, = guu, and W*un = SnUn (214)

for all n € N. The system (S, Un, Un)nen 5 called a singular system for W.
The singular value expansion (SVE) of x,y w.r.t. W is given by

2(s) = > (vn, ¥)vn(s) (2.15)

neN

y(t) = 3" (s ghun (1) (2.16)

neN

Proof. From we know that W*W : X — X has an orthonormal

basis of eigenfunctions (v,)nen corresponding to eigenvalues (¢2)nen. By
definition, we then have

W*Wu, = 2v,. (2.17)

Let u,, = %an. Then W*u,, = ¢,v,. Then (u,)nen is orthonormal as

1
(U, Up) = (W, Woy,) (2.18)
SmSn
1
= W*Wop,, v, 2.19
§m§n< fmo ¥ > ( )
2
S 2.20
SmSn <U ! > ( )

1, if n=m;
= ) (2.21)
0, otherwise.

)

Similarly, WIW* : Y — ¥ has an orthonormal basis of eigenfunctions (uy)nen
corresponding to the same set of eigenvalues. Then [Equations (2.15)| and |(2.16)|
follow from [Definition A.2.111 u

As such, the singular value expansion can be considered a generalized
Fourier transform with respect to a compact operator W. [Equation (2.14)|is
sometimes referred to as the fundamental relation, and when combined with
we can construct an explicit solution for the linear system

Wze=y (2.22)
— Z(um y)un (2.23)
neN
iy ),
= WZ:N — (2.24)

p=> Mvn. (2.25)

neN Sn
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2. Inverse Problems

Equation (2.25)|is in fact an infinite dimensional representation of a least squares
approximation # = argmin, ¢y ||y — Wz||3 via the pseudo-inverse of W.

Theorem 2.3.6 (Moore-Penrose Pseudoinverse). Let X,Y be Hilbert spaces,
and let W: X — Y be a compact linear operator. Then there exists a unique
wWt.Y = X such that

() Wwiw =w,

(il) WIWwt = wt,

(iil) (WWT)* = WwT,

(iv) (Wiw)* = wiw,

called the Moore-Penrose generalized inverse or pseudo-inverse of W.

An exposition of the full theorem along with proofs for finite rank operators is
provided in the original paper by Sir Roger Penrose |[Penb5|, while an extension

to general operators is given in [Beu65|.

For a causal inverse problem where the system & is fully given by a compact
operator W, we can construct a least squares solution by Wty = &. If W
has full rank we can construct this solution algebraically by taking the right-
inverse W1 = (W*W)W*. The pseudo-inverse of finite rank operators can be
expressed by singular value decomposition (SvD) pp.45-46] yielding

wt=vxiu* (2.26)

which is exactly the form of [Equation (2.25)) so the solution approximated
by singular value expansion is a least squares approximation. We have yet
to address the effect of the random element e (Definition A.4.3). In fact, the
singular values directly affect the sensitivity of the approximate solutions.

Proposition 2.3.7 (Variance of SVE solutions). Let y = Wz + & with
e ~N(0,02). The variance of an SVE reconstruction % (Equation (2.25)|)
is then given by

Var[z] = Y (") g (2.27)

18



2.3. Expansion Methods and Spectral Theory

Proof. Let e(w,t) ~ N(0,02) be the random element of y(¢). Then

D e

una un75>
E —Un.
neN

Sn

Excluding the non-stochastic elements, the variance can be written as

Var[z] = Var

<un,s>]
% Sn
Z<“m5>] )

2
1
= <) Var
Sn neN

where we interpret (u,,e) as a stochastic functional (u,,ey) |w—y for some
possible realization w’ over T. Given E[e,,] = 0 we have Var[e,] = E[¢2], so by
linearity of expectation we express the variance component wise as

Var[(up, £)] = Var { /T tn (B)ew (1) dt] (2.28)

- /Q { [r U ()e0 (1) dtr f-(w) dP(w) (2.29)
- / / / { /st(t)aw(t’)fa(w) dP(w)] U () un (') dt dt’ (2.30)

/ / Covley (), e (t)]un (t)un (t') dt at’ (2.31)
T

- /,/6t—t Vit (E)un (¢') dt dt’ (2.32)

= o*|lun | (2.33)
= o2, (2.34)

where f; is the pdf. of € (Definition A.4.5) and § is the Dirac delta function

(Remark A.3.18). This yields the final expression in [Equation (2.27)] [ |

The variance of the reconstructions can consequently become arbitrarily
magnified for singular values of very low magnitude. For the purposes of
solving inverse problems, if we consider ¢, — 0 as n — oo then clearly
& — oo. By the Riemann-Lesbegue lemma (Lemma A.7.3) and [Proposition 2.2.§|
where we showed that the eigenfunctions of convolution operators are complex
exponentials, we know this is exactly the case for deconvolution. This shows that
inverse problems of deconvolution are inherently unstable, and thus ill-posed.
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e !i !

Figure 2.3: Reconstructions with separable filters (above) and linear least
squares (below). The reconstructions from the blurred images (middle) are
practically identical to the original images (left), while the reconstructions from
images affected by noise (right) are more or less unrecognizable.

Example 2.3.8 (Deblurring with Least Squares). To practically illustrate the
instability of least squares solutions, we revisit our example from

Recall that a single channel digital image can be represented as a matrix of
pixel values X € R™*" where m,n are the height and width of the image,
respectively. An image blurred with a separable filter is the result of
applying operators W, € R"*™ W, € R™*" yielding a blurred image

Y =W, XW?. (2.35)

In our example — a moving average 3 x 3 kernel — the filter is not only separable,
but also symmetric, i.e., W, = W = W;. In this case, a closed form estimate
for W can be constructed by

W, =X 3(X?YX?)3X 3. (2.36)

A more common method is to pose the problem as an ordinary linear least
squares problem. A separable filter can be rewritten as a linear operator by

Y = W.XW* (2.37)
vee(Y) = (W, @ W)vee(X) (2.38)
y=Wz (2.39)

where vec(X) is the lexicographical vectorization of the matrix X, and e®e is the
Kronecker tensor product . Estimating the linear operator W
has the additional benefit of no assumptions of separability, and pseudoinverse
can be applied for reconstruction.

The reconstructed images from both methods can be seen in The
estimate computed by produces a reconstruction of the noisy
image with a PSNR of -9.2 and a SSIM of 0.04, while the linear least squares
method fares marginally better with a PSNR of 4.11 and a sSiM of 0.21, however
both methods perform worse than deconvolution in Fourier space. Clearly, the
inverse operators estimated using least squares methods suffer from considerable
instability.
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Thus far, we have focused on methods for approximating homogeneous
equations with compact linear operators using least squares approximations
and series expansions. In [Section 2.2 we also introduced the inhomogeneous

equations <|Deﬁnition 2.2.5: on the form

y=(I—X"W)z. (2.40)

These equations are central in the resolvent formalism first applied by Fredholm
[Fre03] where he introduced the Fredholm alternative. a set of methods in
functional analysis which applies techniques from complex analysis to spectral
theory on operators in Banach spaces.

Suppose we want to algebraically extend the properties of univariate calculus
to applications on operators W € B(X). The canonical example is the
polynomial extension where we consider

pn(z) = Z 2t (2.41)

0<i<n

for some z € K. The idea is that we can simply replace z with an operator
W and retain properties of the polynomial ring. From here, it is natural to
consider a functional extension to the set of holomorphic functions f € Hol(C).
These functions have a unique representation for the power series

f(@) = pos(@) = D ek, (2.42)

keZZO

as any f € Hol(C) is necessarily absolutely convergent. As the rules for
convergence are the same for operators and numbers with respect to their
norms, the properties are retained for bounded operators, justifying

Poe(W) = > c;W* (2.43)
kEZZO

where we use the convention W° = I. The so called holomorphic functional

calculus is a homomorphism (Definition A.6.4]) between C and local neighbour-

hoods of the spectra of functional Banach spaces. The homomorphism requires
a well-defined multiplicative operator on power series of operators in the form

of the Cauchy product (Definition A.7.9). From here, it is necessary to invoke

concepts from spectral theory.

Definition 2.3.9 (Resolvent Sets and Operators). Let W € B(X) over K. Let
p(W) be a set given by

p(W) ={X € K: (A — W) is bijective}. (2.44)
Furthermore let R(e, W) : p(W) — B(X) be the mapping given by
RO\W) = (M - W) (2.45)

Then p(W) is called the resolvent set of W, and the operators R(A\, W) are
called resolvent operators of W.
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Note that the formulations of (A\I — W) and (I — X"'!W) are equivalent in
terms of determining the spectrum. By definition, the resolvent set p(W) is the
open set compliment of the closed spectrum ¢(W), as R(A, W) is not defined
if A € ¢(W). This allows a method of defining invertable operators using the
holomorphic functional extension of geometric series.

Theorem 2.3.10 (Neumann Series). Let X' be Banach and let W € B(X) with
W < 1. Then I — W is invertible and we have

(I-wy'= > wk (2.46)
k€Z>o

Hence Wy, =, WF — (I = W)™ as n — oo, and we call W,, a Neumann
series for the operator W.

Proof. Firstly, we show that the operator norm is submultiplicative. We have

[UVz|

|UV|| = max (2.47)
w0 ||
[UVa|| [[Va|
= (2.48)
vazo [Vl ||
< e 1021 Vel .19)
w#0 z| a0 ||
= [U[IIVI. (2.50)

Then Y, .. [[W*|| <30, IW|*. As |[W] < 1 the Neumann series is geometric,
and thus also Cauchy with respect to the operator norm. It follows that if X is
Banach, it is necessarily complete, so lim,,_, o, W,, € B(X) and we have

(I-w) > whk=>" wk_wht (2.51)
keZZO k}EZzD
=1+ Y wr-wk (2.52)
kE€Z>,
=1 (2.53)

As the argument is symmetrical for right multiplication, we necessarily have
D keZoy Wk = (I — W) as the theorem states. [ |

Corollary 2.3.11 (Extension of Neumann Series). Let X' be a Banach space and
let U,V € B(X). Let U be invertible and let |V| < 1/||[U||. Then U +V is
invertible with

U+V)yt=u+U'v)ytu! (2.54)
=U'I+Vvu') (2.55)

Proof. From U +V = U(I + U'V) we have that |U'V| < 1, so from
eorem 2.3.10l and the fact that U is invertible, the result trivially holds. W

22



2.3. Expansion Methods and Spectral Theory

[Theorem 2.3.10| and [Corollary 2.3.11] make it clear that the resolvent
operators R(A, W) are extremely useful for solving inverse problems. In fact,
this was the precise motivation for the introduction of Fredholm theory and
spectral theory in general. For Fredholm integral equations of the second kind,
solutions can be approximated by constructing a Liouwville-Neumann series.

Corollary 2.3.12 (Liouville-Neumann Series). Let (I — X 'W)x = y be an
inhomogeneous integral equation with ||W1| < |A|. Then the solution is uniquely
given by

Wky
r= N (2.56)

called the Liouville-Neumann series.

[Corollary 2.3.12] follows as a direct consequence of [Theorem 2.3.10|

and |Corollary 2.3.11] demonstrating how inverse problems can be approached

by applying resolvent operators in series expansion.

Lastly, we would like to demonstrate an often overlooked property of the
spectra of linear operators — the fact that the spectrum ¢(W) is upper semi-
continuous.

Theorem 2.3.13 (Upper Semi-Continuity of Linear Operator Spectra). Let
V € B(X) and let O € K be an open set with <(V) C O. Then there exists a
0 > 0 such that <(U) C O for every U € B(X) with ||[U — V|| < 4.

Proof. Firstly, we note that since A € O° we necessarily have A\ € p(V),
thus R(\, V) € B(X) is well defined. Using [Theorem 2.3.10} we assume that
W] = |(AM — V)1 (AT = U)|| <1 and consider

11 =M = V)Y =U)| = RN V)[(M = V) = (M = U] (2.57)
=[|[R\ V)M =V =X+ U]| (2.58)
< [RAVIU =V < 1. (2.59)

Then setting ||[R(\, V)| = § results in (M — U) being invertible by
[Corollary 2.3.11} so A € p(U). Thus ¢(U) C O and |[U — V| < ¢ as we
wanted. u

ensures that the spectrum of an operator is well-behaved and
has semi-continuous properties. However, this semi-continuity is not restricted
from below, which could be a source of instability symptomatic of inverse
problems. In any case, resolvent operators are a powerful method for solving
inverse problems.
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2.4 Discretization and Projection

Thus far, we have only considered inverse problems in the context of integral

operators (Section 2.2) acting on function spaces defined over continuous

domains. It is clear that solving these equations numerically on a computer
requires some discrete approximation. To this end, we apply discretization
to function spaces in some appropriate finite dimensional vector space via
projection operators.

Definition 2.4.1 (Projection operator). Let Z be a normed space over K, and
let A C Z be a closed subspace. Let Q : Z — Z be an operator such that

(i) Qze Aforall z € Z,
(ii) Qz =z for all z € A.

Then @ is a projection operator onto the subspace A.

|Property 2.4.1.ii is also referred to as the idempotent property, implying
that Qz = Q?z. In some literature this is considered the defining property of
projection operators. On the other hand, implies that the range
of @ is closed if @ is continuous. A continuous projection can therefore be
decomposed into two closed, orthogonal subspaces. This is especially important
for projection operators in Hilbert spaces.

Theorem 2.4.2 (Projection Theorem). Let Z be a Hilbert space, and let A C Z
be a closed nontrivial subspace. Then there exists a unique element z' € A such
that

— 2| = inf ||z — 2.60
Iz =2l = inf]lz - a (2.60)

if and only if (z — 2') € A+,
A proof for [Theorem 2.4.2|is provided in [Rud87, pp.79-80]. If we now

let (A, )nen be a nested sequence of monotonically increasing subspaces, i.e.
Ap C Apy1 C - -+ C Z with associated projection operators @), such that

nhﬁn;oHan —z||=0. (2.61)
Then we have that
lim inf ||z —2'|| =0, (2.62)

n—oo z/ €A,

so Z can be approximated by a sequence of subspaces as multi-resolution analysis.
Selecting a finite subset of such a sequence by choice or truncation yields a
discretization. Furthermore by making any such selection, we can encode a
priori information about the desired solution of a given inverse problem.

A relevant example of how such a process is applied can be made by way
of the generalized Fourier series expansion ([Definition 2.3.3|). By selecting a
subset of coefficients using a finite index set Z C Z, the sequence of coefficients
(¢i)iez C (¢n)nez can be selected to omit undesired frequencies. Thus, a priori
knowledge of the frequency band of the noise variable ¢ can be applied to
effectively filter unwanted frequencies. Such methods are a form of spectral
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K  PSNR PSNR (Noise) SSIM  SSIM (Noise)

750  34.876 21.462 0.995 0.887
500  30.035 26.974 0.983 0.962
250  26.273 26.097 0.962 0.959

Table 2.1: Results of deblurring example with TSVD

filtering, which dampens certain spectra of the full system to avoid reconstruction
errors that stem from the inherent noise. By Riemann-Lebesgue
the high frequency coefficients tend to zero, so the truncation includes mostly
high-frequency components, thus truncation generally has a smoothing effect,
acting similarly to low-pass filters.

In practice, truncation is not necessarily the most effective method for
removing noise, and much of the work in the field of signal processing is
concerned with the design of effective filters for such purposes. However, in
the case of a singular system (S, Un, U )nen the values are in descending order,
and a simple truncation of the singular values at some finite K can prove very
effective.

Example 2.4.3 (Deblurring with TsvD). In [Proposition 2.3.7| we showed that
the variance of solutions computed by the singular value expansion is inversely
proportional to the singular values, showing how a truncation of low magnitude
values can be effective for reducing the reconstruction error caused by the noise
component £. To demonstrate this in practice, we can apply a truncation of the
singular values in the computed pseudo-inverse in our least squares problem

from The solutions are computed by

ir= > (o) (2.63)

1<n<K Sn
=Vl Uy (2.64)
= Wy, (2.65)

and we call £x the truncated singular value solution (TSvD) of order K.
Truncation of expansion methods and generalized Fourier expansions can
effectively be considered a discretization of the original space. We compute
the TSVD solutions for the images in our deblurring problem. The images
are of dimension 32 x 32 so dim(y) = 1024. We perform truncation for
K = (750,500, 250). The results can be observed in [Table 2.1| and |[Figure 2.4]
The effect of the truncation is evident in the noisy images on the far right,
however for the nonnoisy images in the middle, we observe a decrease in quality
when compared to the original images on the far left. This demonstrates a
trade-off inherent in these methods; we trade accuracy for better robustness
to errors in our reconstructions. As such, the TSVD demonstrate how selective
discretization methods can act as a form of regularization. We will discuss

regularization methods in more depth in [Section 3.5
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Figure 2.4: Reconstructions with TsvD for K = 750 (above), K5 = 500 (middle)
and K3 = 250 (below). Decreasing K leads to better robustness for the noisy
image (right) but a degradation in reconstruction quality for the non-noisy
images (middle).

While truncated series expansion can be effective, we often rely on basic
general methods for discrete signal representation on a computer. A common
discretization method for a connected subset S C K% is obtained by deciding on
some strictly increasing set of abscissae (s;);cz C S where 81 < 89 < -+ + < §pp.
A natural way of selecting these abscissae is by applying a fixed increment in
the domain given by Ay, such that

si+ As = si41.

Note that for a multidimensional z, this imposed ordering can be selected to
be lexicographical without loss of generality, as in the case with vectorization
2 = vec(X). Repeating this process over the domain T with M, we can rewrite
the integral equation in matrix form

yi = y(ti) = Y Aqw(s;, t)x(s)) (2.66)
j=1
=Wz, WeR™" zeR" (2.67)

which corresponds to Riemann sums over rectangular partitions. Equivalently,
we can instead interpret this as a projection from the general L? space onto
a dense subspace of simple functions, similar to Lebesgue integration. This
interpretation has the additional benefit of corresponding to how we introduced
discretization as a projection into finite dimensional subspaces. No matter
how this method is interpreted, it can readily be extended to more advanced
numerical integration methods, as more refined methods for choosing abscissae
may be desirable for certain problems. The fixed increment A is usually chosen
to yield a desired dimensionality or resolution of the discretized signal.
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CHAPTER 3

Modelling and Learning

In we showed an how the inherent uncertainty of inverse problems
affects the reconstructed solutions. Given their inherent stochastic nature, the
application of statistical methods seems perspicaciously appropriate. In this
chapter we introduce statistical modelling and learning theory to demonstrate
how these tools are directly applicable to construct data-driven solutions for
inverse problems. Most of the underlying probability theory is based on
Cox04} [Kal02} |Sch95]. Fundamental definitions and theorems are outlined in
Appendix A.4]

3.1 Statistical Modelling and Probability

Courses in applied statistical modelling commonly circumvent rigorous defin-
itions grounded in measure theory and probability theory in favor of a more
practical approach. However, for a holistic understanding of the core concepts in
statistical modelling, we find it useful to outline a rudimentary set of definitions
in these fields. We begin by delineating a set of useful definitions for dealing
with observations and data.

Proposition 3.1.1 (Observable Space). Let (2, &, P) be a probability space, and
let X : Q — X be a random element. Let B be the Borel o-algebra on X. Then
(X,B,P) is a probability space under the image of X, and we call (X,B) an
observable space under X.

Proof. This follows directly from |[Definitions A.3.2] [A.4.2] and [A.4.4l B is
a Borel o-algebra on X, and as such, (X,B) is a measurable space. P is a
probability measure as the pre-image is X}(X) = Q (Definition A.1.3)), i.e.
P(X) =X, P(X) = P(Q) = 1. Thus (X, B,P) is a probability space. |

Note that we exclude the probability distribution P from the definition of
an observable space, as it is not directly observable, and thus unknown to us by
simple observation. As such, we consider an observable space as induced from;
and not itself a probability space. A given number of available elements from
an observable space forms a dataset.
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3. Modelling and Learning

Definition 3.1.2 (Dataset). Let (X', B) be an observable space under X :  — X,
and let Z be a finite index set. Then any sequence D = (z; € X);ez is called a
dataset.

Generally, we consider X C R? and, unless explicitly specified, do not
consider the order imposed by the index set Z to carry any particular meaning
other than that D is countable. Note that even if X is a d-dimensional random
variable, this does not mean its elements are identically distributed. For our
purposes, we take the liberty of considering a multivariate random variable as
actualizations of d distinct random variables, and the multivariate convention
is simply a useful conceptualization. This is a highly simplified approach, but
is useful for the purposes of exposition for providing a top-down overview of
statistical modelling.

|[Proposition 3.1.1] and [Definition 3.1.2| will prove useful in constructing the
necessary definitions for what we mean by statistical modelling. In addition to
these, we will require definitions for what we mean when we talk about families
of probability distributions.

Definition 3.1.3 (Parametric Family of Probability Distributions). Let (X, B)
be an observable space. Let © be a parameter space, and let P be a set given
by P = {Py : Py is a probability measure on (X, B)}pco. Then P is a family of
parametrized probability distributions.

If there exists a bijective mapping 6 — Py we say that P is identifiable.
The parametrization 6 — Py is not strictly required for P to act as a family
of distributions. It is also worth mentioning that the bijectivity of 6 — Py
ensures that for every 6 # 6’ we have Py # Py, such that each probability
distribution is identifiable by its parametrization. |Definition 3.1.3|can perhaps
best be illustrated with the following canonical example.

Example 3.1.4 (Family of Independent Multivariate Gaussians). Consider the
parametric family of probability distributions given by P = {Np : 0 = (u,01)}
with € R?, 6% € Ryg. This family yields a parameter space © = R? x R+q.
As each parametrization yields a unique probability distribution, the mapping
is necessarily injective. Furthermore, as the parameter space spans RY x R<o,
the mapping is surjective, and thus also bijective. We can conclude that P is
an identifiable parametric family of probability distributions.

With this clarification, we are now in possession of all necessary components
to provide a rigorous definition for what we mean by a statistical model [McC02|.

Definition 3.1.5 (Statistical Model). Let (X, B) be an observable space, and let
P be a family of probability distributions on (X, B). Then the pair (X, P) is a
statistical model.
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3.1. Statistical Modelling and Probability

Given[Definition 3.1.5] it becomes clear how statistical modelling is concerned
with defining a suitable P with respect to an observable space (X,B). As
previously mentioned, an observable space is only available to us via a fixed
number of observations from a dataset D, which allows us to infer a distribution
based on assumptions and observations of the underlying structure. The most
basic statistical models can be constructed by constricting P to only contain
the empirical distribution.

Example 3.1.6 (Empirical Distribution). Let (X, B) be an observable space and
let D be a dataset on XAWith #(D) = n, with # being the counting measure
(Definition A.3.19). Let P: B — [0,1] be such that for all B € B we have

B(B)= =)0, (B) (3.1)

where 8, is the Dirac measure (Definition A.3.17). Then P is an empirical
probability distribution on X given the dataset D.

While the set P = {P} is a singleton set, only containing an empirical
distribution defined by the observations in D, we still consider P to be a
'family’, and thus regard (X, 75) to fulfill the requirements of
The fundamental lack of assumptions on X means the empirical distribution is
inherently unbiased, but does rely on large amounts of observations to provide
a accurate estimates of the true distribution.

It is worth clarifying the difference between parametric and non-parametric
statistical models; a classical discernment of statistical models with respect to
the dimensionality of the induced parameter space.

Definition 3.1.7 (Parametric Models). Let (X, P) be a statistical model. We
say a model is

(i) parametric if dim(©) < oo,
(ii) nonparametric otherwise.

A common way of interpreting is to consider the underlying

model structure of a nonparametric model as not being clearly defined in
advance, so that the dimensionality of the parameter space can grow arbitrarily.
This provides greater flexibility and fewer assumptions as we discussed in the
case of the empirical distribution; generally considered to be a nonparametric
model. On the other hand, parametric models allow us to fit a model using
a fixed number of parameters, which are then estimated to yield the most
appropriate distribution given the observed data. The most common approach
for parameter estimation is via optimization of a likelihood function
p.9].

Definition 3.1.8 (Likelihood Function). Let (X,P) be a statistical model
parametrized by 6 € ©. Let D be a dataset on X. Then £ : © x X — [0,1]
given by

£(0: D)  Py(D) (3.2)

is called the likelihood of the parameter 6.
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3. Modelling and Learning

Very often in practical likelihood estimation, we assume that z; € D are
independent and identically distributed (iid.) observations for which — in the
case of continuous probability distributions — we arrive at

Z(0;D) x fo(mi;Q). (3.3)

i€l

For computational convenience, we often apply a logarithmic transformation to
the likelihood function. This allows us to change the product to a sum, yielding
the log-likelihood function given by

log Z(6;D) x Zlog fx(zi;0), (3.4)

i€l

which is commonly more easy to deal with in an optimization setting. A
maximum likelihood estimate is the point in the parameter space © given by

Oy = argmax Z(0; D), (3.5)
9

and by the strict monotonicity of the logarithm, this is equivalent to

Oye = argmax log Z(0; D). (3.6)
0

Often the goal of statistical modelling is to establish relations between
variables by investigating conditional structures between observations - which
requires a clearer definition of conditional probability. The concept of conditional
probability is commonly introduced by way of conditional expectation.

Definition 3.1.9 (Conditional Expectation). Let (€, £, P) be a probability space,
and let Y : Q@ — R4 Y € LY(Q,E,P). Let F C £ be a sub o-algebra. The
conditional expectation of Y is a F-measurable random variable such that

/ E[Y | F] dP = Y dP = E[lperY]. (3.7)
FeF FeF

While the conditional expectation and conditional probability are assumed
well known to the reader, can at first glance seem unfamiliar.
To relate this to practice, let X : 2 — RP be a random variable, and let
F ={XY(B): B € B(RP)}. Then F is the o-algebra generated by X, which
is indeed a sub o-algebra of £, and we write E[Y | F] = E[Y | X]. This
should align with practical probabilistic intuition and can be used to formalize
the definition of regular conditional probability as a parametrized family of
probability distributions.

Definition 3.1.10. Let (2, &, P) be a probability space, and let F C & be a sub
o-algebra. The conditional probability of E € £ with respect to F is given by

P(E | F)=E[lg | F] (3.8)

We note that both [Definitions 3.1.9] and [3.1.10] require certain theorems to
ensure uniqueness and existence of conditional probability, which interested

readers can verify in [Bil95; |Sch95].
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3.1. Statistical Modelling and Probability

Conditional probability is a very powerful tool which establishes a foundation
for the probabilistic framework known as Bayesian inference. For instance, the
maximum likelihood estimator can be more naturally formulated in a conditional
probability setting by considering

Oyir = argmax £(0; D) x P(D | ). (3.9)
0

This formulation implies that © has an associated probability distribution,
and the parameters are random variables ¥ : 2 — O, inducing a observable
space (O,7T). In this context, the probability distribution Py is called the
prior distribution and the probability distribution Px is called the marginal
distribution. The interpretation of parameters as random variables is natural in
Bayesian inference, and is formalized in Bayes’ theorem.

Theorem 3.1.11 (Bayes). Let (2, &, P) be a probability space. Let X : Q — X
such that (X, Bx) is an associated observable space. Let ¥ : Q@ — O be a random
variable such that (©,Beg) is an associated observable space. Then the pdf. of
the conditional probability distribution Py x is given by

_ Ixpo(z | 0)f9(0)

f19|X(0|x) fX(:L‘)

(3.10)

and we call the distribution Py x the posterior distribution.

Our exposition of [Theorem 3.1.11{is a simplification from [Sch95, Theorem

1.31], which formalizes the theorem in the probability theoretic setting. When
applying Bayesian inference, we usually start with some initial belief on the
parameters for P encoded via the prior distribution. This belief is subsequently
updated by the evidence — the observed data we have at hand — to form a
posterior distribution. The advantage of the Bayesian framework is that we
effectively model all relevant uncertainties, while effectively encoding a priori
information in the form of domain knowledge or particular knowledge of the
task at hand in the choice of prior distribution. The disadvantage with this
approach is that the choice of prior distributions can significantly alter the
outcome, thus the objective validity of the model is diminished. Furthermore,
the marginal distribution Px is generally intractable, and often only available
through approximation.

While Bayesian inference provides the modeller with estimated probab-
ility distributions over all parameters, point estimates can be obtained by
constructing a mazimum a posteriori estimate (MAP) given by

Oriap = arggnax f19|X(0 | ) o fXW(x | 0)fo(0). (3.11)
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3. Modelling and Learning

3.2 Statistical Learning and Hypothesis Spaces

In the previous section, we introduced the classical definition of statistical
modelling and provided a general outline of a more comprehensive probability
theory. This section is intended to generalize the concept of statistical models
into a more comprehensive theory of statistical learning theory , which
lays the foundation for machine learning and provides us with a taxonomy of
model categories which is useful for further discussion. In a statistical learning
context, we are often interested in estimating an unknown data generation
mechanism by

y=®&(x;0) +e, (3.12)

where (x,y);cz are observations from some observable space (X x ), B) over
the product space X x ) generated by X,Y called independent and dependent
variables. The most comprehensive approach is to construct a classical statistical

model for by reformulating the problem as
Y | X ~ Py, (3.13)

which can either be estimated via classical or Bayesian approaches. Very often,
the purpose of the model is to provide a point estimate for the dependent variable
Y conditioned on the independent variable X via the conditional expectation
Ey[Y | X = z]. When this model explicitly relies on estimating probability
distributions Py — as is the case for — we refer to the model as
probabilistic.

As mentioned in the previous section, Bayesian inference and modelling
|Gel+14] provides the most comprehensive methodology for constructing
probabilistic models by pursuing an exhaustive determination of all uncertainties
related to the model, including probability distributions on the parameter space
©. This approach yields highly robust, inferable models, but can become
prohibitively costly in terms of computational resources — especially for high-
dimensional data. High-dimensional data also exacerbates the importance of
a choice of prior distributions, which — as previously mentioned — is often
influential on the resulting posterior distribution.

The alternative to a probabilistic approach is to construct deterministic
models, sometimes referred to as distribution-free models. A deterministic model
will to some extent disregard elements of underlying probability distributions
and sacrifice measures of uncertainty for computational efficiency or better
point estimates. The lack of uncertainty measures and inference capabilities
in distribution-free prediction models have been highlighted by some as the
conceptual divide between statistics and machine learning and
raises a pertinent question; is there a place for discriminative models in statistics,
without explicit probabilistic modelling? One could always make a case for the
fact that some non-parametric prediction models — e.g. k-nearest neighbours
(kNN) or decision lrees — make few to no assumptions on the
underlying probability distribution and instead constructs discrete partitions
of the solution space. Given that this does not provide an explicit probability
distribution, such a partitioning does not align with the classic definition of
a statistical model, given in [Definition 3.1.5} However, the partitioning of an

observable space is intimately related to the construction of histograms and
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3.2. Statistical Learning and Hypothesis Spaces

empirical probability distributions (Example 3.1.6) — which is undeniably central
to classical statistical theory. With this in mind, there is certainly some merit

in expanding the definition of statistical models to include distribution-free
models — particularly in the context of machine learning tasks. Indeed, many of
the recent groundbreaking approaches to data driven methods for mathematical
modelling has come from the paradigm of machine learning, which has instigated
the interest of many classically trained statisticians and has served to broaden
both fields. One motivation for the generalized approach of statistical learning
methods is to accommodate for both deterministic and probabilistic models
defined on observable spaces. To unify both approaches, we generalize the
definition of a statistical model by considering relevant hypothesis spaces [Blo10)
HW21j.

Definition 3.2.1 (Parametric Hypothesis Space). Let (X, B) be an observable
space and let Z be some space of interest. Let © be a parameter space and
let 5 be a set given by .7 = {hg : X — Z}pco. Then S is a parametrized
hypothesis space on X.

Similar to [Definition 3.1.5| the parametrization is not a strict requirement,

and if 6 — hy is bijective, we say ¢ is identifiable. Note that any mention
of the space Z is left intentionally ambiguous. This allows sufficient flexibility
for the hypothesis space to allow for either point estimates (i.e., Z C X),
density estimates (i.e., hy & fx), or other estimates of interest. In other words,
considering a hypothesis space 77 instead of a family of probability distributions
P allows more flexibility, allowing us to extend to the more

general class of learning models.

Definition 3.2.2 (Learning Model). Let (X, B) be an observable space, and let
 be a hypothesis space over X'. Then (X, 57) is called a learning model.

Definition 3.2.2 allows us to consider probabilistic and deterministic models

in a more unified context. Note that we do not require the observable space to
be generated by a dependent and independent variable explicitly. Instead we
call models that are estimated with a dependent variable for each independent
variable for supervised learning models. Conversely, models that do not use a
dependent variable are called unsupervised learning models. A semi-supervised
learning model can be considered a hybrid model, where we have a limited
number of observations featuring dependent variables.

The distinction between deterministic models and probabilistic models can
be extended to either two or three distinct classes, depending on the literature.
According to Chapter 2], we differentiate between fully discriminative
models, conditional models, and generative models. We will use this taxonomy
as a baseline for the nomenclature of this thesis.

Definition 3.2.3 (Discriminative Learning Model). Let (X x Y, ) be a
parametrized learning model. Let hyg : X — ) be an approximation of the
conditional expectation E[Y | X = z|. Then (X' x), ) is called a discriminative
learning model.

A discriminative model provides non-probabilistic statistical point estimates,
which can be made without any explicit probability distribution. If we utilize a
probabilistic approach with explicit dependence on a parametrized family of
probability distributions, we instead call such models conditional.
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3. Modelling and Learning

Definition 3.2.4 (Conditional Learning Model). Let (X x ), 5) be a paramet-
rized learning model. Let hy be an approximation of the conditional density of
the random variable X | Y such that fx|y ~ hg. Then (X x ), ) is called a
conditional learning model.

We note that by the alternative nomenclature of both models
outlined in [Definitions 9.2.9] and [3.2.4] are termed discriminative. The goal of
discriminative modelling is commonly to derive a high quality point estimate
for the expectation of the dependent random variable Y conditioned on the
observed random variable X.

A more comprehensive probabilistic approach can be applied to construct
models that better approximate the underlying data generation process and
can be used to effectively synthesize data via sampling via a estimated joint
probability distribution. We call such models generative.

Definition 3.2.5 (Generative Model). Let (X x ), ) be a parametrized
learning model. Let hg be an approximation of the joint distribution over
the random variables X, Y such that fxy & hy. Then (X x Y, ) is called a
generative model.

Examples of generative models include Bayesian networks [Ben08|, mixture
models [Gel+14, pp.519-543] and hidden Markov models [GH13| p.124].

Approaching the modelling process generatively has some rather unique
benefits. By modelling the joint probability distribution, we effectively have a
more complete probabilistic model, which can be designed to be more robust
and flexible to either outliers, missing, or corrupt data . This
makes it especially stronger for online learning tasks, and allows the model to
be effectively retrained to include more classes. Such an approach is often not
possible with discriminative models, and generally prohibitive with conditional
models.

Additionally, generative models can offer much in terms of inference,
especially if they are constructed as probabilistic graphical models
Section 8.5] which are designed to model the conditional dependencies of all
variables in a problem. These dependencies require an explicit definition in
return for inferable relationships for multilevel hierarchical conditional structures
in the data. Furthermore, the synthesis aspect of generative modelling allows
a modeller to sample or interpolate to generate data, which can be directly
applied in inference tasks.

All of this makes generative modelling an attractive prospect, but as
Chapter 2] points out, this flexibility comes at a cost. There is generally a lack
of model accuracy when applied directly to discriminative tasks. In certain
predictive applications, this gap in predictive power between discriminative
and generative modelling is too wide for effective deployment. In addition, as
many generative models are modelled with probabilistic methods, they become
prohibitively expensive in terms of computational resources, while typically
requiring a much higher number of observations to approximate the underlying
probability distribution adequately.
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3.3. Modelling Linear Inverse Problems

3.3 Modelling Linear Inverse Problems

In this section, we apply the concepts from previous sections and chapters
to outline the general modelling process in the context of inverse problems.
From we recall the singular value expansion of as a
method for solving inverse problems given integral operators and mentioned that
compact operators and Hilbert-Schmidt operators can be considered extensions
of matrices. Furthermore, in we described how continuous problems
can be solved numerically by projection onto a discrete space, and in [Sections 3.1]
and we discussed the applications of statistical modelling and machine
learning. We now want to explicitly connect the concept of integral equations in
function spaces to finite-dimensional cases to construct computational learning
models. In this chapter, we will mainly consider linear inverse problems.

Definition 3.3.1 (Linear Problems). Let X',) be Hilbert spaces, and let
® : X — Y be given by a linear operator (Definition A.2.1). Then ®(z)+c =1y

is a linear forward problem, and we subsequently refer to the associated inverse
problem as a linear inverse problem.

From we know that a Fredholm integral equation induces a
compact linear Hilbert-Schmidt operator. We can thus consider a continuous
signal as a discretized operator via an appropriate projection to construct a
linear discrete problem. We briefly discussed the basic discretization process
in the end of and we now demonstrate how this can be applied in
practice.

Example 3.3.2 (Discretization of Linear Forward Problem). Assume we have
an integral equation given a random variable X € L?(Q x R) given by

Y(w,t) = / w(s, t)X(w, s) ds. (3.14)
s
Now assume some discretization process over S, 7T such that

Yi(w) = Y(w, ti) (3.15)

S
= wisj te)X(w, s;) (3.16)

S

This gives us two multivariate random variables, Y(T) : @ — ¥ € R, and
X®) Q- X C RS. Consider a parametrized hypothesis space (X x Y, .5
where hg(x) = Wya for a parametrized linear operator, as well as a dataset

D= ((X(S) (@), YD (w;)) s w; € Q) . The problem can be formulated as

i€T
y=he(zx)+ec=Wyr+e (3.18)
=P(z,0) +e, (3.19)

where 6 +— hy is a discrete parametrization of the learning model for the
unknown functional operator W associated with ®.
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Remark 3.3.3. Applied statistics often adapt the convention of considering
independent variables in a design matriz X, which is considered an operator
for a discrete causal linear inverse problem

y=X0+¢ (3.20)
= ®(0) +e, (3.21)

as opposed to a model identification problem of the same form

o= Wi+ 2 (322)
=®(z;0) + <. (3.23)

The causal formulation poses regression as an inverse problem where we are
interested in determining the parametrization # which generates the outputs y;.
On the other hand, the model identification problem poses this as a forward
problem, and the implication is that we are interested in first determining a
parametrization for an invertible operator 8 — Wy which we want to use to
reconstruct x; given y;. Both formulations are inverse problems in their own
right, however we will primarily focus on model identification problems in this
thesis.

Note that we will apply lowercase notation for both independent and
dependent observed variables to differentiate between operators and observations.
Primarily, we generalize an operator Wy : X — ) over an N dimensional dataset
by considering z € X C RSN y € Y C RT*N_ Then Wy € RT*S such that
y = Wya+e¢ for some e € RT*N . Subsequently, when we index the data by z; or
y;, we refer to the index i € 7 of the dataset D, and not necessarily the row of the
matrices. We should also mention that least-squares problems generally include
a bias term for translation away from the origin, thus the problems are often
given in the form y = Wy, ,x + 6y + . Without loss of generality, we adopt the
convention of assuming an augmented affine transformation (Definition A.7.18)).

In the model identification problem, the first objective is to estimate Wy
using observations from D. This problem is ill-posed, as the uncertainty of Y
captured via the noise component ¢ implies y ¢ range(W) almost surely. Any
such problem can be solved by finding a least squares approximation over the
parameter space ©, given by

0 = arg mein||y — Woz||3, (3.24)

which corresponds to a linear regression problem. At first glance, this method

seems comparatively different from likelihood estimation (Definition 3.1.8)), but

for a centered symmetric homoscedastic noise component these two methods
coincide. We demonstrate this by a familiar example.
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Example 3.3.4 (Estimation in Linear Regression). Let (X x Y,.%) be a
parametrized hypothesis space over a dataset D with n observations. Assume
y = hg(z) + ¢ € R, and assume T ~ N(0,021). Let hy(z) = 0Tz € R1*S
so we have yT ~ N (0Tx,0%I). Then we can estimate the operator using the
likelihood function

0 = arg max Z(0| D) =arg max fy(0Tz, 1) (3.25)
= arg max 21;[1 Noroes exp (—w (3.26)

- (yi — (0, 2:))?
= —21 —log(27) — —————. 3.27
arg max ; og s — log(2) 552 (3.27)

This corresponds to minimizing the least-squares objective

arg max Z(0| D) = arg mGaXHy — 073 (3.28)
= arg mgx”y — Wyz||3 (3.29)

Conceptually, exposes a setting where likelihood estimation

and the distribution-free approach using least squares are equivalent. Both
methods minimize a risk functional which is quantified by an
objective function, alternatively called a loss or cost function which quantifies
some notion of discrepancy or induced metric (Definition A.1.6) between a
desired response and the response of a given learning model. The objective
function can be selected specifically for a given learning task, but in a supervised
learning task for some hypothesis space (X x Y, 5), we often work with
an objective function C' : )Y x )Y — R generally selected to be convex
(Definition A.7.19) and satisfying

y = argmin C(hy(z),y), (3.30)
he (x)

that is to say, C' has a minima at hg(z) = y. Evaluating a risk functional
generally requires integration over the joint density fxy, which we do not have
access to. In practice, we instead approximate the joint distribution using an
empirical distribution I@’Xy (see , and we instead refer to this as
minimizing an empirical risk function.

In we discussed how least squares solutions can be expressed
by way the pseudoinverse (Theorem 2.3.6)) equivalently to the reconstruction

by singular value expansion from [Equation (2.25)| This algebraic formulation
provides us with another useful interpretation. By the projection theorem

(Theorem 2.4.2|), we can consider the operator
H=wwT (3.31)

called the hat operator or hat matriz, which is an orthogonal projection onto
the column space of W - sometimes called the model space - such that

(y—Hy)=(—-H)y=Ry (3.32)

where Ry are the residuals, orthogonal to the approximation Hy. Then for a
linear model W we have € € range(R), i.e. the noise is an element in the range
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of R, and range(R) L range(H). An equivalent probabilistic definition can be

constructed via the conditional expectation ([Definition 3.1.9)).

Observation 3.3.5. Let (2, &, P) be an probability space, and let F C £ be a
sub o-algebra. Then E[s | F] is a projection L*(Q, &, P) — L*(Q, F, P).

Proof. For E[» | F] to be a projection we need to show that [Property 2.4.1.i
(closed) and [Property 2.4.1.iil (idempotent) holds. Firstly, let Y € L?(€, &, P).

Then clearly E[Y | F] € L*(Q,F,P), so |[Property 2.4.1.i must hold.
Furthermore, for Y € L?(Q, F, P) we have E[Y | F] =Y, thus [Property 2.4.1.iil
also holds, and so E[e | F] is a projection. |

[Observation 3.3.5] in conjunction with [Theorem 2.4.2] thus tells us that given
F being the sub o-algebra generated by X, the conditional expectation of Y | X

is such that (Y — E[Y | X]) L L?(Q,F,P). This is exactly the same as we
saw in the linear case, where range(R) L range(H ). Intuitively, the conditional
expectation minimizes the prediction error given the sub g-algebra generated by
X w.r.t. the norm induced by L?(£2, &, P), and the hat matrix H equivalently
minimizes the prediction error in a linear least squares model. In the case of

these methods coincide.

3.4 Modelling Non-Linear Inverse Problems

Thus far, we have focused on inverse problems whose forward problem can be
expressed by a linear operator, which we refer to as linear inverse problems

(Definition 3.3.1J). Any inverse problem which does not meet this requirement

is called a nonlinear inverse problem. In this section we will briefly outline how
we can construct models for dealing with such problems. The most common
approach for non-linear modelling is by data transformation pp.122-124]
via a linear predictor.

Definition 3.4.1 (Linear Predictor). Let (X x ), B) be an observable space,
and let H be a Hilbert space with dim(#) = dim()). Let Wy: X — H be a
compact linear operator with parametrization 6 — Wy. Then

1 = ngi (333)

is called a linear predictor.

The purpose of the linear predictor is to establish a linear map between the
input data points © € X and the linear predictor n € ‘H with a goal of finding
some explicit mapping v : H — Y. In the context of generalized linear models
[NWT72], these functions are referred to as link functions.

Definition 3.4.2 (Link Function). Let n; : X — H be a linear predictor and let
g : Y — H be a bijective map. Let u; = E[Y; | X; = 2;]. Then

i = g(p) (3.34)

is a link function.
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Generalized linear models are constructed explicitly for modelling random
variables in the exponential distribution family - a very common parametrized
family of probability distributions (Definition 3.1.3)). The most straightforward
example of a generalized linear model is by the identity link ¢ = ¢! = id,
which amounts to an ordinary linear regression model (Example 3.3.4). A more
interesting link function is applied in logistic regression which uses the logit-link
function given by

logit(pi):10g< pi ) (3.35)

which yields the log-odds of a probability p; = P(Y; = 1). As the link
function is bijective, the map logit : [0, 1] — R is bijective, and the inverse map
logit™ : R — [0, 1] is given by

1
logit™ (1;) = logistic(n;) = —————. .
ogit™ (1) = logistic(ni) = - ape (3.36)

The inverse of the logit-link function is called the logistic function, sometimes
referred to as the sigmoid function, especially in the context of neural networks
[GBC16|, p.67]. Logistic regression is the canonical method for discrete
classification tasks and is assumed known to the reader. For more details
on generalized linear models we refer to .

When constructing a generalized linear model, we utilize a linear predictor
and some appropriate nonlinear transformations. This idea can be generalized
to model observations that are not necessarily restricted to the exponential
distribution family by some inferred function v : H — Y allowing us to apply
linear estimation methods by considering a parametrized hypothesis space
of models hg = (n;). We call such methods linearized transformations, . A
more general method for linearization of features which act non-linearly on Y
is linear basis expansion, which appends features with some linear combination
of functions on X.

Definition 3.4.3 (Linear Basis Expansion). Let (X x Y, %) be a parametrized
learning model, and let hg : X — ) be given by

ho(wi) = 057 (1)- (3.37)

where v; : R — R. Then hg is a linear basis expansion.

Linear basis expansion allows us to enlarge or transform the input space
by augmenting the dependent observations x; with derived features. This can
take the form of indicator functions, polynomials, splines, and other nonlinear
transformations. Linear basis expansion allows us to model more complicated
solution spaces with linear methods, but suffers from interpolation problems in
terms of locality and globality Chapter 5] — as well as the overfitting
issues common to high variance models. Deciding on a useful function space for
expansion is not trivial and can lead to dimensionality issues, particularly in
the case of polynomial expansion methods.
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3.5 Regularization

In the previous chapters, we looked at methods for modelling linear and nonlinear
inverse problems via maximum likelihood or empirical risk minimization using
least squares methods, and how these are linked via the projection theorem.
These methods effectively deal with the ill-posedness related to existence
(Property 2.1.1.i). In this section, we will address the remaining causes of
ill-posedness; stability (Property 2.1.1.iii) and uniqueness (Property 2.1.1.ii]).

Recall the result of [Proposition 2.3.7] and how this demonstrated that the
decay of singular values of an operator amplify the variance of the inherent
noise component, causing instability (Property 2.1.1.iii). Moreover, in a discrete
setting, any underdetermined system will necessarily contain zeroes in its
singular value expansion as a result of ambiguity (Property 2.1.1.ii). In
underdetermined systems we thus need to overcome a fundamental lack of
information in the reconstruction process of an inverse problem. Such problems
are sometimes referred to as p > n problems Chapter 18], where p is
the number of independent variables and n is the number of observations in the
dataset D. This is not necessarily constricted to the number of observations,
but can also be manifested directly related to the dimensionality of the spaces X’
and Y. If dim(}) > dim(&’) we have an underdetermined system for a forward
problem, and in the case of dim(X’) > dim())) we have an underdetermined
system for an inverse problem. This means that for underdetermined systems,
we can at best limit our solution space to a subspace and
require additional information to determine a unique solution.

Stability and ambiguity represent potential issues when constructing learning
models and manifest in the spectrum of the operator. While technically stable,
we say such systems are ill-conditioned. The conditioning of a system or function
is closely related to its Lipschitz constant.

Definition 3.5.1 (Lipschitz Continuity). Let X', ) be metric spaces with metrics
dyx,dy respectively. Let ® : X — Y. Then if for all x1,29 € X we have

dy(@(l‘l),‘b(mg)) S kd_;\f(l?l,fﬂg) (338)

we say P is Lipschitz continuous, and we call k the Lipschitz constant of ®.

While the Lipschitz constant of a system is commonly defined in terms of
metric spaces, for general Hilbert or Banach spaces, this readily extends to the
norm by virtue of Furthermore, the idea of Lipschitz continuity
for operators can be generalized for normed spaces by [Delinitions A.2.2|and [A2223]
This provides us with the general definition of condition numbers |Ric66].

Definition 3.5.2 (Relative Condition Number). Let X,) be normed spaces.
The relative condition number of a system ® : X — ) given input € X and
perturbation § is given by

k(@) = lim  sup [P(z + bz) — ©(2)[ly [lz]|x .
€0 || 50| x <e |®(x)]y [0z

(3.39)

If the given condition number is small, we say ® is well-conditioned, while a
problem with a high condition number is said to be ill-conditioned.
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is defined for a general multivariate system, and quantifies

how sensitive the problem is to small perturbations in the data - thus a measure
of general stability. In terms of compact linear operators, |Tur48| show that
this simplifies to

k(W) = ||WH0p||W'1||Op. (3.40)

Of particular interest is the operator norm induced by the 2 norm

mark A.3.22), as they relate to Hilbert spaces (Theorem A.3.23) and the

singular value expansion. This can be seen by considering

W ~
W2 = sup Wl sup [|[Wzl2 = (3.41)
0 |Tll2  jz)a=1

and noting that ||[W!||s = 1/sy, the condition number for a compact operator
on Hilbert spaces is thus given by

<

k(W) = —

(3.42)

which is in line with previous results from [Proposition 2.3.7 and [Theorem 2.3.6]

Having demonstrated how ill-conditioning can a source of instability, we
would ideally want to enforce some notion of regularity to effectively counter
this issue. This can be achieved by adding additional a priori information
to our problem definition, often in the form of smoothness constraints. This
process is known as reqularization.

Definition 3.5.3 (Regularized Objective Function). Let ®(z;0) 4+ ¢ =y be an
inverse problem of model identification. Let (X x Y, ) be a parametrized
learning model and let C': ) x J — R be some predefined objective function.
A regularized objective function is given by

Cy(y, ho(x); ) = C(y, ho(x)) + aJ(6). (3.43)

We call J(0) a regularized penalty term which applies additional constraints
encoding a priori knowledge about the reconstruction process. We usually want
to constrain the values of the solution in some way, commonly by penalizing the
norm. The parameter a € R controls how much regularization is applied to the
solution, and must usually be tuned for each individual problem. A common
method of regularization is to impose penalties on the norm of the operator
Wy. These methods are known as LP regularization.

Definition 3.5.4 (L? regularization). Let the regularizer J(#) be given by
J(0) = [|0]|. (3.44)

Then J(0) is called a L regularization objective.

Both quintessential regularization methods; Tikhonov and Lasso
[Tib96] — correspond to LP regularization with p = 2 and p = 1 respectively.
Any choice of p < 1 promotes sparsity in the solution set, and the optimization
is convex for p > 1. This is why Lasso is the regularization method of choice
for sparsity.
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In Bayesian inference, the regularization is imposed by the choice of prior
distributions which are then updated to form posterior distributions using
available data. The Bayesian paradigm is arguably a more intuitive way of
conceptualizing the process of regularization, as it directly seeks to quantify
the availability of information, and effectively enhances estimation by deducing
sensible prior distributions. As an example, a Bayesian interpretation for Lasso
corresponds with the priors for 6 being concentrated around the origin similar
to a Laplacian prior [Gel+14, pp.368-369].

To show how regularization directly affects the condition numbers, consider
an L2-regularized solution for a causal problem Wz + ¢ = y. Applying the
singular value decomposition, we have

= (WW +al)' Wy (3.45)
= (VIUUSV* + al) ' VEU*y (3.46)
= (VE2V* + aVIVH)IVSUy (3.47)
=V (2?2 + al)'SU*y (3.48)
=VD.U*"y, (3.49)

where D, is an augmented matrix with diagonal elements (g;/(s? + a))i. This
is in effect a modified pseudoinverse which directly lessens the impact of singular
values of low or high magnitude. Tikhonov regularization thus has a similar
effect to TSVD, but applies direct smoothing rather than truncation.

Example 3.5.5 (Upscaling with Tikhonov Regularization). In our previous
examples, we demonstrated methods for solving inverse problems in a deblurring
setting. In this example, we instead look at the related problem of image
upscaling, where we effectively want to reconstruct a high resolution image
given from a downsampled image. To this end, we apply regularization via

constructing a modified pseudoinverse using SVD, as outlined in [Equation (3.49
We also compare the method to the TSVD approach, outlined in [Example 2.4.3

Method K/a PSNR PSNR (Noise) SSIM  SSIM (Noise)

TSVD 9000 34.544 22.198 0.864 0.353
7000  28.647 26.679 0.645 0.550

5000  27.469 26.787 0.591 0.557

L2 1.0 31.602 27.841 0.783 0.614
5.0 28.613 28.195 0.696 0.672

10.0 27.313 27.199 0.679 0.671

Table 3.1: Results of upscaling examples with TSVD and Tikhonov regularization.
The best results for each method are highlighted in gray.
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3.5. Regularization

Figure 3.1: Reconstructions with Tikhonov regularization for o; = 1.0 (second
row), ag = 5.0 (third row) and ag = 10.0 (bottom row). The top row features the
original image (left), the downsampled image (middle) and a noisy downsampled
image (right).

For our example images, we use centered grayscale images taken from the
coco dataset (see [Section 7.1 and [Table 1.6). The original image space X
consists of 384 x 384 single channel images. The forward operator downsamples
the images using average pooling with a 4 x 4 kernel, resulting in the image space
Y containing images of dimension 96 x 96, corresponding to a downsampling
ratio of 16:1. The results can be seen in [Table 3.1] and [Figure 5.1} Similarly to
what we saw in there is a general degradation in reconstruction
quality for nonnoisy images, but an increase in reconstruction quality for noisy
images. We also note that Tikhonov regularization generally provides better
reconstructions than TSVD in this example.
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CHAPTER 4

Neural Networks

The term neural network have come to be rather broad, encompassing a growing
plethora of different models and architectures. In this chapter, we provide an
overview of terminology and definitions to fully describe feed-forward neural
networks, show how they can be considered generalizations of classical statistical
models, and discuss properties of universal approximation. We also introduce
several commonly used components and architectures, and discuss how they
can be applied for data-driven model identification problems.

4.1 Fundamentals of Neural Networks

Input neuron
Inactive neuron
Active neuron
Output neuron
——  Trainable weight

- => Activation function

Figure 4.1: Overview of the components of a densely connected feed forward
neural network. The network has a single hidden layer of four activated neurons,
as well as three inputs neurons, and two non-activated output neurons.

Neural networks are essentially a family of composite nonlinear learning
models which can be used for modelling high-dimensional functions with
arbitrary levels of complexity. Much of the terminology applied to neural
network models reflects their biological inspiration, with the goal of generating
high-dimensional function approximations which can be learned using data-
driven approaches.
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4. Neural Networks

A network layer can be considered a computational stage of a neural network,
consisting of one or more neurons with a set of associated weights, often followed
by an activation function which are designed to mimic neural activation in
biological organisms. A hidden layer is any intermediate computational layer of
neurons between input and output layers. In a dense or fully connected network,
each neuron has a unique connected path of weights to all other neurons in prior
or subsequent layers. Furthermore, the output of every neuron in a strictly
feed forward network is only dependent on neurons in prior layers, such that
there is no feedback from either subsequent neurons or neurons in the same
layer. details how the standard components of a neural network are
connected in a dense feed-forward network.

While the terminological familiarity with neurology seems to imply complex
model structures, at their core, neural networks are simple applications of
linear predictors with nonlinearities, similar to the generalized linear models
introduced in

Definition 4.1.1 (Activation Function). Let #,) be Hilbert spaces and let
n = Wx be a linear predictor. An activation function v: H — ) is a function
acting on a linear predictor to yield

y =) (4.1)

Activation functions are often univariate functions which are applied point-
wise to each neuron. For an activation function to be useful in a general setting,
it should ideally adhere to certain specific functional properties.

Observation 4.1.2 (Properties of activation functions). An activation function
generally exhibits one or more of the following properties;

(i) (Non-affine) v(z) # az + b,
(ii) (Smooth) v € C™ forn >0,
(iii) (Monotonic) v(z1) < v(z2) for z1 < za,
(iv) (Low complexity) v has low computational complexity,

(v) (Approzimately. identity at origin) v(h) = h for |h] <4,

It is reasonably clear that [Properties 4.1.2.11] and [4.1.2.iii] are useful for
gradient optimization, while [Property 4.1.2.iv| yields better computational
performance. The benefit of the two remaining properties might be less clear,
however. If an activation function approximates identity close to the origin,
this promotes optimal gradients when network weights are initialized close to
Z€ero , while non-affine activation ensures universal approximation under
certain conditions . We discuss this property further in the context of
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4.1. Fundamentals of Neural Networks

The first neural networks — called perceptrons — applied neural
activation using a binary step function with learnable threshold values. Later,
this threshold was replaced by an optional learnable bias, and the binary step
function made way for continuously differentiable sigmoidal functions like the
logistic function or the hyperbolic tangent function. Later, in the
authors outlined the biological inspiration and mathematical benefits of the
rectified linear unit (RELU), including computational efficiency and sparsity.
The rectified linear unit is a projection Yppy : R = R>( given by

x;, ifx; > 0;

4.2
0, ifz <O0. (42)

YrELU (l'z) = {

The ReLLU activation is widely used in feed-forward neural networks due to its
sparsity and convergence properties , however several other activation
functions are in practical use. [Definition 4.1.1]is sufficiently relaxed to allow
for a variety of possible activation functions. A few of these are of particular
interest to this thesis, particularly the exponential linear unit (ELU) [CUH10]
given by

x;, if x; > 0;

Blexp(z;) — 1),  if 2; < 0; (4.3)

’YELU(Z'iQ ﬂ) = {

and the continuously differentiable exponential linear unit (CELU) [Barl7], which
in turn is given by

Zj, if ; > 0;

Blexp(x;/B) — 1), if x; <O. (4.4)

VCELU(Q%‘; B) = {

In addition to these, discrete classification and categorical decision making
tasks often utilize the logistic function introduced in [Equation (3.36) The
multivariate extension of the logistic function is referred to as the softmax
function, introduced by Boltzmann . The softmax function is given by

Ysormax (23 B)i = S exp(fz:)

j<d exp(fB;)’ (45)

Similar to the logistic function, the softmax yields a probability distribution
which can be used as a parametrization for a categorical distribution on d classes.
The name softmax stems from soft argmazx, referring to the function being a
smooth differentiable maximum on a d-dimensional vector, and it approximates
the max function as the temperature parameter f — co. When  — —o0o it
instead approximates the min function, and when 5 — 0 the function outputs
a discrete uniform distribution over all d classes.
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3=0.25 #=035 A=0.75 B=10
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Figure 4.2: Projection of softmax with different temperature parametrizations
on three gaussian random variables to two-dimensional simplex using PCA.

Geometrically, the softmax function projects an element of R? into a
d — 1 simplex on a plane, visualized in In general, increasing
the temperature parameter § effectively serves to push points toward the
closure of the d — 1 simplex. Additionally, the function is translation-invariant,
i.e. v(x;8) = y(x + b;B) for all b € R%. The apparent overdetermination is
connected to this translation invariance, which manifests by >, ;v(2); = 1,
so any combination of d — 1 parameters determines the last. This is practically
applied in statistical classification by assigning one dimension as a pivot and
estimating the probabilities of the d — 1 remaining classes.

The nonlinear activation of neurons in the linear predictor allows a neural
network to approximate nonlinear solution spaces, and is thus an essential
component in single layer networks — the fundamental building block for more
complex network structures.

Definition 4.1.3 (Single Layer Neural Network). Let (X x ), B) be an observable
space, H, © be Hilbert spaces, and let § — Wy be a parametrization of a compact
operator. Let n = Wyx be a linear predictor, and let v : H — ) be an activation
function. Then the mapping ¢ : X — ) given by

Y(x;0,7) = v(n) (4.6)

is called single layer feed forward neural network. The parameters for the
operator Wy are commonly referred to as the network weights.

Note that is conceptually in line with the discussion in
of linearized transformations. In fact, both generalized linear models
and linear basis expansion can be modelled with a single layer neural network by
selecting appropriate activation functions. This apparent connection is trivial,
but illustrates how modern machine learning techniques have their origin in
classical statistical modelling techniques.
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The main advantage of modelling with neural networks is the fact that
they display nonlinear interpolation properties. These properties do not apply
directly to single layer models, but require an extension to the composition of
multilayer neural network models.

Definition 4.1.4 (Multilayer Neural Network). Let (Z;)¥, be a sequence of
Hilbert spaces, and let (1;)%; be a sequence of single layer neural networks
Vi Zi1 — Zi. Let wm be a composition on the form ; o - - - o 11, such that
the output of the ith layer in the network is given by

zi = vi(ni)
= i (2i-1505,74)
= (1/%' oj10---0 ¢1)($; 91:2',71:1')
= (5 014, m10).

Now let (X x Y, B) = (29 x Zx, B) be an observable space. Then N : X — Y
is a multilayer feed-forward neural network, and we will denote multi-layer
networks by ¥(x;9,T) = N (z;01.5, v1.3).

Remark 4.1.5 (Mathematical Notation of Neural Networks). We consider the
notation ¥(x;9,T") as sufficiently concise, but we would like to point out
some idiosyncrasies which might not be immediately clear to the reader. The
implication is that a neural network consists of a sequence of activation functions

L= (m)iL, (4.7)
as well as a partially ordered set of parameters
19:{9]‘663':].61,...,]\[}, (4.8)

so the full parameter space for the model parametrization can be considered
a product space ©1 x --- x ©,. This definition of the model parametrization
should however be considered sufficiently relaxed to include more than simply the
weight parameters, including parameters for activation functions, dimensionality
of layers as well as the general network structure. Note that some of these
parameters are estimated and trainable, while others are hyperparameters fixed
by the modeller, however we will always consider ¢ to include the parametrization
of the sequence of linear or augmented affine operators, which we denote by
Wy = (Wp, -1 =1,...,N). This is to be consistent with our previous definition
of learning models in where each parametrization of a network
exists in an identifiable parametrized hypothesis space 7 where each hypothesis
hy represents a neural network model.

We stress that we will occasionally omit the reference to the sequence of
activation functions I', or even the parameters ¥ when the specification is not
required to avoid unnecessary ornamentation in our notation. However the
notation is presented, we will naturally assume that the activation functions
and parameters are present, even if not explicit in notation.
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In practice, almost all neural network models apply multilayer structures
due to aforementioned universal approximation theorems - a collection of results
which show that neural network models with certain general structures can
approximate any well behaved function arbitrarily well. The earliest and most
ubiquitous of these results is the arbitrary width case for a two-layer network
with logistic sigmoidal activation, and can be concisely summarized as follows.

Theorem 4.1.6 (Arbitrary Width Universal Approximation Theorem). Let
O(x,0) +e =y be a forward problem, let v, = logistic,y2 = id, and let 01,0
be parametrizations of affine transformations such that 0; — Wy,. Then there
exists some arbitrarily high dimensional 61,605 € ¥ such that given

U(z;9,T) = Wo,v1(Wo, ), (4.9)
then for all € € R we have

[@ — U] < €. (4.10)

The full exposition and proof can be found in . Following this
result, Hornik showed that sigmoidal functions are not a requirement
for the universal approximation property to hold, while suggesting that the
multi-layer structure of the network was the instrumental factor for the universal
approximation property to hold, while demonstrated that nonpolynomial
activation is a sufficient constraint on activation. provided another
important contribution, showing that permutation invariant operators with
arbitrary width and an intermediate polynomial layer can act as universal

function approximators. This has implications to convolutional networks, which
we introduce in

Later results focused on showing universal approximation properties in
arbitrary depth networks — sometimes referred to as deep networks — with RELU
activation [Zho+17], and recently refined this constraint to nonaffine
activation functions on networks of arbitrary depth and bounded width using
common activation functions. The authors also rigorously demonstrated that
arbitrary depth network in general are expected to perform better than arbitrary
width networks, confirming empirical results . There are however
certain limits on the benefits of deeper networks, especially related to estimation,
which we return to in

While the property of universal function approximation is alluring, it is
related to polynomial interpolation and can thus be considered special cases of
the important Stone- Weierstass Theorem Theorem 8.9]. However, for
multivariate non-linear approximation, neural networks are currently state-of-
the-art and have incontrovertibly had a huge impact on the field of machine
learning and statistics. The problem exhibited by these models is that the
structure of estimated models does not provide any significant insight into how
the system they approximate actually works, and are often describes as purely
discriminative black boxr models with little inference capabilities. We briefly
discussed the limitations of discriminative modelling in and we
will return to address the apparent weaknesses of neural network models in

50



4.2. Estimation, Optimization and Learning

4.2 Estimation, Optimization and Learning

As any other parametrized learning model, neural networks require some
algorithmic method of estimating the parameters for the sequence of operators
Wy to allow the model to yield accurate predictions. This procedure is
referred to as training the network, and is generally performed by iterative
optimization methods by empirical risk minimization via an objective function
(Equation (3.30)). As in regularization can be applied to
any given model by expanding the objective function to include one or more
constraints encoding some a priori information about the solution space. Given
an observable product space, the optimized parameters D for a multilayer neural
network are then given by

J = argminC’J(y,‘Il(x;ﬁ,F);a) (4.11)
9

= arg;nin Cy, ¥(z;9,T)) + aJ (V). (4.12)

Parameter estimation — or weight estimation — for neural networks requires a
set of initial parameters drawn from some appropriate distribution. In practice,
initialization methods are generally designed to ensure that the activated outputs
of each layer become too small or too large to be numerically stable, as most
well-defined networks quickly find reasonable local minima or maxima in the
output space for which a good approximation can be extracted He-+15].
Once the weights are initialized, the network is subsequently optimized by

estimating the weights using observations from a dataset D

canonically by way of gradient descent.

Definition 4.2.1 (Gradient Descent). Let (X x Y,.#’) be a parameterized
learning model over a normed observable space such that J +— hy with hy € 2.
Let D be a dataset of n observations on X x )Y and let C' : ) x Y — R be
an differentiable objective function. A gradient descent scheme is an iterative
process

YD = 9 _ o Z VC(y, hyo () (4.13)

z.yeD
for iterations i = 1,...,n.

The hyperparameter ¢ € R controls the step size in the direction of the
gradient — commonly referred to as the learning rate — which can be tuned to
improve the performance of the weight estimation process. Moreover, note that
the objective function can be extended to include one or more regularization
terms without any loss of generality.

The issue with the form of gradient descent in [Definition 4.2.1] is that
global optimization on the training data is almost always too restrictive for
finding sufficiently good approximations, relying more heavily on the weight
initialization. As such, it relies heavily on exploiting the initialized weights to
derive an optima, as opposed to exploring the solution space, evaluating more
distant candidate solutions which might provide a better global optima towards
the defined optimization objective. This tradeoff between exploration and
exploitation can be more effectively handled by iteratively updating parameters
using stochastic gradient descent to promote exploration.
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Definition 4.2.2 (Minibatch Stochastic Gradient Descent). Let (X x Y, ) be a
parameterized learning model over a normed observable space such that ¢ — hy
with hy € 7. Let C : Y x )Y — R be a differentiable objective function, and let
D be a dataset with n observations over X x ). Fix F, k € N with the condition
k < n, and let m = E(n mod k). Now let (B; C D : #(B;) = k), | bea
sequence of randomly permuted partitions of D. Then a minibatch stochastic
gradient descent scheme is given by the iterative process

YD = 9 _ Z VCy (y, hyo (7)) (4.14)

r.yeB;

for iterations i = 1,...,m.

When training neural networks, each permuted subset B; denotes a minibatch
of training examples. As we generally want the process to successively iterate
in a manner which includes all observations, this process is usually performed
by grouping the subsets B; such that the entire dataset is seen over one epoch
of n mod k minibatches. The total number of iterations is then repeated over
FE epochs such that all observations are encountered several times. The total
number of iterations is then m = E(m mod n), however other methods can be
implemented to lower the total number of iterations given some approximate
convergence criteria. We note that the apparent early convergence of a network
can sometimes be decieving. Recently, [Pow—+21] showed that in certain cases,
an exceedingly large number of iterations can be necessary for true convergence.

Both definitions of gradient descent are straightforward to apply to single
layer neural networks, but implementing this for multilayer networks are not
as straightforward. For such models, the parameter update is computed
sequentially by calculating successive gradients with respect to each estimated
parameter in a reversed order to forward computations. This process is called
backpropagation and is a direct application of the chain rule for
differentiation.

Example 4.2.3 (Backpropagation). The backpropagation process can be
illustrated using a two-layer feed-forward network structure, yielding

(i+1) _ o) 9C; Oy Ona
0y =0 —0 52 O 50 (4.15)

z,yEB;

9§¢+1) _ 957:) o Z 0Cy Do Ong Oy1 Oy (4.16)

9v2 Omz Oy1 Oy 9o\

z,y€B;

clearly demonstrates the application of the chain rule. In
practice, the computation of backpropigation can be simplified by what is known
as the delta-rule [RHW86], which simply applies the observation that successive
applications of the chain rule always have similar leading products, which can
be memoized for more effective computations.
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In modern software for neural networks, each functional operation has an
associated gradient function, and their application produces arrays which store
the associated inputs for backward computations . This generates a
computational graph for the backpropagation process and allows for effective
subsequent updates to the weights.

Still, there are certain issues with any type of gradient descent algorithm that
must be considered. The most important of these is the choice of learning rate, or
step size. A low learning rate might provide stronger guarantees for convergence,
but the optimization process is more prone to be immobilized in local optima
or saddle points. On the other hand, a high learning rate can expediate
exploration of the solution space but can render the optimization process
divergent altogether. Both these issues can lead to slower convergence rates.
To redress these issues, neural networks are generally trained by introducing
an adaptive learning rate o9 to This technique imposes some
notion of mechanical weight or friction to the process, which is often described
as analogous to propelling some ball onto the solution surface, and apply
common conservation laws to yield a momentum for each iteration. Several
of these optimization processes have been developed specifically for training
neural networks [DHS11} |Zeil2|. In particular, we will make use of the ADAM
optimizer proposed in [KB17|, which is currently considered canonical for weight
optimization in neural networks.

When estimating neural network models, we are generally optimizing
parametrizations of compact linear operators and bias terms with respect
to simple activation functions. As alluded to in the properties of activation
functions (Observation 4.1.2)), certain issues can arise due to the choice of
activation for the layers in the network. While the sparsity and computational
efficiency of RELU activation is often beneficial, it also maintains some
inadequacies. Firstly, it is nonsmooth with discontinuous gradients. Secondly, it
is generally unconstrained, which can produce outputs of arbitrary magnitude if
the inputs are sufficiently large. The third and arguably most important issue
with ReLU activation is a byproduct of the sparsity property. Any nonpositive
input will have a gradient of zero, which can be a cause of problems for gradient
optimization methods. This issue is referred to as the dying RELU problem
. This is the main motivation for the introduction of the ELU and CELU
activation functions (Equations (4.3)|and |(4.4)).

The dying RELU problem circumstantiates the more general problem of low
magnitude or zero-valued gradients in network estimation. The domain of the
gradient of activation functions are generally constrained to a compact strictly
positive Borel set. For commonly used functions adhering to [Observation 4.1.2]
this domain generally falls in the open interval | — 1, 1], so the backpropigated
gradients are generally contractive. This results in the phenomenon where
weights closer to the output have a tendency to absorb most of the errors, and
fewer terms are propagated to the earlier weights close to the input. This issue is
more prevalent in deep models than in wide models, causing modelled solutions
to plateau in saddle points more frequently. was the first to discuss this
issue and coined the term wvanishing gradient problem, which directly inspired
the development of the field of network learning dynamics which we discuss in

more depth in
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Figure 4.3: The structure of a residual block. The input z, is propagated deeper
into the network by the weight Wy,,.

4.3 Network Components and Layers

In addition to the standard components in a neural network, there are several
specialized components which serve particular purposes. In this section, we
will outline the general network components and layer types relevant for the
network architectures featured in this thesis, and discuss their motivation.

Residual Blocks

For sufficiently deep network structures, each layer of a network should
theoretically improve accuracy of an approximation towards an optimal solution.
In practice, much of the actual improvement is restricted to only a subset
of available layers due to vanishing gradients and dimensionality problems.
Thus, much of the informational capacity of a deep network becomes tied
up in approximating linear mappings, referred to as the degradation problem.
In [He+15|, the authors demonstrate that a more effective learning process
can be induced by allowing portions of the network to deal with residuals,
as opposed to having a network learn identity-like mappings in several layers.
These components are groups of layers with a skip connection, called residual
blocks.

Definition 4.3.1. Let Z,, Z, be Hilbert spaces, and let IE Z, = Z, be a
composition of ¢ — p = n internal network layers. Furthermore, let 6r be a
parametrization 0p — Wy, for a compact operator Wy, : Z, = Z,. A residual
block is then given by

zq = Wogpzp — w[n] (2p; Op:q> Vpiq)- (4.17)

The idea behind a residual block is to hotwire the output using a direct layer
with trainable weights 0. This linear connection is allowed to process much of
the approximately linear transformations while the multi-layer structure [ is
free to process nonlinearities in the residual space generated by the range of
(I — Hy,). Residual blocks are therefore especially useful for tasks where the
input space and output space are sufficiently similar as to warrant some linear
mapping, like the identity mapping. Residual blocks can be composed and
combined in a modular fashion, similarly to individual layers in feed-forward
structures. We note that the original paper specifically refers to residual blocks
with non-parametrized identity weights as opposed to a parametrized operator

Wr; a special case of our convention in [Definition 4.3.1
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Figure 4.4: An illustration of non-padded two-dimensional convolution with a
3 x 3 kernel. The kernel slides over the image to produce pixels in the target
image.

Convolution Layers

In [Section 2.2| we introduced the concept of convolution (Definition 2.2.6),

and showed how deblurring problems are naturally formulated as convolution

problems in Convolution operators also play an important part

in neural networks and have been shown to be especially effective in the field of
image processing [Fuk79; LeC+89).

Definition 4.3.2 (Convolutional Layer). Let ¢ be a single layer neural network.
If the associated operator Wy is a linear combination of convolution operators,
then v is a convolutional layer.

The success of convolutional layers has led to these layers becoming a
de facto standard for image processing with neural networks Sec.
9.1]. The motivation for introducing convolutional layers are specifically
tied to spatial dependencies in a signal or image. While any image can be
vectorized for applications with a linear operator, this representation discards
spatial structures in an image which in turn discards important information.
Convolution operators maintain the spatial structure of an image by applying
parametrized discrete kernels of appropriate dimensions. An illustration of
discrete two dimensional convolution over a single channel can be observed
in Another advantage of convolutional layers is that they display
properties of translational equivariance , meaning a convolutional layer
can be effective at processing spatial structures independent of their relative
location in an input image.

A convolutional layer is parametrized using stride, padding and dilation . The
stride of a convolution is an optional step size for the convolution, while padding
expands the convolution domain to outside the range of the image. Lastly,
dilation applies spacing between each value in the kernel, imposing sparsity
in the kernel. These techniques can alleviate some local spatial bias, but can
also introduce certain artifacts and aliasing effects especially for deconvolution
[ODO1G.

In the authors highlight an important issue with the application
of convolution operators in neural networks by showing that the central values
of an image or signal will generally be used more frequently in the computation
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of the outputs. When successively applying layer-wise discrete convolution, the
pixels close to the boundaries of the input signal will ultimately be weighted
less than the central pixels in the computed output for each channel. This
means there are fewer paths between the values close to the boundary and the
output values than the more central values. This means that while a network
theoretically has the capability of allowing inputs to influence every single output
in a signal, the effective influence might be minimal to negligible. The authors
call these measures of the connectivity between output and input signals for
the receptive field of the network.

Another important property of convolutional layers is that their periodicities
admit inherently sparse operators which can act on high dimensional data. In
discrete convolution, the parametrization is commonly of much lower dimension
than the signals they operate on. This makes convolution operators highly
efficient in terms of number of operations and memory, allowing them to
operate on high dimensional images. Furthermore, as the convolution operator
is independent of the dimensionality of the inputs, a convolutional model can
be constructed to be more or less invariant to the input dimensions using
pooling layers . The nature of these operations make them contentious

in the eyes of some researchers |Hinl7|, while [Spr+15] suggests they can be

replaced altogether by a series of appropriately strided convolution layers. In

we show how convolution layers can be constructed in matrix
form.

For the purposes of this thesis, we are also particularly interested in
the adjoint representations of convolution layers. From the exposition in
Appendix A.8| it is clear that the adjoint representation of a convolution simply
corresponds to a convolution with a reversed permuted kernel; also known as
the correlation operator. In signal processing, adjoint operators are often called
matched filters, and have been shown to be optimal linear filters for maximizing
the signal-to-noise ratio . In the most common contemporary software
packages for neural networks, the correlation operator is commonly applied in
place of the standard convolution operator. As each kernel is estimated through
training the end result is the same, however the operator loses its commutative

properties [GBC16, Sec. 9.1].

Seperable Patch Layers

In we discussed how the form of seperable filters can be applied
row-wise and column-wise to an image to reduce the parameter space of a linear

operator. Surprisingly, there seems to be few models adopting seperable filters
in neural networks, possibly due to the success of convolutional layers.

Recently, an alternative to convolutional layers was proposed in [Tol+21],
which applies a variation of linear seperable filters over individual image patches
while simultaneously generalizing over multiple patches. These models retain
moderately low dimensionality in their parametrization while applying densely
connected linear weight operators. The full architecture of the proposed model
is referred to as a mizer model, however the individual layer structure is not
specifically referred to by name. We will however in the context of this thesis
instead refer to these layers as seperable patch layers which we find more
descriptive.
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Figure 4.5: Tlustration of the process of patch splitting and vectorization of
images for seperable patch layers. The input image on the left in the illustrated
example is given by x € [0, 1]>2*32 while the output image on the right is given
by X € [0,1]64x16,

Definition 4.3.3 (Seperable Patch Layer). Let X be a Hilbert space over K
with a product structure, such that dim(X) = ¢ x h x w. For each z € X, let
T = (7, € K¥)1<p<n be a sequence of subdivided patches of x. Furthermore,
let X = [vec(Z1), ..., vec(Z,)]T € K™** be a matrix such that each row is a
vectorized patch of image x. Now let 1 be a single layer neural network with a

compact operator Wy = Uy ®@ Vp, with Up, € K™*™ and Vp, € K**4, such that

P(x;0,7) = 7(Woz) (4.18)
= 7((Us, ® Vi, )vee(X)) (4.19)
=1(Us. XVa,). (4.20)

Then ¥ : K™% — K™*4 is called a seperable patch layer.

We note that the formulation of the split- and vectorize operations of the
seperable patch layers is somewhat vague, however should help
illustrate the process more clearly. more or less follow the
definition of a seperable filter, however the main difference lies in how the image
is reworked into patches in a grid. As such, these layers are similar in form
to full-stride convolutional layers featuring depthwise seperable convolution
[Chol7; How+17], but densely connected across patches and individual pixels
in an image.

Coupling Layers and Normalizing Flows

Coupling layers [DKB15; RMW14] are network layer structures which have
recently garnered attention in the context of probabilistic modelling and
invertible neural networks.

Definition 4.3.4 (Affine Coupling Layer). Let X', ) be seperable Hilbert spaces
with dim(X) = dim(Y) = D. Let x.q = (z1,...,24) and z4. = (Xg41,...,2ZD)
for x € X and let 4.4, y4. € YV be defined similarly. An affine coupling layer is a
map g : X — ) such that
g:d(x:d) = Y.d = Tud (421)
9d:(Ta:) = Ya: = Ta: © m(x.q) + b(z.a), (4.22)

where m, b are multivariate functions with support on X..
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An affine coupling layer g is bijective if we have access to the transformations
m,b and yg4. = 4., and can thus be composed to form more complex invertible
structures in a neural network model. Coupling layers generally induce a
triangular operator structure common in autoregressive models Chapter
3], a class of sequence models which have been applied successfully in both
spatial and temporal signal processing [OKK16; Oor+16].

The benefit of triangular structures is that calculation of the determinant
of the operator induced by g is greatly simplified by det(g) = Tr(g), making
the change of variables formula tractable. In this context,
they are the canonical example of invertible transformations used to construct
probabilistic neural networks called normalizing flows, where certain criteria
are applied to ensure that the determinant of the Jacobian of the network layer
| det(Jg (z)) | is tractable.

Definition 4.3.5 (Normalizing Flow). Let (X, By), (Z, B.) be observable Hilbert
spaces with dim(Z) = dim(X), and let Z : Q@ — Z be a random element
with known probability distribution Pz. Let ¥ : Z — X be a diffeomorphism
(Definition A.6.22)). Then by the change of variable formula (Equation (A.42))
for x € X and z € Z we have

fx(@) = fz (V7 (@) | det Ty (2) | (4.23)

for probability density functions fx, fz. Then ¢ is called a normalizing flow.

A central idea of normalizing flows is that they can be composed sequentially
to compose multilayer networks, acting as universal density estimators for
probability distributions . Furthermore, normalizing flows are
estimated using maximum likelihood methods, firmly cementing them as
predominantly statistical models.

We note that affine coupling layers are only one type of transformation used
in normalizing flows, and others can be considered. In this thesis, we propose
the use of our derived variant of conditional additive coupling layers, applied in
some of our proposed models.

Definition 4.3.6 (Conditional Additive Coupling Layer). Let y € RP be defined
on a simplex such that ), y; = 1. Let 6 € R"*P. Moreover, let b : R? — R™ be
the convex combination given by

P
j=1

Then the map g : R — R" is given by
9(@) = = + b(y;6) (4.25)

and we call g a conditional additive coupling layer.

The purpose of a conditional additive coupling layer is to condition the
inputs  on the outputs y of a classification subnetwork. As such, the additive
coupling layer acts as a conditional replacement for the bias of a standard
feed-forward layer .

58



4.3. Network Components and Layers

Stochastic Sampling Layers

As of yet, the network layers we have discussed are wholly deterministic,
and while coupling layers and normalizing flows allows the approximation of
transformations from sampled data from a known probability distribution to fit
data from an observable space, they do not inherently induce any stochasticity
in a network architecture. A rudimentary method for inducing randomness in a
network is to apply stochastic sampling layers, which we later make use of in
variational autoencoders.

Definition 4.3.7 (Stochastic Sampling Layer). Let T be a parameter space for
a parameterized family of probability distributions P. Now let ¢s : X — T
be a single layer network and let Y : 2 x T — ) be a random variable such
that Y ~ P, <= v. Then (),P,) is an observable space generated by Y, and
the mapping ¥ : X — ) given by

Vu(;0,7y,w) = Y (w; s (36, 7)) (4.26)

is called a stochastic sampling layer.

If we select P to be families in the location-scale family (Definition A.7.15)),
then the parameters of layer 1, can be trained to output parameters which
approximate the base distribution P, by maximizing the ELBO (Equation (4.40)).
This method is known as the reparametrization trick and was first introduced
in the setting of . Stochastic sampling layers are commonly employed in
variational autoencoder models (VAE), which we discuss further in
Note that stochastic sampling layers bear a resemblance to affine coupling layers,
which are also often used to approximate location-scale distributions.

Diagonal Layers

In this thesis, we will be applying several forms of what we call diagonal layers.
These are essentially scaling operators D : Z,, — Z, acting on an input z, by

D(zp;0,) = diag(0,)zp (4.27)
=0,0 2 (4.28)

and are usually applied between the application of isometric operators to allow
the individual scaling of the outputs in z;, similarly to the effect singular
values have in SVE/svD. Diagonal layers are thus structurally similar to the
general operators which they are designed to complement. E.g., a diagonal
layer complementing a seperable patch layer thus takes the form

D(Z,0) = [diag(0,)* ® diag(0.)] Z (4.29)
= diag(6,.) Z diag(6,.). (4.30)
While other diagonal layer structures can be considered, particularly in the

context of convolutional layers, we will generally only apply diagonal layers in
the forms of [Equations (4.27)| and [(4.29)|in this thesis.
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4.4 Network Architectures and Encoder-Decoder Models

The term architecture is used to describe the general structure of the network.
As of yet, we have mainly focused on fully connected feed-forward architectures.
While these architectures are the fundamental building blocks of neural networks,
there are several other classes of networks which are structured to model
spatial dependence, sequential processes, topological spaces and graph structures
(Definition A.6.12)) by structuring neural dependence more effectively given
domain-specific information. For the purposes of this thesis, we will mostly
consider feed-forward models, and only a few of our proposed models feature a
more complex topology.

Autoencoders

Our work mainly focuses on encoder-decoder models, the canonical example of
which are autoencoder (AE) models. The origin of autoencoder models can be
traced back to the resurgence of neural network models with backpropigation
[RHWS6|, providing a very interesting application of unsupervised learning
designed to generate efficient data representations.

Definition 4.4.1 (Autoencoder). Let (X, B) be an observable space and let Z be
a latent Hilbert space. Let U¢ : X — Z and ¥U? : Z — X be subnetworks, called
the encoder network and decoder network respectively. Then the compositional
network given by

U,p(2;9,T) = (U0 U°)(2;9,T) (4.31)
= U (0 (z;9°,T°); 94, T) (4.32)

is called an autoencoder network.

In the general autoencoder setting, the encoder network W€ is trained in
combination with an adjoint network W¢ which acts as a decoder such that
the full network yields a reconstruction of the original input x, minimizing the
reconstruction objective by

J= arg minC(m,\IIAE(x;ﬁ,F)). (4.33)
9

The goal of this objective is to have the composition of the encoder and decoder
networks approximate the identity map for all x € X. This may at first glance
seem a fruitless endeavour, but note that the identity mapping is performed via
an intermediary space Z, called a latent representation space. The dimensions
of the latent space is often chosen to be of a smaller dimensionality than X
When dim(Y) < dim(X) the network is called an undercomplete autoencoder,
which are commonly used for learning effective low dimensional representations
of a dataset D. illustrates the architecture of an undercomplete
autoencoder network.
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Figure 4.6: An undercomplete autoencoder network.

Conversely, an overcomplete autoencoder is an intermediate mapping to
an encoded space with higher dimensionality, i.e. dim(&Xx) < dim(Y). With
overcomplete autoencoders, there is a susceptibility of all weights approximating
identity, so a minor level of noise is usually introduced to discourage identity
in the operators of each layer. Noise can also be introduced in order to
effectively produce a denoising autoencoder for purposes of general
signal restoration.

The link between autoencoders and information theory is well established
via the concept of informational entropy (Definition A.4.12) — a
measure of the expected level of information content contained in a random
variable or observable space. In , the authors demonstrate that
autoencoders essentially maximize the lower bound on the mutual information
(Definition A.7.16) between the data and their predicted latent representations.
This link to information theory makes autoencoders an excellent tool for
inference on deep neural networks, and even goes so far as to suggest
that the study of autoencoders via the information theoretic route is the most
promising tool for opening up the black box of deep learning; which we discussed

briefly near the end of

Early investigations into the properties of the special case of linear
autoencoder models — i.e., autoencoders where v = Id for all v € T" — also
demonstrate parallels with principal component analysis , and has often
been informally cited as an equivalence. This equivalence is even suggested
in the nonlinear case, and this was shown to be not be the case in .
Further investigations [AEE17; Kun+19| provided more evidence of the link
between linear autoencoder models and principal component analysis and —
by proxy — the svD. This link to SVE/SVD provides interesting applications
for autoencoders in statistical modelling; particularly in the case of inverse
problems.
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Supervised Autoencoders

Let us now turn our attention to supervised learning with encoder-decoder
models. Consider a task where we want to find an approximate bijective map
U : X — ) given the observable space (X x Y, B). This setting is central to
the work in this thesis, and the question is; can an autoencoder architecture be
applied to supervised learning tasks?

Remark 4.4.2. The term supervised autoencoder is a bit of a misnomer. The
term auto is used to describe the unsupervised learning objective. However, the
term ’supervised encoder-decoder’ would admittedly would be a more fitting
term for these models but is not used in other literature |Gao+15; LPW18;
. Thus we will continue to refer to these models as either supervised
autoencoders, autoencoders, or simply by the abbreviation AE — as the learning
context is always easily inferred.

Properties of Supervised Autoencoders

While autoencoders see fewer applications in the supervised setting than the
unsupervised setting, there are several examples which advocate their practical
application [Gao+15; [RS08]. A central work on the theory of supervised
autoencoders show that the preeminent benefit of supervised AE
models is twofold;

e they provide significant improvement in stability and robustness,
e they provide tighter upper bounds on the overall generalization error.

These results suggest the application of supervised autoencoder models as
implicit regularization methods for general forward neural network models,
which we discuss further in

The Supervised Objective

While the reconstruction objective provided in [Equation (4.33)|is natural in an
unsupervised setting, it requires modification for supervised learning. A simple
addition of a supervised objective to an autoencoder yields

0= arggnin Cx (z, (T 0 T°)(a 9)) + Cy (y, ¥°(z;9°)). (4.34)

However, a more direct objective can be formulated as

0 = argmin Cy (z, Wl (y; 19d)) + Cy (y, U¢(z;0°)). (4.35)
9

The difference is that [Equation (4.34)| compares a reconstruction through the
entire network, while [Equation (4.35)|splits these objectives. This turns out
to be an important distinction, as[Equation (4.34)| can encourage a model to
find an inverse for its own mapping, rather than the inverse of the objective,
precisely due to the autoencoder models tendency to maximize the lower bound
on mutual information . Any loss of information in the mapping will
therefore be minimized, even if this increases the loss in the supervised objective.

The stability and conditioning of the inverse problem can influence the
training of a supervised autoencoder. While the condition number quantifies
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the general ill-conditioning, it does not say anything about which computational
direction is the most sensitive to perturbation. To quantify this, we define the
sensitivity imbalance for an invertible compact linear operator, and show that
this has a point of sensitivity equilibrium.

Definition 4.4.3 (Sensitivity Imbalance). Let W be an invertible compact linear
operator on a Hilbert space with rank n. Let ki, k, be the Lipschitz constants
of W and W-! respectively. Then

- kiky, — 1, if kyk, < 1
,‘;(W)z{1 h

4.36
1-— ﬁ, otherwise. ( )

is called the sensitivity imbalance of a compact linear operator.

Proposition 4.4.4 (Sensitivity Equilibrium). Let W be an invertible compact

linear operator on a Hilbert space with rank n. Then for ?(W) = 0, the
condition number k(W) has equal contribution from W and W~1. Furthermore,

?(W) € (—=1,1) quantifies the relationship between the contribution to the
condition number from the forward and inverse operators, with the property

W) =—R(W).

Proof. The Lipshitz constant of W and W-! is given by the largest and smallest
singular values, so k1 = ¢; and k,, = ¢,. Fromvve know that the
condition number of a compact linear operator is given by x(W) = ¢1/s,,. Then
clearly, the contributions of the terms are equal when ¢; = 1/g,. By definition,

¢1 > <n > 0. Letting k; — 0o and k, — 0o shows that % (W) € (=1,1). Lastly,

we note that ?(Wl) will yield a reciprocal relation, which will flip the sign of
the expression. |

The sensitivity imbalance can in principle be extended to hold for any
mapping, however we find it most instructive to relate the concept to linear
operators in terms of the singular value expansion. Note that the sensitivity
imbalance does not directly relate to the actual condition number. Rather, it
quantifies some notion of "skewness" in any ill-conditioning between a forward
and inverse operator. As an example, consider the operator given by a one-
dimensional Gaussian discrete convolution kernel [1/4,1/2,1/4]. Constructing
a 5 x 5 circulant Toeplitz convolution matrix yields the singular values ¢; =1,
¢ = 0.096, with condition number 10.472. Computing the sensitivity imbalance
gives ?(W) = —0.904 which tells us that the Lipschitz constant of the inverse
operator will be the greatest source of instability for this problem. Taking the
inverse subsequently yields ?(Wl) = 0.904. The condition number is the same,
however the sign of the sensitivity imbalance has reversed.

If we now consider this task in the context of a supervised AE model, and
let the forward operator be modelled by the encoder, we know that the encoder
will be less sensitive to perturbations, and this extends to the training error
imposed by the supervised objective C'y. This means the task of approximating
the forward operator is consequently "easier" than approximating the inverse
operator, as the reconstruction error from Cy can be significantly magnified in
the decoder. During training, this can result in higher losses in the reconstruction
objective for deblurring than blurring, which means that the gradients will be
dominated by the losses from the deblurring task.
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Variational Bayesian Inference and Variational Autoencoders

In a classic work , the authors introduce methods which allow us to
turn an autoencoder into a generative model (Definition 3.2.5)). The motivation
goes as follows; if we are in possession of some known approximation of the
distribution over the latent space Z, then an autoencoder can be considered
generative. By considering output from the encoder as latent random variables
7, the problem can be restated as a variational Bayesian problem, where we
have

 a set of observable data {z; : 2; € X,i=1,...,n},
o a set of latent variables {z;: z; € Z,i=1,...,n},
« a posterior of interest fzx = fx|zfz/fx.

The canonical problem when modelling using Bayesian inference methods is
that the density fx = f Ix|z - [z is often intractable. In a variational Bayesian
setting, this is solved by approximating fx with a tractable density gz, such
that fzx =~ gz. From Jensen’s inequality (Theorem A.7.11|) we have that

log fx(z) = log </ fxz(z, 2) dZ) (4.37)
~log ( / (z)fXZ(x)Z) dz) (4.38)
>E, [log <fxz Z )} (4.39)

= E, [log fxz(z, Z)] Eq[log gz(2)] (4.40)
= ELBO|[fx], (4.41)

so by maximising the evidence lower bound of X (Definition A.7.17)), we minimize
the error of the approximation. To this end, we make use of the related Kullback-
Leibler divergence.

Definition 4.4.5 (Kullback-Leibler divergence). Let (X, B) be an observable
space, and let P, P, be probability distributions over X with probability density
functions fx, gx respectively. Then dgy, : L'(X) x L'(X) — Rxq given by

drcclox||fx] = Hy[fx) — Hlgx] (4.42)
— E,[log gx ()] — E, [log fx («)] (4.43)

T

is called the Kullback-Leibler divergence of gx with respect to fx.
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At this point, we require the application of the following useful observation.

Observation 4.4.6 (KL-divergence and ELBO). Let X,Z be random variables
with pdfs. fx, fz respectively. Let gz be an approximation of fzx. Then the op-
timization objective argmin, dxr.[gz fz)x] is equivalent to arg max ; ELBO[fx].

Proof. Rewriting f7x using the Kullback-Leibler divergence yields

dr ]9zl fz1x] = Eq [log (fZ|X(zZ|)x)>}

5, o (22 ) o

= log fx(z) — (Eg [log fxz(z,z)] — Eg[log gz(2)])
= log fx(#) — ELBO[fx],
so minimizing dr1[gz] fzx] is equivalent to maximizing ELBO[fx]. |

To apply this in an autencoder setting, we can rewrite [Equation (4.40)[to
get the general form of the canonical VAE objective

ELBO[gz] = Eg4[log fxz(z, 2)] — E,[log gz(2)] (4.45)
= Eq[log fxjz(z | 2)] — (Eg[log gz(2)] — Eg[log fz(2)]) (4.46)
= Ey[log fxjz(z | 2)] — drrlgz| fz)- (4.47)

Letting the decoder network be given by ¥? ~ fx|z and the encoder network
given by ¥¢ ~ gy x, we conceivably have an autoencoder representation of a
bidirectional graphical model. Thus can be interpreted as an
objective function where the first term is simply a form of reconstruction loss
and where dg1[gz] fz] acts as a regularization term for the divergence between
the encoder and decoder.

This interpretation requires that the latent vectors are random variables;
and is where we apply the stochastic sampling layer from to
construct the full definition of a variational autoencoder .

Definition 4.4.7 (Variational Autoencoder). Let Wy, be an autoencoder model,
where the final layer of the encoder is a stochastic sampling layer with
parameter space Y. If the loss function C; includes a regularization term
J(v e T) =drrlgz|lfz] we say that Wy, is a variational autoencoder.

Instead of letting the autoencoder produce the latent variables directly, we
let the output of the stochastic sampling layer be the parameters v = (m, s) of
a multivariate distribution in the location-scale family (Definition A.7.15). We
then sample a vector of iid. random variables {¢; ~ P, : i =1,...,k} and let

z=s(+m~P,, (4.48)

As this is differentiable, the gradients from the input z € X are propagated
throughout the network, minimizing the reconstruction error. This is what
is referred to as the reparametrization trick in VAE models. Note that the
reconstruction objective given in [Equation (4.47)|is not directly required for
a VAE model, however we consider it as the canonical objective for modelling
with variational autoencoder models.
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4. Neural Networks
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Figure 4.7: Visualization of dropout. Note that z; has had all connections to
the output layer dropped, whereas z4 has had only a single connection to ¥
dropped, demonstrating the difference between the two approaches.

4.5 Regularization