
Invertible and Pseudo-Invertible
Encoders
An Approach to Inverse Problems with Neural
Networks

Marius Aasan
Master’s Thesis, Autumn 2021

This master’s thesis is submitted under the master’s programme Data Science,
with programme option Statistics and Machine Learning, at the Department
of Mathematics, University of Oslo. The scope of the thesis is 60 credits.

The front page depicts a section of the root system of the exceptional
Lie group E8, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.

Abstract

While neural networks have been demonstrated to be highly successful in
mathematical and statistical modelling of a comprehensive selection of problems,
their application to inverse problems is not without complications. Recent works
have shown that neural networks are especially prone to stability issues – both
in a classical sense, and in the context of so called adverserial attacks which
has come to be regarded as the most pervasive source of instability in modern
neural network models.

Concomitantly, methods of constructing invertible neural networks with
diffeomorphic layer structures with normalizing flows have been proposed
as an interesting method for approaching inverse problems by probabilistic
augmentation of latent variable models to induce full-rank in a conditional
setting. However, these models can often be prohibitively expensive in terms
of computational efficiency and memory usage while displaying sufficiently
different architectures as to not be trivially extendable to tools for commonly
defined feed-forward neural networks.

In this thesis, we motivate the theory of inverse problems via integral
equations and spectral theory and discuss the connection of statistical learning
theory to neural networks with special focus on encoder-decoder models.
Furthermore, in the context of neural networks, we will discuss the underlying
theory of epistemic and aleatoric uncertainty, discuss the role of probabilistic
modelling, and evaluate the idea of latent probabilistic completion as a remedial
method for undercomplete modelling tasks.

Our contribution to the subject of invertible neural networks can be
summarized as follows. We propose a relatively simple architectural modification
of existing encoder-decoder models using both implicit and explicit orthogonal
constraints using Riemannian manifold learning and resolvent operators to
construct a wider class of invertible neural networks which are compatible with
classic feed-forward architectures. We show that these models provide both
a significant decrease in the parameter space compared to standard encoder-
decoder networks, as well as theoretical guarantees of robustness and stability
without significant loss to model performance. We apply these architectures
in combination with existing variational Bayesian methods for a generative
approach to underdetermined inverse problems. To this end, we introduce a
class of piecewise diffeomorphic activation functions and a bijective Gaussian to
Dirichlet transformation for latent variables as an alternative to the canonical
Softmax transformation, and propose the application of simple conditional
additive coupling layers to improve conditioning in generative models.

i

Acknowledgements

Firstly, I would like to thank my family. My parents Paul and Sigrun as well
as my sister Camilla are always supportive of me, whatever I choose to do in
my life – no matter how unconventional my choices are. They will always have
my unending appreciation and love. Secondly, my girlfriend Nina and my close
friends Keith, Kristoffer, Reza, and Jo have been there for me throughout both
joyous and difficult times. Without you, I would not be where I am today.
Thirdly, I am very much indebted to my fellow students, which are probably
too numerous to mention, but I will give it a shot.

• The kernel of my undergraduate mathematics studies; Åsmund Danielsen
Kvitvang, SimenWestbye Moe, Fredrik Jabeer Mahal Nordeng, Are Aamot,
Lars Peder Fjellberg, Marius Havgar, Edvard Aksnes, Ola Sande, Yvonne
Neraal, Eva Steine Dahl, Max Magnus Nils Rafstedt, Simon Foldvik, Lars
Henry Berge Olsen, Lars Gabrielsen, Elisabeth Hagen, Fride Josefine
Emberland Straum, Ingvild Hjortnæs Larsen, Teah Kaasa McLean and
many more.

• My upperclassmen and mentors; Ivar Haugaløkken Stangeby, Camilla
Lingjærde, Tale Dudde, Kristine Heimdal, Henrik Aasen Kjeldsberg, Luca
Gazdag, Magnus Vodrup, Kristoffer Ulvik Høisæther, and of course Paul
Aleksander Maugesten. Thank you for providing a strong academic and
social foundation to me and the rest of the students at MAMI/MIT.

• I would also very much like to thank my data science colleagues, especially
Erik Lien Bolager as well as Fabian Bull and Ingebjørg Sævareid for being
great partners in our early work on our masters degrees, as well as good
friends and comrades.

Last – but by no means least – I am greatly indebted to my academic tutors
and advisors throughout my studies. My supervisor Odd Kolbjørnsen has been
nothing but supportive and encouraging throughout my work on my thesis and
has provided me with good feedback, interesting discussions, and challenges.
I would also like to thank my supervisor for my bachelor thesis – Tom Louis
Lindstrøm – as well as my co-advisors from the Bayesian neural network group;
Geir Olve Storvik and Anne Schistad Solberg. They have always had an open
door with me and I have felt supported and welcomed by them. I would also
like to express gratitude to Vegard Antun, whose work and helpful discussion
has been especially helpful in the development of my thesis.

iii

Contents

Abstract i

Acknowledgements iii

Contents v

1 Preliminaries 1
1.1 Introduction . 1
1.2 Project Description and Goals 2
1.3 Implementations and Software 2
1.4 Summary of Contributions . 3
1.5 Prerequisites and Fundamentals 4
1.6 Notation . 5
1.7 Abbreviations, Nomenclature, and Data 6

I Theoretical Background 7

2 Inverse Problems 9
2.1 Ill-Posedness . 9
2.2 Integral Equations . 11
2.3 Expansion Methods and Spectral Theory 15
2.4 Discretization and Projection 24

3 Modelling and Learning 27
3.1 Statistical Modelling and Probability 27
3.2 Statistical Learning and Hypothesis Spaces 32
3.3 Modelling Linear Inverse Problems 35
3.4 Modelling Non-Linear Inverse Problems 38
3.5 Regularization . 40

4 Neural Networks 45
4.1 Fundamentals of Neural Networks 45
4.2 Estimation, Optimization and Learning 51
4.3 Network Components and Layers 54
4.4 Network Architectures and Encoder-Decoder Models 60
4.5 Regularization, Optimization, and Learning Dynamics 66

v

Contents

II Methodology 69

5 Inverse Problems and Invertible Neural Networks 71
5.1 Uncertainty and Instability in Neural Networks 71
5.2 Normalizing Flows and Invertible Neural Networks 74

6 Invertible and Pseudo-Invertible Encoders 77
6.1 Motivation . 77
6.2 Bi-Lipschitzian Activation Functions 81
6.3 Invertible Dirichlet-Softmax Transform 85
6.4 Parametrization and Constraints 89

III Results 101

7 Methodology and Baselines 103
7.1 Experimental Methodology . 103
7.2 Assessing Bi-Lipschitzian Activation 108
7.3 Assessing the Dirichlet-Softmax Transform 110

8 Experiments with Pseudo-Invertible Encoders 113
8.1 Unsupervised Learning with Dense PIEs 114
8.2 Supervised Learning with Dense and Seperable PIEs 121
8.3 Supervised Learning with Convolutional PIEs 129
8.4 Conclusions: PIEs . 133

9 Experiments with Invertible Encoders 135
9.1 Dense and Seperable IEs and IREs 136
9.2 Convolutional IREs . 140
9.3 Conclusions: Invertible Encoders 143

10 Summary and Further Work 145
10.1 Summary and Project Goals 145
10.2 Further Work: Experimental Methodology 146
10.3 Further Work: Theoretical Ideas 147

Appendices 149

A Fundamental Theory 151
A.1 Spaces and Analysis . 151
A.2 Operators . 155
A.3 Measure Theory . 157
A.4 Probability Theory . 161
A.5 Harmonic Analysis . 163
A.6 Matrix Groups and Manifolds 164
A.7 Selected Fundamental Results and Theorems 170
A.8 Discrete Convolutions as Matrices 175

Bibliography 177

vi

CHAPTER 1

Preliminaries

1.1 Introduction

An inverse problem is a product of a seemingly reasonable inquiry. Assume
we have a mathematical model which provides reliable outputs for some
mapping. Furthermore, assume that we are provided a set of measured out-
puts for this particular mapping, and for which we are uncertain of what
inputs are generated through these specific outputs. Is it then possible to
compute the causal inputs using the effective outputs, or in other words; is
it possible to invert the mapping to give reasonable estimates of the input values?

Connecting effects to causes has certainly satiated minds as far back as
rational thought itself, and prominent mathematicians have long been utilizing
the power of inversion methods. Carl Gustav Jacobi is attributed the quote
’man muss immer umkehren’ or ’invert, always invert’ [Van16]. His preferred
approach to a new problem was to reformulate an inverse representation, which
he stated would often lead to the solution coming to him in a more effortless
manner. The advent of such important disciplines as quantum mechanics and
the general theory of nonlinear systems succoured the need for new paradigms in
mathematics. The most important of these methods was pioneered by Andrey
Tikhonov [Tik43], whose research directly ushered the theory of regularization
for robust solutions of inverse problems. At the same time, the Bayesian
approach to statistical modelling provides a probabilistic framework for robust
modelling of inverse problems.

Inverse problems find a natural formulation in image reconstruction tasks.
Until recently, models for data-driven image analysis have been computationally
expensive and relied heavily on specialized hand-crafted algorithms for each
individual problem. The current resurgence of neural network models, originally
conceived by McCullough and Pitts [MP43], have completely revolutionized the
field of image analysis. Much of the success of neural network models stem from
the development of Convolutional Neural Networks (CNNs), whose origins go
back to the neocognitron [Fuk79], further developed in [LeC+89]. Even more
recently, the application of invertible neural networks has been proposed as a
particularly interesting approach to modelling inverse problems [Ard+18]. This
thesis is an investigation of the intersection of inverse problems in the context
of image reconstruction and invertible neural networks.

1

1. Preliminaries

1.2 Project Description and Goals

The project description of the master thesis outlined four main goals of the
thesis. The focus of the thesis is

1. to exposition inverse problems and the related mathematical framework,

2. to exposition statistical learning and neural networks in the context of
inverse problems,

3. to examine current methods for modelling inverse problems with neural
networks,

4. to investigate potentially new models for solving inverse problems, and
comparing these with comparative models.

In Part I, we discuss the general fundamental theoretical background of inverse
problems, introduce statistical learning and data-driven methods for solving
inverse problems, and provide an exposition of neural networks with particular
focus on encoder-decoder models. In Part II, we discuss methods for solving
inverse problems in the context of neural networks, and present and motivate
our approach of invertible- and pseudo-invertible encoders. In Part III, we
present experimental results, discuss the implications, strengths and weaknesses,
and provide relevant discussion on further research opportunities for this class
of models.

1.3 Implementations and Software

We exclusively used the Python programming language using PyTorch (v1.1.0
through v1.10.0) [Pas+19] for our implementations and experiments. The
PyTorch framework provides tools and modules for constructing neural networks,
although most of our proposed models cannot be implemented using the standard
tools provided in the framework. There was therefore a need for custom classes
and modules for neural networks with methods for adjoint- and inverse operators.
We will briefly discuss our implementation and methods.

We programmed custom modules for adjoint and invertible operators
for dense, convolutional, as well as seperable patch layers (Definition 4.3.3).
Additionally, special modules were programmed for orthogonal layer structures
with specific methods for updating their weight and base operators via
Riemannian gradient descent, as well as the resolvent layers (see Section 6.4).
To easily combine these modules for invertible networks, we also developed
specific tools for inverse splitting, permutation, and composition of sequential
blocks with specific methods for adjoint and inverse computation. Furthermore,
all proposed activation functions (see Sections 6.2 and 6.3) were programmed
as modular layer structures, and we implemented specific tools for computing
relevant metrics and objectives.

Most of the challenges we faced during the programming of these structures
were in relation to convolutional layer modules. When we started our work, the
version of PyTorch we used (v.1.1.0) did not have specific modules for circular
boundary conditions, which was essential for our purposes. Furthermore, the
built-in tools for the Fourier transform were limited and did not allow for gradient

2

1.4. Summary of Contributions

computations. We initially implemented convolution operators explicitly by
constructing sparse circulant Toeplitz matrices, which were computationally
expensive. Furthermore, sparse matrix representations could not be successively
applied to built-in optimization methods. As we progressed, the PyTorch
framework received updates which featured circular boundary conditions for
convolution as well as gradient computation for the Fourier transform (v.1.7.0).
However, circular boundary conditions with transposed convolution operators
are still not implemented. As these are coded in low-level implementations
in C using the CUDA framework [NVF20], we did not have the resources to
construct specialized code for this purpose. These difficulties limited the scope
of our experiments on convolutional invertible encoders.

Furthermore, the computation of network Jacobians in PyTorch has certain
stability issues, which manifests as errors if the computational graph for
backpropigation becomes too complex, which is the case for invertible encoder
networks, as the same parameters feature multiple times in a graph. This
leads to issues in computing the relative condition numbers via the Jacobian in
certain models. Another issue is that our implementations of these computations
are quite memory expensive, sometimes requiring 100+ GB of RAM, so any
researcher who wants to individually verify our results should be aware of the
computational overhead involved.

The source code of our repository is available on GitHub1, and our
experiments were conducted using the Jupyter Notebook format with fixed
seeding of the random number generator to promote reproducibility. Note
that seeding is often dependent on the underlying operating system as well as
CPU/GPU. Our experiments were conducted on the ML-Nodes at UiO with
RTX2080Ti GPUs and Intel Xeon CPUs.

1.4 Summary of Contributions

• Our definition of the so-called seperable patch layers (Definition 4.3.3) are
directly inspired by the model proposed in [Tol+21]. Our contribution
is limited to the generalized formulation as composable single network
layers.

• The conditional additive coupling layers from Definition 4.3.6, which are
constructed via convex combinations to act as a conditional bias term for
stochastic sampling layers is an original contribution.

• The results from Proposition 4.4.4 and Definition 4.4.3 for estimating
sensitivity imbalance based on the notion of a sensitivity equilibrium
between forward and inverse compact operators are original contributions.

• Invertible encoder networks (Corollary 6.1.7) and the related results
on invertible and pseudo-invertible encoder networks (Definitions 6.4.1
and 6.1.2, Propositions 6.1.5 and 6.1.6, and Lemma 6.1.3) are – to the
best of our knowledge – a new approach to invertible neural networks.

• All bi-Lipschitzian piecewise diffeomorphic activation functions proposed
in Section 6.2 are original contributions.

1https://github.com/PolterZeit/invertible_encoders

3

https://github.com/PolterZeit/invertible_encoders

1. Preliminaries

• Our proposed invertible Dirichlet-Softmax transform from Proposi-
tion 6.3.4 is an original contribution.

• The theory of Riemannian manifold learning is based on [AMS08; Cas19],
and our contribution is limited to the software implementation for manifold
learning on SO(n),St(n, k) and the applications of these methods for
constructing invertible neural networks.

• The results on invertible resolvent operators in neural networks (Proposi-
tions 6.4.15 and 6.4.16) are original contributions.

• Lastly, we note that all our custom modules and software for applying
invertible encoders in neural networks in PyTorch are original contribu-
tions.

1.5 Prerequisites and Fundamentals

When writing a thesis in a field as broad as Data Science, one needs to consider
the variation in the mathematical background of possible readers. Thus, certain
definitions and results that may be familiar to some might be unknown to others.
To accommodate for this, we outline some fundamental results in Appendix A
to properly define the mathematical tools behind the argumentation in the text,
and to adhere to a level of rigour.

However, anyone who finds themselves sifting through a summary of
mathematical definitions is almost certainly going to find the reading experience
tedious, so the the appendix is accompanied by a summary of the most relevant
results, as well as a list of notational conventions used in this thesis with
references to relevant definitions and results. Interested readers will find a
more comprehensive discussion on these topics in [AMS08; Bil95; Hal15; Lin17;
MW99; Rud87; RY08; Sch95].

Selected Fundamental Results

Hilbert Space (Definition A.1.15).
Compact Operator (Definition A.2.9).
Adjoint Operator (Definition A.2.7).
Unitary Operator (Definition A.2.12).
σ-algebra (Definition A.3.2).
Measurable Space (Definition A.3.3).
Measure Space (Definition A.3.6).
Lp space (Definition A.3.15).
Probability Space (Definition A.4.2).
Probability Distribution (Definition A.4.4).
Fourier Transform (Definition A.5.1).
Plancherel’s Theorem and the Fourier Operator (Theorem A.5.2).
Lie Groups and Manifolds (Theorem 6.4.6)
Lie Algebras and Tangent Spaces (Theorem 6.4.7).

4

1.6. Notation

1.6 Notation

• Placeholder for a variable in an expression.
K A field, either R or C.
K The closure of the field K, e.g. R = R ∪ {−∞,∞}.
Ac The complement of a set A.
A≥k The set {a ∈ A : a ≥ k}.
B(x, ε) A ball of radius epsilon, centered at x.
Cn(A) Space of functions of nth order continuity on A.
f ◦ g The function composition of functions f, g.
f ∝ g f is proportional to g up to a constant c, f(x) = cg(x)
x The complex conjugate of x ∈ C.
JW (x) The Jacobian of W evaluated at x.
Tr(W) The trace of W .
x� y The pointwise Hadamard product (xiyi)ni=1.
x�k The pointwise exponentiation (xki)ni=1.
ε ∼ P ε is distributed as P.
ε ∼̇ P ε is approximately distributed as P.
x�k The pointwise exponentiation (xki)ni=1.
I An index set. (Definition A.1.1).
IA(x) The indicator function. (Definition A.1.4)
d(x, y) A metric. (Definition A.1.6)
‖x‖ A norm. (Definition A.1.8).
〈x, y〉 An inner product. (Definition A.1.13)
x ⊥ y Orthogonal relation. (Definition A.1.16)
A⊥ Orthogonal complement. (Definition A.1.17)
W ∗ Adjoint operator. (Theorem A.2.5)
B A basis. (Definition A.2.11)
P(A) The power set of A. (Definition A.3.1)
ν-a.e. Almost everywhere w.r.t. a measure ν. (Definition A.3.7)
M(A) Space of measurable functions on A. (Definition A.3.8)
B Borel σ-algebra. (Definition A.3.10)
‖x‖p The Lp norm. (Definition A.3.14)
Lp(A) The Lp space on A. (Definition A.3.15)
δx(A) The Dirac measure. (Definition A.3.17)
δ(x) The Dirac-δ function. (Remark A.3.18)
δij The Kronecker-δ. (Remark A.3.18)
#(A) The counting measure. (Definition A.3.19)
KN Sequence space. (Definition A.3.21)
f∗ν A pushforward measure w.r.t. f, ν. (Definition A.4.1)
P A probability measure. (Definition A.4.2)
X,Y,Z Random elements or variables. (Definition A.4.3)
P A probability distribution. (Definition A.4.4)
fX A probability density function. (Definition A.4.5)
FX A cumulative distribution function. (Definition A.4.6)
E[X] The expected value of X. (Definition A.4.9)
x̃ The Fourier transform of x. (Definition A.5.1)
F The Fourier operator. (Theorem A.5.2)
U ⊗ V Kronecker tensor product of U and V . (Definition A.7.8)

5

1. Preliminaries

1.7 Abbreviations, Nomenclature, and Data

sve/svd Singular value expansion / decomposition.
tsvd Truncated singular value decomposition.
mle Maximum likelihood estimate.
map Maximum a posteriori estimate.
elbo Evidence lower bound.
relu/birelu Regular and bi-Lipschitz rectified linear unit activation.
elu/bielu Regular and bi-Lipschitz exponential linear unit activation.
celu/bicelu Regular and bi-Lipschitz continuous exp. linear unit activation.
adam Moment based optimization algorithm for gradient descent.
ae Autoencoder, or general encoder-decoder network.
vae Variational autoencoder network.
pie Pseudo-invertible encoder network.
ie Invertible encoder network.
ire Invertible resolvent encoder network.
cnj Relative condition number by Jacobian.
cna Relative condition number by adverserial perturbation.

Abbr. Name Function

re Mean relative error 1
n

∑
i

‖yi−ŷi‖
‖yi‖

mse Mean squared error 1
n

∑
i
(yi − ŷi)2

abs Mean absolute error 1
n

∑
i
|yi − ŷi|

lhc Mean log.hyperbolic cosine 1
nβ

∑
i

ln cosh (β(yi − ŷi))

psnr Peak signal-to-noise ratio 10 log10
max(Y)2
Cmse(y,ŷ)

ssim Structural Similarity 1
n

∑
i

∑
w

(2µwy µ
w
ŷ

+ε)(2σw
yŷ

+δ)

(µwy +µw
ŷ

+ε)(σwy +σw
ŷ

+δ)

bce Mean binary cross-entropy 1
n

∑
i

∑
j
−yij ln ŷij

acc Accuracy 1
n

∑
i
I(arg maxyi = arg maxŷi)

ac5 Top-5 Accuracy 1
n

∑
i

arg maxa,b⊂yi,ŷi
∑5

j=1
I(aj = bj)

reid Relative error to identity matrix ‖I−W‖Fro
‖I‖Fro

Table 1.5: Overview of applied empirical risk functions and metrics.

Source Abbr. No.Train No.Val. Classes Spat.Dim Chan. Scaling Blur
CIFAR100 cifar 50000 10000 100 32× 32 1 1:1 None
CIFAR100 cifarAvg. 50000 10000 100 32× 32 1 1:1 Avg. 3× 3
EMNIST emnist 112800 18800 47 28× 28 1 1:1 None
MS-COCO coco 96336 4002 80 384× 384 1 1:1 None
MS-COCO coco16:1 96336 4002 80 96× 96 1 16:1 None

Table 1.6: Overview of all datasets used in our experiments and examples. More
details can be found in [Coh+17; KH09; Lin+14] as well as Section 7.1.

6

PART I

Theoretical Background

CHAPTER 2

Inverse Problems

In this chapter we provide an outline of the basic framework associated with
inverse problems posed as integral equations, and discuss what it means for a
problem to be inherently ill-posed. We discuss the mathematical tools used in
the context of these problems and show their relation to spectral theory and
harmonic analysis. Much of the foundations for this chapter is built on and
around the work in [Gro93; Han10; HNO06; Kol02].

2.1 Ill-Posedness

Semantically, the notion of an inverse requires some initial structure for such
a concept to be meaningful. We encounter these concepts in mathematics via
relations and mappings where an inverse maps elements from the co-domain
of some initial map to elements or sets of the domain. An inverse problem
similarly requires an initial problem which maps some unobserved cause to an
observed, measured effect. We call such an initial problem a forward problem
or alternatively a direct problem. Given normed spaces X ,Y as well as an
unknown probability distribution P, a forward problem consists of the following
components.

• An input element or input state x ∈ X .

• An output element or output state y ∈ Y.

• A mapping Φ : X → Y.

• A noise component ε ∼ P.

The general form of a forward problem is then given by

Φ(x) + ε = y. (2.1)

The noise component ε is the result of general uncertainty related to the output
state being observed via a measurement process. We consider this noise inherent
to the measurement process, and thus characteristic of the forward problem.
Given a forward problem, there are two natural formulations of an inverse
problem. The first and most common is the task of approximating an input state
x using the measured output state y under affection of the noise ε, requiring
assumptions on the form of the mapping Φ. In the nomenclature of this thesis,
we refer to these problems as causal inverse problems.

9

2. Inverse Problems

The second formulation originates from approximating an inverse operator
Φ-1 : Y → X which may or may not exist given the forward problem, using
observations of inputs and outputs in a data driven approach. These are
problems which we will refer to as inverse problems of model identification, and
problems on this form is at the center of this thesis. This approach differs
from Equation (2.1) as we instead look for an optimal parametrization for an
estimate of Φ-1 given the forward problem

Φ(x; θ) + ε = y, (2.2)

where we let θ be an element in a parameter space Θ encode the set of relevant
variables for the model, and refer to θ as a parameter state of Φ.

The above exposition may strike the reader as too fleeting to be of much
use in a mathematical context. It seems that in most available mathematical
literature on the subject of inverse problems there is a certain reluctance
towards providing a formal definition – in fact there does not seem to be any
acknowledged mathematical definition for inverse problems at all. Instead, the
conventions and terminology for inverse problems have been directly adopted
from the physical sciences. Thus, it might not be sufficiently clear why inverse
problems should be any more challenging to solve than a forward problem. The
fundamental difference between a forward problem and its corresponding inverse
problem coincides with the pivotal classification of mathematical problems
formulated by Jacques Hadamard [Had48].

Definition 2.1.1 (Well-posedness). The problem Φ(x) = y is called a well-posed
problem if

(i) (Existence) for all y ∈ Y there exists x ∈ X s.t. Φ(x) = y,

(ii) (Uniqueness) for all y ∈ Y there is at most one x ∈ X s.t. Φ(x) = y,

(iii) (Stability) for all (xn)n∈N ⊂ X , lim
n→∞

Φ(xn) = Φ(x) implies lim
n→∞

xn = x.

Any problem that fails to meet any of the aforementioned criteria is consequently
defined as ill-posed.

While this set of criteria are undeniably reasonable in order to constructively
solve a problem, this definition exposes an adherence to a belief that any
physical phenomena universally had well-posed mathematical equivalents. Today
however, we know that this is not necessarily the case. Generally, most inverse
problems fail to meet one or more of the aforementioned criteria, and we consider
stability (Property 2.1.1.iii) to be especially challenging.

Mathematically, this is what we generally consider to be the defining
characteristic of inverse problems, namely, that they are inherently ill-posed,
while a forward problem is on the other hand assumed to be well-posed. This
biformity makes them particularly challenging and coincidentally mathematically
interesting.

10

2.2. Integral Equations

2.2 Integral Equations

We have established that the motivation behind our understanding of inverse
problems originates from physical models, thus many inverse problems are
naturally phrased in the setting of continuous Euclidean space, and in this
domain the natural manifestation of inverse problems are equations known as
integral equations. The first recorded inverse problem that applied integral
equations is the Tautochrone problem by Abel in 1823, using Abel’s integral
equation [Abe81]. This was later developed into a comprehensive theory by
Fredholm [Fre03], now eponymously known as Fredholm Theory.

Definition 2.2.1 (Fredholm Equation, First Kind). Let S, T be open, connected
subsets of K and let w : S × T → K. Furthermore, let x : S → K, y : T → K,
and assume that y is known, and x is unknown. Then

y(t) =
∫
S
w(s, t)x(s) ds (2.3)

is called a Fredholm equation of the first kind.

The function w(s, t) is often referred to as a kernel function. The forward
problem of a Fredholm equation can thus be stated as solving Equation (2.3)
for y given x, and the inverse problem is contrarily determining x given y. In
this context, it is evident that the solution to the forward problem is a matter
of computation, while the inverse problem requires a more comprehensive
approach.

In Definition A.2.1 we define the linear operator. By restricting the kernel,
input and output functions to be square-integrable, a Fredholm equation can
be expressed as a linear operator called the Hilbert-Schmidt integral operator.

Definition 2.2.2 (Hilbert-Schmidt Integral Operator). Let S, T be open,
connected subsets of K and let w ∈ L2(S ×T). Furthermore, let x ∈ L2(S) and
y ∈ L2(T). The Hilbert-Schmidt integral operator W is then given by

(Wx)(t) =
∫
S
w(s, t)x(s) ds. (2.4)

The operator W from Definition 2.2.2 is a special case of a wider class of
Hilbert-Schmidt operators.

Definition 2.2.3 (Hilbert-Schmidt Operator Norm). Let I ⊆ N be an index
set. Given an orthonormal basis B = (vn)n∈I (Definition A.2.11) for a Hilbert
space X , if for any bounded operator W ∈ B(X) (Definition A.2.2) we have

‖W‖HS =
∑
n∈I
‖Wvn‖2 <∞, (2.5)

then W is a Hilbert-Schmidt operator, and we call ‖•‖HS the Hilbert-Schmidt
norm.

This class of operators form a linear subspace of B(X) – the space of all
bounded operators on X (Definition A.2.2). Moreover, this subspace is a Hilbert
space [Con90, p.267], and Hilbert-Schmidt operators share the property of all
being compact (Definition A.2.9 and Theorem A.7.6). The following important
theorem allows us to effectively treat compact operators as infinite dimensional
extensions of matrices.

11

2. Inverse Problems

Theorem 2.2.4 (Spectral Theorem for Compact Self-adjoint Operators). Let X
be a Hilbert space and let W : X → X be a self-adjoint operator. Then W has
an orthonormal basis of eigenvectors or eigenfunctions corresponding to real
eigenvalues.

A proof is provided in [MW99, pp.517–518]. Theorem 2.2.4 allows the
application of spectral theory in functional analysis. As we will see, spectral
theory is a powerful tool for solving inverse problems.

In addition to homogeneous integral equations introduced in Definition 2.2.1,
we also have inhomogeneous integral equations, often referred to as equations
of the second kind.

Definition 2.2.5 (Fredholm Equation, Second Kind). Let S, T be open,
connected subsets of K and let w : S × T → K. Furthermore, let x : K →
K, y : T → K, λ ∈ K \ {0}, and assume that y is known, and x is unknown.
Then

y(t) = x(t)− λ-1
∫
S
w(s, t)x(s) ds (2.6)

is called a Fredholm equation of the second kind.

The kernel w(s, t) for an inhomogeneous Fredholm equation induces a Hilbert-
Schmidt integral operator, and can be expressed as a linear operator equation on
the form y = (I − λ-1W)x. It turns out that the solution of an inhomogeneous
integral equation is closely related to the spectrum of the operator W . We
discuss this further in Section 2.3.

If the kernel of a homogeneous integral equation can be expressed as w(t−s),
the resulting equation defines a convolution. Convolution operators see a variety
of applications in physics, statistics, and signal processing. They also happen
to play an important role in modern neural network architectures.

Definition 2.2.6 (Convolution). A Fredholm equation is a convolution if the
kernel can be expressed as w(s, t) = w(t− s), and we denote it by

(w ∗ x)(t) =
∫
S

w(t− s)x(s) ds. (2.7)

A convolution can be viewed either as a binary operator acting on two
elements from distinct univariate function spaces, or an integral operator as per
Definition 2.2.2. When a forward problem is given by convolution operators,
the inverse problem becomes a deconvolution problem.

The convolution theorem (Theorem A.7.7) makes deconvolution problems
with a known kernel more or less straightforward to solve in Fourier space.
Consider the convolution given by

ỹ(ξ) = w̃(ξ) · x̃(ξ), (2.8)

which can be rewritten as

x̃(ξ) = ỹ(ξ)/w̃(ξ). (2.9)

This greatly simplifies the solution, as the input signal can then simply be
recovered by x̂ = F -1(ỹ/w̃). In the following example, we will see how issues
with ill-posedness generally prevent us from simply applying this method in
practice.

12

2.2. Integral Equations

10-3

10-2

10-1

100

101

102

Figure 2.1: Illustration of deblurring problem. Original image (left), blurred
image (middle) and noisy blurred image (right) in spatial domain (above) and
frequency domain (below).

Example 2.2.7 (Deblurring in Fourier Space). A common inverse problem in
image processing is reconstructing an original image from a low-pass filtered
image using deconvolution, called a deblurring problem. Deblurring is a inverse
problem of model identification with a compact operator, where we assume a
forward problem with a parametrized operator Wθ of the form

y = Wθx+ ε

and we want to estimate

θ̂ = arg min
θ
‖W -1

θ y − x‖.

For this task, we apply an average smoothing filter to images from the
cifar [KH09] dataset (see Table 1.6 and Section 7.1 for details). For digital
images, the convolution kernel is a discrete 3× 3 moving average filter given by
θij = 1/9 for i, j ∈ {1, 2, 3}. In addition, we apply a minor level of Gaussian
noise ε ∼ N (0, 0.012), resulting in the observed images in Figure 2.1. We
compute the filter w̃(ξ) by

w̃(ξ) = ỹ(ξ)/x̃(ξ)

which we then apply to the image point wise in the Fourier domain using
Equation (2.9). The results can be observed in Figure 2.2.

To evaluate the reconstructions, we apply the commonly used peak signal-
to-noise ratio (psnr) and structural similarity (ssim) metrics (Table 1.5). The
the reconstruction of the blurred image without noise (left) achieves a psnr
of 141.95 and a ssim of 1.0, indicating a more or less perfect reconstruction of
the original image. However, the noisy image only achieves a psnr of 5.64 and
a ssim of 0.27. We conclude that even with full knowledge of the kernel used
in the convolution, an almost imperceptible amount of added noise will result
in poor reconstruction with this approach. This demonstrates the inherent
ill-posedness of deconvolution problems.

13

2. Inverse Problems

10-3

10-2

10-1

100

101

102

Figure 2.2: Reconstructed images in Fourier domain (left) and spatial domain
(right) from deblurring problem. The deconvolution with the applied blur kernel
results in a barely recognizable reconstruction for the noisy image.

If we now consider convolutions with square integrable kernel functions in
terms of Theorem 2.2.4, i.e. operators of the form

(Wx)(t) =
∫
S
w(t− s)x(s) ds

and derive the eigenfunctions, we get an interesting result.

Proposition 2.2.8. The eigenfunctions of the convolution operator are given by

v(t) = e2πit·ξ.

Proof. Let v(s) = e2πis·ξ. A consequence of Theorem A.7.7 is that convolution
is commutative. We thus have w ∗ v = v ∗ w, so we can write

(Wv)(t) =
∫
S

w(s)e2πi(t−s)·ξ ds

= e2πit·ξ
∫
S

w(s)e−2πis·ξ ds

= w̃(ξ)v(t).

Evaluating w̃(ξ) for a fixed frequency ξ yields a scalar, which we denote as
w̃(ξ) = λξ ∈ C. We consequently have λξv(t), so the eigenfunctions of W are
on the form e2πiξs. �

The family of functions v(t) are the complex exponentials which form an
orthonormal basis for Fourier space corresponding with specific frequencies,
and these functions are fundamental in the field of harmonic analysis. We
can interpret the result of Proposition 2.2.8 as the Fourier transform acting
as a diagonalization of convolution operators. In the next section, we discuss
how this result can be generalized to solve inverse problems for other integral
equations with kernels yielding compact operators.

14

2.3. Expansion Methods and Spectral Theory

2.3 Expansion Methods and Spectral Theory

In this section, we connect the generalized Fourier series and singular value
expansion, and show how these tools are applied to solve homogeneous linear
integral equations. We also discuss some fundamental spectral theory on
Banach spaces, and show how these are useful for solving inhomogeneous
integral equations.

Recall that the most common application of the Fourier transform
(Definition A.5.1) is Fourier series expansion, the premise for which can be
derived from the properties of the sequence

BF =
(
vn : vn(t) = eint√

2π

)
n∈Z

.

Given the canonical L2-norm and inner product (Lemma A.1.14 and Defini-
tion A.1.13), we have ‖vn‖ = 1 with 〈vn, vm〉 = δnm denoting the Kronecker
delta (Remark A.3.18). Then BF is an orthonormal basis (Definition A.2.11)
for L2([−π, π]), or equivalently an orthonormal basis for L2(R/2πZ), the space
of functions with periodicity 2π which are square integrable over their period.

Definition 2.3.1 (Fourier Coefficients). Let x ∈ L2(R/2πZ). Let (cn)n∈Z be a
sequence with elements given by

cn = 〈x, e
−int〉√
2π

. (2.10)

Then (cn)n∈Z are the Fourier coefficients of x.

Definition 2.3.2 (Fourier Series). Let x ∈ L2(R/2πZ) with Fourier coefficients
(cn)n∈Z. Then

x(t) = 1√
2π

∑
n∈Z

cne
int (2.11)

is called the Fourier series expansion of x.

Thus, we can decompose the reconstruction of a Fourier series expansion
into two steps; a analysis step where we determine the Fourier coefficients,
and a synthesis step where we reconstruct the function by the Fourier series.
Appropriate scaling and shifting can be applied to functions on domains outside
the periodic interval [−π, π].

15

2. Inverse Problems

Proposition 2.2.8 tells us that the Fourier transform acts as a diagonalization
of convolution operators, in the sense that it decomposes the operator into an
orthogonal basis of Fourier coefficients. The series expansion of Fourier series
can be further generalized to alternate bases. We call these expansion methods
a generalized Fourier series.

Definition 2.3.3 (Generalized Fourier Series). Let 〈•, •〉∗ be some inner product
with an induced norm ‖•‖∗. Let S be a connected subset of K and let
B = (vn)n∈N be an orthogonal basis for L2(S). For x ∈ L2(S), let (cn)n∈Z be
a sequence with elements given by

cn = 〈x, vn〉∗
‖vn‖2∗

. (2.12)

Then we call (cn)n∈Z the generalized Fourier coefficients, and we call

x =
∑
n∈Z

cnvn (2.13)

the generalized Fourier series expansion of x.

The generalized Fourier transform is useful precisely because it allows for a
more flexible choice of basis and inner product space.

From the spectral theorem (Theorem 2.2.4) we know that we can construct
a countable orthonormal basis for self-adjoint operators, which can be extended
to compact operators by considering the self-adjoint W ∗W . This allows to
diagonalize a compact operator by generalizing the spectral decomposition in
terms of singular values.

Definition 2.3.4 (Singular Values). Let X ,Y be Hilbert spaces, and letW : X →
Y be a compact operator with adjoint operator W ∗ : Y → X . Then the square
roots of the eigenvalues ςj =

√
λj ∈ R≥0 for j ∈ N of the self-adjoint operator

W ∗W : X → X are called singular values of W .

Note that the singular values are necessarily nonnegative as W ∗W is a
positive operator (Definition A.2.8) by 〈x,W ∗Wx〉 = 〈Wx,Wx〉 ≥ 0, so its
eigenvalues must be nonnegative. Singular values are commonly encountered in
linear algebra via singular value decomposition of a matrix. It turns out that
the singular value decomposition for finite rank operators can be generalized by
the singular value expansion in functional analysis.

16

2.3. Expansion Methods and Spectral Theory

Corollary 2.3.5 (Singular Value Expansion). Let X ,Y be Hilbert spaces, let
W : X → Y be a compact linear operator with adjoint operator W ∗ : Y → X .
Let ς1 ≥ ς2 ≥ · · · > 0 be an ordered sequence of singular values of W . Then
there exist orthonormal systems (vn)n∈N ⊂ Y and (un)n∈N ⊂ X where

Wvn = ςnun and W ∗un = ςnvn (2.14)

for all n ∈ N. The system (ςn, un, vn)n∈N is called a singular system for W .
The singular value expansion (sve) of x, y w.r.t. W is given by

x(s) =
∑
n∈N
〈vn, x〉vn(s) (2.15)

y(t) =
∑
n∈N
〈un, y〉un(t) (2.16)

Proof. From Theorem 2.2.4 we know that W ∗W : X → X has an orthonormal
basis of eigenfunctions (vn)n∈N corresponding to eigenvalues (ς2n)n∈N. By
definition, we then have

W ∗Wvn = ς2nvn. (2.17)

Let un = 1
ςn
Wvn. Then W ∗un = ςnvn. Then (un)n∈N is orthonormal as

〈um, un〉 = 1
ςmςn

〈Wvm,Wvn〉 (2.18)

= 1
ςmςn

〈W ∗Wvm, vn〉 (2.19)

= ς2m
ςmςn

〈vm, vn〉 (2.20)

=
{

1, if n = m;
0, otherwise.

(2.21)

Similarly, WW ∗ : Y → Y has an orthonormal basis of eigenfunctions (un)n∈N
corresponding to the same set of eigenvalues. Then Equations (2.15) and (2.16)
follow from Definition A.2.11. �

As such, the singular value expansion can be considered a generalized
Fourier transform with respect to a compact operator W . Equation (2.14) is
sometimes referred to as the fundamental relation, and when combined with
Equation (2.16), we can construct an explicit solution for the linear system

Wx = y (2.22)

=
∑
n∈N
〈un, y〉un (2.23)

= W
∑
n∈N

〈un, y〉
ςn

vn (2.24)

x̂ =
∑
n∈N

〈un, y〉
ςn

vn. (2.25)

17

2. Inverse Problems

Equation (2.25) is in fact an infinite dimensional representation of a least squares
approximation x̂ = arg minx∈X ‖y −Wx‖22 via the pseudo-inverse of W .

Theorem 2.3.6 (Moore-Penrose Pseudoinverse). Let X ,Y be Hilbert spaces,
and let W : X → Y be a compact linear operator. Then there exists a unique
W † : Y → X such that

(i) WW †W = W ,

(ii) W †WW † = W †,

(iii) (WW †)∗ = WW †,

(iv) (W †W)∗ = W †W ,

called the Moore-Penrose generalized inverse or pseudo-inverse of W .

An exposition of the full theorem along with proofs for finite rank operators is
provided in the original paper by Sir Roger Penrose [Pen55], while an extension
to general operators is given in [Beu65].

For a causal inverse problem where the system Φ is fully given by a compact
operator W , we can construct a least squares solution by W †y = x̂. If W
has full rank we can construct this solution algebraically by taking the right-
inverse W † = (W ∗W)-1W ∗. The pseudo-inverse of finite rank operators can be
expressed by singular value decomposition (svd) [GBC16, pp.45–46] yielding

W † = V Σ†U∗ (2.26)

which is exactly the form of Equation (2.25), so the solution approximated
by singular value expansion is a least squares approximation. We have yet
to address the effect of the random element ε (Definition A.4.3). In fact, the
singular values directly affect the sensitivity of the approximate solutions.

Proposition 2.3.7 (Variance of SVE solutions). Let y = Wx + ε with
ε ∼ N (0, σ2). The variance of an sve reconstruction x̂ (Equation (2.25))
is then given by

Var[x̂] =
∑
n∈N

(
σ

ςn

)2
. (2.27)

18

2.3. Expansion Methods and Spectral Theory

Proof. Let ε(ω, t) ∼ N (0, σ2) be the random element of y(t). Then

x̂ =
∑
n∈N

〈un, y − ε〉
ςn

vn

=
∑
n∈N

〈un, y〉 − 〈un, ε〉
ςn

vn.

Excluding the non-stochastic elements, the variance can be written as

Var[x̂] = Var
[∑
n∈N

〈un, ε〉
ςn

]

=
(

1
ςn

)2
Var

[∑
n∈N
〈un, ε〉

]
,

where we interpret 〈un, ε〉 as a stochastic functional 〈un, εω〉 |ω=ω′ for some
possible realization ω′ over T . Given E[εω] = 0 we have Var[εω] = E[ε2

ω], so by
linearity of expectation we express the variance component wise as

Var[〈un, ε〉] = Var
[∫

T

un(t)εω(t) dt
]

(2.28)

=
∫

Ω

[∫
T
un(t)εω(t) dt

]2
fε(ω) dP (ω) (2.29)

=
∫
T ′

∫
T

[∫
Ω
εω(t)εω(t′)fε(ω) dP (ω)

]
un(t)un(t′) dt dt′ (2.30)

=
∫
T ′

∫
T

Cov[εω(t), εω(t′)]un(t)un(t′) dt dt′ (2.31)

= σ2
∫
T ′

∫
T
δ(t− t′)un(t)un(t′) dt dt′ (2.32)

= σ2‖un‖2 (2.33)
= σ2, (2.34)

where fε is the pdf. of ε (Definition A.4.5) and δ is the Dirac delta function
(Remark A.3.18). This yields the final expression in Equation (2.27). �

The variance of the reconstructions can consequently become arbitrarily
magnified for singular values of very low magnitude. For the purposes of
solving inverse problems, if we consider ςn → 0 as n → ∞ then clearly
x̂→∞. By the Riemann-Lesbegue lemma (Lemma A.7.3) and Proposition 2.2.8
where we showed that the eigenfunctions of convolution operators are complex
exponentials, we know this is exactly the case for deconvolution. This shows that
inverse problems of deconvolution are inherently unstable, and thus ill-posed.

19

2. Inverse Problems

Figure 2.3: Reconstructions with separable filters (above) and linear least
squares (below). The reconstructions from the blurred images (middle) are
practically identical to the original images (left), while the reconstructions from
images affected by noise (right) are more or less unrecognizable.

Example 2.3.8 (Deblurring with Least Squares). To practically illustrate the
instability of least squares solutions, we revisit our example from Example 2.2.7.
Recall that a single channel digital image can be represented as a matrix of
pixel values X ∈ Rm×n where m,n are the height and width of the image,
respectively. An image blurred with a separable filter [HNO06] is the result of
applying operators Wc ∈ Rn×n,Wr ∈ Rm×m, yielding a blurred image

Y = WcXW
∗
r . (2.35)

In our example – a moving average 3× 3 kernel – the filter is not only separable,
but also symmetric, i.e., Wc = W ∗r = Ws. In this case, a closed form estimate
for Ws can be constructed by

Ŵs = X−
1
2 (X 1

2Y X
1
2) 1

2X−
1
2 . (2.36)

A more common method is to pose the problem as an ordinary linear least
squares problem. A separable filter can be rewritten as a linear operator by

Y = WcXW
∗
r (2.37)

vec(Y) = (Wr ⊗Wc)vec(X) (2.38)
y = Wx (2.39)

where vec(X) is the lexicographical vectorization of the matrixX, and •⊗• is the
Kronecker tensor product (Definition A.7.8). Estimating the linear operator W
has the additional benefit of no assumptions of separability, and pseudoinverse
can be applied for reconstruction.

The reconstructed images from both methods can be seen in Figure 2.3. The
estimate computed by Equation (2.36) produces a reconstruction of the noisy
image with a psnr of -9.2 and a ssim of 0.04, while the linear least squares
method fares marginally better with a psnr of 4.11 and a ssim of 0.21, however
both methods perform worse than deconvolution in Fourier space. Clearly, the
inverse operators estimated using least squares methods suffer from considerable
instability.

20

2.3. Expansion Methods and Spectral Theory

Thus far, we have focused on methods for approximating homogeneous
equations with compact linear operators using least squares approximations
and series expansions. In Section 2.2 we also introduced the inhomogeneous
equations (Definition 2.2.5) on the form

y = (I − λ-1W)x. (2.40)

These equations are central in the resolvent formalism first applied by Fredholm
[Fre03] where he introduced the Fredholm alternative. a set of methods in
functional analysis which applies techniques from complex analysis to spectral
theory on operators in Banach spaces.

Suppose we want to algebraically extend the properties of univariate calculus
to applications on operators W ∈ B(X). The canonical example is the
polynomial extension where we consider

pn(z) =
∑

0≤i≤n
ciz

i, (2.41)

for some z ∈ K. The idea is that we can simply replace z with an operator
W and retain properties of the polynomial ring. From here, it is natural to
consider a functional extension to the set of holomorphic functions f ∈ Hol(C).
These functions have a unique representation for the power series

f(x) = p∞(x) =
∑
k∈Z≥0

cix
k, (2.42)

as any f ∈ Hol(C) is necessarily absolutely convergent. As the rules for
convergence are the same for operators and numbers with respect to their
norms, the properties are retained for bounded operators, justifying

p∞(W) =
∑
k∈Z≥0

ciW
k (2.43)

where we use the convention W 0 = I. The so called holomorphic functional
calculus is a homomorphism (Definition A.6.4) between C and local neighbour-
hoods of the spectra of functional Banach spaces. The homomorphism requires
a well-defined multiplicative operator on power series of operators in the form
of the Cauchy product (Definition A.7.9). From here, it is necessary to invoke
concepts from spectral theory.

Definition 2.3.9 (Resolvent Sets and Operators). Let W ∈ B(X) over K. Let
ρ(W) be a set given by

ρ(W) = {λ ∈ K : (λI −W) is bijective}. (2.44)

Furthermore let R(•,W) : ρ(W)→ B(X) be the mapping given by

R(λ,W) = (λI −W)-1. (2.45)

Then ρ(W) is called the resolvent set of W , and the operators R(λ,W) are
called resolvent operators of W .

21

2. Inverse Problems

Note that the formulations of (λI −W) and (I − λ-1W) are equivalent in
terms of determining the spectrum. By definition, the resolvent set ρ(W) is the
open set compliment of the closed spectrum ς(W), as R(λ,W) is not defined
if λ ∈ ς(W). This allows a method of defining invertable operators using the
holomorphic functional extension of geometric series.

Theorem 2.3.10 (Neumann Series). Let X be Banach and let W ∈ B(X) with
‖W‖ < 1. Then I −W is invertible and we have

(I −W)-1 =
∑
k∈Z≥0

W k. (2.46)

Hence Wn =
∑
k≤nW

k → (I −W)-1 as n→∞, and we call Wn a Neumann
series for the operator W .

Proof. Firstly, we show that the operator norm is submultiplicative. We have

‖UV ‖ = max
x 6=0

‖UV x‖
‖x‖

(2.47)

= max
V x 6=0

‖UV x‖
‖V x‖

‖V x‖
‖x‖

(2.48)

≤ max
x 6=0

‖Ux‖
‖x‖

max
x 6=0

‖V x‖
‖x‖

(2.49)

= ‖U‖‖V ‖. (2.50)

Then
∑
k≤n‖W k‖ ≤

∑
k≤n‖W‖k. As ‖W‖ < 1 the Neumann series is geometric,

and thus also Cauchy with respect to the operator norm. It follows that if X is
Banach, it is necessarily complete, so limn→∞Wn ∈ B(X) and we have

(I −W)
∑
k∈Z≥0

W k =
∑
k∈Z≥0

W k −W k+1 (2.51)

= I +
∑
k∈Z≥1

W k −W k (2.52)

= I. (2.53)

As the argument is symmetrical for right multiplication, we necessarily have∑
k∈Z≥0

W k = (I −W)-1 as the theorem states. �

Corollary 2.3.11 (Extension of Neumann Series). Let X be a Banach space and
let U, V ∈ B(X). Let U be invertible and let ‖V ‖ < 1/‖U -1‖. Then U + V is
invertible with

(U + V)-1 = (I + U -1V)-1U -1 (2.54)
= U -1(I + V U -1)-1. (2.55)

Proof. From U + V = U(I + U -1V) we have that ‖U -1V ‖ < 1, so from
Theorem 2.3.10 and the fact that U is invertible, the result trivially holds. �

22

2.3. Expansion Methods and Spectral Theory

Theorem 2.3.10 and Corollary 2.3.11 make it clear that the resolvent
operators R(λ,W) are extremely useful for solving inverse problems. In fact,
this was the precise motivation for the introduction of Fredholm theory and
spectral theory in general. For Fredholm integral equations of the second kind,
solutions can be approximated by constructing a Liouville-Neumann series.

Corollary 2.3.12 (Liouville-Neumann Series). Let (I − λ-1W)x = y be an
inhomogeneous integral equation with ‖W‖ < |λ|. Then the solution is uniquely
given by

x =
∑
k∈Z≥0

W ky

λk
, (2.56)

called the Liouville-Neumann series.

Corollary 2.3.12 follows as a direct consequence of Theorem 2.3.10
and Corollary 2.3.11, demonstrating how inverse problems can be approached
by applying resolvent operators in series expansion.

Lastly, we would like to demonstrate an often overlooked property of the
spectra of linear operators – the fact that the spectrum ς(W) is upper semi-
continuous.

Theorem 2.3.13 (Upper Semi-Continuity of Linear Operator Spectra). Let
V ∈ B(X) and let O ∈ K be an open set with ς(V) ⊆ O. Then there exists a
δ > 0 such that ς(U) ⊆ O for every U ∈ B(X) with ‖U − V ‖ < δ.

Proof. Firstly, we note that since λ ∈ Oc we necessarily have λ ∈ ρ(V),
thus R(λ, V) ∈ B(X) is well defined. Using Theorem 2.3.10, we assume that
‖W‖ = ‖(λI − V)-1(λI − U)‖ < 1 and consider

‖I − (λI − V)-1(λI − U)‖ = ‖R(λ, V)
[
(λI − V)− (λI − U)

]
‖ (2.57)

= ‖R(λ, V)
[
λI − V − λI + U

]
‖ (2.58)

≤ ‖R(λ, V)‖‖U − V ‖ < 1. (2.59)

Then setting ‖R(λ, V)‖-1 = δ results in (λI − U) being invertible by
Corollary 2.3.11, so λ ∈ ρ(U). Thus ς(U) ⊆ O and ‖U − V ‖ < δ as we
wanted. �

Theorem 2.3.13 ensures that the spectrum of an operator is well-behaved and
has semi-continuous properties. However, this semi-continuity is not restricted
from below, which could be a source of instability symptomatic of inverse
problems. In any case, resolvent operators are a powerful method for solving
inverse problems.

23

2. Inverse Problems

2.4 Discretization and Projection

Thus far, we have only considered inverse problems in the context of integral
operators (Section 2.2) acting on function spaces defined over continuous
domains. It is clear that solving these equations numerically on a computer
requires some discrete approximation. To this end, we apply discretization
to function spaces in some appropriate finite dimensional vector space via
projection operators.

Definition 2.4.1 (Projection operator). Let Z be a normed space over K, and
let A ⊂ Z be a closed subspace. Let Q : Z → Z be an operator such that

(i) Qz ∈ A for all z ∈ Z,

(ii) Qz = z for all z ∈ A.

Then Q is a projection operator onto the subspace A.

Property 2.4.1.ii is also referred to as the idempotent property, implying
that Qz = Q2z. In some literature this is considered the defining property of
projection operators. On the other hand, Property 2.4.1.i implies that the range
of Q is closed if Q is continuous. A continuous projection can therefore be
decomposed into two closed, orthogonal subspaces. This is especially important
for projection operators in Hilbert spaces.

Theorem 2.4.2 (Projection Theorem). Let Z be a Hilbert space, and let A ⊂ Z
be a closed nontrivial subspace. Then there exists a unique element z′ ∈ A such
that

‖z − z′‖ = inf
a∈A
‖z − a‖ (2.60)

if and only if (z − z′) ∈ A⊥.

A proof for Theorem 2.4.2 is provided in [Rud87, pp.79–80]. If we now
let (An)n∈N be a nested sequence of monotonically increasing subspaces, i.e.
An ⊂ An+1 ⊂ · · · ⊂ Z with associated projection operators Qn such that

lim
n→∞

‖Qnz − z‖ = 0. (2.61)

Then we have that

lim
n→∞

inf
z′∈An

‖z − z′‖ = 0, (2.62)

so Z can be approximated by a sequence of subspaces asmulti-resolution analysis.
Selecting a finite subset of such a sequence by choice or truncation yields a
discretization. Furthermore by making any such selection, we can encode a
priori information about the desired solution of a given inverse problem.

A relevant example of how such a process is applied can be made by way
of the generalized Fourier series expansion (Definition 2.3.3). By selecting a
subset of coefficients using a finite index set I ⊂ Z, the sequence of coefficients
(ci)i∈I ⊂ (cn)n∈Z can be selected to omit undesired frequencies. Thus, a priori
knowledge of the frequency band of the noise variable ε can be applied to
effectively filter unwanted frequencies. Such methods are a form of spectral

24

2.4. Discretization and Projection

K PSNR PSNR (Noise) SSIM SSIM (Noise)
750 34.876 21.462 0.995 0.887
500 30.035 26.974 0.983 0.962
250 26.273 26.097 0.962 0.959

Table 2.1: Results of deblurring example with tsvd

.

filtering, which dampens certain spectra of the full system to avoid reconstruction
errors that stem from the inherent noise. By Riemann-Lebesgue (Lemma A.7.3)
the high frequency coefficients tend to zero, so the truncation includes mostly
high-frequency components, thus truncation generally has a smoothing effect,
acting similarly to low-pass filters.

In practice, truncation is not necessarily the most effective method for
removing noise, and much of the work in the field of signal processing is
concerned with the design of effective filters for such purposes. However, in
the case of a singular system (ςn, vn, un)n∈N the values are in descending order,
and a simple truncation of the singular values at some finite K can prove very
effective.

Example 2.4.3 (Deblurring with tsvd). In Proposition 2.3.7 we showed that
the variance of solutions computed by the singular value expansion is inversely
proportional to the singular values, showing how a truncation of low magnitude
values can be effective for reducing the reconstruction error caused by the noise
component ε. To demonstrate this in practice, we can apply a truncation of the
singular values in the computed pseudo-inverse in our least squares problem
from Example 2.3.8. The solutions are computed by

x̂K =
∑

1≤n≤K

〈un, y〉
ςn

vn (2.63)

= V Σ†KU
∗y (2.64)

= W †Ky, (2.65)

and we call x̂K the truncated singular value solution (tsvd) of order K.
Truncation of expansion methods and generalized Fourier expansions can
effectively be considered a discretization of the original space. We compute
the tsvd solutions for the images in our deblurring problem. The images
are of dimension 32 × 32 so dim(y) = 1024. We perform truncation for
K = (750, 500, 250). The results can be observed in Table 2.1 and Figure 2.4.
The effect of the truncation is evident in the noisy images on the far right,
however for the nonnoisy images in the middle, we observe a decrease in quality
when compared to the original images on the far left. This demonstrates a
trade-off inherent in these methods; we trade accuracy for better robustness
to errors in our reconstructions. As such, the tsvd demonstrate how selective
discretization methods can act as a form of regularization. We will discuss
regularization methods in more depth in Section 3.5.

25

2. Inverse Problems

Figure 2.4: Reconstructions with tsvd for K1 = 750 (above), K2 = 500 (middle)
and K3 = 250 (below). Decreasing K leads to better robustness for the noisy
image (right) but a degradation in reconstruction quality for the non-noisy
images (middle).

While truncated series expansion can be effective, we often rely on basic
general methods for discrete signal representation on a computer. A common
discretization method for a connected subset S ⊂ Kd is obtained by deciding on
some strictly increasing set of abscissae (si)i∈I ⊂ S where s1 < s2 < · · · < sm.
A natural way of selecting these abscissae is by applying a fixed increment in
the domain given by ∆s, such that

si +∆s = si+1.

Note that for a multidimensional x, this imposed ordering can be selected to
be lexicographical without loss of generality, as in the case with vectorization
x = vec(X). Repeating this process over the domain T with M , we can rewrite
the integral equation in matrix form

yi = y(ti) =
m∑
j=1

∆sw(sj , ti)x(sj) (2.66)

= Wix, W ∈ Rm×n, x ∈ Rn (2.67)

which corresponds to Riemann sums over rectangular partitions. Equivalently,
we can instead interpret this as a projection from the general Lp space onto
a dense subspace of simple functions, similar to Lebesgue integration. This
interpretation has the additional benefit of corresponding to how we introduced
discretization as a projection into finite dimensional subspaces. No matter
how this method is interpreted, it can readily be extended to more advanced
numerical integration methods, as more refined methods for choosing abscissae
may be desirable for certain problems. The fixed increment ∆s is usually chosen
to yield a desired dimensionality or resolution of the discretized signal.

26

CHAPTER 3

Modelling and Learning

In Chapter 2 we showed an how the inherent uncertainty of inverse problems
affects the reconstructed solutions. Given their inherent stochastic nature, the
application of statistical methods seems perspicaciously appropriate. In this
chapter we introduce statistical modelling and learning theory to demonstrate
how these tools are directly applicable to construct data-driven solutions for
inverse problems. Most of the underlying probability theory is based on [Bil95;
Cox04; Kal02; Sch95]. Fundamental definitions and theorems are outlined in
Appendix A.4.

3.1 Statistical Modelling and Probability

Courses in applied statistical modelling commonly circumvent rigorous defin-
itions grounded in measure theory and probability theory in favor of a more
practical approach. However, for a holistic understanding of the core concepts in
statistical modelling, we find it useful to outline a rudimentary set of definitions
in these fields. We begin by delineating a set of useful definitions for dealing
with observations and data.

Proposition 3.1.1 (Observable Space). Let (Ω, E , P) be a probability space, and
let X : Ω→ X be a random element. Let B be the Borel σ-algebra on X . Then
(X ,B,P) is a probability space under the image of X, and we call (X ,B) an
observable space under X.

Proof. This follows directly from Definitions A.3.2, A.4.2 and A.4.4. B is
a Borel σ-algebra on X , and as such, (X ,B) is a measurable space. P is a
probability measure as the pre-image is X-1(X) = Ω (Definition A.1.3), i.e.
P(X) = X∗P (X) = P (Ω) = 1. Thus (X ,B,P) is a probability space. �

Note that we exclude the probability distribution P from the definition of
an observable space, as it is not directly observable, and thus unknown to us by
simple observation. As such, we consider an observable space as induced from;
and not itself a probability space. A given number of available elements from
an observable space forms a dataset.

27

3. Modelling and Learning

Definition 3.1.2 (Dataset). Let (X ,B) be an observable space under X : Ω→ X ,
and let I be a finite index set. Then any sequence D = (xi ∈ X)i∈I is called a
dataset.

Generally, we consider X ⊆ Rd and, unless explicitly specified, do not
consider the order imposed by the index set I to carry any particular meaning
other than that D is countable. Note that even if X is a d-dimensional random
variable, this does not mean its elements are identically distributed. For our
purposes, we take the liberty of considering a multivariate random variable as
actualizations of d distinct random variables, and the multivariate convention
is simply a useful conceptualization. This is a highly simplified approach, but
is useful for the purposes of exposition for providing a top-down overview of
statistical modelling.

Proposition 3.1.1 and Definition 3.1.2 will prove useful in constructing the
necessary definitions for what we mean by statistical modelling. In addition to
these, we will require definitions for what we mean when we talk about families
of probability distributions.

Definition 3.1.3 (Parametric Family of Probability Distributions). Let (X ,B)
be an observable space. Let Θ be a parameter space, and let P be a set given
by P = {Pθ : Pθ is a probability measure on (X ,B)}θ∈Θ. Then P is a family of
parametrized probability distributions.

If there exists a bijective mapping θ 7→ Pθ we say that P is identifiable.
The parametrization θ 7→ Pθ is not strictly required for P to act as a family
of distributions. It is also worth mentioning that the bijectivity of θ 7→ Pθ
ensures that for every θ 6= θ′ we have Pθ 6= Pθ′ , such that each probability
distribution is identifiable by its parametrization. Definition 3.1.3 can perhaps
best be illustrated with the following canonical example.

Example 3.1.4 (Family of Independent Multivariate Gaussians). Consider the
parametric family of probability distributions given by P = {Nθ : θ = (µ, σ2I)}
with µ ∈ Rd, σ2 ∈ R>0. This family yields a parameter space Θ = Rd × R>0.
As each parametrization yields a unique probability distribution, the mapping
is necessarily injective. Furthermore, as the parameter space spans Rd × R>0,
the mapping is surjective, and thus also bijective. We can conclude that P is
an identifiable parametric family of probability distributions.

With this clarification, we are now in possession of all necessary components
to provide a rigorous definition for what we mean by a statistical model [McC02].

Definition 3.1.5 (Statistical Model). Let (X ,B) be an observable space, and let
P be a family of probability distributions on (X ,B). Then the pair (X ,P) is a
statistical model.

28

3.1. Statistical Modelling and Probability

Given Definition 3.1.5, it becomes clear how statistical modelling is concerned
with defining a suitable P with respect to an observable space (X ,B). As
previously mentioned, an observable space is only available to us via a fixed
number of observations from a dataset D, which allows us to infer a distribution
based on assumptions and observations of the underlying structure. The most
basic statistical models can be constructed by constricting P to only contain
the empirical distribution.

Example 3.1.6 (Empirical Distribution). Let (X ,B) be an observable space and
let D be a dataset on X with #(D) = n, with # being the counting measure
(Definition A.3.19). Let P̂ : B → [0, 1] be such that for all B ∈ B we have

P̂(B) = 1
n

n∑
i=1

δxi(B). (3.1)

where δx is the Dirac measure (Definition A.3.17). Then P̂ is an empirical
probability distribution on X given the dataset D.

While the set P̂ = {P̂} is a singleton set, only containing an empirical
distribution defined by the observations in D, we still consider P̂ to be a
’family’, and thus regard (X , P̂) to fulfill the requirements of Definition 3.1.5.
The fundamental lack of assumptions on X means the empirical distribution is
inherently unbiased, but does rely on large amounts of observations to provide
a accurate estimates of the true distribution.

It is worth clarifying the difference between parametric and non-parametric
statistical models; a classical discernment of statistical models with respect to
the dimensionality of the induced parameter space.

Definition 3.1.7 (Parametric Models). Let (X ,P) be a statistical model. We
say a model is

(i) parametric if dim(Θ) <∞,

(ii) nonparametric otherwise.

A common way of interpreting Property 3.1.7.ii is to consider the underlying
model structure of a nonparametric model as not being clearly defined in
advance, so that the dimensionality of the parameter space can grow arbitrarily.
This provides greater flexibility and fewer assumptions as we discussed in the
case of the empirical distribution; generally considered to be a nonparametric
model. On the other hand, parametric models allow us to fit a model using
a fixed number of parameters, which are then estimated to yield the most
appropriate distribution given the observed data. The most common approach
for parameter estimation is via optimization of a likelihood function [GH13,
p.9].

Definition 3.1.8 (Likelihood Function). Let (X ,P) be a statistical model
parametrized by θ ∈ Θ. Let D be a dataset on X . Then L : Θ × X → [0, 1]
given by

L (θ;D) ∝ Pθ(D) (3.2)

is called the likelihood of the parameter θ.

29

3. Modelling and Learning

Very often in practical likelihood estimation, we assume that xi ∈ D are
independent and identically distributed (iid.) observations for which – in the
case of continuous probability distributions – we arrive at

L (θ;D) ∝
∏
i∈I

fX(xi; θ). (3.3)

For computational convenience, we often apply a logarithmic transformation to
the likelihood function. This allows us to change the product to a sum, yielding
the log-likelihood function given by

log L (θ;D) ∝
∑
i∈I

log fX(xi; θ), (3.4)

which is commonly more easy to deal with in an optimization setting. A
maximum likelihood estimate is the point in the parameter space Θ given by

θmle = arg max
θ

L (θ;D), (3.5)

and by the strict monotonicity of the logarithm, this is equivalent to

θmle = arg max
θ

log L (θ;D). (3.6)

Often the goal of statistical modelling is to establish relations between
variables by investigating conditional structures between observations - which
requires a clearer definition of conditional probability. The concept of conditional
probability is commonly introduced by way of conditional expectation.

Definition 3.1.9 (Conditional Expectation). Let (Ω, E , P) be a probability space,
and let Y : Ω → Rd,Y ∈ L1(Ω, E , P). Let F ⊆ E be a sub σ-algebra. The
conditional expectation of Y is a F-measurable random variable such that∫

F∈F
E[Y | F] dP =

∫
F∈F

Y dP = E[IF∈FY]. (3.7)

While the conditional expectation and conditional probability are assumed
well known to the reader, Definition 3.1.9 can at first glance seem unfamiliar.
To relate this to practice, let X : Ω → Rp be a random variable, and let
F = {X-1(B) : B ∈ B(Rp)}. Then F is the σ-algebra generated by X, which
is indeed a sub σ-algebra of E , and we write E[Y | F] = E[Y | X]. This
should align with practical probabilistic intuition and can be used to formalize
the definition of regular conditional probability as a parametrized family of
probability distributions.

Definition 3.1.10. Let (Ω, E , P) be a probability space, and let F ⊂ E be a sub
σ-algebra. The conditional probability of E ∈ E with respect to F is given by

P (E | F) = E[IE | F]. (3.8)

We note that both Definitions 3.1.9 and 3.1.10 require certain theorems to
ensure uniqueness and existence of conditional probability, which interested
readers can verify in [Bil95; Sch95].

30

3.1. Statistical Modelling and Probability

Conditional probability is a very powerful tool which establishes a foundation
for the probabilistic framework known as Bayesian inference. For instance, the
maximum likelihood estimator can be more naturally formulated in a conditional
probability setting by considering

θmle = arg max
θ

L (θ;D) ∝ P(D | θ). (3.9)

This formulation implies that Θ has an associated probability distribution,
and the parameters are random variables ϑ : Ω → Θ, inducing a observable
space (Θ, T). In this context, the probability distribution Pϑ is called the
prior distribution and the probability distribution PX is called the marginal
distribution. The interpretation of parameters as random variables is natural in
Bayesian inference, and is formalized in Bayes’ theorem.

Theorem 3.1.11 (Bayes). Let (Ω, E , P) be a probability space. Let X : Ω→ X
such that (X ,BX) is an associated observable space. Let ϑ : Ω→ Θ be a random
variable such that (Θ,BΘ) is an associated observable space. Then the pdf. of
the conditional probability distribution Pϑ|X is given by

fϑ|X(θ | x) =
fX|ϑ(x | θ)fϑ(θ)

fX(x) (3.10)

and we call the distribution Pϑ|X the posterior distribution.

Our exposition of Theorem 3.1.11 is a simplification from [Sch95, Theorem
1.31], which formalizes the theorem in the probability theoretic setting. When
applying Bayesian inference, we usually start with some initial belief on the
parameters for P encoded via the prior distribution. This belief is subsequently
updated by the evidence – the observed data we have at hand – to form a
posterior distribution. The advantage of the Bayesian framework is that we
effectively model all relevant uncertainties, while effectively encoding a priori
information in the form of domain knowledge or particular knowledge of the
task at hand in the choice of prior distribution. The disadvantage with this
approach is that the choice of prior distributions can significantly alter the
outcome, thus the objective validity of the model is diminished. Furthermore,
the marginal distribution PX is generally intractable, and often only available
through approximation.

While Bayesian inference provides the modeller with estimated probab-
ility distributions over all parameters, point estimates can be obtained by
constructing a maximum a posteriori estimate (map) given by

θmap = arg max
θ

fϑ|X(θ | x) ∝ fX|ϑ(x | θ)fϑ(θ). (3.11)

31

3. Modelling and Learning

3.2 Statistical Learning and Hypothesis Spaces

In the previous section, we introduced the classical definition of statistical
modelling and provided a general outline of a more comprehensive probability
theory. This section is intended to generalize the concept of statistical models
into a more comprehensive theory of statistical learning theory [HTF09], which
lays the foundation for machine learning and provides us with a taxonomy of
model categories which is useful for further discussion. In a statistical learning
context, we are often interested in estimating an unknown data generation
mechanism by

y = Φ(x; θ) + ε, (3.12)

where (x, y)i∈I are observations from some observable space (X × Y,B) over
the product space X × Y generated by X,Y called independent and dependent
variables. The most comprehensive approach is to construct a classical statistical
model for Equation (3.12) by reformulating the problem as

Y | X ∼ Pθ, (3.13)

which can either be estimated via classical or Bayesian approaches. Very often,
the purpose of the model is to provide a point estimate for the dependent variable
Y conditioned on the independent variable X via the conditional expectation
Eθ[Y | X = x]. When this model explicitly relies on estimating probability
distributions Pθ – as is the case for Definition 3.1.5 – we refer to the model as
probabilistic.

As mentioned in the previous section, Bayesian inference and modelling
[Gel+14] provides the most comprehensive methodology for constructing
probabilistic models by pursuing an exhaustive determination of all uncertainties
related to the model, including probability distributions on the parameter space
Θ. This approach yields highly robust, inferable models, but can become
prohibitively costly in terms of computational resources – especially for high-
dimensional data. High-dimensional data also exacerbates the importance of
a choice of prior distributions, which – as previously mentioned – is often
influential on the resulting posterior distribution.

The alternative to a probabilistic approach is to construct deterministic
models, sometimes referred to as distribution-free models. A deterministic model
will to some extent disregard elements of underlying probability distributions
and sacrifice measures of uncertainty for computational efficiency or better
point estimates. The lack of uncertainty measures and inference capabilities
in distribution-free prediction models have been highlighted by some as the
conceptual divide between statistics and machine learning [BAK18; Fri98] and
raises a pertinent question; is there a place for discriminative models in statistics,
without explicit probabilistic modelling? One could always make a case for the
fact that some non-parametric prediction models – e.g. k-nearest neighbours
(kNN) [FH89] or decision trees [Bre+84] – make few to no assumptions on the
underlying probability distribution and instead constructs discrete partitions
of the solution space. Given that this does not provide an explicit probability
distribution, such a partitioning does not align with the classic definition of
a statistical model, given in Definition 3.1.5. However, the partitioning of an
observable space is intimately related to the construction of histograms and

32

3.2. Statistical Learning and Hypothesis Spaces

empirical probability distributions (Example 3.1.6) – which is undeniably central
to classical statistical theory. With this in mind, there is certainly some merit
in expanding the definition of statistical models to include distribution-free
models – particularly in the context of machine learning tasks. Indeed, many of
the recent groundbreaking approaches to data driven methods for mathematical
modelling has come from the paradigm of machine learning, which has instigated
the interest of many classically trained statisticians and has served to broaden
both fields. One motivation for the generalized approach of statistical learning
methods is to accommodate for both deterministic and probabilistic models
defined on observable spaces. To unify both approaches, we generalize the
definition of a statistical model by considering relevant hypothesis spaces [Blo10;
HW21].

Definition 3.2.1 (Parametric Hypothesis Space). Let (X ,B) be an observable
space and let Z be some space of interest. Let Θ be a parameter space and
let H be a set given by H = {hθ : X → Z}θ∈Θ. Then H is a parametrized
hypothesis space on X .

Similar to Definition 3.1.5 the parametrization is not a strict requirement,
and if θ 7→ hθ is bijective, we say H is identifiable. Note that any mention
of the space Z is left intentionally ambiguous. This allows sufficient flexibility
for the hypothesis space to allow for either point estimates (i.e., Z ⊆ X),
density estimates (i.e., hθ ≈ fX), or other estimates of interest. In other words,
considering a hypothesis space H instead of a family of probability distributions
P allows more flexibility, allowing us to extend Definition 3.1.5 to the more
general class of learning models.

Definition 3.2.2 (Learning Model). Let (X ,B) be an observable space, and let
H be a hypothesis space over X . Then (X ,H) is called a learning model.

Definition 3.2.2 allows us to consider probabilistic and deterministic models
in a more unified context. Note that we do not require the observable space to
be generated by a dependent and independent variable explicitly. Instead we
call models that are estimated with a dependent variable for each independent
variable for supervised learning models. Conversely, models that do not use a
dependent variable are called unsupervised learning models. A semi-supervised
learning model can be considered a hybrid model, where we have a limited
number of observations featuring dependent variables.

The distinction between deterministic models and probabilistic models can
be extended to either two or three distinct classes, depending on the literature.
According to [Jeb03, Chapter 2], we differentiate between fully discriminative
models, conditional models, and generative models. We will use this taxonomy
as a baseline for the nomenclature of this thesis.

Definition 3.2.3 (Discriminative Learning Model). Let (X × Y,H) be a
parametrized learning model. Let hθ : X → Y be an approximation of the
conditional expectation E[Y | X = x]. Then (X×Y,H) is called a discriminative
learning model.

A discriminative model provides non-probabilistic statistical point estimates,
which can be made without any explicit probability distribution. If we utilize a
probabilistic approach with explicit dependence on a parametrized family of
probability distributions, we instead call such models conditional.

33

3. Modelling and Learning

Definition 3.2.4 (Conditional Learning Model). Let (X × Y,H) be a paramet-
rized learning model. Let hθ be an approximation of the conditional density of
the random variable X | Y such that fX|Y ≈ hθ. Then (X × Y,H) is called a
conditional learning model.

We note that by the alternative nomenclature of [NJ02] both models
outlined in Definitions 3.2.3 and 3.2.4 are termed discriminative. The goal of
discriminative modelling is commonly to derive a high quality point estimate
for the expectation of the dependent random variable Y conditioned on the
observed random variable X.

A more comprehensive probabilistic approach can be applied to construct
models that better approximate the underlying data generation process and
can be used to effectively synthesize data via sampling via a estimated joint
probability distribution. We call such models generative.

Definition 3.2.5 (Generative Model). Let (X × Y,H) be a parametrized
learning model. Let hθ be an approximation of the joint distribution over
the random variables X,Y such that fXY ≈ hθ. Then (X × Y,H) is called a
generative model.

Examples of generative models include Bayesian networks [Ben08], mixture
models [Gel+14, pp.519–543] and hidden Markov models [GH13, p.124].

Approaching the modelling process generatively has some rather unique
benefits. By modelling the joint probability distribution, we effectively have a
more complete probabilistic model, which can be designed to be more robust
and flexible to either outliers, missing, or corrupt data [GDB19; Yin18]. This
makes it especially stronger for online learning tasks, and allows the model to
be effectively retrained to include more classes. Such an approach is often not
possible with discriminative models, and generally prohibitive with conditional
models.

Additionally, generative models can offer much in terms of inference,
especially if they are constructed as probabilistic graphical models [DFO20,
Section 8.5] which are designed to model the conditional dependencies of all
variables in a problem. These dependencies require an explicit definition in
return for inferable relationships for multilevel hierarchical conditional structures
in the data. Furthermore, the synthesis aspect of generative modelling allows
a modeller to sample or interpolate to generate data, which can be directly
applied in inference tasks.

All of this makes generative modelling an attractive prospect, but as [Jeb03,
Chapter 2] points out, this flexibility comes at a cost. There is generally a lack
of model accuracy when applied directly to discriminative tasks. In certain
predictive applications, this gap in predictive power between discriminative
and generative modelling is too wide for effective deployment. In addition, as
many generative models are modelled with probabilistic methods, they become
prohibitively expensive in terms of computational resources, while typically
requiring a much higher number of observations to approximate the underlying
probability distribution adequately.

34

3.3. Modelling Linear Inverse Problems

3.3 Modelling Linear Inverse Problems

In this section, we apply the concepts from previous sections and chapters
to outline the general modelling process in the context of inverse problems.
From Section 2.3 we recall the singular value expansion of Corollary 2.3.5 as a
method for solving inverse problems given integral operators and mentioned that
compact operators and Hilbert-Schmidt operators can be considered extensions
of matrices. Furthermore, in Section 2.4, we described how continuous problems
can be solved numerically by projection onto a discrete space, and in Sections 3.1
and 3.2 we discussed the applications of statistical modelling and machine
learning. We now want to explicitly connect the concept of integral equations in
function spaces to finite-dimensional cases to construct computational learning
models. In this chapter, we will mainly consider linear inverse problems.

Definition 3.3.1 (Linear Problems). Let X ,Y be Hilbert spaces, and let
Φ : X → Y be given by a linear operator (Definition A.2.1). Then Φ(x) + ε = y
is a linear forward problem, and we subsequently refer to the associated inverse
problem as a linear inverse problem.

From Section 2.2 we know that a Fredholm integral equation induces a
compact linear Hilbert-Schmidt operator. We can thus consider a continuous
signal as a discretized operator via an appropriate projection to construct a
linear discrete problem. We briefly discussed the basic discretization process
in the end of Section 2.4, and we now demonstrate how this can be applied in
practice.

Example 3.3.2 (Discretization of Linear Forward Problem). Assume we have
an integral equation given a random variable X ∈ L2(Ω× R) given by

Y(ω, t) =
∫
S
w(s, t)X(ω, s) ds. (3.14)

Now assume some discretization process over S, T such that

Yk(ω) = Y(ω, tk) (3.15)

=
S∑
j=1

w(sj , tk)X(ω, sj) (3.16)

=
S∑
j=1

WjkXj(ω). (3.17)

This gives us two multivariate random variables, Y(T) : Ω → Y ⊆ RT , and
X(S) : Ω → X ⊆ RS . Consider a parametrized hypothesis space (X × Y,H)
where hθ(x) = Wθx for a parametrized linear operator, as well as a dataset
D =

((
X(S)(ωi),Y(T)(ωi)

)
: ωi ∈ Ω

)
i∈I

. The problem can be formulated as

y = hθ(x) + ε = Wθx+ ε (3.18)
= Φ(x, θ) + ε, (3.19)

where θ 7→ hθ is a discrete parametrization of the learning model for the
unknown functional operator W associated with Φ.

35

3. Modelling and Learning

Remark 3.3.3. Applied statistics often adapt the convention of considering
independent variables in a design matrix X, which is considered an operator
for a discrete causal linear inverse problem

y = Xθ + ε (3.20)
= Φ(θ) + ε, (3.21)

as opposed to a model identification problem of the same form

yi = Wθxi + ε (3.22)
= Φ(x; θ) + ε. (3.23)

The causal formulation poses regression as an inverse problem where we are
interested in determining the parametrization θ which generates the outputs yi.
On the other hand, the model identification problem poses this as a forward
problem, and the implication is that we are interested in first determining a
parametrization for an invertible operator θ 7→ Wθ which we want to use to
reconstruct xi given yi. Both formulations are inverse problems in their own
right, however we will primarily focus on model identification problems in this
thesis.

Note that we will apply lowercase notation for both independent and
dependent observed variables to differentiate between operators and observations.
Primarily, we generalize an operatorWθ : X → Y over an N dimensional dataset
by considering x ∈ X ⊆ RS×N , y ∈ Y ⊆ RT×N . Then Wθ ∈ RT×S such that
y = Wθx+ε for some ε ∈ RT×N . Subsequently, when we index the data by xi or
yi, we refer to the index i ∈ I of the dataset D, and not necessarily the row of the
matrices. We should also mention that least-squares problems generally include
a bias term for translation away from the origin, thus the problems are often
given in the form y = Wθ1:dx+ θ0 + ε. Without loss of generality, we adopt the
convention of assuming an augmented affine transformation (Definition A.7.18).

In the model identification problem, the first objective is to estimate Wθ

using observations from D. This problem is ill-posed, as the uncertainty of Y
captured via the noise component ε implies y /∈ range(W) almost surely. Any
such problem can be solved by finding a least squares approximation over the
parameter space Θ, given by

θ̂ = arg min
θ
‖y −Wθx‖22, (3.24)

which corresponds to a linear regression problem. At first glance, this method
seems comparatively different from likelihood estimation (Definition 3.1.8), but
for a centered symmetric homoscedastic noise component these two methods
coincide. We demonstrate this by a familiar example.

36

3.3. Modelling Linear Inverse Problems

Example 3.3.4 (Estimation in Linear Regression). Let (X × Y,H) be a
parametrized hypothesis space over a dataset D with n observations. Assume
y = hθ(x) + ε ∈ Rn, and assume εᵀ ∼ N (0, σ2I). Let hθ(x) = θᵀx ∈ R1×S

so we have yᵀ ∼ N (θᵀx, σ2I). Then we can estimate the operator using the
likelihood function

θ̂ = arg max
θ

L (θ | D) = arg max
θ

fY(θᵀx, σ2I) (3.25)

= arg max
θ

n∏
i=1

1√
2πσ2

exp
(
− (yi − 〈θ, xi〉)2

2σ2

)
(3.26)

= arg max
θ

n∑
i=1
−2 log s− log(2π)− (yi − 〈θ, xi〉)2

2σ2 . (3.27)

This corresponds to minimizing the least-squares objective

arg max
θ

L (θ | D) = arg max
θ
‖y − θᵀx‖22 (3.28)

= arg max
θ
‖y −Wθx‖22 (3.29)

Conceptually, Example 3.3.4 exposes a setting where likelihood estimation
and the distribution-free approach using least squares are equivalent. Both
methods minimize a risk functional [Jeb03; Vap92] which is quantified by an
objective function, alternatively called a loss or cost function which quantifies
some notion of discrepancy or induced metric (Definition A.1.6) between a
desired response and the response of a given learning model. The objective
function can be selected specifically for a given learning task, but in a supervised
learning task for some hypothesis space (X × Y,H), we often work with
an objective function C : Y × Y → R generally selected to be convex
(Definition A.7.19) and satisfying

y = arg min
hθ(x)

C
(
hθ(x), y

)
, (3.30)

that is to say, C has a minima at hθ(x) = y. Evaluating a risk functional
generally requires integration over the joint density fXY, which we do not have
access to. In practice, we instead approximate the joint distribution using an
empirical distribution P̂X,Y (see Example 3.1.6), and we instead refer to this as
minimizing an empirical risk function.

In Section 2.3 we discussed how least squares solutions can be expressed
by way the pseudoinverse (Theorem 2.3.6) equivalently to the reconstruction
by singular value expansion from Equation (2.25). This algebraic formulation
provides us with another useful interpretation. By the projection theorem
(Theorem 2.4.2), we can consider the operator

H = WW † (3.31)

called the hat operator or hat matrix, which is an orthogonal projection onto
the column space of W - sometimes called the model space - such that

(y −Hy) = (I −H)y = Ry (3.32)

where Ry are the residuals, orthogonal to the approximation Hy. Then for a
linear model W we have ε ∈ range(R), i.e. the noise is an element in the range

37

3. Modelling and Learning

of R, and range(R) ⊥ range(H). An equivalent probabilistic definition can be
constructed via the conditional expectation (Definition 3.1.9).

Observation 3.3.5. Let (Ω, E , P) be an probability space, and let F ⊂ E be a
sub σ-algebra. Then E[• | F] is a projection L2(Ω, E , P) 7→ L2(Ω,F , P).

Proof. For E[• | F] to be a projection we need to show that Property 2.4.1.i
(closed) and Property 2.4.1.ii (idempotent) holds. Firstly, let Y ∈ L2(Ω, E , P).
Then clearly E[Y | F] ∈ L2(Ω,F , P), so Property 2.4.1.i must hold.
Furthermore, for Y ∈ L2(Ω,F , P) we have E[Y | F] = Y, thus Property 2.4.1.ii
also holds, and so E[• | F] is a projection. �

Observation 3.3.5 in conjunction with Theorem 2.4.2 thus tells us that given
F being the sub σ-algebra generated by X, the conditional expectation of Y | X
is such that (Y − E[Y | X]) ⊥ L2(Ω,F , P). This is exactly the same as we
saw in the linear case, where range(R) ⊥ range(H). Intuitively, the conditional
expectation minimizes the prediction error given the sub σ-algebra generated by
X w.r.t. the norm induced by L2(Ω, E , P), and the hat matrix H equivalently
minimizes the prediction error in a linear least squares model. In the case of
Example 3.3.4, these methods coincide.

3.4 Modelling Non-Linear Inverse Problems

Thus far, we have focused on inverse problems whose forward problem can be
expressed by a linear operator, which we refer to as linear inverse problems
(Definition 3.3.1). Any inverse problem which does not meet this requirement
is called a nonlinear inverse problem. In this section we will briefly outline how
we can construct models for dealing with such problems. The most common
approach for non-linear modelling is by data transformation [BK19, pp.122–124]
via a linear predictor.

Definition 3.4.1 (Linear Predictor). Let (X × Y,B) be an observable space,
and let H be a Hilbert space with dim(H) = dim(Y). Let Wθ : X → H be a
compact linear operator with parametrization θ 7→Wθ. Then

ηi = Wθxi (3.33)

is called a linear predictor.

The purpose of the linear predictor is to establish a linear map between the
input data points x ∈ X and the linear predictor η ∈ H with a goal of finding
some explicit mapping γ : H → Y. In the context of generalized linear models
[NW72], these functions are referred to as link functions.

Definition 3.4.2 (Link Function). Let ηi : X → H be a linear predictor and let
g : Y → H be a bijective map. Let µi = E[Yi | Xi = xi]. Then

ηi = g(µi) (3.34)

is a link function.

38

3.4. Modelling Non-Linear Inverse Problems

Generalized linear models are constructed explicitly for modelling random
variables in the exponential distribution family - a very common parametrized
family of probability distributions (Definition 3.1.3). The most straightforward
example of a generalized linear model is by the identity link g = g-1 = id,
which amounts to an ordinary linear regression model (Example 3.3.4). A more
interesting link function is applied in logistic regression which uses the logit-link
function given by

logit(pi) = log
(

pi
1− pi

)
, (3.35)

which yields the log-odds of a probability pi = P (Yi = 1). As the link
function is bijective, the map logit : [0, 1]→ R is bijective, and the inverse map
logit-1 : R→ [0, 1] is given by

logit-1(ηi) = logistic(ηi) = 1
1 + exp(−ηi)

. (3.36)

The inverse of the logit-link function is called the logistic function, sometimes
referred to as the sigmoid function, especially in the context of neural networks
[GBC16, p.67]. Logistic regression is the canonical method for discrete
classification tasks and is assumed known to the reader. For more details
on generalized linear models we refer to [Agr15].

When constructing a generalized linear model, we utilize a linear predictor
and some appropriate nonlinear transformations. This idea can be generalized
to model observations that are not necessarily restricted to the exponential
distribution family by some inferred function γ : H → Y allowing us to apply
linear estimation methods by considering a parametrized hypothesis space H
of models hθ = γ(ηi). We call such methods linearized transformations, . A
more general method for linearization of features which act non-linearly on Y
is linear basis expansion, which appends features with some linear combination
of functions on X .

Definition 3.4.3 (Linear Basis Expansion). Let (X × Y,H) be a parametrized
learning model, and let hθ : X → Y be given by

hθ(xi) =
∑
j

θjγj(xi). (3.37)

where γj : R→ R. Then hθ is a linear basis expansion.

Linear basis expansion allows us to enlarge or transform the input space
by augmenting the dependent observations xi with derived features. This can
take the form of indicator functions, polynomials, splines, and other nonlinear
transformations. Linear basis expansion allows us to model more complicated
solution spaces with linear methods, but suffers from interpolation problems in
terms of locality and globality [HTF09, Chapter 5] – as well as the overfitting
issues common to high variance models. Deciding on a useful function space for
expansion is not trivial and can lead to dimensionality issues, particularly in
the case of polynomial expansion methods.

39

3. Modelling and Learning

3.5 Regularization

In the previous chapters, we looked at methods for modelling linear and nonlinear
inverse problems via maximum likelihood or empirical risk minimization using
least squares methods, and how these are linked via the projection theorem.
These methods effectively deal with the ill-posedness related to existence
(Property 2.1.1.i). In this section, we will address the remaining causes of
ill-posedness; stability (Property 2.1.1.iii) and uniqueness (Property 2.1.1.ii).

Recall the result of Proposition 2.3.7, and how this demonstrated that the
decay of singular values of an operator amplify the variance of the inherent
noise component, causing instability (Property 2.1.1.iii). Moreover, in a discrete
setting, any underdetermined system will necessarily contain zeroes in its
singular value expansion as a result of ambiguity (Property 2.1.1.ii). In
underdetermined systems we thus need to overcome a fundamental lack of
information in the reconstruction process of an inverse problem. Such problems
are sometimes referred to as p� n problems [HTF09, Chapter 18], where p is
the number of independent variables and n is the number of observations in the
dataset D. This is not necessarily constricted to the number of observations,
but can also be manifested directly related to the dimensionality of the spaces X
and Y . If dim(Y)� dim(X) we have an underdetermined system for a forward
problem, and in the case of dim(X) � dim(Y) we have an underdetermined
system for an inverse problem. This means that for underdetermined systems,
we can at best limit our solution space to a subspace (Theorem 2.4.2) and
require additional information to determine a unique solution.

Stability and ambiguity represent potential issues when constructing learning
models and manifest in the spectrum of the operator. While technically stable,
we say such systems are ill-conditioned. The conditioning of a system or function
is closely related to its Lipschitz constant.

Definition 3.5.1 (Lipschitz Continuity). Let X ,Y be metric spaces with metrics
dX , dY respectively. Let Φ : X → Y. Then if for all x1, x2 ∈ X we have

dY
(
Φ(x1),Φ(x2)

)
≤ kdX (x1, x2) (3.38)

we say Φ is Lipschitz continuous, and we call k the Lipschitz constant of Φ.

While the Lipschitz constant of a system is commonly defined in terms of
metric spaces, for general Hilbert or Banach spaces, this readily extends to the
norm by virtue of Lemma A.1.9. Furthermore, the idea of Lipschitz continuity
for operators can be generalized for normed spaces by Definitions A.2.2 and A.2.3.
This provides us with the general definition of condition numbers [Ric66].

Definition 3.5.2 (Relative Condition Number). Let X ,Y be normed spaces.
The relative condition number of a system Φ : X → Y given input x ∈ X and
perturbation δ is given by

κ(Φ) = lim
ε→0

sup
‖δx‖X≤ε

‖Φ(x+ δx)− Φ(x)‖Y
‖Φ(x)‖Y

· ‖x‖X
‖δx‖X

. (3.39)

If the given condition number is small, we say Φ is well-conditioned, while a
problem with a high condition number is said to be ill-conditioned.

40

3.5. Regularization

Definition 3.5.2 is defined for a general multivariate system, and quantifies
how sensitive the problem is to small perturbations in the data - thus a measure
of general stability. In terms of compact linear operators, [Tur48] show that
this simplifies to

κ(W) = ‖W‖op‖W -1‖op. (3.40)

Of particular interest is the operator norm induced by the `2 norm (Re-
mark A.3.22), as they relate to Hilbert spaces (Theorem A.3.23) and the
singular value expansion. This can be seen by considering

‖W‖2 = sup
x 6=0

‖Wx‖2
‖x‖2

= sup
‖x̄‖2=1

‖Wx̄‖2 = ς1 (3.41)

and noting that ‖W -1‖2 = 1/ςN , the condition number for a compact operator
on Hilbert spaces is thus given by

κ(W) = ς1
ςN
. (3.42)

which is in line with previous results from Proposition 2.3.7 and Theorem 2.3.6.
Having demonstrated how ill-conditioning can a source of instability, we

would ideally want to enforce some notion of regularity to effectively counter
this issue. This can be achieved by adding additional a priori information
to our problem definition, often in the form of smoothness constraints. This
process is known as regularization.

Definition 3.5.3 (Regularized Objective Function). Let Φ(x; θ) + ε = y be an
inverse problem of model identification. Let (X × Y,H) be a parametrized
learning model and let C : Y × Y → R be some predefined objective function.
A regularized objective function is given by

CJ
(
y, hθ(x);α

)
= C

(
y, hθ(x)

)
+ αJ(θ). (3.43)

We call J(θ) a regularized penalty term which applies additional constraints
encoding a priori knowledge about the reconstruction process. We usually want
to constrain the values of the solution in some way, commonly by penalizing the
norm. The parameter α ∈ R controls how much regularization is applied to the
solution, and must usually be tuned for each individual problem. A common
method of regularization is to impose penalties on the norm of the operator
Wθ. These methods are known as Lp regularization.

Definition 3.5.4 (Lp regularization). Let the regularizer J(θ) be given by

J(θ) = ‖θ‖pp. (3.44)

Then J(θ) is called a Lp regularization objective.

Both quintessential regularization methods; Tikhonov [Tik43] and Lasso
[Tib96] – correspond to Lp regularization with p = 2 and p = 1 respectively.
Any choice of p ≤ 1 promotes sparsity in the solution set, and the optimization
is convex for p ≥ 1. This is why Lasso is the regularization method of choice
for sparsity.

41

3. Modelling and Learning

In Bayesian inference, the regularization is imposed by the choice of prior
distributions which are then updated to form posterior distributions using
available data. The Bayesian paradigm is arguably a more intuitive way of
conceptualizing the process of regularization, as it directly seeks to quantify
the availability of information, and effectively enhances estimation by deducing
sensible prior distributions. As an example, a Bayesian interpretation for Lasso
corresponds with the priors for θ being concentrated around the origin similar
to a Laplacian prior [Gel+14, pp.368–369].

To show how regularization directly affects the condition numbers, consider
an L2-regularized solution for a causal problem Wx + ε = y. Applying the
singular value decomposition, we have

x̂ = (W ∗W + αI)-1W ∗y (3.45)
= (V ΣU∗UΣV ∗ + αI)-1V ΣU∗y (3.46)
= (V Σ2V ∗ + αV IV ∗)-1V ΣU∗y (3.47)
= V (Σ2 + αI)-1ΣU∗y (3.48)
= V DςU

∗y, (3.49)

where Dς is an augmented matrix with diagonal elements
(
ςi/(ς2i + α)

)
i
. This

is in effect a modified pseudoinverse which directly lessens the impact of singular
values of low or high magnitude. Tikhonov regularization thus has a similar
effect to tsvd, but applies direct smoothing rather than truncation.

Example 3.5.5 (Upscaling with Tikhonov Regularization). In our previous
examples, we demonstrated methods for solving inverse problems in a deblurring
setting. In this example, we instead look at the related problem of image
upscaling, where we effectively want to reconstruct a high resolution image
given from a downsampled image. To this end, we apply regularization via
constructing a modified pseudoinverse using svd, as outlined in Equation (3.49).
We also compare the method to the tsvd approach, outlined in Example 2.4.3.

Method K/α PSNR PSNR (Noise) SSIM SSIM (Noise)
TSVD 9000 34.544 22.198 0.864 0.353

7000 28.647 26.679 0.645 0.550
5000 27.469 26.787 0.591 0.557

L2 1.0 31.602 27.841 0.783 0.614
5.0 28.613 28.195 0.696 0.672
10.0 27.313 27.199 0.679 0.671

Table 3.1: Results of upscaling examples with tsvd and Tikhonov regularization.
The best results for each method are highlighted in gray.

42

3.5. Regularization

Figure 3.1: Reconstructions with Tikhonov regularization for α1 = 1.0 (second
row), α2 = 5.0 (third row) and α3 = 10.0 (bottom row). The top row features the
original image (left), the downsampled image (middle) and a noisy downsampled
image (right).

For our example images, we use centered grayscale images taken from the
coco dataset (see Section 7.1 and Table 1.6). The original image space X
consists of 384× 384 single channel images. The forward operator downsamples
the images using average pooling with a 4×4 kernel, resulting in the image space
Y containing images of dimension 96× 96, corresponding to a downsampling
ratio of 16:1. The results can be seen in Table 3.1 and Figure 3.1. Similarly to
what we saw in Example 2.4.3, there is a general degradation in reconstruction
quality for nonnoisy images, but an increase in reconstruction quality for noisy
images. We also note that Tikhonov regularization generally provides better
reconstructions than tsvd in this example.

43

CHAPTER 4

Neural Networks

The term neural network have come to be rather broad, encompassing a growing
plethora of different models and architectures. In this chapter, we provide an
overview of terminology and definitions to fully describe feed-forward neural
networks, show how they can be considered generalizations of classical statistical
models, and discuss properties of universal approximation. We also introduce
several commonly used components and architectures, and discuss how they
can be applied for data-driven model identification problems.

4.1 Fundamentals of Neural Networks

Input neuron

Inactive neuron

Active neuron

Output neuron

Trainable weight

Activation function

x h z y
Wθ1

γ Wθ2

x1

x2

x3

h1

h2

h3

h4

z1

z2

z3

z4

y1

y2

Figure 4.1: Overview of the components of a densely connected feed forward
neural network. The network has a single hidden layer of four activated neurons,
as well as three inputs neurons, and two non-activated output neurons.

Neural networks are essentially a family of composite nonlinear learning
models which can be used for modelling high-dimensional functions with
arbitrary levels of complexity. Much of the terminology applied to neural
network models reflects their biological inspiration, with the goal of generating
high-dimensional function approximations which can be learned using data-
driven approaches.

45

4. Neural Networks

A network layer can be considered a computational stage of a neural network,
consisting of one or more neurons with a set of associated weights, often followed
by an activation function which are designed to mimic neural activation in
biological organisms. A hidden layer is any intermediate computational layer of
neurons between input and output layers. In a dense or fully connected network,
each neuron has a unique connected path of weights to all other neurons in prior
or subsequent layers. Furthermore, the output of every neuron in a strictly
feed forward network is only dependent on neurons in prior layers, such that
there is no feedback from either subsequent neurons or neurons in the same
layer. Figure 4.1 details how the standard components of a neural network are
connected in a dense feed-forward network.

While the terminological familiarity with neurology seems to imply complex
model structures, at their core, neural networks are simple applications of
linear predictors with nonlinearities, similar to the generalized linear models
introduced in Section 3.4.

Definition 4.1.1 (Activation Function). Let H,Y be Hilbert spaces and let
η = Wx be a linear predictor. An activation function γ : H → Y is a function
acting on a linear predictor to yield

y = γ(η). (4.1)

Activation functions are often univariate functions which are applied point-
wise to each neuron. For an activation function to be useful in a general setting,
it should ideally adhere to certain specific functional properties.

Observation 4.1.2 (Properties of activation functions). An activation function
generally exhibits one or more of the following properties;

(i) (Non-affine) γ(z) 6= az + b,

(ii) (Smooth) γ ∈ Cn for n > 0,

(iii) (Monotonic) γ(z1) ≤ γ(z2) for z1 ≤ z2,

(iv) (Low complexity) γ has low computational complexity,

(v) (Approximately. identity at origin) γ(h) ≈ h for |h| < δ,

It is reasonably clear that Properties 4.1.2.ii and 4.1.2.iii are useful for
gradient optimization, while Property 4.1.2.iv yields better computational
performance. The benefit of the two remaining properties might be less clear,
however. If an activation function approximates identity close to the origin,
this promotes optimal gradients when network weights are initialized close to
zero [AH17], while non-affine activation ensures universal approximation under
certain conditions [KL20]. We discuss this property further in the context of
Theorem 4.1.6.

46

4.1. Fundamentals of Neural Networks

The first neural networks – called perceptrons [Ros57] – applied neural
activation using a binary step function with learnable threshold values. Later,
this threshold was replaced by an optional learnable bias, and the binary step
function made way for continuously differentiable sigmoidal functions like the
logistic function or the hyperbolic tangent function. Later, in [Hah+00] the
authors outlined the biological inspiration and mathematical benefits of the
rectified linear unit (relu), including computational efficiency and sparsity.
The rectified linear unit is a projection γrelu : R→ R≥0 given by

γrelu(xi) =
{
xi, if xi ≥ 0;
0, if xi < 0.

(4.2)

The ReLU activation is widely used in feed-forward neural networks due to its
sparsity and convergence properties [KSH12], however several other activation
functions are in practical use. Definition 4.1.1 is sufficiently relaxed to allow
for a variety of possible activation functions. A few of these are of particular
interest to this thesis, particularly the exponential linear unit (elu) [CUH16]
given by

γelu(xi;β) =
{
xi, if xi ≥ 0;
β(exp(xi)− 1), if xi < 0;

(4.3)

and the continuously differentiable exponential linear unit (celu) [Bar17], which
in turn is given by

γcelu(xi;β) =
{
xi, if xi ≥ 0;
β(exp(xi/β)− 1), if xi < 0.

(4.4)

In addition to these, discrete classification and categorical decision making
tasks often utilize the logistic function introduced in Equation (3.36). The
multivariate extension of the logistic function is referred to as the softmax
function, introduced by Boltzmann [Bol12]. The softmax function is given by

γsoftmax(x;β)i = exp(βxi)∑
j≤d exp(βxj)

, (4.5)

Similar to the logistic function, the softmax yields a probability distribution
which can be used as a parametrization for a categorical distribution on d classes.
The name softmax stems from soft argmax, referring to the function being a
smooth differentiable maximum on a d-dimensional vector, and it approximates
the max function as the temperature parameter β → ∞. When β → −∞ it
instead approximates the min function, and when β → 0 the function outputs
a discrete uniform distribution over all d classes.

47

4. Neural Networks

Figure 4.2: Projection of softmax with different temperature parametrizations
on three gaussian random variables to two-dimensional simplex using PCA.

Geometrically, the softmax function projects an element of Rd into a
d − 1 simplex on a plane, visualized in Figure 6.2. In general, increasing
the temperature parameter β effectively serves to push points toward the
closure of the d− 1 simplex. Additionally, the function is translation-invariant,
i.e. γ(x;β) = γ(x + b;β) for all b ∈ Rd. The apparent overdetermination is
connected to this translation invariance, which manifests by

∑
j≤d γ(x)j = 1,

so any combination of d− 1 parameters determines the last. This is practically
applied in statistical classification by assigning one dimension as a pivot and
estimating the probabilities of the d− 1 remaining classes.

The nonlinear activation of neurons in the linear predictor allows a neural
network to approximate nonlinear solution spaces, and is thus an essential
component in single layer networks – the fundamental building block for more
complex network structures.

Definition 4.1.3 (Single Layer Neural Network). Let (X×Y,B) be an observable
space, H,Θ be Hilbert spaces, and let θ 7→Wθ be a parametrization of a compact
operator. Let η = Wθx be a linear predictor, and let γ : H → Y be an activation
function. Then the mapping ψ : X → Y given by

ψ(x; θ, γ) = γ(η) (4.6)

is called single layer feed forward neural network. The parameters for the
operator Wθ are commonly referred to as the network weights.

Note that Definition 4.1.3 is conceptually in line with the discussion in
Section 3.4 of linearized transformations. In fact, both generalized linear models
and linear basis expansion can be modelled with a single layer neural network by
selecting appropriate activation functions. This apparent connection is trivial,
but illustrates how modern machine learning techniques have their origin in
classical statistical modelling techniques.

48

4.1. Fundamentals of Neural Networks

The main advantage of modelling with neural networks is the fact that
they display nonlinear interpolation properties. These properties do not apply
directly to single layer models, but require an extension to the composition of
multilayer neural network models.

Definition 4.1.4 (Multilayer Neural Network). Let (Zi)Ni=0 be a sequence of
Hilbert spaces, and let (ψi)Ni=1 be a sequence of single layer neural networks
ψi : Zi-1 → Zi. Let ψ[i] be a composition on the form ψi ◦ · · · ◦ ψ1, such that
the output of the ith layer in the network is given by

zi = γi(ηi)
= ψi(zi-1; θi, γi)
= (ψi ◦ ψi-1 ◦ · · · ◦ ψ1)(x; θ1:i, γ1:i)
= ψ[i](x; θ1:i, γ1:i).

Now let (X ×Y,B) = (Z0×ZN ,B) be an observable space. Then ψ[N] : X → Y
is a multilayer feed-forward neural network, and we will denote multi-layer
networks by Ψ(x;ϑ,Γ) = ψ[N](x; θ1:N , γ1:N).

Remark 4.1.5 (Mathematical Notation of Neural Networks). We consider the
notation Ψ(x;ϑ,Γ) as sufficiently concise, but we would like to point out
some idiosyncrasies which might not be immediately clear to the reader. The
implication is that a neural network consists of a sequence of activation functions

Γ = (γi)Ni=1 (4.7)

as well as a partially ordered set of parameters

ϑ = {θj ∈ Θj : j ∈ 1, . . . , N}, (4.8)

so the full parameter space for the model parametrization can be considered
a product space Θ1 × · · · ×Θp. This definition of the model parametrization
should however be considered sufficiently relaxed to include more than simply the
weight parameters, including parameters for activation functions, dimensionality
of layers as well as the general network structure. Note that some of these
parameters are estimated and trainable, while others are hyperparameters fixed
by the modeller, however we will always consider ϑ to include the parametrization
of the sequence of linear or augmented affine operators, which we denote by
Wϑ = (Wθi : i = 1, . . . , N). This is to be consistent with our previous definition
of learning models in Definition 3.2.2, where each parametrization of a network
exists in an identifiable parametrized hypothesis space H where each hypothesis
hϑ represents a neural network model.

We stress that we will occasionally omit the reference to the sequence of
activation functions Γ, or even the parameters ϑ when the specification is not
required to avoid unnecessary ornamentation in our notation. However the
notation is presented, we will naturally assume that the activation functions
and parameters are present, even if not explicit in notation.

49

4. Neural Networks

In practice, almost all neural network models apply multilayer structures
due to aforementioned universal approximation theorems - a collection of results
which show that neural network models with certain general structures can
approximate any well behaved function arbitrarily well. The earliest and most
ubiquitous of these results is the arbitrary width case for a two-layer network
with logistic sigmoidal activation, and can be concisely summarized as follows.

Theorem 4.1.6 (Arbitrary Width Universal Approximation Theorem). Let
Φ(x, θ) + ε = y be a forward problem, let γ1 = logistic, γ2 = id, and let θ1, θ2
be parametrizations of affine transformations such that θi 7→Wθi . Then there
exists some arbitrarily high dimensional θ1, θ2 ∈ ϑ such that given

Ψ(x;ϑ,Γ) = Wθ2γ1(Wθ1x), (4.9)

then for all ε ∈ R we have

‖Φ−Ψ‖∞< ε. (4.10)

The full exposition and proof can be found in [Cyb89]. Following this
result, Hornik [Hor91] showed that sigmoidal functions are not a requirement
for the universal approximation property to hold, while suggesting that the
multi-layer structure of the network was the instrumental factor for the universal
approximation property to hold, while [Pin99] demonstrated that nonpolynomial
activation is a sufficient constraint on activation. [Yar18] provided another
important contribution, showing that permutation invariant operators with
arbitrary width and an intermediate polynomial layer can act as universal
function approximators. This has implications to convolutional networks, which
we introduce in Section 4.3.

Later results focused on showing universal approximation properties in
arbitrary depth networks – sometimes referred to as deep networks – with relu
activation [Zho+17], and recently [KL20] refined this constraint to nonaffine
activation functions on networks of arbitrary depth and bounded width using
common activation functions. The authors also rigorously demonstrated that
arbitrary depth network in general are expected to perform better than arbitrary
width networks, confirming empirical results [Pog+16]. There are however
certain limits on the benefits of deeper networks, especially related to estimation,
which we return to in Section 4.2.

While the property of universal function approximation is alluring, it is
related to polynomial interpolation and can thus be considered special cases of
the important Stone-Weierstass Theorem [MW99, Theorem 8.9]. However, for
multivariate non-linear approximation, neural networks are currently state-of-
the-art and have incontrovertibly had a huge impact on the field of machine
learning and statistics. The problem exhibited by these models is that the
structure of estimated models does not provide any significant insight into how
the system they approximate actually works, and are often describes as purely
discriminative black box models with little inference capabilities. We briefly
discussed the limitations of discriminative modelling in Section 3.2, and we
will return to address the apparent weaknesses of neural network models in
Section 5.1.

50

4.2. Estimation, Optimization and Learning

4.2 Estimation, Optimization and Learning

As any other parametrized learning model, neural networks require some
algorithmic method of estimating the parameters for the sequence of operators
Wϑ to allow the model to yield accurate predictions. This procedure is
referred to as training the network, and is generally performed by iterative
optimization methods by empirical risk minimization via an objective function
(Equation (3.30)). As in Definition 3.5.3, regularization can be applied to
any given model by expanding the objective function to include one or more
constraints encoding some a priori information about the solution space. Given
an observable product space, the optimized parameters ϑ̂ for a multilayer neural
network are then given by

ϑ̂ = arg min
ϑ

CJ
(
y,Ψ(x;ϑ,Γ);α

)
(4.11)

= arg min
ϑ

C
(
y,Ψ(x;ϑ,Γ)

)
+ αJ(ϑ). (4.12)

Parameter estimation – or weight estimation – for neural networks requires a
set of initial parameters drawn from some appropriate distribution. In practice,
initialization methods are generally designed to ensure that the activated outputs
of each layer become too small or too large to be numerically stable, as most
well-defined networks quickly find reasonable local minima or maxima in the
output space for which a good approximation can be extracted [GB10; He+15].
Once the weights are initialized, the network is subsequently optimized by
estimating the weights using observations from a dataset D Definition 3.1.2;
canonically by way of gradient descent.

Definition 4.2.1 (Gradient Descent). Let (X × Y,H) be a parameterized
learning model over a normed observable space such that ϑ 7→ hϑ with hϑ ∈H .
Let D be a dataset of n observations on X × Y and let C : Y × Y → R be
an differentiable objective function. A gradient descent scheme is an iterative
process

ϑ(i+1) = ϑ(i) − %
∑
x.y∈D

∇CJ
(
y, hϑ(i)(x)

)
(4.13)

for iterations i = 1, . . . , n.

The hyperparameter % ∈ R controls the step size in the direction of the
gradient – commonly referred to as the learning rate – which can be tuned to
improve the performance of the weight estimation process. Moreover, note that
the objective function can be extended to include one or more regularization
terms without any loss of generality.

The issue with the form of gradient descent in Definition 4.2.1 is that
global optimization on the training data is almost always too restrictive for
finding sufficiently good approximations, relying more heavily on the weight
initialization. As such, it relies heavily on exploiting the initialized weights to
derive an optima, as opposed to exploring the solution space, evaluating more
distant candidate solutions which might provide a better global optima towards
the defined optimization objective. This tradeoff between exploration and
exploitation can be more effectively handled by iteratively updating parameters
using stochastic gradient descent to promote exploration.

51

4. Neural Networks

Definition 4.2.2 (Minibatch Stochastic Gradient Descent). Let (X ×Y,H) be a
parameterized learning model over a normed observable space such that ϑ 7→ hϑ
with hϑ ∈H . Let C : Y ×Y → R be a differentiable objective function, and let
D be a dataset with n observations over X ×Y . Fix E, k ∈ N with the condition
k < n, and let m = E(n mod k). Now let

(
Bi ⊂ D : #(Bi) = k

)m
i=1 be a

sequence of randomly permuted partitions of D. Then a minibatch stochastic
gradient descent scheme is given by the iterative process

ϑ(i+1) = ϑ(i) − %
∑

x.y∈Bi

∇CJ (y, hϑ(i)(x)) (4.14)

for iterations i = 1, . . . ,m.

When training neural networks, each permuted subset Bi denotes aminibatch
of training examples. As we generally want the process to successively iterate
in a manner which includes all observations, this process is usually performed
by grouping the subsets Bi such that the entire dataset is seen over one epoch
of n mod k minibatches. The total number of iterations is then repeated over
E epochs such that all observations are encountered several times. The total
number of iterations is then m = E(m mod n), however other methods can be
implemented to lower the total number of iterations given some approximate
convergence criteria. We note that the apparent early convergence of a network
can sometimes be decieving. Recently, [Pow+21] showed that in certain cases,
an exceedingly large number of iterations can be necessary for true convergence.

Both definitions of gradient descent are straightforward to apply to single
layer neural networks, but implementing this for multilayer networks are not
as straightforward. For such models, the parameter update is computed
sequentially by calculating successive gradients with respect to each estimated
parameter in a reversed order to forward computations. This process is called
backpropagation [RHW86] and is a direct application of the chain rule for
differentiation.

Example 4.2.3 (Backpropagation). The backpropagation process can be
illustrated using a two-layer feed-forward network structure, yielding

θ
(i+1)
2 = θ

(i)
2 − %

∑
x,y∈Bi

∂CJ
∂γ2

∂γ2

∂η2

∂η2

∂θ
(i)
2

(4.15)

θ
(i+1)
1 = θ

(i)
1 − %

∑
x,y∈Bi

∂CJ
∂γ2

∂γ2

∂η2

∂η2

∂γ1

∂γ1

∂η1

∂η1

∂θ
(i)
1
. (4.16)

Equation (4.15) clearly demonstrates the application of the chain rule. In
practice, the computation of backpropigation can be simplified by what is known
as the delta-rule [RHW86], which simply applies the observation that successive
applications of the chain rule always have similar leading products, which can
be memoized for more effective computations.

52

4.2. Estimation, Optimization and Learning

In modern software for neural networks, each functional operation has an
associated gradient function, and their application produces arrays which store
the associated inputs for backward computations [Pas+17]. This generates a
computational graph for the backpropagation process and allows for effective
subsequent updates to the weights.

Still, there are certain issues with any type of gradient descent algorithm that
must be considered. The most important of these is the choice of learning rate, or
step size. A low learning rate might provide stronger guarantees for convergence,
but the optimization process is more prone to be immobilized in local optima
or saddle points. On the other hand, a high learning rate can expediate
exploration of the solution space but can render the optimization process
divergent altogether. Both these issues can lead to slower convergence rates.
To redress these issues, neural networks are generally trained by introducing
an adaptive learning rate %(i) to Definition 4.2.2. This technique imposes some
notion of mechanical weight or friction to the process, which is often described
as analogous to propelling some ball onto the solution surface, and apply
common conservation laws to yield a momentum for each iteration. Several
of these optimization processes have been developed specifically for training
neural networks [DHS11; Zei12]. In particular, we will make use of the adam
optimizer proposed in [KB17], which is currently considered canonical for weight
optimization in neural networks.

When estimating neural network models, we are generally optimizing
parametrizations of compact linear operators and bias terms with respect
to simple activation functions. As alluded to in the properties of activation
functions (Observation 4.1.2), certain issues can arise due to the choice of
activation for the layers in the network. While the sparsity and computational
efficiency of relu activation is often beneficial, it also maintains some
inadequacies. Firstly, it is nonsmooth with discontinuous gradients. Secondly, it
is generally unconstrained, which can produce outputs of arbitrary magnitude if
the inputs are sufficiently large. The third and arguably most important issue
with ReLU activation is a byproduct of the sparsity property. Any nonpositive
input will have a gradient of zero, which can be a cause of problems for gradient
optimization methods. This issue is referred to as the dying relu problem
[Lu+20] . This is the main motivation for the introduction of the elu and celu
activation functions (Equations (4.3) and (4.4)).

The dying relu problem circumstantiates the more general problem of low
magnitude or zero-valued gradients in network estimation. The domain of the
gradient of activation functions are generally constrained to a compact strictly
positive Borel set. For commonly used functions adhering to Observation 4.1.2,
this domain generally falls in the open interval]− 1, 1[, so the backpropigated
gradients are generally contractive. This results in the phenomenon where
weights closer to the output have a tendency to absorb most of the errors, and
fewer terms are propagated to the earlier weights close to the input. This issue is
more prevalent in deep models than in wide models, causing modelled solutions
to plateau in saddle points more frequently. [Hoc91] was the first to discuss this
issue and coined the term vanishing gradient problem, which directly inspired
the development of the field of network learning dynamics which we discuss in
more depth in Section 6.1.

53

4. Neural Networks

zp hp+1 zp+1 hq zq

WθR

Wθp
γ Wθp+1

γ

Figure 4.3: The structure of a residual block. The input zp is propagated deeper
into the network by the weight WθR .

4.3 Network Components and Layers

In addition to the standard components in a neural network, there are several
specialized components which serve particular purposes. In this section, we
will outline the general network components and layer types relevant for the
network architectures featured in this thesis, and discuss their motivation.

Residual Blocks

For sufficiently deep network structures, each layer of a network should
theoretically improve accuracy of an approximation towards an optimal solution.
In practice, much of the actual improvement is restricted to only a subset
of available layers due to vanishing gradients and dimensionality problems.
Thus, much of the informational capacity of a deep network becomes tied
up in approximating linear mappings, referred to as the degradation problem.
In [He+15], the authors demonstrate that a more effective learning process
can be induced by allowing portions of the network to deal with residuals,
as opposed to having a network learn identity-like mappings in several layers.
These components are groups of layers with a skip connection, called residual
blocks.

Definition 4.3.1. Let Zp,Zq be Hilbert spaces, and let ψ[n] : Zp → Zq be a
composition of q − p = n internal network layers. Furthermore, let θR be a
parametrization θR 7→WθR for a compact operator WθR : Zp → Zq. A residual
block is then given by

zq = WθRzp − ψ[n](zp; θp:q, γp:q). (4.17)

The idea behind a residual block is to hotwire the output using a direct layer
with trainable weights θR. This linear connection is allowed to process much of
the approximately linear transformations while the multi-layer structure ψ[n] is
free to process nonlinearities in the residual space generated by the range of
(I −HθR). Residual blocks are therefore especially useful for tasks where the
input space and output space are sufficiently similar as to warrant some linear
mapping, like the identity mapping. Residual blocks can be composed and
combined in a modular fashion, similarly to individual layers in feed-forward
structures. We note that the original paper specifically refers to residual blocks
with non-parametrized identity weights as opposed to a parametrized operator
WR; a special case of our convention in Definition 4.3.1.

54

4.3. Network Components and Layers

. . .

Figure 4.4: An illustration of non-padded two-dimensional convolution with a
3× 3 kernel. The kernel slides over the image to produce pixels in the target
image.

Convolution Layers

In Section 2.2 we introduced the concept of convolution (Definition 2.2.6),
and showed how deblurring problems are naturally formulated as convolution
problems in Example 2.2.7. Convolution operators also play an important part
in neural networks and have been shown to be especially effective in the field of
image processing [Fuk79; LeC+89].

Definition 4.3.2 (Convolutional Layer). Let ψ be a single layer neural network.
If the associated operator Wθ is a linear combination of convolution operators,
then ψ is a convolutional layer.

The success of convolutional layers has led to these layers becoming a
de facto standard for image processing with neural networks [GBC16, Sec.
9.1]. The motivation for introducing convolutional layers are specifically
tied to spatial dependencies in a signal or image. While any image can be
vectorized for applications with a linear operator, this representation discards
spatial structures in an image which in turn discards important information.
Convolution operators maintain the spatial structure of an image by applying
parametrized discrete kernels of appropriate dimensions. An illustration of
discrete two dimensional convolution over a single channel can be observed
in Figure 4.4. Another advantage of convolutional layers is that they display
properties of translational equivariance [MMD20], meaning a convolutional layer
can be effective at processing spatial structures independent of their relative
location in an input image.

A convolutional layer is parametrized using stride, padding and dilation . The
stride of a convolution is an optional step size for the convolution, while padding
expands the convolution domain to outside the range of the image. Lastly,
dilation applies spacing between each value in the kernel, imposing sparsity
in the kernel. These techniques can alleviate some local spatial bias, but can
also introduce certain artifacts and aliasing effects especially for deconvolution
[ODO16].

In [Luo+16] the authors highlight an important issue with the application
of convolution operators in neural networks by showing that the central values
of an image or signal will generally be used more frequently in the computation

55

4. Neural Networks

of the outputs. When successively applying layer-wise discrete convolution, the
pixels close to the boundaries of the input signal will ultimately be weighted
less than the central pixels in the computed output for each channel. This
means there are fewer paths between the values close to the boundary and the
output values than the more central values. This means that while a network
theoretically has the capability of allowing inputs to influence every single output
in a signal, the effective influence might be minimal to negligible. The authors
call these measures of the connectivity between output and input signals for
the receptive field of the network.

Another important property of convolutional layers is that their periodicities
admit inherently sparse operators which can act on high dimensional data. In
discrete convolution, the parametrization is commonly of much lower dimension
than the signals they operate on. This makes convolution operators highly
efficient in terms of number of operations and memory, allowing them to
operate on high dimensional images. Furthermore, as the convolution operator
is independent of the dimensionality of the inputs, a convolutional model can
be constructed to be more or less invariant to the input dimensions using
pooling layers [Cir+11]. The nature of these operations make them contentious
in the eyes of some researchers [Hin17], while [Spr+15] suggests they can be
replaced altogether by a series of appropriately strided convolution layers. In
Appendix A.8, we show how convolution layers can be constructed in matrix
form.

For the purposes of this thesis, we are also particularly interested in
the adjoint representations of convolution layers. From the exposition in
Appendix A.8, it is clear that the adjoint representation of a convolution simply
corresponds to a convolution with a reversed permuted kernel; also known as
the correlation operator. In signal processing, adjoint operators are often called
matched filters, and have been shown to be optimal linear filters for maximizing
the signal-to-noise ratio [Tur60]. In the most common contemporary software
packages for neural networks, the correlation operator is commonly applied in
place of the standard convolution operator. As each kernel is estimated through
training the end result is the same, however the operator loses its commutative
properties [GBC16, Sec. 9.1].

Seperable Patch Layers

In Example 2.3.8 we discussed how the form of seperable filters can be applied
row-wise and column-wise to an image to reduce the parameter space of a linear
operator. Surprisingly, there seems to be few models adopting seperable filters
in neural networks, possibly due to the success of convolutional layers.

Recently, an alternative to convolutional layers was proposed in [Tol+21],
which applies a variation of linear seperable filters over individual image patches
while simultaneously generalizing over multiple patches. These models retain
moderately low dimensionality in their parametrization while applying densely
connected linear weight operators. The full architecture of the proposed model
is referred to as a mixer model, however the individual layer structure is not
specifically referred to by name. We will however in the context of this thesis
instead refer to these layers as seperable patch layers which we find more
descriptive.

56

4.3. Network Components and Layers

vec→
split
→

Figure 4.5: Illustration of the process of patch splitting and vectorization of
images for seperable patch layers. The input image on the left in the illustrated
example is given by x ∈ [0, 1]32×32 while the output image on the right is given
by X̄ ∈ [0, 1]64×16.

Definition 4.3.3 (Seperable Patch Layer). Let X be a Hilbert space over K
with a product structure, such that dim(X) = c× h× w. For each x ∈ X , let
x̄ = (x̄p ∈ Kk)1≤p≤n be a sequence of subdivided patches of x. Furthermore,
let X̄ = [vec(x̄1), ..., vec(x̄n)]ᵀ ∈ Kn×k be a matrix such that each row is a
vectorized patch of image x. Now let ψ be a single layer neural network with a
compact operator Wθ = U∗θc ⊗Vθr with Uθc ∈ Km×n and Vθr ∈ Kk×q, such that

ψ(x; θ, γ) = γ(Wθx) (4.18)
= γ

(
(U∗θc ⊗ Vθr)vec(X̄)

)
(4.19)

= γ(UθcX̄Vθr). (4.20)

Then ψ : Kn×k → Km×q is called a seperable patch layer.

We note that the formulation of the split- and vectorize operations of the
seperable patch layers is somewhat vague, however Figure 4.5 should help
illustrate the process more clearly. Definition 4.3.3 more or less follow the
definition of a seperable filter, however the main difference lies in how the image
is reworked into patches in a grid. As such, these layers are similar in form
to full-stride convolutional layers featuring depthwise seperable convolution
[Cho17; How+17], but densely connected across patches and individual pixels
in an image.

Coupling Layers and Normalizing Flows

Coupling layers [DKB15; RMW14] are network layer structures which have
recently garnered attention in the context of probabilistic modelling and
invertible neural networks.

Definition 4.3.4 (Affine Coupling Layer). Let X ,Y be seperable Hilbert spaces
with dim(X) = dim(Y) = D. Let x:d = (x1, . . . , xd) and xd: = (xd+1, . . . , xD)
for x ∈ X and let y:d, yd: ∈ Y be defined similarly. An affine coupling layer is a
map g : X → Y such that

g:d(x:d) = y:d = x:d (4.21)
gd:(xd:) = yd: = xd: �m(x:d) + b(x:d), (4.22)

where m, b are multivariate functions with support on Xd:.

57

4. Neural Networks

An affine coupling layer g is bijective if we have access to the transformations
m, b and yd: = xd:, and can thus be composed to form more complex invertible
structures in a neural network model. Coupling layers generally induce a
triangular operator structure common in autoregressive models [SS17a, Chapter
3], a class of sequence models which have been applied successfully in both
spatial and temporal signal processing [OKK16; Oor+16].

The benefit of triangular structures is that calculation of the determinant
of the operator induced by g is greatly simplified by det(g) = Tr(g), making
the change of variables formula (Theorem A.4.8) tractable. In this context,
they are the canonical example of invertible transformations used to construct
probabilistic neural networks called normalizing flows, where certain criteria
are applied to ensure that the determinant of the Jacobian of the network layer
| det(J -1

Ψ (x)) | is tractable.

Definition 4.3.5 (Normalizing Flow). Let (X ,Bx), (Z,Bz) be observable Hilbert
spaces with dim(Z) = dim(X), and let Z : Ω → Z be a random element
with known probability distribution PZ. Let ψ : Z → X be a diffeomorphism
(Definition A.6.22). Then by the change of variable formula (Equation (A.42))
for x ∈ X and z ∈ Z we have

fX(x) = fZ
(
ψ-1(x)

)
| detJψ-1(x) | (4.23)

for probability density functions fX, fZ. Then ψ is called a normalizing flow.

A central idea of normalizing flows is that they can be composed sequentially
to compose multilayer networks, acting as universal density estimators for
probability distributions [Pap+21]. Furthermore, normalizing flows are
estimated using maximum likelihood methods, firmly cementing them as
predominantly statistical models.

We note that affine coupling layers are only one type of transformation used
in normalizing flows, and others can be considered. In this thesis, we propose
the use of our derived variant of conditional additive coupling layers, applied in
some of our proposed models.

Definition 4.3.6 (Conditional Additive Coupling Layer). Let y ∈ Rp be defined
on a simplex such that

∑
i yi = 1. Let θ ∈ Rn×p. Moreover, let b : Rp → Rn be

the convex combination given by

b(y; θ)i =
p∑
j=1

yjθij . (4.24)

Then the map g : Rn → Rn is given by

g(x) = x+ b(y; θ) (4.25)

and we call g a conditional additive coupling layer.

The purpose of a conditional additive coupling layer is to condition the
inputs x on the outputs y of a classification subnetwork. As such, the additive
coupling layer acts as a conditional replacement for the bias of a standard
feed-forward layer ψ.

58

4.3. Network Components and Layers

Stochastic Sampling Layers

As of yet, the network layers we have discussed are wholly deterministic,
and while coupling layers and normalizing flows allows the approximation of
transformations from sampled data from a known probability distribution to fit
data from an observable space, they do not inherently induce any stochasticity
in a network architecture. A rudimentary method for inducing randomness in a
network is to apply stochastic sampling layers, which we later make use of in
variational autoencoders.

Definition 4.3.7 (Stochastic Sampling Layer). Let Υ be a parameter space for
a parameterized family of probability distributions P. Now let ψs : X → Υ
be a single layer network and let Y : Ω × Υ → Y be a random variable such
that Y ∼ Pυ ←[υ. Then (Y,Pυ) is an observable space generated by Y, and
the mapping ψs : X → Y given by

ψs(x; θ, γ, ω) = Y(ω;ψs
(
x; θ, γ)

)
(4.26)

is called a stochastic sampling layer.

If we select P to be families in the location-scale family (Definition A.7.15),
then the parameters of layer ψs can be trained to output parameters which
approximate the base distribution Pυ by maximizing the elbo (Equation (4.40)).
This method is known as the reparametrization trick and was first introduced
in the setting of [KW14]. Stochastic sampling layers are commonly employed in
variational autoencoder models (vae), which we discuss further in Section 4.4.
Note that stochastic sampling layers bear a resemblance to affine coupling layers,
which are also often used to approximate location-scale distributions.

Diagonal Layers

In this thesis, we will be applying several forms of what we call diagonal layers.
These are essentially scaling operators D : Zp → Zq acting on an input zp by

D(zp; θp) = diag(θp)zp (4.27)
= θp � zp (4.28)

and are usually applied between the application of isometric operators to allow
the individual scaling of the outputs in zq, similarly to the effect singular
values have in sve/svd. Diagonal layers are thus structurally similar to the
general operators which they are designed to complement. E.g., a diagonal
layer complementing a seperable patch layer thus takes the form

D(Z̄, θ) =
[
diag(θr)∗ ⊗ diag(θc)

]
Z̄ (4.29)

= diag(θr) Z̄ diag(θc). (4.30)

While other diagonal layer structures can be considered, particularly in the
context of convolutional layers, we will generally only apply diagonal layers in
the forms of Equations (4.27) and (4.29) in this thesis.

59

4. Neural Networks

4.4 Network Architectures and Encoder-Decoder Models

The term architecture is used to describe the general structure of the network.
As of yet, we have mainly focused on fully connected feed-forward architectures.
While these architectures are the fundamental building blocks of neural networks,
there are several other classes of networks which are structured to model
spatial dependence, sequential processes, topological spaces and graph structures
(Definition A.6.12) by structuring neural dependence more effectively given
domain-specific information. For the purposes of this thesis, we will mostly
consider feed-forward models, and only a few of our proposed models feature a
more complex topology.

Autoencoders

Our work mainly focuses on encoder-decoder models, the canonical example of
which are autoencoder (ae) models. The origin of autoencoder models can be
traced back to the resurgence of neural network models with backpropigation
[RHW86], providing a very interesting application of unsupervised learning
designed to generate efficient data representations.

Definition 4.4.1 (Autoencoder). Let (X ,B) be an observable space and let Z be
a latent Hilbert space. Let Ψe : X → Z and Ψd : Z → X be subnetworks, called
the encoder network and decoder network respectively. Then the compositional
network given by

Ψae(x;ϑ,Γ) = (Ψd ◦Ψe)(x;ϑ,Γ) (4.31)
= Ψd

(
Ψe(x;ϑe,Γe);ϑd,Γd

)
(4.32)

is called an autoencoder network.

In the general autoencoder setting, the encoder network Ψe is trained in
combination with an adjoint network Ψd which acts as a decoder such that
the full network yields a reconstruction of the original input x, minimizing the
reconstruction objective by

ϑ̂ = arg min
ϑ

C
(
x,Ψae(x;ϑ,Γ)

)
. (4.33)

The goal of this objective is to have the composition of the encoder and decoder
networks approximate the identity map for all x ∈ X . This may at first glance
seem a fruitless endeavour, but note that the identity mapping is performed via
an intermediary space Z, called a latent representation space. The dimensions
of the latent space is often chosen to be of a smaller dimensionality than X .
When dim(Y) < dim(X) the network is called an undercomplete autoencoder,
which are commonly used for learning effective low dimensional representations
of a dataset D. Figure 4.6 illustrates the architecture of an undercomplete
autoencoder network.

60

4.4. Network Architectures and Encoder-Decoder Models

x1

x2

x3

x4

x5

he11

he12

he13

he14

W e
θ,1

ze1

ze2

ze3

ze4

γe1

he21

he22

y1

y2

W e
θ,2

γe2 y1

y2

hd11

hd12

hd13

hd14

W d
θ,1 zd1

zd2

zd3

zd4

γd1 hd21

hd21

hd21

hd21

hd21

W d
θ,2 x̂1

x̂2

x̂3

x̂4

x̂5

γd2

Ψe Ψd

Figure 4.6: An undercomplete autoencoder network.

Conversely, an overcomplete autoencoder is an intermediate mapping to
an encoded space with higher dimensionality, i.e. dim(X) < dim(Y). With
overcomplete autoencoders, there is a susceptibility of all weights approximating
identity, so a minor level of noise is usually introduced to discourage identity
in the operators of each layer. Noise can also be introduced in order to
effectively produce a denoising autoencoder [Vin+08] for purposes of general
signal restoration.

The link between autoencoders and information theory is well established
[YP19] via the concept of informational entropy (Definition A.4.12) – a
measure of the expected level of information content contained in a random
variable or observable space. In [Vin+10], the authors demonstrate that
autoencoders essentially maximize the lower bound on the mutual information
(Definition A.7.16) between the data and their predicted latent representations.
This link to information theory makes autoencoders an excellent tool for
inference on deep neural networks, and [YP19] even goes so far as to suggest
that the study of autoencoders via the information theoretic route is the most
promising tool for opening up the black box of deep learning; which we discussed
briefly near the end of Section 4.1.

Early investigations into the properties of the special case of linear
autoencoder models – i.e., autoencoders where γ = Id for all γ ∈ Γ – also
demonstrate parallels with principal component analysis [BH89], and has often
been informally cited as an equivalence. This equivalence is even suggested
in the nonlinear case, and this was shown to be not be the case in [JHG00].
Further investigations [AEE17; Kun+19] provided more evidence of the link
between linear autoencoder models and principal component analysis and –
by proxy – the svd. This link to sve/svd provides interesting applications
for autoencoders in statistical modelling; particularly in the case of inverse
problems.

61

4. Neural Networks

Supervised Autoencoders

Let us now turn our attention to supervised learning with encoder-decoder
models. Consider a task where we want to find an approximate bijective map
Ψ : X → Y given the observable space (X × Y,B). This setting is central to
the work in this thesis, and the question is; can an autoencoder architecture be
applied to supervised learning tasks?
Remark 4.4.2. The term supervised autoencoder is a bit of a misnomer. The
term auto is used to describe the unsupervised learning objective. However, the
term ’supervised encoder-decoder’ would admittedly would be a more fitting
term for these models but is not used in other literature [Gao+15; LPW18;
RS08]. Thus we will continue to refer to these models as either supervised
autoencoders, autoencoders, or simply by the abbreviation ae – as the learning
context is always easily inferred.

Properties of Supervised Autoencoders

While autoencoders see fewer applications in the supervised setting than the
unsupervised setting, there are several examples which advocate their practical
application [Gao+15; RS08]. A central work on the theory of supervised
autoencoders [LPW18] show that the preeminent benefit of supervised ae
models is twofold;

• they provide significant improvement in stability and robustness,

• they provide tighter upper bounds on the overall generalization error.

These results suggest the application of supervised autoencoder models as
implicit regularization methods for general forward neural network models,
which we discuss further in Section 4.5.

The Supervised Objective

While the reconstruction objective provided in Equation (4.33) is natural in an
unsupervised setting, it requires modification for supervised learning. A simple
addition of a supervised objective to an autoencoder yields

ϑ̂ = arg min
ϑ

CX
(
x, (Ψd ◦Ψe)(x;ϑ)

)
+ CY

(
y,Ψe(x;ϑe)

)
. (4.34)

However, a more direct objective can be formulated as

ϑ̂ = arg min
ϑ

CX
(
x,Ψd(y;ϑd)

)
+ CY

(
y,Ψe(x;ϑe)

)
. (4.35)

The difference is that Equation (4.34) compares a reconstruction through the
entire network, while Equation (4.35) splits these objectives. This turns out
to be an important distinction, as Equation (4.34) can encourage a model to
find an inverse for its own mapping, rather than the inverse of the objective,
precisely due to the autoencoder models tendency to maximize the lower bound
on mutual information [Vin+10]. Any loss of information in the mapping will
therefore be minimized, even if this increases the loss in the supervised objective.

The stability and conditioning of the inverse problem can influence the
training of a supervised autoencoder. While the condition number quantifies

62

4.4. Network Architectures and Encoder-Decoder Models

the general ill-conditioning, it does not say anything about which computational
direction is the most sensitive to perturbation. To quantify this, we define the
sensitivity imbalance for an invertible compact linear operator, and show that
this has a point of sensitivity equilibrium.

Definition 4.4.3 (Sensitivity Imbalance). Let W be an invertible compact linear
operator on a Hilbert space with rank n. Let k1, kn be the Lipschitz constants
of W and W -1 respectively. Then

κ(W) =

{
k1kn − 1, if k1kn ≤ 1;
1− 1

k1kn
, otherwise.

(4.36)

is called the sensitivity imbalance of a compact linear operator.

Proposition 4.4.4 (Sensitivity Equilibrium). Let W be an invertible compact
linear operator on a Hilbert space with rank n. Then for
κ(W) = 0, the
condition number κ(W) has equal contribution from W and W -1. Furthermore,

κ(W) ∈ (−1, 1) quantifies the relationship between the contribution to the
condition number from the forward and inverse operators, with the property

κ(W) = −
κ(W -1).

Proof. The Lipshitz constant of W and W -1 is given by the largest and smallest
singular values, so k1 = ς1 and kn = ςn. From Equation (3.42) we know that the
condition number of a compact linear operator is given by κ(W) = ς1/ςn. Then
clearly, the contributions of the terms are equal when ς1 = 1/ςn. By definition,
ς1 > ςn > 0. Letting k1 →∞ and kn →∞ shows that
κ(W) ∈ (−1, 1). Lastly,
we note that
κ(W -1) will yield a reciprocal relation, which will flip the sign of
the expression. �

The sensitivity imbalance can in principle be extended to hold for any
mapping, however we find it most instructive to relate the concept to linear
operators in terms of the singular value expansion. Note that the sensitivity
imbalance does not directly relate to the actual condition number. Rather, it
quantifies some notion of "skewness" in any ill-conditioning between a forward
and inverse operator. As an example, consider the operator given by a one-
dimensional Gaussian discrete convolution kernel [1/4, 1/2, 1/4]. Constructing
a 5× 5 circulant Toeplitz convolution matrix yields the singular values ς1 = 1,
ςn = 0.096, with condition number 10.472. Computing the sensitivity imbalance
gives
κ(W) = −0.904 which tells us that the Lipschitz constant of the inverse
operator will be the greatest source of instability for this problem. Taking the
inverse subsequently yields
κ(W -1) = 0.904. The condition number is the same,
however the sign of the sensitivity imbalance has reversed.

If we now consider this task in the context of a supervised ae model, and
let the forward operator be modelled by the encoder, we know that the encoder
will be less sensitive to perturbations, and this extends to the training error
imposed by the supervised objective CY . This means the task of approximating
the forward operator is consequently "easier" than approximating the inverse
operator, as the reconstruction error from CX can be significantly magnified in
the decoder. During training, this can result in higher losses in the reconstruction
objective for deblurring than blurring, which means that the gradients will be
dominated by the losses from the deblurring task.

63

4. Neural Networks

Variational Bayesian Inference and Variational Autoencoders

In a classic work [KW14], the authors introduce methods which allow us to
turn an autoencoder into a generative model (Definition 3.2.5). The motivation
goes as follows; if we are in possession of some known approximation of the
distribution over the latent space Z, then an autoencoder can be considered
generative. By considering output from the encoder as latent random variables
Z, the problem can be restated as a variational Bayesian problem, where we
have

• a set of observable data {xi : xi ∈ X , i = 1, . . . , n},

• a set of latent variables {zi : zi ∈ Z, i = 1, . . . , n},

• a posterior of interest fZ|X = fX|ZfZ/fX.

The canonical problem when modelling using Bayesian inference methods is
that the density fX =

∫
fX|Z · fZ is often intractable. In a variational Bayesian

setting, this is solved by approximating fZ|X with a tractable density gZ, such
that fZ|X ≈ gZ. From Jensen’s inequality (Theorem A.7.11) we have that

log fX(x) = log
(∫

fXZ(x, z) dz
)

(4.37)

= log
(∫

gZ(z)fXZ(x, z)
gZ(z) dz

)
(4.38)

≥ Eg
[
log
(
fXZ(x, z)
gZ(z)

)]
(4.39)

= Eg [log fXZ(x, z)]− Eg[log gZ(z)] (4.40)
= elbo[fX], (4.41)

so by maximising the evidence lower bound of X (Definition A.7.17), we minimize
the error of the approximation. To this end, we make use of the related Kullback-
Leibler divergence.

Definition 4.4.5 (Kullback-Leibler divergence). Let (X ,B) be an observable
space, and let Pf ,Pg be probability distributions over X with probability density
functions fX, gX respectively. Then dKL : L1(X)× L1(X)→ R≥0 given by

dKL[gX‖fX] = Hg[fX]−H[gX] (4.42)
= Eg[log gX(x)]− Eg[log fX(x)] (4.43)

=
∫
X
gX(x) log

(
gX(x)
fX(x)

)
dx. (4.44)

is called the Kullback-Leibler divergence of gX with respect to fX.

64

4.4. Network Architectures and Encoder-Decoder Models

At this point, we require the application of the following useful observation.

Observation 4.4.6 (KL-divergence and elbo). Let X,Z be random variables
with pdfs. fX, fZ respectively. Let gZ be an approximation of fZ|X. Then the op-
timization objective arg mingZ

dKL[gZ‖fZ|X] is equivalent to arg maxfX
elbo[fX].

Proof. Rewriting fZ|X using the Kullback-Leibler divergence yields

dKL[gZ‖fZ|X] = Eg
[
log
(

gZ(z)
fZ|X(z | x)

)]
= Eg

[
log
(

gZ(z)
fXZ(x, z)

)]
+ log fX(x)

= log fX(x)− (Eg [log fXZ(x, z)]− Eg[log gZ(z)])
= log fX(x)− elbo[fX],

so minimizing dKL[gZ‖fZ|X] is equivalent to maximizing elbo[fX]. �

To apply this in an autencoder setting, we can rewrite Equation (4.40) to
get the general form of the canonical vae objective

elbo[gZ] = Eg[log fXZ(x, z)]− Eg[log gZ(z)] (4.45)
= Eg[log fX|Z(x | z)]− (Eg[log gZ(z)]− Eg[log fZ(z)]) (4.46)
= Eg[log fX|Z(x | z)]− dKL[gZ‖fZ]. (4.47)

Letting the decoder network be given by Ψd ∼ fX|Z and the encoder network
given by Ψe ∼ gZ|X, we conceivably have an autoencoder representation of a
bidirectional graphical model. Thus Equation (4.47) can be interpreted as an
objective function where the first term is simply a form of reconstruction loss
and where dKL[gZ‖fZ] acts as a regularization term for the divergence between
the encoder and decoder.

This interpretation requires that the latent vectors are random variables;
and is where we apply the stochastic sampling layer from Definition 4.3.7 to
construct the full definition of a variational autoencoder [KW14].

Definition 4.4.7 (Variational Autoencoder). Let Ψvae be an autoencoder model,
where the final layer of the encoder is a stochastic sampling layer with
parameter space Υ. If the loss function CJ includes a regularization term
J(υ ∈ Υ) = dKL[gZ|υ‖fZ] we say that Ψvae is a variational autoencoder.

Instead of letting the autoencoder produce the latent variables directly, we
let the output of the stochastic sampling layer be the parameters υ = (m, s) of
a multivariate distribution in the location-scale family (Definition A.7.15). We
then sample a vector of iid. random variables {ζi ∼ Pυ : i = 1, . . . , k} and let

z = sζ +m ∼ Pυ, (4.48)

As this is differentiable, the gradients from the input x ∈ X are propagated
throughout the network, minimizing the reconstruction error. This is what
is referred to as the reparametrization trick in vae models. Note that the
reconstruction objective given in Equation (4.47) is not directly required for
a vae model, however we consider it as the canonical objective for modelling
with variational autoencoder models.

65

4. Neural Networks

x1

x2

x3

h1

h2

h3

h4

z1

z2

z3

z4

y1

y2

Figure 4.7: Visualization of dropout. Note that z1 has had all connections to
the output layer dropped, whereas z4 has had only a single connection to y1
dropped, demonstrating the difference between the two approaches.

4.5 Regularization, Optimization, and Learning Dynamics

In this section, we discuss regularization and optimization methods available
for modelling with neural networks. While general Lp regularization methods
(Definition 3.5.4) can be applied to network weights, the direct implementation
of these methods are generally applied through the optimization algorithms.
As an example, adam [KB17; LH17] features an optional weight decay term,
which is equivalent to Tikhonov regularization. In addition to these methods,
neural networks often employ specific regularization methods not seen in other
contexts.

Dropout

Dropout is one of the most commonly applied methods of regularization in neural
networks. It is a stochastic method applied to hidden neurons during training
which give a probability p of transmitting their value [Hin+12; Sri+14]. This
can either be done on a single connection between layers or for all connections
from a hidden neuron, both illustrated in Figure 4.7. This imposes implicit
regularization, making a network less dependent on individual weights or neurons
when computing an output. The idea is to utilize similar properties to neural
plasticity to distribute the computation more evenly across the weights in a
layer. The method has connections to the method of dilution in mean-field
theory, and has been shown to have an interesting link to Bayesian inference
[GG16].

Batch Normalization

Another popular method to promote implicit regularization in neural networks
is the normalization layer, first introduced in [IS15]. The motivation for
this method is derived from standardization of data and the concept of
internal covariate shift, a loosely defined phenomenon where the distribution of
intermediate hidden layers display arbitrary shift and scaling due to randomness
of the weight initialization process.

The proposed solution is to perform online calculations of empirical means
and standard deviations over each batch Bi in intermediate layers and normalize

66

4.5. Regularization, Optimization, and Learning Dynamics

the outputs accordingly by

µ
(i)
jk = 1

#(Bi)
∑

zk∈ψ[j](Bi)

zk (4.49)

σ
(i)
jk = 1√

#(Bi)

√ ∑
zk∈ψ[j](Bi)

(
zk − µ(i)

jk

)2
. (4.50)

The layer can either be computed for each batch or extended to derive
global parametrizations for the empirical distribution of the given layer. The
normalization process is commonly followed by a learned one-dimensional affine
transformation to compute the final output.

While normalization layers have been shown to be effective, the effect on
internal covariate shift is not as clear, and the reason behind the effectiveness
of normalization layers is more or less unknown. In [San+18] the authors
argue this point and discuss one possible hypothesis for the effectiveness of
normalization layers as a form of regularization on the solution space. By
applying random Gaussian noise post-normalization, where a nonzero mean and
nonunit variance are sampled randomly for each batch, the authors effectively
negate any positive effect the normalization process could have on the internal
covariate shift. However, the empirical results show that batch normalization
methods still produce better results than a non-normalized model. The centering
and unit scaling of batch normalization do however, affect the Lipschitz constant
of the network – if the batch normalization is non-parametrized – effectively
smoothing the solution space. Furthermore, similar effects can be observed for
variants using Lp normalization without distributional stability, leading the
authors to conclude that this is the main reason for the effectiveness of batch
normalization.

Parseval Regularization

In [Cis+17] the authors discuss network stability and robustness in the context of
what is known as adverserial attacks – a concept we discuss further in Section 5.1.
The main idea is that each layer can be enforced to be approximately isometric;
such that each layer has Lipschitz constant k ≈ 1 via a regularization constraint
known as Parseval regularization.

Definition 4.5.1. Let ϑ be a parametrization over the weights of a neural
network Ψ. Let J be a functional over ϑ ∈ Θ given by

J(ϑ) =
∑
θ∈ϑ

β

2 ‖W
∗
θWθ − I‖22. (4.51)

Then J is called a Parseval regularization term.

This constraint ensures that the weight of each layer is a Parseval-tight
frame [KC08] – i.e. the network weights are approximately semi-orthogonal.
The Parseval regularization term enforces weights to be at least injective and
the spectral norm to be approximately one. Networks which are Parseval
optimal and feature activation functions with Lipschitz constant k = 1 are
called Lipschitz-1 networks. [ALG18] features a thorough exposition on the
subject of Lipschitz-1 networks and special activation functions for enforcing
their properties.

67

4. Neural Networks

Learning Dynamics

The first implementations of deep models showed that simply increasing the
model depth had certain disadvantages, as the initial state of the weights
combined with the choice of activation function could limit the rate at which
the gradient of the learning objective could effectively propagate through the
entire network. If the gradients were sufficiently dampened or nullified, this
resulted in models that never converged, limiting the effectiveness of deep
models [BSF94]. The study of optimal learning dynamics in deep learning
focuses on methods to improve gradient propagation in deep neural network
models. Much of the work on learning dynamics has naturally been focused on
the backpropigation algorithm (Equation (4.15)), as the canonical method for
optimization in modelling with deep neural networks.

Unsupervised Pretraining

One way to overcome the issue of learning dynamics in deep models was proposed
in [Ben+07]. By sequentially training each layer with encoder-decoder structures
in order to allow the gradients of the objective to propagate through the entire
model, the network can effectively be pre-trained to overcome these limitations.
This process is dubbed greedy layer-wise unsupervised pretraining.

Definition 4.5.2 (Greedy Layerwise Unsupervised Pretraining). Let Ψ(x;ϑ,Γ)
be an L-layer neural network, and let ψi(zi-1; θi, γi) be the ith layer of Ψ. Let
ψd(zi; θdi , γdi) be a decoder layer with optimal weights given by

θdi = arg min
θ
‖(ψdi ◦ ψi)(zi-1)− zi-1‖. (4.52)

The process of sequentially estimating θi for i = 1, . . . , L− 1 is referred to as
greedy layerwise unsupervised pretraining.

The method utilizes auxiliary decoder structures to generate effective
layer-wise representations by enforcing minimal reconstruction errors for each
appended layer in the network, separately minimizing information loss for
consecutive layers. In [GBC16, p.528], the authors claim that this idea instigated
the renaissance of neural networks, by allowing for optimal initialization of
network weights – thus allowing for deeper models. Furthermore, [Erh+10]
show that unsupervised pretraining acts as an implicit regularizer by adjusting
the weights to act as a more appropriate "prior" (sic.) for full signal propagation
through the network, improving the learning dynamics. In Section 4.4, we
already mentioned that supervised autoencoders have been shown to act as
implicit regularization in its own right [LPW18], which corroborates this result.

Dynamical Isometry

Later work on optimal learning dynamics introduced dynamical isometry
- a property where the singular values of the Jacobian of a network are
approximately one. This property ensures that the network avoids vanishing
and exploding gradients by ensuring a well-conditioned Jacobian. In [PSG17]
the authors show this is achievable by initializing the network with orthogonal
weights and using sigmoidal activation functions, and in [Xia+18] the idea is
expanded to convolutional networks with similar orthogonality constraints in
initialization.

68

PART II

Methodology

CHAPTER 5

Inverse Problems and Invertible
Neural Networks

Thus far, we have outlined relevant theoretical results and definitions for inverse
problems, statistical modelling, and neural networks. In this chapter, we
discuss the error sources and stability issues we need to be aware of when
modelling inverse problems with neural networks. Furthermore, we introduce
an approach to the modelling of inverse problems via invertible neural networks
using normalizing flows and discuss the benefits and weaknesses of this approach.

5.1 Uncertainty and Instability in Neural Networks

We begin by specifying the general problem; recall that from Section 2.1 we
considered the general form of an forward problem of model identification by

y = Φ(x; θ) + ε, (5.1)

and note that this coincides with the notion of predictive modelling from
Equation (3.12) where we consider the system Φ as unknown. In Section 3.1 we
introduced observable spaces (Proposition 3.1.1) on the form (X ×Y,B). In the
setting of supervised learning we consider a set of observations D = (x, y)i∈I
which we want to use to approximate the system Φ : X → Y. However, we
are instead interested in directly modelling an inverse map Y 7→ X , which we
consider to be either inherently ill-conditioned or ill-posed (Definition 2.1.1).

In constructing a learning model (Definition 3.2.2) for inverse problems, it
is advisable to consider what types of errors we are likely to encounter. The
sources of uncertainty can be classified into two main categories [DD09; HW21].

Definition 5.1.1 (Uncertainty in Learning Models). Let (X × Y,H) be a
learning model. We consider the aleatoric uncertainty to be any uncertainty
independent of the choice of H . Consequently, we consider the epistemic
uncertainty to be any uncertainty which is fundamentally reducible by the
choice of learning model.

While our main focus will be on epistemic uncertainty, it is important to
consider the fact that any discriminative models do not directly model the
aleatoric uncertainty of an inverse problem inherent in the noise component
ε. Most importantly, heteroscedastic uncertainty is especially problematic for
non-probabilistic modelling techniques [KG17].

71

5. Inverse Problems and Invertible Neural Networks

Observation 5.1.2 (Epistemic Errors in Inverse Problems). A learning model
(X × Y,H) for an inverse problem of model identification x = Φ-1(y; θ) will
have the following main sources of epistemic errors [KO01];

(i) (Misspecification) the model Φ (or P) is not an element of H ,

(ii) (Algorithmic) the estimation is not sufficient to find θ 7→ Φ,

(iii) (Ambiguity) the parametrization θ is not uniquely identifiable,

(iv) (Interpolation) the true model Φ is not determinable given D.

Modelling inverse problems with neural networks is an attractive prospect, as
we can effectively ignore epistemic errors from misspecification (Property 5.1.2.i)
due to the properties of universal approximation (Theorem 4.1.6). As a result
of this flexibility, we do however increase the risk of occurrence of other error
sources, particularly in terms of ambiguity (Property 5.1.2.iii). Errors of
ambiguity (Property 5.1.2.iii) and interpolation (Property 5.1.2.iv) are however
more significant, and relates directly to issues of ill-posedness. To effectively
generalize a problem, any learning model is required to effectively construct
a generalized map between input and output spaces, requiring interpolation
or extrapolation for generalization of unseen observations. Extrapolation is
naturally more challenging as we expect poor approximations of outlier points
sufficiently distant from any observation in the training data. However, [Sze+14]
showed that tiny perturbations of inputs can lead to significant errors in the
solution space. This phenomenon is usually observed via so-called adverserial
attacks [GSS15] – malign estimation of particularly destabilizing perturbations
by some hypothetical adversary. Moreover, these perturbations generalize over
different models trained over the same data.

The issues of adverserial perturbations relate to issues of instability and
ill-conditioning of the model. [Ant+20] discusses fundamental differences in
classification tasks and image reconstruction tasks, especially in the realm of
medical imaging. These concepts relate directly to the fact that deterministic
discriminative models imply hard classification boundaries for the underlying
discrete decision problem. If the generated solution space is sufficiently
nonsmooth, any such hard decision boundaries can effectively be exploited to find
sufficiently steep slopes in the solution space that will lead to misclassification.
A more fundamental issue is that deep neural networks have similar behaviour
when trained on reconstruction tasks for which there exist stable algorithms
for image reconstruction - e.g. magnetic resonance imaging and computed
tomography. The claim in [Ant+20] is that instabilities in neural networks are
fundamentally algorithmic in nature (Property 5.1.2.ii), as stable algorithms for
solving inverse problems in compressed sensing exist and are readily available.
While stochastic gradient descent methods have been shown to be stable for
neural networks [Bot91], this has certain caveats. In particular, certain works
have shown limitations of gradient descent methods [SLH20], where the authors
highlight the deficiencies of backpropigation for neural networks where persistent
weight noise is introduced. In [Com+18], the authors provide an in-depth study
of the limitations on network convergence in terms of optimal learning dynamics,
which we discussed in Section 4.5.

The rifeness of such instabilities are concluded to be a predominantly
epistemic issue related to the model itself, particularily in the realm of

72

5.1. Uncertainty and Instability in Neural Networks

deterministic discriminative modelling, which begs the question; are stability
and accuracy at odds? The work in [ACH21] elaborates on this precise issue,
and [Tsi+19] suggests that this tradeoff "probably exists" (sic.) but highlights
some unexpected benefits by showing that adverserial robustness can increase
the interpretability of neural networks via gradient extraction and visualization.
The idea is that models trained with remedial methods against adverserial
attacks exhibit some level of invariance to tiny perturbations and requires the
model to embed high-level features as a result, more closely emulating human
cognition.

While these results can be interpreted as uncertainty due to interpolation of
data, there are results that indicate that this is not the cause of the instability.
In [OWB18], the authors show that modern neural networks can generalize
well even with small amounts of data. In their experiments, they train deep
neural network models on a series of comparatively simple datasets [DG17].
They then apply linear programming to decompose the network into smaller
subnetworks and proceed to show that that these are uncorrelated ensembles,
and demonstrate that the composed networks display similarities to random
forests.

Rather surprisingly, [Nak+19] show that increasing the number of observa-
tions in a dataset can – in certain cases – increase the error of the final model
for sufficiently deep models, suggesting that there is some notion of efficient
model complexity which determines the performance of deep neural networks.
These results highlight the fact that lack of data is not necessarily a direct
hindrance for training neural networks. In fact, most modern neural networks
have a much larger dimensionality of their parameter space than the number of
observations used to estimate their parameters. The instability issues of neural
networks thus seem to be most closely related to ambiguity in the parameter
space combined with unmanaged aletoric uncertainty from ill-posedness of the
original inverse problem.

Furthermore, there is a connection between adverserial attacks and inverse
problems. An adverserial perturbation δ can be interpreted as the "worst-case"
of the inherent noise component ε. Therefore, adverserial robustness is in a sense
a stricter requirement of robustness than managing the aleatoric uncertainty of
inverse problems. If there exists a perturbation δ in a ball B(y, r) around an
observation which will severely offset the reconstruction of x, then the model
is considered unstable, even if this perturbation δ is far out in the tail of the
actual distribution of the noise component ε. This raises the question; what
distribution can be assigned to the adverserial perturbation δ? If these are
selected from the ball B(y, r) it seems reasonable to assign a uniform distribution
over the ball. However, it is more likely that more of the unstable perturbations
are found on the perimeter of this ball than in the interior, which yields an
antimodal quality to the distribution of adverserial perturbations. Is it then
reasonable to assume that this is related to the uncertainty of the distribution
of ε?

In this thesis, we take the approach of considering adverserial perturbations
as worst case perturbations similarly to the definition of the relative condition
number (Definition 3.5.2), which factors in the magnitude of the adverserial
perturbation. We discuss this further in Section 7.1 in relation to our
experimental methodology.

73

5. Inverse Problems and Invertible Neural Networks

5.2 Normalizing Flows and Invertible Neural Networks

In the previous section, we discussed the sources of uncertainty and instability
in neural networks. In this section, we motivate the need for probabilistic
methods and invertible structures to address the inherent aleatoric error of
inverse problems. A straightforward approach to modelling an inverse problem
using a neural network is to estimate Ψ : Y → X by minimizing a loss function
C (Equation (3.30)) with respect to the network parameters ϑ ∈ Θ according
to some measure of empirical risk given by

arg min
ϑ
C (x,Ψ(y;ϑ,Γ)) , ∀ (x, y) ∈ D (5.2)

with the goal of minimizing ‖x−Ψ(y;ϑ,Γ)‖. This is the standard discriminative
modelling approach (Definition 3.2.3). From the discussion in Chapter 2 we
know that if the problem is ill-posed or ill-conditioned, such a method can lead
to suboptimal reconstructions. In Sections 3.5 and 4.5 we discussed how this
can be remedied by replacing C with a regularized loss function CJ .

Alternatively, we can introduce probabilistic modelling in a neural network
context, either by conditional models (Definition 3.2.4) or by modelling a
joint distribution with a generative model (Definition 3.2.5). In [Yin18] the
authors argue that generative modelling is an effective countermeasure to
adverserial attacks, suggesting that at least some of the stability issues of neural
network models are caused by their discriminative nature. In Definition 4.4.7 we
introduced the variational autoencoder as an important example of generative
modelling in neural networks. These models are predominantly unsupervised,
and the distributions are approximate estimations at best, although hybrid
methods of variational autoencoders and discriminative approaches from
generative adverserial networks have been shown to be moderately successful
[Lar+16; Tol+19]. Generative adverserial networks (gans) [Goo+14] provide
an exotic approach to generative modelling, but generally does not provide
an underlying probability distribution for inference, and as such provide less
than what we want in terms of uncertainty measures or quantifiable stability.
Moreover, as generative modelling is likely to reduce the overall performance,
these approaches do not directly address the tradeoff between stability and
accuracy discussed in [ACH21; Tsi+19].

Several methods have been proposed to bring uncertainty measures into
modelling with deep neural networks. The earliest of these approaches are
probabilistic neural networks [Spe90], a type of flexible kernel density estimation
[HTF09, Section 6.6] using the Bayes optimal decision rule for classification.
Another approach was proposed in [Mac95], which formalized Bayesian neural
networks. In [Blu+15] the authors propose defining explicit priors and
quantifying uncertainty over the weights over the entire network while training
via Bayesian backpropigation. Other work has used dropout (Section 4.5)
to study neural networks in the context of approximate Bayesian inference
[GG16], while [KG17] directly address the problems of heteroscedastic aleatoric
uncertainty in neural networks.

Currently, the most prolific probabilistic neural network models are
normalizing flows (Definition 4.3.5), which allow for flexible density estimation
with tractable distributions. These models have been successfuly applied
in a variety of applications [DKB15; DSB16; KD18; RM16]. Only recently,

74

5.2. Normalizing Flows and Invertible Neural Networks

[Tes+20] showed that neural networks with affine coupling layers are universal
diffeomorphism approximators (Definition A.6.22), issuing elevated credence to
approaching invertible neural network architectures.

Definition 5.2.1 (Invertible Neural Network). Let (X × Y) be an observable
space, and let Ψ : X → Y be a neural network. If Ψ is a diffeomorphism, we
say that Ψ is an invertible neural network.

While coupling layers and normalizing flows can be used to construct
invertible neural networks, several other models have been proposed [JSO18;
PW19]. There are several benefits of modelling with an invertible neural network.
In the context of inverse problems on an observable space (X ×Y,B), invertible
neural networks can be able to construct bijective maps X → Y where no
such map is clearly defined given the forward problem. This naturally extends
to representation learning and compression. Furthermore, suppose we have
a invertible model Ψ : X → Y with some notion of sufficient accuracy. If we
now consider a third domain Z which is related to X through observations
from (X × Z,B), we can construct a model Ψ̂ : X → Z. If both models are
bijective as well as provide sufficiently high quality reconstructions, we can then
consider the possibility of composing models to construct maps on the form
Ψ̂-1 ◦ Ψ : Z → Y. In other words, invertible networks can be effective in the
domain of inductive transfer learning [PT97].

In [Ard+18] the authors present methods of approaching inverse modelling
of inverse problems with underdetermination by constructing such invertible
network models by using normalizing flows (RealNVP) [DSB16]. Instead of
approaching inverse problems by an approach outlined in Equation (5.2) the
idea is to model a bijective map X 7→ Y ×Z where Y is augmented by a latent
space Z with a tractable distribution, such that dim(X) = dim(Y × Z). In
particular, we have a situation where we want to estimate PX|Y by PX|Y,Z using
a generative model of the form

x = Ψ(y, z; θ) (5.3)
z ∼ PZ. (5.4)

where we usually let PZ = N (0, I), acting as a prior. The result is a full
posterior for X = x ∈ X conditioned on Y = y ∈ Y and Z = z ∈ Z.

Additionally, the authors show that such models have particularly strong
properties for applications to inverse problems of model identification. Firstly,
the authors state that the predictive power of invertible neural networks does not
seem to be detrimentally affected by imposing structures to enable bijectivity.
Secondly, they show that these models compare favorably with approximate
Bayesian inference models. Thirdly, they show that these models can be
trained bi-directionally similar to the objective of a semisupervised variational
autoencoder (Equation (4.34)) using unsupervised learning on the augmented
latent variable Z combined with the supervised loss on Y. The authors state
that this asymptotically yields a true posterior for X.

75

5. Inverse Problems and Invertible Neural Networks

While these results are both interesting and promising, there are two issues
with this approach:

• Firstly, the issue with applying normalizing flows in invertible neural
networks is that they can be computationally heavy, as they require a
feed-forward neural network for each coupling in the full model. For high
dimensional data such as images and audio signals, the computational
costs of these models can be infeasible.

• Secondly, a normalizing flow differs significantly from standard neural
network architectures. As such, they require specifically modified network
structures and layers, and much of the established theory on feed-forward
models can not be applied directly.

The rest of our work in this thesis centers on adapting invertible neural networks
and the methods outlined in [Ard+18] to classical feedforward structures, which
we motivate and discuss in the next chapter.

76

CHAPTER 6

Invertible and Pseudo-Invertible
Encoders

In this chapter, we outline our main contributions and present novel neural
network architectures based on the autoencoder (Definition 4.4.1) which uses
implicit and explicit orthogonal and unitary constraints on network weights to
encourage invertible properties. Furthermore, we investigate how the network
architecture enforces stability similarly to regularization. Lastly, we examine
how these models can be used for supervised and generative tasks by applying
the variational Bayesian approaches introduced in Definition 4.4.7, and use this
to define generative models for ill-posed inverse problems.

6.1 Motivation

In Section 4.4 we introduced autoencoders as models capable of finding useful
latent representations of high-dimensional data. Autoencoders and general
encoder-decoder models feature prominently in a wide variety of neural network
architectures, including – but not limited to – representation learning and
embedding [BDV01], sparse coding and dictionary learning [SPH07], and
attention layers [BCB15]. In addition, encoder-decoder structures have one
main property in common with invertible neural networks – the reconstruction
of elements from an observable space. Due to their superficial similarity, one
could argue that the invertible neural networks are supervised autoencoders
with guarantees of bijectivity. The applicability of these models in a variety of
settings makes them good candidates for constructing invertible networks.

On the other hand, autoencoders use different parametrizations of weights
for the encoder and decoder networks, and are thus only approximations of
diffeomorphisms. Theoretically, this implies that the models can be prone to
hallucinatory effects [Kno+20], where the network encodes using an overfitted
eigenspace over the observations [TP91; Zha+16]. These issues can be addressed
to promote stronger stability in the network.

Our main idea is to endow the encoder network of an encoder-decoder
model with properties to promote a diffemorphic map in a supervised learning
setting to effectively make them invertible neural networks. To achieve this,
we propose to enforce a joint parametrization for the encoder and decoder,
effectively constructing invertible encoder networks. To this end, we summarize
some important observations from the theoretical exposure of our thesis.

77

6. Invertible and Pseudo-Invertible Encoders

Observation 6.1.1 (Motivation and Properties for Invertible Encoder Networks).

(i) Linear autoencoders share properties with the sve/svd and pseudoinverse
operators [BH89], which are fundamental tools for with inverse problems
(Section 2.3).

(ii) Supervised autoencoders (Section 4.4) encourage implicit regularization
[LPW18] and tight upper bounds on generalization error.

(iii) Optimal learning dynamics can be enforced by orthogonal initialization
(Section 4.5) or supervised pretraining using encoder-decoders (Definition 4.5.2).

(iv) Parseval regularization (Definition 4.5.1) is a remedial method for
adverserial attacks [Cis+17] which improves the general stability of neural
networks.

(v) Inhomogeneous integral equations (Definition 2.2.5) and resolvent operators
(Definition 2.3.9) have strong invertible properties, and can be solved by the
application of Liouville-Neumann series (Corollary 2.3.12). Furthermore, these
operators share similarities with single layer residual blocks (Definition 4.3.1).

(vi) Convolution layers (Definition 4.3.2) are fundamentally constructed using
convolution operators (Definition 2.2.6) and the linearity of the Fourier operator
in Hilbert spaces (Theorem A.5.2) can be applied to compute the parameters of
the kernel.

The properties of Observation 6.1.1 motivate our method and results, which
we derive in this section. As a first step toward invertible encoder models, we
begin by introducing the concept of an ideal autoencoder.

Definition 6.1.2 (Ideal Autoencoder). Let Ψie(x;ϑ,Γ) be an L-layer autoencoder
network with encoder network Ψe and decoder network Ψd. If the weights ϑ
are such that for all x ∈ X we have

(Ψe ◦Ψd)(x;ϑ,Γ) = x (6.1)

we say Ψie is an ideal autoencoder network.

The above definition simply states that the only requirement of an ideal
autoencoder is to reconstruct the input data perfectly. We also note that in
the linear case, an ideal autoencoder can inherit the similiarity to sve/svd
(Property 6.1.1.i). The next result constructively shows the existence of ideal
autoencoders given a particular choice of activation function.

78

6.1. Motivation

Lemma 6.1.3 (Existence of Nontrivial Ideal Autoencoder). There exists a family
of ideal autoencoders with joint parametrization of the encoder and decoder
networks, such that ϑe = ϑd, and where Wθ 6= I for all compact linear operators
Wθ occurring in either Ψe,Ψd.

Proof. The proof is constructive. Let Ψie(x;ϑ,Γ) be an L-layer autoencoder
network with encoder network Ψe and decoder network Ψd. Let each γi ∈ Γ for
i = 1, . . . , L be a C1 piecewise diffeomorphism - i.e. bijective with γi, γ-1

i ∈ C1

with piecewise continuous derivatives - and let the parameters for each weight
θi 7→Wθi be such that W ∗θiWθi = I so each parametrized compact operator is
either unitary or semi-unitary. Furthermore, let the structure of the layers be
such that

ψei (zi-1; θi, γi) = γi(Wθizi-1) (6.2)
ψdi (zi; θi, γ-1

i) = W ∗θiγ
-1
i (zi). (6.3)

Then for all i = 1, . . . , L we have

(ψei ◦ ψdi)(zi-1) = W ∗θiγ
-1
i

(
γi(Wθizi-1)

)
(6.4)

= W ∗θiWθizi-1 (6.5)
= zi-1. (6.6)

Then Ψie is an ideal autoencoder for any joint parametrization ϑ where
W ∗θi = Wθi for each i = 1, . . . , L. �

Following Lemma 6.1.3 we note that for dim(zi) 6= dim(zi±1) – i.e. for any
underdetermined and overdetermined layers in the network architecture – we
have a rank deficiency in either encoder or decoder computations, which we
emphasize is not necessarily invertible in both forward and inverse computations.
However, for full rank operators these are invertible.

Definition 6.1.4 (Family of Nontrivial Ideal Autoencoders). Let Ψie be a
nontrivial ideal autoencoder with joint parametrization as given in the proof of
Lemma 6.1.3. Then we call Ψie an invertible unitary encoder.

While seemingly trivial, this result is useful for connecting invertible encoders
to the property of optimal learning dynamics (Property 6.1.1.iii). In fact, the
idea of supervised pretraining and dynamical isometry is equivalent for nontrivial
ideal autoencoders with joint parametrization.

Proposition 6.1.5 (Pretraining and Dynamic Isometry). Greedy layer-wise
unsupervised pretraining and dynamical isometry via orthogonal (or unitary)
initialization are equivalent schemes for optimal learning dynamics for invertible
unitary encoders.

Proof. Consider a greedy layer-wise unsupervised pretraining procedure on
a network initialized with orthogonal weights and C1 piecewise diffeomorphic
activation functions. Let the decoder Ψd be given as in the proof of Lemma 6.1.3.
Then the optimization objective is trivially satisfied and no training is
necessary. �

79

6. Invertible and Pseudo-Invertible Encoders

This result connects both ideas of optimal learning dynamics, in that both
allow the network to initialize the estimation process with more or less optimal
gradient propagation from the input layer to the output layer. Ensuring that
this property holds for each appended layer allows for deeper architectures.

The next result connects the invertible encoders to Parseval regularization,
showing that these models are trivially robust to adverserial attacks and
could allow the models to exhibit stronger properties of interpretability
(Property 6.1.1.iv)

Proposition 6.1.6 (Ideal Autoencoders are Parseval Optimal). Invertible
unitary encoders are optimal with respect to Parseval Regularization.

Proof. As each weight is unitary, we have W ∗θWθ = I so the network weights
are Lipschitz-1, trivially minimizing J(ϑ) for all θ ∈ ϑ. �

A Parseval network differs from our outline of an ideal autoencoder as the
former clearly lacks a supervised objective, but this is easily remedied. Our last
result of this section connects the implicit regularization results of supervised
autoencoders (Property 6.1.1.ii) to invertible encoders, and follows directly from
Definition 5.2.1 and Lemma 6.1.3.

Corollary 6.1.7 (Supervised Invertible Encoder). Let Ψie be a supervised ideal
autoencoder. Then Ψie satisfies the criteria for an invertible neural network,
and we call Ψie an invertible encoder.

In this section, we have shown the existence of invertible encoder networks
in Lemma 6.1.3, and related these models to some of the desirable properties
for dealing with inverse problems which we have discussed throughout our
thesis. In particular, we have demonstrated a direct link to optimal learning
dynamics, adverserial robustness and general stability. By proxy to general ae
models, these models might theoretically exhibit similarities to sve/svd (in
the linear setting) and interpretable neural networks, however these properties
are not directly ensured and need to be verified. All the mentioned properties
(Properties 6.1.1.i to 6.1.1.iv) can be enforced via implicit or explicit unitary
constraints on the network weights through models defined in ideal encoder-
decoder structures and proper choice of activation functions. Furthermore,
from Definition 4.4.7 we know that general autoencoder models can be made
generative by the addition of stochastic sampling layers (Definition 4.3.7) using
KL-divergence as a regularization term on the approximate distribution of the
latent variables.

However, some details and components are notably missing. We have yet
to discuss exactly how unitary or orthogonal constraints can be enforced, the
precise form of the activation functions described in the proof of Lemma 6.1.3,
and to relate Properties 6.1.1.v and 6.1.1.vi to our proposed model. The rest of
the chapter is dedicated to demonstrating how these concepts can be introduced
in our proposed model architecture.

80

6.2. Bi-Lipschitzian Activation Functions

6.2 Bi-Lipschitzian Activation Functions

The autoencoder structure in Lemma 6.1.3 places constraints on the choice
of activation functions, namely that they are piecewise C1 diffeomorphisms.
Additionally, we would like to enforce some bounds on the Lipschitz constant k
for robustness and stability – in particular with respect to adverserial attacks
as discussed in Sections 4.5 and 5.1. In the context of bijectivity, this requires
us to expand Definition 3.5.1 to bi-Lipschitz continuous functions.

Definition 6.2.1. Let X ,Y be metric spaces, and let f : X → Y be a mapping
such that

1
k
dX (x1, x2) ≤ dY

(
f(x1), f(x2)

)
≤ kdX (x1, x2) (6.7)

for all x1, x2 ∈ X . Then f is bi-Lipschitz continuous with Lipschitz constant k.

Bi-Lipschitz continuity will ensure that the activation is bounded and non-
saturating, meaning their domain is all of R. This property allows us to quantify
the maximum slope of the activation in both forward and inverse directions.
This is also useful for numerical stability during training.

Unfortunately, there are almost no commonly used activation functions
which feature these properties. As an example, consider the sigmoidal logistic
function from Equation (3.36). This function is well behaved in the forward
direction, but its inverse – the logit function given in Equation (3.35) – is only
defined for inputs in]0, 1[. Worse yet, it is satured, which almost certainly leads
to exploding gradients. The same argument applies to other common sigmoidal
functions as well.

Bi-Lipschitzian ReLU

While the relu function is clearly not bijective, its counterpart – the leaky
relu function [MHN13] – is. It does nevertheless require a minor modification
to be bi-Lipschitz piecewise C1 diffeomorphic.

Definition 6.2.2 (Bi-Lipschitzian relu). The bi-Lipschitzian rectified linear
unit function (birelu) is given by

γbirelu(x; k) =
{
kx, if x ≥ 0;
x/k, otherwise.

(6.8)

The birelu function satisfies our aforementioned criteria. The function is
not in C1 itself, due to the discontinuity of the gradient at the origin, however
similar modifications can also be applied to activation functions of a similar
nature to the rectified linear unit. In particular, we propose adapting the elu
Equation (4.3) and celu functions Equation (4.4) for these purposes.

Bi-Lipschitzian ELU

The exponential linear unit function differs from relu by including negative
values which serve to push the mean activation closer to zero. Recall that the

81

6. Invertible and Pseudo-Invertible Encoders

function is given by

γelu(x;β) =
{
x, if x ≥ 0;
β(ex − 1), otherwise,

(6.9)

with a functional inverse given by

γ-1
elu(y;β) =

{
y, if y ≥ 0;
ln(y/β + 1), otherwise.

(6.10)

To modify the exponential linear unit function to be bi-Lipschitzian, we want
to constrain its Lipschitz constant to k, so we require the derivatives of both
forward and inverse functions to have a maximum at k. For our purposes, it is
enough to consider the piecewise functions defined on R<0. The derivatives are
given by

Dγelu<0(x;β) = βex (6.11)
Dγ-1

elu<0(y;β) = (y + β)-1, (6.12)

which have easily derived inverses

(Dγelu<0)-1(y;β) = ln(y/β) (6.13)
(Dγ-1

elu<0)-1(x;β) = x-1 − β, (6.14)

where we let D signify the differential operator for notational clarity. For the
function to have Lipschitz constant k we simply scale the outputs on R≥0 by k.
Evaluating the inverse of the derivatives at β = k sets knots at a = −2 ln(k),
as well as b = k-1 − k, where the derivatives are exactly k. This can be used to
define the bi-Lipschitzian exponential linear unit activation.

Definition 6.2.3 (Bi-Lipschitzian elu). Let k ∈ R>0, and define two points
at a = −2 ln(k) and b = k-1 − k. The bi-Lipschitzian exponential linear unit
function (bielu) is given by

γbielu(x; k) =


kx, if 0 < x;
k(ex − 1), if a < x ≤ 0;
(x− a)/k + b, if x ≤ a,

(6.15)

and its inverse is given by

γ-1
bielu(y; k) =


y/k, if 0 < y;
ln(y/k + 1), if b < y ≤ 0;
k(y + b)− a, if y ≤ b.

(6.16)

Bi-Lipschitzian CELU

The celu function was proposed as a refinement on elu designed to use
exponential saturation for negative values while still pushing the mean activation
towards the origin. The function is given by

γcelu(x;β) =
{
x, if x ≥ 0;
β(ex/β − 1), otherwise,

(6.17)

82

6.2. Bi-Lipschitzian Activation Functions

whereas its inverse is given by

γ-1
celu(y;β) =

{
y, if y ≥ 0;
β ln(y/β + 1), otherwise.

(6.18)

As opposed to elu, the celu function is more reliant on the parameter β to push
the mean activation to zero so requires a dual parametrization k, β. Furthermore,
it requires four knots instead of two for a bi-Lipschitz parametrization. This is
for the gradient to reach k, which the exponential piecewise component only
does on R≥0. However, two of these will turn out to be symmetric, requiring
three computations. Computing the derivative yields

Dγcelu<0(x;β) = ex/β (6.19)
Dγ-1

celu<0(y;β) = β(y + β)-1, (6.20)

and taking their inverses gives us

(Dγcelu<0)-1(y;β) = β ln(y) (6.21)
(Dγ-1

celu<0)-1(x;β) = β(x-1 − 1). (6.22)

The first knot for the forward operator are thus given by a1 = −β ln(k) and the
second knot is given by b1 = β ln(k), which is just reflected over the origin. The
last two knots correspond to the inverse operator and is given by a2 = β(k-1−1),
and the last knot is subsequently given by b2 = β(k − 1). We can thus get
away with only computing a1, a2, b2. This is useful if β should be given as a
learnable parameter. The application of k as a learnable parameter requires
the constraint k ∈ R≥1.

Definition 6.2.4 (Bi-Lipschitzian celu). Let β ∈ R>0, k ∈ R≥1, and define
points at a1 = −k ln(k), b1 = −a1 and a2 = β(k-1 − 1), b2 = β(k − 1). The bi-
Lipschitzian continuously differentiable exponential linear unit function (bicelu)
is then given by

γbicelu(x;β, k) =


k(x− b1) + b2, if b1 < x;
β(ex/β − 1), if a1 < x ≤ b1;
k-1(x− a1) + a2, if x ≤ a1;

(6.23)

and its inverse is given by

γ-1
bicelu(y; k) =


k-1(y − b2) + b1, if b2 < y;
β ln(y/β + 1), if a2 < y ≤ b2;
k(y − a2) + a1, if y ≤ a2.

(6.24)

83

6. Invertible and Pseudo-Invertible Encoders

2 0 24
3
2
1
0
1
2
3
4

ReLU

2 0 24
3
2
1
0
1
2
3
4

ELU

2 0 24
3
2
1
0
1
2
3
4

CELU

2 0 24
3
2
1
0
1
2
3
4

BiReLU

2 0 24
3
2
1
0
1
2
3
4

BiELU

2 0 24
3
2
1
0
1
2
3
4

BiCELU

Figure 6.1: Bi-Lipschitzian activation functions and their canonical counterparts.

Act.Func. Non-Affine Smooth Monotonic Low Complex. Apr.Id.
birelu X X X
bielu X X X

bicelu X X X X

Table 6.1: List of bi-Lipschitzian activation functions and their connection to
ideal properties from Observation 4.1.2.

The bicelu activation has an advantage over the bielu function in that it
is exactly identity at the origin, highlighted in Property 4.1.2.v as particularly
useful in terms of more flexible weight initialization. In fact, the image of the
forward and inverse function of bicelu tangentially intersects in a single point
at the origin. Apart from this, bielu and bicelu share most of the other useful
properties highlighted in Observation 4.1.2. A comparison of the bi-Lipschitzian
activation functions and their properties are listed in Table 6.1.

In addition to these observations, we note that we have γ → Id as k → 1
for all proposed bi-Lipschitzian activations, which is very much in line with our
motivation. Moreover, for bicelu we have that γbicelu → γbirelu as β → 0. We
can thus consider birelu as a special case of bicelu.

We stress the fact that the parameterization of all functions can be made
trainable, as the parameters are easily updated with gradient methods. This
is particularly interesting for the β parameter for the bicelu function. The
downside with the smooth activation functions bielu and bicelu is that they
are more computationally expensive than the birelu function, but the smooth
gradients should theoretically lead to better stability in training.

Without setting the parameters as trainable, both hyperparameters k and
β thus need to be inferred. For k >> 1 we note that the nonlinearities are
more prevalent, but increases the overall Lipschitz constant of the network. For
k ≈ 1 this symmetrically implies the network is approximately linear. For this
reason, we consider k = 2 a reasonable estimate. The parameter β in bicelu
controls the sharpness of the curve around the origin. In a rudimentary test, we
found that setting β = 1/2 seemed to slightly improve the initial convergence.
We stress that little work was done on estimating the optimal values of these
parameters in the model, and further work can be done on this subject.

84

6.3. Invertible Dirichlet-Softmax Transform

4 2 0 2 40.0

0.2

0.4

0.6

0.8

1.0

1.2 x1

x2

x3

0.0 0.2 0.4 0.6 0.8 1.00.0

0.5

1.0

1.5

2.0

2.5

3.0 γ(x1)

γ(x2)

γ(x3)

Figure 6.2: Visualization of softmax function. On the left, the histogram of three
generated gaussian random variables and their transform via softmax denoted by
γ with temperature parameter τ = 1. On the right, the observations are plotted
in three dimensions. Notice how γ acts by projecting into a two-dimensional
simplex on a plane.

6.3 Invertible Dirichlet-Softmax Transform

In Section 4.1 we introduced the softmax activation in Equation (4.5), and
discussed its applications as a multivariate extension of the logistic function
(Equation (3.36)). The softmax function is clearly not bijective, making it
impossible to apply in invertible neural networks. Seeing as the softmax
activation is so commonly used in classification tasks [He+15; KSH17; SZ15;
Sze+14], this is something we want to address. We thus need a bijective
transformation onto the d − 1 simplex, which can be used as a probability
distribution over a discrete set of classes. In fundamental literature on Bayesian
modelling [Gel+14], it is often the case that categorical distributions are
modelled with a conjugate Dirichlet prior, which produce more expressive
probablity distributions over a d− 1 simplex. The relation between the softmax
and Dirichlet distribution is investigated in [AS80]. We propose to replace the
softmax function with a diffemorphic transformation from a location-scale family
(Definition A.7.15) to an approximate Dirichlet distribution, with the intent of
applying the reparametrization trick in a vae context (Definition 4.4.7).

Related Work

Several approaches have been proposed for modelling Dirichlet distributions
with vae networks. [Zha+18] uses the Weibull distribution to construct an
approximation, while [Joo+19] instead compose a Dirichlet approximation by
Gamma random variables. These do not allow for bijective application of
the reparametrization trick, however. In [SS17b] the authors instead model a
Dirichlet distribution via a Laplace bridge [Mac98]. This method was originally
proposed by [Hen+11], and approximates a Dirichlet by LogisticNormal(µ,Σ).
This does not directly solve our problem at hand as it directly requires the
application of the softmax function – which is what we want to approximate. In
[NS17], the authors propose to construct autoencoders based on a stick breaking
process. The process can be derived using the marginal beta-sampling scheme
[Fer73] for a Dirichlet distribution.

85

6. Invertible and Pseudo-Invertible Encoders

Theorem 6.3.1 (Marginal Beta-Sampling). Let α ∈ Rk. Furthermore, let
Zi ∼ Beta(αi,

∑
i<j αj) for i = 1, . . . , k. Let Y be a k-dimensional random

variable such that for i < d we have

Yi = Zi

∑
j<i

1−Yj

 , (6.25)

and lastly we set Yd = 1 −
∑
j<d Yj. Then Y ∼ Dirichlet(α), generated by

marginal beta-sampling.

The sampling process from Theorem 6.3.1 can be rewritten to only include
the Zi terms by

Yi = Zi
∏
j<i

(1− Zj) (6.26)

which is the general form of stick-breaking for a Dirichlet Process, a non-
parametric stochastic model commonly applied in Bayesian modelling for
estimating infinite dimensional distributions. The contribution of [NS17] is to
apply a stick-breaking process via Kumaraswamy distributed random variables
[Kum80] to generate a Griffiths-Engen-McCloskey (GEM) distribution [PY16,
Section 2]. Again, this is not directly bijective.

Symmetric Dirichlet-Softmax Transform

We propose an alternative approach via a stick-breaking process using an
approximation of a Beta distribution via Gaussian random variables. By the
overdetermination of the d− 1 simplex, we elect to make the parametrization
determinable by treating the normalizing constant in the softmax transform as
a random variable S as a sum of log-normally distributed variables. Assuming
independent inputs Xi ∼ N (0, 1), we can simplify what is known as the the
Fenton-Wilkinson approximation for a sum of log-normal variables [Mar67].

Theorem 6.3.2 (Simplified Fenton-Wilkinson Transform). Let
exp(Xi) ∼ LogNormal(0, 1) for i = 1, . . . , d. Then the sum is given by
S =

∑
i exp(Xi) is approximately LogNormal(µS , σ2

S) with parameters given by

σ2
S = ln

(
e− 1
d

+ 1
)

(6.27)

µS = ln(d) + 1− σ2
S

2 . (6.28)

The idea is to let the last input in a hidden layer xdσS + µS = ln(S) act as
the normalizing constant and approximate a logistic normal distribution with a
Dirichlet distribution. The naive approach is then to take

Yi = γ(X)i = exp(Xi − ln(S)) (6.29)
ln(Yi) + ln(S) = Xi, (6.30)

where γ is the softmax function and Y ∼ Dirichlet(α), which naturally yield
less than optimal approximations.

86

6.3. Invertible Dirichlet-Softmax Transform

Instead, we propose to apply a transformation by Wise [Wis60] which
transforms beta distributed variables to be approximately Gaussian.

Theorem 6.3.3 (Wise Transform). Let Zi ∼ Beta(αi, βi). Then for αi ≥ βi ≥ 1
we have that 3

√
− ln(Zi) approximately follows N (µi, σ2

i) with parameters

Ni = αi + βi − 1
2 (6.31)

µi = 3
√
βi

(
1− 1

9βi

)
−3

√
Ni −

(βi − 1)(βi + 1
3)

12N2
i

(6.32)

σi ∝ (6
√
βi

3
√
Ni)−1. (6.33)

This result is a refinement of [KL59] relating the CDF of a beta distribution
to the Chi-squared distribution and applying a normalizing constant – which
Wise calls this the ’Wilson-Hilferty transformation’.

We will apply the Wise transform to improve the naive approximation
from Equation (6.29) by letting 3

√
− ln(Zi) + ln(S) = Xi be approximately

N (µXi , σXi) for d− 1 variables. The term ln(S) comes from the normalization
term of the softmax transformation and serves to help correct any skew and
generally improve the Gaussian approximation.

As the Wise transform is bijective, this gives us an invertible approximate
Beta to Gaussian transformation. Furthermore, as we are free to set the
parameters of the transformation, we can apply a stick-breaking process via
marginal beta sampling Theorem 6.3.1 to yield a Dirichlet distribution, of which
we can construct an inverse of the form

Zi = Yi

1−
∑
j<i Yj

, (6.34)

for i < d. The most basic way to achieve this is by considering the Dirichlet
variable as an uninformed prior for our transformation, Y ∼ SymDirichlet(α, d),
i.e. αi = αj for i, j ∈ N≤d using some specified parameter α.

To this end, there are three considerations we need to address. Wise gives the
error of the approximation as proportional to 4

√
βi/Ni for αi ≥ βi. Furthermore,

as we require βi > αi, we note that the Wise transform can easily be extended
by considering the symmetry 1− Zi ∼ Beta(βi, αi) to hold for αi < βi. Since
α < (d− i)α for i < d− 1, this is the form required in our approach.

Secondly, in [Wis60] the variance σXi is only provided up to proportionality.
To tackle this, we empirically estimate the proportionality constants via least
squares methods on sampled Dirichlet variables, and determined a constant
scalar term s = .315 and a minor translation of t = .001. This gives us closed
form expressions for µX, σX which most closely approximates 3

√
− ln(1− Zi),

allowing us to appropriately scale and shift our approximation.

87

6. Invertible and Pseudo-Invertible Encoders

Finally, as we center our approximations, we will necessarily also center the
distribution of the normalization constant, such that ln(S) ∼ N (0, σ2

S). This
allows us to define the full Symmetric Dirichlet-Softmax transform.

Proposition 6.3.4 (Symmetric Dirichlet-Softmax Transform). Let
Y ∼ SymDirichlet(α, d) and let

Zi = Yi

1−
∑
j<i Yj

(6.35)

for i = 1, . . . , d− 1. Then 1−Zi ∼ Beta((d− i)α, α) for α ≥ 1/2. Furthermore,
define the parameters

σS = ln
(
e− 1
d

+ 1
)

(6.36)

Ni = (d− i)α+ α− 1
2 (6.37)

µXi = 3
√
α

(
1− 1

9α

)
−3

√
Ni −

(α− 1)(α+ 1
3)

12N2
i

(6.38)

σXi = .315
6
√
α 3
√
Ni

+ .001. (6.39)

Now let ln(S) ∼ N (0, σ2
S), and let

3
√
− ln(1− Zi)− µXi

σXi
+ ln(S) = Xi. (6.40)

then Xi is approximately N (0, 1), and the transformation is bijective for a
symmetric Dirichlet distributed variable.

Proof. From Theorems 6.3.1 and 6.3.3 and Equation (6.27) the approximation
is clear, and the forward transform is given by

Zi = 1− exp
(
−
(
σXi(Xi − ln(S)) + µXi

)3) (6.41)

Yi = Zi
∏
j<i

(1− Zj), (6.42)

so the transformation is bijective. �

The symmetric inverse Dirichlet-Softmax transform can be used in place
of a softmax function to output a probability distribution in an invertible
neural network. The most important applications of Proposition 6.3.4 is that
the method can be readily extended to variational autoencoders without any
modification of the Gaussian Kullback-Leibner regularization term. While the
symmetric parametrization αi = αj for all i, j ∈ N≤d can be considered too
rigid for more involved modelling, this limitation is mostly artificial due to the
practical implications of this thesis, and the method itself could be expanded
to allow for setting αi either as tuneable parameters estimated via gradient
descent, or estimated via parallel inference networks with coupling layers.

88

6.4. Parametrization and Constraints

6.4 Parametrization and Constraints

In this section, we will outline specific approaches to constructing invertible
encoder networks, either by implicitly encouraging orthogonality by means of
the network architecture, or explicitly enforcing constraints by parametrization
using Lie groups and Riemannian gradient descent, or via one-layer residual
blocks and resolvent operators derived from methods inspired by the solution
of inhomogeneous integral equations.

Approximate Orthogonality by Pseudo-Invertible Encoders

We begin by introducing the concept of pseudo-invertible encoders.

Definition 6.4.1 (Pseudo-Invertible Encoders). Let Ψpie be an autoencoder
model with joint parametrization, such that ϑ = ϑe = ϑd. Let W ∗θiWθi ≈ I for
all θi ∈ ϑ. Then Ψpie is a pseudo-invertible encoder (pie).

The pseudo-invertible encoder is the simplest method of constructing models
which have properties in common with invertible encoders. The idea is to
train a model as an autoencoder with a supervised objective (Equations (4.34)
and (4.35)) to encourage orthogonality in the weights via implicit constraints in
the architecture. Given the construction defined in the proof of Lemma 6.1.3,
the network weights are optimal precisely when W ∗θiWθi = I so a pie model
approximates an ie similar to how an autoencoder approximates an identity
mapping on X .

However, this begs the question; why not use an autoencoder network?
In Observation 6.1.1 we outlined the benefits of invertible encoders, and
many of these properties are shared with pseudo-invertible variants. In
particular, autoencoder models do not enjoy the benefit of Parsival optimality
(Property 6.1.1.iv) without explicit regularization, which the architecture of a
pie implicitly encourages by Proposition 6.1.6. Thus a pie can effectively be
considered equivalent to a Parseval autoencoder network. The advantage of pie
models is that they can be applied with almost no modifications to existing
network structures. The experiments and results in Chapter 8 investigates the
applicability of pie models compared to ae models.

Orthogonal Constraints via Manifold Learning

To effectively enforce orthogonal constraints on the weights, we looked at relevant
work on orthogonal- and unitary constraints on the parameters of the weights in
neural networks. These constraints were originally proposed to solve the problem
of long-term dependencies in recurrent network structures, motivated by the
fact that contractions and dilations in hidden states lead to an eventual loss
of information for recurrent iterations, which reduces long-term dependencies
in modelled sequences [BFS93]. This essentially reflects the same issues as
discussed in Section 4.5 where layerwise pretraining and dynamical isometry were
introduced as remedial approaches to optimal gradient propagation for learning
dynamics. Most of the earliest works on orthogonal or unitary constraints in
neural networks were derived from QR decomposition methods using elementary
Householder reflections and Givens rotations (Definition A.6.25) [ASB16; FB19;

89

6. Invertible and Pseudo-Invertible Encoders

Mha+16]. A more nuanced approach surfaced in [HR17], which related the
problem of constructing unitary matrices to Lie groups and Lie algebras.

The rest of this section outlines the fundamental theory for understanding
the basics of manifold learning on matrix Lie groups to enforce orthogonal
constraints. This involves group theory, topology, manifolds, and differential
geometry – all of which are noncentral topics in relation to our thesis. Our
exposition should be considered a brief introduction to outline the fundamentals,
and we emphasize that the theory is derived from the work in [AMS08; Cas19;
Hal15] which provides a more comprehensive exposition. We will defer more
detailed results to the appendix, with appropriate references in the text.

Lie Groups, Lie Algebras, and the Matrix Exponential

We begin by denoting the set of all n×n matrices as gl(n), and note that gl(n) is
a linear inner product space with respect to the trace operator (Theorem A.6.1).
This space does not form a group (Definition A.6.3) under matrix multiplication,
as the definition of a group requires that every element has an associated inverse
operator. By taking the subset of all invertible matrices, we get the maximal
set of elements of gl(n) required to yield a group structure under matrix
multiplication.

Theorem 6.4.2 (General Linear Group). Let GL(n) ⊂ gl(n) such that GL(n) =
{W ∈ gl(n) : W is invertible}. Then GL(n) is a group under matrix
multiplication, called the general linear group.

Proof. We know that GL(n) is associative (Property A.6.3.i) and contains the
identity matrix (Property A.6.3.ii), and by definition it contains only invertible
elements (Property A.6.3.iii). To show that GL(n) is a group, we only need
to show that GL(n) is closed under matrix multiplication. Let U, V ∈ GL(n).
Then U -1, V -1 exists, and we have

UV (UV)-1 = U(V V -1)U -1 = UU -1 = I. (6.43)

This holds for all U, V ∈ GL(n), so GL(n) is a group. �

The general linear group forms the basis for a number of other matrix
subgroups (see Definition A.6.5). For our purposes, we are first and foremost
interested in the subgroup of orthogonal matrices, called the orthogonal group.

Lemma 6.4.3 (Special Orthogonal Group). Let SO(n) be the set of real
orthogonal n× n matrices, i.e. SO(n) = {W ∈ GL(n) : W ᵀ = W -1,det(W) =
1}. Then SO(n) is a subgroup of GL(n) called the orthogonal group.

Proof. SO(n) inherits associativety from GL(n), and as IᵀI = I we have
I ∈ O(n). Furthermore, from the multiplicative property of the determinant, we
have det(UV) = det(U) det(V) = 1 for all U, V ∈ SO(n). Then by substituting
(UV)-1 = (UV)ᵀ in Equation (6.43), we have that SO(n) is closed, and thus a
subgroup of GL(n). �

The general linear group and the orthogonal group are both classic examples
of matrix Lie groups (Definition A.6.9 and Lemma A.6.10), however the
orthogonal group has the additional property of being compact in gl(n)
(Lemma A.6.11). Lie groups are closely related to the exponential map. For
matrix Lie groups, this takes the form of the matrix exponential.

90

6.4. Parametrization and Constraints

Definition 6.4.4 (Matrix Exponential). Let W ∈ gl(n). We define the matrix
exponential as

exp(W) =
∞∑
k=0

W k

k! . (6.44)

Each Lie group has an associated Lie algebra (Definition A.6.27), with the
property that the image of the exponential map of the Lie algebra forms a
Lie group. It turns out that the Lie algebra for the general linear group is
gl(n), and more importantly for our purposes; the Lie algebra for the orthogonal
group is the linear space of skew-symmetric matrices (Theorem A.6.30), denoted
by so(n). Furthermore, the matrix exponential has the following important
properties.

Proposition 6.4.5 (Properties of Matrix Exponential). Let U, V ∈ gl(n). The
matrix exponential has the following properties;

(i) exp(U) is convergent,

(ii) exp(tU) ∈ C∞,

(iii) exp(0) = I,

(iv) exp(U)∗ = exp(U∗),

(v) exp(U) ∈ GL(n), and exp(−U) = exp(U)-1,

(vi) exp(U + V) = exp(UV) if UV = V U ,

(vii) exp(UV U -1) = U exp(V)U -1 for U ∈ GL(n),

(viii) det
(

exp(U)
)

= exp
(
Tr(U)

)
,

(ix) ∂
∂t exp(tU) = U exp(tU) = exp(tU)U .

(x) ∂
∂t exp(tU)

∣∣∣
t=0

= U .

The proof for the properties listed in Proposition 6.4.5 can be found in
[Hal15, pp.31–35]. It turns out that the elements of matrix Lie groups are
path-connected (see Definition A.6.24 and Proposition A.6.26), which means we
can construct a piecewise smooth path between any elements in the group using
the matrix exponential. If the exponential map from a Lie algebra is surjective
on its associated Lie group, we can construct a smooth path between any two
elements in the group. As it turns out, this is the case for SO(n) [Roh13].

As our goal is to enforce the orthogonality of linear operators, the question
is; why can we not simply let the operators in our network be parametrized
by exp : so(n) → SO(n)? As we will see, this will yield the correct gradient
computations for the elements on SO(n). To fully make use of the orthogonal
constraints provided by SO(n), we need to look at some fundamental theory
for smooth manifolds.

91

6. Invertible and Pseudo-Invertible Encoders

Manifolds

A smooth manifold M (Definition A.6.21) is essentially a topological space
(Definition A.6.12) which has the property of being locally Euclidean (Defini-
tion A.6.18) with a smooth differentiable structure (Definition A.6.20). This
simply means that it is sufficiently similar to Rn to apply calculus in local
areas around some point p ∈M. As it turns out, all matrix Lie groups yield a
manifold structure.

Theorem 6.4.6 (Matrix Lie Groups are Manifolds). The matrix Lie groups are
smooth manifolds.

Proof. To show Theorem 6.4.6 we make use of Theorem A.6.23 which states that
open subsets of a smooth manifold are themselves smooth manifolds. Note that
the mapping vec : gl(n) → Rn2 yields a homeomorphism (Definition A.6.16),
so gl(n) is trivally a smooth manifold. We need to show that GL(n) is an
open subset of gl(n). As the elements of GL(n) are matrices with non-zero
determinant, we note that the determinant is a polynomial, and thus det ∈ C∞.
By considering the preimage

det−1
({

R \ {0}
})

= GL(n), (6.45)

we have that GL(n) is an open subset of gl(n), and is thus a smooth manifold.
Lastly, as any subgroup of GL(n) can be constructed using the subspace topology
(Definition A.6.13), all matrix Lie groups are likewise smooth manifolds. �

Similarly to how we can define a tangent line at a point of a function in Euc-
lidean space, we can similarly define a tangent space TpM (Proposition A.6.32)
on a point on a manifold, which consists of all possible tangent vectors with
respect to the point p. The following result shows that defining the tangent
space at a point on a matrix Lie group turns out to be straightforward.

Theorem 6.4.7 (Matrix Lie Algebra is Tangent Space). Let g(n) be a matrix
Lie algebra with associated matrix Lie group G(n). Then TIG(n) = g(n), i.e.
the tangent space at the identity is the Lie algebra.

The proof for Theorem 6.4.7 is given in [Hal15, Corollary 3.46]. As
multiplication is by definition continuous, we can apply left multiplication
to each element of the tangent space which translates the tangent space to
some other element on the manifold. Since this is invertible for GL(n), it is a
diffeomorphism (Definition A.6.22), which preserves the structure of the tangent
space (Definition A.6.20). Constructing the tangent space at a point U ∈ SO(n)
yields

TUSO(n) = {UV : V ∈ so(n)}. (6.46)

This result also shows why we cannot simply parametrize our weights as a
skew symmetric matrix θi and let Wθi = exp(θi), as this will yield gradients
in relation to the identity I as opposed to the point on the manifold we are
currently at for our gradient descent algorithm. There is therefore a need for
a change in the way we update our weights in the context of the manifold we
wish to optimize over.

92

6.4. Parametrization and Constraints

Riemannian Gradient Descent

To apply gradient descent directly on a manifold, we need to clarify what we
mean by a gradient on a manifold. In Euclidean space, we associate the gradient
with the direction and magnitude of the steepest incline at the evaluated point.
Tangent spaces on a manifold can intuitively be understood as a generalization
of a directional derivative on a manifold. To meaningfully characterize the
magnitude of each each element in a tangent space, we need to endow the
tangent space with some notion of distance or metric. Manifolds that associate
an inner product to their tangent space are called Riemannian manifolds.

Definition 6.4.8 (Riemannian Manifold). LetM be a smooth manifold. If TpM
is an inner product space for all p ∈M, then we say thatM is a Riemannian
manifold. A Riemannian manifold is equipped with a Riemannian metric
gp : TpM× TpM→ R≥0 given by gp = 〈•, •〉p induced from the inner product
on TpM.

The induced norm ‖•‖p can be employed to compute lengths of paths
between local points onM. For matrix Lie groups, we have already established
that the tangent space is given by the Lie algebra. This is an inner product space
(Theorem A.6.1) and yields a Riemannian metric on GL(n) and its submanifolds,
so the matrix Lie groups are Riemannian manifolds (Corollary A.6.38).

When we apply gradient descent over Euclidean space, we traverse over
a vector field in straight lines defined by the gradient of some loss functional
evaluated at our current estimate. The issue is that following a Euclidean
straight line on the Euclidean space homeomorphic to a point on a manifold
does not necessarily ensure that we stay on the manifold. Instead, a straight
line on a manifold is a curve, called a geodesic.

Definition 6.4.9 (Curves and Geodesics on Manifolds). Let M be a smooth
manifold. Let a ≤ 0 < b and let c : [a, b]→M with c ∈ C∞([a, b]). Then c is a
curve on a manifold. Furthermore, fix p ∈M and v ∈ TpM. Let cp,v be such
that cp,v(0) = p and c′p,v(0) = v. Then cp,v is called a geodesic onM.

The element v ∈ TpM can be interpreted as the initial velocity along a
geodesic curve. A geodesic has the property of being the curve with the shortest
length between two points onM, and thus naturally generalizes the notion of
a straight line to manifolds. For any smooth real-valued function f :M→ R,
the function composition f ◦ cp,v has a well-defined classical derivative

∂f
(
cp,v(t)

)
∂t

= f ′(cp,v(t))c′p,v(t), (6.47)

which allows us to define gradients for f on a Riemannian manifold.

Definition 6.4.10 (Gradients on Riemannian Manifolds). LetM be a smooth
manifold with a Riemannian metric, and let cp,v be a geodesic. Let f :M→ R
be a smooth scalar field onM, and let ∇Mf(p) ∈ TpM be such that

〈∇Mf(p), v〉p =
∂f
(
cp,v(t)

)
∂t

∣∣∣∣
t=0

= Dp(f)(v). (6.48)

where Dp is a derivation (Definition A.6.31). Then ∇Mf(p) is called the
gradient of f at the point p.

93

6. Invertible and Pseudo-Invertible Encoders

In this context, the term Dp(f) can be interpreted as the directional
derivative of f at point p. To apply gradient descent to Riemannian manifolds,
we are particularly interested in the following properties of the gradient.

Proposition 6.4.11 (Properties of Gradient on Riemannian Manifolds). LetM
be a smooth manifold with a Riemannian metric, let p ∈M, and let ∇Mf(p) be
the gradient of a smooth function f at the point p. Then we have the following;

∇Mf(p)
‖∇Mf(p)‖p

= arg max
v∈TpM,‖v‖p=1

Dp(f)(v), (6.49)

‖∇Mf(p)‖p = Dp(f)
(
∇Mf(p)
‖∇Mf(p)‖

)
. (6.50)

In [AMS08, p.46] suggests that the implication of Proposition 6.4.11 is that
among all unit vectors in TpM, the gradient ∇Mf(p) is the direction of steepest
incline for f at p, and that the norm of the gradient ‖∇Mf(p)‖p yields the
steepest slope of f at p. This are the components needed for gradient descent
on a Riemannian manifold. Consider the minimization problem

min
p∈M

f(p). (6.51)

With Riemannian gradient descent, we compute the gradient of a differentiable
real-valued function f at a point pi on a manifoldM, and subsequently update
our position onM by moving along a geodesic cv using some small step size
%, yielding the next point pi+1. This process is then iterated over until some
convergence criteria are met.

The issue now is that the gradient on the manifold is only defined implicitly
in Definition 6.4.10. In [Cas19, Theorem 4.3] the author instead shows that if
we have a mapping φp : TpM 7→M, then the minimization objective given by

min
v∈TpM

f(φp(v)) (6.52)

is equivalent to the optimization objective given in Equation (6.51), with a
change of metric induced by the mapping φp. Notably, the optimization objective
for Riemannian gradient descent is equivalent when selecting φp = cp,v(t), the
geodesic given by the canonical Riemannian exponential map. By the chain
rule, we can then derive the update rules for Riemannian gradient descent given
by

vi+1 = −%∇(f ◦ φpi)(vi) (6.53)
pi+1 = φpi

(
− %∇(f ◦ φpi)(vi)

)
(6.54)

How this directly relates to matrix manifolds might not be sufficiently clear.
Recall that the matrix exponential yields smooth curves on the manifolds of Lie
groups. It turns out that the matrix exponential provides the geodesics on these
manifolds [AMS08, p.102]. For U ∈ SO(n), V ∈ so(n) and V̂ = UV ∈ TUSO(n)
we can define the geodesic

cU,V̂ (t) = U exp(tU∗V̂) = U exp(tB∗BV) = U exp(V). (6.55)

94

6.4. Parametrization and Constraints

From Theorem A.6.1 we have that the inner product of elements of TUSO(n)
is given by

〈V,W 〉 = Tr
(
(U∗V)∗U∗W

)
(6.56)

= Tr(V ∗W) (6.57)

which corresponds to the standard inner product, and this is bi-invariant for
reductive Lie algebras (Definition A.6.35). The last piece of the puzzle comes
from the practical concerns of numerical computation. In general, evaluating
the geodesics of a manifold can be computationally heavy. In this case, we often
replace the canonical Riemannian exponential map from the tangent bundle
TM toM (Definition A.6.33) by a retraction map [AMS08, p.55].

Definition 6.4.12 (Retraction). LetM be a manifold with tangent bundle TM.
Let Rp : TpM→M be a smooth mapping such that for p ∈M we have

(i) Rp(0) = p,

(ii) Dp(Rp(0)) = IdTpM.

Now, let R = {Rp : p ∈M}. Then R is known as a retraction.

A retraction can thus be considered a first-order approximation to the
canonical retraction of the Riemannian exponential map. For the Lie matrix
groups, this is equivalent to the matrix exponential. We can thus apply a suitable
retraction map to Equation (6.52) to perform Riemannian gradient descent on
matrix manifolds. From here, we can outline the algorithm for Riemannian
gradient descent on SO(n), given in Algorithm 1. For the sake of simplicity,
we only consider a single layer network without bias for illustrating the weight
update process, however the most significant difference from Euclidean gradient
descent is how the weight update is performed, and this can easily be generalized
to a multilayer network.

Algorithm 1: Riemannian Gradient Descent on SO(n)
Data: Activation function γ, base weight U ∈ SO(n), parametrization

Vθ ∈ so(n), operator W ∈ SO(n), cost function C, data
(xi, yi)Ni=1, learning rate %.

Initialize parametrization Vθ = 0;
Initialize base weight U in SO(n);
Choose E = max epochs;
for j = 1 to E do

for i = 1 to N do
W = RU (Vθ);
ŷi = γ(Wxi);
dU = ∇(C ◦RU)(Vθ)|yi,ŷi ;
dV = ∇C(yi, ŷi);
U = −%dU ;
Vθ = −%dV ;

end
end

95

6. Invertible and Pseudo-Invertible Encoders

In terms of semiorthogonal operators, we are also interested in optimization
on the closely related Stiefel manifold.

Definition 6.4.13 (Stiefel Manifold). Let St(n, k) = {W ∈ Rn×k : W ∗W = Ik}.
Then St(n, k) is called the Stiefel manifold.

Applying Riemannian gradient descent to the Stiefel manifold requires
addressing the underdetermination. In [AMS08, Example 3.5.2],the authors
show that the tangent space TUSt(n, k) is given by

TUSt(n, k) = {UV + U⊥V⊥ : V ∈ so(n), U⊥ ∈ Rn×n−k, V⊥ ∈ Rn−k×n},
(6.58)

suggesting the completion of U ∈ St(n, k) by a matrix U⊥ ∈ Rn×n−k
using a Gram-Schmidt process. Thus, the block matrix [U U⊥] ∈ O(n).
Furthermore, from [AMS08, Example 3.6.2], we have that any element of
TUM can be decomposed into a symmetric and skew symmetric element so
that for ξ ∈ TUSt(n, k) we have

PUξ = (I − UU∗)ξ + U skew(U∗ξ) (6.59)
P⊥U ξ = U sym(U∗ξ), (6.60)

where skew(U) = 1
2 (U − U∗) and sym(U) = 1

2 (U + U∗). Then the gradients of
a smooth function f are given by the projection ∇PUf(U), allowing us to apply
similar methods as for the case of SO(n). In practical terms, the only difference
from Algorithm 1 is the completion of the base matrix U via a Gram-Schmidt
process. In [Cas19, p.21], the author suggest applying a thin QR factorization
for this process, which unfortunately is computationally costly. However, this
is not a problem with any immediate remedial solution, and the final algorithm
is outlined in Algorithm 2.

Up until recently, the application of the canonical retraction given by the
matrix exponential was computationally costly, prompting the application of
alternative retractions. The most common retraction for SO(n) is the Cayley
transform.

Proposition 6.4.14 (Cayley Transform). Let Vθ ∈ so(n). Let R be a retraction
such that RU : TUSO(n)→ SO(n) is given by

RU (V) = U(I + V)(I − V)-1. (6.61)

Then R is a retraction map given by the Cayley transform.

Proof. Let W = (I +V)(I −V)-1. For RU to be a retraction, it suffices to show
that W ∈ O(n). We have that

WW ∗ = (I + V)(I − V)-1((I + V)(I − V)-1)∗ (6.62)
= (I + V)(I − V)-1(I + V)-1(I − V) (6.63)
= I (6.64)

since (I − V)-1 commutes with (I + V). Then R is a retraction map, as we
wanted. �

96

6.4. Parametrization and Constraints

Algorithm 2: Riemannian Gradient Descent on St(n, k)
Data: Activation function γ, base weight U ∈ SO(n), parametrization

Vθ ∈ Rn×k, operator W ∈ St(n, k), cost function C, data
(xi, yi)Ni=1, learning rate %.

Initialize parametrization Vθ = 0;
Initialize base weight U in SO(n);
Choose E = max epochs;
Choose L = max QR iterations;
for j = 1 to E do

for i = 1 to N do
Initialize V0 = 0 ∈ Rn×n−k ;
V = skew

(
[Vθ V0]

)
;

W = RU
(
V
)
;

ŷi = γ(Wxi);
dU = ∇(C ◦RU)(Vθ)|yi,ŷi ;
dV = ∇C(yi, ŷi);
d⊥ = V0;
for i = 1 to L do

Q,R = qr
(
d⊥ − dU (dUd⊥)

)
;

d⊥ = Q;
end
dU = [dU d⊥] ;
U = −%dU ;
Vθ = −%dV ;

end
end

Recently, [BBC19] introduced a computationally cheap algorithm for
the matrix exponential, allowing the use of canonical retraction maps for
optimization with Riemannian gradient descent. In Section 9.1 we perform
experiments with both the matrix exponential and the Cayley transform in
invertible encoder networks.

In the context of optimization on the Stiefel manifold, it is important to
note that the method does not yield invertible matrices in both directions
for the method outlined in Lemma 6.1.3. For underdetermination between
network layers – i.e. where k > n – we simply apply the convention of using
a transposed operator from St(n, k). No matter how this is implemented, any
underdetermination or overdetermination in the network will cause certain
network layers to not be strictly bijective.

Resolvent Operators and Liouville-Neumann Series

Another method for constructing invertible encoders comes from the spectral
theory of inhomogeneous integral operators from Section 2.2. Recall that an
inhomogeneous integral operator equation can be expressed on the form

y = (I − λ-1W)x. (6.65)

97

6. Invertible and Pseudo-Invertible Encoders

In Corollary 2.3.12 we introduced the Liouville-Neumann series as a method
for constructing invertible operators for the inhomogeneous integral operator
equations. Furthermore, in Definition 4.3.1 we discussed residual blocks as a
method to ease the process of training neural networks by letting nonlinear
layers act on the residual space of a linear operator, often in the form of an
identity matrix. As previously mentioned, residual blocks have been applied
to construct invertible networks [JSO18]. Our idea is to approach invertible
networks by combining elements from these two methods, directly addressing
Property 6.1.1.v as a motivation for invertible encoder networks.

Proposition 6.4.15 (Resolvent Layer). Let ψ be a single layer neural network,
and let γ be a piecewise diffeomorphism. Let λ ∈ ρ(Uθ) and Wθ = I − λ-1Uθ ∈
GL(n), such that

y = ψ(x; θ, γ) (6.66)
= γ

(
(I − λ-1Uθ)x

)
. (6.67)

Then ψ is a piecewise diffeomorphism, called a resolvent layer.

Proof. As γ is a piecewise diffeomorphism, and the linear operator is
diffeomorphic, it suffices to show that ψ is invertible. This is clearly the
case as Wθ ∈ GL(n) by definition. More constructively, for λ ∈ ρ(Uθ) and
‖Uθ‖ < |λ| we have by Corollary 2.3.12 that the inverse of ψ is given by

ψ-1(y; θ, γ) = W -1
θ γ

-1(y) (6.68)

=
∑
k∈Z≥0

λ−kUkθ γ
-1(y). (6.69)

Then ψ is a piecewise diffeomophism, as we wanted. �

While resolvent layers somewhat resemble single layer residual blocks, they
lack the property of allowing a linear combination of an input to be further
propagated throughout layers, thus the the similarity is rather superficial.
However, this idea could be pursued further by applying the theory of nonlinear
integral operators, such as the Urysohn operator [Kra64], a possible avenue of
research we refer to in Section 10.3.

The power of resolvent layers is that they can be applied in the context of
convolutional layers from Definition 4.3.2, allowing us to construct invertible
encoder networks with convolutional layers. To show how this can be
implemented, we provide the following results.

Proposition 6.4.16 (Resolvent Convolution Kernels). Let Wθ be a discrete
resolvent convolution operator with circular boundary conditions, such that
Wθ = I − λ-1Uθ. Let θ be the kernel of Uθ. Then for ‖Uθ‖ < |λ| the kernel θ-1

of the operator W -1
θ is given by

θ-1 = F -1

[∞∑
k=0

λ−k(Fθ)�k
]
, (6.70)

with appropriate circular shifts defined by the Fourier operator.

98

6.4. Parametrization and Constraints

Proof. By the convolution theorem in Theorem A.7.7 we have that for a
convolution with circular boundary conditions, the operator can be expressed
by

y = Wθx (6.71)
= θ ∗ x (6.72)
= F -1[Fθ �Fx]. (6.73)

Using the Liouville-Neumann series, we have

x =
∞∑
k=0

λ−kW k
θ y (6.74)

=
∞∑
k=0

λ−kF -1[(Fθ)�k �Fy] (6.75)

= F -1

[
Fy �

∞∑
k=0

λ−k(Fθ)�k
]
, (6.76)

where we let the notation •�k denote the pointwise exponentiation operator
with the convention of letting •�0 = Id and use the linearity of the Fourier
operator and Hademard product in Equation (6.76). Then the kernel θ-1 is of
the form we wanted. �

As the implementation requires an infinite series, the computation of the
actual kernel is infeasible. For practical implementations, we can instead
construct an approximation of the inverse kernel by taking

θ-1
n = F -1

[
n∑
k=0

λ−k(Fθ)�k
]

(6.77)

for some choice of n such that |θ-1
n−1 − θ-1

n | < ε. This kernel can then be
applied to standard convolution operators for efficient computations. For
multichannel convolution layers, this method requires the same number of input
channels as the output channels – i.e. when the block matrix Wθ has full
rank. When computing a multichannel convolution, we also need to account
for the linear combinations of the channels. For this, we first permute Fθ by
ci× co×h×w 7→ h×w× ci× co where ci, co are the input and output channels
respectively. By considering the resulting tensor as a collection of ci × co
matrices, we can apply the matrix power operator in place of the pointwise
exponential for each k, and permute the result back to the original dimensions
before adding the terms, resulting in correct computations.

Interestingly, this method of constructing invertible kernels can possibly be
extended to Riemannian gradient descent via approximation of the canonical
retraction of the matrix exponential. We highlight this as a priority for further
work in Section 10.3.

99

PART III

Results

CHAPTER 7

Methodology and Baselines

In this chapter, we outline the general methodology behind our experiments.
We begin by introducing the data and experimental tasks, before moving on
to discuss the metrics used for estimation and evaluation. Finally, we perform
baseline experiments to compare the applicability of our proposed activation
functions from Sections 6.2 and 6.3.

7.1 Experimental Methodology

When planning our experiments, our main goal was to compare our proposed
neural network architecture with existing autoencoder models to determine
whether these models are applicable for solving inverse problems, while
emphasizing methodological simplicity, low complexity, and reproducibility. As
such, we retain moderately low dimensionality in our models and our experiments
should be viewed in the context of ’proof-of-concept’ experimentation rather
than large-scale optimization and model benchmarks.

Datasets

The experiments were performed on images sourced from well-known datasets,
two of which have been briefly introduced through our previous practical
examples (Examples 2.4.3, 3.5.5, 2.2.7 and 2.3.8). An overview of the data used
in the experiments can be found in Table 1.6, but we provide a more thorough
exposition in this subsection.

CIFAR100

The cifar dataset [KH09] consists of 3× 32× 32 natural images, and was used
in Examples 2.4.3, 2.2.7 and 2.3.8. The dataset comes in variants of either 10
or 100 class labels. We only consider the 100 class variant in our thesis, and we
do not use the class labels in our experiments. Instead, we augment the data by
applying an average box blur with a 3× 3 kernel, which we use in a supervised
deblurring task. As the color channels are superflous to this task, we preprocess
the images by applying a monochromatic filter to produce greyscale images
with dimension 32× 32. The training set consists of 50000 sample images, and
the test set consists of 10000 images.

103

7. Methodology and Baselines

MS-COCO

In Example 3.5.5 we made use of image samples from the coco dataset [Lin+14].
The dataset consists of three-channel natural images of varying sizes paired with
image annotations. We do not use the provided annotations in this thesis, and
we preprocess the data by first selecting only images with dimension 400× 400
or more, resulting in 96336 samples in the training set and 4002 samples in the
test set. These images are then cropped to 384 × 384 and a monochromatic
filter is applied to produce single-channel images. We then augment the data by
applying an average pooling downsampling filter to produce images of 96× 96
pixels, which is subsequently used in a supervised image upscaling task.

EMNIST

The emnist dataset [Coh+17] is an extended version of the common mnist
dataset, and is the only dataset we have not yet introduced through our previous
examples. The dataset consists of single-channel 28× 28 images of handwritten
digits and letters seperated into several different subsets, including the original
mnist data. In this thesis, we look at the balanced subset of 47 classes where
the number of training and test examples for each class is equal. The training
set consists of 112800 sampled images, and the validation set consists of 18800
images. No preprocessing was applied to the images.

Experimental Tasks

We look at four distinct learning tasks in our experiments, for each of which
we designate a specific dataset. Two of these tasks have already been briefly
introduced in our previous examples. For each task, we train an invertible-
or pseudoinvertible encoder and compare it with a comparable autoencoder
model to evaluate the performance and robustness. Note that the relationship
between the dimension of the parameter space of an autoencoder to an invertible
encoder with the same exact architecture and layer dimensions is given by
dim(Θae) = 2 dim(Θpie), however any difference in architecture and dimensions
will offset this relationship.

Deblurring

The deblurring task was introduced in Examples 2.4.3, 2.2.7 and 2.3.8, and can
be stated as follows. We are provided a dataset D = (xi, yi)i∈I consisting of
natural images with xi, yi ∈ [0, 1]32×32. The images are the result of a data
generation process given by the linear forward problem Φ(x) = y, where Φ is a
convolution operator with an average box blur kernel. The task is to construct an
approximately bijective map Ψ : X → Y using an invertible- or pseudoinvertible
neural network. From the previous examples and theoretical exposition, we
know that this problem is severely ill-conditioned. In our experiments, the
deblurring task is considered exclusively in relation to the cifar dataset.

Image Upscaling

We briefly looked at an example with upscaling in Example 3.5.5. For this
task, the dataset D consists of natural images with xi ∈ [0, 1]384×384 and

104

7.1. Experimental Methodology

yi ∈ [0, 1]96×96. The problem is a severely ill-posed underdetermined linear
problem without any clearly defined inverse and the task is to construct a
bijective map which approximates the upscaling operator with an invertible- or
pseudoinvertible neural network. We exclusively consider the image upscaling
task in the context of the coco dataset in our experiments.

Unsupervised Autoencoding

The unsupervised autoencoding task is the general task of an autoencoder
model and is fully described in Section 4.4. When dimensionality reduction
is introduced in any operator in the model, the problem is ill-posed due to
underdetermination. In the variational autoencoder setting, the problem is a
density estimation problem, and the well-posedness is contingent on how well the
choice of the approximate tractable distribution corresponds to the unknown
marginal distribution. It is possible that the true multivariate probability
distribution over a set of images has lower dimension than the images themselves,
however a full rank approximation guarantees that no information is lost between
the inputs and the latent probability space. The encoding task is applied to
the emnist dataset, with images xi ∈ [0, 1]28×28.

Conditional Image Reconstruction from Labels

The general classification task of images is well known and can be considered
a nonlinear causal inverse problem in its own right. In a model identification
setting, we can instead pose the classification task as a forward problem
yi = Φ(xi; θ) where xi is an input image and yi is a sample from a probability
distribution over one-hot categorical labels. The associated inverse problem
Φ-1(yi) = xi is formulated as generating the input image given yi. For
dim(Y) < dim(X) the problem is underdetermined and subsequently ill-posed.
To remedy the ill-posedness of this problem, we augment the dimensionality by
introducing a latent space Z such that dim(X) = dim(Y × Z). This task was
also trained and evaluated using the emnist dataset.

Conditional Image Upscaling

Similar to the conditional image reconstruction from labels, this task investigates
a conditional upscaling model where we augment the dimensionality of the
downsampled images yi ∈ Y with a latent space Z such that dim(X) =
dim(Y × Z). Note that we do not use any label information in this task, so
the yi ∈ Y variables are downsampled images, and the map Ψx : X → Y is
deterministic. We trained and evaluated the models for this task using the
coco dataset.

Evaluation, Training and Metrics

Our proposed pseudo-invertible encoder (pie)- and invertible encoder (ie) models
were compared with general autoencoder architectures as baseline models for
comparison in both supervised and unsupervised settings. Generative models
were similarly compared with variational autoencoder models with Gaussian
latent variables. In all experiments, the training process was generally performed
concurrently for both models over the same batches. As the dimensionality

105

7. Methodology and Baselines

3 2 1 0 1 2 3
x

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

C
(x

)

LHC

MSE

ABS

Figure 7.1: Illustration of empirical risk functions, comparing the logarithmic
hyperbolic cosine (lhc) function, the squared error (mse) and absolute error
(abs) functions.

of the parameter space and general architectures generally differed between
models, we initialized the model weights separately, but all networks use the
uniform weight initialization proposed in [He+15]. Regularization is not applied
in any of the experiments, except for when explicitly mentioned. All models
were trained using the adam optimization algorithm discussed in Section 4.2.
We used a variety of relevant metrics to train and evaluate the models. An
overview of the applied metrics is provided in Table 1.5, but we discuss some of
the less well-known metrics in more detail.

Loss Functions

The logarithmic hyperbolic cosine (lhc) [Xu+21] is a parametrized empirical
risk function which acts as a generalization of the absolute error function (abs).
The function is given by

Clhc(x, x̂;β) =
n∑
i=1

ln cosh (β(xi − x̂i))
nβ

(7.1)

=
n∑
i=1

ln [1 + exp (−2β(xi − x̂i))] + β(xi − x̂i)− ln(2)
nβ

. (7.2)

The parameter β acts as a softening of the function around the origin can be
shown to be related to the parametrization of the Softplus function given by

γSoftplus(x;β) = ln(1 + exp(βx))
β

(7.3)

= ln[1 + exp(−βx)] + βx

β
, (7.4)

where the similarities are particularly clear from Equation (7.2) and Equa-
tion (7.4). Additionally, we have that

lim
β→∞

Clhc(x, x̂;β) = |x− x̂|,

so Clhc is a smooth function which asymptotically approximates Cabs as β
approaches infinity. This promotes linear convergence further from the origin
while maintaining continuity around zero. An plot showing the behaviour of
lhc around the origin can be observed in Figure 7.1.

106

7.1. Experimental Methodology

Image Reconstruction Metrics

The Peak Signal-to-Noise ratio (psnr) has long been considered a canonical
metric for quantifying image reconstruction errors. It is closely related to mse,
and given by

Cpsnr(x, x̂) = 10 log10
max(X)2

Cmse(x, x̂) .

where max(X) is the maximum possible value of a pixel in the image space.
However, [HG08] demonstrated that the psnr can yield inaccurate results for
image reconstruction purposes, and instead proposes the structural similarity
metric (ssim) which has shown to better account for perceived differences in
image reconstruction compared to human cognition [Wan+04]. Structural
similarity is computed over window functions for two images by applying

Cssim(x, x̂; c1, c2) = (2µxµx̂ + c1)(2σxx̂ + c2)
(µx + µx̂ + c1)(σx + σx̂ + c2) (7.5)

where c1, c2 are parameters derived from the local dynamic range for each
window. We typically apply ssim with a window size of 11× 11 pixels in our
applications.

Robustness and Stability

In Section 5.1 we discussed adverserial attacks and remarked that the adverserial
perturbation vector δ can be interpreted as a worst-case estimate of the noise
component ε of an inverse problem. To quantify the robustness of our models,
we look for an adverserial perturbation δ̂ for each model by estimating

δ̂ = arg max
δ:‖δ‖2≤r

‖Ψ(x+ δ;ϑ)−Ψ(x;ϑ)‖22 (7.6)

using projective gradient descent [Ant+20; Tsi+19] for a ball of radius r = 1 over
the training set. We then evaluate relative condition number (Definition 3.5.2) of
the model using the estimated perturbation vector, and call this the adverserial
condition number (cna) for the model. For unsupervised learning, this is
computed as a perturbation on the inputs xi ∈ X over the test set of n samples
by taking

cna(x̂) = 1
n

n∑
i=1

‖(Ψd ◦Ψe)(xi + δ̂x)− (Ψd ◦Ψe)(xi)‖2
‖(Ψd ◦Ψe)(xi)‖2

· ‖xi‖2
‖δ̂x‖2

. (7.7)

For supervised learning, we are more interested in perturbations of the outputs
yi ∈ Y, so we additionally compute

cna(ŷ) = 1
n

n∑
i=1

‖Ψd(yi + δ̂y)−Ψd(yi)‖2
‖Ψd(yi)‖2

· ‖yi‖2
‖δ̂y‖2

. (7.8)

In addition to the condition numbers estimated via adverserial perturbation,
we estimated the relative condition number computed via the Jacobian (cnj)
using a fixed subset of the relevant validation set. We empirically estimate the

107

7. Methodology and Baselines

NN

x yh1 z1 h2 z2
W1 γ W2 γ W3

AE
x y

h1 z1 h2 z2

h3z3h4z4

W1
γ W2 γ

W3

W4
γW5γ

W6

PIE

x yh1 z1 h2 z2

W1 γ W2 γ W3

W ∗3γ-1
W ∗2γ-1

W ∗1

Figure 7.2: Computational graphs of similar three-layer feedforward networks,
showing the difference between standard neural networks (above), autoencoders
(middle) and invertible encoders (bottom).

Jacobian of the network evaluated for the s samples in the subset, and compute
the mean relative error by

κcnj(Ψ) =
s∑
i=1

‖JΨ(xi)‖
s‖Ψ(xi)‖/‖xi‖

. (7.9)

We stress that the software implementation of calculating the Jacobian of a
neural network is quite memory intensive and time consuming. Additionally,
the implementation in PyTorch had certain issues for more complex gradient
computation, which limited our application of this method.

Hyperparameters

The goal of our experiments was to compare general autoencoder models
to invertible and pseudo-invertible encoder models. We applied similar
hyperparameters for the compared models in each experiment to promote
correspondence in the experimental results. Our work could be extended by
performing a hyperparameter search over the models or optimization algorithms.

7.2 Assessing Bi-Lipschitzian Activation

To ensure the practical applicability of our proposed activation functions, we
conducted an experiment where we compared them to their original counterparts.
In the case of our proposed bi-Lipschitzian activation functions (Section 6.2) we
first constructed six models with the activation functions seen in Figure 6.1. For
the experiment, we trained a three-layer classifier with two hidden layers of 857
neurons on emnist data. For optimization we used binary cross-entropy loss on
logit-transformed outputs. In this experiment, each network was initialized with

108

7.2. Assessing Bi-Lipschitzian Activation

Exp. 7.A – NN Classifier
Act. Dim.In Dim.Hid.1 Dim.Hid.2 Dim.Out Loss
ReLU 784 857 857 47 LogitBCE
ELU 784 857 857 47 LogitBCE
CELU 784 857 857 47 LogitBCE
BiReLU 784 857 857 47 LogitBCE
BiELU 784 857 857 47 LogitBCE
BiCELU 784 857 857 47 LogitBCE

Exp. 7.B – AE Unsupervised Encoding
Act. Dim.In Dim.Hid.1 Dim.Hid.2 Dim.Out Loss

BiReLU 784 857 857 47 MSE
BiELU 784 857 857 47 MSE
BiCELU 784 857 857 47 MSE

Table 7.1: Overview of models used for assessment of bi-Lipschitzian activation
functions.

Act. RE ACC AC5 CNJ CNA
ReLU 0.275 0.863 0.988 4.412 7.893
ELU 0.300 0.853 0.987 3.747 6.460
CELU 0.287 0.859 0.988 3.848 6.821
BiReLU 0.294 0.852 0.987 5.333 13.018
BiELU 0.318 0.845 0.984 4.096 11.222
BiCELU 0.299 0.852 0.987 5.393 15.501

Table 7.2: Results of classification experiment 7.A with bi-Lipschitzian
activation.

the same exact weights to minimize any statistical discrepancies. An overview
of the model dimensions is provided in Figure 7.2 and Table 7.1 while results of
the experiments can be seen in Table 7.2.

While the differences are minor, we noted that the bi-Lipschitz functions
performed marginally worse than their counterparts in terms of the classification
objective. We also noticed that the relu functions performed marginally better
than the smoother functions. We postulate that this is due to the inherent
sparsity properties which [Hah+00] states as an asset in classification tasks.

In terms of stability, we observed that the cna for the bi-Lipschitzian
functions were approximately twice the magnitude of their original counterparts,
which aligns with the fact that the Lipschitz constant is doubled compared to
the original functions. While the estimated cnj somewhat corroborates this
result, the differences are less pronounced. While the estimation of condition
numbers by adverserial perturbation is effective, we still consider cnj to be a
better estimate of the true condition number when it is available. In tests with
linear models, we observed that the estimated cnj was practically identical to
the true condition number of the networks.

We also performed testing in an image reconstruction setting. Using the

109

7. Methodology and Baselines

x

x̂BiReLU

x̂BiELU

x̂BiCELU

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.3: Reconstructed images from experiment 7.B with bi-Lipschitzian
activation.

Act. RE PSNR SSIM CNJ CNA
BiReLU 0.230 21.553 0.800 2.600 7.897
BiELU 0.232 21.517 0.782 2.576 7.921
BiCELU 0.220 21.874 0.810 2.804 6.589

Table 7.3: Results from image reconstruction experiment 7.B with bi-
Lipschitzian activation.

same same three-layer model architecture, we performed unsupervised training
with an autoencoder to compare the three bi-Lipschitzian activation functions.
A summary of the experimental results is provided Table 7.3. Here, the bicelu
function seemed to marginally outperform the birelu function, while the bielu
function achieved the lowest score in terms of the image reconstruction metrics.
The birelu function performed most favorably in terms of the condition
numbers estimated via the Jacobian, while the bicelu displayed better stability
with respect to adverserial perturbation.

Taken together, these findings suggest that bi-Lipschitzian activation
functions perform adequately in classification and image reconstruction tasks.
We note that the bicelu and celu functions used a fixed β = 0.5, such that the
curve around the origin was slightly sharper than the standard parametrization
β = 1.

7.3 Assessing the Dirichlet-Softmax Transform

In Section 6.3 we proposed a bijective simplex transformation to facilitate
generative image reconstruction using class labels. To determine how applicable
our transform was in practice, we compared the transform with the softmax

110

7.3. Assessing the Dirichlet-Softmax Transform

Exp. 7.C – NN Classification
Final.Act. Act. Dim.In Dim.Hid.1 Dim.Hid.2 Dim.Out Loss
Softmax ReLU 784 857 857 47 BCE
DST ReLU 784 857 857 47 BCE

Table 7.4: Overview of models used for the assessment of the Dirichlet-Softmax
transformation.

Act. RE ACC AC5 CNJ CNA
Softmax 0.243 0.858 0.988 9.843 24.195
DST 0.319 0.831 0.982 10.098 26.697

Table 7.5: Results of experiment with Dirichlet-Softmax transform.

function on the classification task with emnist. We expected a decrease in
performance and accuracy compared to the standard softmax function. The
experiment was performed using the same three-layer network architecture
presented in Figure 7.2. We used relu activation for the hidden layers, while
the output layer was then computed with either the softmax activation or
the Dirichlet-Softmax transform. An overview of the model dimensions and
numerical results from the experiment are listed in Tables 7.4 and 7.5.

While the softmax model clearly performs better, the results for the Dirichlet-
Softmax transform exceed our initial expectations, and the transformation
performs comparatively well with the standard softmax in terms of accuracy.
Considering that the transform is performed with symmetric parametrization,
the transform could likely be improved by letting the parameters αi be estimated
or trainable, which is an interesting area for further work. We did note some
instability during training, which can be seen in the plot of the training error
provided in Figure 7.4.

0 10000 20000 30000 40000
Iterations

10-2

10-1

L
os

s

Validation Softmax

Validation DST

Figure 7.4: Training results for softmax and Dirichlet-Softmax transform. Note
the spikes for the Dirichlet-Softmax transform, indicating minor instability.

111

CHAPTER 8

Experiments with
Pseudo-Invertible Encoders

In this chapter, we present the experiments and numerical results we performed
for determining the viability of the Pseudo-Invertible Encoder (pie) model we
proposed in Chapter 6. To uncover the potential benefits and limitations of the
proposed architecture, most of the experiments compare the pie architecture to
a general autoencoder architecture. To this end, we formulated a set of relevant
enquiries.

(i) Do the restrictions of joint parametrization affect reconstruction quality
when compared to standard encoder-decoder models?

(ii) How does joint parametrization and underdetermination affect robustness?

(iii) Does the addition of a diagonal weight matrix in the hidden layers improve
results?

(iv) Is there a link to svd, and can pies reproduce principal components?

(v) To what extent do the estimated weights in a pie have orthogonal
properties?

(vi) Can PIE models be applied to construct generative network models?

(vii) Can convolutional layers be applied in pie architectures?

To answer these questions, we constructed several experiments which can be
grouped into two main categories; densely connected networks and convolutional
networks. In addition, we differentiated between unsupervised and supervised
learning objectives, as well as between the three image reconstruction tasks of
blurring, image reconstruction from labels, and image upscaling on our three
respective datasets; cifar, emnist, and coco.

113

8. Experiments with Pseudo-Invertible Encoders

AE
x y

h1 z1 d1

d2h2z2

W1
γ D1

W2

W3
D2γ-1

W4

PIE

x yh1 z1 d1

W1 γ D1
W2

W ∗2D-1
1γ-1

W ∗1

Figure 8.1: Computational graphs of two-layer network architecture comparing
autoencoders (top) and invertible encoders (bottom). The edges denoted Di

represent optional diagonal layers featured in some experiments.

Exp. In.Dim. Hid.Dim. Out.Dim. Act. Diag. Gen. Loss Data
8.A 784 784 784 ID MSE EMNIST
8.B 784 784 784 ID X MSE EMNIST
8.C 784 784 784 BiCELU MSE EMNIST
8.D 784 784 784 BiCELU X MSE EMNIST
8.E 784 835 128 BiCELU MSE EMNIST
8.F 784 835 128 BiCELU X MSE EMNIST
8.G 784 784 784 BiCELU X MSE + KL EMNIST
8.H 784 835 128 BiCELU X MSE + KL EMNIST

Table 8.1: Overview of experiments on unsupervised learning in densely
connected networks.

8.1 Unsupervised Learning with Dense PIEs

We designed the first set of experiments to provide a baseline for comparison of
pseudo-invertible encoders with standard autoencoders in terms of unsupervised
learning using the emnist dataset. The models were trained concurrently on the
same mini-batches with adaptive moment estimation of weights (adam) [KB17]
using mse loss. All models were constructed using two single layer networks
with bias and activation only in the hidden layer. A figure and general overview
of the experiments is provided in Figure 8.1 and Table 8.1. The dimensions for
each layer are equal in pie and ae models, thus the relationship between the
dimensionality of the parameter space each model is dim(Θae) = 2 dim(Θpie).
We considered methods for balancing this discrepancy, but decided that
keeping similar architectures was more conducive to comparative results in
this experiment. We were especially interested in the effect of diagonal layers
(Equation (4.27)) on the models, which was introduced in experiments 8.B, 8.D,
8.F. Theoretically, these should help mitigate any issues caused by isometry in
the weights as discussed in Section 4.3, however possibly at the cost of general
robustness.

114

8.1. Unsupervised Learning with Dense PIEs

Exp. Model RE PSNR SSIM CNJ CNA
8.A PIE 0.019 42.088 0.990 1.038 4.179

AE 0.025 40.139 0.975 1.252 4.090
8.B PIE 0.018 42.223 0.990 1.032 4.142

AE 0.024 40.310 0.975 1.292 4.037
8.C PIE 0.045 35.168 0.951 1.160 4.054

AE 0.038 36.831 0.954 1.703 5.221
8.D PIE 0.043 35.486 0.957 1.154 4.092

AE 0.038 36.790 0.953 1.728 4.129
8.E PIE 0.159 24.544 0.849 1.408 4.995

AE 0.149 24.968 0.865 2.135 7.056
8.F PIE 0.156 24.586 0.854 1.453 5.113

AE 0.149 24.963 0.862 2.422 7.908
8.G PIE 0.342 17.867 0.685 1.552 5.509

AE 0.345 17.780 0.685 1.961 6.823
8.H PIE 0.355 17.550 0.674 1.674 5.971

AE 0.337 17.980 0.701 1.866 6.569

Table 8.2: Results of experiments on unsupervised learning in densely connected
networks. The overall best results are highlighted in bold for readability, while
the comparatively best results between models are shaded in gray.

The latent dimension in the undercomplete models was decreased from 784
to 128. All models were trained over 12 epochs with a learning rate of 10−4,
which we visually confirmed to be enough to ensure some level of convergence for
all models in the experiment. Based on the results from Section 7.2, we applied
bicelu in all non-linear models, including using inverse bicelu activation in
the decoder of the ae models to keep the results as comparative as possible.
The numerical results are summarized in Table 8.2.

Robustness

A few interesting observations can be made from the results. We noted that both
estimates of relative condition numbers cnj, cna remained relatively consistent
between models. The addition of diagonal layers seemed to have little impact
on the overall robustness of the models, both in terms of cna and cnj, as can
be observed in experiments 8.B, 8.D, and 8.E. As there is no constraint imposed
on the parameters in these layers other than the initialization of values close to
1, we expected some instability for values closer to zero, however this turned out
not to manifest in the models, indicating that the addition of diagonal layers are
not necessarily a source of instability on unsupervised learning tasks. Overall,
we noticed that the pie models seem to be more robust than the respective
ae models, which is as expected from the properties of the invertible encoder
models outlined in Observation 6.1.1.

115

8. Experiments with Pseudo-Invertible Encoders

x

x̂PIE

x̂AE

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Reconstructions: pie_dense_unsup_fr_diag

Figure 8.2: Reference image (above) and reconstructed images from experiment
8.D, with full rank pie (middle) and ae (below) with diagonal layers.

Improved Reconstructions with Diagonal Layers

We noted a particularly interesting disparity in the image reconstruction metrics.
While the computed re and psnr naturally agree across all models, the results
of ssim did turn out to disagree with these scores in one case. In general, we
observed that while the addition of diagonal layers (8.B, 8.D, and 8.F) did
marginally improve the structural similarity of the pseudo-invertible encoders,
we noted the opposite effect on the autoencoder models. The improvement is
particularly prevalent in the nonlinear full rank models (8.C, 8.D), where the
addition of a diagonal layer resulted in an improvement of ssim, corresponding to
the previously mentioned disparity. This was enough for the pie to overtake the
ae model as the best performing full-rank nonlinear model in our experiments
with unsupervised learning on emnist. The reconstructions from experiment
8.D can be seen in Figure 8.2.

As mentioned in Section 7.1, the observed disparity in model 8.D aligns with
the expected behaviour, as the ssim is generally considered to be a more reliable
metric for evaluating image reconstruction errors. As such, the results imply
that the pie model with diagonal weights should be preferred, as it performs
better with respect to the two most important metrics – ssim and cnj. The
fact that the addition of diagonal layers has a negative effect on ae models also
aligns with our intuition (Section 4.3). As the weights of the pie models are
ideally isometric, the introduced diagonal layer can serve to independently scale
the outputs, which will have little effect on an ae model as it has the necessary
freedom to estimate mutually orthogonal weights in the encoder and decoder
without isometry. Hence, the diagonal weights serve as parameter redundancy,
which could be the cause of the weaker results.

116

8.1. Unsupervised Learning with Dense PIEs

VAE
x y

h1 z1
µ

σ
N

h2z2

W1
γ

Wµ

Wσ

W3γ-1
W4

VPIE

x yh1 z1

µ

σ
N

W1 γ
Wσ

Wµ

W ∗µ
γ-1

W ∗1

Figure 8.3: Computational graphs of generative two-layer network architectures.

x

x̂PIE

x̂AE

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Reconstructions: pie_dense_unsup_fr_var

Figure 8.4: Reference image (above) and reconstructed images from experiment
8.H with undercomplete variational pie (middle) and ae (below).

Generative Modelling

For the experiment with generative models, we modified the final layer to
be stochastic (Definition 4.3.7) using the reparametrization trick, and added
KL-divergence (Definition 4.4.5) regularization to the objective functions to
encourage a normal mean field approximation in the latent space, corresponding
with a vae model (Definition 4.4.7). An example of reconstructions is featured
in Figure 8.4. The results show that pie models can be trained using variational
inference. In the full rank model, the models achieved approximately equal
results (8.G), but in the undercomplete example (8.H), the ae model achieved
better results and actually improved compared to the full rank model. While
this seems surprising, we know there is redundancy in the images, so the full
rank models are necessarily overparametrized. More surprising is the fact that
the results indicate that the optimal ratio of input- and output dimensions
is closer to 784:128 than 784:784, which is lesser than expected even for the
comparatively simple emnist data.

117

8. Experiments with Pseudo-Invertible Encoders

Network errreid(W ∗1W1) errreid(W ∗2W2) z1 z2

PIE 0.569 0.610 −98.987 −98.313
AE (encoder) 0.793 0.712 88.374 −79.646
AE (decoder) 0.645 0.604 −96.972 −98.435

Table 8.3: Results from randomly initialized Gramian weight matrices on models
from experiment 8.A. Lower scores indicate stronger orthogonality properties.
The z-scores are computed from 10,000 randomly initialized matrices and
compared with the estimated weights after training.

0.74425 0.74450 0.74475 0.74500 0.74525 0.74550 0.74575 0.74600 0.746250

500

1000

1500 pdf N(0.745, [2.52e− 04]2)

REID: Initialized Matrices

Figure 8.5: Distribution of relative error w.r.t. identity (reid) scores
for Gramians of individual layers in model A. The errors are distributed
approximately normal, with ε ∼ N

(
.745, (2.52× 10−4)2).

Orthogonality of Estimated Weights

pie networks are more or less dependent on the orthogonality of the estimated
weights. We initially considered the relative error of the Gramians of the
estimated weights w.r.t. identity (reid, see Table 1.5) as a useful measure of
orthogonality. However, as any matrix in Rn×n of iid. random variables will
be asymptotically orthogonal as n→∞, a randomly initialized weight matrix
will exhibit some degree of inherent orthogonality. There was thus a need for a
quantitative measure of the orthogonality of the estimated network weights, to
eliminate the possibility that any such property was merely inherited from the
random weight initialization.

We conducted an experiment where 10,000 random matrices were initialized
using the uniform distribution described in [He+15] and the relative error of their
Gramians with respect to the identity was computed using the Frobenius norm
(reid). The results can be seen in Table 8.3 and Figure 8.5. The distribution
of the relative error was approximately normal, and we compared the results
to the estimated weights from the linear models in experiment 8.A. We found
that the reid of the estimated weights of the pie and the decoder of the ae
were far into the left tail of the distribution, indicating that the weights were
significantly more orthogonal than randomly initialized matrices. Interestingly,
the weights of the encoder in the ae model exhibited significantly decreased
orthogonal properties compared to the randomly initialized weights. The fact
that the weights of the decoder of a linear ae is more closely orthogonal than
randomly initialized weights indicates that the decoder networks of autoencoders
approximate orthogonal bases, and could be a possible reason for why pseudo-
invertible encoders can be effectively implemented with only implicit constraints.

118

8.1. Unsupervised Learning with Dense PIEs

V1,PIE V1,AE V2

V1,PIE V1,AE V2

Figure 8.6: Reproduced principal vectors of pie and ae models without diagonal
(above) and with diagonal (below). The first principal vector for the pie (left)
and the ae (middle) is compared to ground truth (right) computed via svd on
emnist.

Reproducing Principal Vectors

In [BH89] the authors demonstrated a similarity between linear autoencoder
models and principal component analysis. While this result has been reported
slightly indiscriminately in both linear and nonlinear contexts, [Kun+19]
demonstrated that linear autoencoders can approximate the eigenvectors of the
covariance matrix of centered data with specific training regimes and Tikhonov
regularization.

As noted in Observation 6.1.1 pie models should theoretically share
similarities to singular value decomposition. We wanted to see if these results
were applicable to pseudo-invertible encoder models, so we constructed linear
two-layer pie and ae models, which were trained on emnist data in two separate
processes. Firstly, the models were trained using masked gradients over 32
epochs, where one row and one column of each layer were sequentially updated
using gradient descent to enforce an ordering of the principal vectors. After this
initial training, the network received additional training over 8 epochs without
masks for final convergence.

Our results indicate that unsupervised pie and ae models are both able to
replicate the most significant principal vectors of the data, however, the results
are slightly more significant in the pie model, which achieved an ssim of 0.653
to the real principal vector in contrast to 0.608 for the ae model. We were also
interested in how the introduction of a diagonal matrix before the last layer
would affect the result, and whether the values would converge to the singular
values of the data. While we did not observe this behaviour, we noted that the
introduction of a diagonal matrix had a notable effect on the resulting principal
vectors, which can be observed in Figure 8.6.

119

8. Experiments with Pseudo-Invertible Encoders

PIE : V PIE : U AE : Ve AE : Ue AE : Vd AE : Ud

PIE : V ∗ V PIE : U ∗U AE : V ∗
e Ve AE : U ∗

e Ue AE : V ∗
d Vd AE : U ∗

d Ud

Figure 8.7: Visualizations of weights (above) and respective Gramians (below)
of estimated weights in the linear full-rank model (8.A).

Summary: Unsupervised Dense PIEs

Taken together, the results suggest that the differences of the reconstructed
images are minor for unsupervised training with pie and ae models. While this
may at first seem unremarkable, recall that the dimensionality of the parameter
space of an ae model in this experiment is approximately double the respective
dimensionality of a pie model, suggesting that a pie model could be effectively
twice as memory efficient as the respective ae model for unsupervised learning
tasks in dense networks, however, we note that this result is from rather simple
tests and does not necessarily scale in terms of model complexity.

As noted in Section 4.4, a concern with full-rank autoencoders is that
their architecture encourages the weights to approximate the identity, resulting
in trivial models. We did however, not observe any such behaviour in the
network weights of either pie nor ae models. Instead, the pie model as well as
the decoder of the ae model converged to approximately orthogonal weights.
Visualizations of the estimated weights in model 8.A as well as their respective
Gramians can be seen in Figure 8.7.

In terms of robustness, we observed that pie models achieved better cnj
scores in all comparisons, while achieving better cna scores in all but the
linear models. This indicates an overall better conditioning of the models and
improved robustness to adverserial attacks in unsupervised learning tasks, as
was expected and theoretically motivated by Property 6.1.1.iv.

The addition of diagonal layers seems to improve the performance of pie
models, as we theoretically hypothesised in Section 4.3. Additionally, we were
able to reproduce the principal components of the data, confirming the link
between invertible encoders and singular value expansion in Property 6.1.1.i.

120

8.2. Supervised Learning with Dense and Seperable PIEs

Exp. In.Dim. Hid.Dim. Out.Dim. Act. Gen. Patch Size Loss Data
8.I 322 322 322 BiCELU 1× 1 LHC CIFAR
8.J 322 322 322 BiCELU 4× 4 LHC CIFAR
8.K 322 2 · 322 322 BiCELU 1× 1 LHC CIFAR
8.L 322 1282 322 BiCELU 4× 4 LHC CIFAR
8.M 282 Multi 47 BiCELU X Multi LHC+KL EMNIST
8.N 282 Multi 282 BiCELU X Multi LHC+KL EMNIST
8.O 3842 Multi 962 BiCELU Multi LHC COCO
8.P 3842 Multi 3842 BiCELU X Multi LHC+KL COCO

Table 8.4: Overview of experiments on supervised learning with dense and
seperable pie networks. Experiment 8.M to 8.P feature deeper layer structures,
which are detailed in Table 8.5.

8.2 Supervised Learning with Dense and Seperable PIEs

The second set of experiments was designed to investigate the feasibility of
pies in a supervised setting by comparing it to supervised autoencoder models.
Recall the discussion in Section 4.4, where we introduced learning objectives
Equations (4.34) and (4.35), and the implications of Proposition 4.4.4, which
implies that the source of ill-posedness can influence the apparent difficulty of a
learning task for these models. As autoencoders maximize the lower bound on
mutual information [Vin+10] this can lead to suboptimal results when training
with the standard autoencoding objective. Therefore the experiments apply the
objective proposed in Equation (4.35) for all but the generative models.

As previously, all models were trained concurrently with the adam optimizer
using a learning rate of 5.0 × 10−5, and the models of each experiment were
trained concurrently over the same minibatches for 12 to 25 epochs, depending
on the convergence of each model. Note that we had to omit the Jacobian
condition numbers cnj for the supervised models, as we had problems computing
these metrics due to issues in the implementation of Jacobian computations in
PyTorch.

Model Architectures

The models in experiments 8.I through 8.L were constructed with the same
two-layer architecture as in Section 8.1, visualized in Figure 8.1. The models in
8.K and 8.L were constructed with overdetermination in the hidden layer, while
the models in experiments 8.M through 8.P use deeper multilayer structures. We
again emphasize that the dimensionality of the parameter space of the models
in experiments 8.I through 8.L is dim(Θae) = dim(Θpie) for all models without
diagonal layers. However, in experiments 8.K through 8.L we compensate
for this by modifying the architecture of the ae models. An overview of all
models is provided in Tables 8.4 and 8.5. We emphasize that the models in
experiments 8.N and 8.P apply separate subnetworks for computing a target
output y, as well as a latent output z which is used to probabilistically augment
the dimensions of the output using a variational mean field approximation with
a standard normal prior, similar to the idea proposed in [Ard+18]. Figures 8.9
and 8.10 illustrates the network architecture for these models. In Table 8.5, the
dimensions of this split are denoted by lettering to indicate the association of
each subnetwork.

121

8. Experiments with Pseudo-Invertible Encoders

Exp. 8.M – PIE
Layer No.In No.Out Dim.In Dim.Out
1 784 784 1 1
2 784 196 1 4
3 196 196 4 4
4 196 49 4 16
5 49 49 16 16
6 49 784 16 1
7 784 1024 1 1
8 1024 47 1 1

Exp. 8.M – AE
Layer No.In No.Out Dim.In Dim.Out
1 784 196 1 4
2 196 196 4 4
3 196 49 4 16
4 49 784 16 1
5 784 784 1 1
6 784 47 1 1

Exp. 8.N – PIE
Layer No.In No.Out Dim.In Dim.Out
1 784 784 1 1
2 784 196 1 4
3 196 196 4 4
4 196 196 4 4
5 196 49 4 16
6 49 49 16 16
7 49 784 16 1
8y 47 47 1 1
9y 47 47 1 1
8z 737 737 1 1
9z 737 737 1 1

Exp. 8.N – AE
Layer No.In No.Out Dim.In Dim.Out
1 784 196 1 4
2 196 196 4 4
3 196 196 4 4
4 196 49 4 16
5 49 784 16 1
6y 47 47 1 1
7y 47 47 1 1
6z 737 737 1 1
7z 737 737 1 1

Exp. 8.O – PIE
Layer No.In No.Out Dim.In Dim.Out
1 256 256 576 484
2 256 256 484 361
3 256 256 361 196
4 256 256 196 36

Exp. 8.O – AE
Layer No.In No.Out Dim.In Dim.Out
1 256 256 576 225
2 256 256 225 144
3 256 256 144 64
4 256 256 64 36

Exp. 8.P – PIE
Layer No.In No.Out Dim.In Dim.Out
1 256 1024 576 144
2 1024 256 144 576
3y 256 256 39 39
4y 256 256 39 39
3z 256 1280 540 108
4z 1280 256 108 540

Table 8.5: Overview of layer structures in experiments 8.M and 8.N. The two
left columns indicate the number of patches, and the two right columns indicate
the patch dimensions. Layers denominated with letters indicate a split in the
network to produce different outputs.

All networks applied the bicelu activation function in all hidden layers. In
addition, the models in experiments 8.M and 8.N apply the Dirichlet softmax
activation on the target outputs to estimate a discrete probability distribution
over the classes. While certain models applied only dense layers (8.I, 8.K),
most models were constructed with separable patch layers, introduced in
Definition 4.3.3. For the image upscaling task, the image resolution of 384× 384
pixels makes applying dense networks infeasible due to the size of the parameter
space, while a separable-patch network can be made much more efficient. Lastly,
experiments 8.I through 8.N both with and without diagonal layers in the pie
models to verify our earlier observations in Section 8.1.

122

8.2. Supervised Learning with Dense and Seperable PIEs

Exp. Model RE (10−2) PSNR SSIM(x̂) SSIM(ŷ) CNA(x̂) CNA(ŷ)
8.I PIE 5.671 32.514 0.917 0.985 3.612 12.168

PIED 5.615 32.682 0.919 0.986 3.673 12.808
AE 5.235 33.630 0.924 0.993 4.000 16.159

8.J PIE 9.490 27.872 0.922 0.954 4.568 12.521
PIED 8.838 28.474 0.928 0.957 6.161 20.228
AE 8.514 28.725 0.927 0.961 5.308 25.806

8.K PIE 5.604 32.398 0.921 0.983 3.935 12.765
PIED 6.775 30.441 0.922 0.984 3.896 13.983
AE 4.904 34.054 0.930 0.995 3.743 16.665

8.L PIE 7.151 30.863 0.935 0.978 4.399 11.920
PIED 5.905 34.400 0.944 0.990 4.354 20.298
AE 5.127 36.629 0.943 0.998 4.537 23.811

Table 8.6: Results of experiments on supervised learning in dense networks.
The models denoted pied include a diagonal layer. re and psnr are averaged
between blurred images (ŷ) and deblurred images (x̂).

Deblurring

The purpose of this experiment is to see how pie models performed in terms of
deblurring tasks, where we want the encoder to approximate the blur operator
and the decoder to approximate the deblurring operator. We refer to the blurred
images as y and the original images as x. In the setting of invertible networks,
we want to find an approximate bijective map between these two image domains.
For experiments 8.J, 8.L, we used a separable patch network which significantly
reduced the parameter space. In all experiments, we compared three networks;
two pie models with and without diagonal layers, and one ae model without
diagonal layers. In the separable patch networks, the diagonals were applied to
both left- and right operators. To avoid confusion, we will refer to the models
with added diagonals as pied.

An overview of the numerical results are shown in Table 8.6. Our experiments
show that the pied architecture on average performs comparative to the ae
models for deblurring mappings. In the examples with overcomplete separable-
patch networks, we achieve the best deblurring results with a pied model, by
a very slight margin. The reconstructed images from experiment 8.L can be
seen in Figure 8.8. Note that the ae models seemed to outperform the pie
networks in terms of approximating blurred images across all experiments. The
overcomplete separable-patch architecture achieved the best approximation to
the blur operator, where the ae model achieved a ssim score of 0.998. The
improvement in the deblurring task for the pie models and subsequent decrease
in the blurring objective can be theoretically justified by sensitivity imbalance,
discussed in Proposition 4.4.4 and Definition 4.4.3.

In terms of robustness, the cna results indicate that the pie models are
better conditioned than the ae models, indicating that they are inherently
less sensitive to perturbations, which aligns with the theoretical motivation
of Parseval regularization. However, we note that pie models without added
diagonal layers generally displayed better conditioning for inverse computations.
Thus, the improvement in accuracy seems to come at the cost of decreased

123

8. Experiments with Pseudo-Invertible Encoders

x

x̂PIE

x̂PIED

x̂AE

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.8: Reference image (above) and deblurred images (below) from
experiment 8.L, where the pied model achieved the highest ssim score by
a small margin.

robustness. We also note that the seperable patch networks generally show
worse conditioning than fully dense networks.

Overall, we consider the performance of the deblurring models to be modest.
We noted that the separable patch models tended to produce square grid-
like artifacts in the reconstructions. These are expected byproducts of the
partitioning of the image (see Figure 4.5) which adds boundaries between each
patch. Different methods for smoothing patches by overlapping or introducing
intermediate convolution can be considered for these layer types.

Classification and Conditional Image Generation

Next, we wanted to examine how generative modelling could be combined
with invertible neural networks to generate images from image labels. The
task is to map the input images x to a probability distribution over the labels
y | x ∼ Dirichlet(α) with- or without latent variables z | x, y ∼ N (0, I). Unlike
the previous experiments, we let the dimensions of the parameter space pie
and the ae be approximately equal in these experiments, as we wanted to see
how this would impact the model performance. In effect, these models are thus
applications of the ideas proposed in [Ard+18] discussed in Section 5.2.

In experiment 8.M, we map between x and y directly using a stochastic layer
and the symmetric Dirichlet-Softmax transform outlined in Proposition 6.3.4.
The models in experiment 8.N are latent variable models, for which the architec-
ture is derived from a conditional variational autoencoder (Definition 4.4.7) with
certain modifications. In addition to the classification sub-network, we apply
another sub-network using conditional additive coupling layers (Definition 4.3.4)
conditioned on the estimated labels y. Graphs depicting the model architec-

124

8.2. Supervised Learning with Dense and Seperable PIEs

x −@

y

+ z
Ψx

Ψy β

Ψz

y

z −

−@ x
Ψ∗y

β

Ψ∗z

Ψ∗x

Figure 8.9: Simplified architecture of conditional encoder (above) and decoder
(below) in experiment 8.N. The network consists of three sub-networks
Ψx,Ψy,Ψz and conditional additive coupling layers β. The split operator
is denoted −@ : Kn → Kn−k × Kk where 1 < k < n, while the concatenation
operator −@ : Kn−k ×Kk → Kn acts as its inverse.

−@

y

zx h1 a1
µ

σ
N

Ψx W1

+β1
Ψy

γ
Wµ

Wσ

+β2

Figure 8.10: Detailed architecture of forward pass through subnetwork Ψz

taken from model for conditional image generation from labels in experiment
8.N. The conditional additive coupling layers β1, β2 conditions on y and shifts
the distribution accordingly. Note that activated neurons are denoted ai to
differentiate between the latent output z.

ture for the encoders is provided in Figures 8.9 and 8.10. We note that the
sub-networks Ψz,Ψy both contain stochastic sampling layers (Definition 4.3.7)
as their final layers, acting as variational autoencoders. The results in Table 8.7
indicate that the pie model perform better than the ae counterparts in all met-
rics except for re and ssim. However we note that these metrics are computed
without sampling, so the result of the generative process is better evaluated
visually.

Exp. Model RE ACC AC5 SSIM KL CNA(x̂) CNA(ŷ)
8.M PIE 0.719 0.847 0.965 0.706 0.858 11.249 14.228

AE 0.644 0.846 0.963 0.767 0.888 14.560 14.236
8.N PIE 0.583 0.851 0.980 0.780 0.265 2.276 4.962

AE 0.455 0.805 0.969 0.877 0.337 6.931 4.962

Table 8.7: Results of experiments on conditional image generation with emnist.

125

8. Experiments with Pseudo-Invertible Encoders

x

x̂PIE

x̂AE

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.11: Image reconstructions from experiment N without sampling.

x̂PIE

x̂AE

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.12: Image synthesis from experiment N sampled from z ∼ N (0, I)
conditioned on class labels y computed from the original.

x̂PIE

x̂AE

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.13: Image synthesis from experiment N using labels y = (0, . . . , 7)
conditioned on the latent vector z computed from the original.

126

8.2. Supervised Learning with Dense and Seperable PIEs

Exp. Model RE (10−2) PSNR SSIM(x̂) SSIM(ŷ) CNA(x̂) CNA(ŷ)
8.O PIE 7.527 33.811 0.676 0.998 0.051 0.810

AE 9.097 28.432 0.666 0.983 0.052 0.810
8.P PIE 7.417 31.170 0.698 0.985 0.052 0.247

Table 8.8: Results from image upscaling experiments with dense encoders.

x PIEx AEx

y PIEy AEy

Figure 8.14: Image reconstructions from image upscaling experiment 8.O.

Figures 8.11 to 8.12 demonstrate that the pie model was able to approximate
the target distribution, while the ae model did not. The synthesized images
show that the latent variables z parameterize the shape of the handwritten
characters, while the labels y control which character to synthesize. The increase
in accuracy for the pie models in both experiments indicate that the network
actively uses the classified labels to reduce the overall objective. Additionally,
we note that the pie models achieved both lower KL-divergence and improved
stability compared to the respective ae models.

Image Upscaling

Next, we look at how the models perform in terms of image upscaling, where we
are interested in mapping an a downsampled image y to the original image x. In
our experiment, the original images are 384× 384 pixels, and the downsampled
images are 96× 96 pixels, corresponding to a downsampling ratio of 16:1. Fully
dense networks become infeasible for images of this size, so all models in the
experiment are constructed using separable patch networks (Definition 4.3.3).
Similar to experiments 8.M and 8.N, we design our models such that the
dimensions of the parameter space is approximately equal for pie and ae
models.

127

8. Experiments with Pseudo-Invertible Encoders

Experiment 8.O uses a straightforward supervised encoder-decoder structure.
In experiment 8.P, we wanted to see if augmenting the latent space with a
generative model would improve results. As the model is constructed with a
similar architecture as experiments 8.M and 8.N (see Figures 8.9 and 8.10),
we only trained a pie model in this experiment. Table 8.8 shows that the pie
model achieved significantly better scores in experiment 8.O than the ae model,
particularly in terms of ssim for the downsampled images. We also observed
a slight improvement in ssim score in the generative model in experiment 8.P.
From our observations on the synthesised images, the model seems to apply the
latent variable to improve the texture of the image, which slightly remedies the
square artifacts from the separable patch architecture. Surprisingly, all models
seemed to be relatively well conditioned.

Summary: Supervised Dense PIEs

From our experiments, we can conclude that pie models are viable for supervised
learning tasks and that they have practical applications for upscaling and
conditional image synthesis from image labels, where they outperform the
respective ae models. This indicates that the ideas from [Ard+18] can be
applied to invertible encoder networks and corroborates the claim that invertible
neural networks can be trained in a semi-generative setting without significantly
impacting the performance of the model. In the deblurring task the results
were more unclear, and neither the pie nor ae models yielded any particularly
impressive results.

x PIEx PIEx Synth.

y PIEy PIEz

Figure 8.15: Image reconstructions and synthesis from experiment P with
superresolution. On the top right we see a synthesized image, giving the
reconstructed image a different texture. On the bottom right we see the
randomly synthesized texture isolated from the image.

128

8.3. Supervised Learning with Convolutional PIEs

Exp. Model Features Act. Diag. Loss Data
8.Q PIE (1, 1, 1, 1, 1) BiCELU LHC CIFAR

AE (1, 1, 1, 1, 1) BiCELU LHC CIFAR
8.R PIE (1, 3, 6, 3, 1) BiCELU LHC CIFAR

PIELD (1, 3, 6, 3, 1) BiCELU Lin. LHC CIFAR
PIESD (1, 3, 6, 3, 1) BiCELU Sep. LHC CIFAR
AE (1, 3, 6, 3, 1) BiCELU LHC CIFAR

8.S PIE (1, 6, 12, 24, 12, 6, 1) BiCELU LHC COCO
AE (1, 4, 9, 16, 9, 4, 1) BiCELU LHC COCO

8.T PIE (1, 6, 12, 24, 12, 6, 1) BiCELU Sep. LHC COCO
AE (1, 4, 9, 16, 9, 4, 1) BiCELU Sep. LHC COCO

Table 8.9: Experiments with convolutional pseudo-invertable encoders.

Exp. 8.R – PIE
Layer In Ch. Out Ch. Kernel Pad. Stride
1 1 3 3× 3 1× 1 1× 1
2 3 6 5× 5 2× 2 1× 1
3 6 3 5× 5 2× 2 1× 1
4 3 1 3× 3 1× 1 1× 1

Exp. 8.S, 8.T – PIE
Layer In Ch. Out Ch. Kernel Pad. Stride
1 1 6 3× 3 1× 1 1× 1
2 6 12 3× 3 1× 1 2× 2
3 12 24 5× 5 2× 2 2× 2
4 24 12 7× 7 3× 3 1× 1
5 12 6 5× 5 2× 2 1× 1
6 6 1 3× 3 1× 1 1× 1

Table 8.10: Overview of layer structure in experiments 8.R, 8.S, 8.T. Note
that experiment 8.Q follows the same layer structure as 8.R without channel
expansion, i.e. a single input and output channel for all convolution operators.

8.3 Supervised Learning with Convolutional PIEs

To conclude our experiments with pseudo-invertible encoders, we looked
at the application of convolutional layers in pie models. We constructed
two experiments similar in form to the experiments with deblurring and
upscaling in the Section 8.2. The training process was conducted with identical
hyperparameters and optimization as in the experiments on dense networks. The
models in experiments 8.Q, 8.R were constructed with a kernel size of 3×3 with
1× 1 padding in all layers as well as identical input and output features, so the
dimensionality of the parameter space in the ae model is approximately double
that of the pie model. Experiments 8.S, 8.T used different numbers of features
such that the models had roughly similar dimensionality in their respective
parameter spaces. An overview of the experiments is given in Table 8.9, while the
parameters of the layer structure in experiments 8.S, 8.T is given in Table 8.10.

We looked at different options for a convolutional counterpart to diagonal
layers. A linear diagonal layer applied over the flattened image would tie up
a large number of parameters, while separable diagonal layers would be less
effective, but have a lower dimensional parameter space. Both layer types were
tested in experiment 8.R, but due to the high dimensionality of the images of
the coco dataset, seperable diagonal layers are applicable and were applied in
experiment 8.S.

129

8. Experiments with Pseudo-Invertible Encoders

Exp. Model RE (10−2) PSNR SSIM(x̂) SSIM(ŷ) CNA(x̂) CNA(ŷ)
8.L PIE 7.151 30.863 0.935 0.978 4.399 11.920

PIED 5.905 34.400 0.944 0.990 4.354 20.298
AE 5.127 36.629 0.943 0.998 4.537 23.811

8.Q PIE 8.684 28.579 0.883 0.979 3.583 0.996
AE 3.964 37.952 0.954 0.999 3.627 24.585

8.R PIE 3.387 39.716 0.965 0.999 6.481 15.545
PIELD 3.334 39.421 0.969 0.999 13.928 31.597
PIESD 3.339 39.981 0.965 0.998 14.241 36.827
AE 3.334 39.143 0.966 1.000 5.280 37.334

Table 8.11: Results of experiments on deblurring with convolutional pie networks
(8.Q) compared to the best experiment with dense networks (8.L). re and psnr
are averaged between blurred images (ŷ) and deblurred images (x̂).

For transposed circular convolution with stride one, the standard convolution
operation can be applied using a lexicographical reversed kernel as explained
in Section 4.3 and Appendix A.8. However, this does not work with strides
greater than one. In this case, a transposed convolution operator is used instead,
however in the PyTorch software, transposed convolution does not support
circular boundary conditions. This meant we had to apply constant boundary
conditions with zero padding in experiments 8.S, 8.T, which does not guarantee
orthogonality in the estimated weights.

Deblurring with Convolutional PIEs

The results of the deblurring experiments can be observed in Table 8.11,
compared to the best results from the experiments on dense networks. The
results provided some interesting insights. Most notably, we observed that the
full rank pie in experiment 8.Q fails to approximate the deblurring operator,
while the ae achieved relatively good results. However, we observed that the
introduction of multiple features in experiment 8.R yielded much better results,
indicating that a linear combination of orthogonal convolution operators can
approximate the deblurring operator, which can possibly be explained by the
width requirements for universal approximation in [Yar18]. We noted that the
introduction of linear combinations resulted in a minor increase in cna for the
models with diagonal layers, indicating that the under- and overdetermination
from channel expansion in combination with diagonal layers in pie models can
lead to instability. Generally, the pie models without added diagonals were
the most robust, which is as expected, but the effect of added diagonals on the
robustness of the convolutional models was greater than we anticipated. Still,
the pie models were all more robust than the comparative ae models.

Notably, the pie model with linear diagonal performed better than the
ae model at approximating the inverse deblurring operator, while all models
achieved a nearly perfect ssim on the blurred image. We generally see an
increase in performance compared to the seperable patch models in 8.L. Visual
comparison of Figure 8.16 to Figure 8.8 corroborates the results, indicating
that the models with convolutional layers perform better in deblurring tasks
than the dense variants in experiment 8.L. This is as expected, as convolution

130

8.3. Supervised Learning with Convolutional PIEs

x

x̂PIE

x̂PIELD

x̂PIESD

x̂AE

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 8.16: Reference image (above) and deblurred images (below) from
experiment 8.R.

operators generally outperform dense layers on spatial data.
While the number of parameters of the pie model is approximately doubled

in the ae model, we note that the pield model features a linear diagonal layer
which increases the number of parameters to 4026, compared to 1908 in the ae
model. This discrepancy is lessened in deeper models, as the parameters of the
convolution operators will increase the total number of parameters while the
parameters of the diagonal layer will stay constant.

Image Upscaling with Convolutional PIEs

In experiment 8.O, we observed that pie models with seperable patch layers
performed relatively well when compared to similar ae models. In Table 8.6
we see that convolutional layers outperformed the seperable patch networks.
Furthermore, the results from the pie models were more or less comparable
to the ae model, however we note that the ae models performed marginally
better in terms of almost all our evaluated metrics except for cna. Interestingly,
we see an increase in performance in the ae model when a diagonal layer is
added in 8.T. Generally speaking, the differences are minor enough that we
can conclude that pie models can effectively be applied in high-dimensional
convolutional imaging tasks.

131

8. Experiments with Pseudo-Invertible Encoders

Exp. Model RE (10−2) PSNR SSIM(x̂) SSIM(ŷ) CNA(x̂) CNA(ŷ)
8.O PIE 7.527 33.811 0.676 0.998 0.049 0.810

AE 9.097 28.432 0.666 0.983 0.049 0.810
8.S PIE 7.084 34.519 0.701 0.999 0.053 0.788

AE 6.822 37.519 0.704 0.999 0.053 0.801
8.T PIE 6.949 36.098 0.701 0.999 0.053 0.794

AE 6.665 38.887 0.709 1.000 0.053 0.813

Table 8.12: Results from upscaling experiments with convolutional networks
(8.S) compared to dense models with seperable patch layers (8.O).

x PIEx AEx

y PIEy AEy

Figure 8.17: Image reconstructions from upscaling experiment 8.S.

Summary: Convolutional PIEs

The results from our experiments indicate that pie models are compatible
with convolutional layers with certain considerations. Firstly, the implicit
constraints on the parameter space for full-rank single channel models could
be too restrictive for pie models. Secondly, any beneficial increases in stability
from pie architecture are slightly offset by the addition of diagonal layers. We
stress that while the best results on deblurring were achieved by pie models,
more in-depth testing on convolutional pseudo-invertible networks in the context
of different tasks is recommended before fully endorsing their application in a
practical setting.

132

8.4. Conclusions: PIEs

8.4 Conclusions: PIEs

At the start of this chapter, we outlined a set of enquiries regarding pseudo-
invertible encoders we wanted to find answers to. We thus summarize our
conclusions from the experiments we performed;

(i) Does joint parametrization affect performance? The joint para-
metrization in pie models does not seem to affect their performance on
imaging tasks in dense or separable-patch networks. However, our results
in 8.L indicate that there are limitations to consider for convolutional full
rank models.

(ii) Does joint parametrization affect robustness? Our results indicate
that pie models tend to exhibit better conditioning than ae models.
Underdetermination does generally not seem to significantly affect the
models adversely in terms of robustness.

(iii) Do diagonal layers affect results? The results indicate that adding
diagonal layers to the pie models generally improved their performance,
at the cost of a decrease in robustness.

(iv) Can PIEs reproduce principal components? Linear pie and ae
models are able to reproduce the most significant principal vectors.
Furthermore the ordering of the principal vectors can be encouraged
given an appropriate training regime.

(v) Do the weights have orthogonal properties? The results in Table 8.3
and Figure 8.5 demonstrate that the estimated weights for trained pie
models – as well as the decoder in ae models – exhibit significant
orthogonal properties compared to random initialization.

(vi) Can PIEs models be applied with generative models? pie models
can effectively be used in generative modelling, and they can even
outperform ae models in certain tasks. In particular, we observed that
they were more applicable to conditioning with additive coupling layers
in our experiments.

(vii) Can we construct convolutional PIEs? In Section 8.3 we showed that
convolutional layers can be applied with pseudo-invertible encoders with
certain considerations, and the theoretical benefit of improved stability is
largely confirmed in experiments with convolutional models.

In Observation 6.1.1 we outlined the motivation for invertible encoder
networks, and our experiments on pseudo-invertible encoders show that they
perform comparatively to autoencoders – even outperforming ae models on
some occasions. Additionally, they display better robustness to adverserial
attacks, which make them more suited for inverse problems. We conclude that
the results of the experiments goes some way to support the theoretical benefits
of invertible encoder networks.

133

CHAPTER 9

Experiments with Invertible
Encoders

So far, we have presented results demonstrating how pseudo-invertible encoder
networks can be applied to solve inverse problems by approximating bijective
maps using implicit constraints given by the network architecture. We now shift
our focus to experiments on models where these constraints are made explicit,
and how this impacts learning and performance.

In Section 6.4 we discussed how orthogonality can be ensured via constraining
optimization on the manifolds SO(n) and St(n, k), allowing us to apply
Riemannian gradient descent to constrain the orthogonality properties of the
weights. Furthermore in Propositions 6.4.15 and 6.4.16, we introduced methods
for constructing invertible operators in the form of resolvent operators via
Liouville-Neumann series. This method allows us to compute approximations of
inverse convolution kernels for full rank operators. In this section, we investigate
the applicability of these methods. We designed our experiments looking to
answer the following questions.

(i) How does the explicit orthogonal constraints in ie models and resolvent
operators in ire models affect performance and robustness compared to
pie and ae models?

(ii) How do these constraints affect underdetermination in ie models?

(iii) How well does invertible encoders function for convolutional networks,
and can a hybrid of pseudoinvertible and invertible encoders be applied
for channel expansion?

The chapter thus consists of two sections. In the first section, we investigate
dense and seperable patch invertible encoder networks via Riemannian gradient
descent and invertible resolvent operators. In the second section, we look at
convolutional invertible resolvent encoders and hybrid models for convolutional
networks. Lastly, we summarize our findings by providing answers to the
aforementioned enquires.

135

9. Experiments with Invertible Encoders

Exp. In.Dim. Hid.Dim. Out.Dim. Act. Diag. Patch Size λ Iter. Loss Data
9.A 322 322 322 BiCELU (X) 1× 1 LHC CIFAR
9.B 322 322 322 BiCELU (X) 1× 1 2 16 LHC CIFAR
9.C 322 322 322 BiCELU (X) 4× 4 LHC CIFAR
9.D 322 322 322 BiCELU (X) 4× 4 2 16 LHC CIFAR
9.E 322 2 · 322 322 BiCELU X 1× 1 LHC CIFAR
9.F 322 1282 322 BiCELU X 4× 4 LHC CIFAR

Table 9.1: Overview of experiments with dense ie and ire models. Experiments
including both models with diagonal layers and without are indicated with
a parenthesis. Note that experiments with ire models are denoted with the
number of Liouville-Neumann iterations and λ.

9.1 Dense and Seperable IEs and IREs

For these experiments, we let all experimental parameters and model
architectures be the same as in comparable experiments with pseudo-invertible
models, except for the omission of models without diagonal layers in the
overdetermined experiments 9.E and 9.F. Similar to an autoencoder, we
postulated that the addition of diagonal layers would have little theoretical
effect on the resolvent operators. We included models with diagonal layers to
see how this related to practice. Note that overdetermined architectures do
not feature experiments with invertible resolvent networks, as these models can
only be applied as full rank operators.

It is worth mentioning that the ie models have an increased parameter space
compared to the pie models, however, only the skew symmetric operators have
associated gradients and are used to directly update the base weight. The result
is that while ie models have a lower number of parameters during estimation,
however, the effective number of parameters can either be interpreted as being
less than or greater than the parameter space of a comparable pie model by
including the base. No matter how it is interpreted, the parameter space will
necessarily have lower dimensionality than a comparative ae model. Note that
this does not apply to ire models, which have the same number of parameters
as a pie model.

Deblurring with Dense IEs and IREs

We begin by looking at our deblurring experiment in the context of invertible
encoder networks. One of the goals of the experiment was to compare the
retraction mappings of the canonical matrix exponential for Lie groups (iel)
and the Cayley transform (iec). In experiments 9.A through 9.D we performed
experiments with and without added diagonal layers, and we denote models
with added diagonal layers by ield, iecd, and ired. The training and model
architecture is identical to experiments 8.I through 8.L, and the only difference
is computation and update of the weights. An overview of the experiments is
provided in Table 9.1.

The results in Table 9.2 shows that the full rank invertible encoder models
(9.A, 9.B) display a slight drop in the performance of the blurring task (ssim(ŷ))
in the full rank dense models compared to the pie models, with certain models
achieving a minor increase in deblurring (ssim(x̂)). In the seperable patch
networks (9.C), this relationship is reversed, with the ie models displaying a

136

9.1. Dense and Seperable IEs and IREs

Exp. Model RE (10−2) PSNR SSIM(x̂) SSIM(ŷ) CNA(x̂) CNA(ŷ)
8.I PIE 5.671 32.514 0.917 0.985 3.612 12.168

PIED 5.615 32.682 0.919 0.986 3.673 12.808
AE 5.235 33.630 0.924 0.993 4.000 16.159

9.A IEL 6.670 29.647 0.923 0.947 3.511 6.920
IEC 7.172 29.047 0.908 0.939 3.511 6.918
IELD 6.222 30.418 0.923 0.958 3.511 15.505
IECD 6.569 29.936 0.911 0.954 3.511 19.277

9.B IRE 6.684 29.645 0.935 0.956 3.820 34.913
IRED 6.551 30.023 0.938 0.960 3.503 35.097

8.J PIE 9.490 27.872 0.922 0.954 4.568 12.521
PIED 8.838 28.474 0.928 0.957 6.161 20.228
AE 8.514 28.725 0.927 0.961 5.308 25.806

9.C IEL 5.974 31.454 0.915 0.976 3.492 6.768
IEC 5.825 31.605 0.920 0.976 3.611 6.802
IELD 5.517 32.308 0.920 0.981 3.512 14.709
IECD 5.233 32.635 0.928 0.982 3.672 18.540

9.D IRE 9.468 27.739 0.926 0.923 9.033 122.439
IRED 9.657 27.508 0.922 0.929 8.052 125.209

8.K PIE 5.604 32.398 0.921 0.983 3.935 12.765
PIED 6.775 30.441 0.922 0.984 3.896 13.983
AE 4.904 34.054 0.930 0.995 3.743 16.665

9.E IEL 5.974 31.145 0.915 0.976 3.492 6.768
IEC 5.825 31.605 0.920 0.976 3.611 6.802
IELD 5.517 32.308 0.920 0.981 3.512 14.709
IECD 5.233 32.635 0.928 0.982 3.672 18.540

8.L PIE 7.151 30.863 0.935 0.978 4.399 11.920
PIED 5.905 34.400 0.944 0.990 4.354 20.298
AE 5.127 36.629 0.943 0.998 4.537 23.811

9.F IEL 7.966 29.981 0.921 0.974 3.618 6.310
IEC 8.094 29.881 0.919 0.973 3.634 6.380
IELD 5.702 34.152 0.945 0.991 5.155 32.771
IECD 5.532 34.653 0.947 0.993 5.440 30.265

Table 9.2: Results of deblurring experiment with dense ie/ire models compared
to the respective experiments with pie and ae models from Section 8.1.

general increase in ssim(ŷ), and a general decrease in ssim(x̂). The experiment
with the ire model on dense networks performed very well on the deblurring
task (9.B), however for seperable patch networks (9.D) it performed poorly in
terms of both objectives. For the overdetermined experiments (9.E, 9.F), the ie
models optimize the weights over the Stiefel manifold St(n, k) instead of SO(n).
We noticed that these models were especially computationally demanding due
to the QR factorization involved in each weight update, which is why we elected
to only include models with diagonal layers in these experiments. Contrary
to the full rank experiments, both dense- and seperable patch networks saw
a general decrease in ssim(ŷ) and an increase in ssim(x̂) compared to the pie
models. Overall, the best results on deblurring were obtained by the ired
model in the experiments with full rank dense networks, and the iecd model in
the experiments with overdetermined seperable patch networks – the results of
which can be seen in Figure 9.1.

137

9. Experiments with Invertible Encoders

x

x̂IEL

x̂IEC

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0x

x̂PIE

x̂PIED

x̂AE

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.1: Comparison of image reconstructions from experiment 9.F with an
invertible encoder (above) and 8.L with a pseudoinvertible encoder (below).

In terms of robustness, we note that the ie models with orthogonal
constraints and no diagonal layers were the most robust, which is as expected
as they are inherently Parseval optimal (Definition 4.5.1). We observed that the
addition of diagonal layers to these models significantly decreased the overall
robustness. Moreover, we see that the ire models exhibit very significant ill-
conditioning compared to the other models. This is somewhat expected, as we
apply an approximation by Liouville-Neumann series, which is truncated at a set
number of iterations. This could possibly be improved by a method which instead
stopped iterations when the difference between successive approximations was
lower than some set threshold. However, this does not necessarily directly
address any ill-conditioning of the resolvent operators, and would increase the
computational complexity. Overall, we were generally surprised to see the
significant impact diagonal layers had on robustness in ie models given the
results on pie models. The poor robustness of the ire models was somewhat
disappointing, but not entirely unanticipated. Theoretically, the stability of
the resolvent operators are highly dependent on the choice of λ, which in this
experiment was set to a moderately high value to promote stability in training.
It is possible that the stability could be improved by setting λ closer to 1.

138

9.1. Dense and Seperable IEs and IREs

Exp. Model RE (10−2) PSNR SSIM(x̂) SSIM(ŷ) CNA(x̂) CNA(ŷ)
8.O PIE 7.527 33.811 0.676 0.998 0.051 0.810

AE 9.097 28.432 0.666 0.983 0.052 0.810
9.G IEL 8.207 30.366 0.660 0.991 0.072 0.793

IEC 8.611 29.367 0.650 0.986 0.080 0.803

Table 9.3: Results of superresolution experiment with dense ie models compared
to the relevant results on pie models from Section 8.1.

x IELx IECx

y IELy IECy

Figure 9.2: Reconstructions from ie superresolution experiment 9.F.

Image Upscaling with Dense IEs

Next, we investigated how the application of orthogonal constraints via
Riemannian manifold learning affected the models in experiment 8.O. As in
the previous experiment, all other experiment parameters are equal in these
experiments. The seperable patch layers in this experiment are constructed with
underdetermnination in the forward layers, thus the weights in the ie models
are semiorthogonal, i.e., we optimize the operators over the Stiefel manifold
St(n, k) in each layer. For this reason, models using resolvent operators are
not applicable as they require full rank operators. The results can be seen in
Table 9.3 and Figure 9.2.

From the results, we noted that the ie models performed better in the
downsampling task than the ae, however performed slightly worse than the
pie model overall. This runs counter to previous observations from deblurring,
where we generally see a decrease in performance for approximating the forward
operator with orthogonality constraints. We have previously postulated that this
phenomenon relates to the sensitivity imbalance of the blurring and deblurring
operators. However, the ill-posedness of the deblurring operator is related

139

9. Experiments with Invertible Encoders

to stability (Property 2.1.1.iii), while underdetermination in the upsampling
operator is related to uniqueness (Property 2.1.1.ii). These results indicate
that Definition 4.4.3 does not necessarily imply that sensitivity imbalance
have the same impact in underdetermined problems. Interestingly, the cna
results indicate that semiorthogonal constraints do not necessarily imply better
adverserial robustness, as both the pie and ae models achieved better results.
Taken together, the results imply that ie models with semiorthogonal constraints
are not always preferable to pie models where orthogonality is implicitly
encouraged by the network architecture.

Summary: Dense IEs

The experiments on ie models with orthogonal constraints from Riemannian
manifold learning yielded some interesting points and observations which were
quite surprising. In the experiments with dense networks, we see that invertible
encoder networks generally provide a slight improvement in reconstruction
quality for deblurring as well as better robustness. However, in the image
upscaling task, we observed a decrease in the performance in upscaling at the
same time as the ie models generally performed better than the ae model with
downscaling. Interestingly, the pie model from experiment 8.O provided the
best performance and robustness in superresolution tasks with dense networks –
except for the augmented generative latent model from experiment 8.P. While
we would expect explicit constraints to improve robustness, this experiment
shows that this might not always be the case for underdetermined problems,
and implicit constraints can prove a more effective remedy for stability issues
in underdetermined problems.

Lastly, it is important to emphasize that optimization on the Stiefel manifold
is especially computationally expensive due to the QR-factorization steps in the
Gram-Schmidt process required to complete the basis when updating weights.
This will necessarily be an important consideration in the choice of model, and
without stronger guarantees of improved stability, the computational cost might
outweigh any potential benefit of semiorthogonality.

9.2 Convolutional IREs

Next, we look at our proposed method for constructing invertible convolutional
networks using resolvent operators. A disadvantage of these models is that
they require full rank operators, so any under- or overdetermination in terms of
channel expansion between network layers can not be applied directly in these
models. Channel expansion can however be introduced using pseudo-invertible
convolution layers. The natural task for these experiments is the deblurring
task, as it accommodates for full rank operators. We conducted one experiment
on fully invertible convolutional networks (9.H) and one experiment on a hybrid
model, where we apply a pie model for channel expansion and contraction in the
first and last layer, and apply invertible resolvent convolutional layers between
the hidden layers (9.I). All models were constructed with the same methodology
as in the previous experiment with convolution with pseudo-invertible networks
(8.Q, 8.R), however, to balance the dimension of the parameter space of the
hybrid model in experiment 9.I, we slightly modified the number of input

140

9.2. Convolutional IREs

Exp. Model Features Act. Diag. λ Iter. Loss Data
9.H IRE (1, 1, 1, 1, 1) BiCELU 4/3 16 LHC CIFAR

IRELD (1, 1, 1, 1, 1) BiCELU Lin. 4/3 16 LHC CIFAR
IRESD (1, 1, 1, 1, 1) BiCELU Sep. 4/3 16 LHC CIFAR

9.I PIE-IRE (1, 3, 3, 3, 1) BiCELU 20/19 24 LHC CIFAR
PIE-IRED (1, 3, 3, 3, 1) BiCELU 20/19 24 LHC CIFAR

Table 9.4: Experiments with convolutional pseudo-invertable encoders.

Exp. Model RE (10−2) PSNR SSIM(x̂) SSIM(ŷ) CNA(x̂) CNA(ŷ)
8.Q PIE 8.684 28.579 0.883 0.979 3.583 0.996

AE 3.964 37.952 0.954 0.999 3.627 24.585
9.H IRE 4.163 35.542 0.959 0.996 18.028 31.311

IRELD 4.248 35.082 0.958 0.995 9.791 28.250
IRESD 4.295 35.241 0.957 0.995 14.507 43.935

8.R PIE 3.387 39.716 0.965 0.999 6.481 15.545
PIELD 3.334 39.421 0.969 0.999 13.928 31.597
PIESD 3.339 39.981 0.965 0.998 14.241 36.827
AE 3.334 39.143 0.966 1.000 5.280 37.334

9.I PIE-IRE 3.051 41.057 0.968 0.999 8.150 43.996
PIE-IRELD 2.876 41.331 0.972 0.999 10.110 30.024
PIE-IRESD 3.308 38.340 0.970 0.999 7.738 46.228

Table 9.5: Results of experiments on deblurring with a convolutional ire model
compared to convolutional pie models.

and output channels compared to experiment 8.Q, resulting in comparable
dimensionality of the respective parameter space of the models. An overview of
the experiments is provided in Table 9.4.

Deblurring with Convolutional IREs

In experiment (8.Q) from Section 8.3 we observed that the pseudo-invertible
encoder network with full rank was not able to approximate the deblurring
operator with the architecture in our experiment. We were interested to see if
invertible resolvent networks would fare any better. In the last experiments,
we noticed that the ire models performed poorly in terms of robustness, and
hypothesized that this could be related to our choice of λ. We therefore decreased
λ for each operator in the experiment to see if this would have a positive impact
on the robustness of the models. All experimental parameters were the same as
in experiments 8.Q and 8.R, except for aformentioned differences in channel
expansion in model 9.I, which can be seen in Table 9.4.

From the results in Table 9.5, we see that the networks with resolvent
convolution operators performed very well, and were generally comparable to
the ae models. In particular, the hybrid models performed markedly better
than the ae model at approximating the deblurring operator, resulting in an
improved ssim(x̂) score. Overall, the hybrid convolutional pie/ire models
performed the best of all our deblurring models, and the resulting deblurred
images can be seen in Figure 9.3.

141

9. Experiments with Invertible Encoders

x

x̂PIE− IRE

x̂PIE− IRELD

x̂PIE− IRESD

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 9.3: Reconstructions from hybrid pie/ire models from experiment 9.I.

In this experiment, we also observed an improvement in the ire models with
diagonal layers, which also seemed to improve the general robustness of the
models in certain models. In general, the robustness of the convolutional ire
models were comparable to the pie models with diagonals as well as the ae model.
This indicates that the choice of λ could indeed be a factor in the stability of
resolvent operators. We note that the ire models with linear diagonals achieved
slightly better cna(ŷ) scores than the ae models. In particular, the hybrid
model with linear diagonal in experiment 9.I achieved comparatively decent
stability results, second only to the pie model. However, we want to stress
that this result is slightly isolated from our other results, which indicate that
ire models are generally less robust than other models. Remedial methods
for improved stability via regularization should therefore be prioritized in any
subsequent work on these models.

Conclusion: Convolutional IREs

Our results indicate that invertible convolutional networks with resolvent
operators perform comparatively well compared to supervised convolutional
autoencoders and convolutional pseudo-invertible encoder networks. The
addition of diagonal layers had a positive effect on both performance and
stability. Furthermore, full rank invertible models without channel expansion
can be constructed using resolvent convolutional layers, as opposed to what we
observed with pie networks in experiment 8.Q. We conclude that our method of
constructing invertible convolutional networks with resolvent operators has the
potential for being successfully applied in practical settings and is a completely
new take on invertible neural networks. We emphasize that remedial methods
for stability should be considered when deploying these models.

142

9.3. Conclusions: Invertible Encoders

9.3 Conclusions: Invertible Encoders

The experiments in this chapter were designed to investigate the applicability
of invertible encoder networks, and we wanted to determine the applicability of
these models. From our experiments, we draw the following conclusions.

(i) How do the constraints affect performance and robustness? In
terms of performance, we noted that invertible encoders performed
similarly to the compared models, while in the full rank experiments,
we noted an increase in performance of either the deblurring task (9.A)
or the blurring task (9.C). In terms of robustness, we observed a general
increase in robustness for the ie models with orthogonality constraints,
which were by far the most robust models in our experiments. For the
ire models we noticed an improvement in performance, with a general
decrease in adverserial robustness.

(ii) How do the constraints affect underdetermination? In the
deblurring task, we observed only minor differences in the results of
over- or underdetermined models. Nevertheless, we did note a general
decrease in performance on the image upscaling task (9.G) compared to
the pie model, indicating that semiorthogonality is not always a useful
property in over- or underdetermined problems.

(iii) How applicable are resolvent operators for convolutional net-
works? The convolutional ire models provided good performance. Our
overall best results for deblurring came from a hybrid pie/ire model with
an added linear diagonal layer, indicating that these models can be applied
in a practical setting. While we reported comparatively decent adverserial
robustness, our testing was limited, and we can not yet conclude that
these models provide improved guarantees in terms of robustness. We
highlight this as an possible area of further work.

In conclusion, we have shown that invertible encoder models have
practical applications in the modelling of inverse problems, particularly as
an alternative to standard encoder-decoder models. The main benefits of ie
models with orthogonal constraints are improved robustness to adverserial
attacks, guarantees of bijectivity, and in some cases, improved performance in
approximating the inverse mapping, as we saw in the deblurring tasks. For
convolutional networks, ire models and hybrid pie/ire models provide an
interesting method of constructing invertible models. Lastly, we mention that
invertible encoder networks can provide significant reduction of the overall
dimensionality of the parameter space of a model, however, this comes at the
cost of more computationally expensive operations during training.

143

CHAPTER 10

Summary and Further Work

In this chapter, we summarize our work in this thesis and show how the different
parts achieve the outlined goals in the project description. Lastly, we discuss
potential ideas and avenues for further work in terms of both theory and
experimental methodology.

10.1 Summary and Project Goals

Recall from Section 1.2 that the project description of this master thesis outlined
our four main goals, all of which have been achieved in our work. In Chapter 2,
we outlined the fundamentals of the mathematical theory of inverse problems,
which the first goal of our thesis. In Chapter 3 we presented the fundamental
theory of statistical modelling and learning with a probabilistic framework
and demonstrated how this is applied for modelling inverse problems, while in
Chapter 4 we connected this to the theory of neural networks. This addressed the
second goal given in the project description of our master thesis. In Chapter 5
we discussed the main sources of instability and uncertainty in neural networks,
and introduced invertible neural networks as interesting models for modelling
inverse problems, which – along with the general exposition of autencoder
architectures from Section 4.4 – looked at some of the current methods for
modelling inverse problems in neural networks, in line with the third goal in
our project description. Lastly, in Chapter 6 we proposed to extend invertible
neural networks to feed-forward models using invertible- and pseudoinvertible
encoders, and in the subsequent chapters in part III we demonstrated that these
models have certain clear benefits when compared to traditional autoencoder
models. In particular, through our experiments we observed that our proposed
models

• provided stronger guarantees of invertibility,

• generally yields increased robustness to adverserial attacks without explicit
regularization terms,

• exhibit lower parametric dimensionality via joint parametrization of
encoder and decoder networks,

• can be successfully applied in existing feedforward architectures, including
convolutional models.

145

10. Summary and Further Work

We have thus proposed a new model for invertible neural networks, and our
experiments indicate that these models show promise for modelling inverse
problems, achieving the fourth and last goal of our master thesis.

10.2 Further Work: Experimental Methodology

While we have endeavoured to cover all topics to the fullest extent in this thesis,
there is still much to be said on the subject, and our work will inevitably leave
some stones unturned. In this section, we address some of the ideas we had
which we did not have time to investigate further, as well as any potential
blindsides in our experimental methodology.

In terms of the number of experiments, we believe we have managed to
outline the applicability of the models for inverse problems on a small scale,
and demonstrated that many of the theorized properties of invertible encoder
models seem to hold. Still, there is still much room for improvement, and
we therefore outline some potential experiments and methodologies which are
conspicuously absent from our work.

Variety

We would have liked to extend our results to more interesting datasets and
model scaling. A lot of time was spent on baseline modelling with very
similar experiments – as is expected with proof-of-concept work. To fully
test our proposed models, however, this is a required and necessary step in any
subsequent work on these models.

Comparison with Other Architectures

While we discussed normalizing flows to some extent, we did not perform
any tests to compare the two approaches. We also omitted any generative
modelling based on generative adverserial architectures, which could have been
very interesting, particularly in light of the results in Section 9.1.

Hyperparameter Search

We did little in terms of hyperparameter estimation; both in the context of bi-
Lipschitzian activation and λ for resolvent layers. This is likely to be a tedious,
but necessary step for the further application of invertible encoder models.
Likewise, learnable parameters should be experimented with – particularly for
bicelu and the Dirichlet Softmax.

Regularization

The effect of added regularization should clearly be pursued in subsequent
work on these models. We have intentionally avoided regularization to provide
baselines for our models without the interference of remedial methods for
stability, precisely to evaluate the inherent robustness of our proposed models.
However, one could easily argue that regularization would have a positive effect,
particularly in the case of pie models.

146

10.3. Further Work: Theoretical Ideas

Estimating Lipschitz Constant

The proposed method for estimating Lipschitz constants in [Faz+19] would
have proved a valuable metric in our experiments. Unfortunately, the authors
implementation is restricted to MATLAB as well as proprietary DSP solvers.
This should be rewritten in open source, especially considering the almost
exclusive use of Python in the research community.

Bootstrap Estimates

Due to the sheer number of small-scale experiments, we did not prioritize the
computation of bootstrap estimates for our models, as this would have been
computationally costly. Limiting the number of models and providing bootstrap
estimates should be prioritized in further work on these models.

10.3 Further Work: Theoretical Ideas

Lastly, we discuss some theoretical avenues which could be potentially interesting
to explore. While we believe we managed to present our most important ideas
on the topic of invertible neural networks and inverse problems, we still had
some avenues we did not have the time to pursue further.

Orthogonal Convolutions

The application of the methods for constructing invertible convolution operators
using Liouville-Neumann series from Proposition 6.4.16 to compute inverse
kernels can likely be applied to construct retraction maps for Riemannian
manifold learning with gradient descent. As previously noted, this could have
applications outside of neural networks and is a method we would like to see
come to practical fruition in the future.

Frame Theory

Our work could very likely be better contextualized in the theory of frames
[CKP13], which provides a generalization of the notion of orthogonal bases
and explicit ties to series expansion methods. In particular, the construction
of equiangular frames can possibly be extended to manifold learning on the
Grassmann manifold via Riemannian gradient descent. Such an approach could
be used to extend the ie and pie architectures to more robust frameworks for
dealing with inverse problems.

Extending Resolvent Operators to Residual Blocks

Residual blocks have been successfully applied to invertible networks, and the
resolvent formalism can allow for residual blocks to be constructed with iterative
methods, extending our proposed resolvent layer. In particular, much work
has been done on iterative methods for nonlinear integral equations, which
can possibly be applied to construct nonlinear residual blocks. More work on
this connection could be a potentially powerful tool for constructing invertible
neural networks.

147

10. Summary and Further Work

Learning Permutations

One interesting application of unitary matrices over the complex numbers is the
link to doubly stochastic matrices, which could be used to construct learnable
permutation matrices in neural networks. This could allow for more direct svd
layers with explicit constraints on diagonal layers – or singular values – for
better control of ill-conditioning of individual linear operators in a network.
Furthermore, it has potential applications to graph neural networks and pruning,
which are both highly interesting use cases.

Other Practical Ideas

We also had several ideas relating to the practical implementations of our
models.

• We did not have time to give any attention to the application of sequence
modelling using invertible encoders. This is a promising avenue for further
research on these models. In particular, we consider attention mechanisms
as an interesting application of invertible encoders.

• General representation learning tasks are interesting applications for
invertible encoders. The idea of contrastive learning – especially with
momentum [He+19] – is of interest, and we would have liked to see
invertible encoder architectures compared to traditional autoencoder
structures in this setting.

• While we achieved good results in reconstructing principal vectors in
pseudo-invertible encoders, the training regime is tedious. A better
approach would be to construct a specific dropout regime which prioritizes
neurons sequentially to encourage the importance of output weights more
naturally.

148

Appendices

APPENDIX A

Fundamental Theory

This section provides a set of fundamental definitions and results required for
the thesis. As such, most of this section is likely to be known to the reader,
but are included for reference. Note however, that this is by no means an
exhaustive exposition, and we leave the details to the more rigorous literature.
We especially recommend the source material for this section, which is based
on [Bil95; Hal15; Lin17; MW99; Rud87; RY08].

A.1 Spaces and Analysis

Definition A.1.1 (Index set). Let X be a set, and let I ⊆ Z. Let x : I → X be
a surjective mapping x(i) = xi ∈ X for all i ∈ I. Then I is an index set, and
we write X = (xi)i∈I .

Definition A.1.2 (Linear Space). Let X be a set, and let K be a field, either
R or C. Let • + • : X × X → X and • · • : K × X → X be maps following
standard conventions and notation of addition and multiplication such that for
all a, b ∈ K and x, y, z ∈ X we have

(i) x+ y = y + x,

(ii) (x+ y) + z = x+ (y + z),

(iii) there exists 0 ∈ X such that x+ 0 = x,

(iv) there exists −x ∈ X such that x+ (−x) = 0,

(v) a(x+ y) = ax+ ay,

(vi) (a+ b)x = ax+ bx,

(vii) a(bx) = (ab)x,

(viii) there exists 1 ∈ K such that 1x = x.

Then X is a linear space, also called a vector space.

151

A. Fundamental Theory

Linear

Metric

Normed

Banach

Inner Product

Hilbert

Figure A.1: A diagram of the hierarchical relations between spaces.

Definition A.1.3 (Image of a Mapping). Let f : X → Y. Let f(X) ⊂ Y and
f -1(Y) ⊂ X be sets such that

f(X) = {y ∈ Y : there exists x ∈ X such that f(x) = y} (A.1)
f -1(Y) = {x ∈ X : there exists y ∈ Y such that f(x) = y}. (A.2)

Then f(X) is the image of f over X , and f -1(Y) is the pre-image of f over Y.

Definition A.1.4 (Indicator Function). Let X be a linear space, let A ⊂ X and
let IA : X → {0, 1} be a map given by

IA(x) =
{

1, if x ∈ A;
0, otherwise.

(A.3)

Then IA is called the indicator function of A.

Definition A.1.5 (Simple Function). Let X be a linear space and let (Aj)j∈I
be a sequence of sets with Aj ⊂ X . Let f be a function with a finite range
{a1, a2, . . . , ak} such that f -1(aj) = Aj . Then f can be expressed as a linear
combination of indicator functions by

f =
k∑
i=1

ajIAj , (A.4)

and we call f a simple function.

Definition A.1.6 (Metric Space). Let X be a set, and let d : X × X → R≥0 be
a map defined on X such that for all x, y, z ∈ X we have

(i) d(x, y) = 0 iff. x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, z) + d(y, z).

Then d is a metric on X , and X is called a metric space.

152

A.1. Spaces and Analysis

Definition A.1.7 (Cauchy Sequence). Let X be a metric space and let (xi)i∈N
be a sequence where xi ∈ X for all i ∈ N. If for every ε ∈ R≥0 there exists
N ∈ N such that for all m,n > N we have

d(xm, xn) < ε, (A.5)

then (xi)i∈N is a Cauchy sequence.

Definition A.1.8 (Normed Space). Let X be a linear space. Let ‖•‖ : X → R≥0
be a map such that for all a ∈ K and x, y ∈ X we have

(i) ‖x‖ = 0 iff. x = 0,

(ii) ‖ax‖ = |a|‖x‖,

(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

then ‖•‖ is a norm on X and we call X a normed space.

Lemma A.1.9 (Metric Induced by the Norm). Let X be a normed space. Let
d(x, y) = ‖x− y‖. Then d is a metric, and we say d is the metric induced by
the norm of X .

Proof. Property A.1.6.i is satisfied by Property A.1.8.i. Property A.1.6.ii is
satisfied by

d(x, y) = ‖x− y‖ (A.6)
= | − 1|‖x− y‖ (A.7)
= ‖y − x‖ (A.8)
= d(y, x), (A.9)

showing symmetry. Then the triangle inequality of Property A.1.6.iii is clearly
satisfied, as we have

d(x, y) = ‖x− y‖ (A.10)
= ‖(x− z) + (z − y)‖ (A.11)
≤ ‖x− z‖+ ‖z − y‖ (A.12)
= d(x, z) + d(z, y) (A.13)
= d(x, z) + d(y, z). (A.14)

�

153

A. Fundamental Theory

Definition A.1.10 (Complete Space). Let X be a metric space. If every Cauchy
sequence converges to an element in X , then X is a complete space.

Definition A.1.11 (Banach Space). Let X be a normed space. If X is complete
w.r.t. the metric induced by the norm, then X is a Banach space.

Definition A.1.12 (Compact Set). Let X be a metric space, and let A ⊂ X be
a subset. If every sequence in A has a convergent subsequence with a limit
point in A, then A is a compact set.

Definition A.1.13 (Inner Product Space). Let X be a linear space, and let
〈•, •〉 : X ×X → K be a map such that for all a, b ∈ K and x, y, z ∈ X we have

(i) 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉,

(ii) 〈x, y〉 = 〈y, x〉,

(iii) 〈x, x〉 ≥ 0,

(iv) 〈x, x〉 = 0 iff. x = 0.

Then 〈•, •〉 is an inner product on X and we call X an inner product space.

Lemma A.1.14 (Norm Induced by Inner Product). Let X be an inner product
space, and let ‖x‖ =

√
〈x, x〉. Then ‖•‖ is a norm induced by the inner product

of X .

A proof for Lemma A.1.14 is given in [MW99, pp.460–461].

Definition A.1.15 (Hilbert Space). Let X be an inner product space. If X is
complete w.r.t. the metric induced by the norm, then X is a Hilbert space.

Definition A.1.16 (Orthogonality). Let X be an inner product space. If for any
two elements x, y ∈ X we have 〈x, y〉 = 0, we say that x, y are orthogonal, and
we write x ⊥ y.

Definition A.1.17 (Orthogonal Set). Let X be an inner product space and let
A ⊂ X . If for all a, b ∈ A where a 6= b we have a ⊥ b then A is an orthogonal
set.

Definition A.1.18 (Orthogonal Compliment). Let X be an inner product space
and let A ⊂ X be a proper subspace. Let B = Ac. If for all a ∈ A, b ∈ B we
have a ⊥ b then B is the orthogonal complement of A, and we write B = A⊥.

154

A.2. Operators

A.2 Operators

Definition A.2.1 (Linear Operator). Let X ,Y be linear spaces over the same
field K. Let W : X → Y be a map such that for all x ∈ X , a ∈ K we have

(i) W (x+ y) = W (x) +W (y),

(ii) W (ax) = aW (x).

Then W is a linear operator, and we write W (x) = Wx.

Definition A.2.2 (Bounded Operator). Let X ,Y be normed spaces over the
same field K, and let W : X → Y be a linear operator such that for all x ∈ X
there exists some k ∈ K with k > 0 such that

‖Wx‖ ≤ k‖x‖. (A.15)

Then W is a bounded operator, and we write W ∈ B(X ,Y)

Definition A.2.3 (Operator Norm). Let X ,Y be normed spaces, and let
W : X → Y be a bounded operator. Let ‖•‖op : B(X ,Y) → R≥0 such
that

‖W‖op = inf{k ≥ 0 : ‖Wx‖ ≤ k‖x‖ ∀ x ∈ X}. (A.16)

Then ‖•‖op is called the operator norm on B(X ,Y).

Lemma A.2.4 (Continuous Linear Operators). Let X ,Y be normed spaces over
the same field K, and let W : X → Y be a linear operator. Then the following
statements are equivalent.

(i) W is continuous,

(ii) W is continuous at 0,

(iii) W is uniformly continuous,

(iv) W is bounded.

A proof for Lemma A.2.4 is provided in [RY08, pp.88–89]

Theorem A.2.5 (Adjoint Operator). Let X ,Y be Hilbert spaces over C and let
W : X → Y be a bounded operator. Then for all x ∈ X and y ∈ Y there exists
a unique operator W ∗ : Y → X such that

〈Wx, y〉 = 〈x,W ∗y〉, (A.17)

and we call W ∗ the adjoint operator of W .

[RY08, pp.168–169] provides a concise proof for Theorem A.2.5, and shows
the properties for adjoint operators found in Lemma A.2.6.

155

A. Fundamental Theory

Lemma A.2.6 (Properties of adjoint operators). Let X ,Y,Z be Hilbert spaces
over C and let V,W ∈ B(X ,Y) and U ∈ B(Y,Z). Let a, b ∈ C. Then

(i) (W ∗)∗ = W ,

(ii) (UV)∗ = V ∗U∗,

(iii) (aW + bV)∗ = aW ∗ + bV ∗,

(iv) ‖W ∗‖op = ‖W‖op,

(v) ‖W ∗W‖op = ‖W‖2op.

Definition A.2.7 (Self-adjoint Operators). Let X be a Hilbert space over C and
let W : X → X be a bounded operator such that

W = W ∗. (A.18)

Then W is a self-adjoint operator.

Definition A.2.8 (Positive Operator). Let X be a Hilbert space, and let
W : X → X be an operator such that for all x ∈ X we have

〈x,Wx〉 ≥ 0. (A.19)

Then W is a positive operator.

Definition A.2.9 (Compact Linear Operator). Let X ,Y be Hilbert spaces, and
letW : X → Y . If for any bounded sequence (xi)i∈N in X we have that (Wxi)i∈N
contains a converging subsequence, we say that W is a compact linear operator.

Definition A.2.10 (Orthogonal and Orthonormal Sequences). Let X be a inner
product space and let V = (vn ∈ X)n∈I be a sequence such that vm, vn are
orthogonal for allm,n ∈ I. Then V is an orthogonal sequence in X . Additionally,
if ‖vn‖ = 1 for all n ∈ I, then V is an orthonormal sequence.

Definition A.2.11 (Orthogonal and Orthonormal Bases). Let X be a Hilbert
space and let B be an orthogonal sequence. If for vn ∈ B, x =

∑
n∈I〈x, vn〉vn

for all x ∈ X we call B is an orthogonal basis for X . Likewise, if B is an
orthonormal sequence, then B is an orthonormal basis for X .

Definition A.2.12 (Unitary Operator). Let X be a Hilbert space over C and let
W : X → X be a bounded operator such that

W ∗W = WW ∗ = I. (A.20)

Then W is a unitary operator.

156

A.3. Measure Theory

A.3 Measure Theory

Definition A.3.1 (Power Set). Let X be a set, and let P(X) = {A : A ⊆ X}.
Then P(X) is the power set of X .

Definition A.3.2 (σ-algebra). Let X be a set. Let A ⊆P(X) such that

(i) A ∈ A iff. Ac ∈ A,

(ii) (Ai)i∈I ⊂ A if and only if
⋃
i∈I Ai ⊂ A.

Then A is a σ-algebra.

Definition A.3.3 (Measurable Space). Let X be a set, and let A be a σ-algebra
on X . Then the pair (X ,A) is called a measurable space.

Definition A.3.4 (Pairwise Disjoint Sequence). Let A be a σ-algebra, and let
(Ai)i∈I ⊂ A be a sequence such that Ai ∩ Aj = ∅ for all i 6= j ∈ I. Then the
sequence (Ai)i∈I is pairwise disjoint.

Definition A.3.5 (Measure). Let (X ,A) be a measurable space. Consider
R≥0 = {r ∈ R : r ≥ 0} ∪ {∞} and let ν : A → R≥0 be a map such that

(i) ν(∅) = 0,

(ii) ν
(⋃

i∈I Ai
)

=
∑
i∈I ν(Ai) for pairwise disjoint {Ai}i∈I .

Then ν is a measure on A.

Definition A.3.6 (Measure Space). Let (X ,A) be a measurable space and let ν
be a measure. Then the triple (X ,A, ν) is a measure space.

Definition A.3.7 (Almost Everywhere). Let (X ,A, ν) be a measure space and
let A ⊂ A be a subset for which some property holds. If ν

(
Ac
)

= 0 then we say
that property holds almost everywhere with respect to the measure ν, and we
abbreviate this by a.e..

Definition A.3.8 (A-measurable Functions). Let (X ,A) be a measurable space.
Let f : X → K be a map such that for all open subsets O ⊂ K we have

f -1(O) =
{
x ∈ X : f(x) ∈ O

}
∈ A. (A.21)

Then f is an A-measurable function.

Definition A.3.9 (Space of A-measurable Functions). Let (X ,A) be a measur-
able space, and let

M(X) = {f : X → K : f is a measurable function}. (A.22)

Then we callM(X) the space of A-measurable functions on X .

157

A. Fundamental Theory

Definition A.3.10 (Borel σ-algebra and Sets). Let B denote the smallest σ-
algebra containing the open sets of some space X . Then B is called a Borel
σ-algebra, and B ∈ B is called a Borel set.

Definition A.3.11 (Positive-Valued Lebesgue Integral). Let (X ,A, ν) be a
measure space, and let f ∈ M(X). Let f ′(t) = ν({x ∈ X : f(x) > t}).
Then the integral ∫

+
f dν =

∫ ∞
0

f ′(t) dt. (A.23)

is called the positive valued Lebesgue integral of f w.r.t. the measure ν.

Definition A.3.12 (Lebesgue Integral). Let (X ,A, ν) be a measure space, and
let f ∈ M(X). Let f>0(x) = max{f(x), 0} and let f<0(x) = max{−f(x), 0}.
Then the integral ∫

f dν =
∫

+
f>0 dν −

∫
+
f<0 dν (A.24)

is called the Lebesgue integral of f w.r.t. the measure ν.

Remark A.3.13. The Lebesgue measure is central in measure theory, and its exact
definition is rather involved. For a more detailed discussion on its construction,
the relation to Lebesgue integration, and more details of the properties of both
the Lebesgue integral and Lebesgue measure, see [Lin17, Chapter 7, 8] and
[MW99, Chapters 3, 4, 5].

Definition A.3.14 (Lp-norm). Let (X ,A, ν) be a measure space. Let p ≥ 1, and
let ‖•‖p :M(X)→ R≥0 be a mapping such that for all f ∈M(X) we have

‖f‖p =


(∫
|f |p dν

)1/p
, if p <∞;

inf
{
k ∈ K : f(x) ≤ k a.e.

}
, otherwise.

(A.25)

Then ‖•‖p is called the Lp-norm.

Definition A.3.15 (Lp-spaces). Let (X ,A, ν) be a measure space, and let p ≥ 1.
Let Lp(X) be given by

Lp(X) =
{
f : X → K | f ∈M(X), ‖f‖p <∞

}
. (A.26)

Now let

f∗ = {g ∈ Lp(X) : ‖f − g‖p = 0}, (A.27)

such that

Lp(X) = {f∗ : f ∈ Lp(X)}. (A.28)

Then Lp(X) is called the Lp-space on X .

158

A.3. Measure Theory

Lemma A.3.16 (Lp-spaces are Banach). Let (X ,A, ν) be a measure space. Then
Lp(X) is a Banach space.

[MW99, pp.477–479] shows that Lp-spaces are linear and complete.

Definition A.3.17 (Dirac Measure). Let (X ,A) be a measurable space. For a
fixed x ∈ X , let δx : X → R≥0 be a measure such that

δx(A) =
{

1, if x ∈ A;
0, otherwise.

(A.29)

Then δx is called the Dirac measure on (X ,A).

Remark A.3.18. The Dirac measure is similar in form to the indicator function
IA from Definition A.1.4. The only difference is in how we define the domain.
Furthermore, it is worth noting that the Dirac measure is related to the Dirac-δ
function,

δ(x) =
{
∞, if x = 0;
0, otherwise,

(A.30)

which in turn is related to the Kronecker-δ defined over integers i, j ∈ Z, given
by

δij =
{

1, if i = j;
0, otherwise.

(A.31)

Lastly, we note that the Dirac measure is a probability measure (see
Definition A.4.2) for any fixed x, as δx(X) = 1.

Definition A.3.19 (Counting Measure). Let
(
X ,A

)
be a measurable space. Let

: A → R≥0 be a measure such that for any A ∈ A we have

#(A) =
∑
x∈X

δx(A). (A.32)

Then # is called the counting measure.

Remark A.3.20. The Dirac measure and the counting measure can be applied to
connect Lebesgue integration with summation. To see how, let X be a discrete
sequence (xi)i∈I , and let (X ,P(Ω)) be a measurable space. Then the Lebesgue
integral can be expressed as a sum using the counting measure by

∫
f d# =

∑
i∈I

f(xi). (A.33)

159

A. Fundamental Theory

Similarly, for the Dirac measure δx we let X be a continuous space and
let f be a simple function with range (ai)i∈I with a corresponding sequence
(Ai : Ai = f -1(ai))i∈I . Then we can instead use the Dirac measure δx to express
the Lebesgue integral as

∫
f dδx =

∑
i∈I

aiδx(Ai) (A.34)

=
∑
i∈I

aiIAi(x) (A.35)

= f(x). (A.36)

Importantly, this can be used to show that we can express any function as a
limit of simple functions. The details are outlined in [MW99, Chapter 5].

Definition A.3.21 (Sequence Space). Let K be either of the fields R or C, and
let KN =

{
x : x = {xi : xi ∈ K}i∈N

}
be the set of all infinite sequences of

scalars of K. Then any linear subspace X ⊆ KN is a sequence space.

Remark A.3.22 (`p-norm and space). Consider the measure space (N,P(N),#)
and let x : N→ K with x ∈M(N). Then I ⊆ N is an index set, and we have

‖x‖p =
(∑
i∈I
|xi|p

)1/p

. (A.37)

This means that X = {x ∈M(N)} is a sequence space. Furthermore, we refer
to ‖•‖p as the `p-norm on X , and denote the induced space Lp(N) w.r.t. the
counting measure # on P(N) simply as `p(X).

Theorem A.3.23 (L2-space is Hilbert). The space L2(R) is a Hilbert Space with
an inner product given by

〈f, g〉 =
∫
R
f g dν, (A.38)

called the canonical inner product.

A proof for Theorem A.3.23 is supplied in [Chr10, p.118].

160

A.4. Probability Theory

A.4 Probability Theory

Definition A.4.1 (Pushforward Measure). Let (X ,A), (Y,B) be measurable
spaces, and let ν be a measure on (X , E). Let f : X → Y be a mapping such
that for all B ∈ B we have f -1(B) ∈ A. Then the measure

f∗ν(B) = ν(f -1(B)) (A.39)

is called the pushforward measure of ν under f .

Definition A.4.2 (Probability Space). Let (Ω, E , P) be a measure space, and let
P (Ω) = 1. Then P is a probability measure. Furthermore, we call Ω the sample
space, E the event space. Then (Ω, E , P) is a probability space.

Definition A.4.3 (Random Elements and Variables). Let (Ω, E , P) be a
probability space, and let (Λ,F) be a measurable space. Let X : Ω → Λ
be a map such that X ∈ M(Ω). Then X is called a random element. If
(Λ,F) = (Rd,B), then we say X is a random variable.

Definition A.4.4 (Probability Distribution). Let (Ω, E , P) be a probability space
and let X : Ω → Rd be a random variable. Denote the pushforward measure
X∗P = P and let B be the Borel σ-algebra on Rd, such that P : B → R≥0. Then
P is called a probability distribution or probability law on X, and we denote this
relation as X ∼ P.

Definition A.4.5 (Probability Density Function). Let (Ω, E , P) be a probability
space, and let X : Ω → Rd be a random variable. Let fX ∈ M(Rd) with
fX : Rd → R≥0 be a map such that for any Borel set B ∈ B we have

P(B) =
∫
B

fX(x) dx (A.40)

then fX is a probability density function (pdf.) on X.

Definition A.4.6 (Cumulative Distribution Function). Let (Ω, E , P) be a
probability space, and let X : Ω→ Rd be a random variable. Let FX : Rd → [0, 1]
be a mapping such that for x ∈ Rd we have

FX(x) = P ({ω ∈ Ω : X(ω) ≤ x}). (A.41)

Then F is a cumulative distribution function (cdf.) on X.

Definition A.4.7 (Discrete Random Variable). Let (Ω, E , P) be a probability
space, and let X : Ω→ Rd be a random variable. If there exists a countable set
X such that P (X ∈ X) = 1, then X is a discrete random variable.

Theorem A.4.8 (Change of Variable Formula). Let (X ,A), (Y,B) be measurable
spaces, and let f, g be real valued functions on X ,Y respectively. Let ν be a
probability measure on A. Then∫

X
(g ◦ f)(x) dν(x) =

∫
Y
g(y) df∗ν(y). (A.42)

A proof for Theorem A.4.8 can be found in [Bil95, p.229].

161

A. Fundamental Theory

Definition A.4.9 (Expected Value). Let (Ω, E , P) be a probability space, and
let X : Ω→ R be a random variable. Let E : L1(Ω, E , P)→ R be given by

E[X] =
∫

Ω
Xi(ω) dP (ω). (A.43)

Definition A.4.10 (Law of the Unconscious Statistician). Let (Ω, E , P) be a
probability space, let X : Ω → R be a random variable with pdf. fX, and let
g : R→ R with g ∈M(B). Then

E[g(X)] =
∫

Ω
(g ◦X)(ω) dP (ω) (A.44)

=
∫
R
g(x) dX∗P (x) (A.45)

=
∫
R
g(x)fX(x) dx (A.46)

is the expected value of g(X).

Remark A.4.11. For multivariate random variables X : Ω → Rd we let
Xi : Ω→ R for i = 1, . . . , d and define the expected value as

E[X] = (E[X1],E[X2], . . . ,E[Xd])ᵀ. (A.47)

Definition A.4.12 (Entropy and Cross-Entropy). Let (Ω, E , P) be a probability
space, let Q be an alternate probability measure on Ω, and let X : Ω→ Rd be a
random variable with probability density function fX. Let gX be a probability
density function for the distribution PQ over X with respect to Q. Then

Hf [gX] = Ef [− log gX(X)] (A.48)

= −
∫
Rd
fX(x) log gX(x) dx (A.49)

is called the cross-entropy of gX with respect to fX. If fX = gX, we instead call
this the entropy of fX and simply write H[fX].

Remark A.4.13. Definition A.4.12 is in fact a simplification. We differentiate
between the Shannon entropy of a discrete variable given by

H[P] = −
∑
x∈X

P (x) logP (x) (A.50)

and continuous differential entropy given by

H[fX] = −
∫
X
fX(x) ln fX(x) dx. (A.51)

Claude Shannon [Sha48] derived entropy for the discrete case, but the continuous
analog of differential entropy is not always well defined. Differential entropy
is still used, as it is often sufficiently close to the more correct limiting
density of discrete points - closely related to the Kullback-Leibler divergence
(Definition 4.4.5).

162

A.5. Harmonic Analysis

A.5 Harmonic Analysis

Definition A.5.1 (Fourier Transform). Let x ∈ L1(Rd). The Fourier transform
of x is given by

x̃(ξ) =
∫
R
e−2πis·ξx(s) ds. (A.52)

Theorem A.5.2 (Plancherel’s Theorem). There exists a unique Fourier operator
F : L2(Rd)→ L2(Rd) such that

(i) for each x ∈ L2(Rd) ∩ L1(Rd), Fx = x̃ almost everywhere,

(ii) for each x ∈ L2(Rd), limε→∞‖Fx− ˜IB(0,ε)x‖2 = 0,

(iii) ‖Fx‖2 = ‖x‖2 for all x ∈ L2(Rd),

(iv) 〈Fx,Fy〉 = 〈x, y〉 for x, y ∈ L2(Rd),

(v) (F2x)(s) = x(−s) almost everywhere for all x ∈ L2(Rd).

[MW99, pp.583–586] gives a proof for Theorem A.5.2, as well as more
discussion on Fourier transform for L2(R). The theorem can be extended to
hold for d dimensions using Fubini (Theorem A.7.5).

Lemma A.5.3 (Inverse Fourier Transform). Let x̃ be the Fourier transform of a
function x ∈ L2(R). Then the inverse Fourier transform is given by

x(s) =
∫
R
e2πiξ·sx̃(ξ) dξ. (A.53)

Proof. We have ∫
R
e2πiξ·sx̃(ξ) dξ =

∫
R

∫
R
e−2πiξ(t−s)x(t) dt dξ (A.54)

and by Fubini, we can exchange the order of integration, yielding∫
R
x(t)

∫
R
e−2πiξ(t−s) dξ dt =

∫
R
x(t)δ(t− s) dt = x(s), (A.55)

where δ is the Dirac delta function. �

Corollary A.5.4 (Fourier Operator is Unitary). The Fourier operator F is a
unitary operator.

This follows directly from Theorems A.2.5 and A.3.23, Definition A.2.12,
and Lemma A.5.3.

163

A. Fundamental Theory

A.6 Matrix Groups and Manifolds

Theorem A.6.1 (Inner Product Space on General Linear Algebra). Let gl(n)
be the set of all n × n matrices over C. Moreover, let U, V ∈ gl(n) and let
〈•, •〉 : gl(n)× gl(n)→ C be an inner product given by

〈U, V 〉 = Tr(UV ∗). (A.56)

Then gl(n) is an inner product space w.r.t. 〈•, •〉, and we call gl(n) the general
linear algebra.

Proof. We need to show the properties of Definition A.1.13. Firstly, we have

〈aU + bV,W 〉 = Tr
(
(aA+ bV)W

)
(A.57)

=
n∑

i=j=1
(aAij + bVij)Wij (A.58)

=
n∑

i=j=1
aAijWij + bVijWij (A.59)

= 〈aU,W 〉+ 〈bV,W 〉, (A.60)

satisfying property Property A.1.13.i. Furthermore, as Tr(UV ∗) = Tr(UV ∗) =
Tr(V U∗), Property A.2.1.ii is satisfied. Lastly, from the properties of the trace
operator, we have that Tr(UU∗) ≥ 0 with equality iff. U = 0. Thus, gl(n) is an
inner product space. �

Corollary A.6.2 (Induced Norm of gl(n)). The induced norm on gl(n) is given
by
√

Tr(UU∗).

This follows from Lemma A.1.14.

Definition A.6.3 (Group). Let G be a set, and let • · • : G × G → G be an
associated binary operator such that for all a, b, c ∈ G we have

(i) (Associative) (a · b) · c = a · (b · c),

(ii) (Identity) there exists e ∈ G such that e · a = a,

(iii) (Inverse) there exists a-1 ∈ G such that a · a-1 = a-1 · a = e.

Then G is a group. If the binary operator is commutative, i.e. a · b = b · a, then
we call G an Abelian group.

Definition A.6.4 (Homomorphisms and Isomorphisms). Let G,H be groups
with respective operations • ·g • and • ·h •. Furthermore, let f : G → H be a
mapping. If for all a, b ∈ G we have

f(a ·g b) = f(a) ·h f(b) (A.61)

then we say that f is a homomorphism. If f is bijective, then f is called an
isomorphism.

Definition A.6.5 (Subgroup). Let G be a group, and let H ⊂ G. If H is closed
under the group operation of G, then H is a subgroup of G.

164

A.6. Matrix Groups and Manifolds

Lemma A.6.6 (SL(n) is subgroup of GL(n)). Let SL(n) ⊂ GL(n) such that
SL(n) = {W ∈ GL(n) : det(W) = 1}. Then SL(n) is a subgroup of GL(n),
called the special linear group.

Proof. SL(n) is naturally a proper subset of GL(n), and as det(I) = 1,
we have I ∈ SL(n), satisfying Property A.6.3.ii. Clearly Property A.6.3.i
follows from GL(n). From the properties of the determinant, we have that
det(W -1) = det(W)-1, and det(UV) = det(U) det(V), so SL(n) is closed, and
Property A.6.3.iii is satisfied. Thus SL(n) is a subgroup of GL(n). �

Lemma A.6.7 (O(n) is a subgroup of GL(n)). Let O(n) be the set of real
orthogonal n× n matrices, i.e. O(n) = {W ∈ GL(n) : W ᵀ = W -1}. Then O(n)
is a subgroup of GL(n) called the orthogonal group.

Proof. O(n) is naturally a proper subset of GL(n), and as Iᵀ = I-1 = I, we
necessarily have I ∈ O(n). Furthermore, Property A.6.3.i and Property A.6.3.iii
naturally follow by the group operation and definition. Thus, for O(n) to be a
group, we need to show that it is closed under matrix multiplication. For all
U, V ∈ O(n) we have UV ᵀ(UV ᵀ)ᵀ = UV ᵀ(UV ᵀ)-1 = UV ᵀV Uᵀ = I, so O(n) is
closed, and thus a subgroup of GL(n). �

Remark A.6.8. The orthogonal and special orthogonal group can be extended
to complex valued matrices by exchanging the transposed matrices W ᵀ with
the conjugate transpose W ∗. The corresponding groups to O(n),SO(n) are the
unitary group U(n) and special unitary group SU(n), respectively. For more
details, we refer to [Hal15, pp.6–8].

Definition A.6.9 (Matrix Lie Group). Let G ⊂ GL(n), and let (Wi ∈ G)i∈I be
a convergent sequence of matrices, such that Wn → W as n → ∞. If either
W ∈ G or W /∈ GL(n), then G is a matrix Lie group. More concretely, the
matrix Lie groups are precisely the closed subsets of GL(n).

Lemma A.6.10 (Matrix Lie Groups). The groups GL(n) and SO(n) are matrix
Lie groups.

Proof. As GL(n) is a subset of itself, it is necessarily a matrix Lie group. For
SL(n) we note that a sequence of matrices (Ui)i∈I with det(Ui) = 1 for all
i ∈ I implies that for the limit Ui → U we necessarily have det(U) = 1, so
U ∈ SL(n). Next, recall that for W ∈ O(n) we have W ∗ = W ᵀ. Thus, for
O(n),U(n) we have that W ∈ U(n) if and only if W ∗W = I. Now let (Vi)i∈I
with Vn → V as n → ∞. Next, define (V ∗i)i∈I similarly. Then V ∗n → V ∗,
and as V ∗V = I we have that V ∈ U(n), so U(n) and O(n) are matrix Lie
groups. The arguments for SO(n) and SU(n) naturally follow from the proofs
for SL(n),O(n) and U(n), so all listed groups are matrix Lie groups. �

Lemma A.6.11 (Compact Matrix Lie Groups). The groups O(n), SO(n), U(n)
and SU(n) are compact with respect to gl(n).

Proof. Clearly, the listed matrix Lie groups are closed in gl(n). As |Wij | ≤ 1
for all i, j ≤ n, they are necessarily also bounded. Then by the Heine-Borel
theorem (Theorem A.7.14) they are compact in gl(n). �

165

A. Fundamental Theory

Definition A.6.12 (Topological Space). Let X be a set, and let T be a collection
of subsets of X such that

(i) ∅ ∈ T and X ∈ T ,

(ii) T is closed under finite or infinite unions,

(iii) T is closed under finite intersections.

Then T is called a topology on X , the elements of T are called open sets, and
(X ,T) is a topological space.

Definition A.6.13 (Subspace Topology). Let (X ,Tx) be a topological space,
and let Y ⊂ X be nonempty. Furthermore, let

Ty = {Y ∪ S : S ∈ Tx} ⊂P(X). (A.62)

Then Ty is called the subspace topology on Y induced by Tx, and we say that
(Y,Ty) is a topological subspace of (X ,Tx).

Definition A.6.14 (Analytic Basis and Second-Countable Spaces). Let (X ,T)
be a topological space, and let B ⊆ T . If there exists some T ⊆ B such that
for all S ∈ T we have

S =
⋃
T∈T

T, (A.63)

then B is an analytic basis for T . If B is a countable set, then we say that
(X ,T) is second-countable.

Definition A.6.15 (Hausdorff Space). Let (X ,T) be a topological space. If for
all x, y ∈ X with x 6= y there exists S, T ∈ T such that x ∈ S, y ∈ T and
S ∩ T = ∅, then (X ,T) is a Hausdorff space.

Definition A.6.16 (Homeomorphism). Let (X ,Tx), (Y,Ty) be topological
spaces, and let f : X → Y be a bijection. If f and f -1 are continuous under
Tx,Ty, we say that f is a homeomorphism.

Definition A.6.17 (Neighbourhood). Let (X ,T) be a topological space, and let
x ∈ S ⊂ N ⊂ X for some S ∈ T . Then N is a neighbourhood of x. If N ∈ T
we say that N is an open neighbourhood.

Definition A.6.18 (Locally Euclidean Space). Let (X ,T) be a topological space.
If each point in X has an open neighbourhood which is homeomorphic to an
open subset of Kn, we say that (X ,T) is locally Euclidean.

Definition A.6.19 (Coordinate Chart). Let (X ,T), and let S ⊆ T , R ⊆ Rn
such that R is open. Let f : S → R be a homeomorphism. Then S is a
coordinate neighbourhood and (S, f) is a coordinate chart of (X ,T).

Definition A.6.20 (Smooth Differentiable Structure). Let (X ,T) be a topo-
logical space and let A = {(Sα, fα) : (Sα, fα) is a coordinate chart} such
that

(i) (Full Covering) X =
⋃
α Sα,

(ii) (Compatibility) for all a, b we have fb ◦ f -1
a ∈ C∞,

166

A.6. Matrix Groups and Manifolds

(iii) (Maximality) (S, f) ∈ A if (S, f) is compatible with all (Sα, fα) ∈ A .

Then A is called a C∞-atlas, and we say that (X ,T) has a smoooth differentiable
structure.

Definition A.6.21 (Manifold). LetM = (X ,T) be a second-countable locally
Euclidean Hausdorff space. Then we callM a manifold. If in addition,M is
equipped with a smooth differentiable structure, we callM a smooth manifold.

Definition A.6.22 (Smooth Maps and Diffeomorphisms). LetM,N be smooth
manifolds, and let f :M→N . If for any p ∈M there exists a chart (S, g) on
M and (T, h) on N such that for p ∈ S, f(p) ∈ T we have

h ◦ f ◦ g-1 ∈ C∞, (A.64)

then f is a smooth map. If in addition, f is bijective with f -1 smooth, then we
say that f is a C∞-diffeomorphism.

Theorem A.6.23 (Open Subset of Smooth Manifold is Smooth Manifold). Let
M be a smooth manifold, and let M ∈ T . Then M is a smooth manifold.

Proof. First, we show that M is Hausdorff. Let s, t ∈M such that s ∈ S, t ∈ T
with S ∩ T = ∅ for S, T ∈ T . Then s ∈ S ∩ M, t ∈ T ∩ M and
(T ∩M) ∩ (S ∩M) = (S ∩ T) ∩M = ∅, so M is Hausdorff. Secondly, ifM is
second-countable, then M is trivially also second-countable by the properties of
the subspace topology (Definition A.6.13).

We now need to show that an open subset of a smooth manifold inherits the
differentiable structure. Let {(Sα, fα)} be an atlas for some manifoldM, and
let M ⊂M be open. Let fα

∣∣
Sα∩M

: Sα ∩M → Rn denote the restriction of the
homeomorphism fα to Sα ∩M . Then {(Sα ∩M,fα

∣∣
Sα∩M

)} is necessarily an
atlas for M , so an open subset of a smooth manifold is a smooth manifold. �

Definition A.6.24 (Connected and Simply Connected Groups). Let G be a
group. If for all U, V ∈ G and t ∈ [a, b] for a, b ∈ R there exists a continuous
map U(t) : [a, b] → G with U(a) = U and U(b) = V , then we say that G is
connected, and we call {U(t) : t ∈ [a, b]} the path between two elements U, V .

Definition A.6.25 (Givens Rotation). Let Gn(θ; p, q) ∈ SO(n) be a paramet-
rized matrix which for 1 ≤ q < p ≤ n and 1 ≤ i, j ≤ n is given by

Gn(θ; p, q)ij =



1, for i = j /∈ {p, q};
cos(θ), for i = j ∈ {p, q};
− sin(θ), for i = p, j = q;
sin(θ), for i = q, j = p;
0, otherwise.

(A.65)

Then Gn(θ; p, q) is called a Givens rotation.

Proposition A.6.26 (Path-connected Lie Groups). The groups GL(n), SL(n),
SO(n), U(n), SU(n) are path-connected.

Proof. A proof for all groups except SO(n) can be found in [Hal15, pp.17–18],
so we will only give a proof for SO(n). Note that connected paths are transitive,

167

A. Fundamental Theory

i.e. if U, V are path-connected and V,W are path-connected, then U,W are
necessarily path-connected. Let U, V ∈ SO(n) be elements which only differ
in the elements of rows and columns p, q. Then there exists a path given
by {Gn(θ, p, q)U : θ ∈ [0, b]} where Gn(θ, p, q) is a Givens rotation such that
Gn(0, p, q)U = U and Gn(b, p, q)U = V . Applying this process recursively we
can connect the paths to another matrix W with differing elements p′, q′, thus
the rest of the proof follows inductively. �

Definition A.6.27 (Lie Algebra). Let g be a linear space over K, and let
J•, •K : g× g→ g be a binary operator such that

(i) Jg, gK = 0 for all g ∈ g,

(ii) Jg, Jh, kKK + Jh, Jk, gKK + Jk, Jg, hKK = 0 for all g, h, k ∈ g.

Then g with J•, •K is a Lie algebra.

Definition A.6.28 (Lie Sub-Algebra). Let g be a Lie algebra, and let h ⊂ g. If
for all g, h ∈ h we have

Jh, hK ∈ h, (A.66)

then h is a Lie sub-algebra of g.

Corollary A.6.29 (Matrix Commutator). Let U, V ∈ gl(n). The Lie bracket on
gl(n) is given by JU, V K = UV − V U , so gl(n) is a Lie algebra.

Theorem A.6.30 (Matrix Lie Groups and Lie Algebras). Let g(n) be a Lie
algebra of matrices. Then G(n) = {exp(tW) : W ∈ g(n), t ∈ R} is a matrix Lie
group. Furthermore, we have the mappings

(i) exp : gl(n)× R→ GL(n),

(ii) exp : sl(n)× R→ SL(n), where sl(n) = {W ∈ gl(n) : Tr(W) = 0},

(iii) exp : u(n)× R→ U(n), where u(n) = {W ∈ gl(n) : W = −W ∗},

(iv) exp : su(n)× R→ SU(n), where u(n) = {W ∈ u(n) ∩ sl(n)},

(v) exp : so(n)× R→ O(n), where u(n) = {W ∈ su(n) : Wij ∈ R},

(vi) exp : so(n)× R→ SO(n).

Theorem A.6.30 is demonstrated part by part in [Hal15, Chapters 1-3].

Definition A.6.31 (Derivations and Tangent Vectors). Let M be a smooth
manifold and let p ∈M. Let Dp : C∞(M)→ R be a linear transformation such
that

Dp(fg) = Dp(f)g(p) + f(p)Dp(g). (A.67)

Then Dp is called a derivation or a tangent vector at p.

Proposition A.6.32 (Tangent Space). LetM be a smooth manifold, let p ∈M
and let TpM = {Dp(f) : f ∈ C∞(M)}. Then TpM is a real linear space called
the tangent space ofM at p.

168

A.6. Matrix Groups and Manifolds

Proof. Let Dp, D
′
p ∈ TpM. By definition, Dp, D

′
p are linear transformations,

satisfying Definition A.1.2. However, we need to show that scalar multiplication
of a linear combination satisifies Definition A.6.31. Let a ∈ R. Then we have

(aDp +D′p)(fg) = aDp(fg) +D′p(fg) (A.68)
= aDp(f)g(p) + af(p)Dp(g)

+D′p(f)g(p) + f(p)D′p(g) (A.69)
= (aDp +D′p)(f)g(p) + f(p)(aDp +D′p)(g), (A.70)

so TpM is a real linear space. �

Definition A.6.33 (Tangent Bundle). Let M be a smooth manifold, and let
TpM be the tangent space of p ∈M. Let TM =

⊔
p∈M TpM, i.e. the disjoint

union of all tangent spaces onM. Then TM is called the tangent bundle ofM.

Definition A.6.34 (Complexification of Linear Space). Let X be a linear space,
and let XC = {x1 + ix2 : x1, x2 ∈ X}. Then XC is called the complexification of
X .

Definition A.6.35 (Reductive Lie Algebra). Let g be a Lie algebra over C. If
there exists a compact Lie group H with Lie algebra h such that g ' hC, then
g is a reductive Lie algebra.

Proposition A.6.36 (Adjoint Bi-Invariant Inner Product). Let g ' gC be a
reductive Lie algebra. Then for all W ∈ h, U, V ∈ g there exists an inner
product on g that is real valued on h such that

〈WUW -1, V 〉 = −〈U,WVW -1〉, (A.71)

called the adjoint bi-invariant inner product.

A proof can be found in [Hal15, Proposition 7.4].

Lemma A.6.37 (gl(n) is Reductive). The Lie algebra gl(n) is reductive.

A proof for Lemma A.6.37 is provided in [Hal15, Example 7.3].

Corollary A.6.38 (Lie Manifolds are Riemannian). The matrix Lie manifolds
are Riemannian manifolds and admit a Riemannian metric.

Remark A.6.39. The proof of Corollary A.6.38 follows from Theorems 6.4.7
and A.6.1, Proposition A.6.36, and Lemma A.6.37.

169

A. Fundamental Theory

A.7 Selected Fundamental Results and Theorems

Theorem A.7.1 (Cauchy-Schwartz). Let X be an inner product space. Then for
all x, y ∈ X we have

(i) 〈x+ y, x+ y〉 = 〈x, x〉+ R(〈x, y〉) + 〈y, y〉,

(ii) |〈x, y〉|2 ≤ 〈x, x〉〈y, y〉,

where R(c) denotes the real part of a complex number c ∈ C.

A proof for Theorem A.7.1 is derived in [MW99, p.535].

Theorem A.7.2 (Lebesgue’s Dominated Convergence Theorem). Let (X ,A, ν)
be a measure space, let {fn ∈ L1(X)}n∈N be a sequence of complex valued
functions that converges ν-a.e.. If there exists non-negative g ≥ |fn| which holds
ν-a.e. for all n ∈ N, then for all A ∈ A we have∫

A

lim
n→∞

fn dν = lim
n→∞

∫
A

fn dν (A.72)

A proof of Theorem A.7.2 is provided in [Rud87, pp.26–27].

Lemma A.7.3 (Riemann-Lebesgue). Let x ∈ L1 and let x̃ be the Fourier
transform of x. Then for all x ∈ L1 we have

lim
|ξ|→∞

x̃(ξ) = 0 (A.73)

Proof. First, assume that x = I[a,b]. Then

x̃(ξ) = e−iξa − e−iξb

−iξ
.

which clearly goes to 0 as ξ goes to infinity. Next, we let

x =
N∑
n=1

cnI[an,bn].

It follows that lim|ξ|→∞ x̂(ξ) = 0, and since x ∈ L1 and simple functions are
dense in L1, we must also have ‖x− f‖1 < ε/2 for some simple function f and
ε > 0. Then there must exist some M ∈ N such that |f̃(ξ)| < ε/2. Finally, for
the same M , the triangle inequality yields

|x̃(ξ)| = |x̃(ξ)− f̃(ξ) + f̃(ξ)|

≤ |x̃(ξ)− f̃(ξ)|+ ε

2

≤
∣∣∣∣∫

R
(x(s)− f(s))e−iξs ds

∣∣∣∣+ ε

2

≤
∫
R
|x(s)− f(s)| ds+ ε

2

= ‖x− f‖L1 + ε

2 ≤ ε

which concludes our proof. �

170

A.7. Selected Fundamental Results and Theorems

Definition A.7.4 (σ-finite Measure). Let (X ,A, ν) be a measure space. If there
exists a sequence {Ai}i∈I of A-measurable sets such that

(i) ∪i∈IAi = X ,

(ii) ν(Ai) <∞ for all i ∈ I,

then (X ,A, ν) is a σ-finite measure space.

Theorem A.7.5 (Fubini’s Theorem). Let (X ,A, ν), (Y,B, ρ) be σ-finite measure
spaces. Let X × Y be a product space, and let f ∈M(X × Y). Then∫

X×Y
f(x, y) (ν × ρ)(x, y) =

∫
Y

[∫
X
f(x, y) ν(x)

]
ρ(y) (A.74)

=
∫
X

[∫
Y
f(x, y) ρ(y)

]
ν(x). (A.75)

A proof for Theorem A.7.5 can be found in [MW99, pp.247–248].

Theorem A.7.6. The Hilbert-Schmidt integral operator is compact.

Proof. Note that since w ∈ L2(S × T) we have
∫
T
∫
S |w(s, t)|2 ds dt <∞. By

Fubini (Theorem A.7.5) and Cauchy-Schwartz (Theorem A.7.1) we can construct∫
T

∣∣∣∣∫
S
w(s, t)x(s) ds

∣∣∣∣2 dt ≤ ∫
T

(∣∣∣∣∫
S
w(s, t) ds

∣∣∣∣2 · ∣∣∣∣∫
S
x(s) ds

∣∣∣∣2
)
dt

= ‖w‖22 · ‖x‖22,

where we let ‖w‖2 be the norm over L2(S × T). This implies the inequality

‖W‖op ≤ ‖w‖2. (A.76)

Now let (wn)n∈N ⊂ L2(S × T) be a sequence of functions such that wn → w
almost everywhere. Then, for simple functions fi ∈ L2(S), gi ∈ L2(T) we let

wn(s, t) =
∑
i<n

fi(s)gi(t),

and note that simple functions are dense in L2 [KF61, pp.97–99]. Then
Wnx(t)→Wx(t) weakly, so from Equation (A.76) and Lebesgue’s dominated
convergence theorem (Theorem A.7.2) it will also converge in norm. Thus for any
bounded sequence (xm)m∈N ⊂ X we can construct a sequence (Wxm)m∈N ⊂ Y
with a convergent subsequence (Wnxm)n,m∈N → (Wxm)m∈N. Then it follows
that W is a compact linear operator. �

Theorem A.7.7 (The Convolution Theorem). Let w, x ∈ L1(Rd) and let w̃, x̃ be
their respective Fourier transforms (Definition A.5.1). Then

w̃ ∗ x = w̃ · x̃, (A.77)

so convolution over time corresponds to a (point-wise) multiplication over
frequency.

171

A. Fundamental Theory

Proof. Firstly, note that

(w̃ · x̃)(ξ) =
∫
Z
w(z)e−2πiz·ξ dz ·

∫
S
x(s)e−2πis·ξ ds.

Rewriting w̃ ∗ x using Fubini (Theorem A.7.5) yields

(w̃ ∗ x)(ξ) =
∫
S

∫
T
w(t− s)x(s)e−2πit·ξ dt ds

=
∫
S
x(s)

[∫
T
w(t− s)e−2πit·ξ dt

]
ds

=
∫
S
x(s)

[∫
Z
w(z)e−2πi(z+s)·ξ dz

]
ds

=
∫
Z
w(z)e−2πiz·ξ dz ·

∫
S
x(s)e−2πis·ξ ds,

as we wanted. �

Definition A.7.8 (Kronecker Tensor Product). Let U ∈ Km×n and V ∈ Kp×q
be matrices. Then the mapping • ⊗ • : Km×n ×Kp×q → Kmp×nq given by

(U ⊗ V) =

u11V . . . u1nV
...

. . .
...

um1V . . . umnV

 (A.78)

is called the Kronecker Tensor product of U, V .

Definition A.7.9 (Cauchy Power Series Product). Let p∞(K) be the set of power
series expansions, and let f, g ∈ p∞(K), such that

f(x) =
∑
k∈Z≥0

akx
k (A.79)

g(x) =
∑
k∈N≥0

bkx
k, (A.80)

for ak, bk ∈ K for k ∈ Z≥0. Let • · • : p∞(K)× p∞(K)→ p∞(K) be a mapping
such that for any f, g ∈ p∞(K) we have

f · g =

 ∑
k∈Z≥0

akx
k

 ·(∑
k∈N

bkx
k

)
(A.81)

=
∑
k∈Z≥0

k∑
j=0

ajbk−jx
k (A.82)

=
∑
k∈Z≥0

ckx
k. (A.83)

Then • · • is called the Cauchy product for power series.

172

A.7. Selected Fundamental Results and Theorems

Theorem A.7.10 (Merten’s Convergence Theorem). Let f, g ∈ p∞(X) with
coefficients ak, bk ∈ K for k ∈ Z≥0 respectively. Let

∑
k ak = A,

∑
k bk = B,

and let either series converge absolutely, i.e.∑
k∈Z≥0

|ak| <∞, or
∑
k∈Z≥0

|bk| <∞. (A.84)

Then the Cauchy product f · g = h =
∑
k∈Z≥0

ckx
k.

Proof. Denote the partial sum An =
∑
k≤n ak, with similar notation for Bn.

Let Cn =
∑
k≤n akbn−k =

∑
k≤n ck. We need to show that the series Cn → AB.

Assume An as n→∞ converges absolutely. Then

Cn =
∑
k≤n

akBn−k (A.85)

AB = (A−An)B +
∑
k≤n

akB (A.86)

AB − Cn = (A−An)B −
∑
k≤n

ak(Bn−k −B) (A.87)

Since An converges absolutely and Bn converges to B there exists some N such
that for all n ≥ N we have∑

k≤N

|ak| |B −Bk| ≤
(

max
N≤k≤n

|B −Bk|
) ∑
k≤N

|ak| → 0 (A.88)

∑
N<k≤n

|ak| |B −Bk| ≤ N
∑

N<k≤n

|ak| → 0 (A.89)

and as An → A, the term |A−An|B → 0. Then Cn converges to AB. �

Theorem A.7.11 (Jensen’s Inequality). Let (Ω,A, P) be a probability space, let
X : Ω→ R be a random variable, and let g : R→ R be a convex function, such
that for 0 < c < 1 we have

g(cx+ (1− c)y) ≤ cg(x) + (1− c)g(y). (A.90)

Then

g(E[X]) ≤ E[g(X)]. (A.91)

A proof for Theorem A.7.11 is derived in [Bil95, p.477].

Corollary A.7.12 (Orthonormal Series). Let X be an inner product space with
orthonormal basis B = (vn)n∈I , and let (cn ∈ K)n∈I be some sequence. Then

‖
∑
n∈I

cnvn‖2 =
∑
n∈I
|cn|2. (A.92)

Corollary A.7.13 (Parseval’s Identity). Let B be an orthonormal basis for a
Hilbert space X . Then for all x ∈ X , vn ∈ B we have

‖x‖2 =
∑
n∈I
|〈x, vn〉|2. (A.93)

Both Corollaries A.7.12 and A.7.13 follow directly from Definitions A.2.10
and A.1.13.

173

A. Fundamental Theory

Theorem A.7.14 (Heine-Borel). Let X be a metric space. Then X is compact
(Definition A.1.12) if and only if it is complete (Definition A.1.10) and for
every ε ∈ R≥0 there exists finitely many points x1, . . . , xn such that

inf
1≤i≤m

d(xi, x) ≤ ε (A.94)

for all x ∈ X . More generally, we say that a space is compact if and only if it
is closed and bounded.

A proof for Theorem A.7.14 is provided in [MW99, pp.402–404] in the
context of Euclidean n-dimensional space.

Definition A.7.15 (Location-Scale Family). Let X : Ωx → Rd be a random
variable. Let Z : Ωz → Rd be another random variable such that given
s,m ∈ Rd we have that

(i) if FX(x) is a cdf. for X, then FZ(z) = FX(s-1(z −m)),

(ii) if fX(x) is a pdf. for X, then fZ(z) = fX(s-1(z −m)),

(iii) if fX(x) is a pmf. for X, then fZ(z) = s-1fX(s-1(z −m)).

Then X,Z belong to a family of probability distributions P, called a location-
scale family.

Definition A.7.16 (Mutual Information). Let X,Y be random variables with
pdfs. fX, fY respectably. The mutual information of X,Y given fX, fY is then
given by

I[fX, fY] = H[fX]−H[fX|Y]
= H[fY]−H[fY|X]

Definition A.7.17 (Evidence Lower Bound). Let X,Z be random variables with
pdfs. fX, fZ respectably. Let gZ be an approximate probability density over Z.
The evidence lower bound of X given fX is then given by

elbo[fX] = H[gZ]−Hg[fXZ].

Definition A.7.18 (Augmented Affine Transformation). Let y = Ax + b be
a linear affine transformation with xRn and y, b ∈ Rm. Let Ãx̃ denote an
augmentation such that

ỹ = Ãx̃[
y1 . . . ym
1 . . . 1

]
=
[

A b
0 . . . 0 1

] [
x1 . . . xm
1 . . . 1

]
.

Then we say the transformation Ãx̃ is an augmented affine transformation.

Definition A.7.19 (Convex Sets and Functions). Let X be a linear space and let
A ⊂ X such that for all x, y ∈ X and for all t ∈ [0, 1] we have tx+ (1− t)y ∈ A.
Then A is called a convex set. Subsequently, we call any f : A→ X with the
property that f(tx+ (1− t)y) = tf(x) + (1− t)f(y) a convex function.

174

A.8. Discrete Convolutions as Matrices

A.8 Discrete Convolutions as Matrices

In Section 2.2 we showed that convolutions are Hilbert-Schmidt operators, but
it might not be immediately clear how convolutions can be constructed as
rudimentary matrix operations. We assume a circular full rank convolution
operator. Given an input signal x ∈ Kn, output signal y ∈ Kn, and a kernel
parametrized by θ ∈ Kq, the general form of discrete circular one-dimensional
convolution is given by

yi =
q∑
j=1

xjθcj : cj = (i− j)mod q + 1 (A.95)

which can be expressed by a circulant Toeplitz matrix on the form


y1
y2
...
yn

 =


θ1 0 . . . θ2
θ2 θ1 . . . θ3
...

.
...

0 . . . θ2 θ1



x1
x2
...
xn

 . (A.96)

Now let 0r,c be a r× c zero matrix, allowing for zero dimensional matrices given
either r = 0 or c = 0 for notational simplicity. If for i = 1, . . . , n and A ∈ Kr×s
we now define the circular roll operator

τi(A;n) =



 0i-1,s
A

0n-r-i,s

 if n− r − i ≥ 0,

Ai-n+2:r

0n-r,s

A1:i-n+1

 otherwise,

(A.97)

then we can instead express the convolution matrix concisely as

Wθ = [τ1(θ;n), τ2(θ;n), . . . τn(θ;n)] ∈ Kn×n. (A.98)

175

A. Fundamental Theory

This result can readily be extended to higher dimensional convolution operators.
For two dimensions, we consider a kernel θ ∈ Kp×q and a lexicographical
flattening of a two-dimensional input signal x ∈ Km×n and output signal
y ∈ Km×n such that for xᵀ1 , . . . , xᵀr ∈ Kn we have

vec(x) =

x
ᵀ
1
...
xᵀn

 ∈ Kmn, (A.99)

and a similar flattening can be performed to generate vec(y). Then for
i = 1, . . . , p we can define one dimensional convolution operators Wθi for each
row θi by Equation (A.98), which in turn can be concatenated into a block
matrix V ᵀθ = [Wθ1 ,Wθ2 , . . . ,Wθp]ᵀ where each block corresponds to one row of
the kernel θ. Then a two-dimensional convolution operator is given by

Wθ = [τ1(Vθ;m), τ2(Vθ;m), . . . , τm(Vθ;m)], (A.100)

which can be expressed in block matrix form

Wθ =


Wθ1 0 . . . Wθ2

Wθ2 Wθ1 . . . Wθ3
...

.
...

0 . . . Wθ2 Wθ1

 . (A.101)

In Definition 4.3.2 we mentioned that convolutional layers can be represented as
linear combinations of convolution operators. For multichannel inputs, separate
convolutional filters are applied to each channel and the output is combined
via linear combinations. Channels are thus often referred to as features in
convolutional networks. For a multi-channel convolutional layer, we apply
kernel parametrizations on the form θ ∈ Kc×d×p×q yielding operators of the
form

Wθ =


Wθ1,1 Wθ1,2 . . . Wθ1,d

Wθ2,1 Wθ2,2 . . . Wθ2,d
...

.
...

Wθc,1 Wθc,2 . . . Wθc,d

 , (A.102)

which can then be applied to appropriately lexicographically vectorized two-
dimensional multi-channel signals vec(x).

176

Bibliography

[Abe81] Abel, N. H. Œuvres complètes de Niels Henrik Abel. Tome
II. Contenant les mémoirs posthumes d’Abel. [Containing the
posthumous memoirs of Abel], Edited and with notes by L. Sylow
and S. Lie. Imprimerie de Grøndahl & Son, Christiania; distributed
by the Norwegian Mathematical Society, Oslo, 1981, pp. vi+341
(cit. on p. 11).

[ACH21] Antun, V., Colbrook, M. J. and Hansen, A. C. ‘Can stable and
accurate neural networks be computed? - On the barriers of deep
learning and Smale’s 18th problem’. In: CoRR vol. abs/2101.08286
(2021). arXiv: 2101.08286 (cit. on pp. 73, 74).

[AEE17] Almotiri, J., Elleithy, K. and Elleithy, A. ‘Comparison of autoen-
coder and Principal Component Analysis followed by neural network
for e-learning using handwritten recognition’. In: 2017 IEEE Long
Island Systems, Applications and Technology Conference (LISAT).
2017, pp. 1–5 (cit. on p. 61).

[Agr15] Agresti, A. Foundations of linear and generalized linear models.
Wiley Series in Probability and Statistics. John Wiley & Sons, Inc.,
Hoboken, NJ, 2015, pp. xiv+444 (cit. on p. 39).

[AH17] Aghdam, H. H. and Heravi, E. J. Guide to convolutional neural
networks. Vol. 10. 978-973. Springer, 2017, p. 51 (cit. on p. 46).

[ALG18] Anil, C., Lucas, J. and Grosse, R. B. ‘Sorting out Lipschitz function
approximation’. In: CoRR vol. abs/1811.05381 (2018). arXiv: 1811.
05381 (cit. on p. 67).

[AMS08] Absil, P.-A., Mahony, R. and Sepulchre, R. Optimization algorithms
on matrix manifolds. With a foreword by Paul Van Dooren.
Princeton University Press, Princeton, NJ, 2008, pp. xvi+224 (cit.
on pp. 4, 90, 94–96).

[Ant+20] Antun, V. et al. ‘On instabilities of deep learning in image
reconstruction and the potential costs of AI’. In: Proceedings of the
National Academy of Sciences vol. 117, no. 48 (2020), pp. 30088–
30095. eprint: https://www.pnas.org/content/117/48/30088.full.pdf
(cit. on pp. 72, 107).

177

https://arxiv.org/abs/2101.08286
https://arxiv.org/abs/1811.05381
https://arxiv.org/abs/1811.05381
https://www.pnas.org/content/117/48/30088.full.pdf

Bibliography

[Ard+18] Ardizzone, L. et al. ‘Analyzing inverse problems with invertible
neural networks’. In: arXiv preprint arXiv:1808.04730 (2018) (cit.
on pp. 1, 75, 76, 121, 124, 128).

[AS80] Aitchison, J. and Shen, S. M. ‘Logistic-Normal Distributions: Some
Properties and Uses’. In: Biometrika vol. 67, no. 2 (1980), pp. 261–
272 (cit. on p. 85).

[ASB16] Arjovsky, M., Shah, A. and Bengio, Y. ‘Unitary Evolution Recurrent
Neural Networks’. In: Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York City, NY,
USA, June 19-24, 2016. Ed. by Balcan, M.-F. and Weinberger, K. Q.
Vol. 48. JMLR Workshop and Conference Proceedings. JMLR.org,
2016, pp. 1120–1128 (cit. on p. 89).

[BAK18] Bzdok, D., Altman, N. and Krzywinski, M. ‘Statistics versus
machine learning’. In: Nature Methods vol. 15, no. 4 (Apr. 2018),
pp. 233–234 (cit. on p. 32).

[Bar17] Barron, J. T. ‘Continuously Differentiable Exponential Linear
Units’. In: CoRR vol. abs/1704.07483 (2017). arXiv: 1704.07483
(cit. on p. 47).

[BBC19] Bader, P., Blanes, S. and Casas, F. ‘Computing the Matrix
Exponential with an Optimized Taylor Polynomial Approximation’.
In: Mathematics vol. 7, no. 12 (2019) (cit. on p. 97).

[BCB15] Bahdanau, D., Cho, K. and Bengio, Y. ‘Neural Machine Translation
by Jointly Learning to Align and Translate’. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by
Bengio, Y. and LeCun, Y. 2015 (cit. on p. 77).

[BDV01] Bengio, Y., Ducharme, R. and Vincent, P. ‘A Neural Probabilistic
Language Model’. In: Advances in Neural Information Processing
Systems. Ed. by Leen, T., Dietterich, T. and Tresp, V. Vol. 13. MIT
Press, 2001 (cit. on p. 77).

[Ben+07] Bengio, Y. et al. ‘Greedy layer-wise training of deep networks’. In:
vol. 19. Jan. 2007 (cit. on p. 68).

[Ben08] Ben-Gal, I. ‘Bayesian Networks’. In: Encyclopedia of Statistics in
Quality and Reliability. American Cancer Society, 2008. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470061572.
eqr089 (cit. on p. 34).

[Beu65] Beutler, F. J. ‘The operator theory of the pseudo-inverse I. Bounded
operators’. In: Journal of Mathematical Analysis and Applications
vol. 10, no. 3 (1965), pp. 451–470 (cit. on p. 18).

[BFS93] Bengio, Y., Frasconi, P. and Simard, P. ‘The problem of learning
long-term dependencies in recurrent networks’. In: IEEE Inter-
national Conference on Neural Networks. 1993, 1183–1188 vol.3
(cit. on p. 89).

[BH89] Baldi, P. and Hornik, K. ‘Neural networks and principal component
analysis: Learning from examples without local minima’. In: Neural
Networks vol. 2, no. 1 (1989), pp. 53–58 (cit. on pp. 61, 78, 119).

178

https://arxiv.org/abs/1704.07483
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470061572.eqr089
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470061572.eqr089

Bibliography

[Bil95] Billingsley, P. Probability and measure. Third. Wiley Series in
Probability and Mathematical Statistics. A Wiley-Interscience
Publication. John Wiley & Sons, Inc., New York, 1995, pp. xiv+593
(cit. on pp. 4, 27, 30, 151, 161, 173).

[BK19] Brunton, S. L. and Kutz, J. N. Data-Driven Science and Engin-
eering: Machine Learning, Dynamical Systems, and Control. 1st.
USA: Cambridge University Press, 2019 (cit. on p. 38).

[Blo10] Blockeel, H. ‘Hypothesis Space’. In: Encyclopedia of Machine
Learning. Ed. by Sammut, C. and Webb, G. I. Boston, MA: Springer
US, 2010, pp. 511–513 (cit. on p. 33).

[Blu+15] Blundell, C. et al. Weight Uncertainty in Neural Networks. 2015.
arXiv: 1505.05424 [stat.ML] (cit. on p. 74).

[Bol12] Boltzmann, L. Wissenschaftliche Abhandlungen. Ed. by Hasenöhrl,
F. Vol. 1. Cambridge Library Collection - Physical Sciences.
Cambridge University Press, 2012 (cit. on p. 47).

[Bot91] Bottou, L. ‘Stochastic Gradient Learning in Neural Networks’. In:
1991 (cit. on p. 72).

[Bre+84] Breiman, L. et al. Classification and Regression Trees. Taylor &
Francis, 1984 (cit. on p. 32).

[BSF94] Bengio, Y., Simard, P. and Frasconi, P. ‘Learning long-term depend-
encies with gradient descent is difficult’. In: IEEE Transactions on
Neural Networks vol. 5, no. 2 (1994), pp. 157–166 (cit. on p. 68).

[Cas19] Casado, M. L. ‘Trivializations for Gradient-Based Optimization
on Manifolds’. In: CoRR vol. abs/1909.09501 (2019). arXiv: 1909.
09501 (cit. on pp. 4, 90, 94, 96).

[Cho17] Chollet, F. ‘Xception: Deep Learning with Depthwise Separable
Convolutions’. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2017, pp. 1800–1807 (cit. on p. 57).

[Chr10] Christensen, O. Functions, spaces, and expansions. Applied and
Numerical Harmonic Analysis. Mathematical tools in physics
and engineering. Birkhäuser Boston, Ltd., Boston, MA, 2010,
pp. xx+263 (cit. on p. 160).

[Cir+11] Ciresan, D. et al. ‘Flexible, High Performance Convolutional Neural
Networks for Image Classification.’ In: July 2011, pp. 1237–1242
(cit. on p. 56).

[Cis+17] Cisse, M. et al. Parseval Networks: Improving Robustness to
Adversarial Examples. 2017. arXiv: 1704.08847 [stat.ML] (cit. on
pp. 67, 78).

[CKP13] Casazza, P. G., Kutyniok, G. and Philipp, F. Introduction to Finite
Frame Theory. Ed. by Casazza, P. G. and Kutyniok, G. Boston:
Birkhäuser Boston, 2013 (cit. on p. 147).

[Coh+17] Cohen, G. et al. ‘EMNIST: an extension of MNIST to handwritten
letters’. In: CoRR vol. abs/1702.05373 (2017). arXiv: 1702.05373
(cit. on pp. 6, 104).

179

https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1909.09501
https://arxiv.org/abs/1909.09501
https://arxiv.org/abs/1704.08847
https://arxiv.org/abs/1702.05373

Bibliography

[Com+18] Combes, R. T. des et al. ‘On the Learning Dynamics of Deep
Neural Networks’. In: CoRR vol. abs/1809.06848 (2018). arXiv:
1809.06848 (cit. on p. 72).

[Con90] Conway, J. B. A course in functional analysis. Second. Vol. 96.
Graduate Texts in Mathematics. Springer-Verlag, New York, 1990,
pp. xvi+399 (cit. on p. 11).

[Cox04] Cox, D. D. ‘The Theory of Statistics and Its Applications’. 2004
(cit. on p. 27).

[CUH16] Clevert, D.-A., Unterthiner, T. and Hochreiter, S. ‘Fast and Accur-
ate Deep Network Learning by Exponential Linear Units (ELUs)’.
In: 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference
Track Proceedings. Ed. by Bengio, Y. and LeCun, Y. 2016 (cit. on
p. 47).

[Cyb89] Cybenko, G. ‘Approximation by superpositions of a sigmoidal
function’. In:Mathematics of Control, Signals, and Systems (MCSS)
vol. 2, no. 4 (Dec. 1989), pp. 303–314 (cit. on p. 50).

[DD09] Der Kiureghian, A. and Ditlevsen, O. ‘Aleatory or epistemic? Does
it matter?’ In: Structural safety vol. 31, no. 2 (2009), pp. 105–112
(cit. on p. 71).

[DFO20] Deisenroth, M. P., Faisal, A. A. and Ong, C. S. Mathematics for
Machine Learning. Cambridge University Press, 2020 (cit. on p. 34).

[DG17] Dua, D. and Graff, C. UCI Machine Learning Repository. 2017
(cit. on p. 73).

[DHS11] Duchi, J., Hazan, E. and Singer, Y. ‘Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization’. In: J. Mach.
Learn. Res. vol. 12, no. null (July 2011), pp. 2121–2159 (cit. on
p. 53).

[DKB15] Dinh, L., Krueger, D. and Bengio, Y. ‘NICE: Non-linear Independ-
ent Components Estimation’. In: 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Workshop Track Proceedings. Ed. by Bengio, Y. and
LeCun, Y. 2015 (cit. on pp. 57, 74).

[DSB16] Dinh, L., Sohl-Dickstein, J. and Bengio, S. ‘Density estimation
using Real NVP’. In: CoRR vol. abs/1605.08803 (2016). arXiv:
1605.08803 (cit. on pp. 74, 75).

[Erh+10] Erhan, D. et al. ‘Why Does Unsupervised Pre-Training Help Deep
Learning?’ In: J. Mach. Learn. Res. vol. 11 (Mar. 2010), pp. 625–
660 (cit. on p. 68).

[Faz+19] Fazlyab, M. et al. ‘Efficient and Accurate Estimation of Lipschitz
Constants for Deep Neural Networks’. In: CoRR vol. abs/1906.04893
(2019). arXiv: 1906.04893 (cit. on p. 147).

180

https://arxiv.org/abs/1809.06848
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1906.04893

Bibliography

[FB19] Frerix, T. and Bruna, J. ‘Approximating Orthogonal Matrices
with Effective Givens Factorization’. In: Proceedings of the 36th
International Conference on Machine Learning. Ed. by Chaudhuri,
K. and Salakhutdinov, R. Vol. 97. Proceedings of Machine Learning
Research. PMLR, June 2019, pp. 1993–2001 (cit. on p. 89).

[Fer73] Ferguson, T. S. ‘A Bayesian Analysis of Some Nonparametric
Problems’. In: The Annals of Statistics vol. 1, no. 2 (1973), pp. 209–
230 (cit. on p. 85).

[FH89] Fix, E. and Hodges, J. L. ‘Discriminatory Analysis. Nonparametric
Discrimination: Consistency Properties’. In: International Statist-
ical Review / Revue Internationale de Statistique vol. 57, no. 3
(1989), pp. 238–247 (cit. on p. 32).

[Fre03] Fredholm, I. ‘Sur une classe d’équations fonctionnelles’. In: Acta
Math. vol. 27, no. 1 (1903), pp. 365–390 (cit. on pp. 11, 21).

[Fri98] Friedman, J. H. ‘Data Mining and Statistics: What’s the connec-
tion?’ In: Computing science and statistics vol. 29, no. 1 (1998),
pp. 3–9 (cit. on p. 32).

[Fuk79] Fukushima, K. ‘Self-Organization of a Neural Network which
Gives Position-Invariant Response’. In: Proceedings of the Sixth
International Joint Conference on Artificial Intelligence, IJCAI 79,
Tokyo, Japan, August 20-23, 1979, 2 Volumes. Ed. by Buchanan,
B. G. William Kaufmann, 1979, pp. 291–293 (cit. on pp. 1, 55).

[Gao+15] Gao, S. et al. ‘Single sample face recognition via learning deep
supervised autoencoders’. In: IEEE transactions on information
forensics and security vol. 10, no. 10 (2015), pp. 2108–2118 (cit. on
p. 62).

[GB10] Glorot, X. and Bengio, Y. ‘Understanding the difficulty of training
deep feedforward neural networks’. In: AISTATS. 2010 (cit. on
p. 51).

[GBC16] Goodfellow, I., Bengio, Y. and Courville, A. Deep learning. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, MA,
2016, pp. xxii+775 (cit. on pp. 18, 39, 55, 56, 68).

[GDB19] Gagnon, P., Desgagné, A. and Bédard, M. ‘A New Bayesian
Approach to Robustness Against Outliers in Linear Regression’. In:
Bayesian Analysis (May 2019) (cit. on p. 34).

[Gel+14] Gelman, A. et al. Bayesian data analysis. Third. Texts in Statistical
Science Series. CRC Press, Boca Raton, FL, 2014, pp. xiv+661
(cit. on pp. 32, 34, 42, 85).

[GG16] Gal, Y. and Ghahramani, Z. ‘Dropout as a Bayesian Approximation:
Representing Model Uncertainty in Deep Learning’. In: Proceedings
of The 33rd International Conference on Machine Learning. Ed.
by Balcan, M. F. and Weinberger, K. Q. Vol. 48. Proceedings of
Machine Learning Research. New York, New York, USA: PMLR,
June 2016, pp. 1050–1059 (cit. on pp. 66, 74).

[GH13] Givens, G. H. and Hoeting, J. A. Computational statistics. Second.
Wiley Series in Computational Statistics. John Wiley & Sons, Inc.,
Hoboken, NJ, 2013, pp. xviii+469 (cit. on pp. 29, 34).

181

Bibliography

[Goo+14] Goodfellow, I. J. et al. Generative Adversarial Networks. 2014.
arXiv: 1406.2661 [stat.ML] (cit. on p. 74).

[Gro93] Groetsch, C. Inverse Problems in the Mathematical Sciences. Jan.
1993 (cit. on p. 9).

[GSS15] Goodfellow, I. J., Shlens, J. and Szegedy, C. Explaining and Har-
nessing Adversarial Examples. 2015. arXiv: 1412.6572 [stat.ML]
(cit. on p. 72).

[Had48] Hadamard, J. ‘Sur le cas anormal du problème de Cauchy
pour l’équation des ondes’. In: Studies and Essays Presented to
R.Courant on his 60th Birthday. Interscience Publishers, Inc., New
York, 1948, pp. 161–165 (cit. on p. 10).

[Hah+00] Hahnloser, R. H. R. et al. ‘Digital selection and analogue amplifica-
tion coexist in a cortex-inspired silicon circuit’. In: Nature vol. 405,
no. 6789 (June 2000), pp. 947–951 (cit. on pp. 47, 109).

[Hal15] Hall, B. Lie groups, Lie algebras, and representations. Second.
Vol. 222. Graduate Texts in Mathematics. An elementary introduc-
tion. Springer, Cham, 2015, pp. xiv+449 (cit. on pp. 4, 90–92, 151,
165, 167–169).

[Han10] Hansen, P. C. Discrete inverse problems. Vol. 7. Fundamentals
of Algorithms. Insight and algorithms. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2010, pp. xii+213
(cit. on p. 9).

[He+15] He, K. et al. ‘Deep Residual Learning for Image Recognition’. In:
CoRR vol. abs/1512.03385 (2015). arXiv: 1512.03385 (cit. on
pp. 51, 54, 85, 106, 118).

[He+19] He, K. et al. ‘Momentum Contrast for Unsupervised Visual
Representation Learning’. In: CoRR vol. abs/1911.05722 (2019).
arXiv: 1911.05722 (cit. on p. 148).

[Hen+11] Hennig, P. et al. ‘Kernel Topic Models’. In: CoRR vol. abs/1110.4713
(2011). arXiv: 1110.4713 (cit. on p. 85).

[HG08] Huynh-Thu, Q. and Ghanbari, M. ‘Scope of validity of PSNR in
image/video quality assessment’. In: Electronics letters vol. 44,
no. 13 (2008), pp. 800–801 (cit. on p. 107).

[Hin+12] Hinton, G. E. et al. ‘Improving neural networks by preventing
co-adaptation of feature detectors’. In: CoRR vol. abs/1207.0580
(2012). arXiv: 1207.0580 (cit. on p. 66).

[Hin17] Hinton, G. What is wrong with convolutional neural nets? Aug.
2017 (cit. on p. 56).

[HNO06] Hansen, P. C., Nagy, J. G. and O’Leary, D. P. Deblurring
images. Vol. 3. Fundamentals of Algorithms. Matrices, spectra, and
filtering. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2006, pp. xiv+130 (cit. on pp. 9, 20).

[Hoc91] Hochreiter, S. ‘Untersuchungen zu dynamischen neuronalen Netzen’.
In: Institut für Informatik - TU München, 1991 (cit. on p. 53).

182

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1911.05722
https://arxiv.org/abs/1110.4713
https://arxiv.org/abs/1207.0580

Bibliography

[Hor91] Hornik, K. ‘Approximation capabilities of multilayer feedforward
networks’. In: Neural Networks vol. 4, no. 2 (1991), pp. 251–257
(cit. on p. 50).

[How+17] Howard, A. G. et al. ‘MobileNets: Efficient Convolutional
Neural Networks for Mobile Vision Applications’. In: CoRR
vol. abs/1704.04861 (2017). arXiv: 1704.04861 (cit. on p. 57).

[HR17] Hyland, S. and Rätsch, G. Learning Unitary Operators with Help
From u(n). 2017 (cit. on p. 90).

[HTF09] Hastie, T., Tibshirani, R. and Friedman, J. The elements of
statistical learning. Second. Springer Series in Statistics. Data
mining, inference, and prediction. Springer, New York, 2009,
pp. xxii+745 (cit. on pp. 32, 39, 40, 74).

[HW21] Hüllermeier, E. and Waegeman, W. ‘Aleatoric and epistemic
uncertainty in machine learning: an introduction to concepts and
methods’. In:Machine Learning vol. 110, no. 3 (Mar. 2021), pp. 457–
506 (cit. on pp. 33, 71).

[IS15] Ioffe, S. and Szegedy, C. ‘Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift’. In: CoRR
vol. abs/1502.03167 (2015). arXiv: 1502.03167 (cit. on p. 66).

[Jeb03] Jebara, T. Machine Learning: Discriminative and Generative
(Kluwer International Series in Engineering and Computer Science).
USA: Kluwer Academic Publishers, 2003 (cit. on pp. 33, 34, 37).

[JHG00] Japkowicz, N., Hanson, S. and Gluck, M. ‘Nonlinear Autoassoci-
ation Is Not Equivalent to PCA’. In: Neural Computation vol. 12
(Mar. 2000), pp. 531–545 (cit. on p. 61).

[Joo+19] Joo, W. et al. ‘Dirichlet Variational Autoencoder’. In: CoRR
vol. abs/1901.02739 (2019). arXiv: 1901.02739 (cit. on p. 85).

[JSO18] Jacobsen, J.-H., Smeulders, A. W. and Oyallon, E. ‘i-RevNet: Deep
Invertible Networks’. In: International Conference on Learning
Representations. 2018 (cit. on pp. 75, 98).

[Kal02] Kallenberg, O. Foundations of modern probability. Second. Probab-
ility and its Applications (New York). Springer-Verlag, New York,
2002, pp. xx+638 (cit. on p. 27).

[KB17] Kingma, D. P. and Ba, J. Adam: A Method for Stochastic
Optimization. 2017. arXiv: 1412.6980 [cs.LG] (cit. on pp. 53,
66, 114).

[KC08] Kovacevic, J. and Chebira, A. ‘An Introduction to Frames’. In:
Foundations and Trends in Signal Processing vol. 2 (Feb. 2008),
pp. 1–94 (cit. on p. 67).

[KD18] Kingma, D. P. and Dhariwal, P. Glow: Generative Flow with
Invertible 1x1 Convolutions. 2018. arXiv: 1807.03039 [stat.ML]
(cit. on p. 74).

183

https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1901.02739
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1807.03039

Bibliography

[KF61] Kolmogorov, A. N. and Fomin, S. V. Elements of the theory of
functions and functional analysis. Vol. 2: Measure. The Lebesgue
integral. Hilbert space. Translated from the first (1960) Russian
ed. by Hyman Kamel and Horace Komm. Graylock Press, Albany,
N.Y., 1961, pp. ix+128 (cit. on p. 171).

[KG17] Kendall, A. and Gal, Y. ‘What Uncertainties Do We Need in
Bayesian Deep Learning for Computer Vision?’ In: Proceedings of
the 31st International Conference on Neural Information Processing
Systems. NIPS’17. Long Beach, California, USA: Curran Associates
Inc., 2017, pp. 5580–5590 (cit. on pp. 71, 74).

[KH09] Krizhevsky, A. and Hinton, G. ‘Learning multiple layers of features
from tiny images’. In: Master’s thesis, Department of Computer
Science, University of Toronto (2009) (cit. on pp. 6, 13, 103).

[KL20] Kidger, P. and Lyons, T. ‘Universal Approximation with Deep
Narrow Networks’. In: Proceedings of Thirty Third Conference on
Learning Theory. Ed. by Abernethy, J. and Agarwal, S. Vol. 125.
Proceedings of Machine Learning Research. PMLR, July 2020,
pp. 2306–2327 (cit. on pp. 46, 50).

[KL59] Kimball, A. W. and Leach, E. ‘Approximate Linearization of the
Incomplete Beta-Function’. In: Biometrika vol. 46, no. 1/2 (1959),
pp. 214–218 (cit. on p. 87).

[Kno+20] Knoll, F. et al. ‘Advancing machine learning for MR image
reconstruction with an open competition: Overview of the 2019
fastMRI challenge’. In: Magnetic Resonance in Medicine vol. 84,
no. 6 (June 2020), pp. 3054–3070 (cit. on p. 77).

[KO01] Kennedy, M. C. and O’Hagan, A. ‘Bayesian calibration of computer
models’. In: Journal of the Royal Statistical Society: Series B
(Statistical Methodology) vol. 63, no. 3 (2001), pp. 425–464. eprint:
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.
00294 (cit. on p. 72).

[Kol02] Kolbjornsen, O. Nonlinear topics in the Bayesian approach to
inverse problems with applications to seismic inversion. Thesis
(Dr.Ing.)–Norges teknisk-naturvitenskapelige universitet (Norway).
ProQuest LLC, Ann Arbor, MI, 2002, p. 166 (cit. on p. 9).

[Kra64] Krasnosel’skii, M. A. ‘Topological Methods in the Theory of Non-
linear Integral Equations. (International Series of Monographs on
Pure and Applied Mathematics, Vol. 45) X + 395 S. Oxford/Lon-
don/New York/Paris 1964. Pergamon Press. Preis geb. 70 s. net
.’ Trans. by Müller, P. H. In: ZAMM - Journal of Applied Math-
ematics and Mechanics / Zeitschrift für Angewandte Mathematik
und Mechanik vol. 44, no. 10-11 (1964), pp. 521–521. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/zamm.19640441041
(cit. on p. 98).

[KSH12] Krizhevsky, A., Sutskever, I. and Hinton, G. ‘ImageNet Classi-
fication with Deep Convolutional Neural Networks’. In: Neural
Information Processing Systems vol. 25 (Jan. 2012) (cit. on p. 47).

184

https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00294
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/1467-9868.00294
https://onlinelibrary.wiley.com/doi/pdf/10.1002/zamm.19640441041
https://onlinelibrary.wiley.com/doi/pdf/10.1002/zamm.19640441041

Bibliography

[KSH17] Krizhevsky, A., Sutskever, I. and Hinton, G. E. ‘ImageNet
Classification with Deep Convolutional Neural Networks’. In:
Commun. ACM vol. 60, no. 6 (May 2017), pp. 84–90 (cit. on
p. 85).

[Kum80] Kumaraswamy, P. ‘A generalized probability density function for
double-bounded random processes’. In: Journal of Hydrology vol. 46,
no. 1 (1980), pp. 79–88 (cit. on p. 86).

[Kun+19] Kunin, D. et al. ‘Loss Landscapes of Regularized Linear Autoen-
coders’. In: Proceedings of the 36th International Conference on
Machine Learning. Ed. by Chaudhuri, K. and Salakhutdinov, R.
Vol. 97. Proceedings of Machine Learning Research. PMLR, June
2019, pp. 3560–3569 (cit. on pp. 61, 119).

[KW14] Kingma, D. P. and Welling, M. Auto-Encoding Variational Bayes.
2014. arXiv: 1312.6114 [stat.ML] (cit. on pp. 59, 64, 65).

[Lar+16] Larsen, A. B. L. et al. Autoencoding beyond pixels using a learned
similarity metric. 2016. arXiv: 1512.09300 [cs.LG] (cit. on p. 74).

[LeC+89] LeCun, Y. et al. ‘Backpropagation Applied to Handwritten Zip
Code Recognition’. In: Neural Comput. vol. 1, no. 4 (1989), pp. 541–
551 (cit. on pp. 1, 55).

[LH17] Loshchilov, I. and Hutter, F. ‘Fixing Weight Decay Regularization
in Adam’. In: CoRR vol. abs/1711.05101 (2017). arXiv: 1711.05101
(cit. on p. 66).

[Lin+14] Lin, T.-Y. et al. ‘Microsoft COCO: Common Objects in Context’.
In: CoRR vol. abs/1405.0312 (2014). arXiv: 1405.0312 (cit. on
pp. 6, 104).

[Lin17] Lindstrøm, T. L. Spaces—an introduction to real analysis. Vol. 29.
Pure and Applied Undergraduate Texts. American Mathematical
Society, Providence, RI, 2017, pp. xii+369 (cit. on pp. 4, 151, 158).

[LPW18] Le, L., Patterson, A. and White, M. ‘Supervised autoencoders:
Improving generalization performance with unsupervised regular-
izers’. In: Advances in neural information processing systems vol. 31
(2018), pp. 107–117 (cit. on pp. 62, 68, 78).

[Lu+20] Lu, L. et al. ‘Dying ReLU and Initialization: Theory and Numerical
Examples’. In: Communications in Computational Physics vol. 28,
no. 5 (June 2020), pp. 1671–1706 (cit. on p. 53).

[Luo+16] Luo, W. et al. ‘Understanding the Effective Receptive Field in
Deep Convolutional Neural Networks’. In: Advances in Neural
Information Processing Systems 29. Ed. by Lee, D. D. et al. Curran
Associates, Inc., 2016, pp. 4898–4906 (cit. on p. 55).

[Mac95] MacKay, D. J. ‘Bayesian neural networks and density networks’. In:
Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment
vol. 354, no. 1 (1995). Proceedings of the Third Workshop on
Neutron Scattering Data Analysis, pp. 73–80 (cit. on p. 74).

185

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1512.09300
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1405.0312

Bibliography

[Mac98] MacKay, D. J. ‘Choice of Basis for Laplace Approximation’. In:
Machine Learning vol. 33, no. 1 (Oct. 1998), pp. 77–86 (cit. on
p. 85).

[Mar67] Marlow, N. A. ‘A normal limit theorem for power sums of
independent random variables’. In: The Bell System Technical
Journal vol. 46, no. 9 (1967), pp. 2081–2089 (cit. on p. 86).

[McC02] McCullagh, P. ‘What is a statistical model?’ In: Ann. Statist.
vol. 30, no. 5 (2002). With comments and a rejoinder by the author,
pp. 1225–1310 (cit. on p. 28).

[Mha+16] Mhammedi, Z. et al. ‘Efficient Orthogonal Parametrisation of
Recurrent Neural Networks Using Householder Reflections’. In:
CoRR vol. abs/1612.00188 (2016). arXiv: 1612.00188 (cit. on
p. 90).

[MHN13] Maas, A. L., Hannun, A. Y. and Ng, A. Y. ‘Rectifier nonlinearities
improve neural network acoustic models’. In: Proc. icml. Vol. 30. 1.
Citeseer. 2013, p. 3 (cit. on p. 81).

[MMD20] Mouton, C., Myburgh, J. C. and Davel, M. H. ‘Stride and
Translation Invariance in CNNs’. In: Artificial Intelligence Research.
Ed. by Gerber, A. Cham: Springer International Publishing, 2020,
pp. 267–281 (cit. on p. 55).

[MP43] McCulloch, W. S. and Pitts, W. ‘A logical calculus of the ideas
immanent in nervous activity’. In: The bulletin of mathematical
biophysics vol. 5, no. 4 (Dec. 1943), pp. 115–133 (cit. on p. 1).

[MW99] McDonald, J. N. and Weiss, N. A. A course in real analysis.
Biographies by Carol A. Weiss. Academic Press, Inc., San Diego,
CA, 1999, pp. xx+745 (cit. on pp. 4, 12, 50, 151, 154, 158–160, 163,
170, 171, 174).

[Nak+19] Nakkiran, P. et al. ‘Deep Double Descent: Where Bigger Models
and More Data Hurt’. In: CoRR vol. abs/1912.02292 (2019). arXiv:
1912.02292 (cit. on p. 73).

[NJ02] Ng, A. and Jordan, M. ‘On Discriminative vs. Generative Classifiers:
A comparison of logistic regression and naive Bayes’. In: Advances
in Neural Information Processing Systems. Ed. by Dietterich, T.,
Becker, S. and Ghahramani, Z. Vol. 14. MIT Press, 2002 (cit. on
p. 34).

[NS17] Nalisnick, E. and Smyth, P. Stick-Breaking Variational Autoen-
coders. 2017. arXiv: 1605.06197 [stat.ML] (cit. on pp. 85, 86).

[NVF20] NVIDIA, Vingelmann, P. and Fitzek, F. H. CUDA, release: 10.2.89.
2020 (cit. on p. 3).

[NW72] Nelder, J. A. and Wedderburn, R. W. M. ‘Generalized Linear
Models’. In: Journal of the Royal Statistical Society. Series A
(General) vol. 135, no. 3 (1972), pp. 370–384 (cit. on p. 38).

[ODO16] Odena, A., Dumoulin, V. and Olah, C. ‘Deconvolution and
Checkerboard Artifacts’. In: Distill (2016) (cit. on p. 55).

186

https://arxiv.org/abs/1612.00188
https://arxiv.org/abs/1912.02292
https://arxiv.org/abs/1605.06197

Bibliography

[OKK16] Oord, A. van den, Kalchbrenner, N. and Kavukcuoglu, K. ‘Pixel
Recurrent Neural Networks’. In: CoRR vol. abs/1601.06759 (2016).
arXiv: 1601.06759 (cit. on p. 58).

[Oor+16] Oord, A. van den et al. ‘WaveNet: A Generative Model for Raw
Audio’. In: CoRR vol. abs/1609.03499 (2016). arXiv: 1609.03499
(cit. on p. 58).

[OWB18] Olson, M., Wyner, A. and Berk, R. ‘Modern Neural Networks
Generalize on Small Data Sets’. In: Advances in Neural Information
Processing Systems. Ed. by Bengio, S. et al. Vol. 31. Curran
Associates, Inc., 2018 (cit. on p. 73).

[Pap+21] Papamakarios, G. et al. Normalizing Flows for Probabilistic
Modeling and Inference. 2021. arXiv: 1912.02762 [stat.ML] (cit.
on p. 58).

[Pas+17] Paszke, A. et al. ‘Automatic Differentiation in PyTorch’. In: NIPS
2017 Workshop on Autodiff. Long Beach, California, USA, 2017
(cit. on p. 53).

[Pas+19] Paszke, A. et al. ‘PyTorch: An Imperative Style, High-Performance
Deep Learning Library’. In: Advances in Neural Information
Processing Systems 32. Ed. by Wallach, H. et al. Curran Associates,
Inc., 2019, pp. 8024–8035 (cit. on p. 2).

[Pen55] Penrose, R. ‘A generalized inverse for matrices’. In: Mathematical
Proceedings of the Cambridge Philosophical Society vol. 51, no. 3
(1955), pp. 406–413 (cit. on p. 18).

[Pin99] Pinkus, A. ‘Approximation theory of the MLP model in neural
networks’. In: Acta Numerica vol. 8 (1999), pp. 143–195 (cit. on
p. 50).

[Pog+16] Poggio, T. A. et al. ‘Why and When Can Deep - but Not Shallow -
Networks Avoid the Curse of Dimensionality: a Review’. In: CoRR
vol. abs/1611.00740 (2016). arXiv: 1611.00740 (cit. on p. 50).

[Pow+21] Power, A. et al. ‘Grokking: Generalization Beyond Overfitting on
Small Algorithmic Datasets’. In: ICLR MATH-AI Workshop. 2021
(cit. on p. 52).

[PSG17] Pennington, J., Schoenholz, S. S. and Ganguli, S. ‘Resurrecting the
sigmoid in deep learning through dynamical isometry: theory and
practice’. In: CoRR vol. abs/1711.04735 (2017). arXiv: 1711.04735
(cit. on p. 68).

[PT97] Pratt, L. and Thrun, S. ‘Guest Editors’ Introduction: Special
Edition on Inductive Transfer’. In: Machine Learning vol. 28, no. 1
(July 1997), pp. 5–5 (cit. on p. 75).

[PW19] Putzky, P. and Welling, M. ‘Invert to Learn to Invert’. In: CoRR
vol. abs/1911.10914 (2019). arXiv: 1911.10914 (cit. on p. 75).

[PY16] Pitman, J. and Yakubovich, Y. Successive maxima of samples from
a GEM distribution. 2016. arXiv: 1609.01601 [math.PR] (cit. on
p. 86).

187

https://arxiv.org/abs/1601.06759
https://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1912.02762
https://arxiv.org/abs/1611.00740
https://arxiv.org/abs/1711.04735
https://arxiv.org/abs/1911.10914
https://arxiv.org/abs/1609.01601

Bibliography

[RHW86] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. ‘Learning
representations by back-propagating errors’. In: Nature vol. 323,
no. 6088 (Oct. 1986), pp. 533–536 (cit. on pp. 52, 60).

[Ric66] Rice, J. R. ‘A Theory of Condition’. In: SIAM Journal on Numerical
Analysis vol. 3, no. 2 (1966), pp. 287–310. eprint: https://doi.org/10.
1137/0703023 (cit. on p. 40).

[RM16] Rezende, D. J. and Mohamed, S. Variational Inference with
Normalizing Flows. 2016. arXiv: 1505.05770 [stat.ML] (cit. on
p. 74).

[RMW14] Rezende, D. J., Mohamed, S. and Wierstra, D. ‘Stochastic
Backpropagation and Approximate Inference in Deep Generative
Models’. In: Proceedings of the 31st International Conference on
Machine Learning. Ed. by Xing, E. P. and Jebara, T. Vol. 32.
Proceedings of Machine Learning Research 2. Bejing, China: PMLR,
June 2014, pp. 1278–1286 (cit. on p. 57).

[Roh13] Rohan, R.-A. ‘Some remarks on the exponential map on the groups
SO (n) and SE (n)’. In: Proceedings of the Fourteenth International
Conference on Geometry, Integrability and Quantization. Institute
of Biophysics and Biomedical Engineering, Bulgarian Academy of
Sciences. 2013, pp. 160–175 (cit. on p. 91).

[Ros57] Rosenblatt, F. The perceptron - A perceiving and recognizing auto-
maton. Tech. rep. 85-460-1. Ithaca, New York: Cornell Aeronautical
Laboratory, Jan. 1957 (cit. on p. 47).

[RS08] Ranzato, M. and Szummer, M. ‘Semi-supervised learning of compact
document representations with deep networks.’ In: ICML. Ed. by
Cohen, W. W., McCallum, A. and Roweis, S. T. Vol. 307. ACM
International Conference Proceeding Series. ACM, 2008, pp. 792–
799 (cit. on p. 62).

[Rud87] Rudin, W. Real and complex analysis. Third. McGraw-Hill Book
Co., New York, 1987, pp. xiv+416 (cit. on pp. 4, 24, 151, 170).

[RY08] Rynne, B. P. and Youngson, M. A. Linear functional analysis.
Second. Springer Undergraduate Mathematics Series. Springer-
Verlag London, Ltd., London, 2008, pp. x+324 (cit. on pp. 4, 151,
155).

[San+18] Santurkar, S. et al. ‘How Does Batch Normalization Help Op-
timization?’ In: Proceedings of the 32nd International Conference
on Neural Information Processing Systems. NIPS’18. Montréal,
Canada: Curran Associates Inc., 2018, pp. 2488–2498 (cit. on p. 67).

[Sch95] Schervish, M. J. Theory of statistics. eng. Springer series in statistics.
New York: Springer, 1995 (cit. on pp. 4, 27, 30, 31).

[Sha48] Shannon, C. E. ‘A mathematical theory of communication’. In: The
Bell System Technical Journal vol. 27, no. 3 (1948), pp. 379–423
(cit. on p. 162).

[SLH20] Sum, J., Leung, C.-S. and Ho, K. ‘A Limitation of Gradient Descent
Learning’. In: IEEE Transactions on Neural Networks and Learning
Systems vol. 31, no. 6 (2020), pp. 2227–2232 (cit. on p. 72).

188

https://doi.org/10.1137/0703023
https://doi.org/10.1137/0703023
https://arxiv.org/abs/1505.05770

Bibliography

[Spe90] Specht, D. F. ‘Probabilistic neural networks’. In: Neural Networks
vol. 3, no. 1 (1990), pp. 109–118 (cit. on p. 74).

[SPH07] Schölkopf, B., Platt, J. and Hofmann, T. ‘Efficient sparse coding
algorithms’. In: Advances in Neural Information Processing Systems
19: Proceedings of the 2006 Conference. 2007, pp. 801–808 (cit. on
p. 77).

[Spr+15] Springenberg, J. T. et al. ‘Striving for Simplicity: The All
Convolutional Net’. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Workshop Track Proceedings. Ed. by Bengio, Y. and LeCun, Y. 2015
(cit. on p. 56).

[Sri+14] Srivastava, N. et al. ‘Dropout: A Simple Way to Prevent Neural
Networks from Overfitting’. In: Journal of Machine Learning
Research vol. 15, no. 56 (2014), pp. 1929–1958 (cit. on p. 66).

[SS17a] Shumway, R. H. and Stoffer, D. S. Time series analysis and its
applications. Fourth. Springer Texts in Statistics. With R examples.
Springer, Cham, 2017, pp. xiii+562 (cit. on p. 58).

[SS17b] Srivastava, A. and Sutton, C. Autoencoding Variational Inference
For Topic Models. 2017. arXiv: 1703.01488 [stat.ML] (cit. on
p. 85).

[SZ15] Simonyan, K. and Zisserman, A. ‘Very Deep Convolutional
Networks for Large-Scale Image Recognition’. In: 3rd International
Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by
Bengio, Y. and LeCun, Y. 2015 (cit. on p. 85).

[Sze+14] Szegedy, C. et al. ‘Intriguing properties of neural networks’. In:
2nd International Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference Track
Proceedings. Ed. by Bengio, Y. and LeCun, Y. 2014 (cit. on pp. 72,
85).

[Tes+20] Teshima, T. et al. ‘Coupling-based Invertible Neural Net-
works Are Universal Diffeomorphism Approximators’. In: CoRR
vol. abs/2006.11469 (2020). arXiv: 2006.11469 (cit. on p. 75).

[Tib96] Tibshirani, R. ‘Regression Shrinkage and Selection via the Lasso’.
In: Journal of the Royal Statistical Society (Series B) vol. 58 (1996),
pp. 267–288 (cit. on p. 41).

[Tik43] Tikhonov, A. N. ‘On the stability of inverse problems’. In: C. R.
(Doklady) Acad. Sci. URSS (N.S.) vol. 39 (1943), pp. 176–179
(cit. on pp. 1, 41).

[Tol+19] Tolstikhin, I. et al. Wasserstein Auto-Encoders. 2019. arXiv: 1711.
01558 [stat.ML] (cit. on p. 74).

[Tol+21] Tolstikhin, I. O. et al. ‘MLP-Mixer: An all-MLP Architecture for
Vision’. In: CoRR vol. abs/2105.01601 (2021). arXiv: 2105.01601
(cit. on pp. 3, 56).

189

https://arxiv.org/abs/1703.01488
https://arxiv.org/abs/2006.11469
https://arxiv.org/abs/1711.01558
https://arxiv.org/abs/1711.01558
https://arxiv.org/abs/2105.01601

Bibliography

[TP91] Turk, M. and Pentland, A. ‘Face recognition using eigenfaces’. In:
Proceedings. 1991 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. 1991, pp. 586–591 (cit. on p. 77).

[Tsi+19] Tsipras, D. et al. Robustness May Be at Odds with Accuracy. 2019.
arXiv: 1805.12152 [stat.ML] (cit. on pp. 73, 74, 107).

[Tur48] Turing, A. M. ‘ROUNDING-OFF ERRORS IN MATRIX PRO-
CESSES’. In: The Quarterly Journal of Mechanics and Applied
Mathematics vol. 1, no. 1 (Jan. 1948), pp. 287–308. eprint: https:
//academic.oup.com/qjmam/article-pdf/1/1/287/5323145/1-1-
287.pdf (cit. on p. 41).

[Tur60] Turin, G. ‘An introduction to matched filters’. In: IRE Transactions
on Information Theory vol. 6, no. 3 (1960), pp. 311–329 (cit. on
p. 56).

[Van16] Van Vleck, E. B. ‘Current tendencies of mathematical research’.
In: Bull. Amer. Math. Soc. vol. 23, no. 1 (1916), pp. 1–13 (cit. on
p. 1).

[Vap92] Vapnik, V. ‘Principles of Risk Minimization for Learning Theory’.
In: Advances in Neural Information Processing Systems. Ed. by
Moody, J., Hanson, S. and Lippmann, R. P. Vol. 4. Morgan-
Kaufmann, 1992 (cit. on p. 37).

[Vin+08] Vincent, P. et al. ‘Extracting and composing robust features with
denoising autoencoders’. In: Machine Learning, Proceedings of
the Twenty-Fifth International Conference (ICML 2008), Helsinki,
Finland, June 5-9, 2008. Ed. by Cohen, W. W., McCallum, A. and
Roweis, S. T. Vol. 307. ACM International Conference Proceeding
Series. ACM, 2008, pp. 1096–1103 (cit. on p. 61).

[Vin+10] Vincent, P. et al. ‘Stacked Denoising Autoencoders: Learning
Useful Representations in a Deep Network with a Local Denoising
Criterion’. In: Journal of Machine Learning Research vol. 11, no. 110
(2010), pp. 3371–3408 (cit. on pp. 61, 62, 121).

[Wan+04] Wang, Z. et al. ‘Image quality assessment: from error visibility to
structural similarity’. In: IEEE Transactions on Image Processing
vol. 13, no. 4 (2004), pp. 600–612 (cit. on p. 107).

[Wis60] Wise, M. E. ‘On Normalizing the Incomplete Beta-Function for
Fitting to Dose-Response Curves’. In: Biometrika vol. 47, no. 1/2
(1960), pp. 173–175 (cit. on p. 87).

[Xia+18] Xiao, L. et al. Dynamical Isometry and a Mean Field Theory of
CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural
Networks. 2018. arXiv: 1806.05393 [stat.ML] (cit. on p. 68).

[Xu+21] Xu, X. et al. ‘Toward Effective Intrusion Detection Using Log-Cosh
Conditional Variational Autoencoder’. In: IEEE Internet of Things
Journal vol. 8, no. 8 (2021), pp. 6187–6196 (cit. on p. 106).

[Yar18] Yarotsky, D. ‘Universal approximations of invariant maps by neural
networks’. In: CoRR vol. abs/1804.10306 (2018). arXiv: 1804.10306
(cit. on pp. 50, 130).

190

https://arxiv.org/abs/1805.12152
https://academic.oup.com/qjmam/article-pdf/1/1/287/5323145/1-1-287.pdf
https://academic.oup.com/qjmam/article-pdf/1/1/287/5323145/1-1-287.pdf
https://academic.oup.com/qjmam/article-pdf/1/1/287/5323145/1-1-287.pdf
https://arxiv.org/abs/1806.05393
https://arxiv.org/abs/1804.10306

Bibliography

[Yin18] Yingzhen Li John Bradshaw, Y. S. ‘Are Generative Classifiers More
Robust to Adversarial Attacks?’ In: CoRR vol. abs/1802.06552
(2018). arXiv: 1802.06552 (cit. on pp. 34, 74).

[YP19] Yu, S. and Príncipe, J. C. ‘Understanding autoencoders with
information theoretic concepts’. In: Neural Networks vol. 117 (2019),
pp. 104–123 (cit. on p. 61).

[Zei12] Zeiler, M. D. ‘ADADELTA: An Adaptive Learning Rate Method’.
In: CoRR vol. abs/1212.5701 (2012). arXiv: 1212.5701 (cit. on
p. 53).

[Zha+16] Zhang, C. et al. ‘Understanding deep learning requires rethinking
generalization’. In: CoRR vol. abs/1611.03530 (2016). arXiv: 1611.
03530 (cit. on p. 77).

[Zha+18] Zhang, H. et al. WHAI: Weibull Hybrid Autoencoding Inference for
Deep Topic Modeling. 2018. arXiv: 1803.01328 [stat.ML] (cit. on
p. 85).

[Zho+17] Zhou, L. et al. ‘The Expressive Power of Neural Networks: A View
from the Width’. In: CoRR vol. abs/1709.02540 (2017). arXiv:
1709.02540 (cit. on p. 50).

191

https://arxiv.org/abs/1802.06552
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1803.01328
https://arxiv.org/abs/1709.02540

	Abstract
	Acknowledgements
	Contents
	Preliminaries
	Introduction
	Project Description and Goals
	Implementations and Software
	Summary of Contributions
	Prerequisites and Fundamentals
	Notation
	Abbreviations, Nomenclature, and Data

	Theoretical Background
	Inverse Problems
	Ill-Posedness
	Integral Equations
	Expansion Methods and Spectral Theory
	Discretization and Projection

	Modelling and Learning
	Statistical Modelling and Probability
	Statistical Learning and Hypothesis Spaces
	Modelling Linear Inverse Problems
	Modelling Non-Linear Inverse Problems
	Regularization

	Neural Networks
	Fundamentals of Neural Networks
	Estimation, Optimization and Learning
	Network Components and Layers
	Network Architectures and Encoder-Decoder Models
	Regularization, Optimization, and Learning Dynamics

	Methodology
	Inverse Problems and Invertible Neural Networks
	Uncertainty and Instability in Neural Networks
	Normalizing Flows and Invertible Neural Networks

	Invertible and Pseudo-Invertible Encoders
	Motivation
	Bi-Lipschitzian Activation Functions
	Invertible Dirichlet-Softmax Transform
	Parametrization and Constraints

	Results
	Methodology and Baselines
	Experimental Methodology
	Assessing Bi-Lipschitzian Activation
	Assessing the Dirichlet-Softmax Transform

	Experiments with Pseudo-Invertible Encoders
	Unsupervised Learning with Dense PIEs
	Supervised Learning with Dense and Seperable PIEs
	Supervised Learning with Convolutional PIEs
	Conclusions: PIEs

	Experiments with Invertible Encoders
	Dense and Seperable IEs and IREs
	Convolutional IREs
	Conclusions: Invertible Encoders

	Summary and Further Work
	Summary and Project Goals
	Further Work: Experimental Methodology
	Further Work: Theoretical Ideas

	Appendices
	Fundamental Theory
	Spaces and Analysis
	Operators
	Measure Theory
	Probability Theory
	Harmonic Analysis
	Matrix Groups and Manifolds
	Selected Fundamental Results and Theorems
	Discrete Convolutions as Matrices

	Bibliography

