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Abstract

Building upon recent work by Binda, Park, and Østvær we construct a theory of
motives with compact support in the setting of logarithmic algebraic geometry.

Starting from the notion of finite logarithmic correspondences with compact
support we define the logarithmic motive with compact support analogous to the
classical case. After establishing a Gysin sequence, we prove a Künneth formula,
which as a special case, proves homotopy invariance of the logarithmic motive
with compact support. This presents an important distinction from the theory
of motives with compact support which is not homotopy invariant. Relating our
theory to the classical theory we provide an affirmative answer to a question
raised in Binda–Park–Østvær concerning the theory’s relation to the classical
theory. We then prove an analogue of the classical duality theorem, which
together with a calculation of the logarithmic motive with compact support of
the affine line, culminates in a proof of a cancellation theorem for logarithmic
schemes. Moreover, we provide a new homology and cohomology theory for
logarithmic schemes, and give a new homotopy invariant generalization of
Bloch’s higher Chow groups to logarithmic smooth fs logarithmic schemes.
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CHAPTER 0

Introduction

0.1 Overview

Logarithmic geometry can in full generality be regarded as an enlargement
of algebraic geometry from commutative rings to commutative monoids. It
originally sprang out from arithmetic geometry in the 80’s by work of K. Kato
to study log crystalline cohomology, log poles, and semi-stable degenerations
([Kat89]), and was further developed by Fontaine–Illusie, Deligne–Faltings,
Tsuji, and Ogus, to name a few ([Ogu18]). Logarithmic geometry today impacts
various areas, in particular moduli theory, deformation theory and p-adic Hodge
theory. For the purpose of algebraic geometry, logarithmic algebraic geometry
provides a convenient language to describe schemes with boundary (“open
schemes”) which gives a natural framework to describe compactifications and
degenerations.

Recent work by Binda, Park and Østvær initiates a new theory on motivic
homotopy theory in the setting of logarithmic algebraic geometry ([BPØ20], to
appear in Astérisque). In their fundamental work they construct the category
logDMeff(k,Λ) of derived motives of logarithmic schemes as an enlargement
of Voevodsky’s category of derived motives DMeff(k,Λ) of schemes ([Voe00]).
In doing so, they generalize many classical results to logarithmic algebraic
geometry, like Gysin distinguished triangles, the Gysin isomorphism, blow-up
distinguished triangles, a projective bundle theorem, a Thom isomorphism,
representability of cohomology theories, and many more.

Their motivation come from the fact that there are many invariants that
are not A1-invariant, and thus cannot be studied in the classical A1-homotopy
theory of Voevodsky. Examples include

(i) Algebraic K-theory, Kn(X) if X is a non-regular scheme,

(ii) p-adic cohomology, Hn
ét(X,Z /p), if p is not invertible in OX ,

(iii) Hodge cohomology, Hn
Zar(X,Ωj),

(iv) Cyclic homology, HCn(X),

(v) Hochschild homology, HHn(X),

(vi) Topological Hochschild homology, THHn(X),

(vii) Topological cyclic homology, TCn(X).
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0.1. Overview

However, generalizing their definition to log schemes it is believed that
all these examples are insensitive to a compactification of A1, which is the
projective line P1 pointed at infinity. This object we denote by

� := (P1,∞) ∈ lSm/k.

One of the main result of [BPØ20] is that Hodge cohomology, and thus cyclic
homology, is �-invariant and satisfies dividing descent and strict Nisnevich
descent. Hence they are representable in logDMeff(k,Λ). Since these cohomo-
logy theories are not A1-invariant, and thus not representable in DMeff(k,Λ),
this provides a first example that logDMeff(k,Λ) differs from DMeff(k,Λ).
Embedding DMeff(k,Λ) fully faithfully in logDMeff(k,Λ), they thus construct
an enlargement of Voevodsky’s classical theory.

Taking � instead of A1 as the algebraic replacement of the unit interval
[0, 1] ⊂ R has the advantage of being both contractible and compact (in contrast
to A1 which is not compact). However, to describe � appropriately we are
forced to consider pairs (X, ∂X) where X is a scheme and ∂X acts as a sort of
infinitesimal boundary on X. Here the theory of logarithmic geometry provides
a natural framework, but there are also alternatives given by motives with
modulus as presented in [KSY19].

This thesis aims at creating a new theory of motives with compact support
in the setting of logarithmic algebraic geometry. In the classical setting, motives
with compact support has important consequences on the general motivic theory
by providing duality (Theorem 8.2 in [FV00]), cancellation (Theorem 4.3.1 in
[Voe00]), new homological invariants on schemes, and representability of Bloch’s
higher Chow groups for non-smooth schemes. We intend to set up the theory of
logarithmic motives with compact support and explore its properties in order to
reveal similar impacts on the general logarithmic motivic theory. By generalizing
the theory of motives with compact support to logarithmic geometry we get
new results for log schemes, which by specializing to the classical theory of
schemes recover classical results.

We begin the theory similarly to Chapter 16 in [MVW11] by defining the
category of logarithmic correspondences with compact support lCorc /k for a
field k. For any fs log scheme X we go on to define the corresponding strict
Nisnevich presheaf with log transfers on lSm/k as

Y 7→ Λcltr(X)(Y ) := lCorc(Y,X)⊗Z Λ ∈ Pshltr(k,Λ),

whose image in logDMeff(k,Λ) we call the logarithmic motive ofX with compact
support. This is done in Section 3.2 after having established the necessary
properties in Section 3.1.

We then proceed with investigating various properties of logarithmic motives
with compact support.

In the classical case, the fact that the motive with compact support distrib-
utes over products is a corollary of the localization theorem. However, as we do
not have such an analogue of the localization theorem for log schemes we must
prove it directly. Its proof makes use of a generalization of the classical Gysin
sequence, i.e., a distinguished triangle

M c(X,Z)→M c(X)→M c(Z)(1)[2]→M c(X,Z)[1],
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0.1. Overview

for a smooth log smooth fs log scheme Y = (X,Z). This we state as The-
orem 3.2.9, and the combined proof of this statement and the logarithmic
version of the Künneth formula occupy the majority of Section 3.2. We state
the Künneth formula as follows:

Theorem 0.1.1 (Kunneth formula, Theorem 3.2.12). Assume that k admits
resolution of singularities. Let X and Y be log smooth fs log schemes over k.
Then there is an isomorphism

M c(X × Y ) 'M c(X)⊗M c(Y ).

We then use the Gysin sequence, strict Nisnevich descent, and dividing
descent to prove the isomorphisms

M c(A1) ' Z(1)[2]

and
M c(AN) ' Z(1)[1]

in logDMeff(k,Λ).
The Künneth formula presents an important property of the theory, namely

that the logarithmic motive with compact support is �-invariant, that is that

M c(X ×�) 'M c(X)⊗M c(�) 'M c(X)⊗M(�) 'M c(X)

holds for all log smooth fs log schemes X. This is in contrast to the classical
case where taking the product with the classical homotopy interval A1 gives a
shift, i.e.,

M c(X × A1) 'M c(X)(1)[2]

in DMeff(k,Λ). It is also a simple corollary of the Künneth theorem that M c

is (Pn,Pn−1)-invariant.
When generalizing a theory it is of particular interest to examine how

it relates to the original theory. It was shown in [BPØ20] that if k admits
resolution of singularities there is a pair of adjoint functors

ω] : logDMeff(k,Λ) DMeff(k,Λ) : Rω∗,

producing an equivalence of triangulated categories

logDMeff
prop(k,Λ) ' DMeff(k,Λ), (1)

where logDMeff
prop(k,Λ) is the smallest subcategory of logDMeff(k,Λ) that

is closed under small sums and shift, and generated by all M(X), where
X ∈ lSm/k and the underlying scheme X is proper over k (Theorem 8.2.17 in
[BPØ20]). We also approach the same problem, in which case our main result
is the following generalization of Proposition 8.2.6 in [BPØ20]:

Theorem 0.1.2 (Theorem 3.2.14). Assume that k admits resolution of singular-
ities. Let X be a smooth scheme over k and Y an log smooth fs log scheme over
k. Then for every integer i ∈ Z there is an isomorphism

HomlogDMeff(k,Λ)(M(Y )[i],M c(X)) ' HomDMeff(k,Λ)(M(Y − ∂Y )[i],M c(X)).
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0.1. Overview

By calculating the logarithmic motive with compact support of the affine
line, this result provides an affirmative answer to the question raised in Remark
8.2.7 of [BPØ20], which is that

HomlogDMeff(k,Λ)(M(Y )[i],M(X)) ' HomDMeff(k,Λ)(M(Y − ∂Y )[i],M(X))

does not in general hold for smooth non-proper schemes X since we in general
do not have the equivalence M c(X) 'M(X). Moreover, this result enables us
to prove that the unit of the above adjunction induces an isomorphism

M c(X)→ Rω∗ω]M
c(X)

where X ∈ Sm/k is a scheme with trivial log structure. This is furthermore used
to prove a generalization of the classical duality theorem ([MVW11, Theorem
16.24]) in logDMeff(k,Λ).

Theorem 0.1.3 (Duality, Theorem 3.2.17). Assume that k admits resolution of
singularities. If T ∈ lSm/k is of pure dimension d over k, X ∈ Sm/k, and
Y ∈ lSm/k, then there are isomorphisms

Hom(M(Y × T )[n],M c(X)) ' Hom(M(Y )(d)[2d+ n],M c(X × (T − ∂T )))

in logDMeff(k,Λ) for every n ∈ Z.

Using the majority of our established results, our theory culminates in a
generalization of the cancellation theorem (Theorem 16.25 in [MVW11]) to the
setting of logarithmic motives.

Theorem 0.1.4 (Cancellation, Theorem 3.2.18). Assume that k admits resolu-
tion of singularities. For X and Y in lSm/k there is an isomorphism

HomlogDMeff(k,Λ)(M(Y ),M(X)) ' HomlogDMeff(k,Λ)(M(Y )(1),M(X)(1)).

In Section 3.3 we introduce a new homology and cohomology theory for
logarithmic schemes, namely motivic cohomology with compact support

Hn,i
lc (X,Λ) := HomlogDMeff(k,Λ)(M c(X),Λ(i)[n]),

and (Borel–Moore) motivic homology with compact support

H lBM
n,i (X,Λ) := HomlogDMeff(k,Λ)(Λ(i)[n],M c(X)).

We then define a logarithmic analogue of Borel–Moore fundamental classes.
Motivated by the equivalence between Borel–Moore homology and Bloch’s
higher Chow groups, we give a new definition for logarithmic schemes

lCHi(X,m) := CHi(X − ∂X,m),

and establish some of its basic properties. In contrast to previous generalization
of Chow groups to logarithmic geometry ([Bar20]), this definition is �-invariant.

We conclude by giving some open problems and speculations. Many of
these questions originates in our driving belief that classical results should have
logarithmic analogues, but we have yet to find the correct statements for several
such results. For the sake of simplicity we have not carried out the theory in
its fullest generality, but this section discusses possible developments in that
regard.
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0.2. Outline

0.2 Outline

The thesis is organized into three chapters and one appendix which concern the
following:

Chapter 1 introduces Voevodsky’s category of derived motives DMeff(k,Λ)
and the motive with compact supportM c(X). Most of this chapter is concerned
with examining results about the motive with compact support which we will
discuss in the setting of Chapter 2 in Chapter 3.

Chapter 2 reviews the theory of logarithmic motives as developed in [BPØ20].
It is within this framework that we develop a theory of motives with compact
support in Chapter 3. In this chapter we study the properties of logDMeff(k,Λ)
for later reference and as a way of introducing notation. As [BPØ20] sets the
scene, we heavily rely on this paper and its techniques. Indeed, many of our
results, and proofs, are generalizations of the results presented in this work.

Chapter 3 explores the theory of logarithmic motives with compact support,
and this chapter thus presents our contribution.

The chapter begins similar to Chapter 16 in [MVW11] by introducing finite
logarithmic correspondences with compact support. After having settled basic
properties, we use them to define the logarithmic motive with compact support.
This construction is our main focus, and the rest of this chapter is devoted
to study its properties. Having the logarithmic motive with compact support
at hand we define two new cohomology theories for log schemes: motivic
cohomology with compact support and Borel–Moore motivic homology for
log schemes, and provide a new �-invariant definition of Bloch’s higher Chow
groups for log schemes. We have strived to seek logarithmic analogues of the
results presented in Chapter 1, but for several important results these questions
remain open. We therefore conclude this chapter with a discussion of open
problems and further developments.

Appendix A provides a brief introduction to logarithmic algebraic geometry.
Since logarithmic geometry is not in the standard curriculum, our goal has been
to make it possible for a reader familiar with algebraic geometry to follow our
arguments by looking up definitions and preliminary results when necessary.

0.3 Notation and Terminology

Fix a perfect field k, Λ a unital commutative ring, we then let Sm/k de-
note the category of smooth and separated schemes of finite type over k and
Psh(Sm/k,Λ) the category of presheaves of Λ-modules on Sm/k with coeffi-
cients in Λ. By convention, all log schemes (Definition A.2.4) are separated and
of finite type over Spec k, where Spec k is the point equipped with the trivial
log structure. The category of all fs (Definition A.1.7 and Definition A.1.7) log
schemes we denote by lSch/k, while the category of all fs log smooth (Defini-
tion A.2.18) log schemes over k we denote by lSm/k. For a log scheme X we
let X denote the underlying scheme, and SmlSm/k denote the full subcategory
of lSm/k whose underlying scheme X is smooth over k. If (X,OX) is a scheme,
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0.3. Notation and Terminology

and we refer to OX as a sheaf of monoids, we will use its multiplicative struc-
ture. For a log scheme X we let ∂X denote the points of X with non-trivial
log structure. If X is an fs log scheme, the complement of the log structure
X − ∂X will be an open subset of X, and there is a canonical open immersion
X − ∂X → X.

We use the notation
� := (P1,∞),

which we call “box”, and let

�
n := ((P1)n,∞× P1 × · · · × P1 + P1 ×∞× · · · × P1 + P1 × · · · × P1 ×∞)

and AN := (A1, 0). Considering the pair of projective spaces (Pn,Pn−1) we will
always consider Pn−1 as a hyperplane in Pn. For convenience, we will write
(X,Z1 + · · · + Zr) for ((X,Zs+1 + · · · + Zr), Z1 + · · · + Zs) when adding the
divisor Z1 + · · ·Zs to the log structure.

We usually refer to the classical theory as the theory of motivic homotopy
theory on schemes, while we reserve the term general theory for motivic
homotopy theory on log schemes.

6



CHAPTER 1

Motivic Homotopy Theory

Motivic homotopy theory began as an attempt by Alexander Grothendieck in the
60’s to unify the variousWeil cohomology theories on smooth projective algebraic
varieties in what should be the categoryMk of the so called pure motives. This
attempt remains largely conjectural even to this day, as Grothendieck proved
its existence equivalent to the unsolved standard conjecture on algebraic cycles.

In order to express this kinship of these different cohomological the-
ories, I formulated the notion of “motive” associated to an algebraic
variety. By this term I want to suggest that it is the “common
motive” (or “common reason”) behind this multitude of cohomolo-
gical invariants attached to an algebraic variety, or indeed, behind
all cohomological invariants that are a priori possible.
– A. Grothendieck 1986, Récoltes et Semailles (english translation).

In the late 90’s there were given several constructions by Hanamura, Levine,
and Voevodsky, as to what should be the derived category of the category
of motives. They were all found to be equivalent ([VSF00]), and the field of
motivic homotopy theory usually refers to the study of these constructions,
their properties, and related areas. However, Voevodsky’s construction remains
the most central for our purposes. Its construction and properties is therefore
the main subject of this chapter. For this work, and its applications to his proof
of the Milnor conjecture, Voevodsky was awarded the Fields medal in 2002 1.
Later, Voevodsky and his collaborators generalized the theory and utilized it in
the spectacular proof of the Bloch-Kato conjecture (also known as the norm
residue isomorphism theorem) ([Voe11]).

In general, Motivic homotopy theory attempts to apply algebraic topological
methods in algebraic geometry, creating a homotopy theory on the category
of (smooth) schemes over k. Since there is no a priori unit interval in Sm/k,
we first have to find a suitable replacement. Here Voevodsky chooses the affine
line A1, and initiates the study of A1-homotopy theory. As the affine line is not
compact, we will in Chapter 2 instead choose a suitable compactification of A1.
However this forces us into the realm of logarithmic geometry, a generalization
of algebraic geometry.

1The original citation reads: "He defined and developed motivic cohomology and the
A1-homotopy theory, provided a framework for describing many new cohomology theories for
algebraic varieties. He proved the Milnor conjectures on the K-theory of fields."
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1.1. Construction of DMeff(k,Λ)

In this chapter we review the basic theory of motivic homotopy theory, with
a special focus on motives with compact support. The basic theory will be
generalized to the logarithmic setting in Chapter 2, and we will generalize the
theory of motives with compact support to the logarithmic motivic setting in
Chapter 3.

1.1 Construction of DMeff(k, Λ)

We here give a brief description of the construction of Voevodsky’s category of
derived motives DMeff(k,Λ).

The category of smooth schemes does not have all the necessary categorical
properties in order to do homotopy theory on it. Especially, it does not have
all colimits.

Example 1.1.1. The colimit (or pushout) of the diagram

∗ ←− {0, 1} −→ A1

is isomorphic to the node V (y2 − x2(x− 1)) ⊂ A2 which is not smooth at (0, 0),
hence it is not in Sm/k.

We must therefore find another category of "spaces" with good categorical
properties into which the category of smooth schemes embeds. In particular, we
want our category of spaces to have all small limits and colimits and internal
Hom-objects. This is analogous to the case in algebraic topology where one
restricts the theory to weak Hausdorff compactly generated spaces since the
category of topological spaces is not Cartesian closed.

Grothendieck found a way to formally add all small limits and colimits,
namely passing to presheaves and embed the original category by the Yoneda-
embedding.

Definition 1.1.2 (The Yoneda embedding, 1954). Let C be a small category, Ab
be the category of abelian groups, and let Psh(C) := [Cop,Ab] (or into Set)
denote the functor category of contravariant functors from C to the category
Ab. An object in Psh(C) is called a presheaf on C with values in Ab. An
object X ∈ C defines a presheaf

RX : Cop → Ab

defined by Y 7→ HomC(X,Y ).
The Yoneda embedding is the functor C → Psh(C) that associates to any

object X ∈ ob(C) the representable presheaf RX .

The important thing is that the Yoneda embedding is full and faithful
(Theorem 1.7.4 in [Yek19]) and that Psh(C), being a locally small category, has
all small limits and colimits (Corollary 2.4.3 in [KS06]).

Choosing the category Psh(Sm/k) as the category of spaces has a disad-
vantage since the Yoneda embedding does not preserve pushout squares. That
is, if X = U ∪V is a Zariski covering of a scheme X by two Zariski open subsets

8



1.1. Construction of DMeff(k,Λ)

U and V , then there is a pullback square in Sm/k:

U ∩ V U

V X.

However, the corresponding square of representable presheaves

RU∩V RU

RV RX .

is not a pushout square if X is not equal to U or V . We therefore introduce
the Nisnevich topology as having the primary purpose of forcing such squares
to be pushout squares. The definition of the Nisnevich topology is originally
due to Nisnevich in [Nis89].

Definition 1.1.3 ([Voe98, Definition 2.1]). An elementary distinguished (Nis-
nevich) square in Sm/k is a pullback diagram of the form

U ×X V V

U X

p

i

such that p is an étale morphism, i is a Zariski open embedding and

p−1(X − U)→ X − U

is an isomorphism (where X − U is equipped with the reduced induced scheme
structure).

Example 1.1.4 ([AE17, Example 3.41]). If k is a field of characteristic different
from 2 and a ∈ k a non-zero element, then the square

p−1(A1−{a}) A1−{0}

A1−{a} A1,

p

i

where p is the étale map given by x 7→ x2 and i is the inclusion, is an elementary
distinguished square if and only if a is a square in k.

Definition 1.1.5. The Nisnevich topology on Sm/k is the Grothendieck topology
generated by all elementary distinguished squares.

Every Zariski open covering X = U ∪ V gives rise to an elementary distin-
guished square, hence the Nisnevich topology is finer then the Zariski topology.
From Example 1.1.4 we see that not all étale coverings give rise to elementary
distinguished squares, hence the Nisnevich topology is coarser than the étale
topology. Concluding, we have

Zariski topology ⊂ Nisnevich topology ⊂ Étale topology.

9



1.1. Construction of DMeff(k,Λ)

Definition 1.1.6 ([Voe98, Definition 2.2]). A presheaf F of sets on Sm/k is
called a sheaf in the Nisnevich topology if the following two conditions are
satisfied:

(i) F (∅) = pt

(ii) For any elementary distinguished square, the square of sets

F (X) F (V )

F (U) F (p−1(U))

p

i

is a pushout square, i.e., F (X) = F (U)×F (p−1(U)) F (V ).

Z

X

Y

Figure 1.1: An (complic-
ated) elementary corres-
pondence Z from X to Y .

Let Shv(Sm/k) denote the full subcategory of
Nisnevich sheaves in Psh(Sm/k). This category
has all small limits and colimits (Theorem 2.3 in
[Voe98]), and internal Hom-objects. It is possible
to take this as the category of spaces, which (forcing
étale descent instead of Nisnevich descent) leads
to Ayoub’s construction of DAét(k,Λ) in [Ayo07]
(or in [Ayo14] for an English version). However,
we will follow Voevodsky and introduce finite cor-
respondences which enrich the category of smooth
schemes with an extra structure. This extra struc-
ture will be particularly useful in computing mo-
tivic cohomology, and provides important results
in the category of the so called “derived motives”
DMeff(k,Λ). However, we note that the category
DAét(k,Λ) is simpler than DMeff(k,Λ), and that
this simplification has its own advantages and dis-
advantages.

The motivation for considering correspondences (apart from the fact that
many cohomology theories have transfers) is that we want to have a way of
describing a homotopy between maps similar the case in topology. Taking A1

as our unit interval, we have the “naive” definition:

Definition 1.1.7. Two maps f, g : X → Y of (smooth) schemes are called
elementary A1-homotopic if there exists a map

H : X × A1 → Y

such that H ◦ i0 = f and H ◦ i1 = g, where i0 (resp. i1) is the inclusion of {0}
(resp. {1}) in A1 .

In contrast to the case in topology, this is not an equivalence relation as it
is not transitive. However, enriching the category Sm/k with correspondences
acting as multivalued functions into a new category Cor /k, this relation becomes
transitive. Hence it is preferable to include correspondences as morphisms in
order to get a well behaved homotopy theory on schemes.

10



1.1. Construction of DMeff(k,Λ)

Definition 1.1.8 ([MVW11, Definition 1.1]). Let X be a smooth scheme over k
and Y any separated scheme over k. An elementary correspondence from X to
Y is a closed irreducible subset Z ⊂ X × Y that is finite and surjective over a
component of X.

Let Cor(X,Y ) be the free abelian group generated by elementary corres-
pondences. An element of Cor(X,Y ) is called a finite correspondence.

For X ∈ Sm/k, let Λtr(X) denote the representable presheaf with transfer
that sends U ∈ Sm/k to the group Cor(U,X). It is a Nisnevich sheaf with
transfers by Lemma 6.2 in [MVW11].

Example 1.1.9. For every morphism f : X → Y , the graph Γf is an elementary
correspondence from X to Y . We may think of correspondences as multivalued
functions or “wrong way” maps. See Figure 1.1

Definition 1.1.10. We let Cor /k be the additive category whose objects are
smooth separated schemes over k and whose morphisms are finite correspond-
ences.

Composition of finite correspondences is constructed such that Cor /k
contains Sm/k (see Chapter 1 in [MVW11]).

Definition 1.1.11. A presheaf with transfers F is a contravariant additive functor

Cor /kop → Ab .

We say that F is a Nisnevich sheaf with transfers if the underlying presheaf
on Sm/k is a sheaf in the Nisnevich topology. Let Shv(Cor /k,Λ) denote the
category of Nisnevich sheaves of Λ-modules with transfers. It is this category
that we take as "Spaces".

The construction of DMeff(k,Λ) is straightforward at this point. We let
C∗(Shv(k,Λ)) be the category complexes of Nisnevich sheaves of Λ-modules
with transfers. Then DMeff(k,Λ) is the homotopy category of C∗(Shv(k,Λ))
with respect to the A1-local descent model structure ([BPØ20, p. 80]).

An alternative construction is as follows ([MVW11, p. 109]): Let

D(Shv(k,Λ))

be the derived category of Nisnevich sheaves of Λ-modules with transfers, and
let τA1 be the smallest thick subcategory in D(Shv(k,Λ)) that contains the
morphisms Λtr(X × A1)→ Λtr(X) (induced by projections X × A1 → X) and
is closed under direct sums. We then define DMeff(k,Λ) as the Verdier quotient
([Ver96]) of D(Shv(k,Λ)) by τA. That is, DMeff(k,Λ) is the localization
D(Shv(k,Λ))[W−1

A ], where W−1
A is the class of maps in D(Shv(k,Λ)) whose

cone is in τA.

Definition 1.1.12. For X ∈ Sm/k we define the motive of X, denoted M(X),
as the image of X in DMeff(k,Λ). By abuse of notation, we let Λ denote
M(Spec(k)), which is the unit for the tensor-structure ⊗tr

L on DMeff(k,Λ). If
f : X → Y is a morphism in Sm/k, we define M(Y f→ X), or simply M(f), as
the cone in DMeff(k,Λ) associated to the map of complexes Λtr(Y )→ Λtr(X)
in C∗(Shv(k,Λ)).

We then have the following maps of categories

11



1.1. Construction of DMeff(k,Λ)

M(−) : Sm/k Shv(k,Λ) C∗(Shv(k,Λ)) DMeff(k,Λ).

Remark 1.1.13. We note that the construction of Voevodsky was initially carried
out for bounded above chain complexes (See Chapter 14 in [MVW11]). The
generalization to unbounded chain complexes was carried out in [CD19].
Remark 1.1.14. We present the construction of DMeff(k,Λ) in the Nisnevich
topology. The same argument works for the étale topology as well, but for
our purposes the construction given by the Nisnevich topology is more central.
It is in a similar topology we present the generalization of this construction
to logarithmic geometry (although a generalization for the étale topology to
logarithmic geometry exists as well).
Remark 1.1.15. The construction presented here can be generalized to work for
many base schemes S, especially Noetherian schemes. The category DAét(S,Λ)
becomes equivalent to DMét(S,Λ), when S has dimension greater than or equal
to 1 (Theorem 4.4 in [Ayo14]).

Voevodsky goes on to define various versions of DMeff(k,Λ), such as
DM(k,Λ) (by inverting the Tate-motive Λ(1)), DMeff

gm(k,Λ) and DMgm(k,Λ).
However these are not central to the thesis and are therefore left out. We
instead refer the reader to [MVW11].

Properties of DMeff(k, Λ)
For the convenience of the reader, and for future reference, we briefly survey some
of the properties of DMeff(k,Λ). Many of these properties have a logarithmic
analog. See Section 2.4.

The following list of properties is due to Properties 14.15 in [MVW11].

(i) (Monoidal structure) For every X and Y in Sm/k we have an isomorphism

M(X × Y ) 'M(Y )⊗M(Y ). (1.1)

(ii) (Mayer-Vietoris) For every Zariski open cover U, V of a smooth scheme
X we have a triangle

M(U ∩ V ) M(U)⊗M(V ) M(X) M(U ∩ V )[1] (1.2)

in DMeff(k,Λ).

(iii) (Vector bundles) If E → X is a vector bundle, there is an isomorphism

M(E) M(X).' (1.3)

(iv) (Blow-up triangle) Let X ′ → X be a blow up along a smooth center Z.
Then there is a triangle

M(Z ×X X ′) M(X ′) M(X) M(Z ×X X ′)[1]. (1.4)

12



1.2. Motivic Homotopy Theory with Compact Support

(v) (Gysin triangle) If X and Z are smooth schemes and Z has codimension
c in X, then there is a distinguished triangle

M(X − Z) M(X) M(Z)(c)[2c] M(X − Z)[1]. (1.5)

(vi) (Cancellation) (Under the assumption of resolution of singularities) For
every M,N ∈ DMeff(k,Λ) there is an isomorphism

HomDMeff(k,Λ)(M(1), N(1)) HomDMeff(k,Λ)(M,N).' (1.6)

(vii) (Chow motives) Grothendieck’s category of effective Chow motives embeds
fully faithfully in DMeff(k,Λ), i.e., if X and Y are smooth projective
schemes then there is an isomorphism

HomDMeff(k,Λ)(M(X),M(Y )) ' HomChow(X,Y ) = CHdimX(X × Y ).

1.2 Motivic Homotopy Theory with Compact Support

In this section we introduce the motive with compact support. We will carry
out a similar approach in Chapter 3 where we generalize the theory presented
here to the logarithmic setting of Chapter 2. After presenting the definition,
we survey the properties of motives with compact support and how these effect
the general theory of motives presented above.

Definition 1.2.1 ([MVW11, Definition 16.1]). Let Z be a scheme of finite type
over S such that Z dominates a component of S. We call Z equidimensional of
relative dimension m if for every point s ∈ S, the fibre Zs is either empty or
each of its components has dimension m.

If Y is a scheme of finite type over k and r ≥ 0 an integer, we let Λctr(Y, r)
denote the presheaf with transfers defined as follows. For each smooth scheme
X, we let Λctr(Y, r)(X) denote the free abelian group generated by closed and
irreducible subschemes Z of X × Y that are dominant and equidimensional of
relative dimension r over a component of X.

Given a map S′ → S, the pullback of relative cycles gives a natural map

Λctr(Y, r)(S) −→ Λctr(Y, r)(S′).

The presheaf Λctr(Y, r) is an étale sheaf, and we may construct transfer maps
to make it a étale sheaf with transfers. It is covariant for proper maps and
contravariant for flat maps, if we adjust the dimension index r appropriately.
See Chapter 16 in [MVW11] for details.

The case where r = 0 will be of special interest, and we will denote Λctr(Y, 0)
by Λctr(Y ). From Definition 1.2.1 we then have that Λctr(Y )(X) is the free abelian
group generated by closed irreducible subschemes Z ⊂ X×Y that are dominant
and quasi-finite over a component of X. We call Z a finite correspondence with
compact support from X to Y . Let Corc/k denote the category with the same
objects as Sm/k and morphisms finite correspondences with compact support.

Proposition 1.2.2 ([MVW11, Example 16.2]). If X is a smooth proper scheme
over k, then

Λctr(X) ' Λtr(X).

13



1.2. Motivic Homotopy Theory with Compact Support

Proof. By [Har77, Ex. III.11.2], every closed subscheme Z ⊂ U ×X is proper
over U . Hence it is quasi-finite over U if and only if it is finite over U .

We remind the reader of the following useful description of quasi-finite
morphisms.

Theorem 1.2.3 (Zariski’s Main Theorem, [Sta21, Lemma 37.39.3]). A quasi-
finite morphism between noetherian schemes factors as an open immersion
followed by a finite morphism, that is, if f : Y → X is a quasi finite morphism,
then there a scheme X ′, an open immersion g and a finite morphism h such
that

Y X ′ X.
g

f

h

and f = h ◦ g.

Definition 1.2.4 ([MVW11, Definition 16.13]). For any scheme X we define the
motive of X with compact support, denoted M c(X) as the image of Λctr(X) in
DMeff(k,Λ).

If X is proper, then there is an equivalence

M c(X) 'M(X) (1.7)

by Proposition 1.2.2. In general, the inclusion Λtr(X) ⊂ Λctr(X) induces a
canonical morphism

M(X) −→M c(X).

Example 1.2.5. We have the following identities,

M c(An) ' Λ(n)[2n]

by Corollary 4.1.8 in [Voe00], and

M c(Pn) 'M(Pn) '
n⊕
i=0

Z(i)[2i]

by Corollary 15.5 in [MVW11].

Most of the following results assume that the ground field k admits resolution
of singularities. We therefore provide the definition.

Definition 1.2.6 ([BPØ20, Definition 7.6.3]). The field k admits resolution of
singularities if the following conditions hold:

(i) For every integral scheme X of finite type over k, there is a proper
birational morphism Y → X of schemes over k such that Y is smooth.

(ii) Let f : Y → X be a proper birational morphism of integral schemes over
k such that X is smooth, and let Z1, . . . , Zr be smooth divisors forming
a strict normal crossing divisor on X. Suppose that

f−1(X − (Z1 ∪ · · · ∪ Zr))→ X − (Z1 ∪ · · · ∪ Zr)

14



1.2. Motivic Homotopy Theory with Compact Support

is an isomorphism. Then there is a sequence of blow-ups

Xn
fn−1→ Xn

fn−2→ · · · f0→ X0 = X

along smooth centers Wi ⊂ Xi such that

(i) the composition Xn → X factors through f .
(ii) the Wi are contained in the preimage of Z1 ∪ · · · ∪ Zr in Xi.
(iii) the Wi have strict normal crossings with the sum of the strict

transforms of

Z1, . . . , Zr, f
−1
0 (W0), . . . , f−1

i−1(Wi−1)

in Xi.

Condition (i) is satisfied if k is perfect. If k has characteristic 0, then
condition (i) is satisfied by Main Theorem I in [Hir64] and condition (ii) is
satisfied by Main theorem II in [Hir64].

One of the most important theorems regarding the motive with compact
support is the localization theorem stated below. As a corollary we get a
Künneth formula and a Mayer-Vietoris sequence, and it is used in proving
important theorems such as Duality and Cancellation.

Theorem 1.2.7 (Localization, [MVW11, Theorem 16.15]). Assume that k admits
resolution of singularities. Assume that i : Z → X is a closed immersion with
open complement j : U → X. Then there is a distinguished triangle

M c(Z) M c(X) M c(U) M c(Z)[1].i∗ j∗ (1.8)

As a consequence we get a Kunneth formula:

Theorem 1.2.8 (Künneth formula, [MVW11, Corollary 16.16]). Assume that k
admits resolution of singularities. For every scheme X and Y there is a natural
isomorphism

M c(X × Y ) 'M c(X)⊗M c(Y ).

The logarithmic analogue of this result (Theorem 3.2.12) is an important
result of this thesis. Since we did not find a complete proof of this classical
result in the literature we have provided one below.

Proof. When X and Y are smooth and proper this is simply (1.1).
For the case of X being proper (and not smooth) and Y smooth and proper,

we blow up the singular locus Z of X and Z ′ of X × Y . We then, by Theorem
13.26 in [MVW11], get the blow-up triangle

M(Z ×X X ′) M(Z)⊕M(X ′) M(X) M(Z ×X X ′)[1] (1.9)

where X ′ = BlZ X is the blow up of X with center Z with the exceptional
divisor Z ′ = Z ×X X ′. Moreover, we also have a blow-up triangle

M(E) M(Z × Y )⊕M(B) M(X × Y ) M(E)[1],

15



1.2. Motivic Homotopy Theory with Compact Support

where B = BlZ×Y (X×Y ) is the blow up of X×Y along Z×Y with exceptional
divisor E = (Z × Y )×X×Y B. The axioms of the tensor triangulated structure
ensures that tensoring (1.9) with M(Y ) is still a distinguished triangle, and we
get a diagram
M(Z ×X X ′)⊗M(Y ) (M(Z)⊕M(X ′))⊗M(Y ) M(X)⊗M(Y ) (M(Z ×X X ′)[1])⊗M(Y )

M(E) M(Z × Y )⊕M(B) M(X × Y ) M(E)[1].

We now apply (1.1) four times in order to conclude that

M(X)⊗M(Y ) '−→M(X × Y )

is an isomorphism by the five-lemma. Using that X and Y are proper we have
obtain the desired isomorphism M c(X)⊗M c(Y ) 'M c(X × Y ). Applying the
argument once more we prove the statement when Y is not necessarily smooth.

If X is any scheme and Y is proper, we compactify X ↪→ X, apply the
localization sequence, and use the five-lemma on the diagram

M c(∂X)⊗M c(Y ) M(X)⊗M c(Y ) M c(X)⊗M c(Y ) (M c(∂X))[1]⊗M c(Y )

M c(∂X × Y ) M c(X × Y ) M c(X × Y ) M c(∂X × Y )[1].

' ' '

For the general case we apply the above argument to Y as well.

The motive with compact support relates importantly with the general
motive in the following theorem.

Theorem 1.2.9 (Duality, [FV00, Theorem 8.2]). Assume that k admits resolution
of singularities. Let T be a smooth scheme of dimension d. Then for every X
and Y in Sch/k there are canonical isomorphisms between

HomDMeff(k,Λ)(M(X × T ),M c(Y ))

and
HomDMeff(k,Λ)(M(X)(d)(2d+ n),M c(T × Y ))

in DMeff(k,Λ) for every n ≥ 0.

One important consequence of Theorem 1.2.9 is the following.

Theorem 1.2.10 (Cancellation, [Voe10]). Let k be a perfect field and M,N two
objects in DMeff(k,Λ). Then tensoring with Z(1) induces an isomorphism

HomDMeff(k,Λ)(M,N) '−→ HomDMeff(k,Λ)(M(1), N(1)).

In Theorem 3.2.18 we will prove a generalization of this theorem. Since it is
interesting to see how the two proofs relate, we have included the original proof
of Theorem 16.25 in [MVW11] below.

Proof. LetM c(X) andM c(Y ) be the motives of two smooth and proper schemes
X and Y . We have isomorphisms

Hom(M(X)[n],M(Y ))
(1.7)
' Hom(M(X)[n],M c(Y ))
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1.2. Motivic Homotopy Theory with Compact Support

1.1' Hom(M(X × A1)[n],M c(Y ))
1.2.9' Hom(M(X)(1)[2 + n],M c(Y × A1))
1.2.5' Hom(M(X)(1)[2],M c(Y )(1)[2])
1.1' Hom(M(X)(1)[2],M(Y )(1)[2]),

where all Hom groups are taken in DMeff(k,Λ). Now removing the shifts yields
the desired isomorphism, and an examination of the involved isomorphisms
shows that the isomorphism is induced by tensoring with Z(1). Since these
motives generate DMeff

gm(k,Λ), this argument shows that the statement is true
for all M,N ∈ DMeff

gm(k,Λ). Furthermore, since

HomDMeff(k,Λ)(M,⊕αNα) ' ⊕α HomDMeff(k,Λ)(M,Nα)

and
HomDMeff(k,Λ)(⊕αMα, N) ' ⊕α HomDMeff(k,Λ)(Mα, N),

and using that DMeff(k,Λ) is generated from DMeff
gm(k,Λ) by shifts and direct

sums, this allows us to conclude for all objects of DMeff(k,Λ).

The motive with compact support provides another characterization of the
classical motive as a sort of dualizing object.

Proposition 1.2.11 ([MVW11, Example 20.11]). Let X ∈ Sm/k of dimension
d. Then there is an isomorphism

M c(X) 'M(X)∗(d)[2d] := RHom(M(X),Z(d))[2d].

We may use the motive with compact support to define new representable
homology and cohomology theories in a similar way as we define motivic
homology and cohomology (Definition 14.17 in [MVW11]).

Definition 1.2.12 ([MVW11, Definition 16.20]). For every scheme X of finite
type over k, we define motivic cohomology with compact support as

Hn,i
c (X,Λ) := HomDMeff(k,Λ)(M c(X),Λ(i)[n]).

Similarly, we define (Borel–Moore) motivic homology with compact support as

HBM
n,i (X,Λ) := HomDMeff(k,Λ)(Λ(i)[n],M c(X)).

Borel–Moore motivic cohomology has the important property of describing
higher Chow groups for non-smooth schemes (Proposition 3.3.6).

An often useful result is the following induced morphism.

Proposition 1.2.13 ([Voe00, Corollary 4.2.4]). If f : Y → X is a flat equidi-
mensional morphism of relative dimension n, and if k admits resolution of
singularities, there is a canonical morphism

f∗ : M c(X)(n)[2n] −→M c(Y ).

Using this result we can construct fundamental classes in Borel–Moore
homology.
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1.2. Motivic Homotopy Theory with Compact Support

Construction 1.2.14 ([Nie06, p. 720]). If X is a scheme of finite type over k,
the structure morphism p : X → Spec k is a flat morphism of relative dimension
equal to the dimensional of X. Using Proposition 1.2.13 we get a morphism

clX := p∗ : Z(n)[2n]→M c(X)

which we call the fundamental class of X, which in view of Definition 1.2.12
defines a homology class in HBM

2n,n(X). Moreover, if j : Y → X is a closed
subscheme of dimension m, the composition

Z(n)[2n] clY→ M c(Y ) j∗→M c(X)

represents the Borel–Moore fundamental class of Y in X.
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CHAPTER 2

Logarithmic Motivic Homotopy
Theory

In their fundamental work on motives of logarithmic schemes Binda, Park,
and Østvær initiate in [BPØ20] a theory of logarithmic motivic homotopy
theory. Their motivation originates in the observation that there are many
“phenomena” that are not A1-invariant, and hence is not captured by the
classical theory. Examples of such “phenomenas” include Hodge cohomology
and cyclic homology.

The transition from algebraic geometry to logarithmic algebraic geometry
comes naturally in this setting from the need to describe a compactification of A1

while at the same time remembering the extra structure of the boundary point.
By compactifying A1 we get a homotopy theory similar to the ordinary case
of algebraic topology in which case the object that parametrized homotopies,
namely the unit interval, is both contractible and compact.

This chapter introduces logarithmic motivic homotopy theory on which we
will build our theory of logarithmic motives with compact support in Chapter 3.
As the fundamental work of [BPØ20] sets the scene, we heavily rely on this
paper, and therefore cite it extensively.

Figure 2.1: Topological realization of A1, �, and P1. We view A1 as a (real)
sphere punctured at infinity, and � as a punctured sphere with an infinitesimal
boundary at infinity, and P1 corresponding to the sphere S2.
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2.1. Finite logarithmic correspondences

2.1 Finite logarithmic correspondences

We start with an analogue of finite correspondences (Definition 1.1 in [MVW11])
in the logarithmic setting.

Definition 2.1.1 ([BPØ20, Definition 2.1.1]). For X and Y in lSm/k, an ele-
mentary log correspondence Z from X to Y consists of

(i) an integral closed subscheme Z of X × Y that is finite and surjective over
a connected component of X, and

(ii) a morphism ZN → Y of fs log schemes (A.2.4), where ZN denotes the fs
log scheme whose underlying scheme is the normalization of Z and whose
log structure is induced by the one on X. More precisely, if p : ZN → X
denotes the induced scheme morphism, then the log structureMZN is
given as p∗logMX .

A finite log correspondence from X to Y is a formal sum
∑
niZi of elementary

log correspondences from X to Y . We let lCor(X,Y ) denote the free abelian
group generated by finite log correspondences. Let lCor/k denote the category
with the same objects as lSm/k and morphisms finite log correspondences.

Composition of finite log correspondences α ∈ lCor(X,Y ) and β ∈ lCor(Y, Z)
is given by first defining the underlying scheme (similar to the case of finite
correspondences), and then equipping it with a fitting log structure. Making the
log structure compatible is the main reason for considering the second condition
in the definition of elementary log correspondences. Indeed, this condition is the
minimal condition we can impose on the log structure to make the projection
Z → X a strict morphism. This construction of the composition is non-trivial,
but described in detail in the proof of Lemma 2.3.3 in [BPØ20]. We note that
if the log schemes have trivial log structure, then the composition agrees with
the case of finite correspondences.

When X is log smooth, and ∂X denotes the set of points og X with non-
trivial log structure, the complement X − ∂X is smooth and open and there is
an open immersion X − ∂X → X. Note that we have a faithful functor

γ : lSm/k −→ lCor /k (2.1)

that sits in the commutative diagram

lSm/k lCor /k

Sm/k Cor /k.

γ

ω ω

γ

(2.2)

where γ is the functor X 7→ X and (f : X → Y ) 7→ Γf , and ω is the functor
X → X − ∂X and f 7→ f.

2.2 Topologies on fs log schemes

Definition 2.2.1 ([Par19, Definition 7.2]). A Cartesian square of fs log schemes
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2.2. Topologies on fs log schemes

Q =
Y ′ Y

X ′ X

g′

f ′ f

g

is a

(i) Zariski distinguished square if f and q are open immersions.

(ii) Strict Nisnevich distinguished square if f is strict (A.2.5) étale, g is an
open immersion, and f induces an isomorphism

f−1(X − g(X ′)) ∼−→ X − g(X ′)

with respect to the reduced scheme structure.

(iii) Dividing distinguished square if Y ′ = X ′ = ∅ and f is a surjective proper
log étale monomorphism, i.e., a log modification (A.3.5).

Associated to the Zariski distinguished squares (resp. strict Nisnevich
distinguished squares) we have the corresponding Zariski cd-structure (resp.
Nisnevich cd-structure) which gives rise to the Zariski topology (resp. strict
Nisnevich topology). We let Zar (resp. sNis) be shorthand for the Zariski
topology (resp. strict Nisnevich topology).

The dividing Zariski cd-structure (resp. dividing Nisnevich cd-structure) is
the union of the Zariski (resp. strict Nisnevich) topology and the dividing cd-
structures. We refer to the associated topology as the dividing Zariski topology
(resp. dividing Nisnevich topology). We let dZar (resp. dNis) be shorthand for
the dividing Zariski topology (resp. dividing Nisnevich topology).

Remark 2.2.2. Every distinguished Nisnevich square of schemes is a strict Nis-
nevich distinguished square. Moreover, for every strict Nisnevich distinguished
square Q the induced square Q of the underlying schemes

Y ′ Y

X ′ X

g′

f ′ f

g

is a distinguished Nisnevich square of schemes since f and g are strict.
Remark 2.2.3. By the above remark we see that the strict Nisnevich topology on
log schemes generalizes the Nisnevich topology on schemes. However, in the log
setting we also want to consider the dividing topology, and create the dividing
Nisnevich topology. The reason for this is that we want to replace the classical
Tate twist Z(1) := M(Spec k → Gm)[−1] with M(Spec k → (P1, 0 +∞))[−1],
where (P1, 0 +∞) is the compactification of Gm. The problem then is that the
ordinary multiplication morphism

m : Gm×Gm −→ Gm

does not extend to a morphism

m : (P1, 0 +∞)× (P1, 0 +∞) −→ (P1, 0 +∞).
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To remedy this, we can instead consider the blow-up of (P1, 0+∞)× (P1, 0+∞)
at (0,∞) + (∞+ 0) to get a map

m′ : (Bl(0,∞)+(∞+0)(P1×P1), H1 +H2 +H3 +H4 +E1 +E2) −→ (P1, 0 +∞),

and use the dividing topology to identify it with (P1, 0 +∞)× (P1, 0 +∞).

Example 2.2.4. The cartesian squares

An−0 (Bl0 An, E)

Pn − 0 (Bl0Pn, E)

(2.3)

and
(Bl0 An, E) (Bl0Pn, E)

An Pn

(2.4)

where E denotes the exceptional divisor, are examples of strict Nisnevich
distinguished squares. The second one corresponds to the classical Nisnevich
distinguished square

Gm A1

A1 P1,

which is responsible for the A1-weak equivalence

P1 ' A1 /(A1−0)

in DMeff(k,Λ).

2.3 Sheaves with logarithmic transfers

Definition 2.3.1 ([BPØ20, Definition 4.1.1]). A presheaf of Λ-modules with log
transfers is an additive presheaf of Λ-modules on the category of finite log
correspondences lCor /k. We denote the category of all presheaves of Λ-modules
with log transfers by Pshltr(k,Λ). For X ∈ lSm/k, we define Λltr(X) as the
representable presheaf of Λ-modules with log transfers given by

Y 7→ Λltr(X)(Y ) := lCor(Y,X)⊗ Λ.

Let Pshlog(k,Λ) be the category of presheaves of Λ-modules on lSm/k.
There is a pair of adjoint functors

ω : lSm/k Sm/k : λ, (2.5)
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2.3. Sheaves with logarithmic transfers

where ω is the fully faithful functor that assigns the trivial log structure and
λ is the forgetful functor X 7→ X − ∂X. This gives rise to associated adjoint
functors in the sense of [AGV72]

Psh(k,Λ) Pshlog(k,Λ).
λ∗'ω∗

λ]

λ∗'ω]

ω∗

We will use the same notation for the functors between the corresponding chain
complexes

C∗(Psh(k,Λ)) C∗(Pshlog(k,Λ)).
λ∗'ω∗

λ]

λ∗'ω]

ω∗

Definition 2.3.2 ([BPØ20, Definition 4.1.6]). The tensor product of two repres-
entable presheaves with log transfers on lSm/k is defined by

Λltr(X)⊗ Λltr(Y ) := Λltr(X × Y ).

More generally, we define the tensor product of F,G ∈ Pshltr(k,Λ) by

F ⊗G := lim
−→
X,Y

Λltr(X)⊗ Λltr(Y ),

where F and G are colimits of representable sheaves

F ' lim
−→
X

Λltr(X) and F ' lim
−→
Y

Λltr(G).

This gives a symmetric monoidal structure on Pshltr(k,Λ).

Proposition 2.3.3. For every fs log scheme X smooth log smooth over k, the
sheaf with log transfers Λltr(X) is a strict Nisnevich sheaf (or even a strict étale
sheaf).

Proof. See the proof of Lemma 4.4.3 in [BPØ20]. The origin of this argument
dates back to [Voe00].

We have a dNis-sheafication functor a∗dNis and a forgetful functor adNis ∗
forming an adjoint pair

a∗dNis : Pshlog(k,Λ) Shvlog(k,Λ) : adNis ∗.

By abuse of notation, we let

adNis ∗ : Shvltr(k,Λ) −→ Pshltr(k,Λ)

be the inclusion functor, and

γ∗ : Shvltr(k,Λ) −→ Shvlog(k,Λ)

the restriction of the functor γ∗ : Pshltr(k,Λ) −→ Pshlog(k,Λ). We note that
there is an equivalence

γ∗adNis ∗ ' adNis ∗γ∗.
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2.3. Sheaves with logarithmic transfers

We would have hoped at this point that the dNis-sheafication of Λltr(X)
would be a sheaf with transfers in the dividing Nisnevich topology, and that we
could associate lCor(X,Y ) with

HomShvltr(k,Λ)
(
a∗dNisΛltr(Y ), a∗dNisΛltr(X)

)
.

However this is not the case as it is not a dividing Nisnevich sheaf ([BPØ20,
p. 72]).

Nonetheless, it turns out that we ca describe a∗dNisΛltr(Y )(X) with algebraic
cycles by introducing dividing log correspondences.

Definition 2.3.4 ([BPØ20, Definition 4.6.1]). For X and Y in lSm/k we define
an elementary dividing log correspondence Z from X to Y to be a closed
irreducible subscheme such that Z ⊂ X × Y is finite and surjective over an
irreducible component of X together with a morphism

u′ : Z ′ → X ′ × Y

subject to the following set of conditions

(i) The image of the composition Z ′ u
′

→ X ′ × Y → X × Y is Z.

(ii) Z ′N is the normalization of Z.

(iii) The composition Z ′N u′→ X ′ × Y → X ′ is strict.

A dividing log correspondence from X to Y is a formal sum of elementary
dividing log correspondences, and we let lCordiv(X,Y ) be the free abelian group
of dividing log correspondences from X to Y .

We define composition of log correspondences

◦ : lCordiv(X,Y )× lCordiv(X,Y )→ lCordiv(X,Y )

from the identification

lCor(X,Y ) ' HomShvltr(k,Λ)
(
a∗dNisΛltr(Y ), a∗dNisΛltr(X)

)
,

and using the composition in Shvltr(k,Λ).

Remark 2.3.5. We can consider a dividing log correspondence Z ∈ lCordiv(X,Y )
a log correspondence after replacing X by a log modification. See Remark 4.6.2
in [BPØ20].

The reason why we care about dividing log correspondences is due to the
following result.

Proposition 2.3.6 ([BPØ20, Proposition 4.6.3]). For every X and Y in lSm/k
there is an isomorphism

lCordiv(X,Y )⊗ Λ ' a∗dNisΛltr(Y )(X).

Proof. We can associate the group lCordiv(X,Y ) with lCor(X,Y ) after replacing
X by a log modification Y → X. By use of the identification (Lemma 4.4.2 in
[BPØ20]) we have

a∗dNisΛltr(X) ' colim
Y→X

Λltr(Y ),

where Y → X is a log modification of X. This concludes the proof.
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2.4. The category of logarithmic motives

Let Pshdltr(k,Λ) be the category of presheaves of Λ-modules with log trans-
fers on lCordiv and identify Shvdltr(k,Λ) as the full subcategory of Pshdltr(k,Λ)
consisting of the presheaves that are sheaves with log transfers in the divid-
ing Nisnevich topology. Furthermore, let Pshdltr(SmlSm/k,Λ) denote the
category of presheaves of Λ-modules with log transfers on lCordivSmlSm/k and
identify Shvdltr(SmlSm/k,Λ) as the full subcategory of Pshdltr(SmlSm/k,Λ)
consisting of presheaves that are sheaves with log transfers in the dividing
Nisnevich topology.

Proposition 2.3.7. There are equivalences of categories

Shvdltr(k,Λ)
(4.6.6)
' Shvdltr(SmlSm/k,Λ)

(4.7.4)
' Shvltr(SmlSm/k,Λ)

(4.7.5)
' Shvltr(k,Λ).

Proof. The result is a combination of prop. 4.6.6, lemma 4.7.4 and prop 4.7.5
in [BPØ20]. The proof of these results covers the majority of the sections 4.6
and 4.7 in [BPØ20], so we have not included them here.

The following theorem ensures that the sheafication functor a∗dNis respects
log transfers.

Theorem 2.3.8 ([BPØ20, Theorem 4.5.7]). The dividing Nisnevich topology on
lSm/k is compatible with log transfers.

2.4 The category of logarithmic motives

The construction of logDMeff(k,Λ) is straightforward at this point. By abusing
notation we also write � for the projection X ×�→ X onto the first factor.

Definition 2.4.1 ([BPØ20, Definition 5.2.1]). The derived category of effective
log motives logDMeff(k,Λ) is the homotopy category of C∗(Shvltr(k,Λ)) with
respect to the �-local descent model structure (See appendix B in [BPØ20]).

For X in lSm/k, we define the motive of X, denoted M(X) as the image
of a∗dNisΛltr(X) in logDMeff(k,Λ).

Remark 2.4.2. In constructing logDMeff(k,Λ), Proposition 2.3.7 shows that it
is enough to consider smooth fs log schemes log smooth over k as there is an
equivalence

logDMeff(SmlSm/k,Λ) ' logDMeff(k,Λ),
where logDMeff(SmlSm/k,Λ) is the homotopy category of

C∗(Shv(SmlSm/k,Λ))

with respect to the �-local descent model structure.
The following properties follows from the construction.

(i) (Monoidal structure) For every X and Y in lSm/k there is a naturally
induced isomorphism of log motives

M(X × Y ) 'M(X)⊗M(Y ). (2.6)
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2.4. The category of logarithmic motives

Especially, for every X in lSm/k there is a naturally induced isomorphism
of log motives

M(X) 'M(X ×�). (2.7)

(ii) (Mayer-Vietoris) For every strict Nisnevich distinguished square in lSm/k

Y ′ Y

X ′ X

(2.8)

there is a naturally induced homotopy cartesian diagram square of log
motives

M(Y ′) M(Y )

M(X ′) M(X).

(2.9)

(iii) (Log modification) Every log modification f : Y → X of fs log schemes
log smooth over k induces an isomorphism of log motives

M(f) : M(Y )→M(X). (2.10)

Relating the classical theory to this setting we find:

Proposition 2.4.3 ([BPØ20, Proposition 8.2.2]). Assume that k admits resolu-
tion of singularities. For every smooth and proper scheme X over k there is an
equivalence

a∗dNisΛltr(X) ' ω∗Λtr(X)
in logDMeff(k,Λ).

Let logDMeff
prop(k,Λ) be the smallest triangulated subcategory of

logDMeff(k,Λ)

that is closed under small sums and shifts and is generated by all M(X) for
X ∈ lSm/k, where X is proper over k (Definition 5.2.8 in [BPØ20]).

Theorem 2.4.4 ([BPØ20, Theorem 8.2.17]). Assume that k satisfies resolution
of singularities. Then the functor

Rω∗DMeff(k,Λ) −→ logDMeff(k,Λ)

is fully faithful, and whose essential image we can identify with

logDMeff
prop(k,Λ),

i.e., there is an equivalence of triangulated categories

logDMeff
prop(k,Λ) ' DMeff(k,Λ).

We briefly mention the recent paper [BM21] by Merici and Binda where
they show that logDMeff(k,Λ) admits a homotopy t-structure, which induces
the classical homotopy t-structure on DMeff(k,Λ) under the equivalence of
Theorem 2.4.4.
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2.4. The category of logarithmic motives

Definition 2.4.5 ([BPØ20, Definition 7.0.1]). The Tate object in logDMeff(k,Λ)
is

Λ(1) := M(Spec k → P1)[−2],
were Spec k → P1 denotes the 0-section. For n ≥ 0 we Let Λ(n) denote the n-fold
product Λ(1)⊗· · ·⊗Λ(1). We define the n-th Tate twist ofM ∈ logDMeff(k,Λ)
by

M(n) := M ⊗ Λ(n).
We are now in position to generalize the definition of motivic homology and

cohomology (Definition 14.17 in [MVW11]) to the logarithmic setting.

Definition 2.4.6. We define logarithmic motivic cohomology as
Hp,q(X,Λ) := HomlogDMeff(M(X),Λ(i)[n]),

and similarity logarithmic motivic homology as
Hp,q(X,Λ) := HomlogDMeff(Λ(i)[n],M(X)).

In general, for a strictly �-invariant complex F of dividing Nisnevich sheaves
with log transfers, i.e., a complex satisfying

Hi
dNis(X ×�,F) ' Hi

dNis(X,F)
for all X ∈ lSm/k, Proposition 5.2.3 in [BPØ20] provides the following identi-
fication

HomlogDMeff(M(X),F(i)[n]) ' Hi
dNis(X,F).

We also like to mention the following technique to prove representability of a
cohomology theory of schemes or log schemes in logDMeff(k,Λ). We begin by
the (usually easy) generalization of the theory to log schemes in SmlSm/k, and
then extend it further to all log schemes in lSm/k by the following construction.

Construction 2.4.7 ([BPØ20, Construction 5.4.3]). If a complex F of dividing
Nisnevich sheaf is only defined on SmlSm/k, we can naturally extend F to a
complex ι]F on lSm/k by defining

ι]F := colim
Y ∈XSm

div

F(Y ),

where XSm
div denotes the category of log modifications Y → X where Y ∈

SmlSm/k. Then using Proposition 2.3.7 we conclude that
Hi

dNis(X,F) ' Hi
dNis(X, ι]F)

for X ∈ SmlSm/k.

If F is strictly �-invariant, ι]F is too, and we further have the identification
HomlogDMeff(M(X), ι]F(i)[n]) ' Hi

dNis(X,F).

Then proving �-invariance proves representability. However, we can altern-
atively make use of the following theorem.

Theorem 2.4.8 ([BPØ20, Proposition 7.3.1 and Construction 7.8.4]). There is
an equivalence of �-invariant sheaves satisfying dividing Nisnevich descent in
lSm/k and (Pn,Pn−1)-invariance sheaves satisfying strict Nisnevich descent in
SmlSm/k.
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CHAPTER 3

Logarithmic Motives with
Compact Support

In this chapter we develop a theory of logarithmic motives with compact support,
i.e., we generalize the theory of Chapter 1 to the setting of Chapter 2.

In generalizing a theory it becomes of primary interest to develop its prop-
erties and its relation to the original theory. Thus after having established
basic definitions and results, this will be our main focus. In particular, we
will seek logarithmic analogues of the theorems presented in Chapter 1. How-
ever, our theory differs from the original theory in an important way: Using
Theorem 3.2.12 we show that the logarithmic motive with compact support is
homotopy invariant (�-invariant), whereas the classical motive with compact
support is not homotopy invariant (A1-invariant).

This chapter presents our contribution. We provide many new definitions,
and in establishing their properties we indeed get many new results. However,
we rely heavily on the setting of [BPØ20], and many of our arguments are
adaptations or generalizations of the arguments presented there, especially in
Section 3.1. We therefore cite loc. cit. extensively. Several questions remain
unanswered which we have gathered in the end of this chapter. We hope to
continue working on these problems in the future.

3.1 Finite logarithmic correspondences with compact
support

We begin similarly to Chapter 16 in [MVW11] by defining an analogue finite
correspondences with compact support which we use to define the logarithmic
motive with compact support.

Definition 3.1.1. Let Y be any fs log scheme over k and r ≥ 0 an integer. We
define the presheaf Λcltr(Y, r) on lSm/k as follows: For any X ∈ lSm/k we
let Λcltr(Y, r)(X) be the free abelian group with coefficients in Λ generated by
integrally closed subschemes Z ⊂ X × Y such that

(i) Z is dominant and equidimensional of relative dimension r over a com-
ponent of X.

(ii) a morphism ZN → Y of fs log schemes, where ZN denotes the fs log
scheme whose underlying scheme is the normalization of Z and whose
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3.1. Finite logarithmic correspondences with compact support

log structure is induced by the one on X. More precisely, if p : ZN → X
denotes the induced scheme morphism, then the log structureMZN is
given as the pullback log structure p∗logMX , where p∗logMX is the log
structure induced by the prelog structure

f−1(MX)→ f−1(OZN )→ OZN .

Remark 3.1.2. This definition is a rephrasing of the definition of correspondences
with compact support given in Example 16.2 in [MVW11] adapted to logarithmic
algebraic geometry. The first condition is a direct translation of the standard
definition, while the second definition is necessary to construct composition of
log correspondences with compact support. We note that the second condition
is equivalent to the second condition in Definition 2.1.1.
Remark 3.1.3. Given a morphism S′ → S, the pullback of cycles induces a
natural map

Λcltr(X, r)(S)→ Λcltr(X, r)(S′).

Moreover, given a flat morphism f : U → X of relative dimension r, the pullback
of cycles gives a morphism

f∗ : Λcltr(U, n)→ Λcltr(X,n+ r)

by Proposition 3.6.2 in [SV00]. Similarly, if g : Y → X is a proper map of
relative dimension r, the the pushforward of cycles gives a morphism

g∗ : Λcltr(Y,m)→ Λcltr(X,m+ r)

by Proposition 3.6.4 in [SV00].
We will mainly be concerned with the case r = 0, for which we denote

Λcltr(Y, 0) by Λcltr(Y ). The conditions of Definition 3.1.1 then reads that
Λcltr(Y )(X) is the free abelian group with coefficients in Λ generated by in-
tegral closed subschemes Z ⊂ X × Y which are dominant and quasi-finite over
an connected component of X, and satisfying Definition 3.1.1.(ii). We call
elements of Λcltr(Y )(X) finite log correspondences with compact support from X
to Y .

Example 3.1.4. If p : ZN → X and q : ZN → Y denotes the underlying
scheme morphisms, then referring to Definition III.1.1.5 in [Ogu18] the second
condition of Definition 3.1.1 is equivalent to giving a morphism

q∗logMY → p∗logMX .

If we consider the presheaf with log transfers Λcltr(ptN), where ptN is a point
with a non-trivial log structure, it is clear that this is the empty presheaf since
there can be no such morphism q.

Remark 3.1.5. The representable sheaf Λltr(X) is a subsheaf of Λcltr(X) since
the structure morphism associated to U → V are compatible, i.e., the induced
map

Λcltr(X)(U)→ Λcltr(X)(V )

is also the pullback of relative cycles.
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3.1. Finite logarithmic correspondences with compact support

Some properties are immediate:

• Since every finite and surjective closed subset Z ⊂ X × Y is trivially
dominant and quasi-finite, we have lCork(X,Y )⊗ Λ ⊂ Λcltr(Y )(X).

• If Y has trivial log structure, then the condition on the log structure is
automatically satisfied, and Λcltr(Y )(X) = Λctr(Y )(X), where the sheaf
with transfers Λctr(Y ) were defined in Definition 1.2.1.

• If X has trivial log structure, then ZN has trivial log structure, and
ZN → Y factors through Y − ∂Y . Hence Λcltr(Y )(X) = Λctr(X)(Y − ∂Y ).

• If X and Y have trivial log structure, then combining the two last
properties gives

Λcltr(Y )(X) = Λctr(X)(Y ).

We note that all projective schemes are proper (or complete) (Defini-
tion A.2.15). In particular we have that � and Pn are proper. This proposition
justifies the name “compact support”.

Proposition 3.1.6. Let X be an fs log scheme. If X is proper then Λcltr(X) =
Λltr(X).

Proof. A morphism is finite if and only if it is both quasi-finite and proper
([Har77, Exercise III.11.2]).

Since X is proper (A.2.15), the valuative criterion of properness of schemes
([Gro61, p. 7.3.8]) makes it clear that the underlying scheme X is proper. Thus
every closed subset Z ⊂ U ×X is proper over U , so from the statement above
we have that Z is finite, and hence lies in Λltr(X)(U).

Properties of logarithmic sheaves

The following series of lemmas are taken from [BPØ20], to which case we
have generalized them slightly to our setting. They are used to prove Proposi-
tion 3.1.11, which says that a∗dNisΛcltr(X) is a dividing Nisnevich sheaf with log
transfers.

We refer to Definition A.2.7 for the definition of a solid log scheme.

Lemma 3.1.7. Let f : X → Y be a quasi-finite and dominant morphism of fs
log schemes from X to Y . If Y is smooth over k, then X is solid.

Proof. Owing to Lemma 2.2.2 and Lemma 2.2.7 in [BPØ20], it suffices to show
that f is an open morphism. Since Y is normal by Lemma 2.2.8 in [BPØ20],
we conclude that f is universally open by Lemma 37.67.2 in [Sta21].

Lemma 3.1.8. Let X and Y be fs log schemes log smooth over k, and suppose
that Z is a closed subscheme of X×Y . Then there exists at most one elementary
log correspondence with compact support whose underlying scheme is Z.

Proof. Let ZN be the fs log scheme whose underlying scheme is the normaliza-
tion ZN of Z. We equip it with the log structure induced from the canonical
map ZN → Z → X. Letting q : ZN → Y be the induced morphism, we need
to show that there is at most one morphism r : ZN → Y of ls log schemes
such that r = q . By Lemma 2.2.7 in [BPØ20] we have that Y is solid. Since
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3.1. Finite logarithmic correspondences with compact support

ZN is quasi-finite over X, it is solid by Lemma 3.1.7. Hence the log structure
MZN → OZN is injective by Lemma 2.2.5 in [BPØ20]. We are thus in a position
in which we can apply Lemma 2.2.3 in [BPØ20] which shows that there can be
at most one such morphism r.

Lemma 3.1.9. Let X and Y be fs log schemes that are log smooth over k. Then
the homomorphism of abelian groups

Λcltr(Y )(X) −→ Λctr(Y − ∂Y )(X − ∂X)

mapping V to V − ∂V is injective.

Proof. We may assume that X and Y are integral and that

V = n1V1 + . . .+ nrVr

is a finite log correspondence with compact support with r > 0, ni 6= 0, and
that the Vi are all distinct. If V − ∂V = 0, then Vi − ∂Vi = Vj − ∂Vj for some
i 6= j. The closure of Vi − ∂Vi and Vj − ∂Vj in X × Y are equal to Vi and
Vj respectively, hence Vi equals Vj . Applying Lemma 2.3.1 in[BPØ20] this
contradicts the fact that for every closed subscheme Z of X×Y there is at most
one elementary log correspondence with compact support from X to Y whose
underlying scheme is Z. Hence we must have V − ∂V 6= 0 which completes the
proof.

Proposition 3.1.10. Let X ∈ lSm/k. Then Λcltr(X) is a strict étale sheaf.

Proof. We argue similarly as the proof of Proposition 4.5.1 in [BPØ20].
Letting Y1 and Y2 be fs log schemes log smooth over k, we have

Λcltr(X)(Y1 q Y2) = Λcltr(X)(Y1)⊕ Λcltr(X)(Y2).

It therefore suffices to show that the sequence

0→ Λcltr(X)(Y )→ Λcltr(X)(U) (+,−)−→ Λcltr(X)(U ×Y U) (3.1)

is exact for every étale covering p : U → Y .
There is an induced square of Λ-modules

Λcltr(X)(Y ) Λcltr(X)(U)

Λcltr(X − ∂X)(Y − ∂Y ) Λcltr(X − ∂X)(U − ∂U).

The lower horizontal map is injective, as Λcltr(X − ∂X) = Λctr(X − ∂X) is an
étale sheaf by [MVW11, p. 125]. By Lemma 3.1.9, the vertical maps are injective
as well, hence the upper horizontal map is injective.

It remains to show that (3.1) is exact at Λcltr(X)(U). Consider the cartesian
diagram of fs log schemes

(U − ∂U)× (X × ∂X) U ×X

(Y − ∂Y )× (X × ∂X) Y ×X.
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3.1. Finite logarithmic correspondences with compact support

Suppose that W ∈ Λcltr(X)(U) is a log correspondence with compact support
with trivial image in Λcltr(X)(U ×Y U), and consider the finite correspondence
with compact support

W − ∂W ∈ Corc(U − ∂U,X − ∂X).

Since Λctr(X) is an étale sheaf, we may find a finite correspondence

V ′ ∈ Corc(Y − ∂Y,X − ∂X)

that maps to W − ∂W . Define V as the closure of V ′ in Y ×X.
Let u : W → V ×Y U be the induced map between closed subschemes of

U×X. The pullback to (U−∂U)×(X−∂X) is by construction the isomorphism

W − ∂W → (V − ∂V )×(Y−∂Y ) (X − ∂X).

Since p : U → Y is an étale covering, and V − ∂V is dense in Y , we have that

(V − ∂V )×(Y−∂Y ) (U − ∂U)

is dense in V ×Y U . Moreover, W − ∂W is dense in W since u is a closed
immersion. Note that V is quasi-finite over Y by Proposition IV.2.7.1(ii) in
[GJ66], since V ×Y U is quasi-finite over U , and p : U → Y is an étale cover.
The natural induced morphism v : W → V is an étale morphism, since u is an
isomorphism and v is the pullback of p.

Let V N be the fs log scheme whose underlying scheme is V , equipped with
the induced log structure by Y . By Proposition II.11.3.13(ii) in EGA the
underlying product V N ×V W is normal as v is étale. Thus there is a cartesian
square of schemes

WN W

V N V .

The log transfer structure gives a morphism r : WN → X of fs log schemes
over k. By assumption, the two composite arrows in the diagram

WN ×U (U ×Y U)→→WN r→ X

coincide. By Corollary III.1.4.5 in [Ogu18], there is a morphism V N → X of
fs log schemes over k such that the composition WN → V N → X is equal to
X, as p is strict étale morphism. The pair (V , V N )→ X now gives a finite log
correspondence with compact support from X to Y as V is quasi-finite over Y ,
and the pullback of V to U is W .

Proposition 3.1.11. For every X ∈ lSm/k the sheaf a∗dNisΛcltr(X) is a dividing
Nisnevich sheaf with log transfers.

Proof. Since it is a strict Nisnevich sheaf by Proposition 3.1.10, the result
follows from the fact that the dividing Nisnevich topology is compatible with
log transfers (Theorem 4.5.7 in [BPØ20]).
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3.1. Finite logarithmic correspondences with compact support

Dividing logarithmic correspondences with compact support

In general we cannot associate the sheaf Λcltr(Y )(X) with

HomShvltrdNis(k,Λ)(a∗dNisΛcltr(Y ), a∗dNisΛcltr(X))

as it is not a dividing Nisnevich sheaf.
It turns out that we can describe it using algebraic cycles, hence we take

what seemingly is a detour in order to describe it by dividing logarithmic
correspondences with compact support.

Definition 3.1.12. For X and Y in lSm/k, we define an elementary dividing
log correspondence with compact support Z from X to Y as a closed irreducible
subscheme Z ⊂ X × Y that is quasi-finite and dominant over a component of
X, together with a log modification X ′ → X and a morphism

u′ : Z ′N → X ′ × Y

subject to the following set of conditions:

(i) The image of the composition Z ′ u
′

→ X ′ × Y → X × Y is Z.

(ii) Z ′N is the normalization of Z ×X X ′.

(iii) The composition Z ′N u′→ X ′ × Y → X ′ is strict.

A dividing log correspondence with compact support from X to Y is a formal
sum of elementary dividing log correspondences with compact support, and let
lCorcdiv(X,Y ) be the free abelian group of dividing log correspondences with
compact support from X to Y .

Remark 3.1.13. As remarked in Remark 4.6.2 in [BPØ20], due to the fact that a
finite log correspondence with compact support Z ∈ Λcltr(Y )(X) is determined
by Z − ∂Z ∈ Λcltr(Y − ∂Y )(X − ∂X) (Lemma 2.3.2 in [BPØ20]), there is an
alternative definition of a finite log correspondence with compact support:

An elementary log correspondence with compact support Z from X to Y is
an integral closed subscheme Z ⊂ X × Y that is quasi-finite and dominant over
X, together with a morphism

u : ZN → X × Y

subject to the following conditions:

(i) The image of ZN → X × Y is Z.

(ii) ZN is the normalization of Z.

(iii) The composition ZN u→ X × Y → Y is strict.

This makes it possible to consider a dividing log correspondence with compact
support Z ∈ lCorcdiv(X,Y ) as a log correspondence with compact support after
replacing X by a log modification of X.

Thus we arrive at the reason for considering dividing log correspondence
with compact support.
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3.1. Finite logarithmic correspondences with compact support

Proposition 3.1.14. For every X and Y in lSm/k there is an isomorphism

lCorcdiv(X,Y )⊗ Λ ' a∗dNisΛcltr(Y )(X).

Proof. We can associate the group lCorcdiv(X,Y ) with Λcltr(Y )(X) after replacing
X by a log modification Y → X. By use of a similar identification as in Lemma
4.4.3 in [BPØ20] we have

a∗dNisΛcltr(X) ' colim
Y→X

Λcltr(Y ),

where Y → X is a log modification of X.

Admissible blow-ups

Definition 3.1.15 ([BPØ20, Definition 7.6.1]). An admissible blow-up is a proper
birational morphism

X ′ → X

of fs log schemes log smooth over k such that the induced morphism

X ′ − ∂X ′ → X − ∂X

is an isomorphism. We let ABl/k denote the class of admissible blow-ups and
(ABl/k) ↓ Y the class of admissible blow-ups over an fs log scheme Y .

Assuming resolution of singularities, the class of admissible blow-ups ABl/k
admits a calculus of right fractions (Proposition 7.6.6 in [BPØ20]) in the sense
of the dual of Definition I.2.2 in [GZ67]. Thus, according to Proposition 7.6.7 in
[BPØ20], log motives are invariant to admissible blow-ups (Proposition 7.6.7 in
[BPØ20]), i.e., any morphism f : Y → X in (ABl/k) induces an isomorphism

M(Y ) '−→M(X).

We are interested in admissible blow-ups because of the next proposition.
It relates the correspondences between X and Y − ∂Y with correspondences
between X and admissible blow-ups of Y . Because (ABl/k) admits a calculus of
right fractions, the class (ABl/k) ↓ Y of admissible blow-ups of Y is cofiltered,
and we may take the colimit.

Proposition 3.1.16. Assume that k admits resolution of singularities. Let X
be a smooth scheme over k and Y an fs log scheme log smooth over k. Then
there is a naturally induced isomorphism:

colim
Y ′∈(ABl/k)↓Y

Λcltr(X)(Y ′) ' Λcltr(X)(Y − ∂Y ).

Proof. Following the proof of Proposition 8.2.1 in [BPØ20] we let Y ′ → Y be
an admissible blow-up. The induced morphism Y ′ − ∂Y ′ → Y − ∂Y allows us
to form a homomorphism

ϕY ′ : Λcltr(X)(Y ′)→ Λcltr(X)(Y ′ − ∂Y ′) ' Λcltr(X)(Y − ∂Y ).

Gathering the ϕ(Y ′)’s we get a morphism

ϕ : colim
Y ′∈(ABl/k)↓Y

Λcltr(X)(Y ′) −→ Λcltr(X)(Y − ∂Y ).
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Let W ∈ Λcltr(X,Y ′) be a log elementary correspondence with compact support.
The map ϕY ′ is injective since ϕY ′(W ) = 0, implies that W = 0, since it is the
closure of ϕY ′ in Y ′ ×X.

For the surjectivity, let Z ∈ Λcltr(X)(Y − ∂Y ). From platification (Theorem
5.7.9 in [RG71] or equivalently Theorem 2.2.2 in [FV00]) there is a scheme Y ′
and a morphism f : Y ′ → Y such that f is an isomorphism on Y − ∂Y and the
closure Z ′ of Z in Y ′×X is flat over Y ′. The subscheme Z is a correspondence
with compact support from Y ′ to X.

By resolution of singularities, there is a blow-up g : Y ′′ → Y ′ such that Y ′′
is smooth over k, and the complement of (f ◦ g)−1(Y − ∂Y ) in Y ′′ consists
of strict normal crossing divisors Z ′1, . . . , Z ′r. Letting Y ′′ be the log scheme
corresponding to (Y ′′, Z ′1 + . . . + Z ′r), the induced morphism Y ′′ → Y is a
admissible blow-up. The closure Z ′′ of Z in Y ′′ ×X is a closed subscheme of
W ′ ×Y Y ′, which preserved under base change, is quasi-finite. It follows that
W can be extended to a correspondence with compact support from Y ′′ to X.
Since X has trivial log structure, this gives a log correspondence with compact
support from Y ′′ to X.

The following proposition generalizes Proposition 8.2.2 in [BPØ20], but its
proof is very similar.

Proposition 3.1.17. Assume that k admits resolution of singularities. For every
smooth scheme X over k, there is an isomorphism

a∗dNisΛcltr(X) ' ω∗Λctr(X).

Proof. Using Lemma 4.4.3 in [BPØ20] there is an isomorphism

a∗dNisv
∗v]Λcltr(X) ' v∗v]a∗dNisΛcltr(X).

Applying Proposition 3.1.16 we get the isomorphism

a∗dNisv
∗v]Λcltr(X) ' a∗dNisω∗Λctr(X),

and using Remark 7.6.8 in [BPØ20] we moreover have

v∗v]a
∗
dNisΛcltr(X) ' a∗dNisΛcltr(X).

We conclude by the fact that ω∗Λctr(X) is a dividing Nisnevich sheaf, since the
functor

η] : Shv(két,Λ)→ Shvlog
l ét(k,Λ)

is fully faithful (Lemma 8.5.2 in [BPØ20]), where η : két → lSm/k is the
inclusion functor.

Lemma 3.1.18. Assume that k admits resolution of singularities. Let X be a
smooth scheme over k. Then there are isomorphisms

ω∗Λctr(X) ' C∗ω∗Λctr(X) ' ω∗CA1

∗ Λctr(X)

in logDMeff(k,Λ).

Proof. The first isomorphism is comes from Proposition 6.2.9(4) and Remark
7.6.8 in [BPØ20]. The second isomorphism comes from applying Proposition
8.2.3 in [BPØ20].
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3.1. Finite logarithmic correspondences with compact support

Lemma 3.1.19. If f : X ′ → X is a log modification in lSm/k and V ∈
ΛcdNis(X)(Y ), there exists a dividing Zariski cover g′ : Y ′ → Y and W ∈
ΛcdNis(X ′)(Y ′) sitting in a commutative diagram

Y ′ X ′

Y X.

W

g f

V

Proof. The proof of Lemma 4.5.5 in [BPØ20] works in this setting so we copy
its proof: Since the question is Zariski local on Y we can assume that Y has an
fs chart P . Letting P : V N ×X X ′ → V N be the projection and q : V N → V
the structure morphism there is a subdivison of fans M → SpecP by [BPØ20,
A.11.5] such that the projection V N ×AP

AM → V N admits a factorization

V N ×AP
AM → V N ×X X ′ → V N .

Letting Y ′ := Y ×AP AM and V ′ = V ◦ u, where u : Y ′ → Y is the projection.
The structure morphism v : V ′N → X factors through V N×Y Y ′ ' V N×AP

AM ,
hence it also factors through V N ×X X ′. It follows that it also factors through
X ′.

Replacing Y by Y ′ and V by V ′ we can assume that the structure morphism
V N → X factors through X ′. Thus there is a commutative diagram of fs log
schemes

V N Y ×X ′ X ′

Y ×X X.

w

Since X ′ is proper over X, the morphism w is proper. Let W be the image
of V N → Y ×X ′, which we consider as the closed subscheme of Y ×X ′ with
reduced scheme structure. Then V N is the normalization of W since V N is the
normalization of the image of V N → Y ×X. Thus w provides a correspondence
W from Y to X ′ with image V in Λcltr(X)(Y ′).

The inclusion functor γ : lSm/k → lCor /k induces a functor

γ∗ : Pshltr(k,Λ) −→ Pshlog(k,Λ)

and a functor between the corresponding chain complexes

γ∗ : C∗(Pshltr)(k,Λ) −→ C∗(Pshlog(k,Λ)).

By abuse of notation we also write

γ∗ : Shvltr(k,Λ) −→ Shvlog(k,Λ)

for the restriction of γ∗. Moreover, the sheafication functor a∗dNis and the
forgetful functor adNis∗ gives an adjoint functor pair

a∗dNis : Pshlog(k,Λ) −→←− Shvlog(k,Λ): adNis∗ ,

and we have that
γ∗adNis∗ ' adNis∗γ∗.
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3.2. Logarithmic motives with compact support

Proposition 3.1.20. If f : Y → X is a log modification we have an induced
isomorphism

a∗dNisγ
∗Λcltr(Y )→ a∗dNisγ

∗Λcltr(X) (3.2)
of dividing Nisnevich sheaves.

Proof. Arguing similarly to Lemma 4.5.6 in [BPØ20], for any fs log scheme T
there is a commutative diagram

Λcltr(Y )(T ) Λcltr(X)(T )

Λcltr(Y − ∂Y )(T − ∂T ) Λcltr(X − ∂X)(T − ∂T ).

The vertical morphisms are injections by Lemma 3.1.9, and since the lower
morphism is an isomorphism, the top arrow is an isomorphism as well. Thus
Λcltr(Y )→ Λcltr(X) is a monomorphism, which implies that

a∗dNisγ
∗Λcltr(Y )→ a∗dNisγ

∗Λcltr(X)

is a monomorphism since a∗dNis and γ∗ are exact.
Due to Lemma 3.1.19 there exists a dividing Nisnevich cover g : T ′ → T

and a finite log correspondence with compact support W ∈ ΛcdNis(Y )(T ′) such
that f ◦W = g ◦ V for every V ∈ ΛcdNis(Y )(T ). This proves that (3.2) is an
epimorphism, finishing the proof.

3.2 Logarithmic motives with compact support

We are now in a position to define the main subject of this thesis: the logarithmic
motive with compact support.

Definition 3.2.1. Let X be an fs log scheme log smooth over k. The logarithmic
motive with compact support of X, denoted M c(X), is the image of a∗dNisΛcltr(X)
in logDMeff(k,Λ). We will often abbreviate it as the compact log motive of X.
Given a morphism f : Y → X in lSm/k we define

M c(Y f→ X)

as the cone in logDMeff(k,Λ) associated to the complex induced by f

a∗dNisΛcltr(Y ) −→ a∗dNisΛcltr(X)

in C∗(Shvltr
dNis(k,Λ)). We will also denote it by M c(Y → X) if the morphism

is understood, or sometimes simply M c(f).

The inclusion Λltr(X) ⊂ Λcltr(X) induces a canonical morphism M(X) →
M c(X). If X is proper over k, Proposition 3.1.6 implies that

M c(X) = M(X). (3.3)

Using the covariance and contravariance of Λcltr(−) from Remark 3.1.3 we see
that the compact log motive M c(X) is contravariant in X for open immersions,
and covariant in X for closed immersions.

The following two propositions show that the compact log motive satisfies
strict Nisnevich descent and dividing descent.
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3.2. Logarithmic motives with compact support

Proposition 3.2.2. Suppose that

Y ′ Y

X ′ X

is a strict Nisnevich distinguished square. Then there is an isomorphism

M c(Y → X) '−→M c(Y ′ → X ′)

in logDMeff(k,Λ).

Proof. We have to show that for every strictly �-invariant complex of dividing
Nisnevich sheaves F with log transfers there is an isomorphism

HomlogDMeff(k,Λ)(M c(Y → X),F) ' HomlogDMeff(k,Λ)(M c(Y ′ → X ′),F).

Ignoring transfers, it suffices to prove that this holds in logDAeff(k,Λ) (Defini-
tion 5.2.1 in [BPØ20]). Arguing similarly as Proposition 5.2.3 in [BPØ20] we
may assume that F is a fibrant object in C(Shvlog

dNis(k,Λ)) with regard to the
�-local descent structure. We then have the equivalence

HomlogDAeff(k,Λ)(M c(X),F) ' HomD(Shvlog
dNis(k,Λ))(a

∗
dNisΛcltr(X),F).

Using the exactness of

0→ a∗dNisΛcltr(Y )→ a∗dNisΛcltr(Y ′)⊕ a∗dNisΛcltr(X)→ a∗dNisΛcltr(X ′)→ 0,

if follows that there is an equivalence between

HomD(Shvlog
dNis(k,Λ))(a

∗
dNisΛcltr(Y → X),F)

and
HomD(Shvlog

dNis(k,Λ))(a
∗
dNisΛcltr(Y ′ → X ′),F).

Remark 3.2.3. With a formal argument (Proposition C.1.7 in [BPØ20]), this
also shows that there are isomorphisms

M c(Y → Y ′) '−→M c(X → X ′).

Proposition 3.2.4. For any log modification f : Y → X of fs log schemes there
is an induced isomorphism

M c(Y )→M c(X)

in logDMeff(k,Λ).

Proof. This is a consequence of Proposition 3.1.20.

Remark 3.2.5. Proposition 3.2.4 can also be proved similarly as Proposition 3.2.2
by using a dividing distinguished square instead of a strict Nisnevich distin-
guished square.
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Properties of logarithmic motives with compact support

In this section we explore properties of logarithmic motives with compact
support. We begin by proving a Gysin sequence which we use to prove an
analogue of the Künneth formula, that is, establishing an isomorphism

M c(X × Y ) 'M c(X)⊗M c(Y )

for log smooth fs log schemes X and Y . Assuming resolution on singularities
we prove this as Theorem 3.2.12, and as a corollary we prove �-invariance and
(Pn,Pn−1)-invariance.

From the lack of a localization sequence for motives of log schemes, we
cannot directly generalize the proof of Theorem 1.2.8. Instead our proof will
consist of four steps, proving it for

(i) X,Y ∈ Sm/k, and when X,Y are proper fs log schemes log smooth over
k,

(ii) X = (X,Z), with Z a smooth irreducible divisor on X and Y ∈ Sm/k,

(iii) X ∈ lSm/k, Y ∈ Sm/k,

(iv) X,Y ∈ lSm/k.

Step 1 is straightforward, and step 3 follows from step 2 by dividing descent.
We emphasize that step 2 is an important step as it proves �-invariance of the
compact log motive, i.e.,

M c(X ×�) 'M c(X)

which we state as Corollary 3.2.13. Establishing a Gysin sequence in The-
orem 3.2.9, step 2 follows easily, and Step 4 reduces to step 3. The hardest
step is establishing Theorem 3.2.9 where we apply a technique called deforma-
tion to the normal cone originating from the proof of [MV99, Theorem 2.23] and
generalized to log schemes in Theorem 7.5.4 of [BPØ20]. In order to introduce
this technique we need some preliminary definitions:

Definition 3.2.6 ([BPØ20, Definition 7.4.1]). The deformation of the pair of
spaces (X,Z), where X,Z ∈ Sm/k, is

DZX := BlZ×0(X ×�)−BlZX.

For a pair of spaces (X,Z) and a smooth log smooth scheme Y = (X,Z1 + . . .+
Zn), where Z1, . . . , Zn form a strict normal crossing divisor, we consider the
normal bundle p : NZX → X and define the normal bundle of Y with respect
to Z as

NZY := (NZX, p−1(Z1) + . . .+ p−1(Zn)).

Similarly, we consider the blow-up BlZX → X and define

BlZY := (BlZX,W1 + . . .+Wn),

where Wi are the strict transform of Zi in BlZX. We then define the blow-up of
Y with respect to Z as (BlZY,E), where E is the exceptional divisor of BlZX.
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3.2. Logarithmic motives with compact support

Definition 3.2.7 ([BPØ20, Definition 7.5.1]). For X ∈ Sm/k and Z a smooth
closed subscheme of X we have a commutative diagram

Z Z ×� Z

X DZX NZX

{1} � {0}i1 i0

called the deformation to the normal cone, where

(i) each square is cartesian,

(ii) i0 is the zero section and i1 is the 1-section,

(iii) Z → NZX is the 0-section into the normal bundle.

(iv) DZX → � is the composition

DZX → BlZ(X ×�)→ X ×�→ �,

where the third arrow is the projection.

We will also need the definition of a parametrization:

Definition 3.2.8 ([BPØ20, Definition 7.2.6 and Definition 7.2.7]). Let (X,Z) be
a smooth pair of schemes with an closed immersion i : Z → X. An morphism
(f, f ′) : (X,Z) → (X ′, Z ′) between smooth pairs is called cartesian if the
commutative diagram

Z X

Z ′ X ′

f ′ f

is cartesian. A parametrization of the smooth pair (X,Z) is a smooth pair
(Ar+s,As) such that the cartesian morphism (f, f ′) : (X,Z) → (Ar+s,As) is
étale.

Using deformation to the normal cone, we prove an important logarithmic
analogue of the Gysin sequence in our setting (Theorem 3.2.9) to be used in
Step 2 and Step 4 of Theorem 3.2.12. This result is particularly useful as it
relates the compact log motive of a smooth log smooth log scheme with the
underlying scheme and the divisor inducing the log structure. A priori, since
the underlying scheme and the divisor are actual schemes, it reduces questions
about log smooth log schemes to more classical (and hopefully easier) questions
about schemes. Its proof uses uses induction on the number of component
of the divisor, and the base case of the induction applies the technique of
deformation to the normal cone to reduce to the nice case of the affine line
with log structure only at the origin. We conclude by applying strict Nisnevich
descent and dividing descent. The induction theorem uses a general theorem
about triangulated categories by [May01], and concludes by the octahedral
axiom.
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Theorem 3.2.9. Let X be a smooth scheme and Z a strict normal crossing
divisor on X. Then there exists a distinguished triangle

M c(X,Z)→M c(X)→M c(Z)(1)[2]→M c(X,Z)[1]

in logDMeff(k,Λ).

We note that by Proposition A.3.3 all smooth log smooth log schemes are
isomorphic to a log scheme of the form (X,Z) where X is a smooth scheme and
Z a strict normal crossing divisor on X. Hence the theorem gives a sequence
for every smooth log smooth log scheme.

Proof. We do induction the number of components of Z = Z1 +· · ·+Zr, starting
with r = 1. We then have to show that there is a cofiber sequence on the form

M c(X,Z)→M c(X)→M c(Z)(1)[2], (3.4)

where Z is a smooth irreducible divisor on X.
Following Theorem 7.5.4 in [BPØ20], Zariski locally onX we have a cartesian

diagram

Z X

As As+1

u

where s denotes the dimension of Z (hence s+ 1 the dimension of X) over k
and u is an étale morphism. Constructing X1 := AsZ , and defining ∆ as the
diagonal of Z over As, we let

X2 = X ×As X1 − (X ×As Z −∆) ∪ (X1 ×As Z∆).

This gives us a diagram

(X,Z)←− (X2, Z) −→ (X1, Z),

and moreover a cartesian square

DZX2 X2 ×�

DZX X ×�,

since blow-ups commute with flat base change. This shows that DZX2 → DZX
is étale, and since X2 → X and NZX2 → NZX are also étale, strict Nisnevich
descent implies that there are isomorphisms

M c((BlZX)→ X) '−→M c((BlZX2, E2)→ X2)

M c((Bl
Z×�(DZX))→ DZX) '−→M c((Bl

Z×�(DZX2), ED2 )→ DZX2)

M c((BlZ(NZX))→ NZX) '−→M c((BlZ(NZX2), EN2 )→ NZX2).

Applying deformation to the normal cone (Definition 3.2.7), we can thus replace
X by X2, and similarly we can repeat the argument to replace X2 by X1. This
reduces the proof to showing the case when X = A1 and Z = 0.
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Using the square Equation (2.4) and strict Nisnevich descent (Proposi-
tion 3.2.2) we get an isomorphism

M c((Bl0P1, E)→ P1) '−→M c((Bl0 A1, E)→ A1). (3.5)

Invoking Theorem 7.5.4 in [BPØ20] we have the cofiber sequence

M c(Bl0P1, E)→M c(P1)→ Λ(1)[2],

hence the cofiber sequence

M c(Bl0 A1, E)→M c(A1)→ Λ(1)[2].

Applying dividing descent (Proposition 3.2.4) to the log modification

(Bl0 A1, E)→ (A1, 0)

we thus have our desired cofibre sequence

M c(A1, 0)→M c(A1)→ Λ(1)[2].

Now for the induction step we have a commutative diagram

M c(X,Z1 + · · ·+ Zr) M c(X,Zr)

M c(X,Z1 + · · ·+ Zr−1) M c(X) M c(Z1 + · · ·+ Zr−1)(1)[2]

M c(Zr)(1)[2] M c(Z1 ∩ . . . ∩ Zr)(2)[4].

Then Lemma 5.7 in [May01] gives a pushpull square

M c(X) M c(Z1 + · · ·+ Zr−1)(1)[2]

M c(Z1 + · · ·+ Zr)(1)[2]

M c(Zr)(1)[2] M c(Z1 ∩ . . . ∩ Zr)(2)[4],

c

in which the octahedral axiom of triangulated categories (Definition 13.3.2 TR4
in [Sta21]) gives us the desired cofiber sequence

M c(X,Z1 + · · ·+ Zr)→M c(X) c→M c(Z1 + · · ·+ Zr)(1)[2].

Example 3.2.10. Using Theorem 3.2.9 we see that M(P1, p1 + · · ·+ pn), where
the pi ' Spec k denote different points, can be described by the distinguished
triangle

M(P1, p1+· · ·+pn)→M(P1)→M(p1+· · ·+pn)(1)[2] →M(P1, p1+· · ·+pn)[1]
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Using Theorem 3.2.9 we get our first calculations:

Corollary 3.2.11. We have isomorphisms

M c(A1) ' Z(1)[2], (3.6)

and
M c(AN) ' Z(1)[1]. (3.7)

Proof. Applying Theorem 3.2.9 we find the distinguished triangles

M c(�)→M c(P1)→M c(Spec k)(1)[2]→M c(�)[1]

and
M c(AN)→M c(A1) →M c(Spec k)(1)[2]→M c(�)[1].

Using the strict Nisnevich distinguished square from Example 2.2.4 and Propos-
ition 3.2.4 on the morphisms M c(Bl0 A1, E)→M c(AN) and M c(Bl0P1, E) '
M c(P1, 0) ' �, there is a naturally induced homotopy cartesian square

M c(�) M c(AN)

M c(P1) M c(A1).

where the vertical morphisms agree with those appearing in the above triangles.
Hence we get a commutative square

M c(Spec k)(1)[1] M c(Spec k)(1)[1]

M c(�) M c(AN)

M c(P1) M c(A1)

M c(Spec k)(1)[2] M c(Spec k)(1)[2],

or equivalently

Λ(1)[1] Λ(1)[1]

Λ M c(AN)

Λ⊕ Λ(1)[2] M c(A1)

Λ(1)[2] Λ(1)[2].
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Using Proposition 3.2.2, the top and bottom horizontal maps are isomorphisms,
which gives the identifications

M c(AN)→ Z(1)[1],

and
M c(A1)→ Z(1)[2].

We are now in position to establish the one of the main results of this section.

Theorem 3.2.12 (Künneth formula). Assume that k admits resolution of singu-
larities. Let X and Y be log smooth fs log schemes over k. Then there is an
isomorphism

M c(X × Y ) 'M c(X)⊗M c(Y ). (3.8)

Proof. Step 1, (X,Y ∈ Sm/k and X,Y ∈ lSm/k proper):
The case when X and Y have trivial log structure follows from the ordinary
case ([MVW11, Corollary 16.16]), and if they are proper this follows from the
monoidal structure in logDMeff(k,Λ) since we then have M c(X) 'M(X) and
M c(Y ) 'M(Y ) by (3.3).

Step 2 (X = (X,Z) ∈ SmlSm/k, Y ∈ Sm/k):
Using Theorem 3.2.9 we have cofiber sequences

M c(X,Z) M c(X) M c(Z)(1)[2], (3.9)

and

M c(X × Y,Z × Y ) M c(X × Y ) M c(Z × Y )(1)[2]. (3.10)

Tensoring (3.9) with M c(Y ) we get a commutative diagram

M c(X,Z)⊗M c(Y ) M c(X × Y,Z × Y )

M c(X)⊗M c(Y ) M c(X × Y )

M c(Z)(1)[2]⊗M c(Y ) M c(Z × Y )(1)[2].

'

'

The two last morphisms are isomorphisms by Step 1, hence from the fact that
(3.9) and (3.10) are cofiber sequences, we conclude that the top morphism

M c(X,Z)⊗M c(Y ) −→M c(X × Y,Z × Y )

is an isomorphism as well.

Step 3, (X ∈ lSm/k, Y ∈ Sm/k):
When X is a log smooth fs log schemes we apply toric deformation (Proposi-
tion A.3.4) to find log modifications X ′ → X where X ′ ∈ SmlSm/k, and use

44



3.2. Logarithmic motives with compact support

dividing descent (Proposition 3.2.4) to reduce to the case of X ∈ SmlSm/k.
We then conclude by applying Step 2.

By symmetry, i.e., M c(X) ⊗M c(Y ) ' M c(Y ) ⊗M c(X), we may assume
that the above steps apply to Y as well when X ∈ Sm/k. Thus it only remains
to show the general case of both X and Y are log smooth fs log schemes:

Step 4, (X,Y ∈ lSm/k):
For the general case we again apply toric deformation (Proposition A.3.4) to
find log modifications X ′ → X and Y ′ → Y where X ′, Y ′ ∈ SmlSm/k to
reduce to the case of X and Y in SmlSm/k. By Proposition A.3.3 we may
assume that X = (X,Z) and Y = (Y ,W ) where Z and W are strict normal
crossing divisors on X and Y respectfully. Then applying Theorem 3.2.9 we
find two vertical cofiber sequences sitting in a commutative diagram

M c(X,Z)⊗M c(Y ,W ) M c(X × Y ,X ×W + Y × Z)

M c(X,Z)⊗M c(Y ) M c(X × Y , Z × Y )

M c(X,Z)⊗M c(W )[1](2) M c(X ×W,Z ×W )[1](2).

The two last morphisms are isomorphisms by Step 3, hence we conclude that
the top arrow is an isomorphism as well.

Note that step 2 of in the proof of the Künneth formula shows �-invariance
of the compact log motive. This is unlike the case in DMeff(k,Λ) where the
compact motive is not A1-invariant, since

M c(A1) ' Λ(1)[2] 6'M c(Spec k) = Λ

in DMeff(k,Λ). We state this result as a corollary, along with some simple
consequences.

Corollary 3.2.13 (Homotopy invariance). For every X ∈ lSm/k there are
isomorphisms

M c(X ×�) 'M c(X),
M c(X × (Pn,Pn−1)) 'M c(X),

M c(X × Pn) 'M c(X)⊗
n⊕
i=0

Λ(i)[2i],

M c(An) ' Λ(n)[2n],
and

M c((AN)n) ' Λ(n)[n].

Proof. By Theorem 3.2.12 we have the equivalences

M c(X ×�) 'M c(X)⊗M c(�),

M c(X × (Pn,Pn−1)) 'M c(X)⊗M c((Pn,Pn−1)),
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and
M c(X × Pn) 'M c(X)⊗M c(Pn).

Since �, (Pn,Pn−1), and Pn are proper, we have

M c(�) 'M(�),

M c((Pn,Pn−1)) 'M((Pn,Pn−1)),

and
M c(Pn) 'M(Pn)

by Proposition 3.1.6. We conclude by applying homotopy invariance of log
motives, and the fact that M(Pn) '

⊕n
i=0 Λ(i)[2i] from Proposition 8.3.4

[BPØ20].
The last two isomorphisms come from applying using Corollary 3.2.11 and

Theorem 3.2.12 repeatably n-times.

Relations with DMeff(k, Λ)
Now that we have defined the logarithmic motives with compact support it is
interesting to see how the theory relates to the classical theory. An answer is
provided by the next theorem, which is a generalization of Proposition 8.2.6 in
[BPØ20]. It enables us to relate a larger class of morphisms in logDMeff(k,Λ)
with those in DMeff(k,Λ). As a consequence, we give an affirmative answer to
a question raised in Remark 8.27 in [BPØ20]; which is that

HomlogDMeff(k,Λ)(M(Y )[i],M(X)) ' HomDMeff(k,Λ)(M(Y − ∂Y )[i],M(X))

does not in general hold for smooth non-proper schemes X (Remark 3.2.15).
We then prove an analogue of the classical duality theorem which we use to
prove a cancellation theorem for log schemes.

We begin with a generalization of Theorem 8.2.6 in [BPØ20]. We note that
this result, and the following corollary, is independent of the results in the
previous section.

Theorem 3.2.14. Assume that k admits resolution of singularities. Let X be
a smooth scheme over k and Y an fs log scheme log smooth over k. Then for
every integer i ∈ Z there is an isomorphism

HomlogDMeff(k,Λ)(M(Y )[i],M c(X)) ' HomDMeff(k,Λ)(M(Y − ∂Y )[i],M c(X)).

Proof. Lemma 3.1.18 gives an equivalence between

HomlogDMeff(k,Λ)(M(Y )[i], ω∗Λctr(X))

and
HomlogDMeff(k,Λ)(M(Y )[i], ω∗CA1

∗ Λctr(X)).

The complex CA1

∗ Λctr(X) is strictly A1-local by Corollary 14.9 in [MVW11],
hence it is strictly �-invariant in the dividing Nisnevich topology. Applying
Proposition 5.2.3 in [BPØ20], there is an isomorphism

HomlogDMeff(k,Λ)(M(Y ), ω∗CA1

∗ Λctr(X)[i]) ' Hi
dNis(Y, ω∗CA1

∗ Λctr(X)[i]).
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Applying Proposition 8.1.12 [BPØ20] we find

Hi
dNis(Y, ω∗CA1

∗ Λctr(X)) ' Hi
Nis(Y − ∂Y,CA1

∗ Λctr(X)),

which by Proposition 14.16 [MVW11] gives an isomorphism

Hi
Nis(Y − ∂Y,CA1

∗ Λctr(X)) ' HomDMeff(k,Λ)(M(Y − ∂Y ),M c(X)[i]).

Combining the equivalence above, and using that ω∗Λctr(X) ' a∗dNisΛcltr(X)
from Proposition 3.1.17 completes the proof.

Remark 3.2.15. Since we for general (non-proper) log schemes do not have
M c(X) 'M(X), this provides an affirmative answer to the claim in [BPØ20,
Remark 8.2.7] which states that the equivalence

HomlogDMeff(k,Λ)(M(Y )[i],M(X)) ' HomDMeff(k,Λ)(M(Y − ∂Y )[i],M(X)).

does not hold in general for non-proper smooth schemes X.
An example is provided by taking X = A1. Although M(A1) is unknown,

we know from the fact that the category of reciprocity sheaves ([Kah+16])
embeds fully faithfully in logDMeff(k,Λ) ([Sai21]), that the relation between
the Witt-vectors and M(A1) forces M(A1) to be very big. On the other hand,
our calculation in Corollary 3.2.11 shows that M c(A1) is merely Λ(1)[2].

Theorem 3.2.14 gives us a generalization of Corollary 8.2.8 in [BPØ20].

Corollary 3.2.16. Assume that k admits resolution of singularities, and let X be
a smooth scheme over k. Then the unit of the adjunction id→ Rω∗ω] induces
an isomorphism

M c(X) ' Rω∗ω]M c(X).

Proof. It suffices to show that for every generator M(Y )[i] for Y ∈ lSm/k and
i ∈ Z that there is an isomorphism between

HomlogDMeff(k,Λ)(M(Y )[i],M c(X))

and
HomlogDMeff(k,Λ)(M(Y )[i], Rω∗M c(X)).

Using the isomorphisms

HomlogDMeff(k,Λ)(M(Y )[i], Rω∗M c(X))
'HomDMeff(k,Λ)(ω]M(Y )[i],M c(X))
'HomDMeff(k,Λ)(M(Y − ∂Y )[i],M c(X)),

the result now follows from Theorem 3.2.14.

We then prove an analogue of the duality theorem Theorem 1.2.9.

Theorem 3.2.17. Assume that k admits resolution of singularities. If T ∈
lSm/k is of pure dimension d over k, X ∈ Sm/k, and Y ∈ lSm/k, then there
are isomorphisms

Hom(M(Y × T )[n],M c(X)) ' Hom(M(Y )(d)[2d+ n],M c(X × (T − ∂T )))

in logDMeff(k,Λ) for every n ∈ Z.
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Proof. By applying Theorem 3.2.14 there are isomorphisms between

HomlogDMeff(k,Λ)(M(Y × T )[n],M c(X))

and
HomDMeff(k,Λ)(M((Y − ∂Y )× (T × ∂T ))[n],M c(X))

for every n. Using the classical duality statement (Theorem 1.2.9) we further
have isomorphisms between

Hom(M((Y − ∂Y )× (T × ∂T ))[n],M c(X))

and
Hom(M(Y − ∂Y )(d)[2d+ n],M c(X × (T − ∂T ))).

Reapplying Theorem 3.2.14 we find isomorphisms between

Hom(M(Y − ∂Y )(d)[2d+ n],M c(X × (T − ∂T )))

and
Hom(M(Y )(d)[2d+ n],M c(X × (T − ∂T ))).

Combining the isomorphisms finishes the proof.

Having established Theorem 3.2.17 we have all we need to prove an analogue
of the cancellation theorem (Theorem 1.2.10) for log schemes. It is interesting
to see how many of our established results come together in the short proof of
this result.

Theorem 3.2.18. Assume that k admits resolution of singularities. Let M and
N be two objects of logDMeff(k,Λ). Then tensoring with Λ(1) induces an
isomorphism

HomlogDMeff(k,Λ)(M,N) ' HomlogDMeff(k,Λ)(M(1), N(1)).

Proof. Let X ∈ Sm/k be a proper scheme and Y ∈ lSm/k. We then have
isomorphisms

Hom(M(Y )[n],M(X))
(3.3)
' Hom(M(Y )[n],M c(X))

3.2.13' Hom(M(Y ×�)[n],M c(X))
3.2.17' Hom(M(Y )(1)[2 + n],M c(X × A1))
3.2.11' Hom(M(Y )(1)[2],M c(X)(1)[2])
(3.3)
' Hom(M(Y )(1)[2],M(X)(1)[2]).

where all Hom-groups are taken in logDMeff(k,Λ).
Consider then the smooth log smooth fs log scheme (X,Z) whose underlying

scheme X is proper. Then Theorem 3.2.9 gives a cofiber sequence

M(X,Z)→M(X)→M(Z)(1)[2] (3.11)

that gives rise to the following commutative diagram
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Hom(M(Y ),M(X,Z)) Hom(M(Y )(1),M(X,Z)(1))

Hom(M(Y ),M(X)) Hom(M(Y )(1),M(X)(1))

Hom(M(Y ),M(Z)(1)[2]) Hom(M(Y )(1),M(Z)(2)[2]).

Since (3.11) is a cofiber sequence, and the two bottom horizontal morphisms are
isomorphisms, the top horizontal morphism is an isomorphism as well. Since
these objects generate logDMeff(k,Λ), Proposition 5.2.5 in [BPØ20] allows us
to conclude the statement for all objects of logDMeff(k,Λ).

Investing the explicit isomorphisms we used, we see similarly to the classical
case, that this isomorphism is induced by tensoring with Λ(1).

Let logDM(k,Λ) denote the category obtained from logDMeff(k,Λ) by
inverting the Tate twist operation

M 7→M(1) 'M ⊗ Λ(1).

Then Theorem 3.2.12 allow us to embed the category of effective logarithmic
motives into the category of logarithmic motives.

Corollary 3.2.19. Assume that k admits resolution of singularities. Then the
localization functor

logDMeff(k,Λ)→ logDM(k,Λ)

is fully faithful.

3.3 Logarithmic motivic homotopy theory with compact
support

Having the compact log motive at our disposal, and having established some of
its properties, we are in position to introduce a new homology and cohomology
theory for logarithmic schemes.

Definition 3.3.1. Let X be a log smooth fs log scheme and i ≥ 0. Similarly
to the classical case, we define logarithmic motivic cohomology with compact
support with coefficients in Λ as

Hn,i
lc (X,Λ) = HomlogDMeff(M c(X),Λ(i)[n]), (3.12)

and (Borel–Moore) logarithmic motivic homology with compact support

H lBM
n,i (X,Λ) = HomlogDMeff(Λ(i)[n],M c(X)). (3.13)

Remark 3.3.2. This is a direct generalization of the motivic cohomology with
compact support and (Borel–Moore) motivic homology with compact support
introduced in [FV00].
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It follows from Theorem 3.2.9 that motivic cohomology with compact
support and logarithmic motivic homology with compact support satisfy a Gysin
sequence, a Künneth formula by Theorem 3.2.12, a Mayer-Vietoris sequence by
Proposition 3.2.2, are invariant under log modifications by Proposition A.3.5,
and are homotopy invariant by Corollary 3.2.13.

We once again emphasize that ifX is proper there are canonical isomorphisms

Hn,i
lc (X,Λ) ' Hn,i(X,Λ)

and
H lBM
n,i (X,Λ) = Hn,i(X,Λ)

in logDMeff(k,Λ), where Hn,i(X,Λ) and Hn,i(X,Λ) are logarithmic motivic
cohomology and logarithmic motivic homology of X with coefficients in Z (as
defined in Definition 2.4.6).

Next, we define the logarithmic analogue of Borel–Moore fundamental classes.

Construction 3.3.3. (Assuming resolution of singularities) Let X be an integral
smooth log smooth fs log scheme over k and ν : Z → X a strict closed immersion
of fs log schemes such that Z has pure codimension c in X. Then by assuming
resolution of singularities, Proposition 1.2.13 gives us a composition of maps

cl(Z) : Λ(c)[2c] p
∗

→M c(Z) ν∗→M c(X),

where the first map is the map induced by the structure morphism p : Z →
Spec k and the second map induced by the closed embedding ν. This composition
of maps represents an element in

HomDMeff(k,Λ)(Λ(c)[2c],M c(X)),

i.e., a Borel–Moore motivic class in HBM
2c,c(X,Λ). Using the isomorphism in

Theorem 3.2.14 we can associate this with an element of

HomlogDMeff(k,Λ)(Λ(c)[2c],M c(X)).

Since X ∈ SmlSm/k, we have a canonical flat morphism pX : X → X, where
X denotes the underlying scheme of X with trivial log structure, and hence a
map

HomlogDMeff(k,Λ)(Λ(c)[2c],M c(X)) p
∗
X→ HomlogDMeff(k,Λ)(Λ(c)[2c],M c(X)).

The fundamental class of Z in X is

p∗X(cl(Z)).

As a special case, the fundamental class of Spec k in X we simply call the
fundamental class of X.

In view of Definition 3.3.1 we see that a fundamental class of Y in X
represents a class in H lBM

2c,c (X,Λ) which we call the Borel–Moore homology class
of Y in H lBM

2c,c (X,Λ).

Example 3.3.4. An example of a fundamental class is that of An which gives
the isomorphism

Λ(n)[2n] '−→M c(An)
in logDMeff(k,Λ) induced from the isomorphism in DMeff(k,Λ) [Nis89, p. 720].
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Higher logarithmic Chow groups

We now define a generalization of the classical higher Chow groups to the
logarithmic setting. We begin by recalling the definition of Bloch’s higher Chow
groups first defined in [Blo86] by S. Bloch.

Definition 3.3.5. Let X be an equidimensional scheme, and let zi(X,m) denote
the free abelian group of cycles Z ⊂ X×∆m of codimension i that intersects all
faces ofX×∆j properly for all j < m. There are morphisms zi(X,m)→ zi(X, j)
induced by intersection of cycles which gives a simplicial group m 7→ zi(X,m)
denoted zi(X, •). The resulting chain complex associated to zi(X, •) we denote
by zi(X, ∗), and we define the higher Chow groups as the homology of this chain
complex, i.e.,

CHi(X,m) = Hm(zi(X, ∗)).

If m = 0, this is the ordinary Chow groups of codimension i-cycles of X.

Part of the usefulness of Borel–Moore motivic homology is the identification
with higher Chow groups.

Proposition 3.3.6 ([MVW11, Proposition 19.18]). Assume that k admits res-
olution of singularities and let X be an equidimensional scheme over k of
dimensional d. Then for every i ≤ d, and for all n, there is a canonical
isomorphism

CHd−i(X,n) ' HBM
2i+n,i(X,Z).

We may now define Bloch’s higher Chow groups in the logarithmic setting,
for which Theorem 3.2.14 provide the natural definition:

Definition 3.3.7. ForX ∈ lSch/k, and everym, we define the higher logarithmic
Chow groups of X as

lCHi(X,m) := CHi(X − ∂X,m),

where CHi(−,m) is Bloch’s higher Chow groups as defined in Definition 3.3.5.

When X is log smooth, the scheme X − ∂X is smooth over k, and with
j = d− i, we have

lCHj(X,n) := CHj(X − ∂X, n)
' H2j−n,j(X − ∂X,Z)
' HBM

2i+n,i(X − ∂X,Z)
= HomDMeff,−(k,Λ)(Z(i)[2i+ n],M c(X − ∂X))
' HomlogDMeff,−(k,Λ)(Z(i)[2i+ n],M c(X − ∂X))
= H lBM

2i+n,i(X − ∂X,Z),

hence using Theorem 3.2.14 we recover a version of Proposition 3.3.6 in the
logarithmic setting.

Of particular importance is the �-invariance of the logarithmic Chow groups.
Indeed, we have

lCHi(X ×�,m) = CHi(X − ∂X)× A1,m),
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from which the �-invariance of the higher logarithmic Chow groups follows from
the A1-invariance of the ordinary higher Chow groups [Blo86, Theorem 2.1].
Furthermore, applying our knowledge of Λcltr(−) we see that the logarithmic
Chow groups are covariant with respect to closed embeddings, contravariant
with respect to open embeddings.
Remark 3.3.8. There has been other attempts at generalizing Chow groups to
the logarithmic setting. In [Bar20] (analogous to [HPS17]), Barrot presents
a generalization of Chow groups to the logarithmic setting by extending the
theory of b-Chow groups, and defines logarithmic Chow groups of an fs log
scheme X as

CHi(X) := colim
Y→X

CHi(Y ),

where the colimit is taken over locally free log blow-ups Y → X. This theory is
covariant with respect to proper maps, contravariant with respect to flat maps,
has a Gysin morphism and an excision triangle. However it is unsatisfactory
for our purposes, since it is not �-invariant.

3.4 Open questions and further developments

The theory developed here has many interesting, yet unexplored, territories and
possible consequences: Indeed, much of our intuition for logarithmic motives
comes from how it should behave with respect to the classical situation, and
much of our work has been to recover generalization of such results. That being
said, there are several classical results for which we have yet to find the right
analogue:

One of the important applications of the motives with compact support in
DMeff is that it provides a localization sequence (Theorem 1.2.7), for which we
have yet to find a logarithmic analogue. Moreover, considering a localization
sequence with X = � and U = A1 we get a sequence that should involve the
compact motive of a log point ptN. Since the log point is not log smooth, finding
a localization sequence of log schemes is limited by the yet to be developed
theory of logarithmic motives over the log point. Establishing such a theory is
likely to be very interesting in its own right, and relating it to our setting, it is
likely to reveal new results and interesting connections to the general theory.

Another classical application of motive with compact support is the duality
theorem (Theorem 16.24 in [MVW11]) and the cancellation theorem (Theorem
16.25 in [MVW11]). We proved analogues of these results in Theorem 3.2.17
and Theorem 1.2.10, but we believe there should be a more general analogue
of the duality theorem. Such a result would have important consequences in
logDMeff, hence it would be very interesting to look further for log-analogues of
that result. There should also be a Gysin sequence for more general subschemes,
possibly of the form

M c(X,Z)→M c(X)→M c(Z)(c)[2c]→M c(X,Z)[1],

where Z → X is a log smooth closed equidimensional subscheme of a smooth
scheme X of codimension c.

For a flat morphism of schemes f : X → Y of relative dimension r there
exists a morphism

f ! : M c(Y )(r)[2r]→M c(X)
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in DMeff(k,Λ). It would be interesting to prove this statement for logarithmic
motives with compact support, as it is likely that it would give a general duality
theorem by following the abstract arguments of [PY08]. As a corollary we
would get information about the dualizing object of M(X) in logDMeff(k,Λ)
similarly to Proposition 20.3 in [MVW11], i.e., an isomorphism

M c(X)(r)[−2d] ' RHom(M(X),Λ(d+ r))

induced by the diagonal X → X ×X for all r ≥ 0. As a consequence we would
get a natural isomorphism ιM : M '−→M∗∗.

Several of our results rely on the assumption that the base field k admits
resolution of singularities. However, we believe that it might be possible to relax
this assumption using De Jong’s weaker notion which works in any characteristic
([De 96]).

In this thesis we only considered the logarithmic motive for the dividing
Nisnevich topology. However, it would be interesting to also study the case for
the log étale, dividing étale, and Kummer étale topology as well (see Definition
3.1.5 in [BPØ20]).

In Section 3.2 we investigated some relations to the classical theory of
DMeff(k,Λ) and to the general theory of logDMeff(k,Λ). However, we believe
that there is still much work to be conducted in this regard. One way of
approaching this problem would be to further investigate the canonical morphism

M(X)→M c(X)

in logDMeff(k,Λ). Wildeshaus ([Wil06]) initiated such an attempt in the
classical setting by defining the boundary motive ∂M(X) as the image of

cone(Λtr(X)→ Λctr(X))[−1]

in such a way that it sits in a distinguished triangle

∂M(X)→M(X)→M c(X)→ ∂M(X)[1]

in DMeff(k,Λ). This approach saw some success in (among others) the papers
[Wil13] and [Wil07]. We hope that a similar approach may shed some light on
the general theory in the future.

We are optimistic that a better description of the interplay of DMeff (k,Λ)
with the theory presented here will illuminate interesting results in the classical
setting. Theorem 3.2.14 suggests a first step in this regard, but we believe that
there should be stronger analogues of this result.
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APPENDIX A

Logarithmic Algebraic Geometry

Logarithmic algebraic geometry, often abbreviated logarithmic geometry, or
simply log geometry, originates from work by Fontaine–Illusie, Deligne–Faltings
and K. Kato in the late 1980s ([Ogu18]). The theory was developed to deal with
essentially two concepts coming from algebraic geometry: Compactifications and
degenerations. Later it was realized that logarithmic geometry has a beautiful
theory on its own, as a generalization of algebraic geometry from rings to
monoids.

In short, log geometry enables schemes with mild (“logarithmic”) singularities
to behave as if they were smooth by what Kato termed “magic”-stuff. Moreover,
log geometry provides a way of describing schemes with boundary in a similar
way as we describe manifolds with boundary.

For most of our purposes, a log scheme will be a scheme (X,OX) together
with some extra structure. This extra structure comes in the form of a
morphism of sheaves of commutative monoids αX : MX → OX that induces
an isomorphism α−1

X (O×X) '→ O×X . The corresponding log scheme is the triple
(X,OX , αX). The extra log structure typically “rememberers” the boundary ∂X
of X, for example in the case of a compactification U ↪→ X where X −∂X = U ,
or contains information about a family to which X is a fiber (in the case of a
degeneration). The two cases are often linked, for example in compactifying a
moduli space by adding degenerate objects. A specific example is provided by
considering the moduli space of elliptic curves: We compactify such a space by
adding the node, which has a logarithmic singularity at the origin.

The purpose of this appendix is to provide a self contained reference for
logarithmic geometry, so that a reader familiar to algebraic geometry can follow
the arguments given above by looking up definitions when necessary.

Most of the following material is taken from the standard textbook reference
[Ogu18], otherwise I have tried to refer to the original source.

A.1 Basics on monoids

In order to describe sheaves of monoids we first begin with an introduction to
the general theory of monoids.

Definition A.1.1. A (commutative) monoid (M,+M , eM ) is a set M with a
commutative associative binary operation +M , equipped with a unit eM .

A homomorphism of monoids θ : M → N is a morphism such that θ(eM ) =
eN and θ(m+m′) = θ(m) +N θ(m′) for all elements m and m′ in M .
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We will often abuse notation and write M for (M,+M , eM ), + for +M and
0 for eM when no confusion is likely to arise.

Example A.1.2. Every group is a monoid.

Example A.1.3. Our prime example of a monoid that is not a group is the
natural numbers (N,+) equipped with addition. If M is a monoid and m ∈M
there is a unique morphism φm : N→M sending 1 to m. Thus N is the free
monoid generated by 1. Note also that (N∗, ∗) equipped with multiplication is
a monoid.

Example A.1.4. The multiplicative structure (R×, ∗) of a (commutative) ring
R is a monoid.

If M is a monoid, we let M∗ be the set of inverses of M , i.e., all m ∈ M
such that there exists an element n ∈M for which m+ n = 0, and call it the
group of units in M . Elements m ∈M∗ are called units. Similarly, we let M+

denote the set of non-units of M .

Definition A.1.5. A monoid M is called

(i) sharp if M∗ = {0},

(ii) u-integral if m ∈M , u ∈M∗ and m+ u′ ∈M implies that u′ = 0,

(iii) quasi-integral if m,m′ ∈M and m+m′ ∈M implies that m′ = 0,

(iv) integral if m,m′,m′′ ∈M and m+m′ = m+m′′ implies that m′ = m′′.

It follows from the definition that every integral monoid is quasi-integral,
and every quasi-integral monoid is u-integral.

If M is a monoid there is a universal morphism λM from M to a group Mgp.
We call Mgp the group completion of M , and every morphism from M to a
group factors uniquely through Mgp.

Example A.1.6. The smallest group containing N is Z. Hence Ngp = Z.

Definition A.1.7. A monoidM is called fine if it is integral and ifMgp is finitely
generated as an abelian group, and saturated if it is integral and if whenever
m ∈Mgp is such that mn ∈M for some n ∈ N, then we have m ∈M .

The notion of fine and saturated monoids will be important for us, and we
often abbreviates it as an fs monoid if it were to have both properties.

Definition A.1.8. An ideal of M is a subset I that is closed under addition
from M . That is, if k ∈ I and m ∈ M it implies that k +m ∈ I. We call an
ideal prime if I 6= M and if p+ q ∈ I implies that either p ∈ I or q ∈ I.

A face of a monoid M is a submonoid F such that p+ q ∈ F implies that
both p ∈ F and q ∈ F .

For a face F of a monoid M we let

MF := {(a, b) ∈M × F | (a, b) ∼ (c, d) if ∃p ∈ F s.t.p+ a+ b = p+ b+ c}.

For an element f ∈M we let 〈f〉 denote the smallest face containing f , and we
define the localization

Mf := M〈f〉.
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A.2 Logarithmic schemes

In many cases the definitions appearing here are direct generalization of the
definitions coming from algebraic geometry. However care needs to be taken in
order to ensure that the logarithmic structure behaves nicely.

Definition A.2.1. A sheaf of monoids on a topological space X is a contravariant
functor from the small site on X (Xét, XZar, etc.) to the category of monoids.

A monoidal space is a pair (X,MX) where X is a topological space and
MX is a sheaf of monoids on X.

A morphism of monoidal spaces

(f, f [) : (X,MX)→ (Y,MY )

is a pair (f, f [), where f : X → Y is a continuous map,

f [ : f∗(MY )→MX

is a homomorphism of sheaves of monoids such that for every point x ∈ X
the induced map on the stalks f [x : MY,f(x) →MX,x is a homomorphism of
monoids satisfying (f [x)−1(M+

X,x) =M+
Y,f(x).

Definition A.2.2. Let Q be a monoid. We define the log scheme SpecQ as
follows: The underlying space consists of faces of Q, and for an element f ∈ Q
we define

D(f) := {F ∈ SpecQ : f 6∈ F}

as an open set. We then define the Zariski topology on SpecQ as the topology
generated by all open sets, i.e.,

B := {D(f) : f ∈ Q}.

The assignment
D(f) 7→ Qf

defines a presheaf of monoids, and its sheaficationMQ defines a sheaf on SpecQ.
This realizes Q as a monoidal space.

A locally monoidal space is affine if it is isomorphic to SpecQ for some
monoid Q. A monoscheme is a locally monoidal space that admits an open
cover of affine monoidal spaces.

Let (X,OX) be a scheme and let MonX be the category of monoidal sheaves
on Xét or XZar.

Definition A.2.3. A prelogarithmic structure onX is a homomorphism of sheaves
of monoids αX : P → OX on Xét (or XZar). A logarithmic structure on X
is a prelogarithmic structure on X such that the induced homomorphism of
monoids α−1

X (O×X)→ O×X is an isomorphism.

We often abbreviate logarithmic as log in order to shorten the terminology.

Definition A.2.4. A log scheme X is a scheme (X,OX) equipped with a log-
arithmic structure αX : MX → OX . The scheme X is called the underlying
scheme of X. The map αX is sometimes denoted exp for exponential and the
inverse OX →MX as log for logarithmic.
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A morphism of log schemes f = (f, f [) from X to Y is a morphism
f : X → Y of the underlying schemes together with a morphism of sheaves of
monoids f [ : MY → f∗MX such that the diagram

MY f∗MX

OY f∗OX

f[

αY f∗(αX)
f#

commutes.

Definition A.2.5. A morphism of log schemes f : X → Y is called strict if the
induced homomorphism f∗logMY →MX is an isomorphism.

Definition A.2.6. Let X be a log scheme and Q a monoid. A strict morphism
α : Q→ Γ(X,MX) is called a chart ofMX .

To compose finite log correspondences V ∈ lCor(X,Y ) and W ∈ lCor(Y, Z)
we need to construct log cycles on the normalization of X × Z. This can be by
considering cycles on X × Y × Z if X,Y and Z are solid (See Section 2.2 and
2.3 in [BPØ20]). We therefore provide the definition below.

Definition A.2.7. A coherent log scheme X is called solid if for any point x ∈ X
the induced map

Spec(OX,x) −→ Spec(MX,x)

is surjective.

LetMU/X be the sheaf of monoids on X consisting of sections of OX whose
restriction to U is invertible.

Definition A.2.8. Let U be a nonempty Zariski open subset of a scheme X and
j : U → X be the inclusion. The direct image log structure

αU/X : MU/X → OX

is called the compactifying log structure associated with the open immersion j.
A log structure αX is called compactifying if its subset of triviality X∗ := {x ∈
X :MX,x = 0} is open and the natural map αX → αX∗/X is an isomorphism.

Definition A.2.9. A Deligne–Faltings structure on a scheme X is a finite se-
quence of homomorphisms γi : Li → OX where each Li is an invertible sheaf
on X.

The Deligne–Faltings structure gives a log structure on X and was first
considered by Deligne and Faltings as a way of describing log schemes [Ogu18,
§III.1.7]. Their theory was found less flexible than the one presented by Fontaine–
Illusie and further developed by K. Kato. However, it gives an useful way of
describing the compactifying log structure associated to the open immersion
∂X → X.

Definition A.2.10. Letting Z = n1Z1 + · · ·+nrZr be an effective Cartier divisor
on a scheme X over k, each niZi corresponding to the invertible sheaf Ii, an
important example of a Deligne–Faltings log structure is that on (X,Z) given by
the inclusions Ii → OX for i = 1, . . . , r. Assuming all ni = 1, this becomes the
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compactifying Deligne–Faltings log structure associated to the open immersion
X − Z → X.

Log geometry provides a natural language to describe compactifications of
smooth schemes due to the following proposition.

Theorem A.2.11 ([BPØ20, Remark 9.5.2]). Let f : X → Y be a morphism of
log smooth fs log schemes over k. Then there exists an integral normal fs log
scheme X, an open immersion j : X ↪→ X and a proper strict map f : X → Y
factoring f , i.e.,

f = f ◦ j : X ↪→ X → Y,

such that X has the compactifying Deligne–Faltings log structure (Defini-
tion A.2.10) associated to the inclusion ∂X → X, where ∂X is an effective
Cartier divisor.

Proof. By Nagata’s compactification theorem [Nag62] there exists a proper
scheme X ′ such that f factorizes as an open immersion X ↪→ X ′ followed by a
proper map f : X ′ → Y . Letting X be the fs log scheme whose log structure is
(f∗MY )log on X ′ we have a morphism f : X → Y. Taking the normalization
of X which does not change the interior, we may assume that X ′ is normal,
and that ∂X is an effective Cartier divisor.

Remark A.2.12. Assuming resolution of singularities we may assume that X
constructed above is smooth log smooth over k.

As mentioned in the introduction, one of the important applications of log
geometry to algebraic geometry is that of degeneration. Let us illustrate this
with an example.

Example A.2.13 ([Tal15]). Assume that we have a family X → A1 where the
fibers Xt are all smooth except for the case t = 0, and the degenerate fiber
X0 is a simple normal crossing variety. Examples of this include the families
X = {xy − t = 0} and X = {y2 − x3 + tx = 0}. We can then equip X and
A1 with log structures such that the map X → A1 becomes a “well-behaved”
(log-smooth) morphism. We achieve this by adding to X the log structure given
by X0 and to A1 that of {0}, and then constructing the morphism

(X,X0) −→ (A1, 0)

which now is log smooth.

Definition A.2.14. A sheaf of monoidsM on a topological space X is called
quasi-coherent (resp. coherent) if X admits an open covering U such that
the restriction of M to each U in U admits a chart P → M (resp. a chart
subordinate to a finitely generated monoid). The sheaf of monoidsM is called
fine (resp. saturated) if we can take P to be fine (resp. saturated).

If a log scheme X has a sheaf of monoidM that is both fine and saturated
we call X a fs log scheme.

Since we will be working in the setting of homotopy theory with compact
support, one of our primary notions is that of a proper fs log schemes.
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Definition A.2.15. A quasi-compact quasi-separated fs monoscheme X is sep-
arated (resp. proper) if the naturally induced morphism

Hom(SpecN, X)→ Hom(SpecZ, X)

is injective (resp. bijective).

Remark A.2.16. We caution the reader that contrary to the case in algebraic
geometry a proper morphism need not be closed. Indeed the summation
morphism N⊕N→ N gives an induced proper morphism of monoschemes, but
the image is not closed.

Definition A.2.17. A morphism f : X → Y of fs log schemes is called a closed
immersion if the following two properties are satisfied:

(i) The underlying morphism f : X → Y is a closed embedding,

(ii) The sheaf homomorphism f∗log(MY )→MX is surjective.

We now want to generalize smoothness to log schemes.

Definition A.2.18. A morphism of log schemes f : X → Y is called log smooth
(resp. log étale) at x ∈ X if locally at x there exists a chart of f of the form

X Y ×AP
AQ AQ

Y AP

strict

f
strict

strict

such that

(i) the underlying scheme morphism X → Y ×AP
AQ is smooth (resp. étale)

at x,

(ii) P and Q are fine,

(iii) ker(P gp → Qgp) is killed by an integer invertible at x,

(iv) The torsion part of coker(P gp → Qgp) is killed by an integer invertible at
x (resp. coker(P gp → Qgp) is killed by an integer invertible at x).

We let lSm/k denote the category of fs log schemes that are log smooth
over the trivial log point Spec k.

The non-trivial part of the log structure lies in the quotientMX =MX /O∗X ,
which we call the characteristic monoid.

Example A.2.19 ([BPØ20, Example A.6.4]). For a monoid P we can consider
the monoidal ring Z[P ], and the corresponding affine toric variety AP :=
SpecZ[P ]. Letting AP := (AP ,MAP

) we for instance have the space AN '
(A1, 0) with the log structure associated to the origin.

If P gp is torsion free, and X = AP and Y = SpecZ with trivial log structure,
then a theorem of Kato ([Kat89, Theorem 3.5]) says that X is logarithmically
smooth relative to Y even though the underlying toric variety may be singular.
This is what Kato coined “the magic of log”.
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Example A.2.20 ([Tal15]). The theory of toric geometry plays an important
part in logarithmic geometry. Indeed, every normal toric variety X(∆) has a
canonical log structure induced by the embedding T ↪→ X(∆) of the open torus.
The monoids that appear as stalks are closely related to the lattice points in
the dual cones of the cones appearing in the fan ∆. An important example is
the toric variety AP when P is a fine and saturated monoid.

Remark A.2.21 ([Tal15]). From this point on we will mostly be concerned with
fs log schemes. This is the case where the log structure locally comes from the
canonical log structure of AP as above, i.e., étale locally there is a fine and
saturated monoid P with a morphism of log schemes f : X → AP such that
the log structure on X is isomorphic to f∗MAP

. Because of details we will not
cover here, it forces the set of points on X with trivial log structure X − ∂X to
form an open subset of X.

Equipping a scheme with the trivial log structureM = O∗X , and letting α
be the inclusion, induces a fully faithful embedding Sch λ−→ LogSch of the
category of schemes into the category of fs log schemes. Thus log geometry may
be regarded as an enlargement of algebraic geometry. Moreover, mapping an fs
log scheme X 7→ X − ∂X, where X − ∂X denotes the points of X with trivial
log structure, we obtain the functor LogSch ω−→ Sch that is right adjoint to λ.

A.3 Properties of logarithmic schemes

The general theory of logarithmic geometry is rich and fruitful, but we will
restrict ourself to definitions and results that will be of importance to us in the
chapters above.

Recall that a strict normal crossing divisor D ⊂ X is a divisor that étale
locally looks like the union of k coordinate hyperplanes {x1 · · ·xk = 0} ⊂ An .

Definition A.3.1. Given a smooth scheme X and a strict normal crossing divisor
D on X we can associate a log scheme (X,D) with log structure induced by D,
where

MX := {f ∈ OX : f is invertible away from D}.

This log structure captures D acting as a sort of “boundary” of X, and by
picking local coordinates for the branches of D through a point x ∈ X we get
local charts NN , where N denotes the number of branches of D at x.

Example A.3.2 ([Tal15]). Consider A2 with the log structure given by the two
coordinate axes {x = 0}, {y = 0}. Then the stalk of the characteristic monoid
MA2 at a point x ∈ A2 is

• trivial if x is away from xy = 0,

• isomorphic to N if x is on one of the axes x = 0 or y = 0 (and not the
origin),

• isomorphic to N2 if x is the origin.

The following proposition gives a nice characterization of log smooth fs log
schemes X, such that the underlying scheme X is smooth over k. We denote
the category of such log schemes SmlSm/k.
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Proposition A.3.3 ([BPØ20, Lemma A.5.10]). Suppose that X is a smooth log
smooth fs log scheme. Then there exists a strict normal crossing divisor Z on
X that induces the log structure on X, i.e., an isomorphism

X ' (X,Z)

of fs log schemes.

For this reason one can think of a smooth log scheme as a pair of a scheme
and a (strict normal crossing) divisor, where the divisor acts as a sort of
boundary of the scheme, and where the log structure determines the structure
of the boundary.

Another useful property of log smooth fs log schemes is the following.

Proposition A.3.4 ([BPØ20, A.10.2]). For X ∈ lSm/k, there is a log blow-up
Y → X such that Y ∈ SmlSm/k.

We will also often use the following identification.

Proposition A.3.5 ([BPØ20, Proposition A.11.9]). Let f : Y → X be a morph-
ism of fs log schemes. Then f is a log modification if and only if it is a surjective
proper étale monomorphism.

Similarly to the case for schemes we also have differentials on log schemes
called log differentials.

Definition A.3.6 ([BPØ20, Definition A.7.1]). Given a morphism f : X → Y
of fine log schemes, the sheaf of relative logarithmic differentials Ω1

X/Y is

Ω1
X/Y :=

(
ΩX/Y ⊕ (OX ⊗ZMgp

X )
)
/K,

where K is the OX -module generated by

• (dα(a))− (0, α(a)⊗ a) with a ∈MX ,

• (0, 1 ⊗ a) with a ∈ im(f−1MY →MX).

The morphism (∂d,D) is the universal derivation given by

∂ : OX
d→ ΩX/Y → Ω1

X/Y

and
D :MX → OX ⊗ZMgp

X → Ω1
X/Y .

These differentials have properties similar to those of ordinary differentials,
namely for a sequence

X
f→ Y

g→ Z

there is a natural exact sequence

f∗Ω1
Y/Z → Ω1

X/Z → Ω1
Z/Y → 0,

and if f is log smooth this sequence is also left exact, and Ω1
f is locally free as

a OX -module of finite type.
We also have that the logarithmic differentials give rise to a sheaf, defined

by the following definition.
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Definition A.3.7. For every fs log scheme X over k, and for every i ≥ 0, the
sheaf of logarithmic differentials of order i is defined as

ΩiX/k :=
{ OX i = 0,∧i Ω1

X/k i > 0,

which we often just abbreviate as Ωi. With the differentials above they also
form a complex of sheaves denoted by Ω•.

We can thus define cohomology groups Hi
τ (X,Ωj) for a topology τ on X.

We note that there are isomorphisms

Hi
Zar(X,Ωj) ' Hi

sNis(X,Ωj) ' Hi
s ét(X,Ωj)

due to [BPØ20, s.174].

Example A.3.8. Let X ∈ Sm/C with a compactification X → X such that
X is smooth and proper, and the complement X −X = D is a strict normal
crossing divisor on X. Then if t1, . . . , tn are local coordinates in a neighborhood
of any point of D such that D is given by t1 · . . . · tr = 0 for some r ≤ n. Then
by the open immersion

j : X − ∂X → X

we define
Ω1
X(log ∂X) ⊂ j∗Ω1

X

as the locally free subsheaf generated by
dt1
t1
, . . . ,

dtr
tr
, dtr+1 . . . dtn.

Since dti
ti

= d log ti, the logarithmic forms are precisely the meromorphic forms
on X which are regular on X and with poles of order at most 1 along D. This is
primary reason for the choosing the term “logarithmic” in logarithmic geometry.

Theorem A.3.9. (Logarithmic de Rham theorem) In the situation above we have
an isomorphism

H∗(X,Ω•
X

(logD)) ' H∗(X(C),C).
This theorem gives the mixed Hodge structure on H∗(X(C),C) by the

associated Hodge-to-de Rham spectral sequence.
One of the most important theorems in [BPØ20] is that Hodge cohomology

is representable in logDMeff(k,Λ), i.e.,

Hi(X,Ωj) ' HomlogDMeff(k,Λ)(M(X),Ωj [i])

as shown in Theorem 9.7.1 in [BPØ20]. Since the Hochchild–Kostant–Rosenberg
Theorem (Theorem 3.4.12 in [Lod92]) gives a description of cyclic cohomology
in terms of Hodge cohomology, namely

HCn(X,Ωj) '
⊕
p∈Z

H2p−n
Zar (X,Ω≤2p),

we also get that cyclic homology is representable in logDMeff(k,Λ) as

HCn(X,Ωj) ' HomlogDMeff(k,Λ)(M(X),
⊕
p∈Z

Ω≤2p[2p− n]),

which is shown in Theorem 9.7.3 in [BPØ20].
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