University of Oslo
Department of Informatics

NewsView:

A Recommender
System for Usenet
based on FAST
Data Search

Mari Wang

Cand. Scient. Thesis

16th February 2004

Abstract

This thesis combines aspects from two approaches to information ac-
cess, information filtering and information retrieval, in an effort to im-
prove the signal to noise ratio in interfaces to conversational data. These
two ideas are blended into one system by augmenting a search engine
indexing Usenet messages with concepts and ideas from recommender
systems theory. My aim is to achieve a situation where the overall result
relevance is improved by exploiting the qualities of both approaches. Im-
portant issues in this context are obtaining ratings, evaluating relevance
rankings and the application of useful user profiles.

An architecture called NewsView has been designed as part of the work
on this thesis. NewsView describes a framework for interfaces to Usenet
with information retrieval and information filtering concepts built into
it, as well as extensive navigational possibilities within the data. My aim
with this framework is to provide a testbed for user interface, inform-
ation filtering and information retrieval issues, and, most importantly,
combinations of the three.

Preface

This thesis is submitted to the Department of Informatics at the Univer-
sity of Oslo as part of a candidata scientiarum degree.

Acknowledgements

First of all, I would like to thank my supervisor, Knut Omang, for being
available and helpful, and for helping me out whenever I stumbled on
another technical obscurity.

I'would also like to thank my coworkers at Abel, abelvaktene, for helping
me out by standing in for me at work in the last couple of weeks, and
for being a knowledge resource around the clock.

Those who have helped me by reading, commenting, and by enduring
my endless detail obsessions, in particular Petter, Tone, Siri and Bente,
deserve special mention.

Finally, I would like to mention those people out there who have spent
their spare time creating the work environment within which this thesis
has been created - thank you all.

Contents

1 Introduction
1.1 Thesis Outline

2 Usenet
2.1 TheUsenetModel
2.1.1 The User Perspective
2.1.2 The System Perspective
2.2 Mailing Lists Versus Usenet
2.3 Usenet Community Structure and Dynamics
2.4 Current Interfaces toUsenet.
2.4.1 The Traditional Text-based Usenet Client
2.4.2 Web-based Archives
2.4.3 Mailing List to Usenet Gateways
2.4.4 Triggers, Alerts and Filtering Services

2.4.5 User Interfaces to Conversational Data

3 Recommender Systems
3.1 Recommender Systems in Context
3.2 Conceptsand Theory
3.2.1 Information Needs and Relevance
3.2.2 Information Filtering
3.2.3 Profile Building and Maintenance
3.2.4 Annotations and Ratings
3.2.5 Social Implications of Recommender Systems

3.2.6 Privacy COncerns i uununn.

CONTENTS vi
3.2.7 General User Interface and Usability Concerns 38

3.3 Known Approaches and Implementations 39
3.3.1 Grouplens 39
3.3.2 PHOAKS e 42
Search Engines 43
4.1 Crawler-based Search Engines 44
4.1.1 Crawler 46
4.1.2 Indexer and Searcher 48

4.2 FASTDataSearch 51
4.2.1 Feature and System Overview 52
4.2.2 DataFlow Overview 53
4.2.3 Module Overview 54
4.2.4 The Content Lifecycle in FAST Data Search 56
4.2.5 Index Profile and Document Processing 57
4.2.6 Categorisation 60
4.2.7 The Taxonomy Toolkit 63

5 Design 65
5.1 UsenetFeed, 68
5.2 SearchEngine 69
5.2.1 Data AcCess oo e e 70
5.2.2 DataStorage 71
5.2.3 Resubmitting Content to the Search Engine 73

5.3 FrontEnd 73
5.3.1 J2EE and JBoss with Tomcat. 74
5.3.2 The Fast Query Toolkit 77
5.3.3 UserInterface 80
5.34 UserConcept, 83

vii CONTENTS
6 Implementation 85
6.1 UsenetFeed 87
6.1.1 Retrieving Usenet Messages 87

6.1.2 Preprocessing of Usenet Messages 88

6.1.3 Submitting Usenet Messages to FAST Data Search .. 89

6.2 SearchEngine 90
6.2.1 IndexProfile 90

6.2.2 Document Processing Pipeline 93

6.2.3 The Taxonomy Toolkit 97

6.2.4 Resubmitting Content to FAST Data Search 98

6.3 FrontEnd 98
6.3.1 FQT e 99

6.4 The NewsView Development Environment 99

7 Conclusion 101
A Future Work 103
B NewsView Screen Shots 105
C Source Code 107
C.1 IndexProfile. 107

Bibliography 111

List of Tables

2.1 Major Usenet hierarchies 9
2.2 Usenet headers as defined by RFC 1036 [36] 11
3.1 Example recommender systems 41
4.1 FAST Data Searchmodules. 56
6.1 Navigators as configured in index profile 92
6.2 Views as configured in index profile 92

6.3 The stages of the UsenetNewsView processing pipeline . . . 97

List of Figures

2.1 Graphical representation of the Usenet hierarchy structure
2.2 Sample Usenet messageo v v vv v,
2.3 Simplified schematic view of Usenet technical organisation
2.4 UserFriendly [25] cartoon strip of 29th of April 2003
2.5 Sample text based Usenet client (KNode)
2.6 Example of conversation map interface
2.7 Sample Loom visualisation.
2.8 Sample Loom?2 visualisation
2.9 Sampletreemap [63]
2.10 Message attribute highlighting schemes using thread arcs .

3.1 The general structure of a recommender system
3.2 Information seeking processes, after [62].
3.3 Venn diagram illustrating precision and recall

3.4 Information filtering model, after [6,5]

4.1 Overview of crawler-based search engine architecture
4.2 Models for obtaining freshness

(@ Pullmodel............

(b) Pushmodel

() Hybridmodel..........................
4.3 The user interaction with the retrieval system.
4.4 The process of retrieving information, after [3, page 10] . .
4.5 FAST Data Search system architecture
4.6 The content lifecycle within FAST Data Search
4.7 How the index profile ties into FAST Data Search

13
15
17
19
20
21
22
23

25
27
29
30

LIST OF FIGURES xii

4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6

B.1
B.2

Overview of the index profile XML format 60
Overview of NewsView technical design 68
NewsView Usenet feed design 69
Newsview search engine design 69
NewsView frontend design 73
The J2EE applicationmodel 75
The J2EE architecture 76
The three Cs: Components, containers and connectors ... 77
Graphical representation of the MVC design pattern 80
Sketch of the frontend view types 81
(@) Search/browse View v v v v v i i e e 81
(b) Preferences/profileview 81
Overview of NewsView implementation 86
NewsView Usenet feed implementation 87
Pseudo code for thread id insertion algorithm 89
NewsView search engine implementation. 90
The taxonomy toolkit interface 97
NewsView front end implementation 99
Screen shot of a NewsView-based search interface to Usenet 105

Screen shot of a NewsView-based result view 106

Chapter 1

Introduction

Today, low signal to noise ratio frequently characterises the process of
fulfilling information needs using computer interfaces. This thesis stud-
ies approaches to increasing this ratio, particularly in the context of con-
versational data.

The two traditional approaches to information access, information re-
trieval and information filtering, are central to the work presented. The
major idea of this work is to attempt to combine ideas from these two
approaches into one system. This is done by augmenting a search engine
indexing Usenet messages with concepts and ideas from recommender
systems theory.

The choice of Usenet as data domain was made based on availability,
and the special filtering possibilities enabled by conversational media.
Conversational data contain inherent information about social structure
and interaction patterns. By automatically obtaining, processing and ex-
tracting predictions from such meta-information, relevance ratings can
be improved.

Thesis Objective

The objective of my thesis is to look at possible ways in which
information filtering and information retrieval can be com-
bined. This is done in context of recommender systems for
Usenet built using a search engine.

My aim is to obtain a higher signal to noise ratio, through
better result relevance prediction and extensive navigational
possibilities within the data.

Introduction 2

The Work with this Thesis

Several large, fairly complex subject areas are treated in this thesis, in-
cluding information retrieval and information filtering as well as FAST
Data Search (FDS). I have invested a substantial part of the thesis work
in becoming familiar with these.

I was given the opportunity to contribute substantially to the design and
directions of my thesis work. This led me to considerable research into
for me uncharted territory, a process which I have very much enjoyed. I
have benefited from a large number of digressions - of which far from
all have made it into the final text. This roundabout route to the finished
product has, however, been time consuming.

The main challenge in the work with this thesis has been twofold: I had
to acquire an understanding of several large research fields and combine
their core principles whilst keeping an adequate level of detail. FDS is
a large, complex application. Getting my bearings within the framework
it represents, and putting together a system around it using many small
building blocks, has been demanding.

When building the system, I used several features of FDS which were
under development at the time. As a consequence, I have used early
releases of the software, with the expected potential for quirks.

For various reasons, the implementation was put in concrete terms very
late in the process. As a result, ideas from recommender systems theory
in particular have not been incorporated into the NewsView architecture
to the desired degree. The architecture does not, however, limit the use
or addition of such features.

1.1 Thesis Outline

The thesis has two main parts. Chapters concerned with theory and
background can be read independently of each other and the rest of the
thesis. The design and implementation chapters, however, build directly
on the foundation provided by the theoretical background chapters.

Theory and Background

Usenet is the data domain on which the practical work of this thesis is
based. Chapter 2 presents Usenet, a world-wide distributed discussion
system carrying conversations on almost any conceivable topic.

3 1.1 Thesis Outline

In my thesis, Recommender systems and search engines represent the
two traditional information access approaches. Recommenders systems,
presented in chapter 3, exemplify information filtering systems. Search
engines are commonly used applications of information retrieval, and
are presented in chapter 4.

When presenting my theoretical foundation, I have focused on the in-
formation access perspective. Concepts not necessarily relevant to the
architecture described have been treated nonetheless because of their
importance in this context.

Design and Implementation

Chapters 5 and 6 present the design and implementation of NewsView,
the architecture created as part of the work on this thesis. NewsView
attempts to combine information filtering and information retrieval con-
cepts into one interface. Results are presented by means of an interface
with extensive navigational features. The focus of this work is not to
present a finished interface, but to provide a testbed for user interface,
information filtering and information retrieval issues, in combination or
separately.

Introduction

Chapter 2

Usenet

This chapter gives a broad introduction to Usenet, covering technical as-
pects as well as some issues related to the community emerging from
it. First, an overview of what Usenet is, where it comes from, and where
it is today is presented. Next, section 2.1 contains a description of the
workings of Usenet, from the user perspective as well as a more tech-
nical angle. Section 2.2 gives a brief comparison of Usenet and mailing
lists, whereas section 2.3 gives an introduction to Usenet community dy-
namics and interaction characteristics. Finally, section 2.4 presents an
overview of different interfaces to Usenet. This includes applications of
recent research on social aspects and dynamics of conversational media
to improve user interfaces.

What is Usenet?

Usenet is a world-wide distributed discussion system. It consists of a
number of hierarchies of newsgroups classified by topic. Articles can be
posted to these newsgroups by anyone who has appropriate software,
and are distributed to other interconnected computer systems.

Usenet is like conventional news media such as newspapers and maga-
zines in that information is distributed to a large audience. The big
difference between these traditional media and Usenet is that the read-
ers can choose to participate in discussions on equal terms with the
author. Combined, the various hierarchies carry groups covering almost
any conceivable topic.

The alt.culture.usenet FAQ [72] presents the following alternative defini-
tions of Usenet:

1. Usenet is the newsgroups

Usenet 6

2. Usenet is the loosely coupled network of computers that transmit
Usenet messages via various protocols

3. Usenet is the community of people who read Usenet messages

4. All of the above

For my purposes, definition number four, with a further specification as
to the first point, is the most fitting. The term Usenet is employed in its
broadest sense, including all groups and hierarchies.

The History of Usenet

By the end of the 1970’s, ARPANET, the precursor to the Internet, was
a very limited community. Joining it involved a fairly large investment
in facilities and equipment, and even if you had the required resources
available you might not be eligible to join. As such, it was a rather ex-
clusive club.

In 1979, some students of Duke University in North Carolina, US, decided
to explore the possibilities of creating a network using cheap modem
lines. Version 7 of UNIX had just appeared, and bundled with it came a
software package named UUCP ("Unix to Unix CoPy’). Among the features
of this software package were file transfer between hosts and remote
command execution. Despite incomplete documentation, the ability to
connect hosts using cheap telephone modems was appealing and led to
the creation of a program called A News, a distributed bulletin-board
system.

The idea of message exchange was by no means new at this time. The
ARPANET had carried mailing lists for a while, and these can be said to
be the philosophical predecessors of Usenet. What was new and revolu-
tionary about the Usenet approach, was the idea of a public area from
which everyone could read articles instead of sending a separate copy to
every participant (Spencer and Lawrence [77]).

The four students being most deeply involved in the project, Steve Bello-
vin, Stephen Daniel, Jim Ellis and Tom Truscott [65] believed the traffic
potential of their new intention to be rather small. Their initial estimate
was a few messages a day.

The number of articles posted and read grew steadily, and after Jim Ellis
held a presentation of the system at the winter 1980 Usenix Conference!
gained momentum for real. The network grew rapidly, as there were lots

1T have been unable to find a specific reference to this presentation, but it is men-
tioned in [77]

7 2.1 The Usenet Model

of people without access to ARPANET and modem technology was relat-
ively cheap. Usenet got connected to the ARPANET fairly early, initially
through a mailing list to Usenet gateway. Later on, when the ARPANET
was evolving into the Internet, it was used as a transmission route for
Usenet [77].

Usenet Today

As of today, Usenet is available to almost anyone with access to a net-
worked computer, although possibly through a fee. Access to the In-
ternet is neither necessary nor sufficient to access Usenet, and the set
of Usenet newsgroups available to users differs as no server carries all
hierarchies and groups. Many companies and organisations use local
hierarchies for news exchange and discussions of importance to their
activities. These hierarchies are kept on local servers, and are often un-
available to the public. Hundreds of millions of messages are posted
each month and tens of thousands of servers are participating in the
propagation of messages.

2.1 The Usenet Model

2.1.1 The User Perspective

Usenet users employ client programs to read, compose and reply to mes-
sages. Sometimes an article is composed from scratch, and sometimes
it is a followup to another message. When a message is completed, it is
posted to one or more newsgroups. If a message is posted to more than
one newsgroup, it is said to be cross-posted.

Some newsgroups are moderated. In this case, a moderator - usually one
or more persons, but sometimes automated software - decides which
messages are actually posted to a newsgroup.

There is a vast variety of hierarchies available, some regional, some
organisation-specific, some general. A specific subset of these have a
special position, and they are known as 'The Big Eight’. These have been
around for a long time, and are considered the ’official’ hierarchies by
many. A hierarchy external and partly parallel to these with a long his-
tory of its own, is the alt hierarchy. Where The hierarchies belonging to
the Big Eight have a fairly rigid procedure for newsgroup creation, this
process is essentially unregulated in alt. As a consequence of this, the
latter carries groups with discussions concerning moral and ethical is-
sues of a controversial nature in addition to less controversial subjects.

Usenet 8

Figure 2.1 shows a schematic overview of the Usenet newsgroup hier-
archy, and contains explanations of some of the key concepts (the num-
bers correspond to labels in the figure) :

1. Usenet has a hierarchical naming system. There are more than 150
Top level hierarchies.

2. Newsgroup names are hierarchically built by a series of increas-
ingly specific terms.

3. Each group contains a number of posts or articles related to the
subject of the newsgroup.

4. Posts can be cross-posted to multiple newsgroups.

5. Any post may be responded to, making chains of messages called

threads.

.
!

programmer

°@

Figure 2.1: Graphical representation of the Usenet hierarchy structure.
Figure layout is adapted from Smith [75]

Table 2.1 gives an overview of the mentioned hierarchies along with a
short description of each:

9 2.1 The Usenet Model

Name Topics Covered

Comp Computers, computer science, and the computer in-
= dustry
b | Humanities | Literature and the humanities
L;J Misc Everything not fitting in somewhere else
& [News Discussion of Usenet itself
& [Rec Recreational activities, including sports and music
a Sci The physical sciences and engineering

Soc Socialising and social issues

Talk Discussions, debates and the like

Alt Alternative tree covering virtually everything

Table 2.1: Major Usenet hierarchies

2.1.2 The System Perspective

The three most important technical aspects of Usenet are the message
format, the message distribution algorithm and the message storage
mechanism. Each of these aspects is treated in the following.

Message Format

The format of Usenet messages is defined by RFC 1036 [36]. It is based
on the format for Internet mail messages as defined by RFC 822 [14], but
is more restrictive.

A standard Usenet message consists of some header fields, followed by
a blank line, followed by the body of the message. A header field is
defined to consist of a keyword, a colon, a blank and some more text. A
sample message with full headers is shown in figure 2.2.

Some headers are required, and some are optional but should be recog-
nised. All unrecognised headers of valid format are allowed, and will be
passed along untouched. Table 2.2 gives an overview of required and
optional headers as defined by RFC 1036 [36].

There are two types of messages. There are normal Usenet messages
posted to one or more groups by any user, and there are special control
messages used to perform creation and deletion of groups, cancelling
of messages and other similar administrative actions. These messages
can be sent by anyone, but there are usually some control mechanisms
to regulate who can do what to which messages, groups and hierarch-
ies. Control messages do not show up in regular newsgroups, but are
dealt with either automatically by server software or manually by Usenet

Usenet 10

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix

Subject: What would you 1like to see most in minix?

Summary: small poll for my new operating system

Keywords: 386, preferences

Message-ID: <1991Aug25.205708.9541@kTaava.Helsinki.FI>
Date: 25 Aug 91 20:57:08 GMT

Organization: University of Helsinki

Lines: 20

Hello everybody out there using minix -

I’'m doing a (free) operating system (just a hobby, won’t be big and
professional Tike gnu) for 386(486) AT clones. This has been brewing
since april, and is starting to get ready. I’d 1like any feedback on
things people Tike/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons)
among other things).

I’ve currently ported bash(1.08) and gcc(1.40), and things seem to work.
This implies that I’11 get something practical within a few months, and
I'd 1Tike to know what features most people would want. Any suggestions
are welcome, but I won’t promise I’11 implement them :-)

Linus (torvalds@kruuna.helsinki.fi)
PS. Yes - it’s free of any minix code, and it has a multi-threaded fs.

It is NOT protable (uses 386 task switching etc), and it probably never
will support anything other than AT-harddisks, as that’s all I have :-(.

Figure 2.2: Sample Usenet message

administrators. The manner in which they are treated depends on the
policy of the hierarchy the article is posted to and the local Usenet server
policy.

The body of a Usenet message can contain anything the body of an email
message can contain, for example uuencoded content and MIME encoded
attachments. The parts of MIME, or Multipurpose Internet Mail Exten-
sions, relevant to this thesis are described in RFCs 2045 [26], 2046 [27]
and 2047 [60]. Some newsgroups, such as those of the alt.binaries hier-
archy, are dedicated to binary content.

Message Distribution

The propagation algorithm as described below corresponds to the one
given in RFC1036 [36].

Usenet is organised as a distributed network with no central control. Its
network topology can be viewed as a directed graph, where each node in
the graph is a host computer, and each edge is a transmission path to
another host. Each edge can be thought of as labelled with a collection

11 2.1 The Usenet Model

Required Header Fields

Header Description

From Contains the email address and optionally the name
of the sender

Date The date the message was originally posted to the net-
work

Newsgroups | Specifies the newsgroup(s) the message is posted to

Subject The title of the message, what it is about

Message-ID A unique identifier for each message

Path The path the message has taken through the network

Optional Header Fields

Header Description

Reply-To Mailed replies to the message should go to this ad-
dress

Sender Alleged sender if different from '’From’ address

Followup-To | Newsgroup(s) to which follow-ups should be sent

Expires Suggested expiration date

References Message-IDs of any messages preceding this message
in a thread

Control The message is a control message

Distribution | Limit distribution area of message

Organization | Name of senders organisation

Keywords Keywords to describe the message

Summary Brief summary of the message

Approved For moderated newsgroups, contains address of mod-
erator

Lines Number of lines in message body

Xref Information for local system regarding storage

Table 2.2: Usenet headers as defined by RFC 1036 [36]

of newsgroups which are forwarded along that link. Many edges are bid-
irectional, meaning the nodes in question forward the same collection of
newsgroups to each other. Further, Usenet can be viewed as consisting
of many subnetworks, where each subnetwork has a name (such as comp
or net) and represents some specific subset of the hierarchies. Each of
these subnets is a connected graph.

When a message is posted on one machine, it is addressed to a list of
newsgroups. The local machine accepts the message, and forwards it to
all neighbours having expressed an interest in at least one of the groups
it has been posted to. As each of the neighbours receive the message,

Usenet 12

they examine it to make sure they want it, accept it locally and then
repeat the forwarding process for all its own neighbours. This process
continues until the message has been seen by all nodes in the network.

An important part of this algorithm not covered so far is the prevention
of loops in the graph. There are several solutions to this. One solu-
tion is for each node to keep a history of the messages it has seen, and
throw away any incoming message it is already acquainted with. This
solution prevents loops, but is not very optimised. A better version of
this algorithm looks at the path header of a message before forwarding
it, thereby determining whether it has been seen by the remote host. If
so, that host is removed from the forward list for this message.

Currently, the most widely used method of Usenet transport is the NNTP
protocol as defined in RFC977 [44]. NNTP is a protocol dealing with dis-
tribution, inquiry, retrieval, and posting of Usenet articles. It implies the
use of a reliable stream client-server model, provided by for instance
TCP (Transmission Control Protocol). Each server stores Usenet articles
in a central database, and indexing, cross-referencing, and expiration
of aged messages is provided. Conceptually, the NNTP propagation al-
gorithm works much like the generic method described earlier, but there
are some important differences. First of all, NNTP lets the two commu-
nicating servers negotiate which exact set of the available articles should
be transmitted, thereby avoiding loops in the distribution scheme and
saving bandwidth and processing time. Secondly, NNTP does not rely on
flooding to spread articles. It defines two main ways of communication
between servers: push and poll. While push works in much the same way
as the traditional algorithm described above, poll differs by holding the
receiving host responsible for initiating contact between servers.

A simplified view of the technical organisation of Usenet is given in fig-
ure 2.3.

Message Storage

The design of Usenet implies the notion of each server having a central
database with messages. As there is no central control on Usenet, there
is no such thing as a master server or database.

Each server provides Usenet access to a group of people. Some restrict
their access, for example to people within a given organisation or paid
customers, and some give access to anyone. The size of the user popula-
tion for a given Usenet server can range from a small private business to
a university or a large commercial service to which other organisations
can outsource their Usenet needs.

13 2.2 Mailing Lists Versus Usenet

L egend

O Usenet News Server.
Circle sizeindicates
server size

— Usenet News feed
Line thickness
indicates feed
bandwidth

Figure 2.3: Simplified schematic view of Usenet technical organisation

The usual model of Usenet user access is by the employment of a server
and client model. The user’s chosen client software is configured to
connect to the appropriate Usenet server, and the user may then request
the articles he or she wishes to see and read them locally. The articles
are, however, normally not stored locally - except possibly for some
form of local caching.

2.2 Mailing Lists Versus Usenet

Usenet has its philosophical predecessors in ARPANET mailing lists cre-
ated in the 1970s. Mailing lists are lists of subscribers email addresses
and remailing sublists. Each such list includes all the intended recipi-
ents. A mailing list operates by remailing a copy of each message sent
to the list to each subscriber. Some mailing lists are rather small and
concerned with specialised topics, while others have a broad focus and
contain discussions of more general issues.

Mailing lists have inherent design problems which become very obvious
once they grow beyond a few dozen people. Sending a separate copy
of the list submissions to each of the subscribers occupies large quant-
ities of network bandwidth, CPU resources, and significant amounts of
disk storage at the destination host. There are ways of reducing some
of these problems, for instance by introducing separate remailers and
message digests. Some more recent attempts at scaling mechanisms
have been made, for instance by Spertus, Jeffries and Sie [78], but none
of these attempted solutions address the real problem - private email
from one person to another is a rather different form of communication
than group discussion [44].

Usenet 14

Maintaining the list itself presents a problem as well, as subscribers join,
leave, change jobs and consequently email addresses and so on [44]. The
management of subscribers is eased by recent systems for list adminis-
tration which among other things allow subscribers to manage their own
subscription preferences. These systems also typically have functional-
ity for automatically expelling invalid subscriber addresses from the list.

A significant reduction of the amount of resources used can be obtained
if articles are stored in a central database on the receiving host instead
of in each subscribers mailbox. As described in section 2.1.2, this organ-
isation is inherent in the Usenet system.

In addition to the obvious decrease in system resource usage, the Usenet
interface to group discussions present several other advantages over
mailing lists. Threading is a required part of the Usenet message ex-
change, and most Usenet client software supports threading. This fea-
ture means discussions are grouped, and eases the sifting of which dis-
cussions the user is interested in. If a thread is deemed uninteresting,
the entire thread can be deleted at once, most often including any later
correspondence in that thread. There is no administrative overhead if a
user reads a particular group only periodically, or changes his or her ad-
dress. Messages are automatically expired after a while, meaning users
do not have to scan through lots of old messages if they have been ab-
sent for a while. Archives such as Google groups [31] are available if a
user wants access to a longer backlog than provided by reachable Usenet
servers.

2.3 Usenet Community Structure and Dynamics

The Internet is filled with junk and jerks. It is commonplace
for inhabitants of the Internet to complain bitterly about the
lack of cooperation, decorum, and useful information.

- Peter Kollock [47]

Usenet constitutes an huge amount of fairly unstructured information.
In addition to the sheer amount of data, Usenet is an environment full
of flames, rants, griping and other evidence of hostility, selfishness and
simple nonsense (Figure 2.4). Despite many attempts at rules, group-
specific FAQs, charters, 'words to live by’, netiquette listings and the
like, it continues to be a rather wild, unordered place. Consequently, the
overall signal to noise ratio is low. Anarchy thrives, and any order is
perceived to exist as a product of a delicate balance between individual
freedom and collective good. Given a relatively anonymous interaction
form, with no central authority or easily available monetary or physical

15 2.4 Current Interfaces to Usenet

sanctions, it may very well seem surprising how many Usenet groups are
well organised and productive [48,47].

USER FRIENDLY by Illiad

S0 THAT'S DISTILLED AND YOU &OT THAT FROM THE WAIT.YOU MANAGED TO GET
AL RA ALL OF THAT FROM ONE WEEK
USENET BITTERNESS? guugeﬁ NTING AND RAGING OF Udenet W

YESITIS.

COPYRIGHTIZI2003 ILLIAD HTYP://WWW.USERFAIENDLY.ORG,

Figure 2.4: UserFriendly [25] cartoon strip of 29th of April 2003

The task of locating those groups is a daunting one, and conventional
Usenet user interfaces do not scale very well in this respect. Displaying
the group name, description and hierarchy position only conveys part of
what goes on in a group. Other important metrics, such as the audience
participating, size, knowledge level about the particular subject area and
the tone of conversation may only be discovered through following the
group for some length of time.

It is clear that having a way of distinguishing at least some such char-
acteristics of a given group instantly upon viewing it for the first time
would save users time and effort, and make the task of making oneself
acquainted with the medium easier. The possibilities opened by such
information in areas like filtering and user interface construction are
obvious and vast. The question remains whether these metrics can be
automatically extracted or have to be manually created and maintained.
Some research on these issues is presented in section 3.2.2 as part of the
treatment of ’social filtering’. For a thorough treatment of issues related
to online communities, see Smith and Kollock [49].

2.4 Current Interfaces to Usenet

There are many ways in which Usenet can be accessed. The traditional
Usenet interface, the text-based client program allowing a user to read
and post Usenet messages subject to basic filtering, is only one of sev-
eral alternatives. As a consequence of varying usage patterns, a number
of interfaces meeting different needs have emerged. In the following,

Usenet 16

a selection of these will be presented: traditional Usenet clients, web-
based archives, mailing list to Usenet gateways and filtering and alerting
systems. At the end of the section, recent research into user interfaces
to conversational data is presented in some detail.

2.4.1 The Traditional Text-based Usenet Client

The focus of traditional text-based Usenet clients is on the display of the
information received from a Usenet server, not on any particular pro-
cessing of the data. The display normally includes a list of subscribed
groups, and possibilities for viewing specific groups and messages. Most
clients include threading functionality, and are exclusively geared to-
wards browsing the available information. Figure 2.5 shows KNode, a
sample client.

Basic filtering is normally available by means of kill files. Kill files enable
specific posters and threads to be ’killed’ based on some pattern, which
usually means they are removed from the data presented visually to the
user. In addition to this, some clients support scoring. Scoring works by
matching authors against a list of scoring information created manually,
and adjusting the display of postings according to the directions given in
this list. The basic filtering functionality provided by these mechanisms
is geared towards aiding users browsing groups already familiar to them.
A user looking for new groups or topics to explore is left to a basic
hierarchy browser.

2.4.2 Web-based Archives

Google groups [31] is by far the largest and most complete archive of
Usenet messages available today. It offers a web-based interface suitable
for browsing, searching and posting, and its archive includes more than
800 million Usenet messages, covering 20 years of human conversation.

Netscan [74] is a database storing large amounts of statistics about Use-
net - number and size of postings, statistics per user, group and hier-
archy and so on. The database is created primarily for research pur-
poses, focusing on utilising social structures in Usenet user interfaces.
Netscan and related research is described in more detail in section 2.4.5.

Smith and Fiore [76] argue that web-based archives with a basic search
interface make users less likely to take part in the community, as their
relationship with Usenet becomes one of retrieving specific pieces of
information instead of one of a social connection. They argue that, when
context is sparse, the likelihood of users taking part in the community
is reduced.

17 2.4 Current Interfaces to Usenet

Eile Edit ¥iew Go Account Group Folder Atticle Scaoring Seftings Help

&C NEEE bk 7XE

o%
Name % |Tma||unrea Subject | From |S:ore| Lines |Date /
=] @ nntp.uin no :
Eump lang java 3d

=] <7 4 charting/graphing pack...

=@ ¥ Re: charting/graphi... Michael N. Christoff 0 13 2003-05-30 00
& cljavaadvocacy @ Re: chartingigraph... Mike 0 18 2003-05-30 15:..
&cljavaannounce : @ Re: charting/graphing ... Steve W. Jackson 0 23 2003-05-29 21..
& clangjavabeans @ ¥ Char toUpperCase pro... Peter] 35 2003-05-29 20:.

c.lang javacorba
c.ljavadatabases
& comp.lang java.gui
:omp lang java.help
:.\ang}ava machine
@c.l.j.pmgmmmer
c.lang java security
c.\.J.suﬂwareluuls

me robotics There may he a need at work far a high-guality, high-resalution

= 65 Local Folders charting/graphing library. Can someone recommend such a package?
I need something that will weork on multiple platfomms, fully

within java, in my own application. | will create the frames,

set the layouts, handle the menus and such. | am looking for
something that | can call like ‘'new Chart))', stick in a

panel, and send it values to plot

@ ¥ Run java in JBuilder zpl o a 2003-05-23 20: =

chartingfgraphing package?
From: Mike <hike@mikes.ath.cxs
Date: Thursday 23 May 2003 20:50:56
Groups: comp.lang javaprogrammer

no references

coof@lccococooocoo

Mike

4] [Ta»

[|| Ready Filter: all [comp.lang java.pragrammer: 850 new , 934 displayed

Figure 2.5: Sample text based Usenet client (KNode)

2.4.3 Mailing List to Usenet Gateways

A number of mailing list to Usenet gateways have emerged, both com-
mercial, of which Newsadmin [55] is an example, and freely available,
like gmane [38]. They offer similar services, but with some differences -
for instance, gmane inserts new groups into its own separate hierarchy,
gmane, while newsadmin inserts new newsgroups into the alt hierarchy.
Both offer a bidirectional service (postings to the Usenet groups are for-
warded to the mailing lists as well as the other way around), depend-
ing on the setup of the individual mailing lists in question. Gmane
has additional features, providing among other things spam detection,
cross-post handling, an encryption and forwarding service driven by the
Tagged Message Delivery Agent (TMDA [18]) , a web interface and a real-
time indexing search engine. It respects user requests to avoid archiving
of messages (Employing the X-No-Archive header).

2.4.4 Triggers, Alerts and Filtering Services

Several trigger and alert services are available, some targeted exclusively
at Usenet and some with a wider information base. NewsBin [61] is one
such service, aimed at users of binary newsgroups. It provides an in-
terface to binary newsgroups easing the process of downloading attach-

Usenet 18

ments, among other things by enabling batch downloads, automatic de-
coding of messages and spam filtering. Other services, like binnews [7],
provide monitoring functionality presenting users with overviews of bin-
ary content to reduce the amount of data eligible for download. It can
provide edited as well as unedited newsgroup views.

Cyberalert [15] is a commercial monitoring service for news items posted
to various sites and forums on the web, including Usenet. Users specify
keywords or phrases, and receive daily reports of relevant matches.

2.4.5 User Interfaces to Conversational Data

This section presents a survey of recent developments in research dir-
ected towards user interfaces to conversational data. The approaches
included here are presented because of their potential use as user inter-
faces in a recommender systems context.

Some such interfaces are presented in this section. They approach the
task from different angles and concentrate on different aspects of it.
The common ground they all share is the wish to convey more inform-
ation about the interactions on Usenet, than what is the case with tra-
ditional text-oriented interfaces. They wish to do this by creating new
visual interfaces or augmenting existing ones. Illustrations are included
to visualise these interfaces to the reader.

The first system to be presented, the conversation map [70], is rooted in
a linguistic perspective. It uses threading structure and language to con-
struct 'discourse diagrams’ to convey the social and semantic networks
present in Usenet. Loom [17] and its successor, Loom2, are presented
next. Both projects focus on using visualisation techniques to uncover
social patterns of Usenet for individual users and groups.

Smith and Fiore [76] have focused on portraying the social aspects of
Usenet by visually expressing the quantitative qualities of the environ-
ment such as number of people and frequency of posting. All the sys-
tems mentioned so far present interfaces with little resemblance to a
traditional text-based Usenet client. The thread arcs [40] project has
chosen a different approach, developing a thread visualisation technique
intended to be applied as part of a larger interface.

The Conversation Map

Sack [71,70] has developed a Usenet newsgroup browser analysing archi-
ved Usenet messages and outputs what he terms a conversation map.
The conversation map uses social and semantic networks. The social

19 2.4 Current Interfaces to Usenet

networks show who is replying to or citing whose messages, whereas
semantic networks are used to highlight the most frequently used terms
and some of their relationships with one another. In addition to this,
the conversation map creates a list of the most frequently encountered
discussion themes. The overall aim of this approach, is to enable a com-
bination of social and semantic navigation.

Figure 2.6 shows a sample conversation map interface. The upper half of
the interface shows three views which are, from left to right, social net-
works, discussion themes, and a semantic network. The bottom half of
the interface shows a graphical representation of the newsgroups mes-
sages analysed by the system.

Figure 2.6: Example of conversation map interface

Loom and Loom?2

The Loom project attempts to use visualisation techniques to uncover
social patterns of Usenet [17]. Such patterns are typically difficult to
obtain when using a textual interface unless a community is monitored
over time. Work on the Loom?2 project is grounded on observing text as

Usenet 20

a communication medium - while text has a number of excellent qual-
ities as a medium for exchanging ideas, it has severe limitations as a
conversational medium. It is highly adaptable, and given a basic alpha-
numeric keyboard people can discuss almost any topic. It has, however,
a limited capability when it comes to conveying many kinds of social in-
formation, such as conversational tone, patterns of activity and the size
of the conversational group. The focus of the Loom project is to cre-
ate representations highlighting social information and helping people
make sense of the virtual social world. This approach is called Social
Visualisation, which is defined as the visualisation of social information
for social purposes.

Loom visualises threaded discussions. It aims at revealing patterns in-
dicative of a person’s role in the community, and the type of discussion
prevalent in a particular group. It works by displaying both the inform-
ation at hand without processing it further, like date, author, threading
context and so on, and by categorising messages and employing this de-
rived information to visualise other aspects (for example moods) char-
acterising interaction.

Figure 2.7 shows an example of a group interface as presented by Loom.
Users are depicted along the y axis, and time along the x axis. Each
coloured line represents a thread of conversation, and the interface can
be used to display the actual text of a Usenet message as shown.

gloom _______________ A

Figure 2.7: Sample Loom visualisation

The Loom?2 project [8, 16] builds on Loom. It has the same basic ap-

21 2.4 Current Interfaces to Usenet

proach to the visualisation process, that is, a goal of visualising the un-
derlying social patterns of the Usenet communities.

The project identifies two fundamental questions - what to visualise and
how to visualise it. The answers to the first question is assumed to
convey the social characteristics of individuals, conversations, threads
and newsgroups. The emphasis is on reflecting fundamental differences
between groups instead of detailed representations of each numerical
attribute. The Loom?2 project has gone through several design iterations,
for a detailed survey see [8].

Figure 2.8 shows a sample visualisation from Loom2, depicting the group
rec.motorcycles. Related posts are placed in a circle. The pattern of
densely populated circles implies an active conversational environment.

Figure 2.8: Sample Loom?2 visualisation

Netscan and Tree Maps

Work on the Netscan project [74] has presented several different visual-
isations of social aspects of Usenet. Smith and Fiore [76] present some of
these, for instance thread trees, the piano roll display, the interpersonal
connections display and tree maps.

Their motivation is similar to that of the Conversation Map and the Loom
projects. They build on the previously presented concept of 'social visu-
alisation’ [17], and present an interactive web based interface to Usenet
composed of several visualisation components.

Usenet 22

An almost unlimited number of facets of Usenet interactions can be visu-
alised at various scales. The focus of Smith et. al. [76] is to visualise the
chosen data in a way maximising the connection between the visualisa-
tions and the actual process of reading and contributing to newsgroups.

The authors argue that an appropriately designed interface to Usenet
newsgroups could reinforce socially beneficial behaviour. They also point
to how such an interface could emphasise interpersonal relationships,
and as such reveal the roles and importance of individuals. This leads
them to the following vision of a Usenet interface:

An ideal interface that would allow the user to view simultan-

eously the set of messages in a given time span or newsgroup,

the corresponding set of people, and the interactions within

and between those sets.

- Smith and Fiore [76]

Figure 2.9 shows a sample tree map [76,22], which is a visualisation at-
tempting to demonstrate the hierarchical structure of Usenet. The relat-
ive box sizes are based on the number of posts in a given newsgroup for
a month. Colour variations indicate change in the number of messages
posted compared to the month before - green indicates more posted
messages, red indicates less postings. The colour intensity indicates the
rate of change - the higher the intensity, the larger the change.

Figure 2.9: Sample tree map [63]

23 2.4 Current Interfaces to Usenet

Thread Arcs

Thread arcs [46] is an interactive visualisation technique designed to
help people use threads in email. The approach chosen is to combine
the chronology of messages with the branching tree structure of a con-
versational thread. The approach is meant for threads of a limited size
only, but many Usenet threads are small enough to benefit from the
methods as described. Approaches involving sub-thread collapsing is a
possible way to apply thread arcs to larger threads.

A sample application of thread arcs can be seen in figure 2.10, which is
taken from Kerr [46]. The figure shows four ways to visualise the same
thread. 2.10.P shows the thread highlighting one users postings, 2.10.T
shows the effect of shading the thread according to time, 2.10.C colours
the thread according to the different contributors and 2.10.G highlights
the generations of postings in the thread.

Personal h|gh||gh‘ung Time shadlng

/\,

Contributor shading Generational shading

L Qe

Figure 2.10: Message attribute highlighting schemes using thread arcs

Summary

This chapter has outlined Usenet from a user and systems perspective.
Further, it has presented the use of social patterns as an aid for Usenet
visualisation techniques.

Usenet

24

Chapter 3

Recommender Systems

Recommender systems are proposed as an electronic equivalent to aids
employed when looking for information. Such aids are word of mouth,
recommendations, reviews, and surveys.

A related application of recommender systems utilised in this thesis,
is to aid a user in finding interesting information in contexts where the
signal to noise ratio is low. Usenet, which is the focal data domain of this
thesis, is an example of such a context. The treatment of recommender
systems given in this chapter is kept general as a rule, but includes some
Usenet-specific details.

A typical recommender system consists of people providing recommen-
dations, implicitly or explicitly, and a system aggregating these recom-
mendations and somehow transferring them into information directed
at appropriate recipients. The transformation can consist of merely the
aggregation itself, or be a more complex operation on the data [67]. The
choice of relevant information for a given user is made based on know-
ledge about the recipient and the data space. Some systems consider the
user interface an integral part, whereas others depend on modification
of preexisting interfaces or external ones. Figure 3.1 shows a graphical
representation of the structure of a recommender system.

Aggregation and Recommendations
processing of

evaluations

Y

Evaluations

Figure 3.1: The general structure of a recommender system

Recommender Systems 26

This chapter attempts to place recommender systems in a larger re-
search context, and to clarify connections to related fields. It continues
with theoretical background of central concepts and ideas, and, finally,
a presentation of some existing systems and approaches.

3.1 Recommender Systems in Context

The purpose of information access systems is to help users locating in-
formation relevant to them, avoiding the need to wade through large
amounts of irrelevant data.

In a historical context, there have been two separate analytical app-
roaches to information seeking, namely information retrieval and in-
formation filtering. These two approaches have been known by the com-
mon name of information access [28]. Figure 3.2 shows how the two
approaches relate to each other.

The aim of information retrieval systems is to support users with chan-
ging interests (high information need change rate), assuming the data is
fairly stable (low information source change rate), whereas information
filtering systems assume quite stable user interests over time (low in-
formation need change rate), but support dynamic information sources
(high information source change rate) [5]. Applications where the in-
formation source change rate and the information need change rate are
both high, are the most difficult to handle, and are as such termed the
grand challenge [62]. For an approach to taking on this challenge, see
Baudisch [5].

As mentioned previously, information retrieval is similar to information
filtering in several ways. Both approaches employ the same basic com-
ponents, rely on the same information flows, and can be modelled using
very similar architectures [6]. The difference lies in the time span of
usage for a given user - requests to information retrieval systems are
often made only once, and searched against the current document col-
lections. Requests to information filtering systems, on the other hand,
are often made repeatedly and against successive additions to the doc-
ument collection over a period of time. As such, information filtering
systems are concerned with repeated uses of the system by users with
long-term goals or interests over time, whereas information retrieval sys-
tems primarily support single requests [5, 6].

27 3.2 Concepts and Theory

A
ICH N)]
8
P g Grand
gl = Challenge
S| W
8
>
3
5
g
£
S
£
Retrieval

L

Information need change rate

Figure 3.2: Information seeking processes, after [62]

3.2 Concepts and Theory

This section presents concepts important to recommender systems. In-
formation needs and relevance are presented in section 3.2.1, followed
by treatment of information filtering in section 3.2.2. Towards the end of
this section, the theoretical framework is expanded to a point where an
accurate definition of recommender systems can be given. Profile build-
ing and maintenance is treated in section 3.2.3, annotations and ratings
are discussed in section 3.2.4, and section 3.2.5 treats some social im-
plications of recommender systems. Privacy concerns and some general
user interface and usability concerns are presented in sections 3.2.6 and
3.2.7, respectively.

3.2.1 Information Needs and Relevance

The purpose of an information filtering or information retrieval system
is to satisfy the information needs or interests of its users. Several mod-
els defining information needs and their creation have been proposed.

Belkin and Croft [6] propose a model where a person with some goals
and intentions related to a task finds the resources available to be some-
how inadequate to meet those goals. This is termed an anomalous state
of knowledge (ASK). Mizzaro [28], on the other hand, considers four
states of information needs. The initial phase, that is, the anomalous
state of knowledge, is called problem. When the person becomes aware

Recommender Systems 28

of the problem, it turns into an information need. Expressing the inform-
ation need turns it into a request, and formalising this request creates
a query. These states are also referred to as real, perceived, expressed
and formalised information need [59]. Users can, and usually will, have
several distinct information needs at once.

Measuring the performance of an information access system is hard. It
is inherently difficult to measure how well an information need has been
satisfied by the documents chosen, and, because of this, performance is
often measured by how relevant documents are judged to be by the user.
Relevance is a very central concept in this context. For more information
on this concept, see [59] for an exhaustive survey and [28] for a detailed
framework of relevance notions.

The aim of information access systems is to predict the relevance of doc-
uments as the user would assign it, and deliver only those documents
deemed relevant to the user. Initially, relevance predictions by inform-
ation access systems were boolean. Many recent systems use gradual
probabilistic models, acknowledging degrees of relevance [5]. Multidi-
mensional relevance has been proposed [28], but as these systems do
not provide a total ordering of the retrieved documents they can not
produce one single, meaningfully ranked output.

The most common measure of information system performance is pre-
cision and recall.

Given a sample information request I and its set R of relevant docu-
ments, let |[R| be the number of documents in this set. Assuming a given
information retrieval or filtering strategy processing request I, the result
set A is generated. Let |A| be the number of documents in A. Let |Ra|
be the number of documents in the intersection of the sets R and A, the
recall and precision measures are defined as follows:

e Recall is defined as the number of relevant items delivered divided
by the total number of relevant items, that is, the fraction of the
relevant documents which has been retrieved.

R
Precision = ||Tfl|| (3.1)

e Precision is defined as the number of relevant items delivered di-
vided by the total number of delivered items, that is, the fraction
of the retrieved documents which is relevant.

29 3.2 Concepts and Theory

|Ral
Recall = —— 3.2
R (3.2)

Figure 3.3 illustrates these sets. The definition of recall and precision
given here assumes all documents in the answer set A have been ex-
amined or seen, but this is not usually the case. This definition is,
however sufficient for the purposes of this thesis. The figure and the
definition are adapted from Baeza-Yates and Ribeiro-Neto [3, chapter 3],
which has more in-depth information on these issues.

Collection

Figure 3.3: Venn diagram illustrating precision and recall

3.2.2 Information Filtering

Information filtering has been applied to many application areas.

Figure 3.4 shows the general architecture model of information filtering
systems as proposed by Belkin and Croft [6]. The model consists of three
blocks, consisting of four steps each. The three blocks are surrogate cre-
ation in the top left, profile creation in the top right and the filtering and
refinement process at the bottom. The three smaller figures on the right
show how profile maintenance fits into the model, specifically profile
creation 3.4.a, interest changes 3.4.b and profile refinement 3.4.c.

To enable comparison of the surrogate and the profiles, both are usually
reduced to a set of attributes. Attributes enable mapping of documents
to a common representation by use of a distance measure, often real
numbers. The following properties distinguish different approaches to
information filtering:

Recommender Systems 30

Producers of
Documents

Users/Groups with
Long-term Goals

Distributors of Regular a) Creation *
Documents Information Interes

Distribution and .

Representation Representation
Document .

A b) outer
refinement
cycle

Comparison
or Filtering
Retrieved
Documents
) Inner
Use and/or refinement
Evaluation cycle

Modification

Figure 3.4: Information filtering model, after [0, 5]

1. Which attributes are used for the comparison of surrogates and
profiles, and how is their similarity determined?

2. Who or what assigns the attributes to the documents (indexing)?

3. Who or what assigns the attributes to users (profile creation)?

Malone et. al. [56] presented three different approaches to automatic
message filtering. Their initial proposition of cognitive, social and eco-
nomic filtering has been reworked, and today the model normally con-
sists of content-based (which is combination of cognitive and economic
filtering) and social filtering.

Content-based Filtering

Content-based filtering is used to create characterisations of document
contents and information profiles, which are used to intelligently match
documents to recommendation receivers. Rudimentary examples of cog-
nitive filtering include distribution lists and simple keyword matching.
Content-based filtering has its roots within the information retrieval
community, and utilises many techniques from this field [5].

31 3.2 Concepts and Theory

The three most prominent retrieval models are the boolean model, the
vector space model and probabilistic retrieval models [6]. The boolean
model is based on the exact match principle, whereas the other two are
based on a concept called best match.

The rest of this section presents these models, along with some motiva-
tion for the introduction of best match methods and a short description
of query refinement though relevance feedback.

The boolean model

Boolean retrieval is based on the concept of an exact match of a
query specification with one or more surrogate. The query spe-
cifications are expressed as words or phrases, and combined us-
ing standard boolean logic operators (hence the term 'Boolean’ re-
trieval). In this retrieval model, all surrogates matching a query are
retrieved and no distinction is made between any of the retrieved
documents. Thus, the result of a query operation using Boolean
retrieval is a partition of the available surrogates into a set of re-
trieved documents and a set of not-retrieved documents [6]. It is
important to be aware of the distinction between using boolean
queries and a boolean retrieval method - boolean queries can be
and are used in combination with many different retrieval meth-
ods. A major problem with the Boolean retrieval model is its lack
of relevance ranking within the retrieved document set. This leads
to the conclusion that Boolean retrieval is too weak for large text
collections [5].

As aresponse to the problems of exact match retrieval, best match meth-
ods have been proposed. These systems are built on the idea of present-
ing documents to a user in order of presumed relevance, and the belief
that this will present more effective and usable systems. If the system
has produces a good rank ordering, the density of relevant and useful
documents should be greatest near the top if the list. The probabil-
ity ranking principle states that if a retrieval systems’ response to each
request is a ranking of the documents in the order of decreasing probab-
ility of relevance, precision and recall will be maximised at any cut-off.
Best-match methods give users the option of controlling the output size,
and thereby improve their ability to manage large result sets [5].

The vector space model

The vector space model treats keyword representations of docu-
ments and queries as vectors in a multidimensional vector space,
the dimensions of which are the keywords used. Queries and text

Recommender Systems 32

are compared by means of vector comparison, for instance us-
ing the cosine similarity measure. A major improvement of this
model compared to exact match approaches, is the ability to weight
keywords according to their presumed importance. These weights
can be computed based on the statistical distribution of terms in
the document base [5, 3].

Probabilistic models

Probabilistic information retrieval methods are based on the prob-
ability ranking principle. Documents are ranked according to their
probability of relevance to the query, given all available evidence.
Typical sources of such evidence are the statistical distribution of
terms in the document base and other texts. The representations
of both information needs and texts are uncertain, as well as the
relevance relationship between them, and this is taken into consid-
eration by probabilistic models [5, 3].

Query refinement through relevance feedback

Relevance feedback is a successful approach to simplification of
query formulation. The basic idea of this approach is to let users
give feedback on the relevance of examined documents, and let
this feedback guide later document ranks. The actual method of
computing the updated ranks depends on the underlying retrieval
model, but common solutions include adding a subset of the terms
found in documents judged relevant to the query, or boosting their
term weights. Relevance feedback simplifies the query formulation
process by partially replacing the task of formulating queries with
the task of criticising suggestions made by the system [5].

Content-based filtering has several known weaknesses [73]. Not all items
can be easily parsed in a way allowing automation of content-based fil-
tering. Multimedia data such as sound, pictures and video are examples
of this. There is no inherent facility for generating serendipitous results
when using content-based filtering. The system will recommend more of
what the user has already indicated a liking for, and the introduction of
serendipity requires extra functionality. Content-based filtering systems
lack means to describe the quality or style of an item. As an example,
they are unable to distinguish a well written and a badly written article
if they happen to use the same terms.

Social Filtering

A purely content-based approach to information filtering is limited by
the process of content analysis. Social filtering, also known as collabor-

33 3.2 Concepts and Theory

ative filtering, is an approach attempting to overcome this limitation by
exploiting social processes.

In Malone et. al. [56], social filtering is defined as information filtering
that works by supporting the personal and organisational relationships
within a community. It does, in effect, rely on the users of the system
knowing each other. This approach is known as active social filtering [5].
Hill and Terveen [34], on the other hand, claim social filtering works in-
dependently of whether the users know each other personally or not.
Moreover, they propose that social filtering and personal relationships
can be taken apart and put back together in interesting new ways. So-
cial filtering performed independently of users knowing each other is
referred to as automated social filtering [5].

Shardanand and Maes [73] define social filtering by observing how it
essentially automates the process of 'word-of-mouth’ recommendations.
Items are recommended to a user based upon values assigned by other
people with similar taste. This thesis will use the last and most general
of these definitions.

In the context of Usenet, some studies of social interaction characterist-
ics have been done [23, 88]. The main motivation behind these studies
has been to investigate the interaction supported by Usenet, and to ana-
lyse the results to obtain metrics applicable in the context of predicting
relevance. Whittaker et. al. [88] have analysed large amounts of Usenet
messages gathered over 6 months. They provide descriptive data about
newsgroup demographics, communication strategies and interactivity.
In addition to this, they derive predictions from the common ground
model of communication to test predictions about how these paramet-
ers interact.

Smith and Fiore [23] argue that systems requiring active participation
of their users to assess other users may not be necessary to figure out
which authors and messages are valuable. They have done extensive
mining within stored Usenet messages to back this claim, as well as per-
forming an experiment where experienced Usenet users were asked to
rate authors based on some predefined metrics. As an example of their
conclusions, they give the following characteristic of an author from
whom users were likely to read more messages:

We interpret this portrait as one of a poster who participates
actively and regularly in a variety of in-depth conversations,
in which he or she responds to other participants but does not
overwhelm the discussion or [...] participate in too many dif-
ferent newsgroups.

- Smith and Fiore [23]

Recommender Systems 34

None of the two studies mentioned have taken the content of messages
into consideration, they have been concerned with behavioural metrics
derived from group statistics alone. A future extension of this line of re-
search would be to include techniques from natural language processing
and information retrieval to provide additional descriptors of authors
based on the material of their posts and their styles of writing.

This work is promising in the context of automated social filtering -
that is, exploiting the inherent structure and social interaction of past
Usenet postings to predict relevance of future messages by employing
knowledge about the social structure of the domain.

Precise Definition of Recommender Systems

Recommender systems can now, for the purposes of this thesis, be defined
as follows:

Definition. Recommender System

A recommender system is a filtering system employing social filtering,
alone or along with other filtering techniques.

3.2.3 Profile Building and Maintenance

The user profile is an important aspect of a recommender system. Any
such system requires a way to track a specific users’ information needs
to decide what content should be recommended to the user.

To describe these needs formally, a relevance function is employed. The
relevance function is a map from a space of documents to the space of
real-valued relevance factors. Denoting the space of documents D, the
goal is to find a map f : D — R, such that the relevance function f(x)
corresponds to the relevance of a document x. Given such a map known
for all points in D, a finite set of rank-ordered documents presented
in a prioritised fashion can be guaranteed. As such, the challenge of
information filtering systems can be described as that of representing
a users’ relevance function as a user profile, that is, a profile correctly
representing the relevance of each document. Relevance functions of
users are not known in advance, and often change with time [51].

One of the main challenges in the development of user profiles, is to find
a good way of creating a profile when a new user comes to a system, also
known as the ’cold start’-problem. How do you create an immediately
useful new profile while minimising strain for the user? Even if a starter
profile is present in the system, the filter will not work effectively during
the training period. Several possible solutions have been proposed. One

35 3.2 Concepts and Theory

possibility is giving new users access to previous users experiences to
aid faster development of a profile reflecting the preferences of new
users as accurately as possible.

A different approach to building user profiles is presented by Rashid et.
al. [64]. Here, the problem is approached by observing the most immedi-
ate way to acquire the information needed - which is to directly present
items to the user. This, however, confronts the system with the diffi-
cult decision of what items to present. The authors present six different
strategies for choosing items, building on several different approaches
to the problem. These include the use of information theory to select
the items giving the most value to the recommender system, aggregate
statistics to select the items the user is most likely to have an opinion
about, balanced techniques seeking to maximise the expected number of
bits learned per presented item, and personalised techniques predicting
which items a user will have an opinion about. The article authors con-
clude that the choice of learning technique significantly affects the user
experience. It affects the user effort required as well as the accuracy of
the resulting predictions.

A related problem appearing over time in some systems, is lack of seren-
dipity. Once a profile is established, the system will only let items fitting
it through - this phenomenon may cut the user off from new material
outside the scope of the existing profile. In many systems, circumvent-
ing this problem means a new user profile has to be created - which
means we are facing the cold start problem yet again.

3.2.4 Annotations and Ratings

Recommender systems employing social filtering work by recording the
reactions of users to documents. There are several available approaches
to gathering these reactions, and thereby information about a docu-
ment’s relevance, classification and quality. There are two main ap-
proaches: Implicit and explicit ratings. Where explicit ratings are ob-
tained by direct entry by the user, implicit ratings are derived from the
users interactions with the system, or from processing of relevant data,
for instance logs.

Explicit ratings can be submitted in the form descriptions, votes, or rat-
ings on a given scale. They can be used for calculation of a score for each
document, or as a more general evaluation to accompany the recom-
mendation as it is displayed to its recipient. The information provided
by the user in this way can be processed in various ways by the system
to reveal usage patterns, general tendencies and other aspects which are
not immediately available upon entry.

Recommender Systems 36

There are many varieties of implicit ratings [89]. One of the more popu-
lar ones is the concept of computational wear [35], also referred to as use
wear and use data wear. The concept of computational wear builds on
the observation that physical documents accumulate wear like stains,
torn pages and so on as they are used. These physical characteristics
may contain valuable information to a new user of the documents as
to how frequently a document has been in use in the past, how it has
been used, and also which parts of the document have been found more
interesting by former readers.

Hill et. al. [35] present a special case of this approach, where they con-
sider computational wear in the context of documents and the reading
and editing of them. They propose to draw a parallel to wear on phys-
ical documents by defining the concepts read wear and edit wear, where
various aspects of the electronic usage of documents are monitored and
recorded. An example of a metric recordable this way, is total reading
time. If more differentiated information is desirable, more fine-grained
monitoring of the user’s interaction with the document can be under-
taken, to reveal for instance on which parts of the document more time
is spent. In systems where it is feasible, patterns in the editing of doc-
uments can be monitored as well. This way, one can distinguish more
stable parts from frequently changing ones, as well as determining who
authored what.

The information gathered is then displayed graphically to the users to
aid them in their work with documents. The method of graphical dis-
play chosen in [35] is called ’attribute-mapped scroll bars’, and consists
of displaying the wear as marks mapped onto document scroll bars in
positions relative to line positions. The main advantages of this method
is the ability to reuse existing screen space, and, more importantly, the
information display is collocated with the navigation control points.

3.2.5 Social Implications of Recommender Systems

Recommender systems have some inherent characteristics necessitating
explicit consideration of the human responses to such systems.

Most importantly, someone has to provide the recommendations. The
'free ride’ problem, where users stop contributing once their profile of
interests is established, is hard to circumvent. Effects of free riding are
too few evaluations of each item, as well as making the evaluations po-
tentially unrepresentative as they are provided by a subset of the user
population - that is, those who enjoy the evaluation process. The 'free
ride’ problem cannot be solved by technical means alone, although im-
plicit gathering of evaluations from existing sources and monitoring of

37 3.2 Concepts and Theory

user behaviour can reduce it greatly.

Avery and Zeckhauser [2] argue that even though private bargaining
could yield an optimal level and order of item evaluations, it would be
unmanageable with many potential readers. They propose three central-
ised mechanisms able to improve the provision of evaluations.

Subscription services

This approach is based on the idea of paying customers who re-
ceive recommendations. The evaluations are provided by profes-
sional evaluators whose incentive to become good at evaluating
items would be to maintain their reader base.

Transactions based compensation

The idea in this approach is to give payment in some form to those
who provide early evaluations. This would yield a surplus to those
evaluating the most messages, while those who evaluate the least
would have to pay. An advantage of this approach is the avoidance
of characterisation of users as they are added to the system - the
evaluators and their skills are identified over time. This system is,
however, more complicated than the subscription service system,
and a precise pricing strategy may be necessary to guarantee an
optimal provision of evaluations.

Exclusion

Using the threat of exclusion from the group receiving recommend-
ations could induce evaluations. Each member of the group would
be expected to provide a certain number of early evaluations to
maintain membership. If the information produced is useful to
the members of the group, they will be motivated to continue their
contributions. The system provides incentives without an expli-
cit payment strategy, but resources may be wasted by low quality
evaluators.

They conclude the discussion by arguing that collaborative filtering sys-
tems may have a need for some centralised coordination ensuring the
process produces sufficient and informative evaluations and thereby re-
commendations.

Another issue in need of consideration is the possibility that, if recom-
mendations can be provided by anyone, content owners may generate
enormous amounts of positive recommendations for their own items
and negative recommendations for their competitors content [67]. Ap-
propriate measures should be taken when implementing recommender
systems to discourage the 'vote early and often’ phenomena.

Recommender Systems 38

An important issue for any recommender system is that of reaching crit-
ical mass [57]. Users are much more likely to rate an article if they are
getting predictions, and the more evidence they see of other people rat-
ing, the more likely they are to rate themselves [58]. Until you reach
a sufficiently large number of active users of a system, it is very hard
to say anything accurate about it’s effect, and the users may never see
enough recommendations of interesting articles to actually experience a
positive effect. This problem can be eased by the inclusion of implicit
ratings, but even though the threshold may be lowered, it will still be
present.

3.2.6 Privacy Concerns

Recommender systems raise concerns about the privacy of their users.
Recommendations will generally be more useful the more information
the receiver has about them, as it enables better evaluation of the in-
formation provided - however, people may not want all information pos-
sibly relevant to their evaluations widely known. There are three ways to
handle user privacy issues in a collaborative filtering system. The users
may be either anonymous, they may be known to all other users, or they
may use pseudonyms [58]. Neither of these approaches are complete
solutions to the problem, as a blend of privacy and attributed credit
for efforts might be desired. A possible solution to this might be the
introduction of known practises such as blind and double-blind referee-
ing [67].

Whereas the evaluations people give constitute one type of potentially
sensitive information, their profiles can be considered to be another. At
the same time, though, they carry potentially useful information. As an
example, consider granting access to parts of your profile representing
special interests you may have, thus gaining contact with other people
with similar interests. As argued by Malone et. al. [56], careful thought
is needed as to when and how such features are desirable, but the pos-
sibilities are intriguing.

3.2.7 General User Interface and Usability Concerns

A successful recommender system is directly dependent on having a
user interface where the overhead of entering new recommendations,
accessing other peoples recommendations, or creating a new user profile
is not excessive. The display of items and their ratings must be done
in some way conveying the relevance they are assumed to have for the

39 3.3 Known Approaches and Implementations

user, for instance by fading colours (the brighter, the more relevant), or
by utilisation of the concepts edit wear and read wear [35].

Some of the interfaces presented in section 2.4.5 are approaching recom-
mender systems in themselves, as they are utilising information filtering
to display information to a user, emphasising various aspects of interac-
tion to aid users. They are, however, not directed at specific users, and
as such lack the personalised aspect.

3.3 Known Approaches and Implementations

This section discusses some practical approaches to recommender sys-
tems.

Early recommender systems were targeted at single users and the devel-
opment of personalised filters. Some such systems include Tapestry [30,
81], spynews [54], The Information Lens [56], and INFOSCOPE [24]. Later
approaches have included collaborative approaches, examples of which
are GroupLens [50, 58] and PHOAKS [82, 83]

Two examples of recommender systems, GroupLens and PHOAKS, are
described in some detail. Table 3.1 presents a brief comparison of a
wider selection of recommender systems.

3.3.1 Grouplens

GroupLens [58, 50, 66] is a recommender system for Usenet utilising
collaborative filtering developed at The University of Minnesota, Min-
neapolis, US. It automatically selects a group of people as personal mod-
erators for a user for a given newsgroup. These moderators are selected
based on a measure of agreement as to articles previously judged. Pri-
vacy is ensured by allowing users to enter ratings under pseudonyms.

GrouplLens relies on augmenting existing interfaces to display ratings.
Clients connect to two servers - an NNTP server holding Usenet articles,
and the GroupLens server holding ratings and generating predictions.
The interface to the GroupLens server is defined using an open protocol,
and client libraries written in C and Perl are available [50].

Miller [58] argues that GroupLens has demonstrated the effectiveness of
collaborative filtering for the Usenet domain.

40

Recommender Systems

SISA[eue 1U91U0d YIIM
paurquiod ‘unygom

SULIDL / UONII3S pasieuostod 1D1dx? /-1 DuRunu [+] qe1
uosxad
pa11Sap 01 ureyd $92IN0S e1ep JUWINDOP B I0
Aerdstp [BLI9JII d[qUIdSSe orqnd woay paurwa | uosiad e Jo UONUIW | [ST] qOM[eLID)Y
SI9pI0J
gurdderaaAo ur SJI9PIOJ YIeunjooq
Aerdstp | uonuaw jo Aduanbauj FUNSIXa WOIJ paurut TN e JO uonuaw [69] 199s911S

saLIINb FUrIA[10]
d[qe[TeA® sUOTIRIOUUR

Judwndop 1d
910A 9UO ‘U0SIdd U0

1011dx?

suonejouue

[18
‘0c] Ansadey,

JU_UWINDOP
dpisguore elep

elep Ieam
asn guore sassed

SUOTIePUIWIIOIL
IoylInj J
PoMOT[O} SYUIT q
dwn gurpeas e

JeaM asn sjuasaxd “Quatdrdax 1dIdxd :gurroyruow 1Iduur BlRP IBIM 9ST JUa3Y eAe[
(TN 1d) sgunsod
Ae1dsip pai1os 9]0A U0 uU0sIad Juo 19U9S() WO.IJ paurut TN © JO uonuaw SIVOHd
SI9PULWILIOIDT
guoure
SMITAJI ArewIuins JuowRISe 1sed auwIn
SUNSIXd Ul S9[O1LIR uo paseq gunysom gurpeal 1o01ruowt q Spuod9s q
dpisduore Aerdsip pasteuostad 1D1dx9 e C-T:DLIPWNU e suaTdnoin
SUONePUIWUIO0IIL UONEPUIWOIIL
Jo asn uonegdaiddy JAnud wondxg Jo s1ua1u0)

3.3 Known Approaches and Implementations

41

SUIRISAS IIPUIWII0DI d[durexy :1°¢ el

Dads aurdus

gunfuer DIed§ “IerluIs (saurdus Ydaesas)
1[NS3I SUISUD YIS IO SI01J9A AjLreruurs 1Idxe [enixan 1X9] I07PUY
Ayrreqruats
91Se] JI9UWI0)STD
suonejouue J[qereae UO paseq Sunysom | 1DIAXd "SWIT PIMITA suonejouue
pue Aerdsip pa110s pastreuostad | ‘saseydand Aq rrpdur ‘G-1 DIPWNU | [1] wod'uozewy
SUONEPUIWITOIDI UONePUIWUIOIDI
Jo 3sn uonegdaiddy JAnud wondxy JO s1uv1u0)

Recommender Systems 42

3.3.2 PHOAKS

PHOAKS [82, 83] (short for People Helping One Another Know Stuff)
works by automatically recognising, registering and redistributing re-
commendations of Web resources mined from Usenet news messages.
It builds on the observation that multi-confirmed recommendations ap-
pear to be significant for relevant recommendation receivers. The num-
ber of distinct recommenders of a resource is found to be an adequate
measure of resource quality. This conclusion is supported by comparing
mined URLSs to those found in relevant FAQSs.

The ideas of role specialisation and reuse are distinguishing factors of
PHOAKS compared to other recommender systems. Built on the obser-
vation that a minority of users expend the effort of judging information,
users are expected to form producer/consumer relationships within the
system. Reuse of recommendations is an inherent quality of the system,
as it mines previously recommended resources from existing Usenet
messages.

The recommendations are available through a web interface, where a list
of ranked URLs can be obtained for any sub-hierarchy.

Summary

Recommender systems enter the context of this thesis as one of several
aids assisting users in the information access process.

I present approaches useful when obtaining rankings, evaluating relev-
ance and building adequate user profiles. The aim is to outline design
aspects for recommender systems in general, and to create a background
for the design of NewsView.

Chapter 4

Search Engines

This chapter presents information retrieval theory in general, and search
engine theory in particular, as another important aid in the information
access process. This presentation is followed by an in-depth description
of FAST Data Search as a tool in the NewsView architecture.

The term search engine is used to refer to a service providing users with
a search interface to some indexed data. Most search engines use a cent-
ralised crawler-indexer-searcher architecture model, where the different
parts of the system are responsible for gathering data, indexing it and
executing queries against the index, respectively.

An important concept related to search engines is directories. Director-
ies gather their listings in a manner very different from that of search
engines, but they offer a similar service to users. Many search interfaces
present results as a combination of entries from search engines and dir-
ectories, and this type of search service is known as a hybrid search
interface.

A very short presentation of data gathering techniques for the two types
of search services is given below, along with a few examples of each.

Crawler-based Search Engines

Crawler-based search engines generate their listings automatically. They
craw]’ the World Wide Web (hereafter referred to as "'Web’) or some other
information space to obtain knowledge of content, upon which users
can query this base of information. Due to this method of data gather-
ing, crawler-based search engines suffer from poor precision (see section
3.2.1. They may, however, have high recall - depending on the size of
the document base crawled.

Some well-known crawler-based search engines are:

Search Engines 44

Google (http://www.google.com/)

AllTheWeb (http://www.alltheweb.com/)

Yahoo (http://www.yahoo.com/)

MSN Search (http://search.msn.com/).

Human-Powered Directories

Human-powered directories depend on humans for listings. The process
of submitting descriptions to the directory can be organised in several
different ways. Whoever controls the directory may appoint editors who
either write whatever descriptions are entered into the directory, or act
as moderators for content submitted by other people. The submission
process may also be completely open, allowing anyone to submit con-
tent directly into the directory, or community-based, where submissions
need to be approved by a certain number of people before acceptance.
The data gathering method used by directories lead to a situation op-
posite of that of search engines in a precision and recall context - they
suffer from poor recall, but their precision is potentially very high.

One important aspect of human-powered directories in the context of
search engines and information filtering in general, is their application
as training material for automatic categorisation approaches.

Some examples of human-powered directories are:

Open Directory (http://www.dmoz.com/)

Zeal (http://www.zeal.com/)

Hotrate.com (http://www.hotrate.com/)

Kvasir (http://www.kvasir.no/).

The examples of different types of search engines are taken from Search
Engine Watch [80].

4.1 Crawler-based Search Engines

Most of todays crawler-based search engines are based on a central-
ised architecture relying on a set of key components: crawler, indexer

http://www.google.com/
http://www.alltheweb.com/
http://www.yahoo.com/
http://search.msn.com/
http://www.dmoz.com/
http://www.zeal.com/
http://www.hotrate.com/
http://www.kvasir.no/

45 4.1 Crawler-based Search Engines

and searcher. These components are presented briefly below, and Fig-
ure 4.1 shows a graphical representation of how they are interconnec-
ted. The colour and shading conventions introduced in this figure for
the three key components will be used throughout the presentation of
search-engine related material, as well as the design and implementation
treatment of NewsView.

The structure of the presentation of general crawler-based search engine
architecture as given here is taken from Risvik and Michelsen [68].

o

World ’
Wide <—»| Crawler é - End Users
Web AN

Y
Y

Local Store
(WWW Copy)

Figure 4.1: Overview of crawler-based search engine architecture

Crawler

A Crawler is a module aggregating documents to create either a local
index, a local collection, or both.

Indexer

An indexer is a module taking a collection of documents and data, and
creating a searchable index from it. Common approaches include inver-
ted files, vector spaces, suffix structures and various hybrids of these [3,
chapter 8].

Searcher

The searcher works on the output from the indexer. It accepts queries
from a user, runs them over the index, and returns results to the query
issuer.

The choice of approach when indexing or searching items depends heav-
ily on the type of content. This thesis will deal with textual content only,
and will not treat the topic of indexing of and matching against non-
textual content.

Search Engines 46

4.1.1 Crawler

Crawlers are more often than not treated in the context of the Web.
Search engines focused on other domains may not have crawler func-
tionality in the "Web crawler’ sense, but use other forms of content sub-
mission. NewsView is an example of this, dealing with content submis-
sion by means of a tool to push files to the indexer. This section assumes
nothing about the domain the crawler is applied to, and is equally valid
for a crawler on the Web as a crawler traversing a local file system.

The terms and definitions used in the description of crawlers are used
differently in the literature available on the subject - this thesis uses the
terminology as defined by Cho and Garcia-Molina [11].

In general, there are two ways in which a crawler can update its index
or local collection. Following the traditional approach, the crawler re-
trieves documents until the collection reaches a desirable size, then
stops. When a refresh of the collection is necessary, the crawler re-
peats the process from the beginning, and replaces the old collection
with the newly acquired one. This type of crawler is called a periodic
batch crawler. An alternative mode of operation is that of an incre-
mental crawler. Such a crawler works by retrieving a sufficient num-
ber of documents, and continues by re-fetching the same documents,
thereby updating the collection. The collection is never deleted, and the
crawler continues where it left off last time after each indexing cycle. If
a previously crawled document is removed, the crawler may choose to
include new documents in its collection to maintain its target size.

Theoretically, an incremental crawler can be more effective than a peri-
odic batch crawler. As an example, given the opportunity to estimate
how often documents change, the incremental crawler can update only
those documents likely to have changed. An incremental crawler also
has the opportunity of indexing new documents right away as they are
found, whereas periodic batch crawlers can do this only after the next in-
dexing cycle starts. As a direct consequence of this, the effectiveness of
any crawler technique depends heavily on how documents change over
time [11].

Two important aspects in this regard, are growth dynamics and update
dynamics of the media crawled. Some research has been made in these
areas in a Web context, but not much in general. For studies of Web
growth dynamics, see Bray [9] and Lawrence and Giles [52, 53], for stud-
ies of Web update dynamics, see Huberman and Adamic [37], Cho and
Garcia-Molina [12, 11] and Brewington and Cybenko [10].

47 4.1 Crawler-based Search Engines

Freshness

The freshness of a document d; at time t is defined as the probability
for that document to be up-to-date at the given time [68].

To maximise freshness, the goal is to:

Minimise time spent Maximise time spent
refreshing unchanged <= refreshing changed
content content

Freshness can be obtained through several measures. Freshness through
scheduling tries to obtain freshness by combining high document re-
trieval capacity with a scheduling algorithm prioritising retrieval of the
documents deemed most likely to be updated. To provide fresh results
to the users of a search engine, short indexing cycles are needed. As
an implication of this a complete refresh might not be possible between
such cycles, and the scheduling algorithm is key to keeping the local
store, and thereby the results, as fresh as possible.

Freshness through heterogeneity is built on the observation that doc-
uments have different freshness requirements. A solution to this is
to have heterogeneity amongst the crawler machines, dedicating some
crawler nodes to specific types of content.

Cooperation with providers is another approach to further improve fresh-
ness. There are several models for this cooperation. A pull model
(figure 4.2(a)) permits the crawler to perform efficient scheduling. The
crawler periodically retrieves meta-information, and uses this inform-
ation in the scheduling process. Another approach is to use a push
model (figure 4.2(b)), where content or meta-information is pushed dir-
ectly to the crawler. This implies that the crawler is notified if a doc-
ument is changed, added or deleted. A third approach called a hybrid
model (figure 4.2(c)) employs aspects from both push and pull. Special
proxy systems read meta-information files, act according to the content
in those files, and use a push model to update the crawler (Risvik and
Michelsen [68]).

NewsView uses a slightly different model to obtain freshness. The most
important information is stored in a special real-time structure, imply-
ing its immediate update when new values become available. The rest
of the information is updated using a batch-oriented back end. More
information on this concept in the context of NewsView is given in sec-
tion 6.2.4.

Regardless of the approach to freshness chosen by a given application,
the indexer and searcher in a traditional search engine consider whatever

Search Engines 48

Web Crawler Wi Crawler
Server machine Server machine
Meta Meta
O @ @ ..~
Content Content
(a) Pull model (b) Push model
Web Crawler
Server machine

Content O
- Content

proxy
(c) Hybrid model

Figure 4.2: Three models for obtaining freshness by cooperation with
content providers

content they have available ’current’, and have no internal notion of
freshness. As such, the responsibility of keeping content fresh lies solely
with the crawler.

4.1.2 Indexer and Searcher

Indexing and searching, emplaced in a broad research context in sec-
tion 3.1, are concepts deeply rooted in information retrieval theory. This
section presents an introduction to some specific aspects of this field.

The motivation behind information retrieval is summarised by Baeza-
Yates and Ribeiro-Neto [3]:

Information Retrieval (IR) deals with the representation, stor-
age, organization of and access to information items. The rep-
resentation and organization of the information items should
provide the user with easy access to the information in which
he is interested.

- Baeza-Yates and Ribeiro-Neto [3]

Several difficulties arise when attempting to fulfil this goal. Defining
the user information need is not easy, and as described in section 3.2.1,
measuring the relevance of results for a given information need presents
another difficulty.

49 4.1 Crawler-based Search Engines

Data retrieval is a related field to information retrieval. There are some
crucial differences between the two that highlight an important aspect
of information retrieval systems: where a data retrieval system attempts
to retrieve all items satisfying a clearly defined expression, an inform-
ation retrieval system is concerned with retrieving information about a
subject. If a data retrieval system fails to retrieve a single relevant item,
there is something seriously wrong with it. Information retrieval sys-
tems may be inaccurate, and small errors are likely to go unnoticed [3].

The User Task

A user comes to an information retrieval system because of an inform-
ation need, and searches for useful information executing a retrieval
task. Users of retrieval systems may be performing two distinct types
of tasks when interacting with an information retrieval system: inform-
ation retrieval and browsing, as shown in figure 4.3. Classic information
retrieval systems are usually concerned with the first task [3].

Retrieval

th

Document

7
NE

Browsing

1

Figure 4.3: The user interaction with the retrieval system through dis-
tinct tasks, after Baeza-Yates and Ribeiro-Neto [3, page 4]

The Retrieval Process

This section will detail the retrieval process. Figure 4.4 shows a simple
generic architecture used as the basis for the description.

The first thing to do when setting up an information retrieval system, is
to configure the document operations and indexing details. The docu-
ment base must be configured, and the set of documents to be indexed

Search Engines 50

B BOL - Document
Interface

information Document
need l—

Document Operations

logical logical

= =

=

Figure 4.4: The process of retrieving information, after [3, page 10]

and the document model (that is, the document structure and what ele-
ments are available for retrieval) must be specified.

Once the logical view of the documents is defined, the documents can
be indexed. A logical view of a document is some representation of
the document, for example keywords, full text and representations cre-
ated by various text operations. The full text is clearly the most com-
plete logical view, but its use usually implies higher computational cost.
An index is a data structure allowing fast searching over large volumes
of data. Different index structures can be used, see Baeza-Yates and
Ribeiro-Neto [3, chapter 8].

Given an indexed document base, the retrieval process can be initiated.
The user expresses an information need, which is transformed into a lo-
gical view. This is done using the same document operations as for the
documents themselves. The system might apply query operations to the
logical view to transform it into an actual guery, providing a system rep-
resentation of the user information need. At last, the query is processed
to obtain the retrieved documents.

Before returning results to the user, they are ranked according to their
likelihood of being relevant. The user examines the documents he re-
ceives, and might initiate a user feedback cycle. In such a cycle, the doc-
uments selected by the user are used to change the query formulation,
hopefully to better represent the real user information need.

51 4.2 FAST Data Search

Formal Characterisation of Retrieval Models

Baeza-Yates and Ribeiro-Neto [3] give the following formal definition of
an information retrieval model:

Definition. Information Retrieval Model
An information retrieval model is a quadruple

[D,Q,F,R(Qi,D;)] where

1. D is a set composed of logical views (or representations) for the doc-
uments in the collection.

2. Q is a set composed of logical views (or representations) for the user
information needs. Such representations are called queries.

3. F is a framework for modelling document representations, queries
and their relationships.

4. R(qi,dj) is a ranking function which associates a real number with
a query q; € Q and a document representation d; € D. Such rank-
ing defines an ordering among the documents with regard to the

query q;.

The classic approaches to realisations of this model were described in
section 3.2.2, as part of the treatment of content-based filtering.

4.2 FAST Data Search

Sections 4.2 to 4.2.4 give an introduction to FAST Data Search, outlining
its architectural structure. First, I present a feature and system overview,
followed by a data flow overview. Next, an overview of the modules and
how they interconnect is described, followed by a brief outline of the
content lifecycle.

In sections 4.2.5 to 4.2.7 in-depth coverage of issues particularly relevant
to this thesis is provided. Index profile and document processing issues
are presented, along with categorisation information and a description
of the FAST Taxonomy Toolkit.

The discussion of FAST Data Search is based on 'The FAST Data Search
System Reference Guide’ [20].

Search Engines 52

4.2.1 Feature and System Overview

FAST Data Search (FDS) is an integrated software application combining
searching and filtering functionality. It is a distributed system, and en-
ables information retrieval in many types of information by supporting
real-time filtering, various linguistics features and several content access
options.

FDS is scalable in three dimensions: volume of data, number of users,
and freshness of data. It can be run on several platforms, and supports
a variety of file formats.

The FAST Search Engine indexes documents and matches them against
incoming search queries.

The FAST Filter Engine stores alert queries in an index. As new docu-
ments arrive at the filter engine, they are matched to the stored alert
queries, and any match is submitted to the FAST Alert APL

Figure 4.5 shows a graphical representation of the architecture of FDS.
Details concerning the various parts of the figure are explained in the
following sections. The figure is a remake of an illustration given in 'The
FAST Data Search System Reference Guide’ [20], with the coloured and
shaded sections following the conventions from figure 4.1 to illustrate
the crawler-indexer-searcher architecture.

Document . Query & result
Content Access Processing Matching Processing
Custom
Content -> /

Database \ Search Engin / 4
Dggg{tﬁ-’ Connector | 7
: // 7 y
4 b ser
File Server_> File | 7 = Cront
Content Traverser / // W end
Web Server Web
Content™| Crawler T / //
A ,

A

Content API

A L A
i] . f
Taxonomy Toolkit Administrator Business Manager’s
Interface Control Panel
A A A
Configuration Log Server License Manager
Senver N N
T T

4
Node Controller

Administration and Custamization

Figure 4.5: FAST Data Search system architecture

53 4.2 FAST Data Search

4.2.2 Data Flow Overview

The data flow through FDS consists of some basic steps:

Submitting Content

Content is submitted to FDS using one of the three predefined mod-
ules (the FAST Web Crawler, the FAST Database Connector or the
FAST File Traverser) or a custom module built using the FAST Con-
tent APIL This is shown in the column labelled ’content Access’ in
figure 4.5. This corresponds to the crawler part of the crawler-
indexer-searcher architecture.

Analysing and Processing Documents

To make documents searchable and filterable, all content submit-
ted to FDS is converted to the FDS internal document format, Fast-
XML. To achieve this, each document goes through a pipeline of
document processing stages in the FAST Document Processing En-
gine. The purpose of this conversion is to store all content in one
consistent format, as well as extracting various meta information,
like language, to improve search and filter relevancy. This is done
by the 'Document Processing Engine’, as depicted in the 'Document
Processing’ column in figure 4.5. The content of this column cor-
responds to the indexer part of the crawler-indexer-searcher archi-
tecture.

Matching Documents and Search Queries

When new documents are submitted to the FAST Search Engine,
indices are generated from them. This makes them searchable and
filterable.

Search queries are submitted through the FAST Query API The
Query API does, in turn, send the queries on to the FAST Query and
Result Engine which pre-processes them to improve result relev-
ancy. Upon pre-processing, the queries are sent to the FAST Search
Engine which matches them against search indices and returns a
list of resulting documents. If any further post-processing of the
result list is desired, it is performed by the FAST Query and Res-
ult Engine. Finally, the result list is returned to the query issuer
though the FAST Query APL

Matching Documents and Alert Queries

The FAST Filter Engine stores alert queries and keeps them in an
index. These queries are submitted to the Filter Engine through
the FAST Alert Query API. New documents are matched against the

Search Engines

>4

stored queries as they arrive at the Filter Engine, and matches are

submitted to the FAST Alert API.

The columns labelled 'Matching’ and ’Query and Result Processing’
in figure 4.5 show a graphical representation of the flow of opera-
tions for both search and alert query matching. These correspond
to the searcher part of the crawler-indexer-searcher architecture.

4.2.3 Module Overview

FDS consists of several subsystems matching the data flow steps of the
system. These subsystems are divided into one or more modules each.
Table 4.1 presents these subsystems and those modules relevant to this

thesis.
Subsystem | Module Description
FAST Web Crawler Locates and retrieves files from
Content Web Servers
Access FAST File Traverser Traverses and retrieves files
from directories on file servers.

FAST Database Traverses and retrieves content

Connector from databases.

FAST Content API Allows the standard content
access modules of FDS as well
as custom applications to push
content to the FAST Content
Distributor.

Content FAST Content Receives documents through

Distribu- Distributor the FAST Content API and

tion distributes them to a set of
FAST Document Processing
Engines.

Document | FAST Document Performs document processing

Pro- Processing Engine tasks for format conversion

cessing and document relevancy, such

as language detection, and
lemmatisation.

55 4.2 FAST Data Search

Subsystem | Module Description

FAST Search Engine Performs the searching tasks
within FDS. It indexes new
documents coming from the
FAST Document Processing
Engine, matches them against
search queries submitted by
the Query and Result Engine,
and returns a list of resulting
documents to the Query and
Result Engine.

FAST Filter Engine Performs the filtering tasks
within FDS. It stores multiple
sets of alert queries submitted
through the FAST Alert Query
API, matches them to
documents as they are received
from the FAST Document
Processing Engine, and returns
alerts through the FAST Alert
APL

Matching

Query FAST Query and Processes search queries and
and Result Engine search results to enable

Result relevancy-focused searching
Processing and result presentation. It
provides linguistic query
processing features like proper
name recognition or spell
checking, and result processing
features like query
highlighting.

FAST Query API Allows external search front
end systems to submit their
queries and get result sets in
return.

FAST Alert Query API | Handles the alert query traffic
from the filter front end to the
FAST Filter Engine.

FAST Alert API Provides an interface from
which front end systems get
alerts sent from the FAST Filter
Engine.

Search Engines 56

Subsystem | Module Description
Common FAST Taxonomy Enables creation and editing of
Services Toolkit taxonomy structures and

allows you to map documents
to categories.

FDS Administrator Provides a browser-based
Interface graphical user interface
allowing the system
administrator to monitor and
configure FDS.

Table 4.1: FAST Data Search modules. For a graphical rep-
resentation of how they interact with one another, see fig-

ure 4.5.

4.2.4 The Content Lifecycle in FAST Data Search

This section describes various concepts related to the content lifecycle,
as well as how content is processed to become searchable. Figure 4.6
shows a graphical representation of the content lifecycle within FDS.

—Custom -
-Web S Document Field

—Database Normalisation Processing Mapping Index
—File Server|

Unstructured Normalised Processing Modified Mapping of
Content document may be normalised document

structure performed on document elements to

any element. structure searchable

Processars fields
may modify

the document
structure.

Figure 4.6: The content lifecycle within FAST Data Search

Content

Data yet to be submitted to FDS is called content. This contrasts
with the term document, which designates data residing inside the
system.

Collections

Content to be retrieved and made searchable, is grouped into col-
lections. Collections are used to group content by source and pro-
cessing needs. A collection is set up by defining the content source

57 4.2 FAST Data Search

and the document processing rules, and may be used to narrow
down the scope of a search.

Collections provide a mechanism for differentiating the treatment
of documents, by having collection-specific indexing specifications.
They also provide a way to prioritise different types of content, by
specifying the order in which collections are to be processed in the
system.

Documents and Document Elements

When content is submitted to the FDS system, it is converted into
an internal representation called document. The format of this
internal representation is FastXML, the FDS-specific mark-up lan-
guage.

Generally, there is a one-to-one relation between a content entity
and a document. The content entity is represented by the docu-
ment as a set of elements. The content of these elements is used
during document processing. Element entries are filled in as the
document flows through the system, and information stored can
include parts of the original content as well as meta-information
directed towards improving search and filter relevancy.

FastXML

The internal document format used by the FDS system, FastXML,
names and defines document elements. Each element in a FastXML
document is preserved as an entity throughout document process-
ing, indexing and result processing.

Document Elements and Fields

Before indexing a document, each document element is mapped
to a field. Fields are document elements defined to be searchable.
These fields enable queries concerning only individual parts of a
document. Fields are defined in the index-profile, and can be of
type ’'text’ or 'unsigned integer’. Multiple fields can be grouped
into so-called composite fields, allowing a query to be executed on
several fields at the same time.

4.2.5 Index Profile and Document Processing

This section presents an overview of the basic concepts involved in the
process of indexing documents and making them searchable.

Search Engines 58

Indexing Documents

The FAST Search Engine receives processed documents from the docu-
ment processing engine (See figure 4.5), and creates search indices from
the documents as they arrive.

A search engine cluster is a group of search engine instances sharing
the same index configuration, provided by an index profile. Each search
engine cluster can have a number of collections assigned to it, but a
collection can belong to only one cluster. As such, there is a one-to-one
relationship between an index profile and a search engine cluster, and a
need for more than one index profile configuration implies a need for a
corresponding number of search engine clusters and collections.

Defining How Documents are Searchable

In the process of creating a search index, FDS makes use of an index
profile. An index profile is an XML-based configuration file defining the
way documents are searchable, and how fields are to be treated by query
and result processing. It specifies properties like:

e Which document processing elements become searchable fields in
the index

e Definition of the field attributes, such as type (text/integer), search
attributes (substring, lemmatisation, and others), rank tuning para-
meters and result presentation

e Grouping of fields and creation of result views

e Definition of result-processing attributes related to the fields, such
as result clustering and dynamic drill-down (see section 4.2.6).

e Which document elements become fields returned as part of res-
ults.

The index profile concept is closely tied to the concepts of document
processing and search engine clusters. Figure 4.7 is modelled after a
figure given in [20], and shows a graphical representation of this rela-
tionship.

Document processing is performed prior to indexing. During document
processing, each document is represented by a set of elements, which
can be further processed and later mapped to searchable fields via the

59 4.2 FAST Data Search

Collections Document Processing Search Cluster

W4 H H Field Mapping‘
Index
Profile
Result

Processing Pipeline

View
collection 1
—
Document Processing
collection 2 I ey B o B
Processing Pipeline Search Cluster
- Document Processing
collection n 1 ndex
Processing Pipeline Profile
< Resuilt Query
View
L

Figure 4.7: The relationship between document processing, index pro-
files and search engine clusters

index profile. Both elements and fields represent content parts and at-
tributes related to the document, e.g. body, title, heading, URI, author,
category etc.

The index profile defines the layout of the searchable index, and spe-
cifies how fields are to be treated by query and result processing.

The index profile also includes one or more result views. A result view
defines alternative ways for a query front end to view the index with
respect to queries.

The Index Profile Structure

As indicated in figure 4.8, the index profile consists of three main XML
blocks:

List of Fields

The basic entity of an index profile is a field with its attributes.
All fields are searchable and part of the default result view unless
otherwise specified.

The field-list contains a list of all defined fields within the index,
including information about mapping from the corresponding doc-

Search Engines 60

<?xml version="1.0"7>
<!IDOCTYPE index-profile SYSTEM "index-profile-2.0.dtd">
<index-profile name="datasearch">
<field-Tist>
<field name="name" ... />

</field-Tist>
<composite-field name="name" ... >
<field-ref name="name" ... />

<weight-1list ... />
</composite-field>
<result-specification>
<result-filter ... />
<categorization ... />
<clustering ... />
<result-proximity ... />
<integer-navigator ... />
<string-navigator ... />
<result-view ... />
</result-specification>
</index-profile>

Figure 4.8: Overview of the index profile XML format

ument processing elements, indexing and search attributes related
to individual fields.

Composite Fields

Composite fields allow grouping of individual source fields into
larger groups of fields by referencing the source fields. This gives
the possibility of addressing groups of fields together.

The composite-field specifications can define combined field spe-
cifications with configured relevance score per field.

Result Specification

The result-specification contains a set of configuration rules for the
search result handling, including field weightings.

4.2.6 Categorisation

This section presents the basic concepts and terms of categorisation
in FDS. The reason for the thorough treatment of these issues, is their
importance for the design and implementation of NewsView. Categor-
isation and clustering features are used heavily within the application,
which necessitates a rather in-depth introduction to these concepts.

61 4.2 FAST Data Search

FDS utilises several different approaches to the concept of categorisa-
tion:

Categorisation

Categorisation is the process of assigning documents to specific
categories on the basis of pre-defined rules. These categories may
derive from a given hierarchy, a so-called taxonomy, or be calcu-
lated on the fly based on similarities between documents.

Clustering

Clustering means the automatic detection of groups (clusters) of
documents whose content is somehow similar.

Two different types of clustering are available:

e Unsupervised clustering implies that neither cluster names
nor structure is known before the clustering takes place, but
are automatically computed from the document set. This way
of learning is often referred to as unsupervised learning.

e Supervised clustering implies that existing knowledge of cat-
egories within a result set is used in the clustering process.
Non-categorised documents will be clustered with similar doc-
uments within existing categories, based on document simil-
arities.

Document Similarity

Categorisation as well as clustering is based on a notion of document
similarity: Similarities between the content of different documents are
computed, and decisions to place documents into classes or clusters
are done on the basis of these similarities. Document similarities are
computed using document vectors, as presented in section 3.2.2.

In FDS, clustering is performed on result sets as returned from the
search engine. Document Vectors are created by the Vectorizer docu-
ment processor.

Categorisation Feature Overview

FDS Includes support for several different categorisation techniques,
which can be activated independently, or in combination with one an-
other. These include:

Search Engines 62

Documents Tagged by Category

Documents may be tagged with categorisation information prior to
submitting the content to FDS.

Automatic Categorisation

There are several different ways in which documents can be tagged
with categorisation information prior to indexing. Tagging of this
sort takes place during document processing.

URI based categorisation
A document can be assigned to one or more categories based
on its URL

Rule based categorisation

A document can be assigned to one or more categories based
on programmatic rules specified in the Python programming
language. This is configured from within the Taxonomy Tool-
kit.

Category Matching

Categories may be used within the matching process of FAST Data
Search in several ways, including:

Search within category
Queries can be restricted to match documents belonging to a
specific category alone.

Number of hits per category

If a dedicated Taxonomy Index is created, the number of hits
per category across the entire searchable index becomes avail-
able. By using the taxonomy index, the total number of hits
within all categories (as long as at least one document within
the category matches the query) can be returned, including
those categories not represented in the result set. This can be
a very efficient tool for subsequent drill-down queries.

Categorising Results

Result Clustering

Result clustering enables a directory or taxonomy view within a
result set. This can be applied in several ways, using one of

e Supervised clustering
e Similarity clustering

63 4.2 FAST Data Search

e Unsupervised clustering

An important distinction to keep in mind is that between category
matching and result clustering. Whereas category matching is ap-
plied across the entire index, result clustering is applied to a con-
figurable set of top ranked results.

Dynamic Drill-Down

Dynamic drill-down provides a possibility for multi-dimensional
drill-down in structured data based on content properties.

An integrated part of this feature is results-based binning, which
provides implicit ranking of dimensions (search result fields) based
on relevance scores. For each dimension, the relevance is com-
puted based on the actual drill-down capabilities of this dimension.

The advantage of this is the ability to find relevant results quickly
using a combination of searching and browsing by parametric value
and range.

Find Similar

Drill-down queries may be defined based on similarity to selec-
ted documents on a previously returned result set. This feature
is based on the use of document similarity vectors. Specific com-
parisons supported are

e Find similar
¢ Refine similar

¢ Exclude similar

4.2.7 The Taxonomy Toolkit

The FAST Taxonomy Toolkit enables configuration and maintenance of
static category mappings and taxonomies, which can be flat or hierarch-
ical. The categorisation can be accessed either through a GUI or by edit-
ing the XML files storing the taxonomy directly. Any number of doc-
uments may be assigned to a given category, and a document may be
assigned to several categories.

Documents can be mapped to categories in several ways. URI-based and
rule-based mapping enable mapping based on the URI of a document
and on programmatic rules specified using the Python programming lan-
guage respectively. The category rank boost feature enables rank boost-
ing towards specific queries.

Search Engines 64

The toolkit contains a set of document processors which have to be in-
cluded in the processing pipeline of a collection for automatic categor-
isation to be performed:

ManualMapper
Handles URI-based mapping of documents to categories.

RuleClassifier
Handles rule-based mapping of documents to categories.

TaxonomyBoost
Applies rank boost information to documents.

TaxonomyTagger
Adds supplementary information to categories.

Summary

This chapter provides a link between theoretical information retrieval
and the structure of a modern crawler-based search engine. It describes
FDS as a tool to be used in the NewsView architecture.

Chapter 5

Design

This chapter describes the design of NewsView, an architecture created
as part of the work on this thesis.

At this point, it is useful to recap my thesis objective as stated in the in
the introduction:

Thesis Objective

The objective of my thesis is to look at possible ways in which
information filtering and information retrieval can be com-
bined. This is done in the context of recommender systems
for Usenet built using search engine technology.

My aim is to obtain a higher signal to noise ratio, through
better result relevance prediction and extensive navigational
possibilities within the data.

The NewsView architecture as presented here describes a framework for
interfaces to Usenet. It has information retrieval and information fil-
tering concepts built into it, and encourages extensive navigational pos-
sibilities within the data. The purpose of this framework is to provide a
testbed for user interface, information filtering and information retrieval
issues, and, most importantly, combinations of the three. The concrete
system described explores the feasibility of a recommender system for
Usenet built using a search engine back end.

When considering information retrieval systems in use in poorly struc-
tured information domains today, the two most prominent types are
human-powered directories (hereafter referred to as directories) and
crawler-based search engines (hereafter referred to as search engines).
Where directories suffer from poor recall but have potentially very high

Design 66

precision, the situation is reversed for search engines. Recommender
Systems can be considered a parallel to directories in this regard, as rat-
ings are gathered for documents viewed by users only. By combining the
two approaches, recommender systems and search engines, the hope is
to keep the best from both worlds and thereby improve both precision
and recall.

By choosing a data domain of a conversational nature, certain specific
filtering options are made available. Conversational data contain inher-
ent information about social structure and interaction patterns, and can
be mined for such meta-information. Given automated methods to ob-
tain, process and extract predictions from such information, it can be
utilised to improve relevance ratings. Combining predictions of this
type with implicit ratings, to enhance ratings directly or to reinforce or
adjust preexisting prediction methods, is an exciting possibility in the
context of recommender systems. This approach can be used both as
a means for easing content browsing, for rating documents before dis-
playing them, and for improving prediction of a users relevance function
when retrieving information from collections of documents.

Utilising meta-information for ranking purposes is, however, only one of
many possibilities. Another option is to visualise this information, and
present a user interface conveying forum, user and thread characterist-
ics by visual means. Some examples of such visualisation approaches
were given in section 2.4.5. Such visualisation methods are feasible in
a browsing setting, where it can provide users with an easily available
overview of the interaction patterns of a forum or other collection of
messages. Such an approach can be particularly helpful for new users.

The combination of browsing and searching in an information retrieval
context as described in section 4.1.2, is an emerging approach not yet
very well investigated [3]. NewsView provides an easily accessible frame-
work in which such combinations can be studied.

The user interface presented by NewsView may be used to visualise vari-
ous aspects of data. I present some such options in a Usenet context in
the following.

e Usenet messages can be displayed according to their hierarchy
membership, as specified by a taxonomy. For instance, a hierarch-
ical list of Usenet groups can be displayed along with the number
of returned documents within each group.

e Each Usenet message can be accompanied by a link leading to a
’search for similar’ query for that message.

67 Design

e navigation within returned result sets based on predefined criteria
such as thread membership, name or mail address of poster, mes-
sage size, language or posting date can be provided through dy-
namic drill-downs.

Providing an almost platform-independent user interface in a widely ac-
cessible setting (Web), NewsView should be easily available on a large
scale if so desired.

Technical System Sketch

In a technical context, the NewsView task divides into three main stages.
Figure 5.1 shows a graphical representation of this structure, coloured
and shaded according to the crawler-indexer-searcher convention intro-
duced in chapter 4. The figure elements coloured in blue are elements
either created or configured for NewsView purposes. These colouring
conventions will be used throughout the design and implementation
chapters. The parts of figure 5.1 corresponding to a given stage will
be repeated in the section presenting that stage.

A brief introductory description of each stage is given below:

Usenet Feed

Usenet messages are collected from an NNTP server and submitted
to a search engine.

Search Engine

A search engine takes care of storage of, and provides access to,
the data. The search engine used for NewsView is FAST Data Search
(FDS) [19].

Front End

FDS includes a J2EE based toolkit called Fast Query Toolkit (FQT).
This toolkit is used as the basis for the NewsView front end, which
handles searching, browsing and navigating the data.

The rest of this chapter contains in-depth descriptions of the design of
the three main NewsView stages as described above.

The first stage, the Usenet feed, is presented in section 5.1. The second
stage is the search engine, and is presented in section 5.2. The final
stage, the front end, is presented in section 5.3.

Design 68

Usenet Feed
=

@]
Message Message) >
NNTP Server|—» Retrieval —» Preprocessing —» filetraverser =
D)
& J
Search Engine
Data Access
Search
Engine
Data
Storage
Filter
Engine wn
@
3))
Q) (]
> =y
S 2 @
3 / Processing

Front End

V M /
NewsView
g earch
% rowse
st ain
ane

JBoss FQT
/)

Figure 5.1: Overview of NewsView technical design

R
H
B3

5.1 Usenet Feed

The first conceptual stage in the NewsView design, the Usenet feed, can
be broken down into three steps as shown in figure 5.2.

First, Usenet Messages have to be retrieved from an NNTP server and
saved to local disk. This is accomplished by a combination of several
tools. Each article is retrieved and saved to a file named according to its
message-id to ensure unique file names.

The second step is to perform any preprocessing required prior to sub-
mittal to the search engine. The task of the preprocessing step is to in-
troduce a thread concept, and is taken care of by a script. A NewsView-
specific thread id is inserted into the message as a header field - all
messages belonging to the same thread get the same thread id. The pur-

69 5.2 Search Engine

Usenet Feed

Message Message .
NNTP Server |—» Retrieval o Preprocessing —» | filetraverser

oMl

Figure 5.2: NewsView Usenet feed design

pose of this id is to enable search within threads and the ability to easily
retrieve an entire thread from the search engine.

The third and final step of the creation of a Usenet feed is to submit
the processed messages to the search engine. This is accomplished by
means of a utility called filetraverser, which is bundled with FDS. Filetra-
verser feeds each article to the FAST Content API, upon which the search
engine indexes them and makes them searchable.

5.2 Search Engine

Search Engine

Data Access
Search
Engine
Data
Storage
Filter
Engine

layosess

/ Processing

Figure 5.3: Newsview search engine design

The second conceptual stage constituting NewsView is the search engine.
This stage serves two primary purposes, namely data access and data
storage. Figure 5.3 shows a graphical representation of this stage.

The search engine used for NewsView is FAST Data Search. For a de-
scription of search engines in general as well as details concerning FDS
specifics, see chapter 4.

Design 70

The issues concerning data access are presented first, as the data storage
design is highly motivated by the data access demands.

5.2.1 Data Access

As indicated in the introduction to this chapter, NewsView places con-
siderable demands on the data access options available to the front end.

FDS has built-in functionality for grouping and clustering of messages,
by predefined metrics as well as by advanced linguistic methods, such as
automatic topic extraction and comparison. Features utilised by News-
View are described in the following. They are grouped based on similar-
ity of scope and functionality.

Clustering and Categorisation

As described in section 4.2.6, there are two approaches to the concept of
document grouping in FDS: clustering and categorisation. Both are used
for different purposes in NewsView.

Categorisation by means of the taxonomy toolkit as described in section
4.2.7 is used to classify documents according to the rigid hierarchy of
Usenet newsgroups. All Usenet newsgroups included in the Newsview
data have to be present in the NewsView taxonomy. By making this an
absolute requirement, the ability to guarantee membership in at least
one category is established. Utilising the Taxonomy Toolkit for this pur-
pose implies that any new groups included leads to deployment of a new
taxonomy.

Clustering is used to obtain some sense of serendipity in the system.
It is used for ’find similar’ queries across and within group boundaries,
and for general result clustering.

Dynamic Drill-Downs and Result Views

Dynamic drill-downs are used to create a hierarchical navigation pos-
sibility within the documents based on some given criteria. They are
defined statically prior to indexing data, and are applied across a result
set returned from the FAST search engine. They can be applied to strings
as well as numerical values. The application of dynamic drill-downs in
NewsView is to enable navigation within the returned result set based on
message properties such as thread membership, name or mail address
of poster, size or language among others.

71 5.2 Search Engine

Result views is a way to name specific sets of result fields. This allows
special result presentations tailored for specific uses to be created in
a very simple way. NewsView has three result views: The first is for
message summaries, giving only a few header fields and the teaser. The
second provides a basic message view giving some headers and the mes-
sage body, and the third is an extended message view with all header
fields included.

Ranking and Filtering

Custom values can be inserted into the ranking algorithm of FAST Data
Search. Some message characteristics for which it might be interesting
to include values in the ranking, are spam and flame [79] properties.
Another obvious choice for such a feature, is updated message rank-
ing based on feedback from the end users, given implicitly, explicitly or
both. Section 3.2.4 gives an overview of possible types of ratings, and
ways to obtain them.

5.2.2 Data Storage

The basic information items needing to be stored in the search engine,
are the Usenet articles themselves and the recommendations given by
end users. What needs to be done here is to decide on an information
storage structure, and exactly what is to be stored.

There are two basic approaches to a solution fulfilling these require-
ments.

e Messages and Recommendations can be stored in two separate
collections. The two collections would have different index pro-
files, and each would be configured to cater for its specific content
needs. They would also belong to different clusters. Both collec-
tions would be indexed with respect to message id, and thread ids
would be made searchable to enable searching within threads. To
update recommendations and rankings for a given document, the
message itself and the recommendations would both need to be
resubmitted.

¢ Recommendations can be stored as meta information within the
document containing the message. When updated or new recom-
mendations become available, the message is resubmitted to the
search engine along with the included recommendations and up-
dated ranking information.

Design 72

The first approach is chosen for NewsView. This decision was made
based on the available documentation at the time, and ease of imple-
mentation. Presently, only the message collection is implemented due
to limited hardware resources.

There is one remaining issue to consider before we are ready to specify
in detail the information items to be stored in these collections. Con-
versational data, of which Usenet messages is an example, have a very
different relationship with time than what is the case for search engines
in general. When considering conversational data, temporal aspects may
be feasible as metrics in result ranking. Search engines do not, as a
rule, pay attention to such issues when queries are matched to indexed
documents - the content available at any given time is considered ’cur-
rent’. The crawler strategy chosen is responsible for adequate content
freshness.

As a result of this, two related design aspects must be considered: How
should message dates be stored and handled within the search engine to
allow ranking mechanisms to take advantage of temporal aspects? And,
for how long should messages be stored? The former aspect is dealt with
by storing the contents of the Date header field, uniformly formatted,
in a dedicated index profile field. The latter aspect is ignored for the
purposes of this thesis, as Usenet messages are assumed to be stored
indefinitely. This may not be feasible in a large-scale setting. The shorter
the time-span in which content is stored, the faster recommendations
and ratings need to be propagated through the system to reach other
users.

Message Collection

In addition to more general document information, such as size, sub-
mission date, title, teasers, language and character set, some NewsView-
specific information is stored in the index:

e Extracted Usenet message header fields, as defined in RFC 1036 [36]
(see table 2.2)

o NewsView-specific header field for thread id, for filtering, display
and categorisation purposes

e Message body in html-formatted form, for display purposes

e Original message headers in html-formatted form, for display pur-
poses

e Posting date in uniform format, for filtering purposes

73 5.3 Front End

e NewsView-specific ranking information is stored in a message header
field.

e NewsView-specific ranking information

Recommendation Collection

The information associated with each recommendation is constituted of
the same general document information as for the message collection,
with the addition of:

e The recommendation itself

¢ Information about who entered it

e A reference to the article or thread it concerns

5.2.3 Resubmitting Content to the Search Engine

When new or updated information about an article is available through
user feedback, this information needs to be resubmitted to the search
engine in some fashion. Recommendations are resubmitted if they are
updated, or added if they are new. They are collected, prepared and
submitted to the search engine at periodic intervals.

5.3 Front End

Front End

% /
NewsView

N

JBoss Tomcat “ FQT P e
Log out

/ |

Figure 5.4: NewsView front end design

Yo Jeag

This section describes the third stage in the conceptual design of News-
view - the front end. It describes some of the technologies constituting

Design 74

the basis for the front end, and the tools used for building it. Figure 5.4
shows a graphical representation of the front end technical structure.

An obvious starting point when selecting tools for the front end, was to
look at the selection of tools bundled with FDS. The Fast Query Toolkit
(FQT) is one of those tools. FQT is is an example of an integration of
the FAST Query API with an HTTP based search application. It is geared
towards demonstrating features in the area of clustering, categorisation
and dynamic drill-downs, and as such implements many of the FDS fea-
tures most important to a first NewsView interface. It is also easily ex-
tendible to other areas of FDS functionality, as it is implemented as a JSP
tag library. FQT will be described in more detail in section 5.3.2.

My choice of FQT as a tool for NewsView implied the need for a J2EE
framework implementation, specifically a Java application server with a
suitable servlet container. The preferred application server for use with
FQT is JBoss, and the preferred servlet container is Tomcat. As such,
these were chosen for NewsView. JBoss and Tomcat will be presented in
more detail in section 5.3.1, along with a description of J2EE.

Section 5.3.3 gives an overview of some issues connected to the News-
View user interface, as built on top of FQT - not only in respect to
the interface design itself, but also in respect to aspects such as a user
concept.

5.3.1 J2EE and JBoss with Tomcat
An Overview of J2EE

The treatment of J2EE given here is based on the presentation at the J2EE
homepage [42]. All figures in this section are reworked from graphics
given in the same location.

J2EE, or the Java™?2 platform, Enterprise Edition, is an environment for
developing and deploying multi-tiered applications. J2EE simplifies de-
velopment of enterprise applications by basing them on standardised,
modular components, providing a complete set of services to those com-
ponents, and handling many details of application behaviour automat-
ically. J2EE takes advantage of many features from the Java 2 platform,
and adds support for more - like Enterprise JavaBeans components, the
Java Servlets API and JavaServer Pages.

Figure 5.5 shows a schematic overview of the J2EE multitier architec-
ture as described in the Sun BluePrints Design Guidelines for J2EE [32].
This architecture provides functionality for among other things trans-
action management, life-cycle management and resource pooling, allow-
ing developers to concentrate on specifics such as business logic and

75 5.3 Front End

user interfaces. Figure 5.6 shows the J2EE Standard Enterprise Services.
The areas with a cyan shaded background represent concepts used in
NewsView, whereas the areas with a red shaded background represent
containers (explained shortly)

Client-Side ‘ Server—Side Server-Side ‘ Enterprise
Presentation | Presentation Business-Logic | Information
— | | System
Browser | Web |
| Server |
| |
| |

(" pie 0z

Java /

>

'SR
Desktop
Java Java
Application Servlet

[0

(O
Other Device
J2EE 0 J2EE

Client I Platform
NE— N——

Figure 5.5: The J2EE application model

J2EE

-
-
-

Platform
RIS

t ¢t

Components, Containers and Connectors

The J2EE application model splits enterprise applications into three
fundamental parts: components, containers and connectors. The
purpose of this structure is to hide complexity and enhance port-
ability. Application developers focus mainly on the components,
whereas the containers offer services transparently to both com-
ponents and connectors. Connectors sit at the border of the J2EE
platform, defining a portable API to plug into external applications.
Figure 5.7 shows how they relate to each other.

Flexible User Interaction

J2EE supports a variety of choices for user interfaces, from Java
applets and standard HTML via stand-alone Java application clients
to Java Servlets API and JavaServer Pages technology. This allows
clients to run on almost any device.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) are server-side, modular, and reusable
components constituting specific units of functionality. They are

Design 76

Java™2 SDK, Standard Edition

4 I
Tools j [BluePrints
. _/
G s i i
% Wﬁ’J'/}M [Transactions j g
. :
'M—-//./// [Mes&agingj[Mail j g
_ 0
R
2]
hs
g8
<
—

[CORBA) (Security) (Database) [Directory) (XM L)

Figure 5.6: The J2EE architecture

similar to normal Java classes, but are subject to special restric-
tions and must provide specific interfaces for container and client
use and access. In addition, they can only run properly in an EJB
container, which manages and invokes specific life cycle behaviour.

There are three kinds of enterprise beans:

Session beans

These may be either stateful or stateless, and are primarily
used to encapsulate logic, carry out tasks on behalf of a client,
and act as controllers or managers for other beans.

Entity beans

Entity beans represent persistent objects or concepts exist-
ing beyond a specific application’s lifetime; they are typically
stored in a relational database. Entity beans can be developed
using bean-managed persistence, which is implemented by the
developer, or container-managed persistence, implemented by
the container.

Message-driven beans

Message-driven beans listen asynchronously for Java Message
Service (JMS) messages from any client or component and are
used for loosely coupled, typically batch-type, processing.

77 5.3 Front End

Figure 5.7: The three Cs: Components, containers and connectors

JBoss

JBoss [43] is an Open Source, J2EE standards-compliant application ser-
ver implemented in Java. It implements the entire J2EE stack, and can
integrate with other containers like the Tomcat Servlet/JSP Container or
the Jetty Web server/servlet container. As such, it allows for mixing and
matching of components to fit the needs of individual applications. The
goal of the JBoss project is to provide a full J2EE stack in the Free/Open
Source software world.

NewsView uses JBoss with the Tomcat servlet container.

Tomcat

Tomcat [85] is part of the Apache Jakarta project, which is a project of
the Apache Software Foundation [84]. Tomcat is the servlet container
used in the official reference implementation for the Java Servlet and
JavaServer Pages technologies. The Java Servlet and JavaServer Pages
specifications are developed by Sun Microsystems, Inc. under the Java
Community Process.

5.3.2 The Fast Query Toolkit

The Fast Query Toolkit (FQT) is an example of an integration of the Java
version of the FAST Query API (see sections 4.2.2 and 4.2.3 for details)

Design 78

with an HTTP based search application. As such, it provides an eas-
ily accessible approach to integrating FDS functionality into an applic-
ation with a web-based interface. The core technologies behind FQT
are Java servlets, JavaServer Pages, the JSP Standard Tag Library (JSTL)
and Java Custom Tags. Combining this foundation with the Model-View-
Controller (MVC) design pattern, FQT provides a framework for the cre-
ation of web-based front ends to FDS. It is based on Java 1.3.1 or later,
and is session oriented.

The following sections present the core principles and technologies on
which FQT is built, and the resulting work environment.

Servlets

Servlets [39] are the Java way of doing the equivalent of Common Gate-
way Interface (CGI) programming. Servlets run on a Web server, acting
as an extra layer between an incoming HTTP request and databases or
other applications running on the HTTP server. Servlets (or CGI) pro-
grams are typically used whenever content returned to the user needs to
be generated dynamically on a per request basis.

JavaServer Pages

JavaServer Pages (JSP) [41] enable the ability to mix static HTML with dy-
namically generated content from servlets. Many web pages built by CGI
programs are primarily static, with bits of dynamic content in between.
Many technologies allowing the use of dynamic content force you to gen-
erate the entire page via your program, whereas JSP lets you create the
two parts separately as they can include calls to methods defined in ser-
vlets.

JavaServer Pages has spurred the development of a few related tools to
ease the development of dynamic web pagers further:

The JavaServer Pages Standard Tag Library (JSTL)

The JSTL [40] encapsulates core functionality common to many JSP
applications as simple tags.

JSTL has support for common, structural tasks such as iteration
and conditionals, tags for manipulating XML documents, interna-
tionalisation and locale-sensitive formatting tags, and SQL tags. It
introduces a new expression language to simplify page develop-
ment, and it provides an API for developers to simplify the con-
figuration of JSTL tags and the development of custom tags that
conform to JSTL conventions.

79 5.3 Front End

Custom Tags

Custom tags are user-defined JSP language elements encapsulating
recurring tasks. Custom tags are distributed in a tag library, which
defines a set of related custom tags.

General FQT Design Principles

Minimise Amount of Java Code in HTML

FQT makes use of the JSTL, which allows for richer logic in JSP
pages without introducing Java code. It provides a predefined set
of custom tags easing various types of logic occurring frequently
when writing JSP.

Minimise Amount of HTML in Java Code

FQT tags attempt to minimise the impact of HTML printed by Java
code. The tags do not print markup to the page, as this may be a
maintenance problem in case of layout changes. The tags access
navigators, modifiers and navigations present in the current query
result, iterate over them, and expose them for the JSTL tags access-
ing the page context.

Another approach is to treat the body of the tag as a template, and
exchange certain textual patterns with retrieved values.

MVC - or Model, View, Controller

FQT builds on the MVC design pattern as provided with Smalltalk-80 [29,
chapter 1]. This section describes the general concepts and ideas of
MVC, as well as how FQT fits into the MVC structure.

The MVC pattern is constituted by three main parts - model, view and
controller. Each of these are presented in the following, along with a
graphical representation of the pattern, figure 5.8. The figure presents
the pattern, emphasising the interaction dynamics internally as well as
externally. The figure depicts the different parts of MVC as circles, and
shows the interactions between them as labelled arrows.

Model

The model is the core of the application. It maintains the state and
data the application represents. When significant changes occur in
the model, it updates all of its views.

FQT explicitly models a user’s session with the SearchSession class.
Each HTTP session, as defined by the servlet API, has exactly one
instance of this class.

Design 80

Application 4 \
s B

SEees \USGS

updates\ / manipul ates

- J

Figure 5.8: Graphical representation of the MVC design pattern

View
The view is the user interface which displays information about

the model to the user. Any object needing information about the
model needs to be a registered view with the model.

In the case of FQT, the view is represented by the markup produced
by the server and sent to the browser for rendering.

Controller

The controller deals with the user interface to record the user’s
actions and allow manipulation of the application.

FQT implements the Controller as a servlet, known as SearchSer-
vlet. It maintains the state of the session object based on input
given by HTML forms, which in turn are produced by the view.

For further information on design patterns in general or MVC in partic-
ular, consult Gamma et. al. [29]

5.3.3 User Interface

This section describes the design of a user interface for NewsView, giving
an overview of the features and possibilities available in the architecture.

The NewsView user interface builds on the idea of a text-based Usenet
client, of which the client depicted in figure 2.5 is an example, inside a
web browser. In addition to the functionality offered by such traditional
interfaces, NewsView includes the idea of recommendations, searching,
and a user profile to store the preferences of a user - information-wise

81 5.3 Front End

and functionality-wise. It also pays considerable attention to navigation
within the data by other means than following the hierarchical Usenet
structure, which is not very well supported by conventional Usenet cli-
ents.

The user interface treatment given in this section does not relate dir-
ectly to the material presented in section 2.4.5 on recent interface de-
velopments to conversational data, as the main user interface focus of
NewsView has been the navigational possibilities within the data, not
their visualisation.

The rest of this section gives an overview of the layout of the interface,
and the data available for display. It does not outline in any detail the
actual views, interface communication flows and so on, as these are not
the focus of this thesis.

User Interface Layout

Figure 5.9 shows the on-screen layout of the panes for browsing and
searching as opposed to editing preferences and profile information.

NewsView NewsView
Search Search
Browse) - Browse .
Group list main navigation Group list main

pane pane pane
Preferences Preferences
Profile Profile
Log out Log out
(a) Search/browse view (b) Preferences/profile view

Figure 5.9: Sketch of the front end view types

The primary items presented in the user interface are:

Menu pane

A pane for a menu making the basic navigational possibilities avail-
able. This is where the mode of the interface is set.

Actions available from this menu:

e Log out of the system

Design 82

e View and update preferences
e Create and manage the user profile

Main pane

This pane has the main information conveying responsibility. Ex-
amples of information presented here, is messages, group over-
views and search results.

The main pane will have different information conveying respons-
ibilities depending on the current mode of the interface.

Navigation pane

A pane for navigating the messages displayed - dynamic drill-dow-
ns, categorisation and clustering information, search similar, and
SO On.

User Interface Functionality

There are many ways in which the available data may be visualised in a
NewsView user interface. The one shown in the implementation section
is only one solution chosen as a prototype, and this thesis does not
attempt to present a finalised design in this regard. A list of options,
issues and ideas will, however, be presented in this section along with
some thoughts about how they can be easily incorporated into the user
interface framework as presented here.

Main pane

This pane is employed with two main tasks: presenting the basic
interface for browsing and searching, and displaying results ex-
ploiting the three predefined results views.

The following navigational options are presented in the main view
when applicable:

e Find similar on text query within returned result set.
e Features for excluding and refining results.
e Search within group, hierarchy level or thread id

An issue relevant to the display of result sets, is the visualisation
of ratings and relevance as described in section 3.2.1. Messages
are, of course, sorted according to relevance when delivered from
FDS, but the idea of enabling personalised filtering settings spurs
ideas for a second ranking. Messages could be faded in or out ac-
cording to relevance, or relevant ranking scores could be displayed

83 5.3 Front End

along with the message. Colour coding is another option for rank
display. These are visualisation options per message, but some op-
tions are available on the thread or group level as well. Threads or
sub-threads may be collapsed or killed (not displayed at all). Met-
rics eligible for such display considerations include spam probab-
ility, flame probability, author rating and predicted informational
value. See section 3.2.2 for more information about possible filter-
ing techniques.

Navigation pane

The main navigational structure of NewsView is dynamic drill-dow-
ns. They are defined in the index profile, and results are binned
into suitably sized categories depending on what is part of the res-
ult set and the drill-down configuration. It is possible to employ
a concept called 'results-based binning’ in the context of dynamic
drill-downs, where all drill-downs are applied at once. This en-
ables a multi-dimensional drill-down, with implicit ranking of di-
mensions.

A display option enabled by dynamic drill-down is to present a
hierarchical group overview display of results for browsing in the
navigation pane. Selecting a group in this mode would present
the user with a listing of the matching group content grouped by
thread id, with all threads collapsed. The number of messages in
each thread would be displayed along with the number of hits per
thread and a rating of the likelihood of that thread being interest-
ing to the user if available.

Clustering is used for search similar queries, but can also be used
to group search results into clusters depending on document sim-
ilarity (see section 4.2.6). The number of categories returned when
applying clustering as well as other parameters considering this
feature can be set up in the index profile. When used alongside
dynamic drill-downs, clustering might impose an untidy look on
the interface. It is important to keep in mind that clustering must
serve a practical purpose, not merely obscure the view.

5.3.4 User Concept

The user concept of NewsView allows for profiles storing information
preferences as well as user interface display preferences.

Information stored for each user:

e Personalia (username and password)

Design 84

e Preferences
e Group list

e User information need profile

The only aspect of the user concepts of any relevance to this thesis is
user profiles. The storage layout of user information and preferences, as
well as the specific details on which user information to store, is ignored
for NewsView purposes.

User Profile

User profiles, as described in section 3.2.3, are an important part of any
recommender system. The main idea for user profiles within NewsView
is to employ alert queries to store a user’s information interests. By
using this built-in feature of FDS, users are ensured to be notified of
any documents relevant to their profile as they become available. This
part of the system has not been implemented, and is described here for
reference.

Some ideas for user profile building are given below:

Forming an alert query based on a document

Given a document viewed by the user, enable the possibility to
store an alert query based on characteristics of that document. The
word vector provides a list of the most important words. This list
can be presented to the user, who may choose words, and if feas-
ible, weighting for those words. Upon editing the list, it is submit-
ted as an alert query. Section 3.2.2 gives a description of the vector
model which is the basis for this approach.

Forming alert queries based on queries made by user

Queries issued during a NewsView usage session may be presented
to the user at some stage, and submitted as alert queries if deemed
appropriate. An option for storing a query as an alert query may
also be given in the interface presenting results.

Summary

The purpose of the NewsView framework as presented in this chapter,
is to provide a testbed for user interface, information filtering and in-
formation retrieval issues, and, most importantly, combinations of the
three.

Chapter 6

Implementation

This chapter describes the implementation of NewsView, following the
design given in the previous chapter. Several parts of the system de-
scribed in the design chapter are not implemented in the currently avail-
able prototype.

First, this section gives an overview of the development environment for
NewsView. Thereafter, an outline of the system structure in an imple-
mentation context is given. The rest of the chapter presents the three
main stages of NewsView, the Usenet feed in section 6.1, the search en-
gine in section 6.2, and the front end in section 6.3.

Technical System Structure

NewsView is built from several smaller parts. As described in chapter 5,
it can be broken down to three main 'stages’, and these will be described
briefly in this section. The rest of the chapter is devoted to an in-depth
presentation of these, following the structure and conventions intro-
duced in chapter 5.

Figure 6.1 gives a graphical representation of the implementation as-
pects of NewsView. It has the same overall structure and follows the
same conventions as figure 5.1, but focuses on implementation details
instead of general design considerations.

Usenet Feed

Usenet articles are pulled from the NNTP server at the University
of Oslo (nntp.uio.no) and saved to disk using a combination of
fetchnews [21] and procmail [87]. A script called newsviewprepro-
cess does some message preprocessing, before filetraverser, a util-
ity bundled with the search engine, passes the resulting files to the
search engine for indexing and searching.

nntp.uio.no

Implementation 86

Usenet Feed
e B
fetchmail @)
nntp.uio.no |—p v —» | newsviewpreprocess |—» | filetraverser 95_’
procmail X
& J
Search Engine
Document Processing Search Cluster
Usenet Messages H [[Field Mapping % ;%
Processing Pipeline @
e

Document Procasing search luser ::?gﬁf
Recommentations A My

ey e %E/-; /////}4 -

Quiery

Front End
(

/M /
NewsView
7 a3
JBoss Tomcat FQT B, -
Log out

Yo Jess

Figure 6.1: Overview of NewsView implementation

Search Engine

The search engine used with NewsView is FAST Data Search (FDS)
version 3.2.2. It stores Usenet messages using a customised index-
ing and document processing configuration, and provides a variety
of options for access to the data.

Front End

The NewsView front end provides a searchable interface to Usenet,
with extensive navigation possibilities. It is built using J2EE [42],
using the JBoss [43] application server, with Tomcat [85] as servlet
container. The front end interface itself relies heavily on the FAST
Query Toolkit (FQT), which is a development kit provided by FAST
Search and Transfer [19]. FQT provides a web-based interface to
FDS using Java servlets.

87 6.1 Usenet Feed

6.1 Usenet Feed

As described in section 5.1, the task of establishing the Usenet feed con-
sists of three steps. Figure 6.2 shows the internal data flow of these
steps, and each of them will be described in more detail in this section.

Usenet Feed
fetchmail 0
nntp.uio.no |—p v —» | newsviewpreprocess |—» | filetraverser %_’
procmail Q

Figure 6.2: NewsView Usenet feed implementation

All operations constituting the Usenet feed are run from a cron job at
regular intervals. Logs from all operations are stored in a local log dir-
ectory, and are rotated using the system utility logrotate [80].

6.1.1 Retrieving Usenet Messages

The first step of creating a Usenet feed into the system is to pull mes-
sages from an NNTP server. The choice of NNTP server was made based
on convenience and offered material - among the easily available serv-
ers, nntp.uio.no was the one offering the widest selection of groups.

A perl program called fetchnews [21] is used for the download phase.
Fetchnews is written by Mathieu Fenniak and Aaron Trickey, and is a
simple program to retrieve Usenet messages to a local machine. It uses
a configuration and setup syntax well known through the use of fetch-
mail, a program for downloading email to local disk. As such, it is easy
to configure, and requires a minimum of effort to reach a running state.
Fetchnews does not have the full functionality of an NNTP server, but
fills the requirements for a first implementation of NewsView. One of
the features not supported by fetchnews in its present condition, is can-
celling of messages. This issue is ignored for the purposes of this thesis,
and could be resolved by employing a full-fledged NNTP server imple-
mentation.

The first approach to downloading Usenet messages to disk, was to set
up a local NNTP server. Due to difficulties met when attempting to ac-
complish this as a non-root user using a non-standard port, this ap-
proach was rejected. Fetchnews provided a way to get around this prob-
lem, and eliminated the need to create a customised solution.

nntp.uio.no

Implementation 88

Fetchnews has support for several delivery methods, for instance SNMP
(Simple Network Management Protocol) forwarding, delivery to mbox (a
format for mail message storage files) files, or delivery to a Mail Delivery
Agent (MDA) - of which procmail is an example. NewsView uses proc-
mail to deliver each Usenet message to a file of its own in a flat directory.
The files are named according to message-id, as this header field is guar-
anteed to be unique for each message. The choice of procmail was made
because it could very easily fulfil my needs. It is a well-known tool for
email sorting, well tested, easily configurable, and made for exactly what
was needed in this context.

6.1.2 Preprocessing of Usenet Messages

Upon downloading Usenet messages, some preprocessing is performed
before submitting them to FDS.

A perl script called newsviewpreprocess was written to take care of the
preprocessing needs. The choice of perl as language was made based on
the abundance of available perl modules, and the fact that much of the
work in the script would be string manipulation, which is one of perls
strongest assets.

Usenet messages may be encoded according to the MIME standard (Mul-
tipurpose Internet Mail Extensions, see RFCs 2045 [26], 2046 [27] and
2047 [60]). Content encoded according to these standards may require
preprocessing to reach a readily accessible state, and newsviewprepro-
cess takes care of these issues.

Decoding of the message body as well as some header fields may be ne-
cessary. All necessary conversions to obtain a decoded state as specified
in RFC 2045 [26] and RFC 2047 [60] are performed by newsviewprepro-
cess. Newsviewpreprocess uses the MIME::Tools perl modules to decode
MIME encoded content.

Another task performed by newsviewpreprocess, is the insertion of News-
View-specific thread ids into message headers. This id is inserted to en-

able thread membership as a search criteria. To ensure uniqueness of
thread ids, a list of ids already used along with the message-id corres-

ponding to the root message of the thread is kept. This list is stored in a
plain text file, along with the next available thread id. Newsviewprepro-

cess uses the specification given in RFC 1036 [36] to deduct the correct

thread id for a message. As thread ids are stored between program runs,

newsviewpreprocess handles resubmitting of articles.

Newsviewpreprocess also inserts a header field containing default mes-
sage rating values.

89 6.1 Usenet Feed

Figure 6.3 shows pseudo code for the thread id insertion algorithm used.
The pseudo code shows the operations as performed for each message.

if (message has references field)
Message is part of an already existing thread
master reference = first message id in references field
if (master reference exists in id Tist)
Thread has been seen before, insert known id
thread id of message = master reference
else
Thread has not been seen before, new thread id is created
insert master reference into id list with new thread id
thread id of message = new thread id
endif
else
First message in new thread, new thread id
if (message has been seen before)
Message is resubmitted, use old thread id
retrieve old thread id from id Tist
thread id of message = old thread id
else
New message, new thread 1id.
insert message id into id list with new thread id
thread id of message = new thread id
endif
endif

Figure 6.3: Pseudo code for thread id insertion algorithm

6.1.3 Submitting Usenet Messages to FAST Data Search

As described in section 4.2.2, there are several ways to submit content
to FDS. For my application, the obvious choice of input method is file-
traverser. It traverses a directory for files matching given criteria, and
submits those files to FDS. Filtering is done based on filename suffix.

The documentation for filetraverser is given in the FDS System Reference
Guide [20]. In the case of a system where cancelling of messages is to be
supported, filetraverser would support this readily through its ability to
remove documents from a named collection.

After submitting articles to FDS, files containing processed content are
moved into an archive folder by means of the standard UNIX system
utilities mv and xargs. Xargs is involved in the process to ensure that
moving a large number of files (there is a limit on the number of argu-
ments that can be given to a program) will work correctly.

Implementation 90

6.2 Search Engine

This section will focus on the configuration of FDS for my purposes. The
material covered in section 4.2 in general, and 4.2.5 in particular is an
essential background for the treatment given in this section. The version
of FDS used with NewsView is 3.2.2.

Search Engine

\NW Document Processing Search Cluster

Usenet Messages H [[Field Mapping % S%-
Processing Pipeline [0)

Document Processing Search Cluster Index

> OO Proflle

Recommentations 1 - 0 - 1 —{Fid Mepping .|..|.

Processing Pipeline / L++ é)
s /// gk
Q

Figure 6.4: NewsView search engine implementation

As described in section 4.2.5, each collection has an index profile and a
document processing pipeline assigned to it. To meet the requirements
specified by the design in section 5.2, the following aspects of FDS must
be configured:

e The index profile
e The document processing

e The taxonomy toolkit

Figure 6.4 shows an overview of the structure of the search engine imple-
mentation. The following sections will outline setup for each of these.
The recommender collection is included in figure 6.4, but is not part of
the implemented system because of hardware limitations. As such, it is
not included in the description given in this chapter and any treatment
is to be considered specific to the Usenet message collection unless oth-
erwise stated.

6.2.1 Index Profile

The index profile is an XML-based configuration file defining the way
documents are searchable. It defines which document elements become

91 6.2 Search Engine

searchable fields, which document elements become fields that can be
returned as part of a result, and how to calculate values used for sorting
and ranking. The deployed index profile is included in appendix C.1.

The index profile configuration for NewsView will be presented as a list
of concepts, following the structure of the XML format as presented in
figure 4.8.

Simple Information Storage Fields

Simple information storage fields are used to store document data, in-
cluding extracted document parts as well as meta-information.

Lemmatisation, the act of breaking a word down to its root form, is
enabled for fields containing natural language text.

The following data items are kept in simple information storage fields:

Document information

Title, body, headings and anchor text.
All Usenet message header fields defined in RFC 1036 [30]

Message date in uniform format

Body and all original headers in html formatted form

Document meta-information

Content-type, language, character set, URL, modification time, size,
ranking, teaser and taxonomy membership.

Composite Fields

Composite fields are used for grouping of simple fields, to allow them
to be accessed as one. Each composite field can have a ranking specific
to that field.

Composite fields configured and used are:

Content

Allows access to all content, that is, body, headings, title and an-
chor text, as one field.

Implementation 92

Result Specification

These fields are used to specify various aspects of the results produced
by the search engine. They are listed in the order they appear in the
index profile, and details are given where applicable. When fields are
mentioned with no further specification attached, they are included for
completeness and reference but their configuration is not particularly
relevant to NewsView.

Result filter NewsView uses one result filter, which removes duplicates
based on the URL field. As the URL is built using the message-id,
this filter ensures no document may be present more than once in
a result set.

Taxonomy, clustering and proximity boost setup

Navigators

The navigators defined in the index profile are shown in table 6.1.

Drill-down Displayed name (unit and resolution)
size Document Size (kB/1024)

content type | MIME Type

character set | Character set

language Language
thread id Thread Id
date Date (month/#seconds in thirty days)

Table 6.1: Navigators as configured in index profile

Result views

Several result views are set up. Table 6.2 shows their names and
member fields:

Name Member Fields

Result overview author, date, subject, teaser

Message summary | author, date, subject, newsgroups, body
Message extended | all header fields, body

Table 6.2: Views as configured in index profile

93 6.2 Search Engine

6.2.2 Document Processing Pipeline

FDS comes bundled with several predefined processing pipelines. None
of these fulfilled the requirements made by NewsView in themselves, but
they provided a good starting point for a NewsView-specific customised
pipeline. Such a customised pipeline, called UsenetNewsView, was set up.
It includes functionality to handle the specifics of the document format
as well as other features needed.

UsenetNewsView is based primarily on two predefined pipelines called
MultiConverter and Taxonomy. MultiConverter is a multi purpose pipe-
line supporting many file formats, accomplishing this by converting all
content into an intermediate element format, which is processed as
HTML. The Taxonomy pipeline is similar, but focuses on taxonomy func-
tionality.

The ExternalDataFilterTimeout document processor is part of FDS and
makes use of an external utility to process an attribute. This is done
subject to a timeout, and the result is stored in a given field. This
concept is used as the basis for all customised document processing
in NewsView, except some tuning of FDS features done by customising
specialised document processors bundled with the system. FDS assumes
all content submitted to it within the document processing system to be
encoded in UTF-8. This implies the need to convert all non-UTF-8 con-
tent before submitting it. All customised document processors included
in NewsView do this.

The following list contains the customised document processing as con-
figured for NewsView:

Extraction of Usenet header fields

All Usenet header fields as defined by RFC 1036 [36] are extrac-
ted by means of document processors based on ExternalDataFil-
terTimeout. They are extracted by a perl script, and converted to
UTE-8 afterwards. The MIME:: Tools modules are used to extract
headers, and the Text::Iconv module does character set and encod-
ing conversion. The latter is a perl wrapper around the system call
iconv, which is part of glibc. To avoid recreating the script for each
document processor, it takes the name of the header field as an
argument, and returns the appropriate text string.

Quite a few such processors are needed (twenty, to be exact), and
as the FDS document pipeline configuration is stored in an XML
file, a perl script is used to generate the necessary XML code for
these processors.

Implementation 94

Extraction of ranking information from header field

Ranking information is extracted and stored in appropriate fields
when messages are resubmitted. Customised ranking is not imple-
mented in the current version of NewsView.

Converting the contents of the 'Date’ header field to a uniform format

To allow the use of dynamic drill-downs on date information of
messages, the Usenet header field extracting script mention earlier
has a special case for date extraction. In addition to extracting the
date field and storing it in a text field, it is converted into a uniform
format, which is chosen to be the number of seconds since 1st of
January 1970 (epoch), and stored in a special 'uniformdate’ field.

Converting all original message headers and body into html

Two html-formatted blocks of text are stored for each message.
One contains all header fields from the original message, and the
other contains the message body. The body is converted using
txt2html, whereas the headers are converted by augmenting every
newline with a < br > tag.

Configuration of the vectorising and taxonomy document processing
facilities
The taxonomy toolkit uses a document processor to input the name
of the taxonomy. The customised processor UsenetRuleClassifier
performs this task.

The vectorizer processor specifies which fields to include when cre-
ating the document vector. It is not customised in the present ver-
sion of NewsView, but as it provides an important possibility to
tune the document comparison process, it is mentioned for refer-
ence.

Rather late in the process of writing this thesis, documentation on how
to write full-fledged document processors to fit right into the pipeline
became available. This would undoubtedly have been a better solution
for the inclusion of NewsView-specific processing tasks.

All relevant tasks could then be collected in one processor as opposed
to being spread across approximately twenty. This processor would de-
tect the correct MIME type (text/news) and perform the appropriate pro-
cessing tasks accordingly.

Table 6.3 gives an overview of the processing stages present in Usenet-
NewsView. Amongst other things, it contains language detection, encod-
ing normalisation and a teaser generator.

95 6.2 Search Engine
Objective Stage Description

DocumentRetriever | Retrieves the document.

URLProcessor Handles URLs.

Doclnit Initialises document attributes

Retrieval without overwriting existing

and values.

initialisation | FormatDetector Detects the format of the data
attribute of a document.

SimpleConverter Converts the content of a
document’s data attribute to
HTML.

SearchMLConverter | Converts the content of a
document’s data attribute in
any supported file format to
HTML.

LanguageAnd- Detects language and encoding

EncodingDetector of HTML.

EncodingNormalizer | Ensures all HTML in data is
converted to UTF-8.

HTMLParser Parses the HTML and extracts
meta data.

TeaserGenerator Generates a teaser
summarising the document
based on the description meta
data or the body.

Extraction of | UsenetFrom Extracts the From header from

Usenet Usenet messages.

header fields | UsenetDate Extracts the Date header from
Usenet messages.

UsenetNewsgroups | Extracts the Newsgroups
header from Usenet messages.

UsenetSubject Extracts the Subject header

from Usenet messages.

UsenetMessage-1D

Extracts the Message-ID header
from Usenet messages.

UsenetPath

Extracts the Path header from
Usenet messages.

UsenetFollowup-To

Extracts the Followup-To
header from Usenet messages.

UsenetExpires Extracts the Expires header
from Usenet messages.
UsenetReply-To Extracts the Reply-To header

from Usenet messages.

Implementation

96

Objective Stage Description

UsenetSender Extracts the Sender header
from Usenet messages.

UsenetReferences Extracts the References header
from Usenet messages.

UsenetControl Extracts the Control header
from Usenet messages.

UsenetDistribution | Extracts the Distribution
header from Usenet messages.

UsenetKeywords Extracts the Keywords header
from Usenet messages.

UsenetSummary Extracts the Summary header
from Usenet messages.

UsenetApproved Extracts the Approved header
from Usenet messages.

UsenetLines Extracts the Lines header from
Usenet messages.

UsenetXref Extracts the Xref header from
Usenet messages.

UsenetOrganization | Extracts the Organization
header from Usenet messages.

UsenetX-NewsView- | Extracts the

Threadinfo X-NewsView-Threadinfo header
from Usenet messages.

ManualMapper Performs manual classification

Taxonomy of documents into a predefined
classification taxonomy.

UsenetRuleClassifier | Rule-based classifier. Loads
rules from an XML file and
assigns categories for all
matching rules.

TaxonomyTagger Tags documents with
supplementary taxonomy
information.

TaxonomyBoost Performs category boosting,
boosting all documents
belonging to a specific
category.

Linguistic Lemmatizer Lemmatises selected attributes.
processing Vectorizer Computes the document vector

from the attributes defined in
the input parameter.

97 6.2 Search Engine
Objective Stage Description
FIXML FIXMLGenerator Generates FIXML data, an
conversion internal document format.
and RTSOutput Handles output to the Search
submittal Engine.

Table 6.3: The stages of the UsenetNewsView processing pipeline

6.2.3 The Taxonomy Toolkit

The taxonomy toolkit, described in section 4.2.7, is used to create a cat-
egory hierarchy corresponding to the Usenet hierarchy structure. The
resulting hierarchy contains those groups present in NewsView at any
given time. To make sure all messages are part of at least one category,
the taxonomy must be updated every time new groups are added to the
repository. Implementation of search result browsing is simplified by
knowing that all messages returned as part of a result will be included
in at least one category. Figure 6.5 shows the taxonomy toolkit browser

at work.

File Actions Wiew

7 Usenet
B Gne
Bgn
B Jas
B] amiga
D diverse
D maskinvare
[programvare
D beos
A mac
3 ms-windows
D 0sd
B 3 unix
D diverse
B O linux
D diverse
D nettverk
3 programmering
B [T programvare
[} emacs
D ms-office

[rex

Category details

- O| Documents

-0

Path Usenet/nojitfosfunix/linux jdiverse

Dacuments in this category

Title [diverse

Description

CEesimeiEm St e e R e e s

Rank tuning

Add Remove

Rules

({newsgroups.find{'no.it. o= linux.diverse")) » -1}

Ceneral hoost none W

Boost for specific keywords

Query | Twpe | Walue |

Dane

Figure 6.5: The taxonomy toolkit interface

Implementation 98

6.2.4 Resubmitting Content to FAST Data Search

The approach described in this section is not implemented due to time
constraints. A description is, however, included as an outline of how the
process would be performed.

When new or updated information about a message is available, this
information has to be propagated to FDS to make sure the data stored
in the search engine reflects any changes. This will happen when a new
recommendation is submitted, or an existing one is updated. Implicit
and explicit ratings are included in this treatment.

Upon receiving new recommendations, the message concerned is re-
trieved from the archive. The header field containing ratings is updated,
and the recommendation is formatted and prepared. The resulting files
are copied to specific folders for updated content, from where they are
picked up by a cron job submitting them to the search engine using
filetraverser. The files are deleted from the update folder after being
submitted.

The search engine within FDS is batch oriented. Incoming documents
are indexed and initially inserted into a 'new’ index. Batches can be of
any size in number of documents, and new indexes can be generated
as often as every second. They are periodically forwarded to the main
index from there. This indexing cycle can be bypassed by defining fields
as real-time property attributes in the index profile. An idea for the
resubmitting strategy is to define the rating attribute of messages as
real-time properties, and let the recommendations go though the normal
indexing cycle.

6.3 Front End

NewsView provides a framework within which interfaces can be easily
created, customised and tested. As such, NewsView can serve as a test-
bed for user interface, information filtering and information retrieval is-
sues, and, most importantly, combinations of the three. The data access
and storage functionality is made available through the search engine
configuration, and the display mechanisms are provided by FQT. Cas-
cading style sheets (CSS) are used to define the visual presentation of
the interface.

The front end is, as shown in figure 6.6 and described in section 5.3,
built using JBoss, Tomcat and FQT. The actual interface is viewed using
a Web browser.

99 6.4 The NewsView Development Environment

Front End

W //‘
NewsView
earc
X

roup list
Pre
rofile
og out

Figure 6.6: NewsView front end implementation

Joyo Jeas

B3
EE

The 4.x releases of Tomcat, of which version 4.1.24 has been used for
NewsView, implement the Java Servlet 2.3 and JavaServer Pages 1.2 spe-
cifications. The version of the Java 2 runtime environment used was
1.4.0.01.

6.3.1 FQT

FQT provides two types of tags. Simple on/off tags are used to set
boolean values, whereas value selection tags are used for generic con-
figuration strings.

There are tags for controlling input, formatting and displaying docu-
ments, displaying and utilising dynamic drill-downs and clustering, con-
figuring various search engine features and displaying debug informa-
tion.

The availability of html-formatted versions of the message body and
headers eases the message display process. Appendix B contains screen
shots of some possible NewsView interfaces.

6.4 The NewsView Development Environment

Several general concepts and methodologies have been kept in mind
throughout the design and implementation of NewsView. Some such
concepts are: Adhering to standards, portability, design patterns, object-
oriented programming paradigms and technology, design for extensibil-
ity and reuse of existing tools.

NewsView was developed on a PC running Red Hat Linux version 7.3,
where a local disk partition was made available for the project. The
entire system, Usenet feed, search engine and front end, was developed,
run and tested on this system. As such, all tools are compliant with it

Implementation 100

- NewsView is, however, not particularly platform dependent. The tools
constituting the Usenet feed would require some adjustment to run on
another platform, and some of them would have to be replaced. The
UNIX-specific tools used in the document processing would disappear if
a proper FDS document processing module was implemented. The user
interface as presented is close to platform and browser independent. It
is based on HTML, and uses CSS for some formatting. All processing is
done server side, and the HTML is as close to W3C compliant as possible
given the starting point.

Summary

This chapter describes the implemented parts of the NewsView architec-
ture. The discussion includes directions for some possible extensions to
this implementation.

Chapter 7

Conclusion

This thesis combines aspects from two approaches to information ac-
cess, information filtering and information retrieval, in an effort to im-
prove the signal to noise ratio in interfaces to conversational data. These
two ideas are blended into one system by augmenting a search engine
indexing Usenet messages with concepts and ideas from recommender
systems theory. The aim is to achieve a situation where the overall result
relevance is improved by exploiting the qualities of both approaches. Im-
portant issues in this context are obtaining ratings, evaluating relevance
rankings and the application of useful user profiles.

The NewsView architecture as presented in this thesis describes a frame-
work for interfaces to Usenet with information retrieval and information
filtering concepts built into it, as well as extensive navigational possib-
ilities within the data. The purpose of this framework is to provide a
testbed for user interface, information filtering and information retrieval
issues, and, most importantly, combinations of the three.

The storage structure is adjusted to the specific structural properties of
Usenet messages. Specific information filtering needs and ideas can be
fitted easily into the structure by means of document processors. Vari-
ous approaches to content categorisation and filtering are supported,
as well as navigation within the resulting structures. Sample features
provided are serendipity through the use of clustering and thread-based
result binning to keep context easily available when searching discus-
sions.

The back end draws on crawler theory, using a combination of methods
to obtain freshness. When submitting articles and recommendations, the
batch-oriented back end is used. Content is sent to the search engine
using a crawler traversing local file systems. Resubmitted articles are
indexed using the same back end, whereas the ranking information is

Conclusion 102

propagated directly to the search engine using special real-time features
of the search engine.

During my thesis work, I have shifted the focus away from creating a
finished interface, and towards creating a general framework. As a con-
sequence of this, considerations regarding signal to noise ratio are not
concretely discussed in a NewsView perspective. In its current form,
NewsView cannot be used to facilitate evaluation of result relevance pre-
dictions. It is, however, suitable as a foundation for systems holding
these qualities.

Appendix A

Future Work

In the following, I outline various possibilities for future work in the ex-
tension of this thesis. Some are concrete improvements of the architec-
ture described, and some are general research ideas that can be realised
using the NewsView architecture or by other means.

Concrete improvements of the implementation presented

FQT (or a separate) tag library can be equipped with functionality
for Usenet message threading. Having a tag or set of tags perform
this task would make a threaded result display easily available.

The potential for further integration of ideas from recommender
systems theory is undoubtedly great. Some such ideas I would
have liked to include, are implicit ratings, entry of explicit ratings
and user collaboration.

Browsing and searching in an information retrieval context

According to Baeza-Yates and Ribeiro-Neto [3], not very much re-
search has been undertaken when it comes to combining the in-
formation retrieval user tasks, that is, searching and browsing. The
NewsView architecture as described provides a feasible environ-
ment in which such issues can be explored.

Usenet domain-specific filtering

Combining NewsView explicitly with the work of Whittaker et. al. [88]
and Smith and Fiore [23] opens exiting possibilities for social filter-
ing of Usenet content:

e Automatically generated ratings could be incorporated into
the ranking algorithm directly, as a supplement to the ratings
used in conventional recommender systems.

Future Work 104

e Both Whittaker et. al. [88] and Smith and Fiore [23] present
approaches based on mining message headers. Including pro-
cessing of message bodies would be easy if these ideas were
to be deployed within the NewsView architecture, as the en-
tire message is indexed as an inherent property of the archi-
tecture.

e Combining author ratings as presented by Smith and Fiore [23]
with author-based filtering in a recommender system context
may prove particularly effective.

Related research ideas

As of today, no notion of relationships between users is included in
the NewsView design. Employing ideas related to active collaborat-
ive filtering should provide further improvement as a supplement
to the social filtering concepts emphasised by this thesis.

The work of Cosley et. al. [13] looks into how recommender in-
terfaces may affect users in the rating and consumption process.
Their work would be an important background for recommender
systems interface design using NewsView.

Recent efforts from Herlocker [33] review the key decisions in eval-
uating collaborative filtering recommender systems, and present
empirical results from the analysis of various accuracy metrics.
Experiences from this work may prove valuable to recommender
systems design in general, as well as providing a starting point for
an evaluation toolkit that could be included into NewsView.

Appendix B

NewsView Screen Shots

This appendix contains some screen shots of possible NewsView inter-
faces.

The screen shot presented in figure B.1 shows a basic search interface to
Usenet created using NewsView.

This iz an Alpha release of Newsisw,
a project that is part of my Cand . . reset
Seient degree avadoc
- Wtarl Wang Sp source
A \nc\udel-“” of the words j|
G i New Search |

Sort by [Relevance =] Resuns in [Englisn =]
w ™ ascending Order [+ Mavigation [~ Debug info

YWelcome. Please type a search expressian, or empty to view the entire callection.

Created with the FAST Query Toolkit, FAST Data Search 3.2 @ Fast Search and Transfer 2000-2003

Figure B.1: Screen shot of a NewsView-based search interface to Usenet

NewsView Screen Shots 106

The screen shot presented in figure B.2 shows a result view created with
NewsView, showing the results and some navigational options.

This is an Alpha release of Newsiew, reset

a project that is part of my Cand . .
Scient degree. avadog
- Mari Wang [sp source

Inciude] Al of the words x| manarmind
Mew Search | Refine | Madify View |

Mlﬂ sort by | Relevance x| Resuits in | English x|

r Ascending Crder 2 Mavigation r Debug info

Results found: & Dynamic Drill-Downs (Zero Hit Drills Omitted)
L Search time: 4ms 1-6 # Thread Id

1. 2 123 or less B

Path: nyereadme.uio.nalnntp.uionoluio.nolasap-asp.netinot-far-mail From:

124 - 217
217 - 598

hjormko@ifi uio.no (Bj I ¥aggen Konesiabo) ps: no.itpro ing java
Subject: Re: Mybegynner Dale: 18 Apr 2002 20:25:32 +0200 Organization: There is 2
no arganization Lines: 10 Message-ID: swh3cxszwwe.
Similar | Find { Refine | Exclude 1 598 ormore
news MMSG_ID%50%ICwhIcxszwwz [ai¥%4tiones
2004-02-15 - 880 bvtes

oo

Document Size

2 Lessihan1kB [=]
Z. 4 Muore than 1 kB [=]
Path: nyereadme. uin nolnntp_uio noluio.nolasap-asp netinot-for-mail From:
hjornka@ifiuia.na (Bj fn Yaggen Konestaho) Newsgroups: nodtprogrammering. it Language
Simlar | Find { Refine | Exciude 5 e =
nNews AMSG_ID¥KED%ECwWES27agow [51%40jones. o
20604-02-15 - 1309 bytes 1 nb [=]
Author
3. : e ;
Path: nyereadme.uin nalnntp_uio naluio nolnews nety selnews algonet selaly i EDMK? hm'émg_a&f_‘ﬁm Yaggen E
anetinewsfeed1.uniZ. dkinews1news. equantnolnews.netcom.nolnntp.nevsmedia.n Konestabo)fa#10,5410;
olnews.powertech.nolMorway EUnetlasap-asp.netinot-for-mail From: 1 &1l =]

bjornko@ifiuio.no (B] n Yaggen Konestabo) Mewsgroups: nodtprogrammering
Similar | Find | Befine | Exclude

news ASG_ID%50%3CwhbEz 7whEsE. sl edjones. ..

2004-02-15 - 1403 bytes

Figure B.2: Screen shot of a NewsView-based result view

10

15

20

25

30

35

Appendix C

Source Code

C.1 Index Profile

Listing C.1: NewsView Index

<?ml version="1.0"7?>

<DOCTYPE index—profile SYSTEM "index—profile —2.0.dtd”>
<index—profile name="datasearch”>

<field-list>

<l— left for compatibility reasons, not used —>
<field name="description” result="no” />
<field name="keywords” result="no” />

<field name="title” sort="yes” element-name="toktitle”
result—element-name="title” lemmas="yes”
result—proximity—element-name="resulttitle” />

<field name="body” element-name="tokbody” max-result—size="1024"
compress="yes” result—element-name="resultbody”

fallback-ref="teaser” lemmas="yes” result="dynamic” index="no” />

<field name="teaser” index="no” />

<field name="headings” element-name="tokheadings”
result—element-name="headings” lemmas="yes” />

<field name="anchortext” result="no”
result—proximity—element-name="anchortext” />

<field name="contenttype” element—name="mime”
result—element-name="contenttype” />

<field name="language” element-name="languages” />
<field name="charset” />

<!— left for compatibility reasons, not used —>
<field name="urls” />

<field name="url” element-name="meta.url” index="no”/>

40

45

50

55

60

65

70

75

80

85

90

95

Source Code

108

<l— left for compatibility reasons, not used —>

<field name="domain” element—name="meta.url.domain” result="no” />
<field name="tld” element-name="meta.url.tld” result="no” />
<field name="path” element-name="meta.url.path” result="no” />

<l—— Non-text fields —>
<field name="modified” type="integer” sort="yes” />
<field name="size” type="integer” sort="yes” />

<!— left for compatibility reasons, not used —>
<field name="genericl” />

<field name="generic2” />

<field name="generic3” />

<field name="generic4” result="no” />

<field name="igenericl” type="integer” sort="yes” />

<l—— Taxonomy toolkit support —>
<field name="taxids” type="string” />
<field name="taxcatids” type="string” />

<!—— Fields added by mariwan to accomodate for usenet postings —>

<field name="from” />

<field name="date” />

<field name="newsgroups” />

<field name="subject” lemmas="yes” />
<field name="messageid” />

<field name="newspath” />

<field name="followupto” />

<field name="expires” />

<field name="replyto” />

<field name="sender” />

<field name="approved” />

<field name="lines” type="integer” />
<field name="xref” />

<field name="organisation” />

<field name="references” />

<field name="xnewsviewthreadinfo” type="integer” />
<field name="uniformdate” type="integer”/>
<field name="htmlheaders” />

<field name="htmlbody” />

<!—— Field to store message in html format —>
<field name="html” />
</field -list >

<composite—field name="content” rank="yes” default="yes” lemmas="yes”>
<field -ref name="body” level="1" />

<field —ref name="headings” level="2" />
<field -ref name="path” level="2" />

<field —ref name="domain” level="3" />
<field -ref name="title” level="5" />
<field -ref name="anchortext” type="external” level="6" />

<weight—list name="defaultrank” and-boost="0" or—boost="5000"

100

105

110

115

120

125

130

135

140

145

150

155

160

109 C.1 Index Profile

rank—boost="5000" phrase—boost="5000" >
<field —weight field —ref="title” value="150000" />
<field —weight field —ref="body” value="10000" />
<field —weight field —ref="headings” value="50000" />
<field —weight field —ref="domain” value="150000" />
<field —weight field —ref="path” value="50000" />
<field —weight field —ref="anchortext” value="300000" />

</weight—list >
</composite—field >

<result—specification>

<!—— Remove duplicates for results with equal urls —>
<result—filter name="duplicateurlremover” type="duplicate”>
<field —ref name="url” />
</result—filter>

<categorization name="mytopics”>
<field -ref name="taxids” />
</categorization>

<clustering size="10" depth="5" threshold="0.30" />

<!—— Result proximity boosting: Set to "yes” to enable boosting per —>
<!— default, set to "no” to generate necessary config to allow boosting —>
<!—— on a per query basis but have boosting off per default —>

<result—proximity boost="no”>
<field —ref name="body” />
<field -ref name="title” />
<field —ref name="anchortext” />

</result—proximity>

<integer—navigator name="sizenavigator”
display="Document Size”
unit="kB”
divisor="1024"
resolution="1024">
<field -ref name="size” />

<range—label type="first” format="Less than %g kB” offset="1" />
<range—label type="middle” format="%g kB — %g kB” />
<range—label type="last” format="More than %g kB” />

<ignore-value value="0" />
</integer—navigator>

<integer—navigator name="threadidnavigator”
display="Thread Id”>
<field —ref name="xnewsviewthreadinfo” />
</integer—navigator>

<integer—navigator name="datenavigator”
display="Date”
unit="month”
divisor="2592000"
resolution="2592000">
<field -ref name="uniformdate” />
</integer—navigator>

<string-—navigator name="contenttypenavigator” display="MIME Type”>
<field —ref name="contenttype” />

165

170

180

185

190

Source Code

110

</string —navigator>

<string-navigator name="charsetnavigator” display="Character set”>
<field —ref name="charset” />
</string—navigator>

<string-navigator name="languagenavigator” display="Language”>
<field —ref name="language” />
</string—navigator>

<string—navigator name="fromnavigator” display="Author”>
<field -ref name="from” />
</string —navigator>

<result—-view name="resultoverview”>
<field -ref name="from” />
<field —ref name="date” />
<field —ref name="subject” />
<field -ref name="teaser” />
</result—view>

<result—-view name="messagesummary”>
<field -ref name="from” />
<field —ref name="date” />
<field -ref name="subject” />
<field —-ref name="newsgroups” />
<field —ref name="body” />
</result—view>

<result—view name="messageextended”>
<field —ref name="html” />
</result—view>

</result—specification>

</index—profile>

Bibliography

[1]
[2]

[3]

[4]

[5]

6]

Amazon.com. http://www.amazon.com. Amazon.com, Inc.

Christopher Avery and Richard Zeckhauser. Recommender systems
for evaluating computer messages. Communications of the ACM,
40(3):88-89, March 1997.

Ricardo A. Baeza-Yates and Berthier A. Ribeiro-Neto. Modern In-
formation Retrieval. ACM Press / Addison-Wesley, 1999.

M. Balabanovic and Y. Shoham. Fab: Content-based collaborative
recommendation. Communications of the ACM, 40(3):66-72, March
1997.

Patrick Baudisch. Dynamic Information Filtering. PhD thesis, GMD
Forschungszentrum Informationstechnik GmbH, Sankt Augustin,
2001. ISSN 1435-2699, ISBN 3-88457-399-3.

Nicholas J. Belkin and W. Bruce Croft. Information filtering and
information retrieval: Two sides of the same coin? Communications
of the ACM, 35(12):29-38, 1992.

[7] binnews. http://www.binnews.com/. BINNEWS LLC.

8]

[9]

[10]

Danah Boyd, Hyun-Yeul Lee, Daniel Ramage, and Judith Donath.
Developing legible visualizations for online social spaces. In Pro-
ceedings of the Hawaii International Conference on System Sciences,
2002.

Tim Bray. Measuring the web. In Proceedings of the fifth interna-
tional World Wide Web conference on Computer networks and ISDN
systems, pages 993-1005. Elsevier Science Publishers B. V., 1996.

Brian E. Brewington and George Cybenko. How dynamic is the Web?
Computer Networks (Amsterdam, Netherlands: 1999), 33(1-6):257-
276, 2000.

http://www.amazon.com
http://www.binnews.com/

BIBLIOGRAPHY 112

[11] Junghoo Cho and Hector Garcia-Molina. The evolution of the web
and implications for an incremental crawler. In Proceedings of
the Twenty-sixth International Conference on Very Large Databases,
2000.

[12] Junghoo Cho and Hector Garcia-Molina. Estimating frequency of
change. ACM Trans. Inter. Tech., 3(3):256-290, 2003.

[13] D. Cosley, S.K. Lam, I. Albert, J. Konstan, and J. Riedl. Is seeing be-
lieving? how recommender systems influence users’ opinions. In
Proceedings of CHI 2003 Conference on Human Factors in Comput-
ing Systems, pages 585-592, 2003.

[14] David H. Crocker. rfc822: Standard for the format of arpa internet
text messages, 1982.

[15] Cyberalert. http://www.cyberalert.com. CyberAlert Inc.

[16] Judith Donath. A semantic approach to visualizing online conver-
sations. Communications of the ACM, 45(4):45-49, 2002.

[17] Judith Donath, Karrie Karahalios, and Fernanda Viegas. Visualiz-
ing conversation. In Proceedings of the 32nd Hawaii International
Conference on System Sciences. IEEE, 1999.

[18] Thomas Erskine and Jason R. Mastaler. Tagged message delivery
agent. http://tmda.net/.

[19] Fast data search. http://www.fast.no/en/products/fast_data_search.
Fast Search & Transfer Inc.

[20] Fast data search system reference guide. FAST Search and Transfer
Inc.

[21] Mathieu Fenniak and Aaron Trickey. Fetchnews.
http://files.moo.ca/~Taotzu/fetchnews.html.

[22] Andrew Fiore and Marc Smith. Tree map visualizations of news-
groups. Technical report, MRS-TR-2001-94, 2001.

[23] Andrew T. Fiore, Scott Lee Tiernan, and Marc A. Smith. Observed
behavior and perceived value of authors in usenet newsgroups:
Bridging the gap. In Loren Terveen, Dennis Wixon, Elizabeth Com-
stock, and Angela Sasse, editors, Proceedings of the CHI 2002 Con-
ference on Human Factors in Computing Systems (CHI-02), pages
323-330, New York, April 20-25 2002. ACM Press.

http://www.cyberalert.com
http://tmda.net/
http://www.fast.no/en/products/fast_data_search
http://files.moo.ca/~laotzu/fetchnews.html

113 BIBLIOGRAPHY

[24] Gerhard Fischer and Curt Stevens. Information access in com-
plex, poorly structured information spaces. In Proceedings of ACM
CHI'91 Conference on Human Factors in Computing Systems, In-
formation Retrieval, pages 63-70, 1991.

[25] J.D. ‘’Illiad’ Frazer. User friendly the comic strip.
http://www.userfriendly.org/.

[26] N. Freed. rfc2045: Multipurpose internet mail extensions (mime)
part one: Format of internet message bodies, 1996.

[27] N. Freed. rfc2046: Multipurpose internet mail extensions (mime)
part two: Media types, 1996.

[28] S. Gabrielli and S. Mizzaro. Negotiating a multidimensional frame-
work for relevance space, 1999.

[29] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series. Addison-Wesley
Publishing Company, New York, NY, 1995.

[30] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. Us-
ing collaborative filtering to weave an information tapestry. Com-
munications of the ACM, 35(12):61-70, December 1992.

[31] Google groups. http://groups.google.com/. Google. Inc.

[32] Guidelines, patterns, and code for end-to-end java applications.
http://java.sun.com/blueprints/guidelines/index.html. Sun
Microsystems Inc.

[33] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and
John T. Riedl. Evaluating collaborative filtering recommender sys-
tems. ACM Trans. Inf. Syst., 22(1):5-53, 2004.

[34] Will Hill and Loren Terveen. Using frequency-of-mention in public
conversations for social filtering. In Proceedings of ACM CSCW’96
Conference on Computer-Supported Cooperative Work, Filtering &
Sharing, pages 106-112, 1996.

[35] William C. Hill, Jim Hollan, Dave Wroblewski, and Tim McCand-
less. Edit wear and read wear. In Penny Bauersfeld, John Bennett,
and Gene Lynch, editors, Proceedings of the Conference on Human
Factors in Computing Systems, pages 3-10, New York, NY, USA, May
1992. ACM Press.

[36] M. Horton and R. Adams. rfc1036: Standard for interchange of
usenet messages, 1987.

http://www.userfriendly.org/
http://groups.google.com/
http://java.sun.com/blueprints/guidelines/index.html

BIBLIOGRAPHY 114

[37] B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the
world wide web. Nature, 401:131, September 1999.

[38] Lars Magne Ingebrigtsen. Gmane - mail to news and back again.
http://www.gmane.org/.

[39] Java servlet technology. http://java.sun.com/products/serviet/.
Sun Microsystems Inc.

[40] Javaserver pages standard tag library.
http://java.sun.com/products/jsp/jstl/. Sun Microsystems
Inc.

[41] Javaserver pages technology. http://java.sun.com/products/jsp/.
Sun Microsystems Inc.

[42] JavaTM?2 platform, enterprise edition (j2ee).
http://java.sun.com/j2ee/. Sun Microsystems Inc.

[43] Jboss application server. http://www.jboss.org/index.html. JBoss
Group.

[44] Brian Kantor and Phil Lapsley. rfc977: Network news transfer pro-
tocol, 1986.

[45] Henry Kautz, Bart Selman, and Mehul Shah. Referral Web: Combin-
ing social networks and collaborative filtering. Communications of
the ACM, 40(3):63-65, March 1997.

[46] Bernard J. Kerr. Thread arcs: An email thread visualization. Tech-
nical Report RC22850 (W0307-148), IBM Research division, IBM Re-
search, One Rogers Street, Cambridge, MA 02142, July 2003.

[47] Peter Kollock. The economies of online cooperation: Gifts and pub-
lic goods in cyberspace. In Peter Kollock and Marc A. Smith, editors,
Communities in Cyberspace, chapter 9, pages 220-239. Routledge,
1999.

[48] Peter Kollock and Marc A. Smith. Communities in cyberspace. In
Peter Kollock and Marc A. Smith, editors, Communities in Cyber-
space, chapter 1, pages 4-25. Routledge, 1999.

[49] Peter Kollock and Marc A. Smith, editors. Communities in cyber-
space. Routledge, 1999.

[50] Joseph A. Konstan, Bradley N. Miller, David Maltz, Jonathan L. Her-
locker, Lee R. Gordon, and John Riedl. GroupLens: Applying col-
laborative filtering to Usenet news. Communications of the ACM,
40(3):77-87, March 1997.

http://www.gmane.org/
http://java.sun.com/products/servlet/
http://java.sun.com/products/jsp/jstl/
http://java.sun.com/products/jsp/
http://java.sun.com/j2ee/
http://www.jboss.org/index.html

115 BIBLIOGRAPHY

[51] W. Lam, S. Mukhopadhyay, J. Mostafa, and M. Palakal. Detection
of shifts in user interests for personalized information filtering. In
Proceedings of the 19th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 317-
325. ACM Press, 1996.

[52] Steve Lawrence and C. Lee Giles. Searching the World Wide Web.
Science, 280(5360):98-100, 1998.

[53] Steve Lawrence and C. Lee Giles. Accessibility of information on the
web. Nature, 400:107-109, July 1999.

[54] Christopher Lueg. Supporting situated actions in high volume con-
versational data situations. In Proceedings of the Conference on Hu-
man Factors in Computing Systems (CHI-98) : Making the Impossible
Possible, pages 472-479, New York, April 18-23 1998. ACM Press.

[55] Mail-news gateways. http://www.newsadmin.com/bit/gateway.htm.
PathLink Technology Corp.

[56] Thomas W. Malone, Kenneth R. Grant, Franklyn A. Turbak,
Stephen A. Brobst, and Michael D. Cohen. Intelligent information-
sharing systems. Communications of the ACM, 30(5):390-402, May
1987.

[57] David Maltz and Kate Ehrlich. Pointing the way: Active collaborat-
ive filtering. In Proceedings of ACM CHI’95 Conference on Human
Factors in Computing Systems, volume 1 of Papers: Using the In-
formation of Others, pages 202-209, 1995.

[58] Bradley N. Miller, John T. Riedl, and Joseph A. Konstan. Experience
with GroupLens: Making Usenet useful again. In USENIX, editor,
1997 Annual Technical Conference, January 6-10, 1997. Anaheim,
CA, pages 219-233, Berkeley, CA, USA, January 1997. USENIX.

[59] Stefano Mizzaro. Relevance: The whole history. Journal of the
American Society for Information Science, September 1997.

[60] K. Moore. rfc2047: Multipurpose internet mail extensions (mime)
part three: Message header extensions for non-ascii text, 1996.

[61] Newsbin. http://www.newsbin.com. DJI Interprises.

[62] Douglas W. Oard and Gary Marchionini. A conceptual framework
for text filtering process. Technical Report CS-TR-3643, University
of Maryland, 1996.

http://www.newsadmin.com/bit/gateway.htm
http://www.newsbin.com

BIBLIOGRAPHY 116

[63]

[64]

[65]
[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Pre rendered tree map views of all usenet and microsoft.public.
http://netscan.research.microsoft.com/Static/treemap/. Mi-
crosoft Corporation.

Al Mamunur Rashid, Istvan Albert, Dan Cosley, Shyong K. Lam,
Sean M. McNee, Joseph A. Konstan, and John Riedl. Getting to know
you: Learning new user preferences in recommender systems. In
Yolanda Gil and David B. Leake, editors, Proceedings of the 2002 In-
ternational Conference on Intelligent User Interfaces (IUI-02), pages
127-134, New York, January 13-16 2002. ACM Press.

Eric Raymond. The jargon file, 2003.

Paul Resnick, Neophytos lacovou, Mitesh Suchak, Peter Bergstrom,
and John Riedl. Grouplens: An open architecture for collaborative
filtering of netnews. In Proceedings of ACM CSCW’94 Conference on
Computer-Supported Cooperative Work, pages 175-186, 1994.

Paul Resnick and Hal R. Varian. Recommender systems. Commu-
nications of the ACM, 40(3):56-58, March 1997.

Knut Magne Risvik and Rolf Michelsen. Search engines and web
dynamics. Computer Networks, 39(3):289-302, July 27-31 2002.

James Rucker and Marcos J. Polanco. Siteseer: Personalized naviga-
tion for the Web. Communications of the ACM, 40(3):73-76, March
1997.

Warren Sack. Conversation map: a content-based usenet newsgroup
browser. In Proceedings of the 5th international conference on Intel-
ligent user interfaces, pages 233-240. ACM Press, 2000.

Warren Sack. Discourse diagrams: Interface design for very large
scale conversations. In Proceedings of the Hawaii International Con-
ference on System Sciences, Persistent Conversations Track, pages
1-10, january 2000.

Thomas Gerhard Seidenberg. alt.culture.usenet faq (frequently
asked questions), 1995.

Upendra Shardanand and Patti Maes. Social information filtering:
Algorithms for automating "word of mouth”. In Proceedings of
ACM CHI'95 Conference on Human Factors in Computing Systems,
volume 1 of Papers: Using the Information of Others, pages 210-
217, 1995.

Marc Smith. Netscan: A tool for measuring and mapping social
cyberspaces. http://netscan.research.microsoft.com, 2001.

http://netscan.research.microsoft.com/Static/treemap/
http://netscan.research.microsoft.com

117 BIBLIOGRAPHY

[75] Marc A. Smith. Invisible crowds in cyberspace: Mapping the social
structure of the usenet. In Peter Kollock and Marc A. Smith, editors,
Communities in Cyberspace, chapter 8, pages 195-219. Routledge,
1999.

[76] Marc A. Smith and Andrew T. Fiore. Visualization components for
persistent conversations. In Proceedings of ACM CHI 2001 Con-
ference on Human Factors in Computing Systems, Visions of Work,
pages 136-143, 2001.

[77] Henry Spencer and David Lawrence. Managing Usenet. O’reilly &
Associates, Inc., 1998.

[78] E. Spertus, R. Jeffries, and K. Sie. Dynamic sublists: Scaling unmod-
erated mailing lists. Proceedings of the Fifteenth Systems Admin-
istration Conference (LISA XV) (USENIX Association: Berkeley, CA),
page 211, 2001.

[79] Ellen Spertus. Smokey: Automatic recognition of hostile messages.
In Proceedings of the 14th National Conference on Artificial Intelli-
gence and 9th Innovative Applications of Artificial Intelligence Con-
ference (AAAI-97/IAAI-97), pages 1058-1065, Menlo Park, July 27-
31 1997. AAAI Press.

[80] Danny Sullivan and Chris Sherman. Search engine watch.
http://www.searchenginewatch.com.

[81] Douglas B. Terry. A tour through tapestry. In Proceedings ACM
Conference on Organizational Computing Systems (COOCS), pages
21-30. ACM, November 1993.

[82] Loren Terveen, Will Hill, Brian Amento, David McDonald, and Josh
Creter. PHOAKS: A system for sharing recommendations. Commu-
nications of the ACM, 40(3):59-62, March 1997.

[83] Loren G. Terveen, William C. Hill, Brian Amento, David McDonald,
and Josh Creter. Building task-specific interfaces to high volume
conversational data. In Proceedings of ACM CHI 97 Conference on
Human Factors in Computing Systems, volume 1 of PAPERS: Collab-
orative Communities II, pages 226-233, 1997.

[84] The apache software foundation. http://www.apache.org/.

[85] Tomcat. http://jakarta.apache.org/tomcat/. The Apache Jakarta
Tomcat Project.

[86] Erik Troan and Preston Brown. Logrotate. 'man 8 logrotate’.

http://www.searchenginewatch.com
http://www.apache.org/
http://jakarta.apache.org/tomcat/

BIBLIOGRAPHY 118

[87] Stephen R. van den Berg, Philip Guenther, et al. Procmalil.
http://www.procmail.org/.

[88] Steve Whittaker, Loren Terveen, Will Hill, and Lynn Cherny. The dy-
namics of mass interaction. In Proceedings of ACM CSCW’98 Con-
ference on Computer-Supported Cooperative Work, Asynchronous
Communication, pages 257-264, 1998.

[89] D. Wroblewski, T. McCandless, and W. Hill. Advertisements, proxies
and wear: Three methods for feedback in interactive systems. In
R. Beun, M. Baker, , and M. Reiner, editors, Dialogue and Instruction.
Springer-Verlag, 1994.

http://www.procmail.org/

	1 Introduction
	1.1 Thesis Outline

	2 Usenet
	2.1 The Usenet Model
	2.1.1 The User Perspective
	2.1.2 The System Perspective

	2.2 Mailing Lists Versus Usenet
	2.3 Usenet Community Structure and Dynamics
	2.4 Current Interfaces to Usenet
	2.4.1 The Traditional Text-based Usenet Client
	2.4.2 Web-based Archives
	2.4.3 Mailing List to Usenet Gateways
	2.4.4 Triggers, Alerts and Filtering Services
	2.4.5 User Interfaces to Conversational Data

	3 Recommender Systems
	3.1 Recommender Systems in Context
	3.2 Concepts and Theory
	3.2.1 Information Needs and Relevance
	3.2.2 Information Filtering
	3.2.3 Profile Building and Maintenance
	3.2.4 Annotations and Ratings
	3.2.5 Social Implications of Recommender Systems
	3.2.6 Privacy Concerns
	3.2.7 General User Interface and Usability Concerns

	3.3 Known Approaches and Implementations
	3.3.1 GroupLens
	3.3.2 PHOAKS

	4 Search Engines
	4.1 Crawler-based Search Engines
	4.1.1 Crawler
	4.1.2 Indexer and Searcher

	4.2 FAST Data Search
	4.2.1 Feature and System Overview
	4.2.2 Data Flow Overview
	4.2.3 Module Overview
	4.2.4 The Content Lifecycle in FAST Data Search
	4.2.5 Index Profile and Document Processing
	4.2.6 Categorisation
	4.2.7 The Taxonomy Toolkit

	5 Design
	5.1 Usenet Feed
	5.2 Search Engine
	5.2.1 Data Access
	5.2.2 Data Storage
	5.2.3 Resubmitting Content to the Search Engine

	5.3 Front End
	5.3.1 J2EE and JBoss with Tomcat
	5.3.2 The Fast Query Toolkit
	5.3.3 User Interface
	5.3.4 User Concept

	6 Implementation
	6.1 Usenet Feed
	6.1.1 Retrieving Usenet Messages
	6.1.2 Preprocessing of Usenet Messages
	6.1.3 Submitting Usenet Messages to FAST Data Search

	6.2 Search Engine
	6.2.1 Index Profile
	6.2.2 Document Processing Pipeline
	6.2.3 The Taxonomy Toolkit
	6.2.4 Resubmitting Content to FAST Data Search

	6.3 Front End
	6.3.1 FQT

	6.4 The NewsView Development Environment

	7 Conclusion
	A Future Work
	B NewsView Screen Shots
	C Source Code
	C.1 Index Profile

	Bibliography

