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Abstract. This paper presents an experiment on sound tracing, mean-
ing an experiment on how people relate motion to sound. 38 partici-
pants were presented with 18 short sounds, and instructed to move their
hands in the air while acting as though the sound was created by their
hand motion. The hand motion of the participants was recorded, and
has been analyzed using statistical tests, comparing results between dif-
ferent sounds, between different subjects, and between different sound
classes. We have identified several relationships between sound and mo-
tion which are present in the majority of the subjects. A clear distinction
was found in onset acceleration for motion to sounds with an impulsive
dynamic envelope compared to non-impulsive sounds. Furthermore, ver-
tical movement has been shown to be related to sound frequency, both
in terms of spectral centroid and pitch. Moreover, a significantly higher
amount of overall acceleration was observed for non-pitched sounds as
compared to pitched sounds.

1 Introduction

Research on music and motion is an interdisciplinary area with links to a number
of other fields of research. In addition to traditional research on music and on
kinematics, this area relates to neuropsychology, cognition, linguistics, robotics,
computer science, and more [20]. To be able to grasp the complexity of the re-
lationship between music and motion, we need knowledge about how different
factors influence the motion and how the musical sound is perceived and pro-
cessed in the brain. In addition, a certain understanding of experimental and
mathematical methods is necessary for analyzing this relationship.

In several fields dealing with sound and motion, it is essential to identify
how features of sound relate to events in other modalities. This includes disci-
plines like auditory display, interaction design, and development of multi-modal
interfaces [23, 27]. Furthermore, it has been suggested that this aspect could be
utilized in music information retrieval research, for instance by querying sound
data bases with body motion [3, 13].



In this paper we present an experiment where motion capture technology
was used to measure people’s motions to sound. This data has been analyzed
in view of perceptual correspondences between lower-level features of sound and
motion. The participant’s motion was evaluated statistically to find cross-modal
relationships that have significance within our data set. There is a need for
systematic experiments on sound-action relationships to build a larger corpus of
examples on the links between perception of music and motion. The findings in
this paper serve as a contribution to this corpus.

We shall begin by introducing the background and motivation for this par-
ticular research, including elements from music cognition, accounts of previous
experiments on music and motion, as well as our own reflections on the implica-
tions of these works. In Section 3 we introduce our experimental setup, followed
by a description of the recorded data set, with necessary preprocessing and fea-
ture extraction in Section 4. Section 5 presents analysis of the data set, and the
results are discussed in Section 6. Conclusions are provided in Section 7.

2 Background

Presently, we have observed an increased popularity of a so-called theory of em-
bodied cognition, meaning that bodily sensorimotor processing is understood as
an important factor in our cognitive system [28]. Leman [19] put this theory into
a musical context in his introduction of embodied music cognition. This theory
describes how people who interact with music try to understand musical inten-
tions and forms by imitation through corporeal articulations like body motion
(e.g. tapping the beat, attuning to a melody or harmony, etc.) and empathy (e.g.
attuning to certain feelings or a mood conveyed by the music).

Godøy [9] posits that our understanding of discrete events in music can be ex-
plained through gestural-sonic objects. These objects are mental constructs that
combine the auditory input with gestural parameters, enabling an understand-
ing of the sonic object through its causality (e.g. a perceived sound producing
action). The idea of a gestural-sonic object as a discrete perceptual unit, or
chunk, is based upon Pierre Schaeffer’s sonic object [26], on Miller’s theory of
recoding complex sensory information into perceptual chunks [22], and also on
the phenomenological understanding of perception as a sequence of now-points
introduced by Husserl [14]. According to Godøy, these objects take form at the
meso level of a musical timescale [10]. In contrast, the macro level of a musical
timescale could be a whole musical piece, and the micro level of the timescale
takes place within the sonic object. We believe that action-sound relationships
[15] are found at all timescale levels, which coexist when a person is involved in
a musical experience. Certain musical features like rhythmic complexity or emo-
tional content require a larger timescale perspective than for instance musical
features like pitch and timbre which operate in the millisecond range [7].

In a similar manner to the listening experiments Schaeffer performed on sonic
objects, we can learn more about gestural-sonic objects by studying lower-level
features of sound-related motion. In other words, one can look at the meso



level object from a micro-level perspective. Godøy et al. explored gestural-sonic
objects in an experiment they referred to as sound tracing [12]. Nine subjects
were given the task of making gestures they believed corresponded well with
the sounds they heard, by using a pen on a digital tablet. By qualitative com-
parisons of the sound tracings, the authors found a fair amount of consistency
between subjects, and argued that this type of experiment should be done in
a larger scale, and include more complex sound objects, to learn more about
sound-gesture relationships. The same material was later also analyzed quanti-
tatively by extracting features and classifying the sound tracings using a support
vector machine classifier [8]. We shall inherit the term sound tracing in the ex-
periment presented in this paper. To be more precise, a sound tracing in this
sense describes a bodily gesture that has been performed in free air to imitate
the perceptual features of a sound object.

Other researchers have also studied how lower-level features of sound objects
are related to motion or motion descriptors. Merer et al. [21] asked people to put
their own motion-labels on sounds with different sound features. This way they
determined which sound parameters were most pertinent in describing motion-
labels such as “rotate” and “pass by”. Eitan et al. found that for sounds with
changing pitch, people imagined the movement of an animated character to fol-
low the pitch up or down, however the authors also argued that changing pitch is
related to other dimensions than simply vertical position [5, 6]. This corresponds
well with previous research on metaphors and auditory display where increasing
pitch has been related to an increase in other dimensions in other modalities,
such as temperature [27]. The relationship between pitch and verticality was also
found by Nymoen et al. [25] in a sound tracing experiment where participants
used a rod to trace the perceptual features of a selection of sounds. In an ex-
periment on synchronization with music, Kozak et al. [17] observed differences
for quantity of motion between different lower-level features of sound like pitch,
spectral centroid and loudness. Caramiaux et al. [2] applied Canonical Correla-
tion Analysis to a set of sound and motion features derived from sound tracings.3
This method gave promising results in identifying correlations between features
of sound and of motion, and was later applied by Nymoen et al. [24].

The present paper is intended to follow up on the sound tracing experiments
presented above. The main idea in this research was to study sound tracings from
a more systematic perspective, in particular by using systematically varied sound
parameters. This entailed using a number of short sounds, some where only a
single sound parameter was varied, and some where multiple sound parameters
were varied. In this manner, it was possible to understand the influence of differ-
ent sound parameters on the sound tracings, which provided knowledge about
how these features are reflected in other modalities. Our analytical approach op-
erates at the meso and micro levels of the musical timescale, combining features
that describe chunks of sound and motion with continuously varying sound and
motion features.

3 Caramiaux et al. do not refer to them as sound tracings, but following the definition
presented above, their experiment falls into this category.



3 Experiment

A sound-tracing experiment was designed to be able to systematically distinguish
between how people’s motion changes and varies in relation to changes in sound
features. The data presented in this paper was recorded in Fall 2010.

3.1 Aim

The aim of the experiment was to identify how lower-level features of motion
corresponded with features of sound across different participants. By using sys-
tematically designed sounds, we can isolate a single sound feature and compare
how it relates to motion by itself, or in combination with other sound features.

3.2 Participants

38 people (29 male and 9 female) volunteered to participate in the experiment.
They were recruited through mailing lists for students and staff at the University
of Oslo and by posting an advertisement on the project website. After partici-
pating in the experiment, the participants filled out a questionnaire concerning
their level of musical training. 12 people rated their level of musical training as
extensive, 11 as medium, and 15 as having little or no musical training. The
level of musical training was used in the analysis process to distinguish between
experts and non-experts (cf. Section 5). They were also given the opportunity
to comment on the experiment. The subjects were not asked for their age, but
we estimate the age distribution to be 20–60 years, with most participants aged
somewhere between 25 and 35.

3.3 Task

The participants were presented with a selection of short sounds (the sounds
will be discussed in Section 3.5). They were instructed to imagine that they
could create sound by moving their hands in the air, and move along with the
sounds as if their hand motion created the sound. First, each participant was
given a pre-listening of all 18 sounds. Following this, the sounds were played
one by one in random order. Each sound was played twice: the first time, the
participant would only listen, and the second time the participant’s hand motion
was recorded. A three second countdown was given before each sound, so the
participant would know exactly when the sound began.

3.4 Motion Capture

A Qualisys optical infrared marker-based motion capture system was used to
record the motion of the people that participated in the experiment. The partic-
ipants grasped two handles (Figure 1), each one equipped with 5 markers, and
the center position of each handle was recorded. There are several advantages to



using this technology for recording motion. The system is very accurate, with a
high resolution in both time and space. In our recordings, we used a sampling
frequency of 100 Hz. Using several markers on each handle made it possible to
uniquely identify the left and right handle, respectively, and enabled tracking of
the position and the orientation of each handle.

Fig. 1. One of the two handles that was used for recording the participant’s motion.

The main limitation we have experienced with the technology is so-called
marker-dropouts. This happens when a marker is occluded (e.g. by the body
limbs of the participant) or moved out of the calibrated capture space. Marker-
dropouts caused a loss of a number of data-frames in several recordings, and
it became necessary to perform so-called gap-filling. We will return to how this
was done in Section 4. The marker dropouts made it necessary to disregard the
orientation data from the handles, although this was initially recorded. This is
because gap-filling of the orientation data was more difficult than gap-filling of
the position data (interpolation even over small gaps introduces large errors).

3.5 Sounds

A total of 18 short sound objects, each 3 seconds in length, were designed in
Max5 using frequency modulation (FM) synthesis and digital filters. The design
process was to a large extent based on trial and error, to find sounds where the



envelopes of pitch (perceived tone height) and spectral centroid (here interpreted
as perceived brightness) were distinct. Envelope, in this sense, is a generic term
for a curve describing the development of a sound feature in the time domain.
An example of the sound feature envelopes is given in Figure 2. The sound files
are available for download at the project website.4
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Fig. 2. Spectrogram and corresponding sound features for Sound 15. Pitch and spectral
centroid (in Hz) on the left axis. The dynamic envelope scale is on the right axis.

Table 1. Simple description of the sounds used in the experiment. The columns display
the pitch envelope, spectral centroid envelope and the dynamic envelope of each sound.

Sound Pitch Sp.Centroid Dyn.Env.
1 Rising Falling Bell-shape
2 Falling Rising Bell-shape
3 Falling Falling Bell-shape
4 Rising Rising Bell-shape
5 Rising Steady Increasing
6 Falling Steady Increasing
7 Steady Falling Bell-shape
8 Steady Rising Bell-shape
9 Steady Steady Increasing

Sound Pitch Sp.Centroid Dyn.Env.
10 Noise Falling Bell-shape
11 Noise Rising Increasing
12 Noise Steady Increasing
13 Steady Rising Increasing
14 Steady Falling Increasing
15 Rising Falling Impulsive
16 Steady Steady Impulsive
17 Noise Steady Impulsive
18 Noise Falling Impulsive

An overview of all of the sounds is presented in Table 1. In the first nine
sounds, pitch and spectral centroid were manipulated by controlling the funda-
mental frequency of the FM sound, and the center frequency of a parametric
4 http://folk.uio.no/krisny/cmmr2011



equalizer which boosted certain parts of the sound spectrum. These sounds were
generated by changing the envelopes of pitch between 300 and 1000 Hz (rising,
falling and steady) and equalizer center frequency between 50 and 13000 Hz
(rising and falling as well as filter bypass, here interpreted as steady spectral
centroid). This allowed for an appropriate discrimination between the individ-
ual sound parameter changes taking place within the sound. Sounds 10–12 were
based on noise rather than a pitched FM sound, and only the filter was adjusted
for these sounds. In Sounds 13 and 14, a second parametric equalizer was added.
In Sound 13, the center frequencies of the equalizers started at 1000 and 5000
Hz and approached each other towards 3000 Hz, and in Sound 14, the center
frequencies started at 3000 Hz, and moved apart to 1000 and 5000 Hz.

The synthesized sounds mentioned in the previous paragraph were multiplied
by a window function to control the overall dynamic envelope. Here, we wanted to
keep a main focus on the pitch and spectral properties of the whole sound, while
influence from onset characteristics of the sounds (changes in sound features
during the first part of the sound) was not desired. Therefore, Sounds 1–14 were
made with a slow attack and increasing amplitude by applying the amplitude
envelope displayed in Figure 3(a).
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Fig. 3. The envelopes that were used for the amplitude control: (a) Non-impulsive
sounds, and (b) Impulsive sounds.

The characteristics of the pitch envelope and the filter frequency also influ-
enced the final dynamic envelope of the sounds. Some of which had a bell-shaped
dynamic envelope, displayed in Figure 4(a), while others had a continuously in-
creasing one, displayed in Figure 4(b).

We also wanted to investigate how the onset characteristics of a sound influ-
enced the sound tracings that were performed to it. Therefore, impulsive versions
of four of the sounds were made. Sounds 15–18 were versions of Sounds 1, 9, 10
and 12, the only difference was that instead of the slowly increasing dynamic
envelope, we applied the impulsive envelope shown in Figure 3(b). It should be
noted that the dynamic envelope of Sound 15 was different compared to the other
impulsive sounds, because the varying pitch and filter frequency influenced the



dynamics. This resulted in a dynamic envelope which was a combination of the
impulsive and bell-shaped envelopes, as shown in Figure 4(c).

0 3

10

68

In
te

n
s
it
y
 (

d
B

)

Time (s)

(a)

0 3

10

68

In
te

n
s
it
y
 (

d
B

)

Time (s)

(b)

0 3

10

68

In
te

n
s
it
y
 (

d
B

)

Time (s)

(c)

0 3

10

68

In
te

n
s
it
y
 (

d
B

)

Time (s)

(d)

Fig. 4. The figure displays the dynamic envelopes of 4 sounds, analyzed with a per-
ceptual model in the sound analysis software Praat. (a) Bell-shaped envelope (Sound
2), (b) Increasing envelope (Sound 9), (c) Impulsive and Bell-shaped envelope (Sound
15), and (d) Impulsive envelope (Sound 16).

4 Data Processing

In this section, we will describe the processing that was performed on the motion
data to prepare it for the analysis process. The position data from the two
handles was used, but it was not sufficient for our purpose to use it directly,
and hence a number of data processing steps were taken. These steps included
gap-filling, smoothing, feature extraction, data reduction and normalization.

4.1 Preprocessing

As mentioned in Section 3.4, some recordings contained missing data frames,
and therefore gap-filling was required. We applied gap-filling on small data gaps
by interpolating between the first and last missing frame using a piecewise cubic
Hermite spline function with the preceding and succeeding frames as reference.
A number of gaps were too large for gap-filling to be possible. In these cases,
the recordings were discarded.

Certain participants had a large number of discarded recordings, which was
due to poor calibration of the system in some sessions, but also because some



participants repeatedly occluded the reflective markers or moved the handles out
of the capture space. If a single participant had too many discarded recordings,
the consequence would be that this person only influenced a small portion of
the data set, and we could risk that one participant only influenced one side of
the analysis when two subsets of the dataset were compared. For this reason, we
decided to discard the remaining recordings for subjects that had more than 1/3
(i.e. more than six) of their recordings removed.

The datasets from seven subjects were discarded completely, in addition to
30 recordings distributed among the other participants. In total, 156 of the 684
recordings were discarded. After the gap-filling process, a sliding mean filter of
5 samples (i.e. 50 ms) was applied to the position data in all the recordings to
reduce measurement noise.

4.2 Motion Features

From the left and right handle position data we calculated a number of features
that were used for analysis and comparison of the different sound tracings. Based
on the position data, we calculated velocity and acceleration, as these features
are related to kinetic energy and change in kinetic energy of the handles. The
three axes of the position data cannot all be used directly. Movement in the
vertical direction has been used directly as a motion feature, however, as will
be explained shortly, the two horizontal axes are conceptually different from the
vertical one, and have not been used directly.

The position data describes the position of each handle in relation to the
room, or more precisely, in relation to the position of the calibration frame that
was used when calibrating the motion capture system. This calibration frame
determined the origin of the coordinate system and the direction of the axes.
The position of the handles in relation to the calibration frame is not really
relevant in light of the task that was given to the participants. The participants
could not relate to the position of the calibration frame since it was removed
after calibration. Furthermore, the participants were not instructed to face in
any particular direction during the experiment, or precisely where to stand in
the room. For this reason, we find it misleading to base our analysis directly
on the horizontal position data. In contrast, the vertical position of the handles
is a reference that was the same for all participants. The floor level remained
constant, and was independent of where an individual stood, regardless of the
direction he or she faced.

The one thing that varied between the subjects was the height range, as one
participant could reach his arms to 2.2 m, while another up to 2.5 m. This was
adjusted for by normalization as we will return to in Section 4.4. Based on these
considerations, and on experiences regarding which features have proven to be
most pertinent in previous experiments [2, 24, 25] the following data series for
motion features was calculated:

– Vertical position: The distance to the floor.
– Vertical velocity: The derivative of the vertical position feature.



– Absolute velocity: Euclidean distance between successive position samples.
– Absolute acceleration: Euclidean distance between the successive derivatives

of the position data.
– Distance: Euclidean distance between the hands.
– Change in distance: The derivative of the distance feature.

The features mentioned above are all data series, which we shall refer to
as serial features. From these data series we calculated single-value features,
meaning features that are given by a single number. These features describe a
general tendency for an entire sound tracing. Examples of such features are mean
vertical velocity and mean acceleration.

4.3 Data Reduction

To be able to compare the sound tracings, the data representation of each record-
ing should be equal. In our case, this is not the case with the raw data, since
some participants varied between using both hands, and only the left or right
hand. Out of the 528 recordings, 454 were performed with both hands, 15 with
only the left hand, and 59 with only the right hand. The participants were not
specifically instructed whether to use one or two hands. In order to achieve equal
data representation for all sound tracings, we had to choose between using the
separate data streams from both hands in all cases, or reducing the data to fewer
data streams keeping only the pertinent information from each sound tracing.
Basing the analysis on data from a hand that was clearly not meant to be part of
the sound tracing appeared less accurate to us, than to base the analysis on the
data streams from only the active hand(s). Therefore, we calculated one serial
position feature from each sound tracing, as well as one velocity feature, acceler-
ation feature, and so forth. For the one-handed sound tracings, we used feature
vectors of the active hand directly, and for the two-handed sound tracings, we
calculated the average of both hands on a sample-by-sample basis. We did not
change the distance feature for the single-handed sound tracings.

Admittedly, this difference between single-handed and two-handed perfor-
mances presents a weakness in our experiment design, and we could have chosen
different approaches to dealing with this challenge. We will continue searching
for more comprehensive analysis methods which take into account this extra de-
gree of freedom. If new methods for analysis are not found, a solution could be
to instruct the participants to always use both hands.

4.4 Normalization

All feature vectors have been normalized for each subject. This means that all
the calculated features were scaled to a range between 0 and 1, where the value
was determined by the particular subject’s maximum value for that feature. For
example, if Subject 14 had a maximum vertical position of 2 meters across all
of their sound tracings, all of the vertical position data series related to Subject
14 were divided by 2 meters. This type of normalization reduced individual



differences that were due to height, arm length, and so forth. This means that
the data displayed in the plots in the coming section will all be scaled between 0
and 1. A similar normalization was performed on all of the single-value features.

5 Analysis and Results

The following sections present comparisons between three different aspects of
the sounds. We will start in Section 5.1 by introducing our analysis method.
In Section 5.2, the effect of the onset properties of the sounds are presented. In
Sections 5.3 and 5.4, we present how the envelopes of pitch and spectral centroid
tend to influence the sound tracings. Finally, in Section 5.5, differences between
pitched and non-pitched sounds are presented.

5.1 Analysis Method

Our analysis is based on statistical comparisons between the individual data
series, both sample-by-sample in serial features, and also on a higher level, com-
paring single-value features for the whole data series. The analyses of serial
features are presented in plots where the individual data series are displayed
together with the average vector of the data series. To facilitate the reading of
these plots, we include a small example plot in Figure 5. This particular plot
displays five data series ranging between 0 (white) and 1 (black). The vertical
dashed lines show the beginning and end of the sound file, the motion capture
recording began 0.5 seconds before the start of the sound file, and also lasted
beyond the entire duration of the sound file. The black solid and dashed lines
show the mean and standard deviations across the five data series on a sample-
by-sample basis. From this figure, it is difficult to get precise readings of the
values of the individual sound tracings, but the horizontal grayscale plots still
give some impression of the distribution of this data set. The 0–1 scale on the
y-axis is for the mean and standard deviation curves.

When certain tendencies are observed for different groups, we evaluate the
statistical significance of the tendencies by applying one-tailed t-tests.5 Results
from the tests are presented in tables, where df denotes the degrees of freedom,6
and t is the t-value from the t-test. p is calculated based on df and t, and denotes
the probability that the two data sets are equally distributed, a p-value of less
than 0.05 denotes a statistically significant difference between the groups.

Two subgroups were selected from the data set for analyzing the impact
of musical training on the results in the experiment. Because of the somewhat
imprecise classification of subjects’ level of musical training, we chose to look at
only the subjects that labeled themselves as having either no musical training
or extensive musical training. This was done to ensure that there was indeed a
difference in musical experience between the two groups.
5 A t-test is a method to estimate the probability that a difference between two data
sets is due to chance. See http://en.wikipedia.org/wiki/T-test for details.

6 df is a statistical variable related to the t-test, denoting the size of the data material.
It is not to be confused with e.g. 6DOF position-and-orientation data.
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Fig. 5. The figure explains how to read the plots presented below. This is a reduced
example with only 5 data series. The data series range between 0 (white) and 1 (black).
Please refer to the text for explanation. A single subject is typically associated with
multiple data-series, and tick marks on the right Y-axis denote different subjects. The
ticks are not equidistant since some recordings were discarded (cf. Section 4.1). Fur-
thermore, some plots display more data series per subject than others, thus the Y-axis
resolution differs between plots.

5.2 Onset Acceleration for Impulsive and Non-impulsive Sounds

We evaluated how the onset characteristics of sound influence sound tracings
by comparing the acceleration envelopes of impulsive sounds to non-impulsive
sounds. We observed a distinct difference in acceleration envelope for sound
tracings of the impulsive sounds compared to the rest of the data set, as displayed
in Figure 6. To evaluate the significance of this difference, we compared the
onset acceleration of the sound tracings. Onset acceleration is a single-value
feature, which was calculated as the mean acceleration in the beginning of the
sound tracing. Figure 6(b) shows that most subjects made an accentuated attack
after the start of the sound file. Therefore we used a window from 0.2 seconds
(20 samples) before the sound started to 0.5 seconds (50 samples) after the
sound started to calculate the onset acceleration. The results of t-tests comparing
the onset acceleration for impulsive and non-impulsive sounds are displayed in
Table 2. The table shows that onset acceleration values for impulsive sounds are
significantly higher than non-impulsive sounds, t(526) = 13.65, p < 0.01.7

Figure 7 displays separate acceleration curves of impulsive sounds for musical
experts and non-experts. The figure shows that both groups have similar onset
acceleration levels, and a t-test showed no statistical difference between the onset
acceleration levels from the two groups, t(84) = 0.55, p = 0.29. However, the
plots do show a difference in timing. By defining time of onset as the time of
maximum acceleration within the previously defined onset interval, experts hit
on average 163 ms after the start of the sound file, while non-experts hit 238 ms
after the start of the sound file, a difference which was statistically significant,
t(63) = 2.51, p = 0.007. This calculation was based only on Sounds 16–18,
because several subjects did not perform an accentuated onset for Sound 15.
7 This is the American Psychological Association style for reporting statistical results.
Please refer to [1] for details.
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Fig. 6. Acceleration for (a) non-impulsive sounds (406 sound tracings) and (b) impul-
sive sounds (122 sound tracings). The black solid and dashed lines show the mean value
and standard deviation across all sound tracings. Each horizontal line in the image dis-
plays the acceleration vector of a single sound tracing ranging between 0 (white) and 1
(black), normalized per subject. See Figure 5 for guidelines on how to read these plots.

Table 2. Results from t-tests comparing onset acceleration for impulsive sounds to
non-impulsive sounds. There was a significant difference between the groups for both
expert and non-expert subjects. See the text for explanation of the variables.

Onset acceleration, impulsive and non-impulsive sounds
Test description df t p

Impulsive vs non-impulsive, all subjects 526 13.65 < 0.01
Impulsive vs non-impulsive, expert subjects 182 8.65 < 0.01
Impulsive vs non-impulsive, non-expert subjects 183 7.86 < 0.01
Onset acceleration level, experts vs non-experts 84 0.55 0.29
Onset time, expert vs non-expert subjects 63 2.51 < 0.01
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Fig. 7. The plot from Figure 6(b) separated into (a) experts and (b) non-experts.



5.3 Vertical Position and Sound Frequency Features

As mentioned in Section 2, other researchers have documented a relationship
between vertical position and pitch. Not surprisingly, this relationship was also
found in the data set presented in this paper. In addition to pitch, we observed
that the frequency of the spectral centroid is relevant to the vertical position.

Sounds 1, 4 and 5 all had rising pitch envelopes, and Sounds 8 and 11 had ris-
ing spectral centroids combined with stable pitch and noise respectively. For the
sound tracings of these sounds, there was a clear tendency of upward movement.
Similarly, for the sounds with falling pitch, or with falling spectral centroid,
there was a clear tendency of downward movement. t-tests comparing the aver-
age vertical velocity of the “rising” sounds to the “falling” sounds showed highly
significant distinctions between the groups, as shown in Table 3. The mean nor-
malized vertical velocity for the first group was 0.74, and for the second group
0.28 (a value of 0.5 indicates no vertical motion). This is shown in Figure 8.
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Fig. 8. Vertical position for (a) rising sounds (142 sound tracings) and (b) falling sounds
(144 sound tracings). The black line shows the mean value across all the data series,
each horizontal line in the image displays the vertical position of a single sound tracing
normalized per subject between 0 (lower position, white) and 1 (higher position, black).

Table 3. T-tests comparing the average vertical velocity of rising and falling sounds.

Average vertical velocity, rising and falling sounds
Test description df t p

Rising vs falling, all subjects 284 18.89 < 0.01
Rising vs falling, non-expert subjects 98 8.86 < 0.01
Rising vs falling, expert subjects 97 11.69 < 0.01
Rising, experts vs non-experts 98 0.58 0.28
Falling, experts vs non-experts 97 1.79 0.04



There was no significant difference between the average vertical velocity for
experts and non-experts for the rising sounds, however, for the falling sounds
there was some difference between the two groups. Experts had a higher extent
of downward motion than non-experts, t(97) = 1.7982, p = 0.04.

It is worth noting that even though Sounds 1 and 2 had increasing and
decreasing pitch envelopes, respectively, they had opposing spectral centroid
envelopes. When the spectral centroid envelope and the pitch envelope moved in
opposite directions, most subjects in our data set chose to let the vertical motion
follow the direction of the pitch envelope. The direction of vertical motion seems
to be more strongly related to pitch than to spectral centroid.

The observed difference between sounds with varying pitch and sounds with
only varying spectral centroid makes it interesting to take a more in depth look
at the individual sounds in the rising and falling classes. Since subjects tended
to follow pitch more than spectral centroid in the sounds where the two feature
envelopes moved in opposite directions, it is natural to assume that subjects
would move more to sounds where the pitch was varied, than to sounds where
only the spectral centroid was varied. Figure 9 displays box plots of the average
vertical velocities for rising and falling sounds. In Figures 9(a) and 9(b), we
observed that the difference between the sounds is larger for falling than for
rising sounds. We can also see that Sounds 7 and 8, which are sounds where the
pitch is constant but spectral centroid is moving, show less extreme values than
the rest of the sounds. Figures 9(c) and 9(d) suggest that the difference between
the sounds is larger for expert subjects than for non-expert subjects. There also
seems to be more inter-subjective similarities among experts than non-experts,
as the variances among experts are lower.

Table 4 shows the results of one-way analyses of variance (ANOVAs) applied
to the sound tracings in the rising and falling class, respectively. The table shows
that on the one hand, the difference in vertical velocity between the falling
sounds was statistically significant F (4, 139) = 7.76, p < 0.01. On the other
hand, the corresponding difference between the rising sounds was not statistically
significant F (4, 137) = 1.53, p = 0.20. The table also reveals that the significant
difference between the groups was only present for expert subjects, F (4, 44) =
4.92, p < 0.01, and not for non-experts, F (4, 45) = 1.52, p = 0.21.

Table 4. Results from one-way ANOVAs of the vertical velocity for sound tracings
within the rising and falling classes. There is a significant difference between the five
falling sounds for expert subjects. df are the degrees of freedom (between groups,
within groups), F is the F-value with the associated f-test, p is the probability that
the null-hypothesis is true.

Subjects Rising sounds Falling sounds
df F p df F p

All subjects (4, 137) 1.53 0.20 (4, 139) 7.76 < 0.01
Expert subjects (4, 45) 0.39 0.81 (4, 44) 4.92 < 0.01
Non-expert subjects (4, 45) 0.25 0.90 (4, 45) 1.52 0.21
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Fig. 9. Box plots of average vertical velocities for (a) rising sounds and (b) falling
sounds. The difference between the sounds is greater for falling sounds than for rising
sounds, and greater for (c) experts than for (d) non-experts. Note also that the sounds
where the pitch is constant and only the spectral centroid is manipulated (Sounds 7
and 8) have the least extreme values in all the plots.

5.4 Pitch and Distance Between Hands

Eitan and Timmers pointed out that the relationship between pitch and motion
features may be more complex than mapping pitch to vertical position [6]. For
this reason, we have also analyzed how the distance between the hands corre-
sponds to pitch frequency.

Figures 10(a) and 10(b) display the distance between the hands for sound
tracings to rising and falling sounds, respectively. On the one hand, the black
lines displaying the average distance features do not show very clear overall
tendencies towards increasing or decreasing distance, but on the other hand, the
underlying images, displaying the individual sound tracings, show that there is
a substantial amount of change in the distance between the hands, both for the
rising and the falling sounds.
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Fig. 10. Distance between hands for (a) rising sounds (142 sound tracings) and (b)
falling sounds (144 sound tracings). The black line shows the mean value across all the
data series, each horizontal line in the image displays the vertical position of a single
sound tracing normalized per subject between 0 (hands close together, white) and 1
(hands far apart, black).

Figure 10 seems to vaguely suggest that participants let the hand distance
increase for sounds with increasing pitch. Table 5 compares the change in dis-
tance for rising sounds versus falling sounds. For the two sounds where only the
pitch is varied, there is a significant difference between the rising and falling
sound tracings. The same is true when all of the rising sounds are compared to
the falling sounds. On the contrary, we do not observe significant differences in
the instances where the spectral centroid is varied.

Table 5. Results from t-tests comparing the average change in distance between hands
of rising and falling sounds.

Average change in hand distance, rising versus falling sounds
Sounds Varying features df t p
5 vs. 6 Pitch 52 3.24 < 0.01
4 vs. 3 Pitch and spectral centroid 54 1.50 0.07
1 vs. 2 Pitch, opposing spectral centroid 53 1.09 0.14
8 vs. 7 Spectral centroid, pitched 60 0.48 0.32

11 vs. 10 Spectral centroid, non-pitched 57 -0.44 0.67
All rising sounds vs. all falling sounds 284 2.60 < 0.01

5.5 Acceleration Envelope for Pitched and Non-pitched Sounds

We have evaluated how the presence of a distinct pitch influences the sound trac-
ing by comparing acceleration envelopes of sound tracings performed to pitched
sounds and non-pitched sounds.



Three of the sounds used in the experiment were based on noise, and three
were based on a stable tone with a fundamental frequency of 342 Hz. Within each
of these categories, one sound had a falling spectral centroid, one had a rising
spectral centroid and one had a stable spectral centroid.8 Figure 11 shows the ac-
celeration curves from the sound tracings to non-pitched and pitched sounds re-
spectively. The mean acceleration was significantly higher for non-pitched sounds
than pitched sounds, t(179) = 5.53, p < 0.01. For non-pitched sounds the mean
normalized acceleration was 0.52, and for pitched sounds it was 0.28.

This significant distinction between acceleration values for pitched and non-
pitched sounds was also found when the data from experts and non-experts was
analyzed individually. Furthermore, no significant difference was found between
the acceleration levels of experts and non-experts, p = 0.46 for both pitched and
non-pitched sounds, respectively. See Table 6 for statistical results.

Table 6. Results from t-tests comparing acceleration of pitched to non-pitched sounds.

Acceleration, non-pitched and pitched sounds
Test description df t p

Non-pitched vs pitched, all subjects 179 5.53 < 0.01
Non-pitched vs pitched, expert subjects 62 3.31 < 0.01
Non-pitched vs pitched, non-expert subjects 62 3.68 < 0.01
Noise, experts vs non-experts 61 0.10 0.46
Stable tone, experts vs non-experts 63 0.11 0.46
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Fig. 11. Acceleration for (a) non-pitched sounds and (b) pitched sounds. The black
line shows the mean value per sample, each horizontal line displays the acceleration
of a single sound tracing ranging from 0 (white) to 1 (black). The mean acceleration
levels for the non-pitched sounds are generally higher than for pitched sounds.

8 Sounds based on noise: 10, 11, and 12. Sounds based on a stable tone: 7, 8, and 9.



5.6 Summary of the Results

The results in this section have shown that the participants produced sound trac-
ings with higher onset acceleration for impulsive sounds than for non-impulsive
sounds. This was true for experts and non-experts. The onset time of musical ex-
perts was on average 75 ms ahead of non-experts. Furthermore, sounds without
a distinct pitch seem to induce higher acceleration than pitched sounds.

Vertical displacement of the hands was found to be related to pitch and to
spectral centroid. When pitch and spectral centroid moved in opposite directions,
most subjects let the vertical position of the hands follow the perceived pitch.
When only the spectral centroid was varied, there was less vertical motion than
for sounds with varying pitch. This was particularly true for sounds with a
stable pitch, as opposed to no perceivable pitch. Overall, falling sounds induced
more vertical motion than rising sounds. For the falling sounds, the variance
between the vertical velocity of the subjects was low, suggesting that there is
more consistency within the expert group than in the non-expert group. Finally,
there was significant difference between the change in hand distance for some
of the sounds with falling and rising envelopes. We will discuss these findings in
the next section.

6 Discussion

The following discussion will address the analysis method, the results from the
previous section, as well as how the experiment setup and task may have influ-
enced the results. We will put the results into context in relation to previous
research, and in this way try to assess what can be learned from our findings.
For certain sound features and specific motion features, we have observed a
quite high consistency across the subjects. This supports the claim that there is
a relationship between auditory and motor modalities.

The discussion is structured as follows: The statistical approach is discussed
in Section 6.1. In Section 6.2, we evaluate the results from Section 5.2. Section
6.3 discusses the results from Sections 5.3 and 5.4, and results from Section 5.5
are discussed in Section 6.4. In Section 6.5, we provide a more general evaluation
of the results.

6.1 Statistical Method

Using statistics to evaluate the differences between the groups does provide some
indication of the tendencies in our data set. However, it should be noted that
the t-test and ANOVA methods assume that the data is normally distributed.
The subsets of data in our statistical analyses were tested for normality using
a Jaque-Bera test9 with significance level 0.05. This test revealed that 13 out
of the 52 data sets in our experiments do not follow a normal distribution, and
thus the statistical results can not alone be used to make strong conclusions.
9 http://en.wikipedia.org/wiki/Jarque–Bera_test



Nevertheless, the results from the statistical tests support the results that are
shown in the corresponding feature plots. This gives us reason to believe that
the statistical results are trustworthy.

It should be noted that for the sample-by-sample based plots, the standard
deviations are quite high, particularly for the acceleration curves shown in Fig-
ure 11. Since these plots were derived on a sample-by sample basis, the high
standard deviations are not very surprising. In Figure 11, the high standard de-
viation reflects that even though several subjects had a high overall acceleration,
they vary between high and low acceleration throughout the sound tracing. This
demonstrates the importance of looking at the individual sound tracings in the
plot, not only the mean and standard deviation curves.

6.2 Impulsive Sound Onset

Let us have a look at the results presented in Section 5.2, where the onset accel-
eration of sound tracings to impulsive sounds was shown to be much higher than
for non-impulsive sounds. In our opinion, these results can best be explained
from a causation perspective. In other words: people link the impulsive charac-
teristics of the sound to some sort of impulsive action that could have generated
it. An example of an impulsive action is displayed in Figure 12. The figure shows
how the subject performs an accentuated attack, with high acceleration, followed
by a slower falling slope down to a resting position. The sound tracing resembles
that of crashing two cymbals together.
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Fig. 12. The figure displays an impulsive action, with motion history images and the
calculated motion features for the left (black) and right (red) hand. Motion history
images show the current frame and the average frame difference for past video frames
[16]. x (back/forth), y (sideways) and z (up/down) are position coordinates from the
motion capture system.



Lakoff and Johnson [18] talk about causation as an important element in
understanding objects and events in the world. As an example, they mention
a paper airplane which we understand primarily as paper, and secondarily as
airplane. The making, or cause, of the paper airplane is an essential element
in our understanding of this object. It is interesting to compare the causation
term to Schaeffer’s theory of the sonic object [26]. According to Schaeffer, sonic
objects are defined by their causal coherence, something which Godøy linked to
gesture-sensations and chunking in sound [9]. According to Lakoff and Johnson
[18], the causation of an object is partly emergent, or something that is present
in the object itself, which makes it possible to understand an object as a holistic
and metaphorical unit. Again, compared with the sonic object, this emergent
property works well with Schaeffer’s principle of stress-articulation, or natural
discontinuities in the continuous sound signal [26].

Following these thoughts, it seems apparent that people link the impulsive
onset of sounds to some sort of impulsive or ballistic action or event. Given the
constraints of two handles to imitate the sound, some participants imitated the
action of crashing two cymbals together, while others imitated a single-handed
or two-handed striking action. The discontinuity of stress-articulation in sound
has its motor counterpart in the higher derivatives of position data, here shown
by a high onset acceleration.

6.3 Sound Frequency Features

In addition to the causation perspective, Lakoff and Johnson also introduced the
metaphor perspective. Metaphors are crucial to our understanding of events and
objects. We understand some event or object by using a metaphor to describe
it. According to Eitan and Timmers [6], Cox [4] has linked the metaphor “more
is up” to a perceptual relationship between vertical position and pitch. In our
experiment, the results show clearly that there is a relationship between these
features, and that most subjects follow rising pitch with upward motion, and
falling pitch with downward motion.

However, Eitan and Timmers have shown that for pitch, up is not always the
best metaphor [6]. In their experiments, low pitch has also been associated with
with metaphors like “heavy” or “big”. Also, Walker [27] described rising pitch
to be a good descriptor for increasing temperature. For this exact reason, we
also investigated if the motion feature hand distance was related to the rising
and falling envelopes. Our results show that when all the rising sounds were
compared to the falling ones, there was a significant difference in the average
change in hand distance. However, a closer look at the results revealed that on
average, for sounds with a rising envelope and with a falling envelope alike, the
distance between the hands increased. The significant difference was therefore
only due to a faster increase in distance for rising sounds than for falling sounds.
In addition, a significant difference between rising and falling envelopes occurred
when only the parameter pitch was varied. In this case, the average hand distance
decreased for falling pitch and increased for rising pitch, and thus to some extent,
defined a relationship between these features. Nevertheless, even though several



subjects did change the distance between their hands for these sounds, there
was much less similarity among the subjects compared to the vertical position
feature. Some subjects moved their hands apart while other moved them towards
each other. So to conclude, the “more-is-up” metaphor for pitch seems to be the
best metaphor to describe the results in our data set.

An example of a sound tracing performed to a sound with falling pitch and
rising spectral centroid is shown in Figure 13. The motion history images show
how the subject prepares for the sound tracing by moving his hands up, then
moving them down and out in such a way that the vertical position follows
the pitch envelope. At the end of the sound tracing, the subjects increasingly
vibrates the right hand, as shown in the acceleration plot. This might be a
gesture performed to imitate the increased spectral centroid which is increasingly
prominent towards the end of the sound file. As the motion history images show,
the hand distance first increases and then decreases in a sound where the pitch
is constantly falling and the spectral centroid is constantly rising.
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Fig. 13. The figure displays motion history images and feature plots for the left and
right hand for a sound tracing performed to a sound with falling pitch, rising spectral
centroid, and a bell-shaped dynamic envelope.

An interesting feature regarding the rising and falling sounds, and the cor-
relation to vertical position, is that sound seems to be more descriptive than
motion. Our results show that even though the sounds were easy to tell apart,
the sound tracings that were performed to the different sounds were similar. This
implies that although you can describe certain perceptual features of the sound
through an action, it is not necessarily clear which perceptual feature(s) the ac-
tion imitates. Elevating a hand might refer to increasing pitch or to increasing
spectral centroid, or to something else.



6.4 Pitched versus Non-pitched Sounds

We observed a significantly higher amount of acceleration in sound tracings
performed to non-pitched sounds than to pitched sounds. This may be explained
by participant’s associations with this sound property. Sounds based on noise
have wind-like properties, which might cause people to move a lot, as if they
were blowing with the wind or creating the wind themselves. Pitched sounds, on
the other hand, seem to provide something stable for the participants to “hold
on to”, that is not provided by the non-pitched sounds.

For Sounds 9 and 12, which both had stable spectral centroids, we observed
that some participants started shaking or rotating their hands, gradually increas-
ing the frequency or amplitude of the shaking. One example of this is shown in
Figure 14. As these sounds had no change in pitch or spectral centroid, the
loudness envelope of the sounds seem to have been the main influence in these
instances. The increased shaking or rotation intensity may be explained by some
sort of engine metaphor: we believe participants wanted to follow the gradually
increasing loudness envelope by supplying more and more energy to the sound
through their motion.
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Fig. 14. The figure shows motion history images of a subject moving to a noise-based
sound. Plots of xyz-position, velocity, and acceleration are shown below.

6.5 Final Remarks

Admittedly, the results presented in this paper are related to the context of the
experiment, and cannot necessarily be claimed to be valid outside this setting.
The way in which subjects solved the task may have been influenced by the
instructions, which were to imagine that moving the hands in the air created the
sound. Even though we did not provide the subjects with an a priori metaphor



connecting upward motion to increasing pitch, the options for movement were
limited. Godøy has postulated that our musical motions are goal-directed, and
that these motions are guided by goal-postures describing the shape and posi-
tion of our end-effectors [11]. These positional goal-points may have been more
consciously exposed than features describing the relationship between the hands
or details of the trajectory between, for instance, a high and low goal point. In
light of the experiment task, other pitch relationships like the one between low
pitch and “heavy” or “big” [6], may have been less accessible than drawing a tra-
jectory between two positional goal points. Some subjects may have consciously
or unconsciously used a feature like hand distance to describe pitch, but as our
results show, this was more inconsistent between subjects.

Even though the experimental setup may have prevented the subjects from
using other descriptors than spatio-temporal ones, we are confident that the
results show some indication of how people relate spatio-temporal features of
motion to features of sound. The participants were given an imagined instrument,
and they made their own mental model of how this instrument worked. Some
aspects of these mental models were similar for the majority of the subjects.

7 Conclusions and Future Work

We have presented an experiment on sound tracing, where motions performed to
sound have been analyzed from micro and meso timescale perspectives. Plotting
of serial motion features at the micro timescale was used to obtain impressions
of general tendencies in the data set, and statistical evaluations of single-value
features at the meso timescale indicated the significance of these tendencies.

Rising pitch, and rising spectral centroid correlated strongly with upward
motion, and similarly, falling pitch and spectral centroid, correlated strongly
with downward motion. When pitch and spectral centroid moved in opposite di-
rections, participants followed the pitch feature. Furthermore, sounds based on
noise induced higher overall acceleration than sounds based on a steady pitch,
and sounds with an impulsive onset caused a high acceleration peak in the be-
ginning of the sound tracing.

To follow up on this experiment, we are currently starting to evaluate advan-
tages and disadvantages of different methods for analyzing sound tracings. We
believe that the different approaches that have been taken to analyze such data
provide different types of knowledge, and that the choice of analysis method is
important. For instance, some methods may be good at revealing action-sound
relationships at a low timescale level, while others may work better at chunk-
level or higher. We are also moving towards applying the results from our studies
in development of new interfaces for musical expression.
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