
The Inclusion Problem for Regular ExpressionsI

Dag Hovland1

Department of Informatics, University of Bergen, Norway

Abstract

This paper presents a polynomial-time algorithm for the inclusion problem for a large class of regular expressions. The
algorithm is not based on construction of finite automata, and can therefore be faster than the lower bound implied by
the Myhill-Nerode theorem. The algorithm automatically discards irrelevant parts of the right-hand expression. The
irrelevant parts of the right-hand expression might even be 1-ambiguous. For example, if r is a regular expression such
that any DFA recognizing r is very large, the algorithm can still, in time independent of r, decide that the language
of ab is included in that of (a + r)b. The algorithm is based on a syntax-directed inference system. It takes arbitrary
regular expressions as input. If the 1-ambiguity of the right-hand expression becomes a problem, the algorithm will
report this. Otherwise, it will decide the inclusion problem for the input.

Keywords: formal languages, regular expressions, inclusion, 1-unambiguity

1. Introduction

The inclusion problem for regular expressions was shown PSPACE-complete in Meyer & Stockmeyer [1]. The
input to the problem consists of two expressions, the left-hand expression and the right-hand expression, respec-
tively. The question is whether the language of the left-hand expression is included in the language of the right-hand
expression. The classical algorithm starts with constructing non-deterministic finite automata (NFAs) for each of
the expressions, then constructs a DFA from the NFA recognizing the language of the right-hand expression, and a
DFA recognizing the complement of this language. Then an NFA recognizing the intersection of the language of
the left-hand expression with the complement of the language of the right-hand expression is constructed. Finally,
the algorithm checks that no final state is reachable in the latter NFA. The super-polynomial blowup occurs when
constructing a DFA from the NFA recognizing the right-hand expression. A lower bound to this blowup is given by
the Myhill-Nerode theorem [2, 3]. All the other steps, seen separately, are polynomial-time.

1-Unambiguous regular expressions were first used in SGML [4], and first formalized and studied by Brüggemann-
Klein & Wood [5, 6]. The latter show a polynomial-time construction of DFAs from 1-unambiguous regular expres-
sions. The classical algorithm can therefore be modified to solve the inclusion problem in polynomial time when the
right-hand expression is 1-unambiguous. This paper presents an alternative algorithm for inclusion of 1-unambiguous
regular expressions. As in the modified classical algorithm, the left-hand expression can be an arbitrary regular ex-
pression. If the right-hand expression is 1-unambiguous, the algorithm is guaranteed to decide the inclusion problem,
while if it is not 1-unambiguous (i.e., the expression is 1-ambiguous), it might either decide the problem correctly,
or report that the 1-ambiguity is a problem. An implementation of the algorithm is available from the website of the

IAn extended abstract of this paper appeared in the Proceedings of the 4th International Conference on Language and Automata Theory and
Applications (LATA 2010). An earlier version of this paper appeared in the PhD thesis “Feasible Algorithms for Semantics — Employing Automata
and Inference Systems”, Dag Hovland, University of Bergen, 2010.
doi:10.1016/j.jcss.2011.12.003
Copyright Elsevier Inc. All rights reserved.

Email address: hovlanddag@gmail.com (Dag Hovland)
1Present address: Department of Informatics, University of Oslo, Postboks 1080 Blindern, N-0316 Oslo, Norway

Preprint submitted to Journal of Computer and System Sciences March 6, 2012

author. The algorithm can of course also be run twice to test whether the languages of two 1-unambiguous regular
expressions are equal.

A consequence of the Myhill-Nerode theorem is that for many regular expressions, the minimal DFA recognizing
this language, is of super-polynomial size. For example, there are no polynomial-size DFAs recognizing expressions
of the form (b + c)∗c(b + c) · · · (b + c). An advantage of the algorithm presented in this paper is that it only treats
the parts of the right-hand expression which are necessary; it is therefore sufficient that these parts of the expression
are 1-unambiguous. For some expressions, it can therefore be faster than the modified classical algorithm above. For
example, the algorithm described in this paper will (in polynomial time) decide that the language of ab is included
in that of (a + (b + c)∗c(b + c) · · · (b + c))b, and the sub-expression (b + c)∗c(b + c) · · · (b + c) will be discarded. The
polynomial-time version of the classical algorithm cannot easily be modified to handle expressions like this, without
adding complex and ad hoc pre-processing.

To summarize: Our algorithm always terminates in polynomial time. If the right-hand expression is 1-unambiguous,
the algorithm will return a positive answer if and only if the expressions are in an inclusion relation, and a negative
answer otherwise. If the right-hand expression is 1-ambiguous, three outcomes are possible: The algorithm might
return a positive or negative answer, which is then guaranteed to be correct, or the algorithm might also decide that
the 1-ambiguity of the right-hand expression is a problem, report this, and terminate.

Section 2 defines operations on regular expressions and properties of these. Section 3 describes the algorithm for
inclusion, and Section 4 shows some important properties of the algorithm. The last section covers related work and
a conclusion.

2. Regular Expressions

Fix an alphabet Σ of letters. Assume a, b, and c are members of Σ. l, l1, l2, . . . are used as variables for members
of Σ.

Definition 2.1 (Regular Expressions). The regular expressions over the language Σ are denoted RΣ and defined in the
following inductive manner:

RΣ ::= RΣ + RΣ |RΣ · RΣ |R∗Σ |Σ | ε

We use r, r1, r2, . . . as variables for regular expressions. Concatenation is right-associative, such that, e.g., r1 · r2 · r3 =

r1 · (r2 · r3). The sign for concatenation, ·, will often be omitted. The star has highest precedence, followed, in order,
by concatenation and choice. A regular expression denoting the empty language is not included, as this is irrelevant
to the results in this paper. We denote the set of letters from Σ occurring in r by sym(r).

The semantics of regular expressions is defined in terms of sets of words over the alphabet Σ. We lift concatenation
of words to sets of words, such that if L1, L2 ⊆ Σ∗, then L1 ·L2 = {w1 ·w2 | w1 ∈ L1, w2 ∈ L2}. ε denotes the empty word
of zero length, such that for all w ∈ Σ∗, ε · w = w · ε = w. Integer exponents are short-hand for repeated concatenation
of the same set, such that for a set L of words, e.g., L2 = L · L, and we define L0 = {ε}.

Definition 2.2 (Language of a Regular Expression). The language of a regular expression r is denoted ‖r‖ and is
defined by the following inductive rules: ‖r1 + r2‖ = ‖r1‖ ∪ ‖r2‖, ‖r1 · r2‖ = ‖r1‖ · ‖r2‖, ‖r∗‖ =

⋃
0≤i‖r‖i and for

a ∈ Σ ∪ {ε}, ‖a‖ = {a}.

All subexpressions of the forms ε · r, ε + ε or ε∗ can be simplified to r, ε, or ε respectively, in linear time, working
bottom up. We will often tacitly assume there are no subexpressions of these forms. Furthermore, we use ri as a
short-hand for r concatenated with itself i times.

Definition 2.3 (Nullable Expressions). [7, 8] The nullable regular expressions are denoted NΣ and are defined induc-
tively as follows:

NΣ ::= NΣ + RΣ |RΣ + NΣ |NΣ ·NΣ |RΣ
∗ | ε

The nullable expressions are exactly those denoting a language containing the empty word. Proofs of the following
lemma, and other lemmas in this section, can be found in Appendix A.

2

Table 1: The first-set of a regular expression
first(ε) = ∅, r ∈ Σ⇒ first(r) = {r}
r = r1 + r2 ⇒ first(r) = first(r1) ∪ first(r2)
r = r1 · r2 ∧ r1 ∈ NΣ ⇒ first(r) = first(r1) ∪ first(r2)
r = r1 · r2 ∧ r1 < NΣ ⇒ first(r) = first(r1)
r = r∗1 ⇒ first(r) = first(r1)

Lemma 2.4. For all regular expressions r ∈ RΣ, ε ∈ ‖r‖ ⇔ r ∈ NΣ.

Intuitively, the first-set of a regular expression is the set of letters that can occur first in a word in the language.
An inductive definition of the first-set is given in Table 1. Similar definitions have been given by many others, e.g.,
Glushkov [7] and Yamada & McNaughton [8].

Lemma 2.5 (first). [7, 8] For any regular expression r, first(r) = {l ∈ Σ | ∃w : lw ∈ ‖r‖} and first(r) can be calculated
in time O(|r| · |Σ|). (Where |r| is the length of r, and |Σ| is the size of the alphabet.)

The followLast-set of a regular expression is the set of letters which can follow a word in the language.

Definition 2.6 (followLast). [5]

followLast(r) = {l ∈ sym(r) | ∃u, v ∈ sym(r)∗ : (u ∈ ‖r‖ ∧ ulv ∈ ‖r‖)}

To limit the number of rules in the inference system explained in Section 3, we will put regular expressions on
header-form.

Definition 2.7 (Header-form). A regular expression is in header-form if it is of the form ε, l · r1, (r1 + r2) · r3 or r∗1 · r2,
where l ∈ Σ and r1, r2, r3 ∈ RΣ.

A regular expression can in linear time be put in header-form without changing the denoted language by applying
the mapping hdf. We need the auxiliary mapping header, which maps a pair of regular expressions to a single regular
expression. It is defined by the following inductive rules:

header(ε, r) = r

header(r1, r2) =
(write r1 as r′1 · · · r

′
n for n ≥ 1, where r′n is not a concatenation)

r1 · r2 if n = 1
header(r′1, r2) if n = 2, r′2 = ε
header(r′1, r

′
2 · · · r

′
n−1 · r2) if n > 2, r′n = ε

header(r′1, r
′
2 · · · r

′
n · r2) if n ≥ 2, r′n , ε

We can now define hdf(r) = header(r, ε).

Example 2.8. hdf(a) = aε, hdf((cd)e) = c(d(eε)), hdf((ab)((cd)e)) = a(b((cd)(eε))).

The reader may wonder why we do not simply require all expressions to be written in the right-associative form.
That is, why do we not simply assume some linear-time transformation which gets rid of all subexpressions of the
form (r1 ·r2)·r3? The problem is that the main algorithm shown below will construct new expressions by concatenating
subexpressions of the original expression. The constructed expressions might not be on the required right-associative
form, and we would need to run the transformation again. This transformation would then change the expressions,
which creates problems for proving the polynomial runtime of the algorithm. The proofs of polynomial runtime of
the algorithm are sensitive to the details of the mapping hdf, and we must therefore treat hdf in some detail. We
summarize the basic properties of the mappings hdf and header in the following lemma:

3

Lemma 2.9. For any regular expression r:

1. hdf(r) is in header-form,

2. ‖hdf(r)‖ = ‖r‖,

3. ∃n ≥ 0, r1, . . . , rn ∈ RΣ − {ε} : hdf(r) = r1 · · · rn · ε.

4. hdf(hdf(r)) = hdf(r).

2.1. Term Trees and Positions

Given a regular expression r, we follow Terese [9] and define the term tree of r as the tree where the root is labeled
with the main operator (choice, concatenation, or star) and the subtrees are the term trees of the subexpression(s). If
a ∈ Σ ∪ {ε} the term tree is a single root-node with a as label.

We use 〈n1, . . . , nk〉, a possibly empty sequence of natural numbers, to denote a position in a term tree. We let p, q,
including subscripted variants, be variables for such possibly empty sequences of natural numbers. The position of
the root is 〈〉. If r = r1 · r2 or r = r1 + r2, and n1 ∈ {1, 2}, the position 〈n1, . . . , nk〉 in r is the position 〈n2, . . . , nk〉 in the
subtree of child n1, that is, in the term tree of rn1 . If r = r1

∗, the position 〈1, n1, . . . , nk〉 in r is the position 〈n1, . . . , nk〉

in the term tree of r1. Let pos(r) be the set of positions in r.
For two positions p = 〈m1, . . . ,mk〉 and q = 〈n1, . . . , nl〉, the notation p ↓ q will be used for the concatenated

position 〈m1, . . . ,mk, n1, . . . , nl〉. We will also use this notation for lists of positions, so if p, p1, . . . , pn are positions,
then p ↓ (p1 · · · · · pn) = (p ↓ p1) · · · · · (p ↓ pn). Further, we use the notation for concatenating a position with each
element of a set consisting of lists of positions, such that if p is a position, and S is a set of lists of positions, then
p ↓ S = {p ↓ q | q ∈ S }.

Below we will encounter regular expressions whose alphabet are sets of positions. Concatenating a position with
such an expression is defined by concatenating the position with all the positions occurring in the expression. Note that
the language of such a regular expression is a set of lists of positions. Hence, for p a position, r1 ∈ RΣ, and r ∈ Rpos(r1),
‖p ↓ r‖ = p ↓ ‖r‖. Concatenation with a position has highest precedence, such that, e.g., p ↓ r1r2 = (p ↓ r1)r2.
Whenever concatenating with a position of length one, we will often omit the angular braces, such that for example
p ↓ 1 = p ↓ 〈1〉, 2S = 〈2〉 ↓ S , i ↓ r = 〈i〉 ↓ r, etc.

For a position p in r we will denote the subexpression rooted at this position by r[p]. Note that r[〈〉] = r. r[] can be
seen as a mapping from positions to regular expressions. There is an easy way to lift this into a mapping from strings
of positions to regular expressions: Given w ∈ pos(r)∗, put r[w] = ε if w = ε, and otherwise put r[w] = r[p1]·· · ··r[pn],
where w = p1 · · · pn for some p1, . . . , pn ∈ pos(r). Lastly, we lift r[] to sets of string, such that if S ⊆ pos(r)∗, then
r[S] = {r[w] | w ∈ S }.

Note that for r ∈ RΣ, p ∈ pos(r), and q ∈ pos(r[p]), we have r[p ↓ q] = r[p][q]. This can be shown by induction
on r[p] (see, e.g., Terese [9]). For example in the case of r[p] = r1 · r2, we have that q is a position in either
r1 or r2. Assume it is in r1, then q = 1 ↓ q′ for some q′ ∈ pos(r1). As r[p][〈1〉] = r1 = r[p ↓ 1] we get that
r[p][1 ↓ q′] = r[p ↓ 1][q′], and by the induction hypothesis r[p ↓ 1][q′] = r[p ↓ 1 ↓ q′].

The concept of marked expressions will be important in this paper. It was first used in a similar context by
Brüggemann-Klein & Wood [6]. The intuition is that the marked expression is the expression where every instance of
any symbol from Σ is substituted by its position in the expression.

Example 2.10. Consider Σ = {a, b, c} and r = a + bc. Then µ(r) = 〈1〉+ 〈2, 1〉 · 〈2, 2〉. The term trees of r and µ(r) are
shown in Fig. 1.

Definition 2.11 (Marked Expressions). If r ∈ RΣ is a regular expression, µ(r) ∈ Rpos(r) is the marked expression,
defined in the following inductive manner:

• µ(ε) = ε

• for l ∈ Σ, µ(l) = 〈〉

• µ(r1 + r2) = 1 ↓ µ(r1) + 2 ↓ µ(r2)

4

+

a ·

b c

� @

@�

+

〈1〉 ·

〈2, 1〉 〈2, 2〉

� @

@�

Figure 1: Term trees for a + bc and µ(a + bc) = 〈1〉 + 〈2, 1〉〈2, 2〉

• µ(r1 · r2) = 1 ↓ µ(r1) · 2 ↓ µ(r2)

• µ(r∗1) = (1 ↓ µ(r1))∗

Note that, e.g., µ(b) = µ(a) = 〈〉, which shows that marking is not injective. Furthermore ‖µ(r1 · r2)‖ = 1 ↓
‖µ(r1)‖ · 2 ↓ ‖µ(r2)‖, ‖µ(r1 + r2)‖ = 1 ↓ ‖µ(r1)‖ ∪ 2 ↓ ‖µ(r2)‖, and ‖µ(r∗)‖ = 1 ↓ ‖µ(r)∗‖. The following lemma will
often be used tacitly.

Lemma 2.12. For any regular expression r,

1. ‖r‖ = r[‖µ(r)‖]

2. For any p ∈ sym(µ(r)), µ(r)[p] = p.

3. For any p ∈ pos(r), r[p] ∈ Σ iff p ∈ sym(µ(r)).

2.2. 1-Unambiguous Regular Expressions
Definition 2.13 (Star Normal Form). [5, 6]: A regular expression is in star normal form iff for all subexpressions r∗:
r < NΣ and first(µ(r)) ∩ followLast(µ(r)) = ∅.

Brüggemann-Klein & Wood described also in [5, 6] a linear time algorithm mapping a regular expression to an
equivalent expression in star normal form. We will therefore often tacitly assume that all regular expressions are in
star normal form.

It is almost immediate that hdf preserves star normal form, as starred subexpressions are not altered.

Definition 2.14. [5, 6] A regular expression r is 1-unambiguous if for any two upv, uqw ∈ ‖µ(r)‖, where p, q ∈
sym(µ(r)) (i.e., r[p], r[q] ∈ Σ) and u, v,w ∈ sym(µ(r))∗ such that r[p] = r[q], we have p = q.

Examples of 1-unambiguous regular expressions are aa∗ and b∗a(b∗a)∗, while (ε + a)a and (a + b)∗a are not 1-
unambiguous. The languages denoted by 1-unambiguous regular expressions will be called 1-unambiguous regular
languages. An expression which is not 1-unambiguous is called 1-ambiguous. Brüggemann-Klein & Wood [6]
showed that there exist regular languages that are not 1-unambiguous regular languages, e.g. ‖(a + b)∗(ac + bd)‖.
However, the reverse of (a + b)∗(ac + bd), namely (ca + db)(a + b)∗ is 1-unambiguous. There are of course also
expressions like (a + b)∗(ac + bd)(c + d)∗, which denotes a 1-ambiguous language, read both backwards and forwards.

Brüggemann-Klein & Wood characterized the 1-unambiguous regular expressions in [6, Lemma 3.2]. The latter
lemma implies that all subexpressions of a 1-unambiguous regular expression (in star normal form) are 1-unambiguous.
Another important consequence is that if r1 and r2 are 1-unambiguous, and first(r1) ∩ first(r2) = ∅, then r1 + r2 is
1-unambiguous. Lastly, r1 · r2 is 1-unambiguous if r1 and r2 are 1-unambiguous, r1 ∈ NΣ ⇒ first(r1) ∩ first(r2) = ∅,
and followLast(r1) ∩ first(r2) = ∅. The latter three facts will be used several times.

Lemma 2.15. For a 1-unambiguous regular expression r, hdf(r) is also 1-unambiguous.

1-unambiguity is different from, though related with, unambiguity, as used to classify grammars in language the-
ory, and studied for regular expressions by Book et al. [10]. From [10]: “A regular expression is called unambiguous
if every tape in the event can be generated from the expression in one way only”2 It is not hard to see that the class of
1-unambiguous regular expressions is included in the class of unambiguous regular expressions.

2In modern language, “tape” is “word” and “event” is “language”.

5

Lemma 2.16. A 1-unambiguous regular expression is also unambiguous

The inclusion is strict, as for example the expression (a + b)∗a is both unambiguous and 1-ambiguous. See
also [5, 6] for comparisons of unambiguity and 1-unambiguity.

3. Rules for Inclusion

The algorithm is based on an inference system described in Table 2, inductively defining a binary relation v
between regular expressions. The core of the algorithm is a goal-directed, depth-first search using this inference
system. We will show later that a pair of regular expressions is in the relation v if and only if their languages are in
the inclusion relation.

We will say that r1 v r2 is sound, if ‖r1‖ ⊆ ‖r2‖. Each rule consists of a horizontal line with a conclusion below it,
and zero, one, or two premises above the line. All rules but one also have side-conditions in square brackets. We only
allow rule instances where the side-conditions are satisfied. This means that matching the conclusion of a rule implies
satisfying the side-conditions. Note that (StarChoice1) and (LetterChoice) each have only one premise.

Input: Two regular expressions r1 and r2
Output: “Yes”, “No” or “1-ambiguous”
Initialize stack T and set S as empty ;
push (hdf(r1), hdf(r2)) on T;
while T not empty do

pop (r3, r4) from T;
if (r3, r4) < S then

if first(r3) * first(r4) or r3∈NΣ ∧ r4<NΣ or r4=ε ∧ r3,ε then
return “No”;

end
if r3 v r4 matches conclusion of more than one rule instance then

return “1-ambiguous”;
end
add (r3, r4) to S;
for all premises r5 v r6 of the rule instance where r3 v r4 matches the conclusion do

push (hdf(r5), hdf(r6)) on T;
end

end
end
return “Yes”;

Figure 2: Algorithm for inclusion of regular expressions

Figure 2 describes the algorithm for deciding inclusion of regular expressions. The algorithm takes a pair of
regular expressions as input, and if it returns “Yes” they are in an inclusion relation, if it returns “No” they are not,
and if it returns “1-ambiguous”, the right-hand expression is 1-ambiguous. The stack T is used for a depth-first search,
while the set S keeps track of already treated pairs of regular expressions. Both S and T consist of pairs of regular
expressions.

Figures 3, 4, 5, and 6 show examples of how to use the inference rules. The example noted in the introduction,
deciding whether ‖ab‖ ⊆ ‖(a + (b + c)∗c(b + c) · · · (b + c))b‖ is shown in Fig. 6. Note that branches end either in an
instance of the rule (Axm), usage of the store of already treated relations, or a failure. In addition to correctness of
the algorithm, termination is of course of paramount importance. It is natural to ask how the algorithm possibly can
terminate, when the rules (LetterStar), (LeftStar), and (StarChoice2) have more complex premises than conclusions.
This will be answered in the next section.

6

S tore(1)
(Letter) 5 : a∗b∗ v (a + b)∗

(LetterChoice) 4 : aa∗b∗ v a(a + b)∗

(LetterStar) 3 : aa∗b∗ v (a + b)(a + b)∗

(LeftStar) 2 : aa∗b∗ v (a + b)∗

S tore(6)
(Letter) 10 : b∗ v (a + b)∗

(LetterChoice) 9 : bb∗ v b(a + b)∗

(LetterStar) 8 : bb∗ v (a + b)(a + b)∗

(LeftStar) 7 : bb∗ v (a + b)∗
(Axm)

11 : ε v (a + b)∗

6 : b∗ v (a + b)∗

1 : a∗b∗ v (a + b)∗

Figure 3: Example usage of the inference rules to decide a∗b∗ v (a+b)∗. Note that this and the following examples are written bottom-up, therefore
the input is at the bottom.

S tore(3)
(Letter) 7 : b(ab)∗a v (ba)∗

(LeftStar) 6 : ab(ab)∗a v a(ba)∗

(Axm)
(Letter) 9 : ε v (ba)∗

8 : a v a(ba)∗

(Letter) 5 : (ab)∗a v a(ba)∗

(LetterStar) 4 : b(ab)∗a v ba(ba)∗

(Letter) 3 : b(ab)∗a v (ba)∗

(LeftStar) 2 : ab(ab)∗a v a(ba)∗

S tore(9)
(Letter) 11 : ε v (ba)∗

10 : a v a(ba)∗

1 : (ab)∗a v a(ba)∗

Figure 4: Example usage of the inference rules to decide (ab)∗a v a(ba)∗

Fail because first((ab)∗) * first(b∗)
(Letter) 7 : (ab)∗ v b∗

(LetterStar) 6 : b(ab)∗ v bb∗

(ElimCat) 5 : b(ab)∗ v b∗

(Letter) 4 : b(ab)∗ v a∗b∗

(LetterStar) 3 : ab(ab)∗ v aa∗b∗

(LeftStar) 2 : ab(ab)∗ v a∗b∗
(Axm)

8 : ε v a∗b∗

1 : (ab)∗ v a∗b∗

Figure 5: Example usage of the inference rules to decide that (ab)∗ v a∗b∗ is not sound

7

Table 2: The rules for the relation v.

(Axm)

ε v r
[r ∈ NΣ]

(Letter)
r1 v r2

l · r1 v l · r2

(LetterStar)
l · r1 v r2r∗2r3

l · r1 v r∗2r3
[l ∈ first(r2)]

(LetterChoice)
l · r1 v rir4

l · r1 v (r2 + r3)r4

[
i ∈ {2, 3}

l ∈ first(ri)

] (LeftChoice)
r1r3 v r4
r2r3 v r4

(r1 + r2)r3 v r4
(LeftStar)

r1r∗1r2 v r3r4
r2 v r3r4

r∗1r2 v r3r4

[
first(r∗1r2) ∩ first(r3) , ∅
∃l, r5 : r3 = l ∨ r3 = r∗5

]
(StarChoice1)

r∗1r2 v rir5

r∗1r2 v (r3 + r4)r5


i ∈ {3, 4}

first(r∗1r2) ∩ first(ri) , ∅
first(r∗1r2) ⊆ first(rir5)

r2 < NΣ ∨ ri ∈ NΣ


(StarChoice2)

r1r∗1r2 v (r3 + r4)r5
r2 v (r3 + r4)r5

r∗1r2 v (r3 + r4)r5



first(r∗1r2) ∩ first(r3 + r4) , ∅ (r4 < NΣ ∧ first(r∗1r2) ∩ first(r3r5) , ∅
∨ first(r∗1r2) ∩ first(r3) , ∅
∨(r2 ∈ NΣ ∧ r4 < NΣ)

 (r3 < NΣ ∧ first(r∗1r2) ∩ first(r4r5) , ∅
∨ first(r∗1r2) ∩ first(r4) , ∅
∨(r2 ∈ NΣ ∧ r3 < NΣ)




(ElimCat)

r1 v r3

r1 v r2r3

 ∃l, r4, r5 : r1 = l · r4 ∨ r1 = r∗4r5
r2 ∈ NΣ

first(r1) ⊆ first(r3)


4. Properties of the Algorithm

To help understanding the algorithm and the rules, Table 3 shows which rules might apply for each combination
of header-forms of the left-hand and right-hand expressions. The following lemma implies that if the second “if”
inside the main loop of the algorithm fails, then there is always at least one rule matching the pair. Note also that the
conditions in the lemma hold for all pairs which are in the inclusion relation.

Lemma 4.1. For any regular expressions r1 and r2 in header normal form, where first(r1) ⊆ first(r2), r1 < NΣ ∨ r2 ∈

NΣ, and r1 = ε ∨ r2 , ε, there is at least one rule instance with conclusion r1 v r2.

Proof. By a case distinction on r1 and r2, using Tables 2 and 3, Definition 2.2, and Lemma 2.5. The only combinations
that are never matched are when the right-hand expression is ε while the left-hand expression is not (5, 9, and 13 in
Table 3), and the combinations where the left-hand expression is ε while the right-hand is of the form l·r (2 in Table 3).
The former cannot occur under the assumptions of the lemma since subexpressions of the forms ε · r′, ε + ε and ε∗ are
assumed removed, while the latter combinations follow from that l · r < NΣ.

The cases when r1 = ε (1, 2, 3, and 4 in Table 3) the pair matches (Axm), as the only side condition, r2 ∈ NΣ, is
true by assumption. When both expressions start with a letter (6 in Table 3), the pair matches (Letter), which has no

8

side-conditions.
In the cases where r1 = lr′ and r2 = (r3 + r4)r5 (7 in Table 3) we have by assumption either that l ∈ first(r3 + r4),

such that (LetterChoice) matches, or we have r3 + r4 ∈ NΣ and l ∈ first(r5) such that (ElimCat) matches the pair.
In the cases where r1 = lr′ and r2 = r∗3r4 (8 in Table 3) we have by assumption either that l ∈ first(r3), such that

(LetterStar) matches, or we have l ∈ first(r4) such that (ElimCat) matches the pair.
The cases where r1 = (r3 + r4)r5 (9, 10, 11, and 12 in Table 3) match (LeftChoice) which has no side-conditions.
The cases where r1 = r∗3r4 and r2 = l · r5 (14 in Table 3) are matched by (LeftStar). The first side-condition holds

by the assumptions in the lemma, and the second by the form of r2.
For the cases where r1 = r∗3r4 and r2 = r∗5r6 (16 in Table 3), note that from the assumptions in the lemma,

first(r1) ⊆ first(r∗5r6). There are two cases to treat. Firstly, we can have first(r1) ⊆ first(r6) such that the pair matches
(ElimCat). Otherwise, we have first(r1) ∩ first(r5) , ∅ which implies that the pair matches (LeftStar).

We now treat the hardest case (15 in Table 3). For expository reasons we stick to the notation in (StarChoice2)
and take the left hand side (“r1”) to be r∗1r2 and the right hand side (“r2”) to be (r3 + r4)r5. The pair can possibly
match (ElimCat), (StarChoice1), or (StarChoice2). We will treat this case by assuming that the pair does not match
(ElimCat) or (StarChoice1), and proceeding to show that it is then matched by (StarChoice2). We only need to
show that all the side-conditions of (StarChoice2) hold. For the first side-condition, note that one assumption in the
lemma is that first(r∗1r2) ⊆ first((r3 + r4)r5). If r3 + r4 < NΣ, we have first((r3 + r4)r5) = first(r3 + r4) and therefore
get first(r∗1r2) ⊆ first(r3 + r4), so the first side-condition holds. Otherwise, if r3 + r4 ∈ NΣ, we get from the fact that
(ElimCat) does not match the conclusion that first(r∗1r2) * first(r5), so we must also have the first side-condition. For
the two remaining side-conditions of (StarChoice2), note first that since (StarChoice1) does not match, we get the
following two facts:

first(r∗1r2) ∩ first(r3) = ∅ ∨ first(r∗1r2) * first(r3r5) ∨ (r2 ∈ NΣ ∧ r3 < NΣ) (1)
first(r∗1r2) ∩ first(r4) = ∅ ∨ first(r∗1r2) * first(r4r5) ∨ (r2 ∈ NΣ ∧ r4 < NΣ) (2)

From the fact that (ElimCat) did not match, we get that r3 ∈ NΣ ⇒ first(r∗1r2) * first(r5) and that r4 ∈ NΣ ⇒

first(r∗1r2) * first(r5). Therefore, first(r∗1r2) ∩ first(r3) = ∅ ⇒ first(r∗1r2) * first(r3r5) and first(r∗1r2) ∩ first(r4) = ∅ ⇒
first(r∗1r2) * first(r4r5). Hence (1) and (2) can be simplified to

first(r∗1r2) * first(r3r5) ∨ (r2 ∈ NΣ ∧ r3 < NΣ) (3)
first(r∗1r2) * first(r4r5) ∨ (r2 ∈ NΣ ∧ r4 < NΣ) (4)

Applying standard operations in propositional logic to (3) and (4) we get (r3 < NΣ ∧ first(r∗1r2) * first(r3r5))
∨ (r3 ∈ NΣ ∧ first(r∗1r2) * first(r3r5))
∨ (r2 ∈ NΣ ∧ r3 < NΣ)

 (5)

 (r4 < NΣ ∧ first(r∗1r2) * first(r4r5))
∨ (r4 ∈ NΣ ∧ first(r∗1r2) * first(r4r5))
∨ (r2 ∈ NΣ ∧ r4 < NΣ)

 (6)

We use again that first(r∗1r2) ⊆ first((r3 + r4)r5) = first(r3r5)∪ first(r4r5) to get the following implications: first(r∗1r2) *
first(r3r5)⇒ first(r∗1r2)∩first(r4r5) , ∅, first(r∗1r2) * first(r4r5)⇒ first(r∗1r2)∩first(r3r5) , ∅, (r3 ∈ NΣ∧first(r∗1r2) *
first(r3r5))⇒ first(r∗1r2)∩ first(r4) , ∅, and (r4 ∈ NΣ ∧ first(r∗1r2) * first(r4r5))⇒ first(r∗1r2)∩ first(r3) , ∅. Applying
these implications to (5) and (6) gives exactly the two last side-conditions of (StarChoice2).

4.1. 1-Unambiguity and the Rules

We must make sure that the rules given in Table 2 preserve 1-unambiguity for the right-hand expressions.

Lemma 4.2 (Preservation of 1-unambiguity). For any rule instance, if the right-hand expression in the conclusion is
1-unambiguous, then also the right-hand expressions in all the premises are 1-unambiguous.

9

Table 3: The rules that might apply for any combination of header-forms of the left-hand and right-hand expressions

Right
Left ε l · r (r1 + r2) · r3 r∗1 · r2

ε 1 : (Axm) 2 :* 3 : (Axm) 4 : (Axm)

l · r 5 :* 6 : (Letter) 7 :
(ElimCat)

(LetterChoice) 8 :
(ElimCat)

(LetterStar)
(r1 + r2) · r3 9 :* 10 : (LeftChoice) 11 : (LeftChoice) 12 : (LeftChoice)

r∗1 · r2 13 :* 14 : (LeftStar) 15 :
(ElimCat)

(StarChoice1)
(StarChoice2)

16 :
(ElimCat)
(LeftStar)

Proof. For most rules we either have that the right-hand expression is the same in the premise and the conclusion,
or we can use the fact that all subexpressions of a 1-unambiguous regular expression are 1-unambiguous. The latter
fact was shown by Brüggemann-Klein & Wood [6, Lemma 3.2]. The remaining cases can also be shown by using [6,
Lemma 3.2]. For the convenience of the reader, we show it in an alternative way using Definition 2.14.

For the rule (LetterStar), the right-hand expression of the premise is of the form r1r∗1r2 and we know that r∗1r2 is
1-unambiguous. We will prove that r1r∗1r2 is 1-unambiguous given that r∗1r2 is 1-unambiguous. We must use the fact
that all expressions are in star normal form (see Definition 2.13), thus r1 < NΣ, and first(µ(r1))∩followLast(µ(r1)) = ∅.
Take u, v,w ∈ sym(µ(r1r∗1r2))∗ and p, q ∈ sym(µ(r1r∗1r2)) as in Definition 2.14, such that upv, uqw ∈ ‖µ(r1r∗1r2)‖ and
(r1r∗1r2)[p] = (r1r∗1r2)[q]. To prove 1-unambiguity of r1r∗1r2 we must show that p = q. For each of the words upv and
uqw there are two possibilities to consider:

∃!u1, u2, p1, v1 : u = (1 ↓ u1) · (2 ↓ u2) ∧ v = 2 ↓ v1 ∧ p = 2 ↓ p1 ∧ u1 ∈ ‖µ(r1)‖ ∧ u2 p1v1 ∈ ‖µ(r∗1r2)‖ (7)
∃!u1, p1, v1, v2 : u = 1 ↓ u1 ∧ p = 1 ↓ p1 ∧ v = (1 ↓ v1) · (2 ↓ v2) ∧ u1 p1v1 ∈ ‖µ(r1)‖ ∧ v2 ∈ ‖µ(r∗1r2)‖ (8)
∃!u1, u2, q1,w1 : u = (1 ↓ u1) · (2 ↓ u2) ∧ w=2 ↓ w1 ∧ q = 2 ↓ q1 ∧ u1 ∈ ‖µ(r1)‖ ∧ u2q1w1 ∈ ‖µ(r∗1r2)‖ (9)
∃!u1, q1w1,w2 : u = 1 ↓ u1 ∧ q = 1 ↓ q1 ∧ w = (1 ↓ w1) · (2 ↓ w2) ∧ u1q1w1 ∈ ‖µ(r1)‖ ∧ w2 ∈ ‖µ(r∗1r2)‖ (10)

Exactly one of (7) or (8) must hold, and exactly one of (9) or (10) must hold. Firstly, if both (8) and (10) hold, then
p1 = q1 follows from 1-unambiguity of r1, and thus p = 1 ↓ p1 = 1 ↓ q1 = q. Secondly, if both (7) and (9) hold, the u1
and u2 chosen must be the same in both cases, and therefore 1-unambiguity of r∗1r2 can be used to get p1 = q1. Thus
p = 2 ↓ p1 = 2 ↓ q1 = q. We now show that the two remaining combinations cannot hold. By symmetry, we only treat
one case, and assume (by contradiction) that (8) and (9) hold. This implies that u2 = ε, thus p1 ∈ followLast(µ(r1))
and q1 ∈ first(µ(r∗1 · r2)). Now we can use (〈1, 1〉 ↓ (u1 · p1 · v1)) · v2 ∈ ‖µ(r∗1r2)‖ and (〈1, 1〉 ↓ u1) · q1 · w1 ∈ ‖µ(r∗1r2)‖
together with the fact that (r∗1r2)[q] = (r∗1r2)[〈1, 1〉 ↓ p1] in Definition 2.14 to show that 〈1, 1〉 ↓ p1 = q1. Combined
with q1 ∈ first(µ(r∗1 · r2)) we get that p1 ∈ first(µ(r1)). But then p1 ∈ first(µ(r1)) ∩ followLast(µ(r1)), which contradicts
with the fact that r∗1r2 is in star normal form.

For (LetterChoice) and (StarChoice1), the right-hand expression in the conclusion is of the form (r1 + r2)r3. We
can, by symmetry, assume the right-hand expression in the premise is r1r3. We assume the right-hand expressions
in the conclusion is 1-unambiguous and show that r1r3 also is 1-unambiguous. Note now that ‖µ(r1 · r3)‖ = (1 ↓
‖µ(r1)‖) · (2 ↓ ‖µ(r3)‖), and ‖µ((r1 + r2)r3)‖ = (1 ↓ ‖µ(r1 + r2)‖) · (2 ↓ ‖µ(r3)‖) = (〈1, 1〉 ↓ ‖µ(r1)‖) · (2 ↓ ‖µ(r3)‖) ∪
(〈1, 2〉 ↓ ‖µ(r1)‖) · (2 ↓ ‖µ(r3)‖). For any upv, uqw ∈ ‖µ(r1r3)‖ as in Definition 2.14 concerning r1r3 we therefore
have corresponding u′, p′, q′, v′,w′ concerning (r1 + r2)r3 which are obtained by prefixing the positions in u, p, q, v,w
starting in 1 with one more 1. Furthermore, p′ = q′ ⇒ p = q. Since (r1 + r2)r3 is 1-unambiguous we have that
(r1 + r2)r3[p′] = (r1 + r2)r3[q′] ⇒ p′ = q′ and therefore also that r1r3[p] = r1r3[q] ⇒ p = q, such that r1r3 is also
1-unambiguous.

We must now substantiate the claim that if the side-conditions of more than one applicable rule hold, the right-hand
expression is 1-ambiguous.

10

(Axm)
(Letter) 4 : ε v ε
(Letter) 3 : b v b

(LetterChoice) 2 : ab v ab
1 : ab v (a + (b + c)∗c(b + c) · · · (b + c))b

Figure 6: Example usage of the inference rules

Lemma 4.3. For any two regular expressions r1 and r2, where r2 is 1-unambiguous, there is at most one rule instance
with r1 v r2 in the conclusion.

Proof. This is proved by comparing each pair of rule instances of rules occurring in Table 3 and using Definition 2.14.
For each case, we show that the existence of several rule instances with the same conclusion implies that the right-hand
expression is 1-ambiguous.

• We first consider the case that one rule has several instances matching the same conclusion. The only rules
that can have more than one instance with the same conclusion are (StarChoice1) and (LetterChoice). For
(LetterChoice), the conclusion is of the form l · r1 v (r2 + r3) · r4, and the existence of two instances implies that
l ∈ first(r2)∩first(r3). This can only be the case if the right-hand expression is 1-ambiguous. For (StarChoice1),
the conclusion is of the form r∗1r2 v (r3 + r4)r5, and the existence of two instances of this rule would imply
that first(r∗1r2) and first(r4) have a non-empty intersection, which furthermore is included in first(r3r5). The
expression (r3 + r4)r5 is therefore 1-ambiguous.

• If instances of both (ElimCat) and either (LetterStar) or (LetterChoice) match the pair of expressions (see 7
and 8 in Table 3), then the right-hand expression is of the form r2r3. From (LetterStar) and (LetterChoice) the
left-hand expression is of the form lr1 and l ∈ first(r2). From (ElimCat) we get that r2 ∈ NΣ and l ∈ first(r3).
But this means that r2r3 is 1-ambiguous.

• If instances of both (ElimCat) and either (StarChoice1) or (StarChoice2) had the same conclusion (see 15 in
Table 3), then the the conclusion is of the form r∗1r2 v (r3 + r4)r5. From (ElimCat), we get that r3 + r4 ∈

NΣ and first(r∗1r2) ⊆ first(r5). From the second side-condition of (StarChoice1) or the first side-condition of
(StarChoice2) we get that first(r∗1r2) ∩ first(r3 + r4) , ∅. This means that first(r3 + r4) ∩ first(r5) , ∅. We
combine the latter with r3 + r4 ∈ NΣ to get that the right-hand expression (r3 + r4)r5 is 1-ambiguous.

• For the cases where both an instance of (StarChoice1) and one of (StarChoice2) match the conclusion, we can
by symmetry assume the instance of (StarChoice1) has i = 3. The last side-condition of (StarChoice1) is then
r2 < NΣ∨r3 ∈ NΣ. This is exactly the negation of the third disjunct of the third side condition of (StarChoice2).
We must therefore have that the remaining disjunction holds, that is,

(r3 < NΣ ∧ first(r∗1r2) ∩ first(r4r5) , ∅) ∨ first(r∗1r2) ∩ first(r4) , ∅ (11)

Assume first that the left disjunct of (11) holds. Then since r3 < NΣ, we get first(r3r5) = first(r3). Combined
with the third side-condition of (StarChoice1) this implies that first(r4r5) ∩ first(r3) , ∅, which means that
(r3 + r4)r5 is 1-ambiguous. Otherwise, if the right disjunct of (11) holds, we can use the third side-condition of
(StarChoice1) to get that first(r4) ∩ first(r3r5) , ∅, which also means that (r3 + r4)r5 is 1-ambiguous.

• If instances of both (ElimCat) and (LeftStar) match the pair of expressions (see 16 in Table 3), then the conclu-
sion is of the form r∗1r2 v r3r4, where r3 ∈ NΣ and both first(r∗1r2) ⊆ first(r4) and first(r∗1r2) ∩ first(r3) , ∅.
This can only hold if r3r4 is 1-ambiguous.

11

4.2. Invertibility of the Rules

We shall now prove that the rules given in Table 2 are invertible. By this we mean that, for each rule instance,
assuming that no other rule instance matches the conclusion, then the conclusion is sound if and only if all premises
are sound.

Proof. By a case distinction on the rules. For all rules, the fact that the premise(s) implies the conclusion follows
almost directly from Definition 2.2. We only treat the converse:

• For (Axm), we only note that the side-condition is that the right-hand expression is nullable, and then {ε} is of
course a subset of the language.

• For (Letter) we are just removing a single letter prefix from both languages, and this preserves the inclusion
relation.

• For (LetterStar), the conclusion is of the form lr1 v r∗2r3. Note that ‖r∗2r3‖ = ‖r2r∗2r3‖ ∪ ‖r3‖. Since (ElimCat)
does not match the conclusion, and r∗2 ∈ NΣ, we must have that first(lr1) * first(r3), that is, l < first(r3).
Therefore ‖lr1‖ ∩ ‖r3‖ = ∅, and thus ‖lr1‖ ⊆ ‖r2r∗2r3‖ and the premise is sound

• For (LetterChoice), the conclusion is of the form lr1 v (r2 + r3)r4. Again we depend on the fact that no other
instance of (LetterChoice) nor (ElimCat) match the conclusion. We can assume by symmetry that i = 2 and the
premise is of the form lr1 v r2r4. Since i = 3 does not match we get that l < first(r3). Note that ‖(r2 + r3)r4‖ =

‖r2r4‖ ∪ ‖r3r4‖. Since (ElimCat) does not match the conclusion we get that (r2 + r3) ∈ NΣ ⇒ l < first(r4). This
implies that ‖lr1‖ ∩ ‖r3r4‖ = ∅, so ‖lr1‖ ⊆ ‖r2r4‖ and we have the premise.

• For (LeftChoice), the implication follows from Definition 2.2.

• (LeftStar) and (StarChoice2) hold by Definition 2.2, as ‖r∗1r2‖ = ‖r1r∗1r2‖ ∪ ‖r2‖.

• For (StarChoice1), the conclusion is of the form r∗1r2 v (r3+r4)r5. Note again that ‖(r3+r4)r5‖ = ‖r3r5‖∪‖r4r5‖.
We can, by symmetry, assume i = 3. The second side-condition is then that first(r∗1r2) ∩ first(r3) , ∅. Note
that this implies the first side-condition and the middle disjunct of the second side-condition in (StarChoice2).
Since (StarChoice2) does not match, we must have the negation of the third side-condition of (StarChoice2).
Hence

first(r4)∩first(r∗1r2)=∅ ∧ (r3 ∈ NΣ ∨ first(r4r5)∩first(r∗1r2)=∅) (12)

Now, if r3 ∈ NΣ, we get that ‖r5‖ ⊆ ‖r3r5‖, which implies that ‖(r3 + r4)r5‖ = ‖r3r5‖ ∪ (‖r4r5‖ − ‖r5‖). From
(12) we have that first(r4)∩first(r∗1r2)=∅, which implies that (‖r4r5‖ − ‖r5‖)∩ ‖r∗1r2‖ = ∅. Therefore the premise
r∗1r2 v r3r5 is sound. On the other hand, if r3 < NΣ, we get from (12) that first(r4r5)∩first(r∗1r2)=∅. This implies
that ‖r∗1r2‖ ∩ ‖r4r5‖ = ∅, which implies that the premise r∗1r2 v r3r5 is sound.

• For (ElimCat), we have ‖r2r3‖ = (‖r2r3‖−‖r3‖)∪‖r3‖. Therefore it is sufficient to show that first(r1)∩first(r2) =

∅. Note that the left-hand expression is constrained by the first side-condition to be of the form l · r4 or r∗4r5.
The right-hand expression must from Definition 2.3, and the definition of header-form be of the form r∗6r3 or
(r6 + r7)r3. We do a case distinction on these forms. If r1 is of the form l · r4, then since neither (LetterStar)
or (LetterChoice) matches the conclusion, we get that l < first(r2), and the premise r1 v r3 must be sound. If
the conclusion is of the form r∗4r5 v r∗6r7, then we must have that the first side-condition of (LeftStar) fails.
Thus first(r∗4r5) ∩ first(r∗6) = ∅. Lastly, if the conclusion is of the form r∗4r5 v (r6 + r7)r3, note that from the
second side-condition of (ElimCat) we have r6 + r7 ∈ NΣ, so we can by symmetry assume r6 ∈ NΣ. We will use
that (StarChoice1) with i = 3 does not match, and that the third and fourth side-conditions of this instance of
(StarChoice1) hold by the assumption that the side-conditions of (ElimCat) hold. This implies that the second
side-condition of (StarChoice1) with i = 3 does not hold, so we get first(r∗4r5) ∩ first(r6) = ∅. If r7 ∈ NΣ, we
can use a similar argument to also get first(r∗4r5) ∩ first(r7) = ∅. Otherwise, if r7 < NΣ, we use the fact that
(StarChoice2) does not match. The first disjunct of the second side-condition of (StarChoice2) holds, since we
have assumed r7 < NΣ, and we argued above that first(r∗4r5) ⊆ first(r6r3). Therefore either the first or the third
side-condition of (StarChoice2) must fail. Either case implies that first(r∗4r5) ∩ first(r7) = ∅, so we are done.

12

Invertibility implies that, at any point during an execution of the algorithm, the pair originally given as input is in
the inclusion relation if and only if all the pairs in both the store S and the stack T are in the inclusion relation. These
properties are used in the proofs of soundness and completeness below.

4.3. Termination and Polynomial Run-time
To prove that the algorithm always terminates in polynomial time, we will prove that the number of iterations of

the main loop where at least one new pair is pushed onto the stack T, has an upper bound in the product of the number
of positions in the two regular expressions given as input. This implies that the whole algorithm runs in polynomial
time, by the following three observations.

• The number of positions in a regular expression is linear in the length of the regular expression.

• The number of iterations where no new pair is pushed to the stack T, cannot be more than one more than half
the total of all iterations. Note that the iterations where no pairs are pushed are those where the first “if”-test
“(r1, r2) ∈ S” succeeds, those where the second “if”-test fails, and those where the pair matches (Axm). That
these are not more than one more than the half follows from that the other rules never push more than two pairs,
and standard arguments on binary trees.

• The time used in each iteration of the loop is polynomial in the length of the regular expressions given as input.

Assume that the algorithm is given rl and rr as input. We will prove that there is an injective mapping from each
r′ occurring on the left-hand or right-hand of a pair in the stack T during the run of the algorithm, to a p in pos(rl) or
pos(rr), respectively. If r is the corresponding input expression, then r[p] is the first factor of r′.

For the purposes of this section, let 〉〈 be a special undefined position, and let pos(r)〉〈 = pos(r) ∪ {〉〈}. We proceed
to define a mapping nextr, which will be used to describe the expressions occurring in a run of the algorithm in terms
of subexpressions of the corresponding expression given as input.

Definition 4.4 (nextr). For a regular expression r, let the mapping nextr : pos(r) → pos(r)〉〈 be defined in the
following top-down inductive manner:

• Put nextr(〈〉) =〉〈.

• If r[p] = r1 · r2, put nextr(p ↓ 1) = p ↓ 2 and put nextr(p ↓ 2) = nextr(p).

• If r[p] = r1 + r2, put nextr(p ↓ 1) = nextr(p ↓ 2) = nextr(p).

• If r[p] = r∗1, put nextr(p ↓ 1) = p.

We extend nextr to next∗r which maps a position in r to a list of positions in r:

next∗r (p) =

{
ε if nextr(p) =〉〈

nextr(p) · next∗r (nextr(p)) otherwise

Example 4.5. Let Σ = {a, b, c, d} and r = ((a · b) · c∗) · d. Then

pos(r) = {〈〉, 〈1〉, 〈1, 1〉, 〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2〉, 〈1, 2, 1〉, 〈2〉}

and nextr and next∗r have the following values:

pos(r) nextr next∗r
〈〉 〉〈 ε
〈1〉 〈2〉 〈2〉
〈1, 1〉 〈1, 2〉 〈1, 2〉 · 〈2〉
〈1, 1, 1〉 〈1, 1, 2〉 〈1, 1, 2〉 · 〈1, 2〉 · 〈2〉
〈1, 1, 2〉 〈1, 2〉 〈1, 2〉 · 〈2〉
〈1, 2〉 〈2〉 〈2〉
〈1, 2, 1〉 〈1, 2〉 〈1, 2〉 · 〈2〉
〈2〉 〉〈 ε

13

We now need an auxiliary lemma concerning header.

Lemma 4.6. For any regular expressions r, r1, . . . , rn, r′1, . . . , r′m, and r′, if header(r, r1 · · · rn · ε) = r′1 · · · r
′
m · ε, then

header(r, r1 · · · rn · r′) = r′1 · · · r
′
m · r

′.

Proof. By induction on r. For the base case r = ε we have by definition that header(r, r1 · · · rn · ε) = r1 · · · rn · ε,
and header(r, r1 · · · rn · r′) = r1 · · · rn · r′, which means the lemma holds. For the cases where r is a letter, choice,
or a starred expression, we get by definition that header(r, r1 · · · rn · ε) = r · r1 · · · rn, and header(r, r1 · · · rn · r′) =

r ·r1 · · · rn ·r′, which also means the lemma holds. For the induction cases when r = r′′1 ·ε we get header(r, r1 · · · rn ·ε) =

header(r′′1 , r1 · · · rn · ε) and header(r, r1 · · · rn · r′) = header(r′′1 , r1 · · · rn · r′). We now get the result by applying the
induction hypothesis for r′′1 to header(r′′1 , r1 · · · rn · ε) = r′1 · · · r

′
m · ε. Lastly, we treat the induction cases where there

are p ≥ 2 and r′′1 , . . . , r
′′
p ∈ RΣ − {ε} such that either r = r′′1 · · · r

′′
p and r′′p is not a concatenation, or r = r′′1 · · · r

′′
p · ε. We

then get

header(r, r1 · · · rn · ε) = header(r′′1 , r
′′
2 · · · r

′′
p · r1 · · · rn · ε)

header(r, r1 · · · rn · r′) = header(r′′1 , r
′′
2 · · · r

′′
p · r1 · · · rn · r′)

We get the result by applying the induction hypothesis for r′′1 to
header(r′′1 , r

′′
2 · · · r′′p · r1 · · · rn · ε) = r′1 · · · r′m · ε.

Corollary 4.7. For m > 0, and regular expressions r, r′, r′′, r′1, . . . , r′m, if hdf(r) = r′′ · hdf(r′1 · · · r
′
m · ε), then

hdf(r · r′) = r′′ · hdf(r′1 · · · r
′
m · r

′).

Proof. If r = ε, the corollary holds vacuously. Otherwise, we can assume there are r′′1 , . . . , r
′′
n ∈ RΣ−{ε} and n ≥ 0 such

that either r′ = r′′1 · · · r
′′
n where n ≥ 1 and r′′n is not a concatenation, or that r′ = r′′1 · · · r

′′
n ·ε. Put r′′′ = r′′1 · · · r

′′
n ·ε. Then

hdf(r · r′) = header(r, r′′′), hdf(r′1 · · · r
′
m · r

′) = header(r′1, r
′
2 · · · r

′
m · r

′′′), and header(r, ε) = r′′ ·header(r′1, r
′
2 · · · r

′
m · ε).

From Lemmas 2.9 and 4.6 we therefore get header(r, r′′′) = r′′ · header(r′1, r
′
2 · · · r

′
m · r′′′). Hence, hdf(r · r′) =

r′′ · hdf(r′1 · · · r
′
m · r

′).

We now need an auxiliary lemma concerning the mapping next∗.

Lemma 4.8. For any regular expressions r, r1, r2, and any position p ∈ pos(r) such that hdf(r[p]) = r1 · r2, there
is an n ≥ 0 and positions q, p1, . . . , pn ∈ pos(r) such that p ≤ q, next∗r (q) = p1 · · · · · pn · next∗r (p), and r1 · r2 =

r[q] · hdf(r[p1] · · · r[pn] · ε).

Proof. By induction on the expression r[p]. The base case when r[p] = ε holds vacuously. The base cases when
r[p] ∈ Σ, and the induction cases where r[p] is of the forms r1 +r2 or r∗1 hold immediately (without using the induction
hypothesis), as hdf(r[p]) = r[p] · ε = r[p] · hdf(ε) and we can use q = p and n = 0. The remaining induction cases are
when r[p] is of the form r[p ↓ 1] · r[p ↓ 2]. By the note after Definition 2.2 r[p ↓ 1] , ε and we have the induction
hypothesis for r[p ↓ 1]. Combining this with Definition 4.4, we get that there are q, p1, . . . , pn, such that p ↓ 1 ≤ q,
next∗r (q) = p1 · · · pn · next∗r (p ↓ 1) = p1 · · · pn · p ↓ 2 · next∗r (p), and hdf(r[p ↓ 1]) = r[q] · hdf(r[p1] · · · r[pn] · ε). The
latter fact applied to Corollary 4.7 implies that hdf(r[p]) = r[q] · hdf(r[p1] · · · r[pn] · r[p ↓ 2]), so we have proved the
lemma.

We can now formulate the main lemma of this section, defining the mapping iterPos.

Lemma 4.9. For each regular expression r given as input to any execution of the algorithm there exists a mapping
iterPosr with the following properties.

• The domain of iterPosr is the set of non-ε expressions occurring on the same side as r in any pair on the stack
during the execution of the algorithm.

• The codomain of iterPosr is pos(r).

• If p = iterPosr(r′), then r′ = r[p] · hdf(r[next∗r (p)]).

14

Proof. By induction on the number of iterations of the main loop in an execution of the algorithm. We can assume
that the lemma holds for the expressions in the pair that is popped from the stack, and show that it holds for the
expressions being pushed onto the stack. Remember that hdf is applied to the expressions before they are pushed onto
the stack.

The base case is the expressions rl and rr given as input. By symmetry we treat only rl. We can apply Lemma 4.8
to rl and 〈〉 to get q, p1, . . . , pn such that hdf(rl) = rl[q] · hdf(rl[p1] · · · rl[pn] · ε), and next∗rl

(q) = p1 · · · pn · next∗rl
(〈〉).

By Definition 4.4 next∗rl
(〈〉) = ε, so we get hdf(rl) = rl[q] · hdf(rl[next∗rl

(q)]), and we can let iterPosrl (rl) = q.
The induction case for (Axm), the induction cases where the first if-test “(r1, r2) < S” fails, and the cases where

the second if-test holds (such that “No” is returned) all hold directly by using the induction hypothesis, since the stack
is not changed.

In the remaining induction cases, the expressions put on the stack follow five patterns: 1: that hdf(r) is pushed
after popping r, 2: that hdf(r) is pushed after popping l · r, 3: that hdf(r1r3) is pushed after popping (r1 + r2)r3, 4: that
hdf(r1r∗1r2) is pushed after popping r∗1r2, and lastly, 5: that r2 is pushed after popping r1r2 where r1 ∈ NΣ. We treat
these cases separately.

1. If we push hdf(r) on the stack after popping r, we get from Lemma 2.9 that hdf(r) = r, so we get the result from
the induction hypothesis.

2. The first interesting case is where l · r1 is a member of the pair popped from the stack T, and hdf(r1) is a
member of the pair pushed. Assume r is the corresponding input expression. By the induction hypothesis
we know that there is a p such that iterPosr(lr1) = p, r[p] = l, and hdf(r[next∗r (p)]) = r1. If r1 = ε, the
lemma holds vacuously. Otherwise, we must now calculate the value of iterPosr(r1), that is, a p′ ∈ pos(r), and
show that it has the required properties. We have r[next∗r (p)] , ε, so we get next∗r (p) , ε, thus nextr(p) ,〉〈, and
r1 = hdf(r[nextr(p)] ·r[next∗r (nextr(p))]). We can now apply Lemma 4.8 to r and nextr(p), and get p′, p1, . . . , pn

such that hdf(r[nextr(p)]) = r[p′] ·hdf(r[p1] · · · r[pn] ·ε) and next∗r (p′) = p1 · · · pn ·next∗rl
(nextr(p)). By applying

this to Corollary 4.7 we get that

hdf(r[nextr(p)] · r[next∗r (nextr(p))])
= r[p′] · hdf(r[next∗r (p′)])

Applying Lemma 2.9 we therefore get

hdf(r1) = r1 = r[p′] · hdf(r[nextr(p′)]),

so the lemma holds.

3. We next treat the case when we push a pair containing an expression of the form hdf(r1r3) on the stack after
popping a pair containing (r1 + r2)r3. Assume r is the corresponding input expression. By the induction
hypothesis there is a p such that iterPosr((r1 + r2)r3) = p, r[p] = (r1 + r2), and hdf(r[next∗r (p)]) = r3. If
hdf(r1r3) = ε the lemma holds vacuously. Otherwise, since r1 = r[p ↓ 1] we get from Lemma 4.8 for r and
p ↓ 1 that there are p′, p1, . . . , pn such that:

hdf(r1) = r[p′] · hdf(r[p1] · · · r[pn] · ε) (13)
next∗r (p′) = p1 · · · pn · next∗r (p ↓ 1) (14)

Applying Corollary 4.7 to (13) we get

hdf(r1 · r3) = r[p′] · hdf(r[p1] · · · r[pn] · r3)

Since r3 = r[next∗r (p)] we get hdf(r1 · r3) = r[p′] · hdf(r[p1] · · · r[pn] · r[next∗r (p)]). Furthermore, from Defini-
tion 4.4 nextr(p ↓ 1) = nextr(p), and therefore next∗r (p ↓ 1) = next∗r (p). Combining the latter with (14) we get
next∗r (p′) = p1 · · · pn · next∗rl

(p). Finally, we therefore get hdf(r1 · r3) = r[p′] · hdf(r[next∗r (p′)]), and we can put
iterPosr(r3) = p′.

15

4. We treat the case where r∗1r2 is a member of the pair popped from the stack, and hdf(r1r∗1r2) is a member of the
pair pushed. Assume r is the corresponding input expression. By the induction hypothesis we have a p such that
iterPosr(r∗1r2) = p, where r[p] = r∗1 and hdf(r[next∗r (p)]) = r2. Since r1 = r[p ↓ 1], we can apply Lemma 4.8 to r
and p ↓ 1, to get p′, p1, . . . , pn, such that hdf(r1) = r[p′]·hdf(r[p1 · · · pn]) and next∗r (p′) = p1 · · · pn·next∗r (p ↓ 1).
By Definition 4.4, we get

next∗r (p′) = p1 · · · pn · p · next∗r (p)

Thus, applying Corollary 4.7 we get

hdf(r1r∗1r2) = r[p′] · hdf(r[next∗r (p′)])

So we can set iterPosr(r1r∗1r2) = p′.

5. For the case where r1r2 is popped from the stack, r1 ∈ NΣ, and hdf(r2) is pushed, assume again that r is
the corresponding input expression. From the induction hypothesis there is a p such that iterPosr(r1r2) = p,
r1 = r[p], and r2 = hdf(r[next∗r (p)]). If nextr(p) =〉〈, then r2 = ε and the lemma holds vacuously for hdf(r2) = ε.
Otherwise, r2 = hdf(r[nextr(p)] · r[next∗r (nextr(p))]). Applying Lemma 4.8 to r and nextr(p) gives q, p1, . . . , pn

such that hdf(r[nextr(p)]) = r[q] · hdf(r[p1] · · · r[pn] · ε) and next∗r (q) = p1 · · · pn · next∗r (nextr(p)). Applying
Corollary 4.7 to this we get hdf(r[nextr(p)] ·r[next∗r (nextr(p))]) = r[q] ·hdf(r[p1] · · · r[pn] ·r[next∗r (nextr(p))]) =

r[q] · hdf(r[next∗r (q)]). Thus hdf(r2) = r[q] · hdf(r[next∗r (q)]), and we can set iterPosr(r2) = q.

Note now that the mappings iterPosrl and iterPosrr are injective. We show this by letting r ∈ {rl, rr}, and as-
suming that for two regular expressions r1 and r2 occurring on the same side as r in two pairs in the stack, we have
iterPosr(r1) = iterPosr(r2) = p for some p. But from Lemma 4.9 we then have r1 = r2 = r[p] · hdf(r[next∗r (p)]). So
the mapping iterPosr is injective.

We are now done with showing termination and polynomial run-time, since Lemma 4.9 implies that the product
of the number of positions in the two regular expressions given as input is an upper bound to the number of pairs of
members from RΣ − {ε} occurring in the stack. The latter number is exactly the number of iterations of the main loop
where new pairs are pushed to the stack, since an ε on the left-hand side can only be matched by (Axm) and if only the
right-hand side is ε, this leads to a “No” answer. As argued in the beginning of this section, this means the run-time
of the whole algorithm is polynomial.

5. Soundness and Completeness

We need some auxiliary definitions and lemmas before we can prove soundness.

Definition 5.1 (Execution graph). An execution graph is a directed graph representing a successful run of the algo-
rithm. The nodes correspond to the iterations of the main loop in the algorithm where the test “(r1, r2) ∈ S” fails.
Each node is labeled by the name and conclusion of the rule instance matching the pair popped from the stack in
the corresponding iteration. There is an edge from each node to the node(s) labeled with the premise(s) of the rule
instance applied in the corresponding iteration.

Every usage of the store corresponds to a loop in the graph. Note that the only nodes without outgoing edges in
an execution graph, are those labeled (Axm).

Example 5.2. Figure 7 shows the execution graph corresponding to a run of the algorithm with input a∗b∗, (a + b)∗.

Let the size of a regular expression be the sum of the number of letters and operators ∗ and + occurring in the
expression. Note that the concatenation operator and ε are not counted. We will label an edge in an execution graph
as left-increasing or right-increasing, respectively, if the left-hand or right-hand expression labeling the start node
has smaller size than the corresponding expression in the end node. Left-decreasing and right-decreasing labels are
defined similarly.

16

(LeftStar), a∗b∗ v (a + b)∗

(LetterStar), aa∗b∗ v (a + b)∗

(LetterChoice), aa∗b∗ v (a + b)(a + b)∗

(Letter), aa∗b∗ v a(a + b)∗

(LeftStar), b∗ v (a + b)∗

(LetterStar), bb∗ v (a + b)∗

(LetterChoice), bb∗ v (a + b)(a + b)∗

(Letter), bb∗ v b(a + b)∗

(Axm), ε v (a + b)∗

Figure 7: The execution graph corresponding to input a∗b∗, (a + b)∗. (cf. Fig. 3).

Nodes labeled (StarChoice2) and (LeftStar) have one left-increasing and left-decreasing outgoing edge. An edge
is right-increasing if and only if it starts in a node labeled (LetterStar). Outgoing edges from all other rules are left-
decreasing, right-decreasing, or both. If an edge is neither left-increasing nor left-decreasing then the expression on
the left-hand side in the start and end node are the same. The similar statement holds for the right-hand side. The
edges corresponding to usage of the store S have no labels, since by construction the expressions in the start and end
node are the same.

Lemma 5.3. If there is a left-increasing edge in a loop, then there is also a node labeled (Letter) in the loop.

Proof. We prove a stronger statement, which implies that any path starting with a left-increasing edge, and not con-
taining a node labeled (Letter) cannot be a loop: We show that in a path where there is no node labeled (Letter) and
which starts with a left-increasing edge, the left-hand expressions in all nodes except the first node are of the form
r′1 · · · r

′
n · r

∗
1r2 for some r′1 · · · r

′
n < NΣ. This is proved by induction on the length of the path. For the base case, only

one edge in the path, note that the start node must be labeled (StarChoice2) or (LeftStar), so the left-hand expression
in the first node is of the form r∗1r2 and the left-hand expression in the last node is r1r∗1r2. Now, r1 < NΣ follows from
the fact that the expressions are in star normal form.

There is an induction case for each premise of each rule. Note that (Axm) cannot be applied because of the
induction hypothesis. For the premises corresponding to edges which are neither left-decreasing nor left-increasing,
the left-hand expression is unchanged, and we can just use the induction hypothesis. For the premises corresponding
to left-increasing edges, note that by the induction hypothesis the start node is of the form r′1 · · · r

′
n · r

∗
1r2, and the

left-hand expression in the last node is r′ · r′1 · · · r
′
n · r

∗
1r2 for some r′, and r′1 · · · r

′
n < NΣ ⇒ r′ · r′1 · · · r

′
n < NΣ.

The interesting cases are the premises corresponding to left-decreasing edges. For (LeftChoice), we can apply the
induction hypothesis to get that the left-hand expression in the start node is (r′1 + r′2) · r′3 · · · r

′
n · r

∗
1r2 where (r′1 + r′2) ·

r′3 · · · r
′
n < NΣ. The last node has left-hand expression r′i · r

′
3 · · · r

′
n · r

∗
1r2 for i ∈ {1, 2}. But (r′1 + r′2) · r′3 · · · r

′
n < NΣ ⇒

r′i · r
′
3 · · · r

′
n < NΣ, so the lemma holds also for the new last node.

For a left-decreasing edge, corresponding to a premise of (StarChoice2) or (LeftStar), we get from the induction
hypothesis and Definition 2.3 that the left-hand expression in the starting node is of the form r′1

∗
· r′2 · · · r

′
n · r

∗
1r2 where

17

r′2 · · · r
′
n < NΣ. The left-hand expression in the last node is r′2 · · · r

′
n · r

∗
1r2, so the lemma holds also for this case.

Lemma 5.4. If there is a right-increasing edge in a loop, then there is also an instance of (Letter) in the loop.

Proof. We prove a stronger statement which implies that any path starting with a right-increasing edge, and not
containing a node labeled (Letter) cannot be a loop: In a path where there is no node labeled (Letter) and which starts
with a right-increasing edge, all nodes except the first are of the form l · r1 v r′1 · · · r

′
n · r

∗
2r3 for some r′1 · · · r

′
n < NΣ

where l ∈ first(r′1 · · · r
′
n). This is proved by induction on the length of the path.

• For the base case, only one edge in the path, the first node must be labeled with (LetterStar) and l · r1 v r∗2r3.
The last node is then labeled l · r1 v r2r∗2r3. That r2 < NΣ follows from that the expressions are in star normal
form. l ∈ first(r2) is the side conditions on (LetterStar).

There are induction cases for all rules, but the only rules that can match the relation are (LetterStar), (LetterChoice)
and (ElimCat).

• For (LetterStar), the conclusion must be of the form

l · r1 v r′1
∗r′2 · · · r

′
n · r

∗
2r3

where r′2 · · · r
′
n < NΣ. From the side-condition we get l ∈ first(r′1). Thus the lemma holds for the premise

l · r1 v r′1r′1
∗r′2 · · · r

′
nr∗2r3.

• For the cases matching (LetterChoice) the conclusion is of the form l ·r1 v (r′1 +r′2)r′3 · · · r
′
nr∗2r3, and the premise

is l · r1 v r′i · r
′
3 · · · r

′
nr∗2r3 where i ∈ {1, 2}, l ∈ first(r′1) and r′i · r

′
3 · · · r

′
n < NΣ.

• For (ElimCat), the conclusion is of the form l · r1 v r′1 · · · r
′
n · r

∗
2r3 for some r′1 ∈ NΣ, where r′1 · · · r

′
n < NΣ. The

latter implies that r′2 · · · r
′
n < NΣ, and the side-conditions ensure that l ∈ first(r′2 · · · r

′
n · r

∗
2r3), which imply that

l ∈ first(r′2 · · · r
′
n). So the lemma also holds for the premise l · r1 v r′2 · · · r

′
n · r

∗
2r3.

Lemma 5.5. In any loop, there is at least one instance of (Letter)

Proof. At least one rule instance in a loop is right- or left-increasing or -decreasing. This implies there must be at
least one left- or right-increasing instance, and the result follows immediately from Lemmas 5.3 and 5.4.

Definition 5.6 (Letter-path). A letter-path is a path in an execution graph of the algorithm where the last node is
labeled (Letter) and there are no other nodes labeled (Letter),

Lemma 5.7 (Letter-path language conservation). In every letter-path, if the last node is labeled lr1 v lr2 and the first
node is labeled r3 v r4, then ‖r2‖ ⊆ {w | lw ∈ ‖r4‖}

Proof. By induction on the length of the letter-path.

• The base case is a path consisting of a single node labeled (Letter). This case is immediate, as we get r4 = l · r2.

There are induction cases for each of the rules shown in Table 2, except (Axm) and (Letter). The cases where
the right-hand expression is unchanged ((LeftChoice), (LeftStar), and (StarChoice2)) hold immediately from the
induction hypothesis.

• For (LetterStar), the right-hand expression in the label of the first node is of the form r∗5r6 and the induction
hypothesis is that ‖r2‖ = {w | lw ∈ ‖r5r∗5r6‖}. The inclusion ‖r5r∗5r6‖ ⊆ ‖r∗5r6‖ follows from Definition 2.2, thus
we also get that {w | lw ∈ ‖r5r∗5r6‖} ⊆ {w | lw ∈ ‖r∗5r6‖}, so the lemma holds.

• For (LetterChoice) and (StarChoice1), the right-hand expression in the conclusion is of the form (r5 + r6)r7,
and by symmetry we can assume the right-hand expression in the premise is r5r7, so the induction hypothesis
is that ‖r2‖ ⊆ {w | lw ∈ ‖r5r7‖}. But since ‖r5r7‖ ⊆ ‖(r5 + r6)r7‖ follows from Definition 2.2 we also get that
{w | lw ∈ ‖r5r7‖} ⊆ {w | lw ∈ ‖(r5 + r6)r7‖}, so the lemma holds.

18

• For (ElimCat), the right-hand expression in the conclusion is of the form r5r6 where r5 ∈ NΣ, and the induction
hypothesis is that ‖r2‖ ⊆ {w | lw ∈ ‖r6‖}. But since ‖r6‖ ⊆ ‖r5r6‖ follows from Definition 2.2 and r5 ∈ NΣ, we
also get that {w | lw ∈ ‖r6‖} ⊆ {w | lw ∈ ‖r5r6‖}, so the lemma holds.

Lemma 5.8. For any node r1 v r2 in an execution graph, and for any w ∈ ‖r1‖, w , ε, there is a letter-path from
this node to an instance of (Letter) such that w is in the language of the left-hand expression in the conclusion of this
instance of (Letter).

Proof. For all rules, except (Letter), the union of the languages of the left-hand expressions in the premise(s) equals
the language of the left-hand expression in the conclusion. We can therefore construct the letter-path by repeatedly
choosing the next node corresponding to a premise where the left-hand expression matches w. This process will
terminate in an instance of (Letter) by the following arguments. Instances of (Axm) will not occur as w < ‖ε‖, and
Lemma 5.5 assures that all loops contain at least one instance of (Letter).

Lemma 5.9. For any r1 v r2 in an execution graph of the algorithm, ‖r1‖ ⊆ ‖r2‖.

Proof. The lemma can be reformulated, stating that for all w ∈ Σ∗, and all r1 v r2 in the execution graph, w ∈ ‖r1‖

implies w ∈ ‖r2‖. We prove this simultaneously for all nodes in the execution graph, by induction on the length of w.
The base case is that w = ε. In this case r1 ∈ NΣ, and the algorithm guarantees that also r2 ∈ NΣ. The induction case
is that w = lw′ for some l ∈ Σ and w′ ∈ Σ∗. Assume some r1 v r2 in the execution graph, where lw′ ∈ ‖r1‖. We must
prove that lw′ ∈ ‖r2‖. From Lemma 5.8 there is a letter-path starting with the instance with conclusion r1 v r2, and
ending in an instance of (Letter) with conclusion lr3 v lr4 such that w′ ∈ ‖r3‖. From using the induction hypothesis
on w′ and the premise r3 v r4 of this instance of (Letter) we then get that w′ ∈ ‖r4‖, and therefore w = l · w′ ∈ ‖lr4‖.
Lemma 5.7 now states that ‖r4‖ ⊆ {v | lv ∈ ‖r2‖}, so we get that w ∈ ‖r2‖.

Soundness is now an immediate corollary of the previous lemma.

Theorem 5.10 (Soundness). Let r1, r2 be regular expressions. If the algorithm is run with r1 and r2 as input, and
returns “Yes”, then ‖r1‖ ⊆ ‖r2‖.

Proof. Since the input is r1 and r2 we know that r1 v r2 occurs in the corresponding execution graph. From Lemma 5.9
we then get that ‖r1‖ ⊆ ‖r2‖.

Since the rules are invertible, and, as seen above, the algorithm always terminates, we get completeness almost for
free.

Theorem 5.11 (Completeness). If ‖r1‖ ⊆ ‖r2‖, the algorithm will either accept r1 v r2, or it will report that the
1-ambiguity of r2 is a problem.

Proof. Since the rules are invertible, and the algorithm always terminates, all that remains is to show that for all
regular expressions r1 and r2, where their languages are in an inclusion relation, there is at least one rule instance with
conclusion r1 v r2. But this follows directly from Lemma 4.1.

6. Related Work and Conclusion

This paper is an extension of work in [11], and has previously appeared in the thesis [12]. Martens, Neven &
Schwentick study in [13] the complexity of the inclusion problem for several sub-classes of the regular expressions.
Colazzo, Ghelli & Sartiani, describe in [14] and [15] asymmetric polynomial-time algorithms for inclusion of a sub-
class of regular expressions called collision-free. The collision-free regular expressions have at most one occurrence
of each symbol from Σ, and the Kleene star can only be applied to disjunctions of letters. The latter class is strictly
included in the class of 1-unambiguous regular expressions. The main focus of Colazzo, Ghelli and Sartiani is on the
extensions of regular expressions used in XML Schemas. These extensions are not covered by the algorithm presented
here. Hosoya et al. [16] study the inclusion problem for XML Schemas. They also use a syntax-directed inference

19

system, but the algorithm is not polynomial-time. Salomaa [17] presents two axiom systems for equality of regular
expressions, but does not treat the run-time. The inference system used by our algorithm has some inspiration from
the concept of derivatives of regular expressions, first defined by Brzozowski [18]. The first use of derivatives for the
inclusion problem is by Brzozowski in [19]. Antimirov reinvents and details this approach in [20], as a term rewrit-
ing system for inequalities of regular expressions. Chen & Chen [21] adopt Antimirov’s algorithm to the inclusion
problem for 1-unambiguous regular expressions. They do not treat the left-hand and right-hand together in the way
the rules of the algorithm in this paper do. The analysis of their algorithm depends on both the left-hand and the
right-hand regular expressions being 1-unambiguous.

6.1. Conclusion
We have described a polynomial-time algorithm for language inclusion of regular expressions. The algorithm is

based on a syntax-directed inference system, and is guaranteed to give the correct answer if the right-hand expression
is 1-unambiguous. If the right-hand expression is 1-ambiguous the algorithm either reports an error or gives the correct
answer. In certain cases, irrelevant parts of the right-hand expression are automatically discarded. This is the main
advantage over the classical algorithms for inclusion. An implementation of the algorithm is available on the author’s
website.

7. Acknowledgments

This paper was written while the author was a PhD student at Department of Informatics, University of Bergen,
Norway. The paper has benefited greatly from the input of my adviser, Marc Bezem. I also wish to thank Federico
Mancini, Andrew Polonsky, and the anonymous reviewers.

7.1. Role of the Funding Source
This research has been funded by “The Research Council of Norway” through the project “Secure Heterogeneous

Information Presentation” in the VERDIKT program.

References
[1] A. R. Meyer, L. J. Stockmeyer, The equivalence problem for regular expressions with squaring requires exponential space, in: Proceedings

of FOCS, IEEE, 1972, pp. 125–129.
[2] J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages and Computation, Addison-Wesley, 1979.
[3] A. Nerode, Linear automaton transformations, Proceedings of the American Mathematical Society 9 (1958) 541–544.
[4] ISO 8879. Information processing — text and office systems — standard generalized markup language (SGML), 1986.
[5] A. Brüggemann-Klein, Regular expressions into finite automata, Theoretical Computer Science 120 (1993) 197–213.
[6] A. Brüggemann-Klein, D. Wood, One-unambiguous regular languages, Information and Computation 140 (1998) 229–253.
[7] V. M. Glushkov, The abstract theory of automata, Uspekhi Mat. Nauk 16 (1961) 3–62. Translated in [22].
[8] R. McNaughton, H. Yamada, Regular expressions and state graphs for automata, IRE Transactions on Electronic Computers 9 (1960) 39–47.
[9] M. Bezem, J. W. Klop, R. de Vrijer (Eds.), Term Rewriting Systems, Cambridge University Press, 2003.

[10] R. Book, S. Even, S. Greibach, G. Ott, Ambiguity in graphs and expressions, IEEE Transactions on Computers c-20 (1971) 149–153.
[11] D. Hovland, The inclusion problem for regular expressions, in: A. H. Dediu, H. Fernau, C. Martı́n-Vide (Eds.), LATA, volume 6031 of

Lecture Notes in Computer Science, Springer, 2010, pp. 309–320.
[12] D. Hovland, Feasible Algorithms for Semantics — Employing Automata and Inference Systems. http://hdl.handle.net/1956/4325,

Ph.D. thesis, Universitetet i Bergen, 2010.
[13] W. Martens, F. Neven, T. Schwentick, Complexity of decision problems for simple regular expressions, in: J. Fiala, V. Koubek, J. Kratochvı́l

(Eds.), MFCS, volume 3153 of Lecture Notes in Computer Science, Springer, 2004, pp. 889–900.
[14] D. Colazzo, G. Ghelli, C. Sartiani, Efficient asymmetric inclusion between regular expression types, in: R. Fagin (Ed.), ICDT, volume 361

of ACM International Conference Proceeding Series, ACM, 2009, pp. 174–182.
[15] G. Ghelli, D. Colazzo, C. Sartiani, Efficient inclusion for a class of xml types with interleaving and counting, in: M. Arenas, M. I.

Schwartzbach (Eds.), DBPL, volume 4797 of Lecture Notes in Computer Science, Springer, 2007, pp. 231–245.
[16] H. Hosoya, J. Vouillon, B. C. Pierce, Regular expression types for XML, ACM Trans. Program. Lang. Syst. 27 (2005) 46–90.
[17] A. Salomaa, Two complete axiom systems for the algebra of regular events, J. ACM 13 (1966) 158–169.
[18] J. A. Brzozowski, Derivatives of regular expressions, J. ACM 11 (1964) 481–494.
[19] J. A. Brzozowski, Roots of star events, J. ACM 14 (1967) 466–477.
[20] V. M. Antimirov, Rewriting regular inequalities (extended abstract), in: H. Reichel (Ed.), FCT, volume 965 of Lecture Notes in Computer

Science, Springer, 1995, pp. 116–125.
[21] H. Chen, L. Chen, Inclusion test algorithms for one-unambiguous regular expressions, in: J. S. Fitzgerald, A. E. Haxthausen, H. Yenigün

(Eds.), ICTAC, volume 5160 of LNCS, Springer, 2008, pp. 96–110.
[22] V. M. Glushkov, The abstract theory of automata, Russian Mathematical Surveys 16 (1961) 1–53.

20

http://hdl.handle.net/1956/4325

Appendix A. Proofs

For completeness, proofs of the Lemmas from Section 2 are given here.

Proof of Lemma 2.4. By induction on the regular expression r. The base cases r = ε and r ∈ Σ, and the induction case
where r is of the form r∗1 are immediate from Definitions 2.2 and 2.3.

For the induction case where r = r1+r2, we first treat the direction from left to right, that is, we assume ε ∈ ‖r1+r2‖,
and will prove that r ∈ NΣ. From Definition 2.2 this implies that ε ∈ ‖r1‖ or ε ∈ ‖r2‖. Using the induction hypothesis
we get that r1 ∈ NΣ or r2 ∈ NΣ. From Definition 2.3 we then get that r ∈ NΣ, as needed. For the other direction,
assume r1 + r2 ∈ NΣ. From Definition 2.3 we then get that r1 ∈ NΣ or r2 ∈ NΣ. But then the induction hypothesis
implies that ε ∈ ‖r1‖ or ε ∈ ‖r2‖. By using Definition 2.2 we then get that ε ∈ ‖r‖, as needed.

The induction case where r = r1 · r2 can be shown by replacing “+” with “·” and “or” with “and” in the previous
paragraph.

Proof of Lemma 2.5. We first prove first(r) = {l ∈ Σ | ∃w : lw ∈ ‖r‖} by induction on r. The base cases are immediate
from Definition 2.2 and Table 1. For the induction cases, we must also use the induction hypothesis for the subexpres-
sion(s) joined by the root operator. To prove that first(r) can be calculated in time O(|r| · |Σ|) we also use an induction
on r, applying Table 1 and the fact that the first-set is not larger than the alphabet, and therefore each of the union
operations can be done in time O(|Σ|).

Proof of Lemma 2.9. 1. We first show that for any r1 ∈ RΣ − {ε} and any r2 ∈ RΣ, header(r1, r2) is in header form
by induction on r1. If r1 is not a concatenation, then, since, r1 , ε, we get directly from the definitions that
header(r1, r2) = r1 · r2 is in header form. Otherwise, if r1 is of the form r′1 · r

′
2, we get that the result is a new

call to header where the first argument is r′1. Since we have assumed that ε prefixes are removed, r′1 , ε. Thus
we can apply the induction hypothesis to r′1 and get that the result is in header form.

Now, by definition hdf(r) = header(r, ε). If r = ε, hdf(r) = ε, which is in header form. Otherwise, we can use
the result above to get that header(r, ε) is in header form.

2. Since hdf(r) = header(r, ε) we only need to show that for any r1, r2 ‖header(r1, r2)‖ = ‖r1r2‖. The latter follows
almost directly from associativity of concatenation and neutrality of concatenation with ε.

3. If r = ε, hdf(r) = ε so we are done. Otherwise, since hdf(r) = header(r, ε), it is sufficient to prove by induction
on r ∈ RΣ − {ε} that for any r′1, . . . , r

′
m ∈ RΣ − {ε} there are r1, . . . , rn ∈ RΣ − {ε} such that

header(r, r′1 · · · r
′
m · ε) = r1 · · · rn · ε

If r is not a concatenation, then we get

header(r, r′1 · · · r
′
m · ε) = r · r′1 · · · r

′
m · ε

Otherwise, if r = r′′1 · r
′′
2 is a concatenation, we get a new call to header, where the first argument is r′′1 and

the second argument is of the form required by the induction hypothesis. (Recall that ε prefixes have been
removed). Therefore we can apply the induction hypothesis to get the result.

4. From the previous item, there are r1, . . . , rn ∈ RΣ − {ε} such that hdf(r) = r1 · · · rn · ε. If n = 0, the lemma holds
since hdf(ε) = header(ε, ε) = ε. Otherwise, we get from the definitions of hdf and header

hdf(hdf(r)) =

hdf(r1 · · · rn · ε) =

header(r1 · · · rn · ε, ε) =

header(r1, r2 · · · rn · ε) =

r1 · · · rn · ε =

hdf(r)

21

Proof of Lemma 2.12. 1. By induction on r. The base cases r = ε and r ∈ Σ are immediate from Definitions 2.2
and 2.11 and the definition of r[].

For the inductive case where r = r1 + r2, by Definition 2.11, µ(r1 + r2) = 1 ↓ µ(r1) + 2 ↓ µ(r2). Applying
Definition 2.2 to the latter we get ‖µ(r1 + r2)‖ = ‖1 ↓ µ(r1)‖ ∪ ‖2 ↓ µ(r2)‖. Hence, by definition of concatenating
a position with a regular expression, ‖µ(r1 + r2)‖ = 1 ↓ ‖µ(r1)‖ ∪ 2 ↓ ‖µ(r2)‖. By applying distributivity of
r[] over concatenation we get r[‖µ(r1 + r2)‖] = r[1 ↓ ‖µ(r1)‖] ∪ r[2 ↓ ‖µ(r2)‖]. Note now that for any i ∈ {1, 2}
and any q ∈ pos(ri), we have r[i ↓ q] = r[〈i〉][q] = ri[q]. Applying this we get r[‖µ(r1 + r2)‖] = r1[‖µ(r1)‖] ∪
r2[‖µ(r2)‖]. By applying the induction hypothesis we get r[‖µ(r1 + r2)‖] = ‖r1‖∪‖r2‖. Hence, by Definition 2.2,
r[‖µ(r1 + r2)‖] = ‖r1 + r2‖.

The inductive case where r = r1 · r2, can be shown by replacing “+” and “∪” with “·” in the previous paragraph.

For the inductive case where r = r∗1, by Definition 2.11, µ(r∗1) = (1 ↓ µ(r1))∗. Applying Definition 2.2 to
the latter we get ‖µ(r∗1)‖ =

⋃
0≤i‖1 ↓ µ(r1)‖i. Hence, by definition of concatenating a position with a regular

expression, ‖µ(r∗1)‖ =
⋃

0≤i(1 ↓ ‖µ(r1)‖)i. By applying distributivity of r[] over union and concatenation we get
r[‖µ(r∗1)‖] =

⋃
0≤i(r[1 ↓ ‖µ(r1)‖])i. Note now that for any q ∈ pos(r1), we have r[1 ↓ q] = r[〈1〉][q] = r1[q].

Applying this we get r[‖µ(r∗1)‖] =
⋃

0≤i(r1[‖µ(r1)‖])i. By applying the induction hypothesis we get r[‖µ(r∗1)‖] =⋃
0≤i‖r1‖

i. Hence, by Definition 2.2, r[‖µ(r∗1)‖] = ‖r∗1‖.

2. By induction on r. The base case r = ε holds vacuously. The base case r ∈ Σ holds immediately from
Definition 2.11. For the inductive cases where r = r1 · r2 or r = r1 + r2, we assume some p ∈ sym(µ(r)) and
proceed to show that µ(r)[p] = p. By Definition 2.11, sym(µ(r)) = 1 ↓ sym(µ(r1)) ∪ 2 ↓ sym(µ(r2)). Hence,
there is i ∈ {1, 2} and p′ ∈ sym(µ(ri)) such that p = i ↓ p′. By the induction hypothesis for ri, µ(ri)[p′] = p′,
hence (i ↓ µ(ri))[p′] = p. Since µ(r)[p] = (1 ↓ µ(r1) · 2 ↓ µ(r2))[i ↓ p′] = (i ↓ µ(ri))[p′] we get µ(r)[p] = p.
The inductive case where r = r∗1 is similar to the previous case, but easier.

3. By induction on r. The base cases, and the cases where p = 〈〉, hold directly from Definition 2.11.

For the inductive cases where r = r1 · r2 or r = r1 + r2, and p , 〈〉, there is i ∈ {1, 2} and p′ ∈ pos(ri) such
that p = i ↓ p′. We have r[p] = ri[p′] and that p ∈ sym(µ(r)) iff p′ ∈ sym(µ(ri)). Hence, the lemma holds by
applying the induction hypothesis for ri.

For the inductive case where r = r∗1 and p , 〈〉, we can use the same argument as in the previous case, except
that i is set to 1.

Proof of Lemma 2.15. First we prove by induction on r1, where r1 , ε, that if r1 · r2 is 1-unambiguous, then
header(r1, r2) is 1-unambiguous. The cases where r1 , ε is not a concatenation hold immediately, as header(r1, r2) =

r1 · r2. For the remaining cases, there are n ≥ 1 and r′1, . . . , r
′
n ∈ RΣ − {ε} such that either n ≥ 2, r1 = r′1 · · · r

′
n, and r′n is

not a concatenation, or r1 = r′1 · · · r
′
n · ε. We first show that r′1 · · · r

′
n · r2 is 1-unambiguous. Let u, p, q, v,w as in Defini-

tion 2.14 such that u·p·v, u·q·w ∈ ‖µ(r′1 · · · r
′
n ·r2)‖ and (r′1 · · · r

′
n · r2)[p] = (r′1 · · · r

′
n · r2)[q] ∈ sym(µ(r′1 · · · r

′
n ·r2)). Note

now that the u, p, q, v,w can easily be modified to get u′, p′, q′, v′,w′ such that p = q⇔ p′ = q′, u′ · p′ · v′, u′ · q′ ·w′ ∈
‖µ(r1 · r2)‖, and (r1 · r2)[p′] = (r1 · r2)[q′]. But since r1 · r2 1-unambiguous by assumption, we get from Definition 2.14
that p′ = q′. Therefore p = q. Thus r′1 · · · r

′
n · r2 is 1-unambiguous. By the induction hypothesis on r′1 this implies that

header(r′1, r
′
2 · · · r

′
n · r2) is 1-unambiguous. Hence, header(r1, r2) = header(r′1, r

′
2 · · · r

′
n · r2) is 1-unambiguous.

Secondly, we prove that if r , ε and r is 1-unambiguous, then also r · ε is 1-unambiguous. Take any u, p, q, v,w
as in Definition 2.14 for r · ε such that u · p · v, u · q · w ∈ ‖µ(r · ε)‖ and (r · ε)[p] = (r · ε)[q]. It is easy to see that
there are u′, p′, q′, v′,w′ such that u = 1 ↓ u′, p = 1 ↓ p′, q = 1 ↓ q′, v = 1 ↓ v′, and w = 1 ↓ w′. This implies that
u′ · p′ · v′, u′ · q′ · w′ ∈ ‖µ(r)‖ and r[p′] = r[q′]. We can use Definition 2.14 for r to get p′ = q′. Therefore p = q and
r · ε is 1-unambiguous.

Finally, if r = ε, hdf(r) = ε is 1-unambiguous. Otherwise, if r , ε, we have by the previous paragraph that r · ε is
1-unambiguous. By the paragraph above, this implies that header(r, ε) is 1-unambiguous. Since hdf(r) = header(r, ε)
we get that hdf(r) is 1-unambiguous.

22

Proof of Lemma 2.16. We first prove by induction on r that if r is in star normal form, and r is ambiguous, then there
are u, u′ ∈ ‖µ(r)‖ such that u , u′ but r[u] = r[u′]. The base cases hold vacuously.

For the induction case where r = r1 + r2, there must be a word w which is either generated in two ways by r1 or
by r2, or which is generated by both r1 and r2. In the former case, it suffices to use the induction hypothesis for r1 or
r2. In the latter case, we get u ∈ ‖µ(r1)‖ and u′ ∈ ‖µ(r2)‖ such that r1[u] = w = r2[u′]. Hence, r[1 ↓ u] = w = r[2 ↓ u′]
and 1 ↓ u , 2 ↓ u′.

For the induction case where r = r1 · r2, let w be a witness that r is ambiguous. There must be w1 ∈ ‖r1‖ and
w2 ∈ ‖r2‖ such that w = w1 · w2. For i ∈ {1, 2}, if wi can be generated in two ways by ri, we get the result by the
induction hypothesis for ri. Otherwise, we get w′1 ∈ ‖r1‖ and w′2 ∈ ‖r2‖ such that w1 , w′1, w2 , w′2 and w = w′1 · w

′
2.

Furthermore, there are u1, u′1 ∈ ‖µ(r1)‖ and u2, u′2 ∈ ‖µ(r2)‖ such that w1 = r1[u1], w′1 = r1[u′1], w2 = r2[u2], and
w′2 = r2[u′2]. Hence, r[1 ↓ u1 · 2 ↓ u2] = r[1 ↓ u′1 · 2 ↓ u′2] and 1 ↓ u1 · 2 ↓ u2 , 1 ↓ u′1 · 2 ↓ u′2.

For the induction case where r = r∗1, let w be a witness that r∗1 is ambiguous. Note that ε can only be generated
in one way, since r is in star normal form and r1 < NΣ. Hence, w , ε, and there must be w1, . . . ,wn ∈ ‖r1‖ such
that w = w1 · · ·wn. If one of the wi’s is generated in two ways by r1 we get the result from the induction hypothesis
for r1. Otherwise, there must be w′1, . . . ,w

′
m ∈ ‖r1‖ different from w1, . . . ,wn such that w = w′1 · · ·w

′
m. Then there is

i such that wi , w′i , but for 0 < j < i, w j = w′j. Hence, there is l ∈ Σ and w′ ∈ Σ∗ such that either wi = w′i lw
′ or

wilw′ = w′i . The cases are symmetric, so we treat only wi = w′i lw
′. Then there are u1, . . . , un, u′1, . . . , u

′
m ∈ ‖µ(r1)‖ such

that ∀ j ∈ {1, . . . , n} : w j = r1[u j] and ∀ j ∈ {1, . . . ,m} : w′j = r1[u′j]. Hence, r[1 ↓ (u1 · · · un)] = w = r[1 ↓ (u′1 · · · u
′
m)].

There are also p, p′ ∈ sym(µ(r1)) and u′, u′′, u′′′ ∈ sym(µ(r1))∗ such that ui = u′pu′′, u′i+1 = p′u′′′, l = r1[p] = r1[p′],
w′ = r1[u′′], and w′i = r1[u′]. Since p′u′′′ ∈ ‖µ(r1)‖, p′ ∈ first(µ(r1)). If u′i , u′ we get immediately u′1 · · · u

′
m ,

u1 · · · un and we are done. Otherwise, since u′i , u
′
i pu′′ ∈ ‖µ(r1)‖, we get p ∈ followLast(µ(r1)). Since r is in star normal

form p , p′, hence u′1 · · · u
′
m , u1 · · · un.

We now proceed to show that the class of 1-unambiguous regular expressions is included in the class of unam-
biguous regular expressions. We prove the contra-positive statement. We assume that r is ambiguous and proceed
to show that r is 1-ambiguous. If r is not in star normal form, we get that r is 1-ambiguous from Definitions 2.14
and 2.13. Otherwise, we get from the arguments above u, u′ ∈ ‖µ(r)‖ such that u , u′ but r[u] = r[u′]. Let u1 be the
longest common prefix of u and u′. Then there are p, q, v,w such that u1 pv, u1qw ∈ ‖µ(r)‖, p , q and r[p] = r[q]. By
Definition 2.14 this means r is 1-ambiguous.

23

	Introduction
	Regular Expressions
	Term Trees and Positions
	1-Unambiguous Regular Expressions

	Rules for Inclusion
	Properties of the Algorithm
	1-Unambiguity and the Rules
	Invertibility of the Rules
	Termination and Polynomial Run-time

	Soundness and Completeness
	Related Work and Conclusion
	Conclusion

	Acknowledgments
	Role of the Funding Source

	Proofs

