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Key Messages 

• Thermochemical mantle plumes are an integral part of a dynamic Earth’s interior. 1 

• Many mantle plumes originate from the deepest regions in Earth’s mantle. 2 

• Mantle plumes influence surface processes, including Earth’s environment and climate. 3 

1. Abstract 

The existence of mantle plumes to explain intra-plate, hotspot volcanism was proposed half a century ago, 4 

but their role in Earth's mantle dynamics has been debated. Since then, our understanding of mantle 5 

processes has been informed by progress in seismic imaging, modelling of mantle flow in numerical and 6 

laboratory experiments, plate tectonic reconstructions, as well as the collection and interpretation of 7 

isotopic and geochronological data in ocean island basalts (OIB) and continental hotspot tracks. While the 8 

fine-scale structure of mantle plumes has yet to come into focus, seismological evidence for their 9 

presence, rooted at the core-mantle boundary, as proposed by Morgan (1971), is mounting. The classical 10 

model of purely thermal mantle plumes with narrow (~200 km) stems and large heads, rising vertically 11 

through the mantle right underneath all hotspot volcanoes, has been refined. Improved models 12 

substantiate that some plumes are thermochemical and can attain complex and broader shapes, that 13 

plumes are often not stationary but deflected in the mantle wind, and that many—but not all—plumes are 14 

rooted in a dense basal layer, likely of different composition than bulk mantle, and often as part of large 15 

regions characterized by anomalously low seismic velocities. Here, we review the recent evolution in our 16 

understanding of the morphology and composition of plumes, their role in global mantle convection, as 17 

well as how mantle plumes contribute to the long-term evolution of the mantle, and how they may impact 18 

climate, ocean chemistry, global biosystem evolution, and continental break-up. Our understanding of the 19 

nature and impact of mantle plumes has increased markedly, but more work is required to arrive at a 20 

deeper understanding of Earth’s dynamic interior as connected to a large range of surface processes. 21 

2. Introduction 

Originally proposed to explain the existence of linear chains of intra-plate volcanoes with ages increasing 22 

in the direction of plate motion (Wilson 1963), mantle plumes have been classically defined as narrow, 23 

thermal upwellings, with large plume heads, as expected in a temperature dependent viscosity fluid of 24 

uniform composition that is heated from below. These plumes could start as deep as the core-mantle 25 

boundary (Morgan 1971) at roughly 2,900 km depth, rising to the base of Earth’s lithosphere over tens of 26 

millions of years (Figure 1a). Here, partial melting of the plume material may result in magmatism that 27 

creates large igneous provinces (LIPs) and age-progressive volcanic chains for the plume head and tail, 28 
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respectively. This intra-plate volcanism, which typically forms away from and seemingly independent of 29 

major plate tectonic boundaries, may be the only means of directly sampling materials from the deepest 30 

mantle, and as such provides a unique ‘window’ into the workings and makeup of Earth’s interior. 31 

 Mantle upwellings, as an integral part of a convecting Earth, were first invoked in the first half of 32 

the 20th century. Alfred Wegener’s (1915) theory that continents drift over geological time required a 33 

driving mechanism that by some was imagined to involve whole mantle convection (Holmes 1928; 1931). 34 

The plate tectonics revolution in the 1960s provided an explanation for volcanism on plate boundaries, 35 

but not in the middle of plates. J. Tuzo Wilson (1963) and W. Jason Morgan (1971) hypothesized that the 36 

volcanic islands of Hawaii formed on a rigid tectonic plate moving over a ‘hotspot’ in the Earth’s 37 

asthenosphere, centered above a vertical, narrow, hot mantle plume from the deep mantle. Coming full 38 

circle, the deep mantle sources of these plumes were later connected to the existence of recycled ‘old’ 39 

oceanic lithosphere (and sediments) that were conveyed to Earth’s deep interior via subduction and, over 40 

the course of hundreds of millions to billions of years, returned to the surface (Hofmann and White 1982; 41 

White and Hofmann 1982; Zindler and Hart 1986). If mantle plumes exist, the studies of their volcanic 42 

surface products, therefore, provide key insights into mantle dynamics, as well as insights into the 43 

convective scales of Earth’s very deep interior near the core-mantle boundary, and into the global 44 

geochemical cycle governed by downwelling at subduction zones and upwelling from a variety of large-45 

scale chemical mantle reservoirs.  46 

 The dynamics of mantle upwellings and their relation with hotspots are still debated. It is unclear 47 

whether hotspot volcanism is sourced by broad upwellings, or narrower upwellings in the form of mantle 48 

plumes, or both. It is also debated whether some kinds of upwellings are confined to the upper mantle 49 

alone, above the seismic 660 km mantle discontinuity, or whether they are all sourced much deeper from 50 

near the core-mantle boundary (e.g. Richards et al. 1989; Davaille 1999; Steinberger 2000; Courtillot et 51 

al. 2003; Schubert et al. 2004; Koppers 2011; Anderson 2013; Anderson and Natland 2014; Konrad et al. 52 

2018a). How many mantle plumes exist, their longevity, dynamic behavior, and chemical make-up, are 53 

still poorly understood. While advocates for an important role of plumes in the physical and chemical 54 

evolution of the planet argue for connections between large-scale Earth processes, plate tectonics and 55 

volcanism, seismic tomography has only recently (Nelson and Grand 2018) imaged the first conduit that 56 

is sufficiently narrow that it could be a purely thermal mantle plume as proposed by Wilson and Morgan. 57 

Opponents of the plume concept have argued that, alternatively, near-surface processes, limited to Earth's 58 

lithosphere, may explain the same observations (Foulger and Natland 2003; Anderson 2013). 59 
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60 

Figure 1: Dynamic Nature of Earth’s Interior. (left) Schematic cross-section through Earth’s interior, 61 

depicting the key components of plume generation and upwelling near, above, and along the edges of a 62 

Large Low Shear Velocity Province (LLSVP). Modified after Yuen and Romanowicz (2017). (right) 63 

Schematic cross-section of a plume root showing entrainment of possible mantle components at the edge 64 

of an LLSVP and centered above an Ultra-Low Velocity Zone (ULVZ) that may be a unique deep mantle 65 

locality containing partial melt. Modified after Torsvik et al. (2016). 66 

 Over the last decades, advanced computer modeling and laboratory experiments have shown how 67 

entrainment of chemical heterogeneity may change the physical and chemical characteristics of plume 68 

conduits, causing large variations in the behavior of the resulting ‘thermochemical’ plumes that are 69 

dependent on various plate tectonic and geophysical boundary conditions (e.g. Olson and Yuen 1982; 70 

Davaille 1999; Davaille et al. 2002; Jellinek and Manga 2004; Ballmer et al. 2011; Davies 2005; 71 

Deschamps et al. 2011; Tan et al. 2011; Bossmann and van Keken 2013; Hassan et al. 2015). At the same 72 

time, seismic tomography studies have pointed out the existence of two large anomalous domains in the 73 

deepest parts of the mantle that show lower seismic velocities than surrounding regions (e.g. Dziewonski 74 

and Woodhouse 1987; Li and Romanowicz 1996; Grand et al. 1997; van der Hilst et al. 1997; Su and 75 

Dziewonski 1997; Masters et al. 2000; Ritsema et al. 2011). These domains are now referred to as "large 76 

low shear velocity provinces" (LLSVPs) and some studies have proposed that they function as primary 77 

plume nurseries. Notably, recent mantle tomography studies have shown the existence of broader ‘plume 78 

like’ structures extending from the deep mantle in the vicinity of some hotspot volcanoes (Montelli et al. 79 

2006; Boschi et al. 2008; French and Romanowicz 2015; Lei et al. 2020).  80 
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 In this review, we discuss progress in imaging deep mantle structures, understanding their 81 

potential role in mantle plume formation, and modeling the shapes and behaviors of plumes depending on 82 

composition, rheology, and other boundary conditions. We discuss how the composition of oceanic island 83 

basalts increases our knowledge of deep mantle reservoirs and may provide geochemical evidence for 84 

plumes generated at the core-mantle boundary. We also discuss how paleomagnetic and age information 85 

in seamount chains inform past plate and plume motions, how and if true polar wander of our planet may 86 

happen given the observed overall mantle structure and behavior, and how continental break up and the 87 

formation of new ocean basins may occur when mantle plumes impinge on the base of Earth’s 88 

lithosphere. Finally, we discuss how mantle plumes can influence the state of Earth’s climate and ocean 89 

health on geological timescales.  90 

3. Deep Mantle Superstructures 

Based on today’s global seismic tomography models we can recognize two large-scale features with 91 

anomalously low seismic velocities in the deepest parts of the mantle. Although the general outlines and 92 

locations underneath the Pacific and below Africa are generally agreed upon, the makeup and origin of 93 

these features (continuous piles versus plume bundles) are still debated as well as their role in the 94 

generation of plumes and hotspots (plume nurseries).  95 

3.1 Continuous Piles versus Plume Bundles 

The very first tomographic images of the Earth's lower mantle revealed the presence of a very long 96 

wavelength structure at the base of the mantle (degrees 2 and 3 in spherical harmonics expansion) anti-97 

correlated with that observed in the gravity field (Dziewonski et al. 1977). The authors proposed two 98 

possible explanations for the unexpected sign of this correlation. The first is a dynamic interpretation in 99 

terms of thermal anomalies and core-mantle boundary (CMB) deflections due to mantle-wide convection; 100 

and the second involves lateral variations in composition due to the presence of eclogite-rich material in 101 

regions of past subduction and/or chemical plumes originating near the CMB. While these suggestions 102 

were quite speculative at the time, they are still actively pursued. The correlation, at large scale, of 103 

seismic structure in the deep mantle with anomalies in Earth’s geoid and subduction zone configuration 104 

on the one hand (e.g. Hager et al. 1985; Dziewonski and Woodhouse 1987) and the distribution of 105 

hotspots and superswells on the other (Anderson 1982; Davies 1988; Richards et al. 1988; Richards and 106 

Engebretson 1992; Larson 1991a; Larson 1991b; McNutt 1998) was established soon thereafter.  107 

 Scores of seismic studies have since then confirmed the presence of LLSVPs and interpreted the 108 

seismically fast areas elsewhere as the remnants of the downgoing slabs from present and past subduction 109 

zones (Ricard et al. 1993; Lithgow-Bertelloni and Richards 1998), with a time-depth progressive 110 
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correlation demonstrated for the last 130 million years (Domeier et al. 2016). Recent tomographic models 111 

show considerable agreement on the extent of the LLSVPs and the shape of their borders when filtered up 112 

to spherical harmonics degree 16, or roughly 2,500 km wavelengths (Becker and Boschi 2002; Lekic et 113 

al. 2012). While the low seismic velocities within the LLSVPs indicate they are likely hot, the anti-114 

correlation of bulk-sound and shear velocity within them (Su and Dziewonski 1997; Kennett et al. 1998; 115 

Masters et al. 2000) as well as the sharpness of their borders (e.g. Ni et al. 2002; Wang and Wen 2004; 116 

To et al. 2005) suggests that they may include a compositional and denser component, although the 117 

necessity of the latter has been questioned (Schuberth et al. 2009; Davies et al. 2012). If parts of the 118 

LLSVPs are denser than their surroundings (Ishii and Tromp 2004; Simmons et al. 2010) this would help 119 

resist entrainment in mantle convection and mixing with the overlying mantle and perhaps facilitate their 120 

survival over hundreds of millions of years (e.g. Mulyukova et al. 2015), and perhaps throughout most of 121 

Earth history, if they, at least partly represent primordial reservoirs (e.g. Ballmer et al. 2016). However, 122 

resolving the density structure in LLSVPs is challenging (Romanowicz 2001; Trampert et al. 2004) and 123 

different inferences on their effective density (Lau et al. 2017; Koelemeijer et al. 2017) might be due to 124 

thermal effects offsetting intrinsic density contrasts depending on the scale (e.g. McNamara 2019).  125 

 The distinct composition of LLSVPs could be due to the presence at the base of the mantle of a 126 

reservoir of primitive material, as might be suggested by studies that relate high 3He/4He hotspots to 127 

plumes originating near the CMB (e.g. Macpherson et al. 1998; Williams et al. 2019; Mundl et al. 2017; 128 

Mundl-Petermeier et al. 2019; 2020) or to an accumulation of eclogite from subducted crust (e.g. 129 

Mulyukova et al. 2015), or some depth-dependent stratification of both (e.g. Ballmer et al. 2016). But it 130 

remains unclear whether the LLSVPs are compact, continuous piles of compositionally distinct material 131 

(e.g. McNamara and Zhong 2005; Steinberger and Torsvik 2012; Li and Zhong 2017) where mantle 132 

plumes are generated across their tops and along their edges, or whether LLSVPs represent two bundles 133 

of closely-spaced thermo-chemical plumes (Schubert et al. 2004; Davaille and Romanowicz 2020) 134 

separated by a ring of downwellings constrained by the geometry of tectonic plates at the surface (Zhang 135 

et al. 2010; Bull et al. 2014). This remains a subject of debate (e.g. Garnero et al. 2016; McNamara 2019; 136 

Heron et al. 2019; Davaille and Romanowicz 2020).  137 

3.2 Mantle Plume Nurseries 

Also debated are whether or not plumes in general, or those leading to LIPs, originate primarily along the 138 

edges of LLSVPs (Thorne et al. 2004; Boschi et al. 2007; Tan et al. 2011; Steinberger and Torsvik 2012; 139 

Davies et al. 2015a; Austermann et al. 2014; Hassan et al. 2015; Doubrovine et al. 2016). As the LLSVP 140 

edges are defined by sharp vertical and horizontal gradients in seismic shear-wave velocities (Ni et al. 141 

2002; To et al. 2005; Frost and Rost 2014) and plumes and reconstructed LIP locations tend to occur 142 
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close to vertically above them, they are proposed by some to act as ‘plume generation’ zones (Figure 1b) 143 

for all major hotspots and LIPs that have been active and remained approximately in place over at least 144 

the last 200 million years (Burke and Torsvik 2004; Torsvik et al. 2006; Burke et al. 2008). However, this 145 

is particularly difficult to determine in the case of the rather narrow African LLSVP (Figure 2). 146 

Interestingly, the roots of at least some of the LLSVP-rooted plumes do seem to contain unusually large 147 

ultra-low-velocity zones (ULVZs) (Hawaii: Cottaar and Romanowicz 2012; Samoa: Thorne et al. 2013; 148 

Iceland: Yuan and Romanowicz 2017; Marquesas: Kim et al. 2020) that are indicative of a 149 

compositionally different, likely denser component (Rost et al. 2005), possibly due to the presence of 150 

partial melt (Williams and Garnero 1996) or at least iron enrichment (Mao et al. 2006). 151 

 152 
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Figure 2: Mantle Plume Locations and LLSVPs. Global maps linking surface hotspots (circles) with 153 

depth-projected bottom source locations (diamonds) of mantle plumes (modified from Boschi et al. 154 

2007). Background coloring is shear wave anomaly at 2,875 km depth depicting where the two LLSVPs 155 

are located beneath Africa and the mid Pacific. The SMEAN composite (Becker and Boschi 2002) and 156 

SEMUCB-WM1 (French and Romanowicz 2014; 2015) models illustrate evolving tomographic views of 157 

the LLSVPs with the latter model supporting the view that LLSVPs are more granular, potentially 158 

indicating that LLSVPs are bundles of closely-spaced plumes instead of large piles. The maps suggest 159 

that most plumes originate above LLSVPs with a smaller group (Bowie, Cobb, Guadelupe and Socorro in 160 

the eastern Pacific) forming away from these lower mantle anomalous regions. The δ metric in the upper 161 

color bar is used to color hotspots and inferred plume base locations; it is the normalized conduit length as 162 

identified in tomography where zero means that none and unity means that 100% of the plume length are 163 

mapped. The δVs in the lower color bar is the amplitude of the seismic shear velocity anomaly. 164 

4. Mantle Plume Characteristics 

In this section, we review the key characteristics of mantle plumes. We will discuss how we know that 165 

plumes exist (imaging plumes) and what is the expected makeup and behavior of plume heads and tails 166 

(plume generation and ascent). From this a distinct picture emerges in which plumes are persistent 167 

features given the deep mantle conditions that occur in Earth today and, at least, over the last few 168 

hundreds of millions of years. 169 

4.1 Imaging Mantle Plumes 

Where seismic tomography more easily picks up large-scale LLSVP superstructures and faster subducting 170 

slabs, imaging seismically slower ‘tubular’ mantle plumes in the ocean domain is challenging (Ritsema 171 

and Allen 2003; Sleep 2006). Within the framework of purely thermal convection with temperature-172 

dependent viscosity in a fluid heated from below, a ‘thermal’ mantle plume conduit may only be 100-200 173 

km in diameter in the upper mantle but increase to more than 400 km in diameter in the lower half of the 174 

mantle that has a significantly higher viscosity (e.g. Steinberger and Antretter 2006). Plume detection is 175 

difficult because of a limited resolution in seismic tomography, especially due to a lack of earthquake 176 

sources and receiver stations in the ocean basins, and wavefront healing effects that hide low velocity 177 

domains of small diameter when classical travel time tomography is applied. The Iceland plume at first 178 

could only be seen in the upper mantle with an upwelling broader than expected (Wolfe et al. 1997; Allen 179 

et al. 2002). Similarly, imaging of the Hawaii plume originally resulted in the detection of a broad, 180 

inclined upwelling, disappearing from view below 1,500 km mantle depths (Montelli et al. 2004; Montelli 181 

et al. 2006; Wolfe et al. 2009). Generally, teleseismic travel time tomography has found plume-like 182 
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conduits of at least 400 km diameter in earlier studies (Nolet et al. 2005; Bijwaard and Spakman 1999). In 183 

more recent, higher resolution models, such broader plume-like conduits are found beneath many major 184 

hotspots, appear to be rooted near the CMB and rise all the way through the lower mantle, reaching upper 185 

mantle depths in the vicinity of hotspots (Boschi et al. 2008; French and Romanowicz 2015; Lei et al. 186 

2020). Their larger than ~500 km diameter (accounting for smearing due to the inversion process) 187 

indicates that they are likely thermochemical rather than purely thermal (French and Romanowicz 2015; 188 

Davaille et al. 2018) and most of these broad conduits are observed over the LLSVPs. 189 

 Anomalies in the travel times of seismic core waves, recorded by the dense USArray seismic 190 

network in North America, now also reveal a lower-mantle plume beneath the Yellowstone hotspot 191 

(Nelson and Grand 2018) that is probably unrelated to the Pacific LLSVP. This is a unique case study as 192 

Yellowstone is so far the only plume where the predicted tilted conduit shape can be matched in detail 193 

with a tomographic conduit image (Steinberger et al. 2019b). In the absence of individual conduits 194 

resolved at that time for most hotspots, Boschi et al. (2007) found that modeled plume conduits that take 195 

into account the effects of advection, and the associated displacement of plume sources at the base of the 196 

mantle, agree better with tomographic results than vertical conduits. The correlation of negative 197 

anomalies in seismic tomography with predicted plume conduits is indeed statistically highly significant 198 

(Boschi et al. 2008) and provides the counterpart to the correlation between mantle tomography and 199 

forward models of subduction (e.g. Steinberger et al. 2012). In addition, and different from 200 

geodynamically modelled conduits that tend to be tilted throughout the entire mantle (e.g. Steinberger 201 

2000; Steinberger and Antretter 2006), French and Romanowicz (2015) imaged plumes that are nearly 202 

vertical in much of the lower mantle, but some are strongly tilted above 1,000 km depth. This difference 203 

between geodynamic models and seismic observations should provide important constraints on mantle 204 

rheology. Such a strong tilt above ~1,000 km is also found for the Yellowstone plume (Nelson and Grand 205 

2018). This may indicate that current mantle flow models are overestimating overall flow speeds below 206 

~1,000 km depth relative to rising speeds of plume heads and tails, and underestimating flow speeds 207 

above this horizon.  208 

 Recent global seismic tomography indicates that both downgoing slabs (e.g. Fukao and Obayashi 209 

2013) and upwellings, as manifested by broad plume conduits (e.g. French and Romanowicz 2015; Lei et 210 

al. 2020) appear to be deflected horizontally not only around 660 km depth—where we know there is a 211 

seismic discontinuity that corresponds to the phase transition from ringwoodite to bridgmanite and 212 

oxides—but also around 1,000 km depth. This is accompanied by a decorrelation between the longest 213 

wavelength seismic structures in the extended transition zone (400-1,000 km) and the deeper mantle (e.g. 214 

Rudolph et al. 2015), which is visible even in lower resolution seismic mantle models and indicated by 215 

seismic data suggesting vertical decorrelation at ~800 km depth (Boschi and Becker 2011). This implies a 216 
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change of material properties that may not coincide with the 660 km discontinuity, and could be 217 

explained by an increase in mantle viscosity somewhat deeper than traditionally considered, given the 218 

rather non-unique constraints provided by geoid and post-glacial rebound data (e.g. King and Masters 219 

1992; Mitrovica and Forte 2004). 220 

 In summary, while there is still progress to be made in resolving the details of plume-like 221 

conduits, and in particular their actual diameter, seismic tomography has already shown the presence of 222 

mantle plumes below major hotspots, rooted at the core-mantle boundary, although the roots are generally 223 

shifted horizontally from the location of the corresponding hotspots due to plume conduit tilting in the 224 

upper third of the mantle. Most importantly, they are typically not the simple, purely thermal plumes that 225 

geophysicists have been hunting for. Such classical thermal plumes with narrow tails ~200 km in 226 

diameter (Farnetani 1997) but possibly reaching ~400 km in parts of the lower mantle are not ruled out, 227 

but they are probably mostly below the resolution of current global seismic tomography. Moreover, the 228 

broad plumes currently detected do not rise vertically from the CMB to the corresponding hotspot, they 229 

show significant deflections in primarily the upper 1,000 km of the mantle, likely due to mantle wind as 230 

predicted by geodynamic computations (Steinberger and O’Connell 1998; Steinberger 2000).  231 

4.2 Models of Plume Generation and Ascent 

Localized hot upwelling plumes are expected in any terrestrial-type planet mantle, where convection 232 

operates with some amount of bottom heating, or where other domains with concentrated heat production 233 

can sustain a thermal boundary layer (Box 1). Differences in temperature and/or composition will cause 234 

variations in density that may result in thermochemical instabilities near boundary layers as the beginning 235 

of an upwelling and, when it persists, a rising mantle plume (e.g. Jellinek and Manga 2004).  236 

Box 1: Dynamic Simulations of Plume Behavior in ‘Earth-like’ Planets. Although thermal instabilities 237 

at the core-mantle boundary are inevitable, conditions in Earth’s mantle are such that they cannot grow 238 

undisturbed. Rather, mantle flow driven by slabs, many of which are subducted to the deep lower mantle 239 

and piled up into ‘slab graveyards’ (Ricard et al. 1993; Lithgow-Bertelloni and Richards 1998; 240 

Steinberger et al. 2012; Mulyukova et al. 2015; van der Meer et al. 2018; Domeier et al. 2016) will 241 

trigger plumes, characteristically above Large Low Shear Velocity Provinces (LLSVP) and along their 242 

edges (Tan et al. 2002; Steinberger and Torsvik 2012; Hassan et al. 2015; Li and Zhong 2017). The left-243 

hand panel shows the results of a 3D and time-dependent numerical model with plumes (blue) rising from 244 

a LLSVP situated below southern Africa (Hassan et al. 2015). Rising from LLSVP margins, plumes in 245 

this model are significantly hotter than surrounding mantle, starting out with large temperature anomalies 246 

of about 500° K in the lowermost mantle, as shown in the right-hand panel (Dannberg and Gassmöller 247 
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2018). The plumes will slowly cool down when they rise, with smaller plumes losing a larger fraction of 248 

their heat on the way up through the mantle. However, larger plumes will retain their heat better (Albers 249 

and Christensen 1996; Zhong 2006; Leng and Zhong 2008) with estimated excess plume temperatures of 250 

200-300 °K at asthenospheric depths for Hawaii (Moore et al. 1998; Ribe and Christensen 1999; Schubert 251 

et al. 2001). 252 

  253 

 Typical ‘thermal’ mantle plumes in Earth will have a broad plume head, up to roughly thousand 254 

kilometers in diameter, followed by a narrow plume tail, not wider than a couple of hundred kilometers 255 

(e.g. Richards et al. 1989; Sleep 1990; Coffin and Eldholm 1994; Davaille 1999; Campbell 2007). These 256 

plumes can persist over long geological times, but only if the thermal boundary layer from which they 257 

arise is also maintained for hundreds of millions of years (Sleep 2003; Tan et al. 2002; Jellinek and 258 

Manga 2004; Burke et al. 2008). In fact, for plumes to keep rising through the entire mantle, a lower limit 259 

of ~500-1000 kg/s of anomalous mass flux is required to sustain the plume tails (Albers and Christensen 260 

1996). Rising plumes from near the LLSVPs are expected to be buoyant due to their hotter temperatures, 261 

but if they entrain chemically distinct materials from the LLSVPs that are heavier than surrounding 262 

mantle (Lau et al. 2017) then their buoyancies may be substantially reduced (Lin and van Keken 2006a; 263 

Mulyukova et al. 2015). The anomalous density of LLSVPs (Lau et al. 2017; Koelemeijer et al. 2017) 264 

and the nature of the entrainment of other materials during plume ascent (e.g. Farnetani 1997; McNamara 265 

and Zhong 2004) are still debated. Because of time-dependent and variable amounts of entrainment, 266 

highly complex plume behavior and shapes (Figure 3) may result that substantially differ from the 267 

classical head-and-tail structure (Farnetani and Samuel 2005; Lin and van Keken 2006b; Kumagai et al. 268 

2008). For example, negative buoyancy of (denser) material entrained from LLSVPs in plume heads may 269 
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cause material to sink back into the ascending plume (Ballmer et al. 2013; Dannberg and Sobolev 2015) 270 

leading to broader plume conduits that are a few hundred kilometers wider than typical thermal plumes.  271 

 How long it takes for a plume head to traverse the mantle after forming at the core-mantle 272 

boundary is difficult to estimate. It primarily depends on its buoyancy, arising from a density contrast of 273 

about 30 kg/m3 for thermal plumes, but which could be much less for thermochemical plumes, and the 274 

average viscosity of the surrounding mantle. Widely discrepant estimates exist for mantle viscosity, as it 275 

may be (locally) controlled by variations in temperature and stress that may render global average 276 

viscosity estimates not applicable for plumes (e.g. Larsen and Yuen 1997). One traversal time estimate 277 

can be made because reconstructed LIP eruptions are correlated with LLSVP margins and therefore LIPs 278 

are hypothesized to erupt from those margins. But in order for that correlation to be maintained during 279 

their rise through the mantle, plume heads must rise up from the lower mantle rather fast, probably within 280 

30 million year or less, to avoid large lateral deflections, consistent with numerical models (e.g. Hassan et 281 

al. 2015). However, for smaller plume heads, such as for the Yellowstone plume—which is not associated 282 

with the Pacific LLSVP and is located in a region dominated by subduction—it is estimated that its plume 283 

head rose more slowly, taking 80 million years or longer (Steinberger et al. 2019b). Plumes rise therefore 284 

considerably faster than slab sink, at estimated speeds of 1-2 cm/yr, such that slabs require ~150-200 285 

million years to reach the bottom of the mantle (Steinberger et al. 2012; Hassan et al. 2015; Butterworth 286 

et al. 2014; Van der Meer et al. 2018). In addition, during ascent, the even more slowly rising plume 287 

conduits are predicted to become increasingly tilted with time, as their roots become shifted towards 288 

large-scale upwellings, likely above the two LLSVPs (Steinberger and O’Connell 1998; Steinberger 289 

2000). 290 

     291 

Figure 3: A Gallery of Rising Thermal and Thermochemical Plumes. From left to right: Laboratory 292 

model of rising thermal plume head, connected by a stem to the source region (Campbell et al. 1989); 293 

four numerical models of one axisymmetric thermal and three thermochemical plumes (Lin and van 294 

Keken 2006a) with colors representing temperature (magenta=hottest; yellow=coolest) and entrained 295 

material (white) with variable chemical excess densities of 200, 50 and 60 (from left to right) kg/m3 in left 296 
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half of the visualized plume conduits; and a laboratory syrup tank model of a plume that partially fails 297 

when entrained materials (that are too heavy) collapse in the top of the conduit (Kumagai et al. 2008). 298 

 Eventually, when the plume head reaches the lithosphere, a LIP may form over short amounts of 299 

geological time, likely in less than a million years (Coffin and Eldhom 1994). Long-lived hotspot tracks 300 

may form after that and persist in some cases for 80 to 120 million years (Peate 1997; Koppers et al. 301 

2012; Konrad et al. 2018a) or even longer (e.g. Hoernle et al. 2015). Several hotspot tracks are associated 302 

with flood basalts at one end (e.g. Tristan, Reunion) and thus may correspond to typical thermal plumes 303 

with a tail following the head (Richards et al. 1989; Ernst and Buchan 2003). Although the typical 304 

lifetime of a deep mantle plume is likely long, on the order of ~100 million years, some of the older 305 

Pacific hotspot tracks were only active in the Cretaceous and do not correspond to any currently active 306 

hotspot (e.g. Hess and Shatsky Rise; Koppers et al. 2001; Tejada et al. 2016). Evidence from the 307 

bathymetric record in the Pacific Ocean also indicates that many hotspot trails are characterized by 308 

shorter seamount trails, apparently only active for up to 30 million years (Clouard and Bonneville 2001; 309 

Koppers et al. 2003). These surface expressions, however, do not have to mean that the mantle sources 310 

are short-lived per se, but rather that instabilities may develop in rising mantle plumes, for example, once 311 

conduits are tilted more than 60° from the vertical, at which stage they may break apart (Whitehead 1982; 312 

Steinberger and O’Connell 1998). Plumes may also go extinct if their buoyancy fluxes are too high and 313 

they cut themselves off from a supply of hot mantle material. Plumes may become internally unstable and 314 

collapse due to insufficient buoyancy, they may appear to switch on/off if rising plumes are pulsating or 315 

boudinaging, and in some cases they may begin without flood basalts. All possible explanations for such 316 

intermittent plume behaviors and plumes without heads are still being mapped out and debated. 317 

5. Mantle Plumes Illuminating Deep Mantle Heterogeneities 

Plumes provide a unique view into Earth’s mantle, revealing its intricate chemical makeup and evolution 318 

over billions of years. Although seamount trails and LIPs have complex construction histories, variations 319 

in their chemical compositions provide clues about early Earth (enduring ancient signatures) and the 320 

number and composition of distinct chemical endmembers that reside in Earth’s interior (mantle 321 

heterogeneities). These clues lead to intriguing debates on how deep, and at what length and time scales, 322 

those endmembers are manifested in the mantle (location of primordial and recycled reservoirs) and how 323 

hotspot trails may ‘mimic’ these heterogeneities (striped plumes).  324 
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5.1 Enduring Ancient Signatures 

Extinct short-lived isotope systems (such as 129I-129Xe [with a half-live of t1/2=15.7 Ma], 182Hf-182W 325 

[t1/2=8.9 Ma] and 146Sm-142Nd [t1/2=103 Ma]) provide unmatched insights in the processes happening in 326 

the earliest approximately 50 (for 182W) to 500 million years (for 142Nd) of Earth’s history (Halliday 2004; 327 

Carlson and Boyet 2009; Mundl et al. 2017; Mukhopadhyay and Parai 2019). Because radioactive decay 328 

in these isotope systems is rather rapid on planetary timescales, resolvable changes in these isotopic 329 

systems (129Xe/130Xe, 182W/184W and 142Nd/144Nd) are restricted to the Hadean, the opening eon in Earth’s 330 

history, ending 4 billion years ago. The presence of such ancient isotopic anomalies in mantle plume 331 

source regions, therefore, suggest that some primordial mantle reservoirs are still present in the Earth’s 332 

interior despite extensive convective mixing (Mukhopadhyay 2012; Peters et al. 2018; Williams et al. 333 

2019; Mundl-Petermeier et al. 2020). For example, the 129I-129Xe system shows a marked difference in 334 

129Xe/130Xe between Earth’s mantle and atmosphere (Allegre et al. 1983), and heterogeneous 129Xe/130Xe 335 

is also preserved in the mantle since the Hadean (Mukhopadhyay 2012). Application of the 182Hf-182W 336 

and 146Sm-142Nd systems confirms the survival of Hadean-generated signatures in the modern mantle, 337 

with resolvable 182W and 142Nd anomalies in OIB present in mantle plumes (Mundl et al. 2017; Peters et 338 

al. 2018; Horan et al. 2018), but the discovery of anomalous 182W in plume-head-generated flood basalts 339 

(Rizo et al. 2016) remains controversial (Kruijer and Kleine 2018). 340 

 341 

Figure 4: Isotope Systematics in Global Plume Volcanics. Negative μ182W anomalies appear in some 342 

plume-generated OIB volcanoes, with no relation to long-lived 87Sr/86Sr signatures in the HIMU, EM1 343 
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and EM2 mantle sources. One interpretation of these observations is that that some deeply sourced mantle 344 

plumes with strongly negative μ182W anomalies have inherited a W-isotopic signature of Earth’s core 345 

(Rizo et al. 2019; Mundl-Petermeier et al. 2020). In this diagram the grey bar represents the 2σ 346 

reproducibility of the standard. Estimated core μ182W is -220 (Touboul et al. 2012). 347 

 More recent work, however, established that 182W anomalies in plume-formed OIB do not exhibit 348 

straightforward relationships (Figure 4) with long-lived heavy radiogenic isotopes, such as 87Sr/86Sr (t1/2 = 349 

49 billion years). Instead, most OIB that host negative 182W anomalies also appear to be associated with 350 

high 3He/4He lavas (Mundl et al. 2017; Mundl-Petermeier et al. 2019; 2020) that in turn are typically 351 

interpreted to sample deep primordial mantle signatures (e.g. Kurz et al. 1982) present in only the hottest 352 

and most buoyant plumes (Jackson et al. 2017). It is hypothesized that these OIB 182W anomalies reflect a 353 

contribution from Earth’s core, which has preserved a low μ182W value (the deviation of 182W/184W from 354 

the terrestrial standard in parts per million) because tungsten is a moderately siderophile element that, 355 

during core formation, became enriched in the Earth’s core relative to the short-lived, lithophile 356 

radioactive parent (182Hf), which remained in the mantle (Rizo et al. 2019; Mundl-Petermeier et al. 2020). 357 

It is possible that this core material is partitioned back into the mantle at the base of mantle plumes, aided 358 

by silicate melting (Mundl-Petermeier et al. 2020), possibly in the ultra-low seismic velocity zones at the 359 

core-mantle boundary (Figure 1b).  360 

5.2 Mantle Heterogeneities Inferred from Hotspots 

Lower-mass stable isotopes (such as oxygen, sulfur, calcium, and iron) provide distinguishing ‘surface’ 361 

isotopic signatures because low temperature alteration, biological processes, and other shallow-level 362 

mechanisms modify their isotopic ratios. The discovery of these ‘surficial’ signatures in mantle plume 363 

source regions, therefore, provides first order evidence that Earth is recycling its lithospheric plates in 364 

subduction zones at a global scale and is resupplying the deep source regions of mantle plumes with 365 

various ‘crustal’ materials (Eiler et al. 1996; Huang et al. 2011a; Cabral et al. 2013; Konter et al. 2016; 366 

Nebel et al. 2019; Gleeson et al. 2020). High-mass radiogenic isotopes (such as 87Sr/86Sr, 143Nd/144Nd, 367 

206Pb/204Pb and 176Hf/177Hf) paint an even more complex picture of global mantle heterogeneity, providing 368 

insight into which, how many, and in what way mantle end members are involved in the chemical 369 

dynamics of mantle plume formation (Allegre 1982; Hofmann and White 1982; Zindler and Hart 1986; 370 

White 2010; Jackson et al. 2018b). Many of the global hotspot systems have two, three, or more, distinct 371 

components in their mantle plume source regions (Harpp and White 2001; Hoernle et al. 2000; Jackson et 372 

al. 2014).  373 

 Lava flows from LIPs and hotspot-related OIBs thus sample a diverse array of long-lived 374 

radiogenic isotopic compositions. These chemical trends have been classified into four primary “species” 375 
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or endmembers (Figure 4) based on isotopic composition: EM1 (enriched mantle I) characterized by low 376 

moderately-high 87Sr/86Sr and low 206Pb/204Pb; EM2 (enriched mantle II) characterized by high 87Sr/86Sr 377 

and intermediate 206Pb/204Pb; HIMU (or high “μ”, where μ = 238U/204Pb) with low 87Sr/86Sr and high 378 

206Pb/204Pb; and a geochemically-depleted component variously referred to as PREMA (Prevalent 379 

Mantle; Zindler and Hart 1986), FOZO (Focus Zone; Hart et al. 1992), or C (Common; Hanan and 380 

Graham 1996).  381 

 The EM2 mantle domain almost certainly relates to recycling of terrigenous sediments derived 382 

from ancient upper continental crust, and is manifested mostly clearly in Samoan hotspot lavas (Jackson 383 

et al. 2007; Workman et al. 2008), where the lavas exhibit clear radiogenic isotopic and trace element 384 

signature fingerprints seen only in continental crust. There is less certainty about the origin of the HIMU 385 

component in hotspots, defined by their highly radiogenic 206Pb/204Pb, a signature that has been attributed 386 

to sampling of ancient subducted oceanic crust (Hofmann and White 1982) or marine carbonates (Castillo 387 

2015), metasomatism of the underlying oceanic lithospheric mantle (Pilet et al. 2008) or the 388 

subcontinental lithospheric mantle (Weiss et al. 2016), and possibly could originate from a reservoir in 389 

the transition zone (Nebel et al. 2013; Mazza et al. 2019; Huang et al. 2020) or lower mantle (Collerson 390 

et al. 2010). The presence of mass independently fractionated sulfur (MIF-S) isotopes in endmember 391 

HIMU lavas from Mangaia Island supports an oceanic crustal recycling model (Cabral et al. 2013) as 392 

these MIF-S are interpreted to represent a unique fingerprint from Archean atmosphere that become 393 

associated with oceanic crust (Farquhar et al. 2002). The origin of EM1 lavas is the least certain among 394 

the mantle domains, as both deep and shallow mantle metasomatic processes have been invoked, as well 395 

as recycling of a variety of different lithospheric protoliths (see Garapic et al. 2015 and references 396 

therein). However, the discovery of MIF-S in EM1 lavas from Pitcairn supports models advocating 397 

recycling of shallow crustal protoliths (Delavault et al. 2016), and radiogenic isotopic and trace element 398 

signatures are consistent with a continental crustal protolith in the EM1 mantle (Eisele et al. 2002).  399 

 Nonetheless, extreme EM1-EM2 and HIMU compositions are relatively uncommon: the bulk of 400 

volcanism at hotspots and oceanic LIPs (Zindler and Hart 1986) is geochemically depleted relative to a 401 

chondrite-based bulk silicate Earth—the long-accepted compositional model for the formation of our 402 

planet (McDonough and Sun 1995). This suggests that, like the upper mantle, the lower mantle also must 403 

have experienced a strong depletion of incompatible elements by ancient prolonged crustal extraction 404 

(Hart et al. 1992). Consistent with this observation, studies based on the short-lived 146Sm-142Nd system 405 

suggested that the accessible silicate Earth has elevated 142Nd/144Nd and is the product of a global early-406 

Hadean mantle depletion event (Boyet and Carlson, 2005; Jackson et al. 2010; Caro and Bourdon, 2010). 407 

This model requires a complementary early-formed enriched reservoir (now hidden) with low 142Nd/144Nd 408 

that resides in the deep mantle or was lost to space (Jellinek and Jackson 2015; and references therein). 409 
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While this model was questioned (Bouvier and Boyet 2016; Burkhardt et al. 2016) more recent work may 410 

support a non-chondritic composition for the silicate Earth caused by a massive Hadean depletion event 411 

(Debaille et al. 2019). In this debate geoneutrinos present an opportunity to map out the spatial 412 

distribution of geochemical reservoirs in the Earth's deep interior, particularly with respect to the 413 

geochemically-important radioactive heat-producing elements (U, Th, K), which would be elevated in a 414 

putative hidden early enriched reservoir. This mapping of geoneutrinos may help resolve the debate over 415 

the bulk composition of the planet (Šrámek et al. 2013). 416 

5.3 Location of Primordial and Recycled Reservoirs 

Mechanisms for the long-term preservation of the Hadean geochemical anomalies are imperfectly 417 

understood (Gülcher et al. 2020), but storage in dense, viscous domains of the deep mantle may isolate 418 

Hadean-formed reservoirs from convective motions of the mantle (Samuel and Farnetani 2003; Lin and 419 

van Keken 2006a; Deschamps et al. 2011). The two LLSVP regions at the core-mantle boundary are 420 

attractive locations in this regard (e.g. Tackley 1998; Macpherson et al. 1998; Mukhopadhyay 2012), 421 

though alternatives have been suggested (e.g. Allegre et al. 1984; Becker et al. 1999; Ballmer et al. 422 

2017). Hotspots with the highest (most primordial) 3He/4He ratios do appear to be positioned over the 423 

LLSVPs (Macpherson et al. 1998; Garapic et al. 2015; Williams et al. 2019) and are consistent with an 424 

ancient source for these seismic features. However, to date 129Xe, 142Nd, and 182W OIB short-lived isotope 425 

datasets are still statistically too small to conclusively link the Hadean isotopic anomalies to the LLSVPs. 426 

Much larger Sr-Nd-Pb isotope datasets confirm that EM1-EM2 hotspots are geographically linked to both 427 

of the LLSVPs (Castillo 1988; Jackson et al. 2018a). However, a recent study suggests that only the 428 

Atlantic LLSVP hosts EM signatures (Doucet et al. 2020), but such arguments hinge on the selection of 429 

plumes (e.g. Jackson et al. 2018a) and more work is needed to better identify reservoir geometries and 430 

dynamics. HIMU hotspots seemingly are not linked to the LLSVPs (Jackson et al. 2018b), leaving the 431 

location of this scarce domain uncertain. In fact, the EM and HIMU domains appear to be spatially 432 

decoupled in Earth’s mantle, which is unexpected given that both likely formed following subduction and 433 

recycling as part of the plate tectonic cycle (Jackson et al. 2018b).  434 

 While the ULVZs are argued to be compositionally distinct (Li et al. 2017) it is not yet possible 435 

to evaluate whether ULVZs sample geochemical reservoirs different from LLSVPs. Where some plume 436 

conduits are clearly associated with ULVZs (Cottaar and Romanowicz 2012; Thorne et al. 2013; Yuan 437 

and Romanowicz 2017; Kim et al. 2020), other plumes may not be (or, they are, but the ULVZs have not 438 

yet been seismically imaged at their plume roots). Until the distribution of ULVZs has been 439 

conclusively “mapped out” it will not possible to determine whether ULVZ-related plumes have a 440 

different composition than plumes that are not, and this currently limits what can be inferred about the 441 
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isotope geochemistry of the ULVZs. Ultimately, the evolutions of these geochemical reservoir are linked 442 

to plate tectonic processes, including recycling of oceanic and continental crust and transport by plumes, 443 

and these processes control the composition, location, size, and longevity of geochemical reservoirs in the 444 

Earth’s interior.  445 

5.4 Striped Plume Expressions 

Surface expressions of plume-fed volcanism in the oceanic realm are highly varied and complex. A most 446 

notable complexity is the formation of ‘double’ track volcanic hotspot trails that are geochemically 447 

‘striped’ over millions of years of plume history. These kind of surface expressions may be governed by 448 

the makeup of the plumes themselves (Abouchami et al. 2005; Farnetani and Hofmann 2010; Huang et al. 449 

2011b; Weis et al. 2011; Hofmann and Farnetani 2013; Hoernle et al. 2015; Dannberg and Gassmöller 450 

2018), and by their interactions with the overriding tectonic plates and any changes in plate motion and 451 

direction (Moore et al. 1998; Hieronymus and Bercovici 1999; Davies et al. 2015b; Jones et al. 2017). 452 

The presence of these geochemically-resolved dual volcanic trends in ocean island systems was first 453 

noticed for the Hawaiian Islands by Tatsumoto (1978) and follow the ‘Loa’ and ‘Kea’ volcanic tracks 454 

(Figure 5a) as described by Dana (1849). Since then, en echelon trends have also been observed for the 455 

Easter, Foundation, Galapagos, Marquesas, Samoan, Society, Tristan-Gough and Rurutu hotspot tracks 456 

(Hoernle et al. 2000, 2015; Werner et al. 2003; Huang et al. 2011b; Payne et al. 2013; Harpp et al. 2014; 457 

Chauvel et al. 2012; Koppers et al. 2011a; Finlayson et al. 2019).  458 



 
 

Mantle-Plumes-Nature.2020-08-18.docx — 19-Aug-2020 15:12 — Page 19 

 459 

Figure 5: Explaining the Hawaiian Striped Plume. A schematic illustration comparing models for a 460 

bilaterally versus concentrically zoned Hawaiian mantle plume. (A) The location of the Loa (Blue) and 461 

Kea (Red) isotopic trends superimposed on a map of the Hawaiian Islands from Jones et al. (2017). (B) A 462 

top-down view of a bilaterally zoned plume, which has become aligned with the direction of plate motion 463 

within the last 5 Myrs (e.g. Farnetani et al. 2012). The older seamounts are shown as primarily Kea-types 464 

based on the model of Harrison et al. (2017). (C) A concentrically zoned plume, which currently displays 465 

bimodal volcanism due to the recent change in plate motion contrasting with the prior orientation of the 466 

plume (e.g. Jones et al. 2017). A prediction of this model is that the older seamounts would have Kea-467 

type as their bases, with Loa-type lava capping those in their later volcanic stages.  468 

  There are currently two debated models on the origin of these dual isotopic signatures and the 469 

inferred chemical structure of mantle plumes: the bilaterally zoned plume (Abouchami et al. 2005; 470 

Farnetani and Hofmann 2010; Huang et al. 2011b, Weis et al. 2011; Hoernle et al. 2015; Chauvel et al. 471 

2012; Dannberg and Gassmöller 2018) and concentrically zoned plume model (Frey and Rhodes, 1996; 472 

Kurz et al. 1996; DePaolo et al. 2001; Jones et al. 2017; Konrad et al. 2018b). The bilaterally zoned 473 

A 
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plume model postulates that the geochemical stripes observed among most ocean island chains originate 474 

from a mantle plume structure that is divided into two distinct chemical reservoirs (Figure 5b). The 475 

plume could contain a bilaterally continuous structure (Hofmann and Farnetani 2013), two zones 476 

consisting of vertically continuous filaments with some spacing in-between (Abouchami et al. 2005), or a 477 

partly ordered structure with some mixing between the zones (Ren et al. 2005). As some mantle plumes 478 

appear to be rooted on the boundary between LLSVPs and ambient lower mantle, it is possible that 479 

bilaterally zoned plumes sample both LLSVP (± ULVZ) and the ambient lower mantle materials (Huang 480 

et al. 2011b; Weis et al. 2011; Hofmann and Farnetani 2013).  481 

 In the bilaterally zoned plume model for Hawaii, the southern ‘Loa’ component (EM1) of the 482 

Hawaiian plume would represent incorporation of LLSVP material, while the northern ‘Kea’ component 483 

(PREMA) would represent ambient lower mantle (Weis et al. 2011). However, to explain the general 484 

absence of a Loa component in the Hawaiian plume prior to ~5 million years ago, Harrison et al. (2017) 485 

argue that the LLSVP-derived Loa component only became entrained in the plume conduit intermittently 486 

between ~47 and 6.5 Ma, and then consistently from 6.5 Ma to the present day. Similar geographical and 487 

temporal trends are seen within the Marquesas and Samoan Islands (Huang et al. 2011b; Chauvel et al. 488 

2012), showing the potential ability to link surficial geochemical signatures to the lowermost mantle 489 

geophysical domains. 490 

 The concentrically zoned plume model argues that plumes concentrate the hottest and densest 491 

materials in their centers (Figure 5c) during ascent from the core-mantle boundary (Jones et al. 2016). 492 

This model explains surficial isotopic stripes as being derived from sampling of the plume core versus its 493 

outer rim (DePaolo et al. 2001). The concentric model has been supported by noble gas studies that 494 

indicate that the most chemically ‘primitive’ lava flows with high 3He/4He ratios are typically found 495 

within the central regions of ocean islands (Kurz et al. 1996; DePaolo et al. 2001; Konrad et al. 2018b). 496 

An alternative concentric plume model argues for the melting of differing lithologies at differential depths 497 

in the plume as a function of plume-plate interaction (Jones et al. 2017). However, an unrelated (and 498 

controversial) change in Pacific plate motion at ~2.5 Ma is required to force a depth shift in mantle 499 

melting that initially would have produced Kea-type lava flows (from a deeper peridotite melting region) 500 

followed by Loa-type lava flows (from a shallow pyroxenite source) after the plate motion change (Jones 501 

et al. 2017). This model currently does not explain the complex zonation patterns observed along the 502 

Tristan-Gough track on the African plate (Hoernle et al. 2015).  503 

6. Mantle Plumes and Plate Tectonics 

Understanding if and why certain plumes move, in which directions, in unison or not, and how fast, is an 504 

ongoing debate. In this section, we show that plumes can move independently and at speeds typically less 505 
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than plate tectonic movements (distinguishing plume motions). We also discuss how plumes provide 506 

insights into possible reorientations of the entire Earth relative to its spin axis (true polar wander) and 507 

how they are considered powerful initial agents in the global plate tectonic cycle (breaking up continents).  508 

6.1 Distinguishing Plume Motions 

The presumed stability of ‘thermal’ mantle plumes initially allowed scientists to use the shapes and age 509 

progressions of seamount trails to derive directions and speeds of past plate motions, and with those 510 

models in hand, to chart out the positions of tectonic plates back through geological time (e.g. Wilson 511 

1963; Morgan 1971; Minster and Jordan 1974; Duncan and Clague 1985; Müller et al. 1993; Koppers et 512 

al. 2001; Wessel and Kroenke 2008; Torsvik et al. 2014; Wessel and Conrad 2019). In these models, 513 

fixed mantle plumes were presumed to persist over more than one hundred million years. Expected would 514 

be that all seamount trails forming on a particular tectonic plate would record the same history of plate 515 

rotations around the same Euler poles and with the same angular velocities; and when plate motion 516 

changes occurred, the timing of the ‘bends’ (or turns) that would form in each seamount trail, would be 517 

contemporaneous (Box 2). In other words, it would be expected that the geometries between different 518 

seamount trails would be fixed and their chronologies identical. 519 

 Paleomagnetic inclination data from seamount trails indicate that plumes are in fact not stationary 520 

with respect to the spin axis (Tarduno et al. 2003, Koppers et al. 2012; Tarduno and Koppers 2019). 521 

Distance comparisons between coeval seamount trails show that plumes are moving away or closing in to 522 

each other (O'Connor et al. 2013; Konrad et al. 2018a) and the 40Ar/39Ar dating of the Louisville and 523 

Rurutu hotspot tracks on the Pacific plate show that the most acute parts in their bends (not as pronounced 524 

or clearly visible as for Hawaii) appear to occur about 3 million earlier than the Hawaii-Emperor Bend 525 

around 47 million years ago (Sharp and Clague 2006; Koppers et al. 2011b; Finlayson et al. 2018; 526 

Konrad et al. 2018a) but their timing does coincide with the start of the Hawaii-Emperor bend around 50 527 

million years ago. For these Cretaceous and early Cenozoic times, the most recent analysis by Bono et al. 528 

(2019) of related paleomagnetic data and age dates concluded that the Hawaiian hotspot moved at 48 ± 8 529 

mm/yr between 63 and 52 Ma, while other Pacific hotspots have moved much more slowly. Similarly, 530 

based on age progressions along tracks and changing distances between tracks, Konrad et al. (2018a) 531 

found a total relative motion of 53 ± 21 mm/yr between Hawaii and Louisville and of 57 ± 27 mm/yr 532 

between Hawaii and Rurutu, most likely due to a large individual Hawaiian hotspot motion from 60 to 48 533 

Ma. These observations are not unexpected in a convecting mantle, as computer simulations show that 534 

rising mantle plumes will be advected in Earth’s overall mantle circulation regime (Steinberger and 535 

O'Connell 1998; Steinberger 2000; Hassan et al. 2016; Arnould et al. 2019) causing the locations of 536 

hotspots on the Earth’s surface to wander over geological time. 537 
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Box 2: Scenarios for the HEB Formation. The prominent 120° bend in the Hawaii-Emperor seamount 538 

trail (HEB) was first interpreted as representative of a major change in Pacific plate motion (Duncan and 539 

Clague 1985) occurring around 47 million years ago (Sharp and Clague 2006). However, an absence of 540 

geological evidence for a change in Pacific plate motion at that time, and recognition that hotspots are 541 

mobile, led to the proposal that the HEB may rather represent Hawaiian hotspot motion, which came to a 542 

rather abrupt stop at the time of the bend (Norton 1995). This hypothesis was tested through the analyses 543 

of magnetic paleolatitudes in scientific ocean drilling cores recovered from Emperor seamounts, which 544 

support a significant southward hotspot motion between ~80 and 47 Ma (Tarduno and Cottrell 1997; 545 

Tarduno et al. 2003; Bono et al. 2019). Konrad et al. (2018a) compared the relative distances of Pacific 546 

hotspots using age progressions along three tracks (Hawaii, Louisville, Rurutu). The results show the 547 

Hawaiian hotspot moving southward, with most of the motion occurring between 62 and 47 million years 548 

ago, but with a maximum ~600-700 km of motion detected that is insufficient to explain the entire, more 549 

than 2,000 km length of the Emperor chain. There remains an active debate on the relative contribution of 550 

hotspot drift and plate motion changes to the shape of the 120° bend, with scenarios ranging from the 551 

HEB being entirely caused by a ~60° change in plate motion (Steinberger et al. 2004; Torsvik et al. 2017) 552 

to being mostly caused by hotspot drift (Bono et al. 2019; Hassan et al. 2016). The map shows modeled 553 

0-70 Ma tracks for a fixed Hawaii hotspot and three plate reconstructions that all use the Antarctic plate 554 

circuit. Matthews et al. (2016) and Tetley et al. (2019) use relative motions in Zealandia as additional 555 

constraints, whereas Seton et al. (2012) do not. A large body of work is suggesting a major plate 556 

reorganization at ~50 Ma centered around the Pacific Plate (e.g. Cosca et al. 1998; Meffre et al. 2012; 557 

Reagan et al. 2019), yet these plate motion models account for at most 35° of the expected 60° absolute 558 

plate motion change and cannot accurately predict the location and age of seamounts in the Hawaii-559 

Emperor track prior to 30 million years ago. The mismatch between the predicted 47 Ma hotspot locations 560 

and the actual location of the bend (Daikakuji Seamount) is consistent with ~1 cm/yr SE hotspot motion 561 

(green arrow) from 47-0 Ma obtained by numerical models (Steinberger et al. 2004; Hassan et al. 2016). 562 

The mismatch between the predicted 61 Ma hotspot locations and Suiko Guyot can be amended by 563 

additional rapid southward hotspot motion (long orange arrow) that is consistent with age progressions 564 

along the hotspot tracks (Konrad et al. 2018a) and numerical modeling (Hassan et al. 2016). In this 565 

debate, however, it appears that a large portion of the length of the Emperor chain only can be explained 566 

by southward Hawaii hotspot drift. 567 



 
 

Mantle-Plumes-Nature.2020-08-18.docx — 19-Aug-2020 15:12 — Page 23 

 568 

 For the most recent 5 million years in Earth’s history, the rate of motion of major hotspots was 569 

recently computed by Wang et al. (2018) using a maximum likelihood optimization that incorporated 570 

present-day plate motion models and compared those to the azimuths and age progressions of hotspot 571 

tracks (Morgan and Phipps Morgan 2007). They obtained highly variable hotpot motion rates between 572 

2.5 mm/yr (Afar) and 49.4 mm/yr (Caroline) with Hawaii moving at 11.6 mm/yr. In this model, the 573 

Pacific hotspots were found to move at speeds between 10 and 50 mm/yr, while Atlantic and Indian 574 

Ocean hotspots would move more slowly, below 20 mm/yr. An alternative kinematics-based approach 575 

was recently developed by Tetley et al. (2019) to determine the motions of major hotspots for the last 80 576 

Ma by estimating misfits while fitting hotspot tracks and treating all hotspots as fixed. The resulting 577 

hotspot trail misfits represent a robust estimate of hotspot motion, with rates generally below 40 mm/yr 578 

for all major hotspots other than Hawaii (Tetley et al. 2019). However, using other modeling approaches, 579 

the absolute plate motion reference frame for the present-day yields similar net rotations (i.e. wholesale 580 

lithospheric spin of all tectonic plates with respect to a fixed lower mantle) for fixed or moving hotspot 581 

assumptions (Becker et al. 2015). Likewise, other authors have used similar data, but only considering the 582 

azimuth of hotspot trends, to conclude that there is no requirement for hotspots at the present day to move 583 
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at all, and that a fixed hotspot reference frame may fit the data better (Wang et al. 2019). These 584 

contrasting papers exemplify the extent of the ongoing controversy about hotspot motion.  585 

 Importantly, these scenarios now also can be compared to geodynamic models of hotspot motion. 586 

Steinberger and O'Connell (1998) pioneered an approach based on large-scale mantle flow models (see 587 

also Steinberger 2000; Doubrovine et al. 2012) in which mantle flow is computed based on density 588 

models inferred from 3D seismic tomography, assumed whole mantle viscosity profiles, and time-589 

dependent plate motions as surface boundary conditions. The approach is completed by inserting initially 590 

vertical plume conduits that then are advected while buoyantly rising through the convecting mantle. In 591 

these geodynamic models the computed hotspot motions are typically slower than plate motions, mostly 592 

less than 1 cm/yr. This slow motion foremost is a consequence of plumes being anchored in, and rising 593 

from the lower mantle, which is only sluggishly convecting because of its high viscosity up to about 1023 594 

Pa s. This geodynamic modeling approach is most reliable in the Cenozoic, but less so for earlier times, as 595 

backward-advection of mantle density anomalies becomes increasingly unreliable. The gap is now being 596 

filled with geodynamic forward models that can capture both the tilt of plume stems in the mantle as well 597 

as the motion of the plume generation zone (Hassan et al. 2015; 2016).  598 

Box 3: True Polar Wander. Motion of the magnetic north pole as seen from a specific tectonic plate 599 

may be caused by plate motion and/or by re-orientation of the entire Earth relative to the poles. The 600 

former is termed apparent polar wander, the latter true polar wander. For approximately the last 601 

120 million years, plate motion can be determined from hotspot tracks, allowing a “true polar wander 602 

path” to be reconstructed by rotating a single plate back to its past locations in the hotspot reference 603 

frame, and transferring the corresponding paleomagnetic pole positions with it. The remainder trace of 604 

past pole positions then in theory equals the true polar wander path. In practice, true polar wander paths 605 

for different plates differ somewhat, due to non-dipolar components of the magnetic field and other 606 

uncertainties (e.g. Besse and Courtillot 2002; Torsvik et al. 2012), but they can be combined to devise a 607 

global true polar wander path. Two modeled paths with uncertainty ellipses representing 95% confidence 608 

by Doubrovine et al. 2012 (blue) and Woodworth and Gordon 2018 (red) are shown for the last 50 609 

million years relative to respectively global and Pacific hotspot reference frames, showing only minor 610 

true polar wander in this time frame. As true polar wander is expected from significant shifts in Earth’s 611 

mass distribution (Gold, 1955) on geological timescales, it is likely to result from reconfigurations in 612 

large-scale mantle structures (Steinberger and O’Connell 1997). The two LLSVP superstructures are 613 

thought to be stable for hundreds of millions of years (Burke and Torsvik 2004; Torsvik et al. 2006; 614 

Burke et al. 2008; Dziewonski et al. 2010) and we can infer that the two corresponding antipodal geoid 615 

highs are also stable for the same amount of time. Since the spin axis remains aligned with the minimum 616 
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point of the spherical harmonic degree two geoid component—in between those two geoid highs—it is 617 

expected that true polar wander occurs in a “ring” around the Earth that runs in between the two LLSVPs 618 

and that it is mostly driven by the sinking of “heavy” lithospheric slabs subducting for a large part near 619 

that ring (Steinberger et al. 2017). The largest amount of true polar wander since 120 Ma that can be 620 

determined occurred at speeds in the order of 10 mm/yr, mostly between 100 and 110 million years ago, 621 

and closely following a direction going around that ring. True polar wander in any other period is less 622 

expected and less prominent.  623 

 624 

6.2 Breaking Up Continents 

Mantle plumes may play an active role in the breakup of continents and/or oceanic lithosphere, when they 625 

impinge those from beneath, providing a starting point for the Wilson Cycle in plate tectonics and a likely 626 

important initiation mechanism for far-field major plate reorganizations. Continental breakup occurs 627 

when enough extension occurs to split continental lithosphere and form a new ocean basin. Many of the 628 

continental flood basalt provinces in the Mesozoic and Cenozoic are closely related in time and space 629 

with continental breakup (Morgan 1971; Storey 1995; White and McKenzie 1989; Courtillot et al. 1999). 630 

When reconstructed back to their original plate tectonic configuration, flood basalt provinces are often 631 

found along continental margins, and dike swarms have more or less radial patterns and terminate at the 632 

margins of continental cratons (Burke and Dewey 1973; Fahrig and Schwarz 1973).  633 

 These observations led to the active continental rift hypothesis, where mantle plumes are thought 634 

to drive continental breakup. In this model, continental rifting is actively driven by mantle plume 635 
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processes, including arrival of a plume head at the base of the lithosphere, heating and erosion of the 636 

lithosphere, and heating, uplift and tensional failure of the mechanical lithosphere (Courtillot et al. 1999). 637 

Alternatively, continental breakup may be explained by the passive rifting model, where continental 638 

rifting is driven by far-field tectonic forces and interaction with an existing plume is co-incidental. In both 639 

scenarios, the combination of lithospheric extension and upwelling plume material causes abnormally 640 

large volumes of magma to erupt through passive decompression melting (White and McKenzie 1989). It 641 

also appears that most continental rifts without a plume failed, with only one third proceeding to break-up 642 

(Ziegler and Cloetingh 2004). The fact that continental rifting can extend from only a few million years 643 

up to around 100 million years before progressing to continental breakup, therefore, has called for a 644 

combination of passive and active plume head forces (Courtillot et al. 1999).  645 

For continental rifts that do proceed to breakup, plumes appear to play a triggering, but not an 646 

essential role. The role for plumes is particularly striking when the timing of continental rifting, flood 647 

basalt eruption, and continental break up are compared, with continental rifting often extending for tens of 648 

millions of years and—after this prolonged period—ending with the voluminous eruption of flood basalts 649 

that are coevally, or closely followed by, continental breakup (Buiter and Torsvik 2014). Brune et al. 650 

(2013) tested the role of plumes as a trigger for continental breakup by modelling lithosphere under far-651 

field extension, investigating the role of plume-related lithospheric erosion, finding that plume erosion 652 

decreases lithospheric strength and controls the timing or even occurrence of continental breakup. 653 

Finally, mantle plumes, along with changes in plate boundary forces (Whittaker et al. 2016, 654 

Gaina et al. 2009) and “wrench” tectonics (Nemcok et al. 2016) also are thought to drive the formation of 655 

microcontinents, small continental fragments that become separated from their parent continental margin 656 

and eventually surrounded by oceanic lithosphere. In these smaller scale manifestations of plate tectonics, 657 

mantle plumes have been implicated in the rifting and separating of microcontinents from relatively 658 

young continental margins, less than 25 million years old, through one or multiple mid-ocean ridge 659 

relocations that are centred around the mantle plume, resulting in ocean spreading asymmetries and ridge 660 

propagation towards the locus of the plume (Müller et al. 2001).  661 

7. Mantle Plumes Impacting Earth’s Environment 

Mantle plumes are the source of a phenomenal volume of volcanic products on the Earth’s surface (Coffin 662 

and Eldholm 1994). When mantle plumes cause hotspot volcanism, outputs are particularly high during 663 

plume head volcanism that causes a rapid outpouring of voluminous LIPs, in the oceans referred to as 664 

oceanic plateaus and on land as flood basalts. Emplacement of these LIPs is hypothesized to cause 665 

extreme global environmental perturbations and mass extinctions (Courtillot et al. 1988; Duncan and Pyle 666 

1988; Renne et al. 2013). According to these hypotheses, flood basalt volcanism introduces large 667 
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quantities of volatiles such as sulfuric acid into the Earth’s atmosphere (with SO2 forming H2SO4) and 668 

carbon dioxide (CO2) release may be increased significantly, resulting in greenhouse scenarios (Kerr 669 

2005; Self 2006; Kerr 2014). In contrast, introduction of volcanic ash and aerosols in the Earth’s 670 

atmosphere may cause shielding from solar radiation, leading to the cooling of global climate (Self 2006). 671 

Each of these processes may induce strong perturbations in the environment and trigger tipping points in 672 

Earth’s climate state, with the increased extinction of species as one of the major outcomes. Geodynamic 673 

simulations also show that mantle plumes may have accumulated oxidized materials in the upper mantle 674 

and with that may have influenced the evolution of atmospheric oxygen (Gu et al. 2016). 675 

 However, it remains hard to undeniably link the causes and chronologies associated with global 676 

extinction events to mantle plume-induced eruptions. For example, emplacement of the Deccan Traps 677 

flood basalt seems to have started a few tens of thousands of years prior to the extinction at the K-Pg 678 

boundary around 66 million years ago, but it is now also apparent that more than 75% of Deccan Trap 679 

volcanism occurred following the Chicxulub meteorite impact (Renne et al. 2013; Schoene et al. 2019; 680 

Sprain et al. 2019). Similarly, emplacement of the Siberian Traps was extremely rapid, causing massive 681 

volcanism over a period of less than ten thousand years, but geochronological techniques lack resolution 682 

to definitely tie this flood basalt to the largest Earth extinction event at the Permo-Triassic boundary 683 

around 250 million years ago (Courtillot and Renne 2003; Reichow et al. 2009; Sobolev et al. 2011; 684 

Courtillot and Fluteau 2014). Even though plume-related volcanism resulting in voluminous flood basalts 685 

are likely to have direct impacts on global climate, from the Chicxulub impact event it appears that there 686 

are additional primary drivers that could tip over Earth’s climate system and cause massive extinctions 687 

(Hull et al. 2020). 688 

 In the oceans, the impacts of large-scale mantle plume eruptions on the environment are different, 689 

yet allegedly they also cause widespread species extinction. These submarine eruptions may introduce 690 

toxic metals that poison marine life, or they may provide high levels of nutrients that cause planktonic 691 

blooms that then massively deprive the oceans of oxygen after these organisms die off and decompose 692 

(Sinton and Duncan 1997; Kerr 2005). These episodes are recognized as ‘oceanic anoxic events’ that are 693 

chronicled in marine sedimentary records through the deposition of black shales. The timing of ocean 694 

plateau formation relative to the formation of those globally dispersed black shales is still highly 695 

uncertain. Future scientific ocean drilling and modern-day geochronology is required to uniquely tie the 696 

formation of mantle plume-derived oceanic plateaus to these deadly global oceanic anoxic events. 697 

8. Future Mantle Plume Research 

Even though mantle plumes are sometimes considered independent of the key plate tectonic processes, 698 

such as plate spreading and subduction, mantle plumes in fact are an integral part of a dynamic Earth. 699 
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Mantle plumes are part of the overall ‘rock cycle’ in the Earth system, playing a key role in Earth’s 700 

overall convectional regime, and in the continuous recycling of Earth’s deep interior and surface 701 

materials. Many mantle plumes are originating from the deepest regions in Earth’s mantle, often in 702 

association with LLSVPs and ULVZs, and plumes potentially even take in materials from the Earth’s core 703 

itself. On the other end, at Earth’s surface, we see clear evidence of plume activity, in intra-plate 704 

volcanism, continental break-up, and long-term effects on Earth’s climate system. Yet, our knowledge of 705 

mantle plumes remains limited, largely because of the low-resolution view we have of their structures and 706 

behaviors through seismic mantle tomography studies, and because of the complexity of plume 707 

expressions in the volcanic structures (seamount trails, oceanic plateaus) on Earth’s surface. Below we 708 

compile a short list of future research themes where we can improve our understanding of mantle plumes 709 

themselves and their effects on the interconnected Earth system. 710 

Mantle Plume and LLSVP Imaging: Reconciling current seismic images of “mantle plumes” with the 711 

geodynamic modeling and surface observations is THE challenge for the future. Large-scale deployments 712 

of OBS (ocean bottom seismometers) with wider apertures are required to create detailed views of the 713 

deep portions of mantle plumes. For example, we need to improve on the geometries and placement of 714 

OBS instruments and design them to capture specific seismic phases that can better resolve structures at 715 

the roots of mantle plumes and shed light on their potential generation in the LLSVP and ULVZ regions. 716 

Thermal versus Thermochemical Plumes: What is the nature of the plumes that now start to get 717 

resolved by tomography in the lower mantle? Are they purely thermal or thermo-chemical and how do 718 

they relate to a potential basal dense layer? Do we need to explore more complex rheologies to explain 719 

their morphologies and temporal behaviors? We also need to understand how these plumes may interact 720 

with mantle flow and get deflected primarily in the 660-1,000 km depth range. 721 

Dynamic Topography: The upwelling of mantle plumes may affect the dynamic topography of oceanic 722 

lithosphere (Conrad et al. 2004; Li and Zhong 2009; Zhang et al. 2010; Poore et al. 2011; Parnell-Turner 723 

et al. 2014; Steinberger et al. 2019a). Where the presence of strong or weak mantle plumes may cause 724 

large or small hotspots swells (King and Adam 2014) and regional modifications in mantle viscosity 725 

profiles, the ‘pulsating’ behavior of mantle plumes may cause significant variations in local sea level that 726 

may change ocean circulation patterns and deep-sea sedimentation accumulation rates (Parnell-Turner et 727 

al. 2014). Gaps in understanding mantle viscosity profiles, in particular in the proximity of larger plume 728 

swells, are causing major uncertainties in modeling future sea level rise across the world (Müller 2010; 729 

Petersen et al. 2010; Rovere et al. 2015). 730 

Oceanic LIPs: The formation and history of oceanic LIPs are still poorly understood compared to their 731 

extensively studied onshore counterparts. There is an intriguing association with spreading ridges and 732 
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triple junctions, which now appears to be archetypal for plumes in the ocean basins. The recent work on 733 

Shatsky Rise (Sager et al. 2013; 2019) reinforces the idea that some LIPs might not be caused by plume 734 

head eruptions, which raises interesting questions whether Shatsky is a headless plume interacting with 735 

the overriding oceanic lithosphere.  736 

Spherical Shell 3D Earth Modeling: An exciting and growing field of mantle geodynamics involves the 737 

generation of three-dimensional spherical shell numerical models of the Earth that solve the governing 738 

equations for appropriate physical parameters. These models can evolve through geological time allowing 739 

us to study the interactions between tectonic processes, large-scale mantle flow, and plumes (e.g. Zhong 740 

et al. 2000; Zhong 2006; Tackley 2008; Arnould et al. 2019; 2020). The simulation output can then be 741 

used to interpret complex surface and seismic tomographic features. With advancements in 742 

supercomputing, it is expected that this style of 3D modeling will continue to advance and provide 743 

important insights into Earth’s inner workings. 744 

Low-flux Hotspots: Given the geological importance of linking chemical components observed in ocean 745 

island lava flows to underlying mantle features, future improvements in our understanding of the variable 746 

makeup of the mantle require joint geochemistry-geodynamics-geophysical research at various global 747 

hotspots. It is important to focus on other hotspot systems besides Hawaii, as that plume displays an 748 

anomalously high buoyancy flux relative to the global average for hotspots. Its high buoyancy and related 749 

melt flux have the potential to obscure geographic trends in plume-derived lava chemistry, which might 750 

be more easily discernable at low-flux hotspots (Chauvel et al. 2012). 751 

Enriched and Primordial Mantle Domains: Over the last half a century geochemical studies caused a 752 

paradigm shift in our understanding of the makeup of the mantle—which represents 84% of Earth’s 753 

volume—from a homogenous material body to a complex mix of mantle domains each characterized by a 754 

different heritage and geological history. We still have limited ideas on the time and length scales of these 755 

domains, where they reside, and what is their long-term stability.  756 

Coordinating Geochemical Efforts: In terms of geochemistry, a better effort must be made to 757 

coordinate geochemical and isotopic and geochronological analyses on the same samples, in particular for 758 

multiple novel short-lived isotopic systems. For example, we have no idea how 129Xe anomalies (which 759 

track the degassing history of the planet) relate to 182W anomalies (which track core formation) because 760 

exactly one rock has been characterized for both isotopic systems, but this sample was not characterized 761 

for 142Nd (which tracks silicate Earth differentiation). Understanding the earliest history of the planet will 762 

require a multi-proxy effort with coordination across laboratories. 763 

Cyclicities in Global Intra-Plate Volcanism and Plume Life Spans: Over the last 200 million years a 764 

waxing and waning of global intra-plate volcanism (Larson 1991b) and ocean crust formation (Müller et 765 
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al. 2008) is observed, but drivers and potential links between these cyclicities are unknown. Future research 766 

needs to provide process-based understanding and whether plume formation through time can be linked to 767 

coupled plate tectonic and mantle evolution, and to cycles of plate aggregation, dispersal, and subduction. 768 

Related to this is figuring out why plumes have such a long range of life spans, anything from ~30 to 150 769 

million years and longer, and how their roles changed as a function of a decreasing internal heat production 770 

over Earth’s history. 771 

Transition Zone Plumes: The modes of rising mantle plumes and from which depths they originate is 772 

still under debate. For example, we don’t know if “transition zone plumes” exist, and if so, if they form 773 

by ponding of superplumes on 660 km mantle discontinuity (e.g. Tan et al. 2002), if they are deflected 774 

deep plumes, or if they are the natural consequence of asthenospheric convection related to the subduction 775 

process and slab induced hydration of the transition zone (e.g. Faccenna et al. 2010).  776 

Global Plume Heat Flux: Another enigma relates to figuring out whether the overall global plume flux 777 

is consistent with the balance between the heat flux across the core-mantle boundary, internal heating, and 778 

the thermal evolution of Earth.  779 

Solid Earth, Climate and Biosphere Interactions: Mantle plume activity results in extensive volcanism 780 

on Earth’s surface with impacts for its environment, and all forms of life on this planet. A key challenge 781 

is to capture the complete chronologies that record the mantle plume events that produce flood basalts and 782 

oceanic plateaus, and to tie those to other geological records—such as sedimentary records on land and in 783 

subseafloor scientific ocean drilling cores—that contain information about Earth’s environment, species 784 

extinction, ocean chemistry, ocean acidification, oxygenation, and more. We need those records to help 785 

figure out how relevant plumes are in solid Earth, climate and biosphere interactions, including their 786 

impacts on long-term climate change, mass extinctions, and biosystem resiliency. 787 
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