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1 Introduction 

Hossack’s new book, Knowledge and the Philosophy of Number, revives the ancient view that 

numbers are magnitudes and thus a special kind of property, which are instantiated in the 

physical world. In this way, Hossack makes a promising attempt to solve some stubborn 

metaphysical and epistemological problems about numbers.1 

The book considers some of the most important number systems, such as the natural 

numbers, the reals, and the ordinals. To say that the numbers from each of these systems are 

magnitudes is to claim that the system is a linearly ordered family of properties that are 

instantiated by certain types of quantities. What are these quantities? For present purposes, 

the most important thing to note is the Aristotelian claim that “the most distinctive mark of 

quantity is that equality and inequality are predicated of it.” (1941: 6a27) For example, some 

objects—or a “plurality”, as I will often put it, purely for ease of communication—are a 

quantity. Two such quantities are equal just in case they are equinumerous, in the usual sense 

that they can be put in one-to-one correspondence. We can now formulate a simplified form of 

one of the central theses of the book. 

The Magnitude Thesis (simplified form) 

A magnitude is a property that is shared by equivalent quantities. 

For example, the natural number 2 is a property shared by all pairs. 

The resulting conception of numbers has some attractive features, philosophically as well 

as mathematically. Since numbers are properties instantiated in the physical world, they are 

philosophically no more mysterious than any other properties. In particular, there is no 

                                                             
1 See also Peacocke (2019), especially chs. 2 and 5, for a closely related project, which, however, is less self-

consciously Aristotelian than Hossack’s. 
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mystery about their applicability or relevance to the physical world.2 As for mathematical 

virtues, the conception offers a pleasingly unified framework for various kinds of numbers. As 

Aristotle observed, different types of quantity share some important algebraic features. These 

shared features entail, via the Magnitude Thesis, that all magnitudes have a shared algebraic 

structure—that of so-called positive semigroups, to be explained shortly. Thus, we obtain a 

unified treatment of different kinds of numbers, as was anticipated by Aristotle.3 Different 

kinds of number are associated with different kinds of quantity, and additional structure on 

each of these kinds of quantity gives rise to additional structure on the associated numbers. 

I applaud Hossack for attempting to revive some very promising ancient ideas that have 

received too little attention in recent decades. His discussion also brings to light some broadly 

Aristotelian insights which are important and valuable. I will argue, however, that Hossack is 

too hostile to Frege and too narrow in his development of the Aristotelian insights. There 

remains a strong pressure to generalize beyond the scope of Hossack’s account. While the 

potential for generalizations is often a benefit, it can also expose problems. And indeed, when 

the needed generalizations are made, we reintroduce some of the problems that have haunted 

Frege and neo-Fregeans. I conclude that these problems cannot be skirted but need to be 

addressed head-on. 

The structure of this article is as follows. First, I present Hossack’s analysis of quantities. 

As we will see, these have both a mereological structure and support a notion of equality, 

which set the agenda for the next two sections. Then, I turn to Hossack’s analysis of 

magnitudes. I query how different his magnitudes really are from mathematical objects, 

especially as these are understood in the Fregean tradition. Finally, I show that the pressure 

to generalize introduces a threat of paradox. Overall, I seek a rapprochement between 

Hossack’s approach and that of my recent book, Linnebo (2018), in part by identifying some 

points of agreement, and in part by suggesting some ways in which his view might benefit 

from moving in the direction of my own. 

2 Mereology based on an addition operation 

Hossack’s notion of quantity is explicitly Aristotelian. He quotes with approval the following 

                                                             
2 By contrast, (Field, 1989, pp. 18ff) and Kitcher (1978) argue that numbers, understood as abstract objects, 

would be mysterious in these ways. 
3 See his Posterior Analytics 74a18-25, quoted and discussed in Sect. 5.1. 
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definition: 

‘Quantity’ means that which is divisible into two or more constituent parts 

(Metaphysics:1020a7) (Sect. 3.2). 

In virtue of having “two or more constituent parts”, quantities have a mereological, or 

partwhole, structure. This means that quantities, as Hossack understands them, have both a 

mereological structure and support a notion of equality. I will discuss these two types of 

structure in this section and the next, respectively. 

Let us start by considering some examples of quantities. In addition to pluralities, 

mentioned above, Hossack provides two further canonical examples of quantities, which he 

calls continua and series (Sect. 3.1). Continua are the spatial regions occupied by stuffs, which 

in turn are the kinds of things to which mass nouns refer; for example, this milk, that beer, or 

all your gold. A series are some objects in a certain order. For example, a queue is a series. A 

series can thus be specified by means of an ordered list. Alice, Beth, and Cassie are a series, 

and so are Tom, Dick, and Harry. Here the order matters, unlike in the case of pluralities.4 

Each of these types of quantity has a mereological structure. This is particularly clear in 

the case of pluralities and continua, which in fact share most of their mereological structure. 

We can talk about one plurality being part of another and about two pluralities overlapping or 

being disjoint.5 Likewise, this gold can be part of all your gold, which in turn may overlap all 

the gold in the UK. Even series have a mereological structure, where parthood is understood 

as the notion ⊴ of being an initial series; for example, we have: 

Alice, Beth ⊴ Alice, Beth, Cassie 

The mereological structure shared by pluralities and continua is a familiar one, namely 

that of Classical Extensional Mereology. This is the most widely studied mereological theory, 

often regarded as the default or classical account. But Hossack provides an alternative, less 

familiar axiomatization of this theory. Where the more usual approach uses parthood as its 

core notion, Hossack uses addition.He chooses this alternative axiomatization because he 

                                                             
4 See also the serial logic developed by Hewitt (2012). 
5 For a seminal article on plural logic, see Boolos (1984); for a survey, see Linnebo (2017). See also Hossack 

(2000), where the mereological structure of pluralities plays a central role. 
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finds it easy to understand and “clearly a priori” when interpreted as concerned with a system 

of quantities (ch. 4, first page). 

Before we can state his axiomatization, we need some explanations. Let us write ‘&’ for the 

operation of addition. For example, we have: 

my part-time students & my full-time students = my students 

We next observe that various other mereological notions can be defined in terms of this 

addition operation. First, x is part of y, written x ≤ y, iff x&y = y. Second, x is said to be a proper 

part of y iff x ≤ y but y ≰ x. Third, x and y overlap, written x ◦  y, iff they have a common part; if 

not, x and y are said to be disjoint, written x ⊥ y. Finally, x is an upper bound for some 

quantities iff each of these quantities is part of x; and x is their least upper bound iff, whenever 

x’ is an upper bound, then x ≤x’. 

Hossack’s axiomatization of Classical Extensional Mereology consists of eight principles 

which, echoing Euclid, he calls “common axioms”. 

(A1) Closure. Given x and y, there exists a quantity w such that w = x&y. 

(A2) Idempotent Law. x&x = x. 

(A3) Commutative law. x&y = y &x. 

(A4) Associative law. x&(y &z) = (x&y)&z. 

(A5) Remainder. If y is a proper part of x there always exists a quantity w disjoint from y such 

that x = y &w. 

(A6) Overlap. If z overlaps x&y, then z overlaps x or z overlaps y. 

(A7) Universe. There is a quantity of which every quantity is a part. 

(A8) Least upper bound. If ∃xϕ(x), then there is a least upper bound all x such that ϕ(x).6 

                                                             
6 I have slightly modified Hossack’s formulation so as to avoid any reliance on Quinean “virtual classes”. 



5 

As is well known, there are heated debates in metaphysics about the correct mereological 

structure of reality. Is this clay part of the statue, or vice versa, or perhaps both? Is there a 

sum of the clay and my bicycle? All these debates concern the mereological structure of 

individuals, Hossack contends, not quantities. He wisely sets these debates aside in order to 

focus on the mereological structure of different types of quantity. His concern is thus solely 

with what he regards as a purely logical notion of parthood, where things are more clear cut. 

Indeed, Hossack claims that, when the mereological notions are interpreted as concerned with 

pluralities or continua, not individuals, the axioms stated above are uncontroversial and a 

priori. 

I agree that the mereological structure of quantities is less problematic than that of 

individuals and that many of Hossack’s axioms are plausible on the mentioned 

interpretations. I am unable to follow him all the way, however, as I have argued in print 

against (A7) on the plural interpretation.7 There is good reason, I argue, not to accept a 

universal plurality: a plurality has to be properly circumscribed in a way that the universe as a 

whole is not. Since this is a minority view, however, I set it aside for now and proceed on the 

assumption that Hossack’s axioms are appropriate. 

Pluralities and continua have further structure beyond that described by Classical 

Extensional Mereology. Say that x is an atom just in case x has no proper parts. Then, for 

pluralities, we want an axiom of atomicity, to the effect that every object has an atomic part: 

(A9) Atomicity ∀x∃y(y ≤ x ∧∀z(z ≤ y → z = y)). 

By contrast, continua are gunky, in the usual sense that every part contains a proper part. 

Thus, for continua, we add the following extra axiom: 

(C9) Divisibility ∀x∃y y< x. 

Careful readers may have noticed that a single type of variables are used to range over 

individuals, pluralities, continua, and perhaps more. This is not a slip but fully intentional. 

Following Aristotle, Hossack holds that “‘everything there is’ divide into the predicables and 

the impredicables”, that is, into properties and objects (Sect. 2.2). Indeed, he goes even 

further, adopting a type-free language the variables of which range freely over properties, 

                                                             
7 See Linnebo (2010) and Florio and Linnebo (forthcoming). 
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individuals, pluralities, continua and series: if we wish to speak about one category of things 

in particular, we can do so by simply restricting the variables to that category. (p.1 of ch.4) 

It is natural to worry that this untyped language will lead to paradoxes. For example, the 

property of not self-instantiating appears to lead straight to a property-theoretic version of 

Russell’s paradox. In response, Hossack points out that his properties are scarce, not 

abundant, which means that there is no obvious pressure on him to accept the mentioned 

property or others that would lead to trouble (ch.2). 

What types of quantities are there? As we have seen, Hossack provides three examples: 

pluralities, continua, and series. He offers no systematic discussion, though, of whether there 

might be further examples. Why shouldn’t there be? Various philosophers and logicians, 

including myself, have defended the idea of superplurals, that is, a doubly articulated form of 

reference that stands to plural reference the way this stands to ordinary singular reference. 

For example, 

(1) My children, your children, and her children played against each other. 

is naturally interpreted as involving superplural reference.8 There are other possibilities too. 

Why shouldn’t there be a “multiplural” form of reference that differs from ordinary plural 

reference, not by taking order into account, as in the case of serial reference, but by admitting 

multiple occurrences of the same object?9 I may, for example, state that the winners of the 

race in the past three years are Alice, Beth, and Beth, thus conveying the fact that Alice won 

once and Beth twice. In short, there seem to be a variety of purely logical parthood relations 

and an associated formal mereology. A systematic theory of generalized parthood relations 

has been developed by Fine (2010). 

I don’t know to what extent Hossack would be willing to countenance other types of 

quantities beyond those that he discusses. But it is hard to see how he could block the 

proposed examples and generalizations just mentioned. Admittedly, he makes a point of the 

fact that natural language has “devices for plural reference, mass reference and serial 

reference” (ch. 3). So he might attempt to block further generalizations by arguing that there 

is no basis for this natural language. But this type of argument would be doubly problematic. 

                                                             
8 See (Linnebo, 2017, Sect. 2.4) for an overview and further references. 

9 For the cognoscenti: Multiplural reference would thus stand to the well understood notion of multiset as 

ordinary plural reference stands to sets. 
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First, it is doubtful that natural language is so limited, as the above examples illustrate. 

Second, and more importantly, appealing to what is available in a natural language such as 

English would anyway be too parochial for present purposes. One cannot assess whether a 

kind of quantity exists as a legitimate object of mathematical investigation by appealing to the 

structure of English or other natural languages. 

3 Equality 

As Hossack is fond of pointing out, Aristotle holds that “the most distinctive mark of quantity 

is that equality and inequality are predicated of it” (Categories: 6a27). For example, two 

pluralities can be equally numerous, and two masses, equally massive. To develop this idea, 

we need a notion of equality of quantities, which is distinct from identity. I will write this 

equivalence as ∼.10 

What assumptions do we need concerning this equivalence? The basic idea is clear. We 

need it to be an equivalence relation, which “agrees with” our notions of addition and 

subtraction. When spelling this out, Hossack’s source of inspiration are Euclid’s famous 

Common Notions: 

(1) Things which equal the same thing also equal one another. 

(2) If equals are added to equals, then the wholes are equal. 

(3) If equals are subtracted from equals, then the remainders are equal. 

(4) Things which coincide with one another equal one another. 

(5) The whole is greater than the part. 

Seeking technical improvement, though, Hossack adopts some different axioms which 

entail, but go beyond, all the Common Notions except (4), which is not needed at this stage. 

These are his Equality Axioms: 

(E1) Quantities equal to the same quantity are equal to one another. 
                                                             

10 Hossack uses ≈, but I would like to reserve this symbol for equinumerosity (or some restriction thereof), as is 

standard in much of the literature with which we will engage, and to use ∼ for the completely general notion of 

equivalence. 
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(E2) If disjoint equals are added to equals, the wholes are equal. That is: 

x ⊥ y ∧ x’ ⊥y’ ∧ x ∼ x’ ∧ y ∼ y’ → x&y ∼ x’ & y’ 

(E3) (Trichotomy) Two quantities are unequal if and only if either the first is equal to a proper 

part of the second or the second is equal to a proper part of the first. 

(E4) No quantity is equal to any of its proper parts.11 

We can define a notion of a quantity being less than another by letting ‘x ≺ y’ abbreviate “x is 

equal to some proper part of y”. The trichotomy axiom can now be formalized thus: for all 

quantities x and y, exactly one of the following is true: (i) x ≺ y; (ii) x = y; (iii) y ≺ x. 

The basic idea, we recall, is that ∼ should be an equivalence relation that “agrees with” the 

other relations among quantities. The Equality Axioms ensure that. Hossack’s Lemma 5.5 

establishes that ∼ is an equivalence relation. Moreover, (E2) states that ∼ is a so-called 

congruence with respect to addition, provided that proper care is taken to ensure that 

appropriate quantities are disjoint; and the analogous claim can be proved concerning 

subtraction. We can also prove that ∼ is a congruence with respect to ≺. 

I wish to end the section by resuming my case for further generalizations. First, consider 

pluralities with the equivalence of equinumerosity. Then (E4) states that no plurality can be 

equinumerous with a proper subplurality. This means that no plurality can be (Dedekind) 

infinite! Thus, Hossack’s analysis rules out infinite pluralities and their cardinalities, which 

seem like perfectly good magnitudes.12 Second, linear orders are no doubt important. But why 

                                                             
11 I have rephrased this axiom slightly for greater clarity. 
12 In fact, (E4) is not only unduly restrictive but also potentially in conflict with the rest of Hossack’s theory. As 

we saw in the previous section, he accepts a universal plurality, that is, a plurality of everything whatsoever. 

Moreover, as his discussion of the natural numbers in Ch. 6 makes clear, each natural number is part of this 

universal plurality, which accordingly is an infinite plurality. One would therefore expect the universal plurality to 

have proper parts, or subpluralities, that are equivalent to itself, in violation of (E4). Hossack is saved from 

outright contradiction only by his unusually restrictive definition, in Sect. 6.2, of the relation ≈ of cardinality 

equivalence, or “tallying”, between two pluralities. 

Even setting aside worries about this relation being too restrictive, a problem remains: his proof in Sect. 6.3 that 

≈ is an equivalence, in the sense of the equivalence axioms (E1)–(E4), is flawed. If the proof were correct, ≈ would 

be reflexive, by Lemma 5.5. But since only finite pluralities can tally, the universal plurality shows that ≈ isn’t 

reflexive. To remedy this flaw, one option might be to abandon axiom (E4) and adopt a less restrictive notion of 

cardinality equivalence. Another option might be to redo the entire investigation in a way that replaces the work 

currently done by equivalence relations by so-called partial equivalence relations, that is, relations that are 

symmetric and transitive but not necessarily reflexive. 
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insist that all quantities be thus ordered? There are plausible examples of quantities that are 

not linearly ordered. Consider angles, which are naturally understood as quantities and 

support a familiar notion of addition. But the equivalence of angles is naturally understood 

modulo 2π, with the result that the ordering of angles fails to be linear. Or consider oriented 

line segments. These too can (in the Euclidean case) be shown to support natural notions of 

addition, subtraction, and equality.13 What is shared by two line segments under this 

equivalence corresponds to a vector. But the order defined on these vectors in terms of our 

notion of addition is not linear. 

I conclude that there is substantial pressure to generalize further than Hossack does. And 

again, it is unclear how he could resist this pressure, should he wish to do so. 

4 Magnitudes 

A magnitude, we recall, was explained as a property that is shared by equivalent quantities 

(Introduction, Sect. 5). Let us now be more precise. Let a system of magnitudes be a family of 

properties associated with one and the same relation of equality (Intro, ch. 1). We can now 

formulate what is perhaps the most important thesis of the entire book. 

Magnitudes Thesis 

Whenever there is a standard of equality that satisfies the Common Notions, there 

is a corresponding system of magnitudes such that quantities are equal if and only 

if they instantiate the same magnitude of the system. (Introduction, Sect. 5) 

Let the variable m range over the system of magnitudes associated with some fixed 

equivalence ∼, and write ‘x η m’ for the claim that x instantiates m. Then the Magnitude Thesis 

tell us that: 

(MT) ∃m(x η m ∧ y η m) ↔ x ∼ y 

There is another way to express this thesis as well. Let ϕ map a quantity to its magnitude. 

                                                             
13 For example, each such line segment can be represented as (P1,P2), where P1 is its starting point and P2 its end 

point. We define (P1,P2)&(Q1,Q2) as the segment (P1,R), obtained by first shifting the segment (Q1,Q2) such that its 

starting point coincides with P2 and then letting R by the point to which its end point has been moved. (As is well 

know, this operation of “parallel shift” is not available when the geometry is non-Euclidean.) 
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(MT) can then be written as Frege-style abstraction principle: 

(AP) ϕ(x) = ϕ(y) ↔ x ∼ y 

This reveals an important structural similarity between the Magnitude Thesis and Fregean 

abstraction. The significance of this structural similarity will be a central concern in what 

follows. 

As Hossack explains, we can now give an elegant account of the abstract structure of 

magnitudes. We have studied the two-fold structure of quantities, provided by mereology and 

the equivalence relation. The Magnitude Thesis enables us to transfer much of this structure 

from the quantities to the magnitudes that these instantiate. 

We can, for example, define an operation of addition on the magnitudes. To see this, 

consider two magnitudes m1 and m2. Suppose it is possible to find two disjoint quantities x1 

and x2 that instantiate these magnitudes. We wish to define the sum m1+m2 as the magnitude 

of the sum x1 &x2. For this definition to be permissible, however, the magnitude assigned to m1 

+m2, namely ϕ(x1 &x2), must be independent of our choice of disjoint quantities x1 and x2 to 

instantiate m1 and m2, respectively. So consider some alternative such choice,  and . Since 

(E2) states that ∼ is a congruence with respect to the operation of fusing disjoint quantities, 

we have . By the Magnitude Thesis, this ensures the desired independence: 

 

Thus, our definition is permissible. 

With the operation of addition of magnitudes defined, we can now proceed to investigate 

its properties. First, we prove that, for any disjoint quantities x1 and x2, the magnitude of their 

sum is the sum of their magnitudes: 

(1) ϕ(x1 &x2) = ϕ(x1) + ϕ(x2) 

This is only the beginning. Using the correspondence between quantities and magnitudes 

afforded by the Magnitude Thesis, Hossack derives some important algebraic properties of 

the magnitudes. In particular, we can show that addition of magnitudes obeys the associative 

law and a law known as “restricted subtraction”: 
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a + (b + c) = (a + b) + c 

a ≠ b if and only if there is an element d such that either b = a + d or a = b + d. 

In technical parlance, we have thus shown that any system of magnitudes forms a so-called 

“positive semigroup”. Hossack calls this important result the homomorphism theorem.14This 

theorem highlights two attractive features of Hossack’s account, which were advertised 

already in Section 1. First, the theorem offers a pleasing unification of different types of 

numbers or magnitudes. Provided that a type of quantity satisfies the axioms of mereology 

and equality set out above, the system of magnitudes which the quantities instantiate is 

guaranteed to have a certain algebraic structure. Of course, if we consider quantities 

satisfying other axioms, then the corresponding magnitudes may satisfy different algebraic 

principles. Second, some attractive Aristotelian explanations become available. Magnitudes 

are no more mysterious than any other properties that are instantiated in the physical world. 

In particular, the algebraic structure of these magnitudes can be explained in terms of an 

analogous structure on the quantities whose magnitudes they are. The algebraic structure of 

the magnitudes is, as it were, “inherited” from an analogous structure on the quantities. 

We observed above that the Magnitude Thesis is structurally similar to a Fregean 

abstraction principle: two quantities are associated with the same magnitude just in case they 

are equivalent. While this structural similarity is undeniable, its philosophical significance is 

obviously up for debate. Here Hossack and I disagree. He regards his broadly Aristotelian 

approach as fundamentally different from Fregean abstraction, for at least two reasons. First, 

there is an important structural difference, namely that magnitudes come with a linear 

ordering, whereas Fregean abstraction works on a greater variety of equivalence relations. 

Second, the things on the left-hand side of (AP) belong to the category of properties, not 

objects, as Fregeans would have it. Magnitudes are therefore acceptable to nominalists, who 

deny that there are abstract objects: for magnitudes aren’t objects at all but properties 

instantiated by ordinary physical objects. 

I deny that these alleged differences are very significant. First, how important is it that 

each system of magnitudes is linearly ordered? In the previous two sections, I have argued 
                                                             

14 It is unfortunate that Hossack does not compare his homomorphism theorem with analogous theorems from 

the established field of measurement theory; see e.g. Suppes (1951), especially Metatheorem A, or Krantz et al. 

(1971), for a more authoritative treatment. 



12 

that there is substantial pressure to generalize Hossack’s account so as to take on board 

magnitudes that aren’t linearly ordered, such as angles and vectors. I now wish to add a more 

principled, philosophical point. In my opinion, the single most valuable aspect of Hossack’s 

approach is that it makes available some very attractive, broadly Aristotelian explanations. It 

explains how we can latch on to certain abstract features of reality, understood as properties 

that can be instantiated in the physical world. Moreover, the algebraic structure of these 

properties can be understood as “inherited” from an analogous structure on the entities 

whose properties they are. We are now in a position to make an important observation. These 

attractive explanations have nothing to do with the equivalence on the relevant entities giving 

rise to a linear order! On the contrary, the Aristotelian explanations apply to shapes, 

directions, and so on, just as much as to magnitudes. Consider the case of directions. A 

direction can be understood as a property of lines, such that two lines have the same direction 

just in case they are parallel:15 

d(l1) = d(l2) ↔ l1 ∥ l2 

Moreover, relations between directions, such as orthogonality (symbolized as ‘⊥’), can be seen 

as “inherited” from corresponding relations between the lines whose directions they are: 

d(l1) ⊥ d(l2) ↔ l1 ⊥ l2 

This shows that the attractive, broadly Aristotelian explanations have nothing to do with the 

properties in question being linearly ordered. 

Second, how significant is it that magnitudes are properties rather than objects? Hossack 

attaches great significance to this distinction (see Introduction and Ch. 2). I disagree. To 

explain why, recall that Hossack uses an untyped logic where a single sort of variables is used 

to range over things of all types or categories, including objects, quantities, and properties. 

First-order variables are thus allowed to have magnitudes as their values, and magnitudes are 

permitted to figure as members of pluralities and sets. I believe this gives us all that Frege and 

his follows ever wanted when they defended the idea of numbers as objects. Frege’s notion of 

                                                             
15 As usual, I ignore the slight awkwardness that Frege’s “directions” lack orientation. To capture the ordinary 

notion of direction, we need to consider oriented lines or line segments under the equivalence relation of “co-

orientation”, defined as parallelism plus sameness of orientation. 
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an object is a broadly logical one, and the primary point of reifying numbers is to be able to 

treat them as objects for various logico-mathematical purposes. But the licence so to treat the 

numbers is granted to us anyway by Hossack’s choice of an untyped logic. 

To elaborate, consider what is often held up as a key advantage of the Fregean thesis that 

numbers are objects, namely that this thesis licences his famous bootstrapping argument for 

the existence of infinity many natural numbers. Here is the idea. Suppose we have established 

the existence of the natural numbers from 0 up through n. Since numbers are objects, this 

means we can consider the plurality of 0, 1, and so on up through n.16 Since the number of this 

plurality is n + 1, we have now established the existence of one more number. For this 

argument to go through, however, there is no need for numbers to be objects in some robust 

metaphysical sense that some philosophers might find problematic. All it takes is that 

numbers can figure as members of the pluralities whose numbers we consider. And this is 

something that Hossack grants us anyway via his untyped logic. Thus, if Hossack’s numbers 

fail to be objects, this would be in some purely metaphysical sense, which Fregeans probably 

never sought and certainly do not need. 

All in all, I am inclined to regard Hossack’s properties and objects as just two different 

kinds of Frege-objects. I also believe that the essence of his broadly Aristotelian metaphysics 

and epistemology of numbers can be co-opted by the Fregeans—and to a large extent is 

already part of their view, through their emphasis on numbers as reified cardinality 

properties and Frege’s applicability constraint, which requires the applicability to counting to 

be part of the very nature of numbers, not only “grafted on” from the outside.17 

5 The bad company problem 

Suppose we generalize, as I have been urging, and allow a wider class of equivalence relations 

to define magnitudes or, more generally, to figure in (MT) and its variant (AP). Suppose 

further, following Hossack, that magnitudes and properties in general belong to the same 

logical type as objects. Then we encounter a well-known threat of paradox. For there are 

                                                             
16 How do we obtain the number 0 when numbers are understood as properties of pluralities, which presumably 

must have one or more members? Here we may follow Hossack’s own lead and pick any non-number to serve as a 

proxy for 0 (see ch. 6). 
17 See Wright (2000) for a discussion and partial defense of this constraint. 
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many instances of the resulting abstraction scheme (AP) that are inconsistent or otherwise 

unacceptable. A famous example is (a plural variant of) Frege’s Basic Law V 

(V) {xx} = {yy}↔∀z(z ≺ xx ↔ z ≺ yy) 

which famously falls prey to Russell’s paradox. This is the so-called bad company problem, 

which has received a great deal of attention in the Fregean tradition. 

How should we respond to the problem? This is a huge question, which has generated a 

great deal of debate. I will end with some all too brief remarks about the options, including 

Hossack’s and the one that I favor. 

The neo-Fregeans take the lesson of the bad company problem to be that we need to 

restrict the kind of type-lowering involved in (AP)—where φ maps a property or a plurality to 

an object—to a limited range of instances, including the case of cardinality abstraction. How 

should the range of legitimate forms of abstraction be demarcated? Despite repeated 

attempts, there has been no satisfactory answer to this crucial question.18 

In addition to this worrying lack of progress, Hossack has an independent reason to reject 

to the neo-Fregean response. As we have seen, he is committed to treating magnitudes and 

any generalizations thereof as things alongside ordinary objects, all in the range of his single 

untyped kind of variables. This means that there are no types to be lowered in the first place. 

Although this is a radical view, I find myself broadly in agreement. In particular, Hossack is 

right, it seems to me, that considerations about expressibility give us reason to lift the type 

restrictions in favor of a single untyped kind of variable.19 

How should Hossack respond to the bad company problem? It is tempting to think that the 

problem arises only as a result of the generalizations I have been urging and that it can 

accordingly be avoided simply by refusing to generalize. This temptation is illusory, however, 

since the threat of paradox arises already for the kinds of abstraction that Hossack considers. 

To see this, recall that Hossack accepts unrestricted plural comprehension: any formula 

defines a plurality, provided there is at least one object that satisfies the formula. What about 

the well-ordered analogue of pluralities, namely series? One would expect a defender of 

                                                             
18 For this criticism, see Studd (2016) and (Linnebo, 2018, Sect. 3.2). For a recent survey of the options, see Cook 

and Linnebo (2018). 
19 See the passage quoted on p. 5, as well as ch. 2 in general. 
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unrestricted plural comprehension to be sympathetic also to unrestricted comprehension for 

series; that is, if a two-place formula defines a well-ordering without repetitions, then the 

formula defines as a series. But as Hossack is well aware, this form of comprehension would 

blow up his theory by allowing a version of the Burali-Forti paradox. By unrestricted series 

comprehensions, there would be a series of all the ordinals. By Hossack’s theory, this series 

would define an ordinal, which would have to be greater than all the ordinals—including 

itself. This paradox is a special instance of the bad company problem that arises 

independently of the generalizations I have been urging. 

Hossack’s response is to impose restrictions on what series there can be; in particular, he 

denies that there can be a series of all ordinals. The only series there are, he argues, are those 

that are defined by recursive well-orderings. This response seems to me both unacceptably 

restrictive and ultimately ad hoc. To substantiate the former charge, consider all the real 

numbers. By the axiom of choice, this uncountable plurality can be well ordered. Why can’t 

there be serial reference to these numbers in that order? This form of reference makes just as 

much sense, it seems to me, as plural reference to that uncountable lot of numbers, which 

Hossack accepts. 

The ad hoc character of Hossack’s response to the Burali-Forti paradox emerges when we 

compare it with his response to other paradoxes of naive set theory. Hossack responds to 

Russell’s paradox by appealing to NFU—a version of Quine’s New Foundations adapted so as 

to accommodate urelements. This means that there is absolutely no connection between his 

responses to the two paradoxes. The restriction to recursive well-orderings, which forms the 

heart of his response to the Burali-Forti paradox, plays no role whatsoever in his response to 

Russell’s paradox. 

As we have seen, Hossack’s approach to numbers and magnitudes is heavily inspired by 

Aristotle. This makes it interesting, I think, to observe that my own response to the bad 

company can be seen as developing yet another Aristotelian idea, namely that magnitudes and 

generalizations thereof are dependent entities, which need to be accounted for in a bottomup 

manner. This is a central theme of my recent book Linnebo (2018). The existence of 

magnitudes and other abstracta is explained in terms of their instances; and their properties 

and relations are explained in terms of corresponding properties and relations among the 

instances, namely by developing the “inheritance” ideas adumbrated in the previous section. 
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This results in a hierarchical conception of numbers and other mathematical entities, where 

entities higher up in the hierarchy depend in various ways on ones lower down. 

This hierarchical conception informs my view of what should be accepted as permissible 

plural and serial reference. If we are serious about the hierarchy, I argue, every form of 

reference must take place at some stage or other of the hierarchy. Thus, to refer plurally or 

serially to some things, all of these things need to be present at some stage or other. This in 

turn means that each plurality or series needs to be bounded by some stage or other. We thus 

arrive a uniform and moderately liberal view of both forms of reference, which contrasts with 

Hossack’s unhappy combination of an extremely liberal form of plural reference and a 

severely restricted form of serial reference. This moderately liberal view can also be seen to 

guard against Russell’s paradox and Burali-Forti’s, again in a uniform way. 

In sum, I have found that there is much to like about Hossack’s neo-Aristotelian approach 

to numbers and magnitudes. But I have argued there is a push to generalize further, which 

introduces many of the problems discussed in the neo-Fregean tradition. Finally, I have 

suggested that these problems can be addressed by seeking inspiration from yet another 

Aristotelian idea, namely that numbers and other mathematical objects are dependent 

entities. 
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