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Abstract

Variable selection in ultra-high dimensional regression problems has become an important issue.

In such situations, penalized regression models may face computational problems and some pre-

screening of the variables may be necessary. A number of procedures for such pre-screening has been

developed; among them the sure independence screening (SIS) enjoys some popularity. However,

SIS is vulnerable to outliers in the data, and in particular in small samples this may lead to faulty

inference. In this paper, we develop a new robust screening procedure. We build on the density

power divergence (DPD) estimation approach and introduce DPD-SIS and its extension iterative

DPD-SIS. We illustrate the behavior of the methods through extensive simulation studies and show

that they are superior to both the original SIS and other robust methods when there are outliers

in the data. Finally, we illustrate its use in a study on regulation of lipid metabolism.

Keywords: Variable selection; NP dimensionality; Independence screening; Minimum density power

divergence estimator; Influence Function; Gene selection.

1 Introduction

The introduction of the Omics technologies has led to a revolution in medical research, leading to an

increased knowledge of the biological background of many diseases and paving the way for personalized

therapies. A characteristic feature of data arising from the Omics technologies is its high dimensional-

ity, which is a challenge for the statistical analysis. If we are to relate these high-dimensional features

to some outcome variable in a regression set-up, we need to perform some sort of variable selection

[1–4].
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The most commonly used method for identifying important predictor variables in a high-dimensional

regression model is to fit a penalized model. Consider the linear regression model with response vari-

able Y and p explanatory variables (e.g. gene expressions) as covariates. Given the responses y1, . . . , yn

from n independent samples and the corresponding covariate values, say xij , i = 1, . . . , n, for the j-th

covariate for j = 1, 2, . . . , p, this model can be written in matrix form as

yi = xTi β + εi, (1)

where xi = (xi1, . . . , xip)
T and εis are independent following N(0, σ2), for i = 1, . . . , n. The model

parameters β = (β0, β1, . . . , βp)
T and σ2 need to be estimated from the data. In the ultra-high

dimensional case with p� n, e.g., Omics data, we need to assume sparsity of the regression coefficient

β to achieve identifiability of the estimators, i.e., we assume that only a few of the components of β

are non-zero. Without loss of generality, we may assume that the true model parameter values are

(β0, σ
2
0) where βT0 = (β0,β01,0p−s) with β01 being the non-sparse part of size s� n. Under sparsity

assumptions, estimation of the parameters θ = (β, σ2) is performed through penalized estimation

procedures with appropriate penalties which can successfully recover all and only the truly important

variables (corresponding to non-zero βj) asymptotically with probability tending to one. There are

plenty of such penalized regression procedures available in recent literature, starting from the LASSO

method of Tibshirani [5] and its refinements [e.g., 6, 7] to more advanced procedures based on penalties

like SCAD [8] or MCP [9], and many more, which work well in moderately high dimensions. However,

a common problem with these methods in ultra-high dimensional set-ups is their computational cost

and numerical issues, which has led to development of simpler variable screening methods at the initial

stage to reduce the model size (e.g., number of genetic features) from the order of potentially millions

to an order of a few hundred (often lesser than the sample size as well) and then apply an appropriate

penalization method to obtain final model estimates from the reduced set of covariates. The most

popular method for such screening purposes is the Sure Independent Screening (SIS) proposed by Fan

and Lv [10] which has a simple interpretation and theoretical guarantees along with fast computation.

Even with its simple structure (the SIS ranks the covariates based on their correlation with the

response), the method yet enjoys the model selection oracle property under ultra-high dimensional
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set-ups where log(p) = O(nl) for some 0 < l < 1. An iterative extension, ISIS, is also proposed in [10]

to tackle the issue of collinearity among covariates. The SIS and ISIS are routinely being applied in

ultra-high dimensional applications and have also been extended to more complex models [see, e.g.,

11–20, and the references therein]. However, one major drawback of the SIS or ISIS is their non-robust

nature against data contamination as indicated already in the discussion of the original paper itself.

This issue can be crucial when applying the method for screening of important genes from large scale

Omics data, which are often prone to at least a few outliers.

Motivating Example: In our motivating example (to be further described in Sec. 4) we are analyzing

data from a small randomized study (n = 54) where the subjects received either fish oil, oxidized fish

oil or sunflower oil for a period of seven weeks, and serum triglyceride (TG) levels were measured at

baseline and after seven weeks. Our goal is to relate TG response (the difference between the two

measurements of serum TG levels) to gene expressions measured at baseline. Gene expressions were

measured using microarray technology, and we have available data from in total p = 21236 probes.

Thus, an initial variable screening to reduce the model size is needed.

From the box-plot of the TG response (Fig 1a), it is clearly justified to fit a normal error distribution

in the linear regression model (1) except for three outlying values. Now, if we are screening the genes

via correlation with response in SIS or ISIS, these outliers will have an erroneous effects. Note that, it

is not justified to remove these outliers at the start of the screening procedure, since they are outliers in

the univariate distribution of response only but may or may not be outliers in the bivariate distribution

of the response with any covariate. A few such examples are given in Fig 1b–1e; the outliers seem

more legitimate in the bivariate space for the first case (Figure 1b), having no effect on the significance

of the associated regression slope, but this is not true for the other cases. In Figure 1c, the outliers

make the relation between the response Y and the corresponding gene look significant and hence it

will come up towards the top of the selected gene list through usual SIS, although there is clearly no

association between these variables after removing the outliers. The situation is more serious in the

last two cases (Figures 1d-1e); there are actually strong associations between the response variable

and both these genes which get masked by the presence of outliers and hence, these genes will not

be among the top selected genes in SIS or even through ISIS (we have checked up to three steps of

3



(a) Boxplot of TG Difference

(b) Gene: FOXF2 (c) Gene: MORC4

(d) Gene: EEF1A1 (e) Gene: ZSCAN12

Figure 1: Box-plot of Response and Scatter plots of the response against different Genes

ISIS). Further, Figure 1d also presents a new outlier in the covariate space (in the gene expressions)

and the same outlier may be present in several other gene expressions as well; such a scrutiny for each

gene is clearly not feasible with larger sets of Omics data with potentially millions of features. Even

if performed (with a huge time effort), this might leave us with very few cases left for performing any

reasonable (joint) inference. A robust screening method which would ignore the effect of such outliers

would be of great help in such ultra-high dimensional problems.

In this paper, we will develop a new robust screening procedure, an extension of the usual SIS,

4



using the popular density power divergence (DPD) based estimation approach (briefly described in

Section 1 of the Online Supplement). The DPD measure was originally proposed by Basu et al. [21] in

the context of robust estimation in IID data. It has recently become very popular for robust inference

in general and is widely applied on different types of data; see, e.g., [22]. The same approach has also

been used for high-dimensional penalized linear regression and variable selection more recently [23, 24]

and has been shown to be extremely useful under data contamination where it still gives consistent

estimates and the oracle selection property still holds. However, the computation is still a concern

in ultra-high dimensional set-ups and a robust version of SIS along the same line would be a useful

approach to analyze such data more robustly, with robust screening at an initial stage followed by the

robust DPD based penalized regression method to the reduced low or moderately high dimensional

set of covariates. In the current work we fill the gap in the literature for the first (screening) stage by

proposing a robust screening method based on the DPD for ultra-high dimensional linear regression

models and illustrate its claimed robustness property theoretically as well as numerically. A robust

version of ISIS along the same line using DPD will also be discussed to tackle the correlations among

covariates. The suggested method will be applied to our motivating data example.

We also compare our method with the existing state-of-the-art robust screening procedures for

ultra-high dimensional linear models [25–29, etc.] through extensive simulation studies. The major

advantages of our proposed DPD based SIS and ISIS methods can be summarized as follows.

• Most (if not all) of the existing robust screening procedures are non-parametric in nature. It is

well-known that, when a parametric model can be assumed, parametric inference is statistically

more efficient than the non-parametric approach. In practice, it may often be the case that

the assumed (parametric) linear regression model is at least approximately correct, and we

may loose efficiency by using the existing non-parametric screening procedures. In this spirit,

we consider for the first time the more efficient parametric approach to develop a robust sure

screening procedure (in Section 2) via an appropriate robust parameter estimation technique.

Consequently, our proposed screening procedure enjoys a significantly improved performance

over the existing non-parametric robust versions of SIS (see Section 3).

• As a consequence of the parametric approach considered in our proposal, our proposed screening
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method also estimates the error variance (σ2) from the data in each step (see Section 2.1), rather

than just assuming it to be known or ignoring it as in most existing (non-parametric) approaches.

In practice, the error variance is mostly unknown and has a significant impact in subsequent

inference via the signal-to-noise ratio. Thus, one unique feature of our proposed robust variable

selection procedure is data-based estimation of the error variance which, in turn, provides better

control of the signal-to-noise ratio in each step of the screening, eventually leading to improved

variable selection behavior.

2 Proposed Robust Variable Screening Procedures

2.1 The DPD-SIS

We now consider the linear regression model (1) with ultra-high dimensional covariates and the true

sparse regression coefficient β0 as described in Section 1; let us denote the true sparse model as

M0 = {1 ≤ j ≤ p : β0j 6= 0} = {1, 2, . . . , s}. Recall that the SIS method [10] can also be considered as

ordering the absolute value of the slope in marginal regression models of the response with individual

(standardized) covariates. Given values of the j-th covariate Xj for each j = 1, . . . , p, we consider the

j-th marginal model
yi = γj + βjxij + εij , i = 1, . . . , n, (2)

where the εijs are IID for i = 1, . . . , n, each having distribution N(0, σ2j ). We estimate the parameters

θj = (γj , βj , σj)
T by usual MLE or OLS based methods, say, (γ̂j , β̂j , σ̂). Note that, when all covariates

are standardized, ranking them in order of (absolute) correlation with the response is equivalent to

ordering the estimated slopes |β̂j |. However, this method is clearly non-robust since the estimates β̂js

are so for MLE/OLS.

Here, we will propose to use the same approach as in the usual SIS, but with robust estimates for

βj in the marginal model using the DPD approach. Let us fix a j ∈ {1, 2, . . . , p} and an α > 0. Since,

given covariate values, yi ∼ N(γj +βjxij , σ
2
j ), it belongs to the non-homogeneous set-up [30] discussed

in Section 1 of the Online Supplement and hence, we can define the MDPDE of the parameters θj

via the objective function there. For the marginal model (2), one can easily simplify the MDPDE
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objective function as to have the form Hn,α(θj) = 1
n

n∑
i=1

lα (yi, γj + βjxij , σ), where

lα (y, η, σ) =
1

σα(2π)α/2

(
1√

1 + α
− 1 + α

α
e−

α(y−η)2

σ2

)
+

1

α
, (3)

Then, we define the MDPDE of θj for the marginal model (2) as

θ̂
M

j = (γ̂Mα
j , β̂Mα

j , σ̂Mα
j ) = arg min

θ

1

n

n∑
i=1

lα (yi, γj + βjxij , σ) . (4)

This is a much simpler optimization problem with only three parameters (compared to any penalized

estimation problem), but we need to run it p times (once for each j = 1, . . . , p). However, the overall

computation time is still much lower than the penalized regression procedure with ultra-high dimen-

sional p. Based on these MDPDEs for a given α > 0, we can now choose the important variables in

order of the values of |β̂Mα
j |, which we refer to as the DPD-SIS procedure; for given index d we select

the estimated model M̂α(d). Once M̂α(d) is obtained, one can then apply any suitable penalized

regression method on the reduced set of covariates from M̂α(d) to obtain the final sparse estimate

of the parameters in the original model (1). Therefore, our proposed robust screening procedure, the

DPD-SIS, can be summarized in the following algorithm.

Algorithm 1: DPD-SIS(α)

1. Input: n-vector of responses y; n× p matrix of (standardized) covariates X; model size d.

2. For each j = 1, . . . , p, compute the marginal MDPDE β̂Mα
j via (4).

(This is an optimization in three parameters only and can be performed either by a standard

optimization function in some software or by standard numerical techniques).

3. Sort |β̂Mα
j | in decreasing order for j = 1, . . . , p. Set rk = j, if |β̂Mα

j | has rank k, for k = 1, . . . , p.

4. Construct the estimated model set M̂α(d) = {r1, . . . , rd}, with indices corresponding to the top

d values of (absolute) marginal MDPDEs.

5. Run a robust penalized regression model (low or moderate dimensional) with the covariates
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selected in M̂α(d) to obtain an estimated coefficient vector, say β̂d = (β̂d0, β̂dr1 , . . . , β̂drd)
T .

(We suggest to use the DPD based method of Ghosh and Majumdar [24] with the same α, which

also gives an estimate σ̂2 of the overall model error variance σ2.)

6. Output: The final estimated model M̂ =
{

1 ≤ k ≤ d : β̂drk 6= 0
}

along with the parameter

estimates β̂d (and the estimate σ̂2 of σ2, if available).

Note that, at α = 0 (in a limiting sense), the marginal MDPDE of regression coefficients coincides

with the MLE and, hence, with the OLS as well. Thus the proposed DPD-SIS algorithm at α = 0

becomes exactly the same as the usual SIS of Fan and Lv [10]. The extent of robustness of the

DPD-SIS increases with increasing α > 0.

For brevity in presentation, the theoretical properties of the DPD-SIS are presented in an appendix

which includes the theoretical justifications of the claimed robustness of DPD-SIS through the influence

function analyses in Section A.1 and a brief (non-technical) discussion of the sure-screening property

and the oracle consistency of the final model and estimator obtained from Algorithm 1 (DPD-SIS) in

Section A.2.

2.2 Iterative DPD-SIS

It has been noted that the usual SIS fails to pick up a variable having weak marginal correlation but

significant joint relation with the response; on the other hand, it might pick up a variable having

stronger marginal correlation but no joint relation with the response. Such cases occur mostly due to

strong correlation between the important and unimportant predictor variables. To solve these issues,

Fan and Lv [10] also proposed an iterative extension of SIS, namely the ISIS, which selects the truly

important variables even under the above situations. Later, several extensions of the original ISIS

have also been proposed [31]. As a robust extension of SIS, the DPD-SIS also suffers from the above

issues, and fails to provide optimal results when covariates are strongly correlated (see Section 3) and

an iterative extension in the line of ISIS is required.

The DPD-SIS can be easily extended through iterations to avoid the strong effects of correlation

among predictors by considering, in subsequent iterations, the residuals from the fitted regression with

predictors picked up in earlier stages. More explicitly, we start with DPD-SIS (Algorithm 1) in the
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first step to select k1 variables with index set A1 = {i1, . . . , ik1}. Then, in the second step, we compute

the residuals from the fitted regression model of the response y on the selected covariates in A1. The

DPD-SIS screening is again applied taking these residuals as our new response to select another k2

variables from the pool of variables with index set {1, 2, . . . , p} \ A1; let us denote the index set of

these k2 selected variables as A2. We further proceed repeating these steps to generate the index sets

A3, . . . ,Al of selected variables in the subsequent stages till we reach our target model size, say d, i.e.,

till the smallest l for which | ∪li=1 Ai| = d. Considering its similarity with the ISIS, we refer to this

robust iterative variable screening procedure as Iterative DPD-SIS or, in short, DPD-ISIS, which is

presented schematically in the following algorithm.

Algorithm 2: DPD-ISIS(α)

1. Input: n-vector of responses y; n× p matrix of (standardized) covariates X; model size d.

2. Set i = 1, y(1) = y and index set of available covariates as W1 = {1, . . . , p}

3. DPD-SIS with model size d′:

(a) For each j ∈ W1, compute the marginal MDPDE β̂Mα
j via (4) with response y(i) and

covariate Xj .

(b) Sort |β̂Mα
j | in decreasing order for j ∈ Wi and set rk = j, if |β̂Mα

j | has rank k.

(c) Construct the estimated model set M̂(i)
α = {r1, . . . , rd′}, with indices corresponding to the

top d′ values of (absolute) marginal MDPDEs.

4. Run any suitable (fast) robust penalized regression model (e.g., RLARS [32]) with the main

response y and the covariates selected in ∪ik=1M̂
(k)
α to get estimated coefficient vector β̂

(i)
.

Let us assume that, at this i-th stage, the number of covariates selected in ∪ik=1M̂
(k)
α is ki

and denote them as {j1, . . . , jki} so that the estimated coefficient vector has the form β̂
(i)

=

(β̂
(i)
0 , β̂

(i)
j1
, . . . , β̂

(i)
jki

)T . Denote Ai =
{
ja : β̂

(i)
ja
6= 0, a = 1, . . . , ki

}
⊂ W1.

5. If a specified stopping criterion (see discussion below) is satisfied, go to step 8. Otherwise go to

Step 6.
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6. Compute the residuals r(i) = y −XAiβ̂
(i)

.

7. Set y(i+1) = r(i) and the index set of available covariates as Wi =W1 \ Ai.

Change i to i+ 1 and go to Step 3.

8. Run a robust penalized regression model (low or moderate dimensional) with the covariates

selected in Ai to get estimated coefficient vector, say β̂d = (β̂d0, β̂dr1 , . . . , β̂drd)
T .

9. Output: The final estimated model M̂ =
{

1 ≤ k ≤ d : β̂drk 6= 0
}

along with the parameter

estimates β̂d (and the estimate σ̂2 of σ2, if available).

A few remarks related to the above algorithm is in order before further discussions. Firstly, the

most straightforward stopping criterion (required in Step 5) could be |Ai| < d. Step 8 assumes that

the size of Ai, at the end of the last iteration, is exactly d, which may not always be the case. When

|Ai| > d, we may work with all those selected variables or remove the extra variables having lower

values of the marginal MDPDEs at the last stage of iteration. Alternatively the DPD-ISIS can also

be terminated after a pre-fixed number of iterations (say i = imax) or when the size of the active set

does not change from its value in the previous iteration (i.e., |Ai| = |Ai−1|).

Secondly, in step 4 of DPD-ISIS, any fast robust penalized regression method, like RLARS, may

be used without hampering the basic structure of DPD-ISIS. However, we strongly suggest to use the

DPD based penalized regression method of Ghosh and Majumdar [24] with the same α in Step 8 to

obtain the final model; as in DPD-SIS, it makes the whole procedure structurally consistent and also

provides an estimate σ̂2 of the overall error (unexplained) variance σ2 in our final model.

Finally, it is worthwhile to note that our algorithm of DPD-ISIS is more similar to an extension

of ISIS, namely Van-ISIS described in [31], rather than its original version proposed in [10]. The

difference is mainly in Step 4 of the algorithm, where we consider all the covariates selected till the

i-th iteration in the penalized joint regression model in the i-th stage, as in Van-ISIS; hence a variable

which has been selected in an earlier stage could have been removed at the i-th stage due to insertion

of new variables in the model. The original version of Fan and Lv [10] considered the penalized

regression to be run with only the variables selected in that i-th iteration (and not the previously

selected covariates) and hence a false positive selected at one iteration cannot be removed at any
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subsequent iteration. In this method the model size continue to increase whereas, in our approach,

it may grow or shrink depending on the joint relationship of all the variables selected, reducing the

number of false-positive covariates.

Although the DPD-SIS at α = 0 is the same as the usual (non-robust) SIS, the DPD-ISIS(α = 0)

is slightly different from its usual non-robust counterpart van-ISIS. Due to the use of RLARS within

iterations, the DPD-ISIS(α = 0) is slightly more robust than van-ISIS and additionally DPD-ISIS at

any α (including 0) estimates the error variance in a marginal regression setting whereas the usual van-

ISIS uses marginal correlation based screening. However, the DPD-ISIS at α = 0 is not yet acceptable

as a robust method since the estimates of the marginal regression coefficients are still non-robust

(MLE). As α increases, the DPD-ISIS becomes more robust.

3 Simulation Studies

3.1 Experimental Plans

We have performed extensive simulation studies to study and illustrate the performance of our pro-

posed DPD based screening procedures. For each set-up we have simulated a random sample of size n

from a linear regression model (1) of dimension p� n where the (p− 1) covariates, except the inter-

cept, are generated from a multivariate normal distribution having mean vector 0 and some specified

covariance matrix, say Σx. After generating covariate values and error components for some fixed σ2,

the responses are computed based on specified true values of the regression coefficient β ∈ Rp; these

true values are taken to be sparse with only the first s = 5 components being non-zero and the rest

being zero. So, other than the intercept, only four covariates are significantly related to the response

variable and the rest are noise covariates in all our simulation set-ups. Additionally, to study the

robustness, a part (say, 100ε% for some ε specified later) of the samples are contaminated. All the

parameters in the simulations are considered as follows.

• Two possible sample sizes are considered; n = 50 and n = 100. For each case, the model

dimension is taken as p = 5000 to mimic the common ultra-high dimensional set-ups appearing

in real life. Recall s = 5. These set-ups are clearly more extreme with regard to dimensionality
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compared to the set-ups studied in the SIS literature, but we believe they are closer to the true

scenarios in practical Omics data analysis.

• The first s = 5 non-zero coefficient values are all taken as 1. Three different values of the error

variance are considered; given by σ = 0.2, 1, 2, which yield three different signal-to-noise (SN)

values. We refer to them, respectively, as strong (SN=5), moderate (SN=1) and weak (SN=0.5)

signals.

• Different correlation structures are considered among the covariates via different Σx. In particu-

lar, we consider independent covariates with Σx being identity, and two types of correlated cases

with the (i, j)-th elements of Σx being ρ|i−j|, and ρI(i 6= j). We will refer to these two cases,

respectively, as the case of autoregressively (AR) correlated and strongly correlated covariates.

Several values of ρ have been studied but only the SIS performance results corresponding to

ρ = 0.5 (in both cases) are reported in the paper for brevity.

• We have also studied different types of contamination schemes which all yield similar (in spirit)

results. Hence, for brevity, we present the results for one particular contamination scheme where

the responses are contaminated by replacing its value y by (y − 30); this choice is arbitrary but

yields a (testing) situation of distant contamination in response which arise quite commonly in

practice. The contamination proportion is taken as ε = 0.05, 0.1, 0.2, resulting in mild, moderate

and heavy contaminations, respectively.

For each simulation set-up, we have applied the proposed DPD-SIS procedure to select the impor-

tant variables and different performance measures are computed in order to study the results. The

whole process is replicated 300 times to report some stable summary of the performance measures. In

particular, the performance measures considered are

IC : Indicator if all (4) important covariates are selected in a model of size (n− 1).

TP : The number of true positives selected when a model of size (n− 1) is chosen.

MMS : Minimum model size required to select all (4) important covariates.

Note that the average IC over all 300 replications yields the percentage of times the full model is
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selected in a model of size (n− 1). This is reported in the tables. However, for a deeper understand-

ing, resulting values of TP and MMS from 300 replications are presented in terms of box-plots and

histograms, respectively. Additionally, a run-time comparison is provided towards the end.

Along with studying our proposed DPD-SIS, the above performance measures are also used to

compare our proposal with existing parametric and nonparametric competitive screening procedures

as described below; the first is the usual SIS approach (non-robust) and the remaining four are robust

non-parametric extensions of SIS available in the literature.

• SIS: The usual SIS of Fan and Lv [10] which use the Pearson correlation between the response

and covariates for screening.

• Rank-SIS: A robust extension of SIS obtained by using non-parametric rank correlation in

place of Pearson correlation in SIS [26].

• GK-SIS: A robust extension of SIS obtained by using a robust correlation measure proposed

by Gnanadesikan and Kettenring [33] in place of Pearson correlation [34].

• dCor-SIS: A robust extension of SIS obtained by using a distance based correlation measure

from Szekely et al. [35] in place of Pearson correlation [27, 29].

• MCP-SIS: A robust extension of SIS based on a robust measure of association, namely the

median of component-wise products (MCPs) introduced by Mu and Xiong [28], which is used to

rank the covariate importance.

Another non-parametric robust screening procedure is available in the literature, based on the bivariate

winsorized (BW) correlation estimator of Khan et al. [32] in place of the usual correlation in SIS; we

have not considered this BW based SIS, since Mu and Xiong [28] have already shown it to have similar

performance as the MCP-SIS considered here.

3.2 Performance of the DPD-SIS without contamination

Let us first illustrate the performance of the DPD-SIS under pure data containing no outliers. For all

the simulation set-ups without contamination as described in the previous subsection, the percentage
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of times the full (correct) model is selected (average IC) by different SIS approaches with target model

size d = n− 1 is reported in Table 1. One can immediately see that, as expected, all the SIS methods

fails in case of strongly correlated covariates (except for large sample sizes and strong signal strength)

and we need to use appropriate ISIS is such cases; for brevity, we will illustrate the performance of our

proposed DPD-ISIS in the Online Supplement. For the other two types of covariates, the performance

of our proposed DPD-SIS under pure data deteriorate slightly with increasing values of α (due to

the loss in efficiency of MDPDE under pure data), but the DPD-SIS at α = 0.1, 0.3 are pretty much

comparable with the usual SIS is most cases and also significantly better compared to the existing non-

parametric robust SIS approaches. For all the AR correlated cases as well as independent cases with

moderate to strong signals and n = 100, the DPD-SIS provides the correct full model in over 90% of

the replications which decreases as the signal strength becomes weaker or sample size becomes smaller.

Among the two types of covariates, the performance is far better when some amount of correlation

is present compared to the fully independent covariates when we have weaker signal strength and/or

smaller sample sizes. This is somewhat surprising. The good behavior of the methods in the case

with AR correlated data is caused by the way we simulated our data, with a cluster of important

variables at the start of the X-sequence. When these important variables are randomly distributed

in the sequence, the results are less good (as expected). This holds for all methods, but their relative

behavior is again observed to be the same as in the present case. So, to keep our focus on comparison

between the models, we have not presented the results for randomly distributed important covariates

for brevity.

The methods can be compared further via the other performance measures, TP and MMS. With

regard to TP, our simulations show that the median of the true positives selected by the usual SIS

and our DPD-SIS at α ≤ 0.5 with a target model size of d = n− 1 are all equal four (the true active

set size) for the cases of AR correlated covariates under pure data and hence, they are comparable

in these cases (data not shown). For the independent covariate cases, the box-plots of the obtained

true-positives are presented in Figure 2 where we can see that the results are again very similar for

n = 100. For smaller sample size n = 50, however, the results are not that good; the usual SIS has

median true-positive values of 4, 3 and 2, respectively, for strong, moderate and weak signals, whereas
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Table 1: Percentage of times the full (correct) model is selected (average IC) by different SIS approaches
with target model size d = n− 1 for pure data

Signal Sample Non-robust Proposed DPD-SIS(α) Existing Robust (Non-parametric) SIS
Strength size (n) SIS α = 0.1 α = 0.3 α = 0.5 α = 1 Rank-SIS GK-SIS dCor-SIS MCP-SIS

Independent Covariates

Strong 50 55.0 48.3 41.7 27.7 8.0 41.7 12.7 43.7 1.7
100 99.0 99.7 98.7 98.3 90.7 97.7 93.7 97.7 49.3

Moderate 50 25.3 18.7 15.7 10.0 1.0 14.7 5.3 15.3 0.3
100 94.3 94.7 93.3 91.3 72.0 91.0 77.3 91.3 26.3

Weak 50 2.0 1.0 1.0 0.7 0.3 1.3 0.7 0.7 0.0
100 58.7 57.3 53.7 44.7 23.3 50.0 26.7 50.7 5.3

AR Correlated Covariates with ρ = 0.5

Strong 50 99.3 99.7 99.7 99.0 86.3 98.3 78.0 98.7 49.3
100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 97.7

Moderate 50 98.7 99.0 98.7 97.3 73.7 95.7 68.0 97.7 37.7
100 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 95.4

Weak 50 86.7 85.3 82.3 75.7 38.3 79.0 42.0 80.7 20.3
100 99.7 100.0 100.0 100.0 99.7 99.7 97.3 100.0 85.0

Strongly Correlated Covariates with ρ = 0.5

Strong 50 14.7 1.7 1.0 0.7 0.0 5.7 0.0 9.0 0.0
100 82.3 48.0 39.0 25.7 7.3 59.7 2.7 66.3 1.0

Moderate 50 5.0 1.0 0.7 0.7 0.0 2.3 0.0 2.7 0.0
100 31.7 17.4 4.4 6.5 6.5 43.0 1.0 50.0 0.4

Weak 50 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0
100 25.0 8.7 8.3 5.3 1.3 14.0 0.7 16.0 0.3

(a) Strong Signal; n = 50 (b) Moderate Signal; n = 50 (c) Weak Signal; n = 50

(d) Strong Signal; n = 100 (e) Moderate Signal; n = 100 (f) Weak Signal; n = 100

Figure 2: Box-Plots of the true-positives (TP) obtained by different SIS approaches with target model
size d = n− 1 for independent covariates with pure data

15



the median true positives obtained by DPD-SIS at α = 0.1 are 3, 3, and 2, respectively. The values of

true-positives generally seem to decrease with increasing α in DPD-SIS under pure data scenarios but

α = 0.3 also gives very competitive results in most cases. As for the other (non-parametric) robust

methods, the Rank-SIS and the dCor-SIS also perform reasonably well with regard to this measure.

We have further investigated MMS, the minimum target model size (d) required to select all the

four true positives by different SIS approaches. Whenever SIS performs well, e.g., AR correlated

covariates and/or strong signals, the MMS values are pretty low, often less than 10 with a median of

about 4-6. For brevity, we only present the results (histogram) on MMS for two extreme cases with

independent covariates in the Online Supplement, namely for strong signal with n = 100 (one of the

best performing cases) and weak signal with n = 50 (one of the worst performing cases). The range

(and median) of MMS differ widely in both cases but the general trend is the same (which is also the

same in all other cases not reported here). The median MMS for DPD-SIS increases with increasing

values of α and are generally higher than the usual SIS in pure data, but those obtained by DPD-SIS

at α = 0.1, 0.3 are very close to the values obtained by the usual SIS and often significantly better

than the other existing non-parametric SIS approaches.

In summary, under pure data, usual SIS performs the best as expected, but there is only a slight

loss in performance by the proposed DPD-SIS with smaller values of α > 0. We will see next that,

with this small price in case of pure data, we gain significant improvement over the usual SIS by using

DPD-SIS under data contamination. Having a parametric nature, the proposed DPD-SIS naturally

performs better than the existing non-parametric SIS approaches.

3.3 Performance of the DPD-SIS under data contamination

Let us now illustrate the performance of our DPD-SIS under data contamination and investigate the

claimed improvements over the existing SIS and non-parametric robust SIS approaches. Due to the

similarity in the patterns of results across all the cases considered (the only difference being in the

magnitude of the performance measures, as in the pure data cases), we here only present the results

for a representative case of n = 100 and moderate signal strength for both the independent and AR

correlated covariates. For these cases, the percentage of times the full model is selected and the box-
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plots of the actual numbers of true-positives selected by different SIS approaches with target model

size d = n− 1 are presented in Table 2 and Figure 3, respectively.

Table 2: Percentage of times the full (correct) model is selected (average IC) by different SIS approaches
with target model size d = n − 1 for contaminated data with sample size n = 100, moderate signal
strength and different contamination proportion (ε). Corresponding values for pure data are also given
for comparison.

Non-robust Proposed DPD-SIS(α) Existing Robust (Non-parametric) SIS
100ε% SIS α = 0.1 α = 0.3 α = 0.5 α = 1 Rank-SIS GK-SIS dCor-SIS MCP-SIS

Independent Covariates

0% 94.3 94.7 93.3 91.3 72.0 91.0 77.3 91.3 26.3
5% 0.3 94.3 91.0 89.0 73.7 77.3 63.0 32.7 18.0
10% 0.0 91.3 89.0 85.7 70.3 55.3 51.3 2.7 12.3
20% 0.0 59.3 82.5 77.5 64.6 25.1 23.1 0.0 3.7

AR Correlated Covariates with ρ = 0.5

0% 99.7 99.7 99.7 99.7 99.7 99.7 99.7 99.7 95.4
5% 31.0 100.0 100.0 100.0 100.0 100.0 99.7 100.0 94.3
10% 6.3 93.3 100.0 100.0 100.0 99.7 97.3 96.7 85.7
20% 2.0 1.7 99.7 99.7 99.7 92.8 85.8 21.7 60.3

(a) Set 1; 5% contamination (b) Set 1; 10% contamination (c) Set 1; 20% contamination

(d) Set 2; 5% contamination (e) Set 2; 10% contamination (f) Set 2; 20% contamination

Figure 3: Box-Plots of the true-positives (TP) obtained by different SIS approaches with target model
size d = n − 1 for independent covariates (Set 1) and AR correlated covariates (Set 2) with n = 100
and moderate signal strength under different amount of contamination in data.
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It can be noted that the usual SIS performs extremely poorly under any amount of contamination.

Even at only 5% contamination, they select all the true positives in only about 30% of the cases with

AR correlated data and almost never for the independent covariates, although these numbers were

99.7% and about 94-96%, respectively, under no contamination. As the contamination proportion

increases, their performance becomes even worse and the same poor performance can also be seen in

terms of the median number of true positives selected by these methods in Figure 3. Our proposed

DPD-SIS with α > 0 shows a much more stable performance under data contamination. In terms of

percentages of full model selection, DPD-SIS with α ≈ 0.3 yields the best performance under heavy

contamination (20%) and are quite competitive to the choice of α = 0.1 also at milder contamination

of 5%. A similar improved performance of our DPD-SIS is observed over the usual SIS in terms of

selected true positives as well. More interestingly, our DPD-SIS with α ∈ [0.3, 0.5] often outperforms

the existing non-parametric robust SIS approaches and the improvement becomes more significant at

higher contamination level and for the cases of independent samples (or weaker signals). For the AR

correlated covariates, the non-parametric Rank-SIS and GK-SIS performs quite good with a median

true positive equal to four (the actual active set size) but have an overall worse performance (more

outlying cases with lower number of true-positives selected) compared to DPD-SIS with moderate α

values.

We have also studied the minimum target model size (MMS) required to select all four true

positives under contamination which further illustrates the huge advantage of the proposed DPD-SIS

over existing SIS approaches. The results for 20% contamination under the representative cases are

shown in the Online Supplement. Note that the median values of the MMS required by the usual

SIS are of the order 3950 and 2150, respectively, for the independent and AR correlated covariates.

These become heavily improved by the existing non-parametric robust SIS approaches with Rank-SIS

and GK-SIS yielding better performance compared to the other two. But, still for these two cases

of independent or AR correlated covariates, they reach the minimum median MMS of 286 (by GK-

SIS) and six (by Rank-SIS), respectively. Our proposed DPD-SIS with α ≥ 0.3 clearly outperforms

all these existing methods yielding even lower values of MMS with a median of four (the minimum

possible value) for the AR correlated case. For the independent covariates the improvement is even
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more significant with the best performance of DPD-SIS at α = 0.3 which provides a median MMS

of 20 only (in comparison with the minimum value of 286 obtained by existing approaches). The

results for all other simulation experiments, not presented here for brevity, have indicated the similar

advantages of our proposed DPD-SIS under different types and amounts of data contamination with

the improvements being larger for the more vulnerable cases of heavy contamination or weaker signal

strength or smaller sample sizes.

A comparison of our proposed DPD-SIS with the existing procedures in terms of their median

runtime is provided in the Online Supplement.

3.4 On the Choice of robustness parameter α in DPD-SIS or DPD-ISIS

Our proposed DPD-SIS (and also the DPD-ISIS) depends on a tuning parameter α which is seen to

control the trade-off between the asymptotic efficiency of the underlying MDPDE under pure data and

its robustness under contamination (see Appendix A.1). In terms of variable screening as well, similar

trade-offs are observed through our extensive empirical experiments. When there is no contamination

in the data, the usual SIS (which is DPD-SIS at α = 0) has the best performance, which deteriorates

for DPD-SIS(α) as α increases although the loss is seen to be acceptable for smaller values of α ≤ 0.3.

On the other hand, under contamination, the performance of the DPD-SIS becomes more and more

stable with increasing values of α while the performance of the usual SIS breaks down completely even

in presence of small amounts of contamination. Considering these trade-offs, it has been observed

from our simulation studies that DPD-SIS with α = 0.3 performs the best under data contamination

in all the scenarios considered and it also clearly outperforms all the existing non-parametric methods.

Based on these experiments, we recommend α ≈ 0.3 to be a good empirical suggestion to use in most

practical applications of DPD-SIS (or DPD-ISIS).

It is worthwhile to note that, in usual practice with statistical procedure depending on a tuning

parameter, an adaptive data-driven choice of the underlying tuning parameter is expected and seems

to provide the best results in each cases. For the underlying MDPDE used in our DPD-SIS, such

data-driven selection procedures for the robustness tuning parameter are available. In the context of

linear regression, one such algorithm for selecting the optimal α is explored by Ghosh and Basu [36].
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However, in the present case of DPD-SIS, we are using MDPDE for each marginal regression model

and a data-based algorithm will often produce different values of α for each such marginal model,

since the amount of contamination is often different across covariates. Working with different α values

in one application of DPD-SIS is not useful and would break the coherence of the analysis – one

should use the same α across all the steps of DPD-SIS in one application to get consistent inference.

Additionally, data-driven selection of α would also increase the computation time, which is not an

attractive feature in variable screening situations. We believe our empirical suggestion should work

well in most applications.

4 Analysis of Triglyceride Data

In this section, we will apply our suggested variable screening method to our motivating example

described in the Introduction, and show how this helps us in the variable selection process. Intake of

marine omega-3 fatty acids may reduce the risk of cardiovascular disease (CVD), especially in high-

risk individuals. Elevated serum triglyceride (TG) levels are strongly associated with increased risk of

CVD, and the CVD risk reducing effect of marine omega-3 fatty acids is thought to be mainly mediated

through reduction of serum TG levels. However, it is well known that there is large individual variation

with regard to TG response in relation to intake of fatty acids, and an improved understanding of

such individual variation would be beneficial. As described in the Introduction, we have data from 54

individuals who underwent an intervention with intake of capsules of either fish oil, oxidized fish oil

or sunflower oil for a period of seven weeks. The study is presented in Ottestad et al. [37]. Fasting

TG levels were measured at baseline and after seven weeks of intervention. In addition, we have

gene expression measured in Peripheral blood mononuclear cells (PBMC). These are immune system

cells and because they are circulating cells, they are exposed to nutrients, metabolites and peripheral

tissues and may therefore reflect whole-body health. We are interested in relating TG change (seven

weeks minus baseline) to gene expressions at baseline and our main goal is to identify genes that may

be associated with TG response. Thus, we are primarily interested in variable selection.

As we have relatively few subjects, outliers might have a profound effect on the result, and hence,

we are interested in performing a robust variable screening. Our analysis strategy is as follows: We
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will perform three iterations of the proposed robust DPD-ISIS (Algorithm 2) with RLARS in each

iteration (Step 4), followed by a robust L1-penalized regression, the DPD-LASSO method of Ghosh

and Majumdar [24] to be consistent (in Step 8), to produce our list of selected genes. In each iteration

of DPD-ISIS we select the d = n/ log(n) ≈ 13 top variables, while we use penalization parameter

λ =
√

log(p)/n in the final DPD-LASSO. A penalization parameter of this order has been shown to

have certain optimality properties, see e.g. page 296, Hastie et al. [38]. We will do this for α = 0 (which

is not the usual ISIS as discussed in Section 2.2), 0.1, 0.3 and 0.5 and compare the lists of selected

genes. We have also performed the usual correlation based Van-ISIS [31] described in Section 2.2 as

our benchmark of comparison for the proposed procedures. When applying Van-ISIS, we observe that

the estimated active set size (number of selected genes) does not change after three iterations, and we

have used this as our stopping criterion. For the sake of comparison, we have also performed exactly

three iterations of our proposed DPD-ISIS for each α. In the final penalized regression model, we also

include treatment group and body mass index. However, this does not change the results significantly

for any of the procedures. We present the results on the number of genes selected in the final model

obtained by each procedure in Table 3; the detailed gene list and estimated regression coefficients in

the final model are only presented, for brevity, in case of the usual non-robust ISIS (benchmark) and

our recommended choice α = 0.3 in Table 4.

Table 3: Numbers of Genes selected by different ISIS for the Triglyceride data
Usual DPD-ISIS with α

van-ISIS 0 0.1 0.3 0.5

Genes selected by ISIS 21 18 26 23 30
Genes selected in the final joint model 7 9 18 21 20

Two observations are worth discussing. First, three times as many genes are selected with the

robust procedure (21 vs. 7) as with the non-robust ISIS. Second, there is very little overlap between

the two gene sets (only three of the genes selected with α = 0.3 are selected by van-ISIS). If we have

a look at the number of genes selected as a function of α, we observe that the numbers are increasing

with increasing α, more or less. This is somewhat counterintuitive, as the efficiency of the procedure

is reduced with increasing α. However, as pointed out earlier, the stability (in terms of robustness) is

increasing. We see this as a strong indication of problems with outliers in this rather small dataset,
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Table 4: Detailed list of Genes selected by the usual ISIS and the proposed DPD-ISIS and associated
estimated regression coefficients (β̂j) in the final model for the Triglyceride data

Usual van-ISIS Proposed DPD-SIS(α = 0.3)

Genes Prob id β̂j Genes Prob id β̂j
HNRNPK ILMN3260017 −0.004 FOXF2 ILMN1674934 0.081
NA ILMN1896699 0 HNRNPK ILMN3260017 0.051
NA ILMN1910805 −0.042 HYAL1 ILMN1739813 −0.399
NA ILMN1712784 −0.063 UTY ILMN3233091 0.309
NA ILMN1679106 0 NA ILMN1772136 −0.227
NA ILMN1687707 −0.025 RPS27 ILMN1660498 −0.088
MORC4 ILMN1795463 0 SCARA3 ILMN1723358 −0.058
RPS16 ILMN1651850 0 SLITRK5 ILMN1789040 0.060
ZP3 ILMN1672378 0.006 ZP3 ILMN1672378 −0.427
FOXF2 ILMN1674934 −0.006 ZSCAN12 ILMN1786281 0.738
PKLR ILMN1725172 0 SEZ6L2 ILMN2413780 −0.224
NA ILMN1881212 0 FAM161A ILMN3238106 −0.332
NA ILMN3242572 0 EEF1A1 ILMN3201843 −0.091
TTC8 ILMN2401927 0 ABCD1 ILMN3237161 −0.264
XCR1 ILMN1764034 0 ALG1 ILMN1787954 −0.197
TBX1 ILMN2248112 0 AASS ILMN1678323 −0.248
PPT2 ILMN1750664 0 EML1 ILMN1729455 −0.152
KLHL26 ILMN1805330 0 NA ILMN1839740 −0.313
SCARA3 ILMN1723358 0 CDCA2 ILMN1660654 0.163
NA ILMN1880704 −0.037 NA ILMN1698246 −0.459
FGB ILMN2114972 0 EPB41L4A ILMN1791867 −0.096

SLC7A11 ILMN1655229 0
TMEM47 ILMN2129234 0

as illustrated in the Introduction. The fact that there is very little overlap between the two gene sets

in Table 4 can also be seen as an illustration of this problem; with small sample size, outliers are

dominating the analysis to a rather large extent. It is worth pointing out that the single gene with

the strongest effect by DPD-ISIS (ZSCAN12, illustrated in Fig. 1e) is not even on the list of selected

genes for van-ISIS.

If we think in direction of biological interpretation of the findings, we observe that a clear majority

of the genes have an estimated coefficient with a negative sign, indicating a down-regulation of TG. It

should also be commented that three of the identified probes do not map to a known gene, and hence,

their function is unclear.
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5 Discussions

In this paper, we have proposed a new robust variable screening procedure for ultra-high dimensional

data using the marginal linear regression approach and the minimum density power divergence estima-

tor for the regression parameter. This is extremely important in modern statistical analyses of large

scale data from medical, biological and other applied sciences. We have also proposed an iterative

version of our DPD based sure independence screening procedure in line with ISIS that is helpful for

robust variable screening in the presence of correlated covariates. In this paper we have concentrated

on linear relationships between the response and all the available covariates and hence, our proposed

procedure is robust against data contamination (e.g., outliers, or leverage points) whenever the as-

sumed linear regression model is approximately correct. The robustness of the proposed DPD-SIS is

justified theoretically through use of influence functions and sensitivity analyses and also empirically

through an extensive simulation study. It has been empirically shown, based on a first (limited) sim-

ulation study, that the proposed DPD-SIS at suitably chosen robustness tuning parameter α provides

the best performance under data contamination and is superior compared to the usual SIS as well as

several existing robust non-parametric screening procedures under most critical scenarios. We have

applied our proposal for the robust analyses of data on triglyceride response to identify the important

genes that may cause the variation in triglyceride response between different subjects.

We have primarily focused on the methodological and practical aspects of the proposed procedures

and illustrated it through extensive simulation studies. It is worthwhile to emphasize here that the

size of our empirical experiments is considered more realistic compared to scenarios arising in medical

sciences, including the data example we aim to analyze using the proposed method. In particular,

we have considered p = 5000 covariates with a sample size as small as n = 50 and different possible

signal-to-noise ratios along with correlated covariates. Such an experimental set-up is more extreme

compared to most (if not all) other existing work on SIS or its extensions for the linear regression

model. Hence, our numerical illustrations of the finite-sample performance of all the screening methods

provide more confidence about their performance in real life applications.

Through our extensive simulation studies, the proposed DPD based screening procedure is shown

to perform well with suitably chosen tuning parameter value (α). Under pure data, as expected with
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any robust procedure, the performance of the proposed screening procedures become slightly inferior

compared to the usual SIS; however, the loss is small for smaller values of the underlying tuning

parameter α and additionally, they significantly outperform all the existing (non-parametric) robust

procedures. Under contamination, our proposal performs the best, selecting the most stable set of

variables even when the contamination is as heavy as 20%, whereas the usual SIS breaks down even

in the presence of 5% contamination. A few existing non-parametric procedures like those based on

ranks or G-K correlation [33] provide robust results under contaminations which are competitive to

our proposal, but our proposed screening procedure even outperform them under more vulnerable

cases like heavier contaminations, weak signal-to-noise ratios or smaller sample sizes. This makes our

proposal even more advantageous over all the existing variable screening procedures.

We have implemented the proposed DPD-based procedure in R for all the simulations and real data

analyses. The relevant codes are made available in a GitHub repository (R package) titled dpdSIS1,

which can be used by any practitioner for robust analyses of their experimental datasets from real-life

studies.

With the promising and encouraging performance of the proposed DPD based robust variable

screening procedure, this paper opens up several important directions of future research. Besides

developing the technical details of the theory of DPD-SIS and DPD-ISIS, it would be practically

important to extend them to more general parametric regression settings, like generalized linear models

[39]. For the practical applications, in order to ensure stability of the final solution, it would make

sense to apply some relevant additional procedure, e.g. stability selection [40, 41] on top of the final

penalized regression. We hope to pursue these important research extensions in our future works.

A Theoretical properties of the proposed DPD-SIS

A.1 On Robustness of the DPD-SIS

The proposed DPD-SIS (and also the DPD-ISIS) depends crucially on the MDPDEs β̂
M

j from each

marginal regression model and hence, the same is true for their robustness. If these marginal esti-

mates are robust with respect to any outliers or noise contamination in either the response or the

1https://github.com/abhianik/dpdSIS
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corresponding covariate, their ordering (in absolute value) is also expected to be robust under data

contamination, leading to correct and stable variable screening performance of the DPD-SIS.

The robustness of the MDPDE under any parametric set-up, including the linear regression model,

is well-studied in the literature [22, 30]; it is known to crucially depend on the choice of α. This can be

examined theoretically through the concept of influence function (IF) and gross-error sensitivity. The

IF measures the asymptotic (standardized) bias of the estimator caused by an infinitesimal contami-

nation through the degenerate distribution at a distant outlier point. For our j-th marginal regression

model (2), the IF of the MDPDE estimator β̂Mα
j of the regression coefficients βj with respect to the

contamination point, say yt, in the response for a given covariate value, say xjt, can be obtained from

the general results of Ghosh and Basu [30]. When the assumed linear model is true with parameter

values (γ
(0)
j , β

(0)
j , σ

(0)
j ), it has a simplified form given by

IF (α)
j (yt|xjt) = (1 + α)3/2

(xjt − E(Xj))

V ar(Xj)

(
yt − γ(0)j − β

(0)
j xjt

)
e
−
α

(
yt−γ

(0)
j
−β(0)

j
xjt

)2

2(σ
(0)
j

)2 .

To study its nature, in Figure 4 we plot IF (α)
j (yt|xjt) over the contamination point yt for different

α > 0, by taking (γ
(0)
j , β

(0)
j , σ

(0)
j ) = (0, 1, 1). We assume E(Xj) = 0 and V ar(Xj) = 1. For the case

α = 0, the IF simplifies to a linear function of yt, and hence, it is unbounded with respect to the

contamination point yt, for all possible covariate values xjt which justifies the well-known non-robust

nature of the MLE (MDPDE at α = 0). However, at any α > 0, the IF of the corresponding marginal

estimator β̂Mα
j is bounded in yt for all values of xt, indicating the claimed robust nature.

Further, we also study their self-standardized gross-error sensitivity, which is the maximum of

the L2-norm of the IFs, standardized by the variance of the MDPDE, over all possible contamination

points. It is seen from Figure 5a that these sensitivity measures decrease with increasing α > 0 for any

given value of δ = (xjt − E(Xj))
2/V ar(Xj). Thus the extent of robustness of the MDPDE increases

with increasing α > 0 and hence, the same is also expected for the DPD-SIS with increasing α > 0.

Remark A.1 Although we have seen that the robustness increases as α > 0 increases, we cannot

use the larger values of α in every cases. This is because, when there is no outlier (pure data) with

respect to the assumed (marginal) regression model, the asymptotic variance of the MDPDE β̂Mα
j
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(a) α = 0.1 (b) α = 0.3

(c) α = 0.5 (d) α = 1

Figure 4: Influence functions (IF j) of the marginal MDPDEs for different values of α > 0

(a) Sensitivity for different values of δ (b) Asymptotic relative efficiency(ARE)

Figure 5: The trade-off between robustness and efficiency of the marginal MDPDEs over α

is known to increase with increasing α values and hence their asymptotic relative efficiency (ARE)

compared to the (most efficient but non-robust) OLS/MLE decreases as α increases (see Figure 5b).

Therefore, in summary, the tuning parameter α provides a trade-off between efficiency of the MDPDE

under pure data and its robustness under data contamination (which is the case with most common
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robust inference approaches) so that we need to choose α carefully for any practical application, ideally

depending on the amount of expected contamination in the data as discussed in Section 3.4.

A.2 On Asymptotics of the DPD-SIS

It can be shown that the proposed DPD-SIS method asymptotically satisfies the sure screening prop-

erty, and we have indeed done so in [39]. In particular, under appropriate assumptions, we have proved

the following asymptotic properties of the DPD-SIS.

(R1) At the population level, for any j = 1, . . . , p, the j-th marginal MDPDE functional corresponding

to the j-th covariate Xj is zero if and only if Xj is uncorrelated with the response variable.

(R2) For some optimally chosen convergent sequence Rn → 0, we have

P
(
M0 ⊂ M̂

)
≥ 1− sRn, and P

(
|M̂| ≤ O(nκλ)

)
≥ 1− pRn,

for some constants κ > 0 and λ > 0. The first result provides the sure screening property of the

DPD-SIS, whereas the second one proves its control of the false-discovery rate.

(R3) Combining above results in (R2), for any α ≥ 0, we have P
(
M̂ =M0

)
= 1−o(1), i.e., DPD-SIS

with any given α ≥ 0 satisfies the model selection consistency.

Finally, based on the above sure screening property of the DPD-SIS, and the consistency of the

DPD-based penalized regression estimators from Ghosh and Majumdar [24], we can easily argue the

consistency of the final estimator obtained by the proposed DPD-SIS Algorithm 1. A more general

result in this regard is presented in the following theorem, justifying the use of the DPD-SIS Algorithm

1 for ultra-high dimensional linear regression problems.

Theorem A.1 Assume the conditions required for Results (R2) and the conditions of Theorem 4 of

[24] hold true for a given α ≥ 0. Let M̂ be the final selected model by the DPD-SIS Algorithm 1 based

on the final parameter estimate β̂d = (β̂d0, β̂dr1 , . . . , β̂drd)
T and σ̂2 of σ2. Then, we have the following

results with probability tending to one:

M̂ =M, ||β̂d − β01|| = O(
√
s/n), and |σ̂ − σ0| = O(n−1/2).
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The above result is exactly similar to the asymptotic properties of the usual SIS (Theorem 5,

[10]) and hence illustrates that asymptotically the proposed DPD-SIS has the same optimal variable

selection and parameter consistency properties under appropriate assumptions.
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