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Abstract. We present an effect based static analysis to calculate upper and lower
bounds on the memory resource consumption in a transactional calculus. The
calculus is a concurrent variant of Featherweight Java extended by transactional
constructs.
The model supports nested and concurrent transactions. The analysis is composi-
tional and takes into account implicit join synchronizations that arise when more
than one thread perfom a join-synchronization when jointly committing a trans-
action. Central for a compositional and precise analysis is to capture as part of
the effects a tree-representation of the future resource consumption and synchro-
nization points (which we call joining commit trees). We show the soundness of
the analysis.

1 Introduction

Software Transactional Memory (STM) has recently been introduced to concurrent pro-
gramming languages as an alternative for locked-based synchronization. STM enables
an optimistic form of synchronization for shared memory. One of the advanced trans-
actional calculi is Transactional Featherweight Java (TFJ) [14], a transactional object
calculus which supports nested and multi-threaded transactions. Multi-threaded trans-
actions mean that inside one transaction there can be more than one thread running
in parallel. Nesting of transactions means that a parent transaction may contain one or
more child transactions which must commit before their parent. Additionally, if a trans-
action commits, all threads spawned inside must join via a commit. To achieve isolation,
each transaction operates via read and writes on its own local copy of the memory and
e.g., a local log is used to record these operations to allow validation or potentially
rollbacks at commit time. Maintaining the logs is a critical factor of memory resource
consumption of STM.

As each transaction operates on its own log of the variables it accesses, a crucial
factor in the memory consumption is the number of thread-local transactional memory
(i.e., logs) that may co-exist at the same time (in parallel threads) at a given point. Note
that the number of logs neither corresponds to the number of transactions running in
parallel (as transactions can contain more than one thread) nor to the number of threads
running in parallel, because of the nesting of transactions. A further complication when
estimating the resource consumption is that parallel threads do not run independently;
instead, executing a commit in a transaction may lead to a form of join synchronization
with other threads inside the same transaction.
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In this paper, we develop a type and effect system for statically approximating the
resource consumption in terms of the maximum number of logs of a program. The anal-
ysis is compositional, i.e., syntax-directed. The language features non-lexical starting
and ending a transaction, concurrency, choice and sequencing. The analysis is multi-
threaded in the sense that, due to synchronization, it does not analyze each thread in
isolation, but needs to take their interaction into account. This complicates the design of
the effect system considerably, as the synchronization is implicit in the use of commit-
statements and connected to the nesting structure of the transactions. To our knowledge,
there is no work on taking care of issues concerning memory/resources consumption are
used in such programs.

The rest of the paper is structured as follows. Section 2 starts by illustrating the ex-
ecution model and sketching the technical challenges in the design of the effect system.
Section 3 introduces the syntax and operational semantics. Section 4 presents an effect
system for estimating the resource consumption. The soundness property is sketched in
Section 5. We conclude in Section 6 with related and future work.

2 Compositional analysis of join synchronization

In this section, we sketch the concurrency and transaction model of the used calculus
and the consequences for the analysis of the memory resource consumption. The pre-
sentation is informal and by way of examples; the syntax, semantics, and the analysis
are presented more formally later.

Example 1 (Joining commits). Consider the following (contrived) code snippet.

1 o n a c i d ; / / t h r e a d 0
2 o n a c i d ;
3 spawn ( e1 ; commit ; commit ) ; / / t h r e a d 1
4 o n a c i d ;
5 spawn ( e2 ; commit ; commit ; commit ) ; / / t h r e a d 2
6 commit ;
7 e3
8 commit ;
9 e4 ;

The main expression of thread 0 spawns two new threads 1 and 2. The onacid-
statements expresses the start of a transaction and commit the end. Hence, the thread
spawned first starts its execution at a nesting depth of 2 and the second one at depth 3.
See also Fig. 1a. In the figure (and in the following) we often write [ and ] for starting
resp. committing a transaction. Note that e.g. thread 1 is executing inside the first two
transactions started by its parent thread, which makes the transaction multi-threaded.
Further note that thread 1 uses two commits (after e1) to close those transactions. Im-
portant is that parent and child thread(s) commit a shared enclosing transaction at the
same time, i.e., executing a commit may lead to a join synchronization. We call an oc-
currence of a commit-statement which synchronizes in that way a joining commit. Fig.
1b makes the nesting of transactions more explicit and the right-hand edge of the cor-
responding boxes mark the joining commits. If the child thread, say in e1, starts its own
transactions (nested inside the surrounding ones), e.g., if e1 = [ ; [ ; [ ; ] ; ] ; ], then
these three commits are no joining commits. ut
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[ [ [ ] e3 ] e4

e1 ] ]

e2 ] ] ]

n = 0 n = 2 n = 3 n = 1

(a)

[ [ [ ] e3 ] e4

e1 ] ]

e2 ] ] ]

(b)

Fig. 1: Nested, multi-threaded transactions and join synchronization

Our goal is to obtain a compositional, static worst-case estimation of memory re-
source consumption for the sketched execution model. To achieve isolation, an impor-
tant transactional property, each thread operates on a local copy of the needed memory
which is written back to global memory when and if the corresponding transaction com-
mits. As a measure for the resource consumption at a given point, we take the number
of logs co-existing at the same time. This ignores that, clearly, different logs may have
different memory needs (e.g., accessing more variables in a transactional manner). Ab-
stracting away from this difference, we concentrate on the synchronization and nesting
structure underlying the concurrency model with nested and multi-threaded transac-
tions.

Example 2 (Resource consumption). For the code of Example 1, the resource consump-
tion can be seen as follows. Assuming that e1 opens and closes three transactions, e2
four, e3 five, and e4 six, the resource consumption after spawning the thread for e2 and
before the subsequent commit is 15 = 3+5+7 in the worst case: the main thread exe-
cutes inside 3 transactions, thread 1 inside 5 (three from e1 plus two “inherited” from the
parent), and thread 2 contributes 7. At the point when the main thread executes e3, i.e.,
after its first commit, the resource consumption in the worst case is 12 = 5+5+2. Note
that e2 cannot run in parallel with e3 whereas e1 can: the commit before e3 synchronizes
with the commit after e2 which sequentializes their execution (cf. Fig. 1 again). ut

To be efficient, i.e., to be scalable and usable in practice, the analysis must be com-
positional. This syntax-directedness is common for type/effect-based analyses. In our
setting, the analysis needs to cope with parallelism and synchronization. In principle,
the resource consumption of a sequential composition e1;e2 is approximated by the
maximum of consumption of its constituent parts. For e1 and e2 running (independently)
in parallel, the consumption of e1 ‖ e2 can approximated by the sum of the respective
contributions. The challenges we are facing in our model are:

Multi-threaded analysis: due to joining commits, threads running in parallel not nec-
essarily run independently and a sequential composition spawn e1;e2 does not se-
quentialize e1 and e2. They may synchronize, which introduces sequentialization,
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and to achieve precision, the analysis must be aware of which program parts can
run in parallel and which not. Assuming independent parallelism would allow to
analyze each thread in isolation. Such a single-threaded analysis would still yield a
sound over-approximation, but be too imprecise.

Implicit synchronization: Compositional analysis is rendered intricate by the fact that
the synchronization is not explicitly represented syntactically. In particular, there is
no clean syntactic separation between sequential composition and parallel compo-
sition. For instance writing (e1 ‖ e2);e3 would make the join synchronization that
sequentially separates the e1 ‖ e2 from e3 explicit and would make a compositional
analysis straightforward. Instead, the sequentialization constraints are entailed by
joining commits and it’s not explicitly represented with which other threads, if any,
a particular commit should synchronize.

Thus, the model has neither independent parallelism nor full sequentialization, but syn-
chronization is affected by the nesting structure of the multi-threaded transactions.

Example 3. Assume that we split the code of Example 1 after the first spawn, i.e., at
the semicolon at the end of line 3 and that we analyse the two parts, say el and er in-
dependently. Writing m for the effect that over-approximates the memory consumption,
we need to obtain a rule for sequential composition resembling the following:

` el :: m1 ` er :: m2 m = f (m1,m2)

` el ;er :: m

For compositionality, the “interface” information captured in the effects must be rich
enough such that m in the conclusion can be calculated from m1 and m2. In particular,
the upper bound of the overall resource consumption, i.e., the value we are ultimately
interested in, is in itself non-compositional. Consider Fig. 2, which corresponds Figure
1a except that we separated the contributions of el and er (by the surrounding boxes).

As the execution of el partly occurs before er and partly in parallel, m1 must dis-
tinguish the sequential contribution and the parallel contribution —the contribution of
the spawned thread— of el . Furthermore, the parallel part of m1 is partly synchronized
with er by joining commits, and hence the effects must contain information about the
corresponding synchronization points. Ultimately, the judgements of the effect system

[ [ [ ] e3 ] e4

e1 ] ]

e2 ] ] ]

;

Fig. 2: Compositional analysis (sequential composition)
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P ::= 0 | P ‖ P | p〈e〉 processes/threads
L ::= class C{~f :~T ;K; ~M} class definitions
K ::= C(~f : ~T ){this.~f := ~f} contructors
M ::= m(~x:~T ){e} : T methods
e ::= v | v. f | v. f := v |if v then e else e
| let x:T = e in e | v.m(~v) expressions
| new C(~v) | spawn e | onacid | commit

v ::= r | x | null values

Table 1: Abstract syntax

will use a six-tuple of information that will allow a compositional analysis of sequential
composition as well as parallel composition (plus the other constructs of the language).
A central part of the effects is a tree-representation of the future resource consumption
and joining commits, which we call jc-trees. ut

3 A transactional calculus

We start by presenting the syntax and semantics of TFJ. It is, with some adaptations,
taken from [14] and a variant of Featherweight Java (FJ) [13] extended with transac-
tions and a construct for thread creation. The main adaptations, as in [15], are: we added
standard constructs such as sequential composition (in the form of the let-construct) and
conditionals. Besides that, we did not use evaluation-context based rules for the oper-
ational semantics, which simplifies the analysis. The underlying type system (without
the effects) is fairly standard and omitted here.

3.1 Syntax

FJ is a core language originally introduced to study typing issues related to Java, such
as inheritance, subtype polymorphism. A number of extensions have been developed
for other language features, so FJ is today a generic name for Java-related core cal-
culi. Following [14] and in contrast to the original FJ proposal, we ignore inheritance,
subtyping, and type casts, as these features are orthogonal to the issues at hand, but
include imperative features such as destructive field updates, further concurrency and
transactions.

Table 1 shows the abstract syntax of TFJ. A program consists of a number of pro-
cesses/threads p〈e〉 running in parallel, where p is the thread’s identifier and e the ex-
pression being executed. The empty process is written 0. The syntactic category L cap-
tures class definitions. In absence of inheritance, a class class C{~f :~T ;K; ~M} consists of
a name C, a list of fields ~f with corresponding type declarations ~T (assuming that all
fi’s are different), a constructor K, and a list ~M of method definitions. A constructor
C(~f :~T ){this.~f := ~f} of the corresponding class C initializes the fields of instances of
that class, these fields are mentioned as the formal parameters of the constructor. We
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assume that each class has exactly one constructor; i.e., we do not allow constructor
overloading. Similarly, we assume that all methods defined in a class have a different
name; likewise for fields.

A method definition m(~x:~T ){e} : T consists of the name m of the method, the formal
parameters~x with their types ~T , the method body e, and finally the return type T of the
method. Here the vector notation is used analogously to the vector ~f which presents a
list of fields. The vector ~T represents a sequence of types, ~x stands for a sequence of
variables. When writing ~x:~T we assume that the length of ~x corresponds to the length
of ~T , and we refer by xi : Ti to the i’th pair of variable and type. For brevity, we do not
make explicit or formalize such assumptions, when they are clear from the context.

In the syntax, v stands for values, i.e., expressions that can no longer be evalu-
ated. In the core calculus, we leave unspecified standard values like booleans, integers,
. . . , so values can be object references r, variables x or null. The expressions v. f and
v1. f := v2 represent field access and field update respectively. Method calls are writ-
ten v.m(~v) and object instantiation is new C(~v). The next two expressions deal with
the basic, sequential control structures: if v then e1 else e2 represents conditions,
and the let-construct let x:T = e1 in e2 represents sequential composition: first e1
is evaluated, and afterwards e2, where the eventual value of e1 is bound to the local
variable x. Consequently, standard sequential composition e1;e2 is syntactic sugar for
let x:T = e1 in e2 where the variable x does not occur free in e2. The let-construct,
as usual, binds x in e2. We write fv(e) for the free variables of e, defined in the stan-
dard way. The language is multi-threaded: spawn e starts a new thread of activity which
evaluates e in parallel with the spawning thread. Specific for TFJ are the two constructs
onacid and commit, two dual operations dealing with transactions. The expression
onacid starts a new transaction and executing commit successfully terminates a trans-
action by committing its effect, otherwise the transaction will be rolled back or aborted.
In case of multiple threads inside the same transaction, all threads perform a join syn-
chronization when committing the transaction.

A note on the form of expressions and the use of values may be in order. The syntax
is restricted concerning where to use general expressions e. E.g., Table 1 does not allow
field updates e1. f := e2, where the object whose field is being updated and the value
used in the right-hand side are represented by general expressions that need to be eval-
uated first. It would be straightforward to relax the abstract syntax that way and indeed
the proposal of TFJ from [14] allows such more general expressions. We have chosen
this presentation, as it slightly simplifies the operational semantics and the (presenta-
tion of the) type and effect system later: [14] specifies the operational semantics using
so-called evaluation contexts, which fixes the order of evaluation in such more complex
expressions. With that slightly restricted representation, we can get away with a se-
mantics without evaluation contexts, using simple rewriting rules (and the let-syntax).
Of course, this is not a real restriction in expressivity. E.g., the mentioned expression
e1. f := e2 can easily and be expressed by let x1 = e1 in (let x2 = e2 in x1. f := x2),
making the evaluation order explicit. The transformation from the general syntax to the
one of Table 1 is standard.
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3.2 Semantics

The operational semantics of TFJ is separated in two different levels: a local and a
global semantics. The local semantics is given in Table 2, dealing with the evaluation
of one single expression/thread and reduce configurations of the form E ` e. Local
transitions are thus of the form

E ` e−→ E ′ ` e′ , (1)

where e is one expression and E a local environment. At the local level, the relevant
commands only concern the current thread and consist of reading, writing, invoking a
method, and creating new objects.

Definition 1 (Local environment). A local environment E of type LEnv is a finite
sequence of the form l1:ρ1, . . . lk:ρk, i.e., of pairs of transaction labels li and a corre-
sponding log ρi. We write |E| for the size of the local environment, i.e., the number of
pairs l:ρ in the local environment.

Transactions are identified by labels l, and as transactions can be nested, a thread
can execute “inside” a number of transactions. So, the E in the above definition is
ordered, where e.g. lk to the right refers to the inner-most transaction, i.e., the one most
recently started and commiting removes bindings from right to left. For a thread with
local environment E, the number |E| represents the nesting depth of the thread, i.e., how
many transactions the thread has started but not yet committed. The corresponding logs
ρi can be thought of as “local copies” of the heap. The log ρi keeps track of changes of
the threads actions concerning transaction li. The exact structure of such environments
and the logs have no influence on our static analysis, and indeed, the environments may
be realized in different ways (e.g., [14] gives two different flavors, a “pessimistic”, lock-
based one and an “optimistic” one). Relevant for our effect system is only a number of
abstract properties.

Definition 2. The properties of the abstract functions are specified as follows:

1. The function reflect satisfies the following condition: if reflect(p,E,Γ ) = Γ ′ and
Γ = p1:E1, . . . , pk:Ek, then Γ ′ = p1:E ′1, . . . , pk:E ′k with |Ei|= |E ′i | (for all i).

2. The function spawn satisfies the following condition: Assume Γ = t : E,Γ ′′ and
p′ /∈ Γ and spawn(p, p′,Γ ) = Γ ′, then Γ ′ = Γ , p′:E ′ s.t. |E|= |E ′|.

3. The function start satisfies the following condition: if start(l, pi,Γ ) = Γ ′ for a Γ =
p1:E1, . . . , pi:Ei, . . . , pk:Ek and for a fresh l, then Γ ′ = p1:E1, . . . , pi:E ′i , . . . , pk:Ek,
with |E ′i |= |Ei|+1.

4. The function intranse satisfies the following condition: Assume Γ = Γ ′′, p:E s.t.
E = E ′, l:ρ and intranse(l,Γ ) = ~p, then
(a) p ∈ ~p and
(b) for all pi ∈ ~p we have Γ = . . . , pi : (E ′i , l:ρi), . . ..
(c) for all threads p′ with p′ /∈~p and where Γ = . . . , t ′:(E ′, l′:ρ ′), . . ., we have l′ 6= l.

5. The function commit satisfies the following condition: if commit(~p,~E,Γ ) = Γ ′ for
a Γ = Γ ′′, p:(E, l:ρ) and for a ~p = intranse(l,Γ ) then Γ ′ = . . . , p j:E ′j, . . . , pi:E ′i , . . .
where pi ∈ ~p, p j /∈ ~p, p j:E j ∈ Γ , with |E ′j|= |E j| and |E ′i |= |Ei|−1.
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The operational rules are formulated exploiting the let-construct/sequential com-
position, and the restricted form of (abstract) syntax. The syntax for the conditional
construct from Table 1, e.g., insists that the boolean condition is already evaluated (i.e.,
either a boolean value or value/reference to such a value), and the R-COND-rules apply
when the previous evaluation has yielded already true, resp. false.

We use the let-construct to unify sequential composition, local variables, and hand-
ing over of values in a sequential composition, and rule R-LET basically expresses as-
sociativity of the sequential composition, i.e., ignoring the local variable declarations,
it corresponds to a step from (e1;e);e′ to e1;(e;e′). Note further that the left-hand side
for all local rules (and later the global ones) insists that the top-level construct is a let-
construct. That is assured during run-time inductively by the form of the initial thread
and the restiction on our syntax.

The first two rules deal with the basic evaluation based on substitution and spec-
ifying a left-to-right evaluation (cf.R-RED and R-LET). The two R-COND-rules deal
with conditionals in an obvious way. Unlike the first four rules, the remaining ones
do access the heap. Thus, in the premises of these rules, the local environment E is
consulted to look up object references and then changed in the step. The access and up-
date of E is given abstractly by corresponding access functions read, write, and extend
(which look-up a reference, update a reference, resp. allocate an entry for a new refer-
ence on the heap). Note that also the read-function used in the rules actually changes
the environment from E to E ′ in the step. The reason is that in a transaction-based im-
plementation, read-access to a variable may be logged, i.e., remembered appropriately,
to be able to detect conflicts and to do a roll-back if the transaction fails. The premises
assume the class table is given implicitly where fields(C) looks up fields of class C and
mbody(m,C) looks up the method m of class C. So, field look-up in R-FIELD works
as follows: consulting the local environment E, the read-function looks up the object
referenced by r; the object is C(~u), i.e., it’s an instance of class C, and its fields carry the
values ~u. The (run-time) type C of the object is further used to determine the fields ~f ,
using the object referenced by r, where fields finds the fields of the object referenced by
r, and the step replaces the field access r. fi by the corresponding value ui. Field update
in rule R-UPD works similarly, again using read to look up the objects, and additionally
using write to write the value r′ back into the local environment, thereby changing E ′

to E ′′ (again, the exact details of the function are left abstract).
The function mbody in the rule R-CALL for method invocation gives back the

method’s formal parameters ~x and the method body, and invocation involves substi-
tuting~x by the actual parameters~r and substituting this by the object’s identity r. Rule
R-NEW, finally, takes care of object creation, using a fresh object identity r to refer to
the new instance C( ~null), which has all fields initialized to null. The function extend
in that rule extends E by binding the fresh reference r to the newly created instance.

The five rules of the global semantics are given in Table 3. The semantics works on
configurations of the following form:

Γ ` P , (2)

where P is a program and Γ is a global environment. Besides that, we need a special
configuration error representing an error state. Basically, a program P consists of a
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number of threads evaluated in parallel (cf. Table 1), where each thread corresponds to
one expression, whose evaluation is described by the local rules. Now that we describe
the behavior of a number of (labeled) threads or processes p〈e〉, we need one E for each
thread p. This means, Γ is a “sequence” (or rather a set) of t:E bindings where p is the
name of a thread and E is its corresponding local environment.

Definition 3 (Global enviroment). A global environment Γ of type GEnv is a finite
mapping, written as p1:E1, . . . pk:Ek, from threads names pi to local environments Ei
(the order of bindings plays no role, and each thread name can occur at most once).

So global steps are of the form:

Γ ` P =⇒ Γ
′ ` P′ or Γ ` P =⇒ error . (3)

Also the global steps make use of a number of functions accessing and changing the
(this time global) environment. As before, those functions are left abstract (cf. Defi-
nition 2). Rule G-PLAIN simply lifts a local step to the global level, using the reflect-
operation, which roughly makes local updates of a thread globally visible. Rule G-SPAWN
deals with starting a thread. The next three rules treat the two central commands of the
calculus, those dealing directly with the transactions. The first one G-TRANS covers
onacid, which starts a transaction. The start function creates a new label l in the local
environment E of thread p. The two rules G-COMM and G-COMM-ERROR formalize
the successful commit resp. the failed attempt to commit a transaction. In G-COMM,
the label of the transaction l to be committed is found (right-most) in the local context
E. Furthermore, the function intranse(l,Γ ) finds the identities p1 . . . pk of all concurrent
threads in the transaction l and which all join in the commit. In the erroneous case of
G-COMM-ERROR, the local environment E is empty; i.e., the thread executes a commit
outside of any transaction, which constitutes an error.

E `let x : T = v in e−→ E ` e[v/x] R-RED

E `let x2 : T2 = (let x1 : T1 = e1 in e) in e′ −→ E `let x1 : T1 = e1 in (let x2 : T2 = e in e′) R-LET

E `let x : T = (if true then e1 else e2) in e−→ E `let x : T = e1 in e R-COND1

E `let x : T = (if false then e1 else e2) in e−→ E `let x : T = e2 in e R-COND2

read(r,E) = E ′,C(~u) fields(C) = ~f
R-LOOKUP

E `let x:T = r. fi in e−→ E ′ `let x:T = ui in e

read(r,E) = E ′,C(~r) write(r 7→C(~r) ↓r′
i ,E ′) = E ′′

R-UPD

E `let x:T = r. fi := r′ in e−→ E ′′ `let x:T = r′ in e

read(r,E) = E ′,C(~r) mbody(m,C) = (~x,e)
R-CALL

E `let x:T = r.m(~r) in e′ −→ E ′ `let x : T = e[~r/~x][r/this] in e′

r fresh E ′ = extend(r 7→C( ~null),E)
R-NEW

E `let x:T =newC() in e−→ E ′ `let x = r in e

Table 2: Semantics (local)
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E ` e−→ E ′ ` e′ Γ ` p : E reflect(p,E ′,Γ ) = Γ ′

G-PLAIN

Γ ` P ‖ p〈e〉=⇒ Γ
′ ` P ‖ p〈e′〉

p′ fresh spawn(p, p′,Γ ) = Γ ′

G-SPAWN

Γ ` P ‖ p〈let x : T = spawn e1 in e2〉=⇒ Γ
′ ` P ‖ p〈let x : T = null in e2〉 ‖ p′〈e1〉

l fresh start(l, p,Γ ) = Γ ′

G-TRANS

Γ ` P ‖ p〈let x : T = onacid in e〉=⇒ Γ
′ ` P ‖ p〈let x : T = null in e〉

Γ = Γ ′′, p:E E = E ′, l:ρ intranse(l,Γ ) = ~p = p1 . . . pk

commit(~p,~E,Γ ) = Γ ′ p1:E1, p2:E2, . . . pk :Ek ∈ Γ ~E = E1,E2, . . . ,Ek
G-COMM

Γ ` P ‖ . . . ‖ pi〈let x : Ti = commit in ei〉 ‖ . . . =⇒ Γ
′ ` P ‖ . . . ‖ pi〈let x : Ti = null in ei〉 ‖ . . .

Γ = Γ ′′, p:E E = /0
G-COMM-ERROR

Γ ` P ‖ p〈let x : T = commit in e〉=⇒ error

Table 3: Semantics (global)

Definition 4. Let TrName be the type of transaction labels. Given a local environ-
ment E, the function l : (LEnv→ List of TrName) is defined inductively as follows:
l(ε) = ε , and l(l: ,E) = l, l(E). Overloading the definition, we lift the function straight-
forwardly to global environments (with type l : TName×GEnv→ List of TrName), s.t.
l(p,(p:E),Γ ) = l(E).

The first definition, extracting the list of transaction labels from a local environment
E is a straightforward projection, simply extracting the sequence of transaction labels.
As for the order of the transactions: As said, the most recent, the innermost transaction
label is to the right. Given a transaction, the following function determines the threads
for which the given transaction is (properly) “nested” in a global environment, i.e., those
threads which execute inside the given transaction but where the transaction is not the
current, directly enclosing transaction.

Definition 5 (Nesting). Given a global environment, the function nested : TrName×
GEnv→ List of TName returns the list of all threads nested inside a given transaction.

4 Type and effect system

Next we present our analysis as effect system. The underlying types T include names
C of classes, basic types B (natural numbers, booleans, etc.) and Void for typing side-
effect-only expressions. The corresponding underlying type system for judgments of
the form Γ ` e : T (“under type assumptions Γ , expression e has type T ”) is standard
and omitted here.
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Thread-local effects, sequential composition, and joining commits On the local
level, the judgments of the effect part are of the following form:

n1 ` e :: n2,h, l,~t,S (4)

The elements n1, n2, h, and l are natural numbers with the following interpretation. n1
and n2 are the pre- and post-condition for the expression e, capturing the current nesting
depth: starting at a nesting depth of n1, the depth is n2 after termination of e. We call the
numbers n1 resp. n2 the current balance of the thread before and after execution. Start-
ing from the pre-condition n1, the numbers h and l represent the maximum resp., the
minimum value of the balance during the execution of e (the “highest” and the “lowest”
balance during execution). The numbers so far describe the balances of the thread exe-
cuting e. During the execution of e, however, new child threads may be created via the
spawn-expression and the remaining elements~t and S take their contribution into ac-
count. The~t is a sequence of non-negative numbers, representing the maximal, overall
(“total”) resource consumption during the execution of e, including the contribution of
all threads (the current and the spawned ones) separated by potential joining commits
of the main thread. We call~t a joining-commit sequence, or jc-sequence for short. In
Example 3, the right-hand expression er = [spawn e2]e3]e4 has one joining commit and
the jc-sequence~t = 10,7.

The last component S is of the form {(p1,c1),(p2,c2), . . .}, i.e., a multi-set of pairs
of natural numbers. For all spawned threads, S keeps its maximal contribution to the
resource consumption at the point after e, i.e., (pi,ci) represents that the thread i can
have maximally a resource need of pi + ci, where pi represents the contribution of the
spawning thread (“parent”), i.e., the nesting depth at the point when the thread is being
spawned, and ci the additional contribution of the child threads itself. That reflects the
fact that in the operational semantics, a child thread is contained in the surrounding
transactions and furthermore, the transactional log of the parent is copied into the newly
spawned thread.

The derivation rules locally for expressions are shown in Table 4. The rules for vari-
able, the null reference, for field look-up and field update, and for object instantiation
are trivial, as they neither affect the balance nor is any other thread involved. Initiat-
ing a transaction (cf. rule T-ONACID) increases the balance by one and accordingly
the highest balance and the total sum, whereas the minimum value stays constant. The
committing in rule T-COMMIT similarly keeps the maximal value constant. Considered
in isolation, the commit is a joining commit, and hence~t has two elements, where the
resource consumption is decreased by one after the commit.

The treatment of sequential composition is more complicated, for the reasons ex-
plained in Section 2. In particular, calculating the jc-sequence~u and the parallel weight
S for the composed expression from the corresponding information in the premises is
intricate. The following two definitions formalize the necessary calculations:

Definition 6 (Parallel weight). Let S be a multi-set of the form {(p1,c1), . . . ,(pk,ck)}
where the pi and ci are natural numbers, and l be a natural number. Then we define the
following functions:

par(S, l) = {(p,c) ∈ S | p≤ l} seq(S, l) = {(p,c) ∈ S | p > l} .
bScl = {(l,0),(l,0), . . .} S ↓l = par(S, l)∪bseq(S, l)cl

(5)
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Furthermore, the overall parallel weight of S is defined as |S|= ∑i(pi + ci).

Definition 7 (Sequential composition of jc-sequences). Let~s = s0, . . . ,sk,~t = t0, . . . , tm,
and m≥ p≥ 0. Then~s⊕p~t is defined as:

~s⊕p~t = s0, . . . ,sk ∨ t0 . . .∨ tp, tp+1, . . . , tm (6)

Given a parallel weight S and a n≥ m≥ 0, then 5n is defined as

S 5n~t = t ′0, t
′
1, . . . , t

′
m (7)

where t ′0 = t0 + |S|, t ′1 = t1 + |S1 ↓n−1|, . . . t ′m = tm + |S1 ↓n−m|.

To determine the spawned weight S in T-LET, the spawned weight S1 of e1 needs to
be split into two halves (cf. Definition 6).

1. The part par(S1, l2) of S1 not affected by a commit in e2 and thus able to run in
parallel with e2.

2. The part seq(S1, l2) of S1 affected by a commit in e2 via a join synchronization.

The parallel weight S1 of e1 is a multi-set of pairs (pi,ci), one pair for each spawned
thread, where the first element pi of the pair represents the balance of the parent thread
at the time of the spawning, i.e., the nesting depth inherited from the parent thread.
Whether the contribution (pi,ci) of a thread spawned in e1 counts as being composed
in parallel or affected by a join synchronization with e2 depends on whether e2 does
a commit which closes a transaction containing the thread of (pi,ci). This distinction
is based on comparing the inherited nesting depth pi with the minimal balance l2 of
e2. The parallel weight par(S1, l2) consists of the half of S1 unaffected by any join
synchronization. Even if seq(S1, l2) in contrast synchronizes via joining commits in
e2, it still contributes to the resource consumption after e2. The reason is that transac-
tions may be nested, and after the joining synchronization, the rest of a spawned thread
still consumes resources corresponding to the not-yet-committed parent transactions.
The operation bseq(S1, l2)cl2 calculates that remaining contribution. So S1 ↓l2 contains
the resource consumption after e1 of threads spawned during e1. In the conclusion of
T-LET, that estimation is added to e2’s own contribution S2 by multi-set union, result-
ing in S1 ↓l2 ∪S2 as overall parallel weight. The correctness of the calculation in T-LET
depends on the restriction on the language that once a spawned thread commits a trans-
action inherited from its parent thread, it will not open another transaction.

Now to the compositional calculation of the jc-sequence ~u (cf. Definition 7): the
calculation takes care of two phenomena: 1) The parallel weight S1 at the end of e1
has to be taken into account, since that may increase the resource consumption of the
jc-sequence ~t. This is formalized by the 5 operation of Definition 7. 2) Secondly,
joining commits of e2 may no longer be joining commits of the composed expression
let x = e1 in e2. For instance, in Example 3, the (only) joining commit of er (the one
separating e3 from e4) is no longer a joining commit of el ;er, as it cannot synchronize
with anything outside the composed expression. The calculation of the composed jc-
sequence from the constituent ones as ~s⊕n2−l1~t “merges” an appropriate number of
elements from~t (using ∨) depending on how many joining commits disappear in the
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T-VAR

n ` x :: n,n,n, [n], /0
T-NULL

n ` null:: n,n,n, [n], /0
T-LOOKUP

n ` v. f :: n,n,n, [n], /0

T-UPD

n ` v1. fi := v2 :: n,n,n, [n], /0
T-NEW

n `newC :: n,n,n, [n], /0

T-ONACID

n `onacid:: n+1,n+1,n, [n+1], /0

n≥ 1
T-COMMIT

n `commit:: n−1,n,n−1, [n;n−1], /0

n1 ` e1 :: n2,h1, l1,~s,S1 n2 ` e2 :: n3,h2, l2,~t,S2

h = h1 ∨h2 l = l1 ∧ l2 ~s = s1, . . . ,sk ~t = t1, . . . , tm k,m≥ 1 p = n2− l1
t ′1 = t1 + |S1| t ′2 = t2 + |S1 ↓n2−1| . . . t ′m = tm + |S1 ↓n2−(m−1)|

S = S1 ↓l2 ∪S2 ~u =~s⊕p (S1 5n2
~t) = s1, . . . ,sk−1,sk ∨ t ′1 ∨ . . .∨ t ′p, t

′
p+1, . . . , t

′
m

T-LET

n1 `let x:T = e1 in e2 :: n3,h, l,~u,S

n ` e1 :: n′,h1, l1,~s,S n ` e2 :: n′,h2, l2,~t,S
T-COND

n ` if v then e1 else e2 :: n′,h1 ∨h2, l1 ∧ l2,~s∨~t,S

n1 ` e :: 0,h, l,~s,S
T-SPAWN

n1 `spawn e :: n1,n1,n1, [n1 + s0],S∪{(n1,h−n1)}

mtype(C,m) :: n1→ n2,h, l,~t,S
T-CALL

n1 ` v.m(~v) :: n2,h, l,~t,S

Table 4: Effect system

composition. This number p is given by n2− l1. So in rule T-LET, the overall~u is given
as~s⊕p (S1 5n2

~t).
The calculation of the remaining effects in T-LET is straightforward: given the bal-

ance n1 as pre-condition, the post-condition n2 of e1 serves as pre-condition for the
subsequent e2, whose post-balance n3 gives the corresponding final post-balance. The
values h and l are calculated by the least upper bound, resp., the greatest lower bound of
the corresponding numbers of e1 and e2. The treatment of h, l and of the current balance
is simple because the syntax of sequential composition reflects and separates the contri-
butions of e1 and e2. For the parallel contributions of e1 and e2, they are not necessarily
separated by the syntax: threads spawned in e1 can run in parallel with e2. In this case,
the contributions of e1 and e2 need to be treated additively as they may occur at the same
time in the worst case. If potential parallelism were the only relationship between the
spawned threads of e1 and the subsequent e2, the situation would still be comparatively
simple. In the model of nested and concurrent transactions, however, threads do not run
uncoordinated in parallel: A commit executed by a thread spawned inside a transaction
synchronizes via a join with the corresponding commit of the spawning thread. This may
lead to a sequentiality constraint between the effects of e1 and e2 such that the overall
effect is not calculated additively, by taking the corresponding least upper bound. This
kind of sequentiality concerning the effects of the spawned threads of e1 and the effects
of e2 are not reflected syntactically in the sequential composition let x = e1 in e2,
which makes the compositional treatment of the sequential composition complicated.

The treatment of conditionals in rule T-COND is comparatively simple: the maxi-
mal balance is given as least upper bound and dually the minimal balance as greatest

15



lower bound of the corresponding values of the two branches. Besides that, both arms
of the conditional must agree wrt. their post-balance and their parallel weight S. The
definition of least upper bound of ~s and~t of vectors of the same length, written ~s∨~t,
is defined pointwise. Similarly we write ~s ≤~t (for vectors of the same length, if the
≤-relation holds point-wise. When spawning a new thread to execute an expression e
(cf. rule T-SPAWN), the pre-condition n1 remains unchanged, as the effect of e as deter-
mined by the premise does not concern the current, i.e., spawning thread. Likewise, the
maximal and minimal value are simply n1, as well. The jc-sequence of total resource
consumption is determined taking the contribution s0 of the spawned thread before its
first joining commit plus the resource consumption n1 of the current thread. Finally, the
parallel weight S of the spawned expression is increased by the maximal value h of the
thread executing e, where that contribution is split into the “inherited” part n1 and the
rest h− n1. The effect of a method call v.m(~v) (cf. T-CALL) is directly given by the
interface information of method m in class C, which is looked up using mtype.

Example 4. The example illustrates our type and effect system by giving the derivation
for Example 1 in Section 2 as follows (focusing on the~t- and S-part, only):

...

0 ` [ [ ;spawn (e1 ] ] ) :: [7],{(2,3)}

...

2 ` [ ;(spawn (e2 ] ] ] ); ] ;e3 ] ;e4 :: [10,8],{(1,0)}

0 ` [ [ ;spawn (e1; ] ] ) ; [ ;(spawn (e2; ] ] ] ); ] ;e3 ] ;e4 :: t,{(1,0),(1,0)}

The overall resource consumption then is t = 15 = 7 ∨ (10 + |{(2,3)}|) ∨ (8 +
|{(1,0)}|).

Global effects, parallel composition, and joining commit trees The rest of the sec-
tion is concerned formalizing the resource analysis on the global level, in essence, cap-
turing the parallel composition of threads (cf. Table 5 below). The key is again to find an
appropriate representation of the resource effects which is compositional wrt. parallel
composition. At the local level, one key was to capture the synchronization point of a
thread in what we called jc-sequences. Now that more than one thread is involved, that
data-structure is generalized to jc-trees which are basically are finitely branching, finite
trees where the nodes are labeled by a transaction label and an integer. With t as jc-tree,
the judgments at the global level are of the following form:

Γ ` P :: t (8)

Definition 8 (Jc-tree). Joining commit trees (or jc-trees for short) are defined as tree
of type JCtree = Node ofNat×Lab× (List ofJCtree), with typical element t. We write
~t for lists of jc-trees. We write also [] for the empty list, and Node(n, l,~t) for a jc-tree
whose root carries the natural number n as weight and l as label, and with children~t.

Definition 9 (Weight). The weight of a jc-tree is given inductively as |Node(n, l,~t)|=
n∨∑

|~t|
i=1(|ti|). The initial weight of a join tree t, written |t|1, is the weight of its leaves.
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|E| ` e :: n,h, l,~s,S t = lift(E,~s)
T-THREAD

p:E ` p〈e〉 :: t

Γ1 ` P1 : t1 Γ2 ` P2 : t2
T-PAR

Γ1,Γ2 ` P1 ‖ P2 : t1⊗ t2

Table 5: Effect system

Definition 10 (Parallel merge). We define the following two functions ⊗1 of type
JCtree× JCForest→ JCForest and ⊗2 of type JCForest2 → JCForest by mutual in-
duction. In abuse of notation, we will write ⊗ for both in the following.

t⊗1 [] = [t]
Node(l,n1, f1)⊗1 Node(l,n1, f2) :: f = Node(l,n1 +n2, f1⊗2 f2) :: f

Node(l1,n1, f1)⊗1 Node(l2,n1, f2) :: f = Node(l2,n1, f2) :: (Node(l1,n1, f1)⊗1 f ) l1 6= l2

[]⊗2 f = f
t :: f1⊗2 f2 = f1⊗2 (t⊗1 f2)

Remember from Definition 1, that local environments are of the form l1:ρ1, . . . lk:ρk.
In the semantics, the transaction labelled lk is the inner-most one.

Definition 11 (Lifing). The function lift of type LEnv×Nat+→ JCtree is given induc-
tively as follows.

lift([], [n]) = Node(⊥,n, [])
lift((l:ρ :: E),~s :: n) = Node(l,n, lift(E,~s))

Note that the function is undefined if |E| 6= |~s|− 1. It is an invariant of the semantics,
that |E| = |~s| − 1, and hence the function will be well-defined for all reachable con-
figurations. Defining the weight (and in abuse of notation) of a jc-sequence ~s as the
maximum of their elements, we obviously have |~s|= |lift(E,~s)|.

5 Correctness

This section establishes the soundness of the analysis, i.e., that the estimation given
back by the type and effect system overapproximates the actual potential resource con-
sumption for all reachable configurations. Remember that the resource consumption is
measured in terms of numbers of logs co-existing simultaneously (cf. Definition 12).
We start by defining the actual resource consumption of a program:

Definition 12 (Resource consumption). The weight of a local environement E, written
|E| is defined as its length, i.e., the number of its l:ρ-bindings. The weight of a global
environment Γ , written |Γ | is defined as the sum of weights of its local environments.

The following lemmas establish a number of facts about the operations used in the
calculation of resource consumption, which are later needed in the inductive proof of
subject reduction.
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Lemma 1. (S1∪S2)5n~t = S1 5n (S2 5n~t).

Proof. Straightforward. ut

Lemma 2. Let S be a parallel weight and n1 and n2 two non-negative numbers.

1. S ↓n1 ↓n2 = S ↓n2 ↓n1 .
2. If n2 ≤ n1, then S ↓n1 ↓n2 = S ↓n2 .

Proof. By straightforward calculation. ut

The next two lemma shows that the way the resource consumption is calculated in
the let-rule is associative, which is a crucial ingredient in subject reduction.

Lemma 3 (Associativity of parallel weight). Let S1,S2 be parallel weights and l be
a non-negative natural number. Define the function f as f (S1, l,S2) = S1 ↓l ∪S2. Then

f ( f (S1, l2,S2), l3,S3) = f (S1, l2∧ l3, f (S2, l3,S3)) .

Proof. By straightforward but slightly tedious calculation. ut

Lemma 4 (Associativity of⊕ and 5).~s⊕p1 (S1 5n2 (~t⊕p2 (S2 5n3~u)))= (~s⊕p1 (S1 5n2
~t))⊕p2 (S2∪S1 ↓l2 5n3 ~u).

Proof. We are given~s = s0, . . . ,sk,~t = t0, . . . , tm, and ~u = u0, . . . ,uq. Further we set

l1 = n1−|s|+1 = n1− k
l2 = n2−|t|+1 = n2−m
l3 = n3−|u|+1 = n3−q
p1 = n2− l1
p2 = n3− l2

(9)

where the li, ni and relation connecting them with the pi reflect the use of those quan-
tities in the T-LET type rule. We distinguish according to the relationship between the
low points l1, l2, and l3.
Case: l2 ≤ l1 and l3 ≤ l2
The assumption l2≤ l1 implies with the equations (9) p1≤m and l3≤ l2 implies p2≤ q.
Expanding the definitions for the left-hand and the right-hand side of the equation of
the lemma gives the following two chains of equations:

~s⊕p1 (S1 5n2 (~t⊕p2 (S2 5n3 ~u))) =
~s⊕p1 (S1 5n2 (~t⊕p2 (u0 + |S2|,u1 + |S2 ↓n3−1|, . . . ,uq + |S2 ↓n3−q|))) =
~s⊕p1 (S1 5n2 (~t⊕p2 ~u

′)) =
~s⊕p1 (S1 5n2 (t0, t1, . . . , tm∨u′0∨u′1∨ . . .∨u′p2

,u′p2+1, . . . ,u
′
q)) =

~s⊕p1 (S1 5n2 (t0, t1, . . . , t̃m,u′p2+1, . . . ,u
′
q)) =

~s⊕p1 (t0 + |S1|, t1 + |S1 ↓n2−1|, . . . , t̃m + |S1 ↓n2−m|,
u′p2+1 +S1 ↓n2−(m+1), . . . ,u′q +S1 ↓n2−(m+q−p2))

=

~s⊕p1 (t ′′0 , t ′′1 , . . . , t̃ ′′m,u′′p2+1, . . . ,u
′′
q) =

~s⊕p1 (t ′′0 , t ′′1 , . . . , t ′′p1
, t ′′p1+1, . . . , t̃

′′
m,u′′p2+1, . . . ,u

′′
q) =

s0, . . . ,sk ∨ t ′′0 ∨ t ′′1 ∨ t ′′p1
, t ′′p1+1, . . . , t̃

′′
m,u′′p2+1, . . . ,u

′′
q =

(10)

18



and

(~s⊕p1 (S1 5n2
~t))⊕p2 (S2∪S1 ↓l2 5n3 ~u) =

(~s⊕p1 (t0 + |S1|, t1 + |S1 ↓n2−1|, . . . , tm + |S1 ↓n2−m|))⊕p2 (S2∪S1 ↓l2 5n3 ~u) =
(~s⊕p1 (t ′′0 , t ′′1 , . . . , t ′′m))⊕p2 (S2∪S1 ↓l2 5n3 ~u) =
(s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1

, t ′′p+1, . . . , t
′′
m)⊕p2 (S2∪S1 ↓l2 5n3 ~u) =

(s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1
, t ′′p+1, . . . , t

′′
m)⊕p2 (S1 ↓l2 5n3 (S2 5n3 ~u)) =

(s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1
, t ′′p+1, . . . , t

′′
m)⊕p2 (S1 ↓l2 5n3 ~u

′)
(s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1

, t ′′p+1, . . . , t
′′
m)⊕p2 ~u

′′′ =
s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1

, t ′′p+1, . . . , t
′′
m−1, t

′′
m∨u′′′0 ∨ . . .∨u′′′p2

,u′′′p2+1, . . . ,u
′′′
q =

s0, . . . ,sk−1,sk ∨ t ′′0 ∨ t ′′1 ∨ . . .∨ t ′′p1
, t ′′p+1, . . . , t

′′
m−1, t

′′′
m ,u′′′p2+1, . . . ,u

′′′
q

(11)
In the calculation, we used the following abbreviations:

~u′ = S2 5n3 ~u = (u0 + |S2|,u1 + |S2 ↓n3−1|, . . . ,uq + |S2 ↓n3−q|)))
t̃m = tm∨u′0∨u′1∨ . . .∨u′p2

t ′′0 , t ′′1 , . . . , t ′′m−1 = (t0 + |S1|, t1 + |S1 ↓n2−1|, . . . , tm−1 + |S1 ↓n2−(m−1)|,
t̃ ′′m = t̃m + |S1 ↓n2−m|

u′′p2+1 . . . ,u′′q = u′p2+1 +S1 ↓n2−(m+1), . . . ,u′q +S1 ↓n2−(m+q−p2))

t ′′m = tm + |S1 ↓n2−m|
~u′′′ = S1 ↓l2 5n3 ~u

′

t ′′′m = t ′′m∨u′′′0 ∨ . . .∨u′′′p2
S′1 = S1 ↓l2
S′2 = S1 ↓l2 ∪S2

To see that (10) and (11) are equal, we need to establish the following two equation.
The required equality t̃ ′′m = t ′′′m is shown as follows:

t̃ ′′m = t̃m + |S1 ↓n2−m|
= (tm∨u′0∨u′1∨ . . .∨u′p2

)+ |S1 ↓n2−m| (distributivity)
= ((tm + |S1 ↓n2−m|)∨ (u′0 + |S1 ↓n2−m|)∨

(u′1 + |S1 ↓n2−m|)∨ . . .∨ (u′p2
+ |S1 ↓n2−m|)

(l2 = n2−m)

= (tm + |S1 ↓l2 |)∨ (u′0 + |S1 ↓l2 |)∨ (u′1 + |S1 ↓l2 |)∨
. . .∨ (u′p2

+ |S1 ↓l2 |)
(Lemma 2)

= (tm + |S1 ↓l2 |)∨ (u′0 + |S1 ↓l2 |)∨ (u′1 + |S1 ↓l2 ↓n3−1|)∨
. . .∨ (u′p2

+ |S1 ↓l2 ↓n3−p2 |)
= (tm + |S1 ↓n2−m|)∨u′′′0 ∨ . . .∨u′′′p2
= t ′′m∨u′′′0 ∨ . . .∨u′′′p2
= t ′′′m

For the application of Lemma 2, observe that for all indices n3− j, we have n3− j≥ l2.
For the required equality u′′p2+1, . . . ,u

′′
q = u′′′p2+1, . . . ,u

′′′
q , we argue as follows:
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u′′p2+1, . . . ,u
′′
q = u′p2+1 + |S1 ↓n2−(m+1)|, . . . ,u′q + |S1 ↓n2−(m+q−p2)| (by definition)

= u′p2+1 + |S1 ↓l2 ↓n2−(m+1)|, . . . ,u′q + |S1 ↓l2 ↓n2−(m+q−p2)| (Lemma 2)
= u′p2+1 + |S1 ↓l2 ↓l2−1|, . . . ,u′q + |S1 ↓l2 ↓n2−(m+q−p2)| (l2 = n2−m)
= u′p2+1 + |S1 ↓l2 ↓l2−1|, . . . ,u′q + |S1 ↓l2 ↓l2−(q−p2)| (l2 = n2−m)
= u′p2+1 + |S1 ↓l2 ↓n3−(p2+1)|, . . . ,u′q + |S1 ↓l2 ↓n3−q| (l2 = n3− p2)
= u′′′p2+1, . . .u

′′′
q

The remaining cases are similar. ut

The order on trees is defined “pointwise” in that the smaller tree must be a sub-tree
(respecting the labelling) of the larger one and furthermore each node of the smaller
tree with weight w1 is represented by the corresponding node with a weight w2 ≥ w1.

Definition 13 (Order on trees). We define the binary relation≤ on jc trees inductively
as follows: Node(n, l,~s)≤ Node(m, l,~t) if n≤ m and for each tree si in~s, there exists a
t j in~t such that si ≤ t j.

Note that the labels l in a jc tree are unique.

Lemma 5 (Lifting of ordering). If ~s ≤~t (as comparison between jc-sequences), then
lift(E,~s)≤ lift(E,~t) (as comparison between jc trees).

Proof. Obvious. ut

Lemma 6 (Lifting and commit). lift(E, l:ρ, [n,~u])≥ lift(E,~u).

Proof. Straightforward. ut

Lemma 7 (Monotonicity). If t1 ≤ t1 and t2 ≤ t ′2, then (t1⊗ t2)≤ (t ′1⊗ t ′2).

Proof. By straightforward calculation. ut

Next we prove preservation of well-typedness under reduction, i.e., subject reduction.
The proof is split into two parts, preservation under the local reduction rules and preser-
vation on the global level.

Lemma 8 (Subject reduction (local)). If n1 ` e1 :: n2,h1, l1,~s,S and E1 ` e1 −→ E2 e2,
then n1 ` e2 :: n2,h2, l2,~t,S s.t. h2 ≤ h1, l2 ≥ l1, and~t ≤~s.

Proof. In induction on the derivation of the local reduction steps using the rules from
Table 2. The cases for field lookup, field update, and object instantiation are immediate.
In the proof we concentrate on the parallel weights and the jc-sequences, as the other
parts (pre- and post-balance, high and low points) are straightforward.
Case: R-RED: E `let x : T = v in e−→ E ` e[v/x]
The assumption of well-typedness gives

n1 ` v :: n1,n1,n1, [n1], /0 n1 ` t :: n2,h2, l2,~s,S
T-LET

n1 `let x = v in t :: n2,h2, l2,~s,S

The ~s in the conclusion is justified by the observation that s0, the first element of ~s, is
≥ n1. The result follows from the fact that n1 ` t : n2,h2, l2,~s,S implies n1 ` t[v/x] :
n2,h2, l2,s,S, as required.
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Case: R-COND1: E `let x : T = (if true then e1 else e2) in e−→ E `let x : T =
e1 in e
By well-typedness we are given

n ` e1 :: n′,h1, l1,~s,S n ` e2 :: n′,h2, l2,~t,S

n ` if v then e1 else e2 :: n′,h1∨h2, l1∧ l2,~s∨~t,S

The case follows from the fact that ~s ≤~s∨~t. The case for R-COND2 works symmetri-
cally.

Case: R-LET: E `let x2 : T2 = (let x1 : T1 = e1 in e2) in e3 −→ E `let x1 : T1 = e1 in
(let x2 : T2 = e2 in e3)
We are given:

n1 ` e1 :: n2,h1, l1,~s,S1 n2 ` e2 :: n3,h2, l2,~t,S2

n1 `let x1 = e1 in e2 :: n3,h1∨h2, l1∧ l2,~v,S1 ↓l2 ∪S2 n3 ` e3 :: n4,h3, l3,~u,S3

n1 `let x2 = (let x1 = e1 in e2) in e3 :: n4,(h1∨h2)∨h3,(l1∧ l2)∧ l3,~w,(S1 ↓l2 ∪S3) ↓l3 ∪S3

where ~w = (~s⊕p1 (S1 5n2
~t))⊕p2 (S2∪S1 ↓l2 5n3 ~u) and we need to prove

n1 ` e1 :: n2,h1, l1,~s,S1

n2 ` e2 :: n3,h2, l2,~t,S2 n3 ` e3 :: n4,h3, l3,~u,S3

n2 `let x2 = e1 in e2 :: n4,h2∨h3, l2∧ l3,~v′,S2 ↓l3 ∪S3

n1 `let x1 = e1 in (let x2 = e2 in e3) :: n4,h1∨ (h2∨h3), l1∧ (l2∧ l3),~w′,S1 ↓l2∧l3 ∪ (S2 ↓l3 ∪S3)

where ~w′ =~s⊕p1 (S1 5n2 (~t⊕p2 (S2 5n3~u))). For high and low points, we use associativ-
ity of ∨ and ∧ For parallel weights, we use associativity from Lemma 3. Finally, ~w = ~w′

follows from Lemma 4.

Case: R-LOOKUP, R-UPD, and R-NEW
Trival, as not transactions are involved and no threads are spawned.

Case: R-CALL
Straightforward.

Lemma 9 (Subject reduction).

Γ ` P :: t and Γ ` P =⇒ Γ
′ ` P′ implies Γ

′ ` P′ :: t ′ where t ′ ≤ t.

Proof. By induction on the derivation/derivation tree of the reduction step Γ ` P =⇒
Γ ′ ` P′ by the rules of the semantics.

Case: G-PLAIN
A consequence of subject reduction for the local level (Lemma 8), the compatibility of
the orders for the sequences on the local level and the trees on the global level (Lemma
5) and fact that the reflect-function does not change the length of the local environments
(cf. Definition 2).
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Case: G-SPAWN
We are given Γ ` p〈let x : T =spawn e1 in e2〉=⇒ Γ ′ ` p〈let x : T =null in e2〉 ‖
p′〈e1〉. Well-typedness of the configuration before the steps gives

n1 ` e2 :: 0,h2,0,~u,S2

n1 ` spawn e2 :: n1,n1,n1, [n1 +u0],S2∪{(n1,h2−n1)} n1 ` e1 :: n2,h1,0,~v,S1 S = S1∪S′2 ↓0

n1 `let x =spawn e2 in e1 :: 0,h1,0,~s,S

p1:E ` p1〈let x = spawn e1 in e2〉 :: lift(E,~s)

were n1 = |E|. For the configuration after the step, we can derive with rules T-PAR,
T-THREAD, T-LET, and T-NULL:

n1 ` null:: n1,n1,n1, [n1], /0 n1 ` n2,h1,0,~v,S1

p1:E ` p1〈let x = null in e1〉 :: lift(E,~v)

n1 ` e2 :: 0,h2,0,~u,S2

p2:E ` p2〈e2〉 :: lift(E,~u)

p1:E, p2:E ` p1〈let x = null in e1〉 ‖ p2〈e2〉 :: lift(E,~v)⊗ lift(E,~u)

where S′2 = S2∪{(n1,h2−n1)}. We need to prove that lift(E,~s) = lift(E,~v)⊗ lift(E,~u).
The proof of this equation follows straightforwardly from Definition 10 of ⊗. Note that
the two trees are both linear and their nodes are labeled by the same labels (cf. the
definition of the lift-function).

Case: G-TRANS
We are given p:E ` p〈let x = onacid in e〉=⇒ p:E ′ ` p〈let x = null in e〉. Well-
typedness of the configuration before the step gives:

n1 `onacid:: n1 +1,n1 +1,n1, [n1 +1], /0 n1 +1 ` e :: 0,h,0,~s,S

n1 `let x =onacid in e :: 0,h,0,(s0∨ s1,s2, ...),S

p:E ` p〈let x =onacid in e〉 :: lift(E,(s0∨ s1,s2, ...))

Note that the start-function used in the G-TRANS-step to update the local environment
assures that |E ′| = |E|+ 1 (cf. Definition 2(3)). Note further that in the application of
rule T-LET, we know that n +1 ≥ s0, and thus n +1∨ s0∨ s1 equals to s0∨ s1. For the
configuration after the step, we can derive with T-THREAD, T-LET, and T-NULL

n1 +1 ` null:: n1 +1,n1 +1,n1 +1, [n1 +1], /0 n1 +1 ` e :: 0,h,0,~s,S
T-LET

n1 +1 `let x null in e :: 0,h,0,(s0∨ s1,s2, ...),S

p:E ′ ` p〈let x = null in e〉 :: lift(E,(s0∨ s1,s2, ...))

Case: G-COMM
We are given Γ ` . . . ‖ pi〈let x = commit in ei〉 ‖ . . . =⇒ Γ ′ `‖ . . . pi〈let x = null
in ei〉 ‖ . . .. Well-typedness of the configuration before the step gives for each pi

ni ` commit:: ni−1,ni,ni−1, [ni,ni−1], /0 ni−1 ` ei :: 0,h,0,~ui,S

ni ` let x = commit in ei :: 0,hi,0, [ni,~ui],S

pi:Ei ` pi〈let x =commit in ei〉 :: lift(E, [ni,~ui])
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Note that (ni− 1∨ ui0) = ui0 since ui0 ≥ ni− 1 and |~ui| = ni because all the onacids
are committed at the end (cf. T-THREAD). By T-THREAD, T-LET, and T-NULL we can
derive

ni−1 `null:: ni−1,ni−1,ni−1, [ni−1], /0 ni−1 ` ei :: 0,hi,0,~ui,S

ni−1 `let x =null in ei :: 0,hi,0,~ui,S

pi:E ′i ` pi〈let x =null in ei〉 :: lift(E ′i ,~ui)

where Ei = E ′i , l:ρ , i.e., |E ′i | = |Ei− 1| and (cf. Definition 2 and rule G-COMM). By
Lemma 6, (lift(E ′i ,~ui) ≤ (lift(Ei, [ni,~ui]), and therefore by monotonicity from Lemma
7,

⊗
i(lift(E ′i ,~ui)≤ (

⊗
i lift(Ei, [ni,~ui]), as required.

Case: G-COMM-ERROR
Omitted, since the formulation of subject reduction covers only non-erronous states.
A type and effect system which prevents statically that such erroneous steps (“commit
errors”) occur has been formalized in [15]). ut

The next lemma states a simple property of the initial weight of join-trees.

Lemma 10. |t1⊗ t2|1 = |t1|1 + |t2|1
Proof. Straightforward from the definition. ut

The next lemma states a basic correctness property of our analysis, namely that for
well-typed configurations, the actual resource consumption |Γ | is overapproximated via
the result |t| of the analysis. We prove a slightly stronger statement (which also allow
an inductive proof) namely that the actual resource consumption is approximated by the
initial weight |t|1.

Lemma 11. If Γ ` P :: t, then |Γ | ≤ |t|1.

Proof. By induction on the derivation of Γ ` P :: t.
Case: T-THREAD
Only one thread, current resource consumption is |E|. The weight estimated by t (which
basically is a sequence) larger than the first element of t (or of s). That’s easy to see by
the local typing rules.
Case: T-PAR
We are given

Γ1 ` P1 :: t1 Γ2 ` P2 :: t2

Γ1,Γ2 ` P1 ‖ P2 :: t1⊗ t2
Using induction on the two sub-goals gives |Γ1| ≤ |t1|1 and |Γ2| ≤ |t2|1 and the result
follows by Lemma 10 and the fact that |Γ1,Γ2|= |Γ1|+ |Γ2|. ut

This brings us to the final result as a corollary of subject reduction and the previ-
ous lemma: the resource consumption calculated is a static over-approximation for all
reachable configurations of the program.

Theorem 1 (Correctness). Given an initial configuration Γ0 ` p0〈e0〉 and Γ0 ` po〈e0〉 ::
t (with Γ0 as empty global context). If Γ0 ` p0〈e0〉=⇒∗ Γ ` P, then |Γ | ≤ |t|.

Proof. An immediate consequence of subject reduction (Lemma 9) and Lemma 11. ut
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6 Conclusion

We formalized a static, compositional effect-based analysis to estimate the resource
bounds for an object-oriented calculus supporting nested and multi-threaded transac-
tions (TFJ). The analysis focuses on transactional memory systems where thread-local
copies of memory resources (logs) caused by nested and multi-threaded transactions is
our main concern. The effect system can, in a compositional way, statically approximate
the maximum number of logs that co-exist at run-time. This allows to infer the memory
consumption of the transactional constructs in the program. The main challenge is that
the execution model of TFJ has neither independent parallelism nor full sequentializa-
tion. Instead, synchronization is affected by the nesting structure of the multi-threaded
transactions. This means, the synchronization structure is not syntax-directed, which
complicates the analysis. To our knowledge, this is the first static analysis taking care of
memory resource consumption for transactional software programs. Abstracting away
from the specifics of memory consumption, the effect system presented here can be seen
as a careful, compositional account of a parallel model based on join-synchronization
(in particular that of TFJ). It is promising to use compositional techniques as explored
here also to achieve different program analyses in a similar manner for programs based
on fork/join parallelism.

Related work Estimating memory usage has be studied, however, in various other set-
tings. Concerning functional languages, Hughes and Pareto [12] introduce a strict, first
order functional language with explicit regions and give a type system with space effects
which guarantees that well-typed programs use at most the space specified by the pro-
grammers. [9] is a treatment of time as a resource. Their system certifies a time limit for
a complete functional program, by using annotations by the programmer of time limits
for each individual function. Hofmann and Jost [10] use a linear type system to com-
pute linear bounds on heap space for a first-order functional language. One significant
contribution of this work is the inference mechanism through linear programming tech-
nique. [18] deals with first-order, call-by-value, garbage-collected functional language.
Their approach is based on program analysis and model checking and not type-based.
For imperative and object-oriented languages Wei-Ngan Chin et al. [6] treat explicit
memory management in a core object-oriented language. Programmers have to anno-
tate the memory usage and size relations for methods as well as explicit de-allocation.
In [11], Hofmann and Jost combine amortized analysis, linear programming and func-
tional programming to calculate the heap space bound as a function of input for an
object oriented language. Their bounds are not precise and can be over-approximated.
In [5] the authors present an algorithm to statically compute memory consumption of
a method as a non-linear function of method’s parameters. The bounds are not precise.
Their work is not type-based and the language does not include explicit de-allocation.
Braberman et al. [3] calculate non-linear symbolic approximation of memory bounds
for Java-like methods and then apply mathematical results for optimization problem
to find the concrete memory bound. However the bounds are not easily precise due to
various factors. A similar technique is also presented in [8].

For low-level languages, [4] uses program logics to infer precise memory con-
sumption of sequential bytecode programs with resource annotation by pre- and post-
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conditions. The language does not have explicit de-allocation. In [2], Albert et al. com-
pute memory consumption of a program as a function of its input data. They also refine
program’s functions by using escape analysis [7] to collect objects that do not escape
their scopes. The bytecode language has neither explicit de-allocation nor scope. Later
in [1] they introduce a more powerful method to calculate precise peak heap memory
consumption that take into account implicit de-allocation (garbage collected memory).
Pham et al. [16] propose a fast algorithm with small memory footprint to statically
calculate heap memory for a class of JavaCard programs.

The main difference of this work in comparison to the above related ones is in that
we are dealing not only with a multi-threaded analysis —many of the cited works a
restricted to sequential language— but also the complex and implicit synchronization
structure entailed by the transactional model. The work in [17], as here, provides re-
source estimations in a concurrent (component-based) setting. The concurrency model
in that work, however, is considerably simpler, as sequential and parallel composition
are explicit construct in the investigated calculus.

Future work We plan to refine the effect system by annotating more detailed infor-
mation about the logs (e.g. memory cells per log, or number of variables per log and
so on) to infer memory consumption more precisely. Extending the language with ex-
ception handling is also one possibility. The result of our analysis could be an input for
a “hybrid” model which can switch between transaction-based and lock-based modes
depending on resource consumption.

References

1. E. Albert, S. Genaim, and M. G.-Z. Gil. Live heap space analysis for languages with garbage
collection. In International Symposium on Memory Management, 2009.

2. E. Albert, S. Genaim, and M. Gomez-Zamalloa. Heap space analysis for Java bytecode. In
ISMM ’07, New York, NY, USA, 2007. ACM.

3. D. Aspinall, R. Atkey, K. MacKenzie, and D. Sannella. Symbolic and Analytic Techniques
for Resource Analysis of Java Bytecode. 2010.

4. G. Barthe, M. Pavlova, and G. Schneider. Precise analysis of memory consumption using
program logics. In SEFM ’05, Washington, DC, USA, 2005. IEEE.

5. V. Braberman, D. Garbervetsky, and S. Yovine. A static analysis for synthesizing parametric
specifications of dynamic memory consumption. Journal of Object Technology, 5(5), 2006.

6. W.-N. Chin, H. H. Nguyen, S. Qin, and M. C. Rinard. Memory usage verification for OO
programs. In C. Hankin and I. Siveroni, editors, SAS, volume 3672 of LNCS. Springer, 2005.

7. J.-D. Choi, M. Gupta, M. Serrano, V. C. Sreedhar, and S. Midkiff. Escape analysis for Java.
SIGPLAN Not., 34(10), 1999.

8. P. Clauss, F. J. Fernandez, D. Garbervetsky, and S. Verdoolaege. Symbolic polynomial max-
imization over convex sets and its application to memory requirement estimation. IEEE
Transactions on Very Large Scale Integration Systems, 17, 2009.

9. K. Crary and S. Weirich. Resource bound certification. In POPL ’00. ACM, 2000.
10. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional

programs. In POPL ’03, New York, NY, USA, 2003. ACM.
11. M. Hofmann and S. Jost. Type-based amortised heap-space analysis (for an object-oriented

language). In P. Sestoft, editor, ESOP’06, volume 3924 of LNCS. Springer, 2006.

25



12. J. Hughes and L. Pareto. Recursion and dynamic data-structures in bounded space: towards
embedded ML programming. SIGPLAN Not., 34(9), 1999.

13. A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus
for Java and GJ. In Object Oriented Programming: Systems, Languages, and Applications
(OOPSLA) ’99, pages 132–146. ACM, 1999. In SIGPLAN Notices.

14. S. Jagannathan, J. Vitek, A. Welc, and A. Hosking. A transactional object calculus. Science
of Computer Programming, 57(2):164–186, Aug. 2005.

15. T. Mai Thuong Tran and M. Steffen. Safe commits for Transactional Featherweight Java. In
D. Méry and S. Merz, editors, Proceedings of the 8th International Conference on Integrated
Formal Methods (iFM 2010), volume 6396 of Lecture Notes in Computer Science, pages
290–304 (15 pages). Springer-Verlag, Oct. 2010. An earlier and longer version has appeared
as UiO, Dept. of Comp. Science Technical Report 392, Oct. 2009 and appeared as extended
abstract in the Proceedings of NWPT’09.

16. T.-H. Pham, A.-H. Truong, N.-T. Truong, and W.-N. Chin. A fast algorithm to compute heap
memory bounds of Java Card applets. In SEFM’08, 2008.

17. H. Truong and M. Bezem. Finding resource bounds in the presence of exlicit deallocation.
In ICTAC’05, volume 3722 of Lecture Notes in Computer Science, pages 227–241. Springer-
Verlag, 2005.

18. L. Unnikrishnan, S. D. Stoller, and Y. A. Liu. Optimized live heap bound analysis. In VMCAI
2003, London, UK, 2003. Springer.

26



Index

Γ ` P =⇒ Γ ′ ` P′ (global transition), 11
S = {(p0,c0), . . . ,(pk,ck)} (parallel weight),
13
E ` e−→ E ′ ` e′ (local transition), 9
Γ (global environment), 11
Γ ` P (global configuration), 11
Γ ` e : T (typing judgment), 13
par(S, l), 14
S ↓l , 14
seq(S, l), 14
|S|, 14
|S| (resource consumption of S), 14
⊕p, 14
5l , 14
lift (lifting), 17
|t|1 (initial weight of t), 17
|t| (weight of t), 17
p〈e〉 (thread), 7
ρ (log), 9
n1 ` e :: n2,h, l,~t,S (effect judgment), 13
t1⊗ t2 (parallel composition), 17

balance, 13

class definition, 7
compositionality, 4
configuration
– global, 11
constructor, 7

E (local environment), 9
environment
– global, 11
– local, 9
extend, 10

field, 7
fv(e) (free variables), 8

global transition, 11

implicit synchronization, 6
intranse, 12

jc-sequence, 13
– composition, 14
jc-tree
– parallel composition, 17
join, 15
joining commit, 4
joining commit sequence, 13
judgment, 13

l (transaction label), 9
lifting, 17
local environment, 9
local transition, 9

method definition, 7
mtype, 15

nested, 12

onacid, 11
overloading, 8

parallel weight, 13
– associativity, 18

read, 10
resource consumption, 18

sequential composition, 6
sequential composition and let-construct, 8
subject reduction, 21, 22

TFJ, 7
transaction
– multi-threaded, 4
– nested, 4
transaction label, 9
transaction labels, 12
Transactional Featherweight Java, 7

weight, 17
write, 10



List of Tables

1 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Semantics (local) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3 Semantics (global) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Effect system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Effect system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

28


	Estimating Resource Bounds  for Software Transactions
	Introduction
	Compositional analysis of join synchronization
	A transactional calculus
	Syntax
	Semantics

	Type and effect system
	Correctness
	Conclusion
	References


