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Integrative analysis identifies 
bHLH transcription factors 
as contributors to Parkinson’s 
disease risk mechanisms
Victoria Berge‑Seidl1,2, Lasse Pihlstrøm  1 & Mathias Toft  1,2*

Genome-wide association studies (GWAS) have identified multiple genetic risk signals for Parkinson’s 
disease (PD), however translation into underlying biological mechanisms remains scarce. Genomic 
functional annotations of neurons provide new resources that may be integrated into analyses of 
GWAS findings. Altered transcription factor binding plays an important role in human diseases. Insight 
into transcriptional networks involved in PD risk mechanisms may thus improve our understanding 
of pathogenesis. We analysed overlap between genome-wide association signals in PD and open 
chromatin in neurons across multiple brain regions, finding a significant enrichment in the superior 
temporal cortex. The involvement of transcriptional networks was explored in neurons of the superior 
temporal cortex based on the location of candidate transcription factor motifs identified by two de 
novo motif discovery methods. Analyses were performed in parallel, both finding that PD risk variants 
significantly overlap with open chromatin regions harboring motifs of basic Helix-Loop-Helix (bHLH) 
transcription factors. Our findings show that cortical neurons are likely mediators of genetic risk for 
PD. The concentration of PD risk variants at sites of open chromatin targeted by members of the 
bHLH transcription factor family points to an involvement of these transcriptional networks in PD risk 
mechanisms.

Parkinson’s disease (PD) is a progressive neurodegenerative disorder affecting about 1% of the population above 
60 years of age1. The cause of neuronal death is poorly understood, and this is obstructing the path toward more 
effective treatments. The largest-to-date genome-wide association study (GWAS) for PD identified 90 independ-
ent association signals, of which a large proportion were new compared to previous reports2. In spite of the last 
two decades’ successful identification of genetic association signals in PD and other complex diseases, transla-
tion into underlying biological mechanisms has been scarce. GWAS signals typically involve multiple variants 
in high linkage disequilibrium (LD), making it difficult to pinpoint the actual causal variants. In addition, most 
risk variants are located in the noncoding part of the genome, where the functional impact may be challenging 
to predict3,4. There is however a growing amount of epigenomic and transcriptomic data that may be integrated 
with GWAS findings to discover disease-relevant regulatory networks.

In previous studies, PD risk variants have been integrated with gene expression data, epigenomic annota-
tions and functionally related gene sets to identify cell types and pathways implicated in PD pathogenesis5–7. 
Studies coupling PD risk to transcription factor binding are however scarce and there is consequently limited 
knowledge concerning transcriptional networks central to PD pathogenesis. Altered transcription factor bind-
ing has been shown to play an important role in human diseases8–10. Transcription factors bind to short and 
specific DNA sequences, referred to as motifs, to alter gene expression. Genetic variants may alter the binding of 
a transcription factor through disruption of the transcription factor recognition motif. However, the majority of 
variability in transcription factor-DNA binding events appear to be caused by variants outside the transcription 
factor recognition motif11. A fine-mapping study of autoimmune diseases found that predicted causal variants 
tend to occur near binding sites for immune related transcription factors, but only a fraction alter recognizable 
transcription factor binding motifs12.

Transcription factor binding patterns vary between cell types and may be directly assessed through chromatin 
immunoprecipitation sequencing (ChIP-seq)13. This requires one transcription factor to be tested at a time and 
only a fraction of transcription factor-cell type combinations has so far been assayed. Intersection of disease risk 
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variants for 213 phenotypes with an extensive catalogue of ChIP-seq derived transcription factor binding datasets 
identified more than 2000 significant transcription factor-disease relationships14. There were however sparse 
findings in regard to transcription factors associated with PD, which may be explained by the small number of 
transcription factors assayed in neuronal cell types.

Position weight matrices, which are widely used models to describe the DNA sequence binding prefer-
ences of transcription factors, may be used to scan the genome to predict transcription factor binding sites. 
Importantly, transcription factors only occupy a small proportion of the genomic sequences matching to their 
consensus binding sites. This is because transcription factor binding is influenced by additional features such 
as sequence context, accessibility of chromatin and interactions among transcription factors15,16. Integration of 
genome sequence information together with cell type specific experimental data has been shown to improve the 
accuracy of inference of transcription factor binding17.

Through analysis of the overlap between Alzheimer’s disease risk variants and open chromatin sites containing 
specific transcription factor motifs, Tansey et al. provided evidence suggestive of specific transcriptional networks 
being central to Alzheimer’s disease risk mechanisms18. We use a similar approach integrating PD risk variants 
with open chromatin sites in brain, coupled with transcription factor motif analysis, to identify transcription 
factor networks contributing to PD risk.

Methods
Genomic annotations.  Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq) 
is a fast and sensitive method used to map genome-wide accessibility of chromatin19. We downloaded maps of 
open chromatin in neurons and non-neurons across 14 distinct brain regions of five individuals from the online 
database Brain Open Chromatin Atlas (BOCA). A detailed description of data generation and quality control of 
this dataset has been published20. In brief, ATAC-seq was applied to neuronal and non-neuronal nuclei isolated 
from frozen brain tissue by fluorescence-activated nuclear sorting. Reads were mapped to the hg19 (GRCh37) 
reference genome using STAR aligner v2.5.0 and peaks representing open chromatin regions (OCRs) were called 
using model-based Analysis of ChIP-seq (MACS) v2.121,22.

The 14 analysed brain regions include different areas of neocortex, in addition to subcortical regions such 
as hippocampus, thalamus, amygdala, putamen and nucleus accumbens. Substantia nigra, which has a well 
established role in the pathogenesis of PD due to the loss of neurons in this region, was however not part of 
this dataset. There was to our knowledge no other data from ATAC-seq or similar assays analysing the acces-
sibility of chromatin in human dopaminergic neurons of substantia nigra available at the time of our analysis. 
Pairwise intersections between genomic annotations were computed and visualized with the command line tool 
Intervene (version 0.6.4)23. Jaccard statistic was used as measure of similarity, where 0 means no overlap and 1 
means full overlap.

Genetic association signals.  Genome-wide significant PD risk signals were accessed from a recent meta-
analysis, which is the largest genetic study of PD to date2. This study, which involved the analysis of 37.7K 
cases, 18.6K UK Biobank proxy-cases and 1.4M controls, identified 90 independent association signals that we 
included in enrichment analyses. Published top-hits were accessed from Table S2 and we included the 90 asso-
ciation signals that were marked as having passed final filtering. We performed an additional analysis excluding 
the three PD risk signals located within the extended major histocompatibility complex (MHC) region (chr6: 
26–34 Mb), due to the unusual LD and genetic architecture at this locus24.

As negative controls, we selected GWASs from non-brain related disorders that had a number of independ-
ent association signals (p-value < 5 × 10–8) comparable to that of the included PD meta-analysis. A GWAS of 
inflammatory bowel disease (IBD) (study accession GCST004131) with 94 association signals and a GWAS of 
peak expiratory flow (PEF) (study accession GCST007430) with 91 association signals were accessed from the 
GWAS catalogue25. As for the PD association signals, additional analyses were performed excluding one IBD 
risk signal and two PEF risk signals located within the extended MHC region.

Testing for enrichment of PD risk variants in open chromatin regions.  Two methods were used to 
evaluate the statistical enrichment of PD risk variants and the two negative controls in OCRs defined by ATAC-
seq in neurons across the 14 brain regions. We chose not to further analyse the non-neuronal cell population 
due to the cellular heterogeneity in this group, which contains different glial subtypes in addition to a small 
component of vascular cells and nucleated blood cells26. The workflow of our analysis is depicted in Fig. 1. First, 
enrichment was calculated with GoShifter, which includes genome-wide significant index variants and their 
LD proxies in the analysis27. We identified variants in LD with the index variants with the webserver Snipa 
(v3.3, http://www.snipa​.org), using the European subset of 1000 Genomes Phase 3 v5 data and a LD threshold 
of r2 > 0.8 (Supplementary Table S1)28. GoShifter calculates the proportion of risk loci where at least one linked 
variant overlaps the tested annotation. The observed overlap is then compared to a null distribution generated 
by randomly shuffling the annotations within each locus, thus preserving the local genomic structure. After each 
shuffle, the proportion of loci overlapping annotations is calculated. We carried out 10,000 permutations to draw 
the null distribution.

The second method applied, GREGOR, uses a snp-matching-based method to test for enrichment29. The 
number of trait-associated signals where an index variant or one of its LD proxies overlaps a regulatory annota-
tion is calculated, then the probability of the observed overlap of risk variants is estimated relative to expectation 
using a set of matched control variants. Control variants match the index variants for number of variants in LD, 
minor allele frequency and distance to nearest gene. European 1000 Genomes Phase 1 data is implemented in 

http://www.snipa.org
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GREGOR and was used to identify LD proxies with the threshold set to r2 > 0.8 and a LD window at 1 Mb. The 
minimum number of control variants for each index variant was set at 500.

We adjusted for multiple testing by Bonferroni correction, adjusting for 14 tests in the analysis of OCRs in 
neurons from different brain regions and 23 tests when analysing OCRs containing specific transcription factor 
motifs identified by de novo motif discovery with HOMER. In enrichment analysis of OCRs harboring de novo 
motifs and best matched known transcription factor motifs identified with MEME-ChIP, we adjusted for 13 and 
18 tests. Brain annotations that pass the significance threshold with both GoShifter (adj. p < 0.05) and GREGOR 
(adj. p < 0.05) are reported as significantly enriched in the text.

De novo motif discovery and assignment to open chromatin regions.  Transcription factors tar-
geting binding motifs that are enriched in a set of regulatory regions in a cell may be regarded as candidate tran-
scriptional regulators of that cell. We performed de novo motif analysis with two different softwares, HOMER 
v 4.10.3 and MEME-ChIP v 5.1.1, to identify motifs significantly enriched in OCRs in superior temporal cortex 
neurons30,31. HOMER identifies motifs that are enriched in the target sequences relative to GC matched back-
ground sequences. In our analysis with HOMER we used the findMotifsGenome.pl script with –size given, 
-mask and otherwise default settings. De novo motifs are compared against a library of known motifs in the 
HOMER Motif Database and all motifs in Jaspar. The identified enriched de novo motifs were assigned to OCRs 
using the annotatePeaks.pl script with default parameters.

MEME-ChIP performs comprehensive motif analysis of large nucleotide datasets through the combination of 
several motif discovery and analysis tools. Although MEME-ChIP was designed for the analysis of peak regions 
identified by ChIP-seq, it may also be used to identify motifs associated with genetic elements obtained by other 

Step 1 ATAC-seq in neurons 
across 14 brain regions

PD GWAS signals ( LD r2 >0.8 )

cell type x                                  cell type y                               cell type z

Motifs enriched in sites of open 
chromatin

Motif-containing open 
chromatin subsets

Enrichment of  PD risk variants in sites of open chromatin

Identify cell types that mediate 
genetic risk for PD

Identify motifs recognized by 
transcription factors important for 
cell function and identity

Identify transcriptional networks 
contributing to PD risk 
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PD GWAS signals ( LD r2 >0.8 )

Enrichment analysis

De novo motif discovery

Enrichment analysis
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Figure 1.   Workflow of the data analysis. PD, Parkinson’s disease; GWAS, Genome-wide association study; LD, 
Linkage disequilibrium.
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high-throughput assays such as ATAC-seq31. Bedtools v2.28.2 (getfasta sub-command) was used to extract supe-
rior temporal cortex ATAC-seq peak sequences in FASTA format from the hg19 reference genome obtained from 
the UCSC Genome Browser32. The ATAC-seq peak FASTA file was used as input to analysis with the command-
line version of MEME-ChIP. MEME-ChIP executes two de novo motif discovery algorithms, multiple EM for 
motif elicitation (MEME) and discriminative regular expression motif elicitation (DREME). MEME can find 
relatively long motifs, while DREME discovers short motifs up to 8 bp and is more computationally efficient. 
In contrast to MEME, the DREME algorithm analyses all sequences. As a default, MEME-ChIP only performs 
motif discovery on the central 100 bp. In our analysis the –ccut parameter was set to 0 which indicates that the 
full length sequences should be analysed. We used the JASPAR 2018 Core vertebrates non-redundant database 
for motif comparison and otherwise default settings.

The discovered motifs are grouped by similarity to each other and compared to known motifs by the Tomtom 
algorithm. As part of the MEME-ChIP tool set FIMO uses the most significant motif in each cluster to scan the 
input sequence. We used the 25 de novo motifs (most significant motif in each cluster) with lowest E-value as a 
basis for further analysis. All of these motifs had been identified by DREME and were thus between 6 and 8 bp 
long. Due to the low information content in the short 6 bp motifs, FIMO found no matches passing the default 
p-value threshold of 1 × 10–4 when scanning the large input sequence. Bedtools v 2.28.2 was used to identify 
ATAC-seq peak subsets containing each of the de novo motifs32.

The known motifs from the Jaspar database were generally longer than the de novo motifs they were matched 
to. Based on the assumption that the higher information content of the known motifs results in more accurate 
motif occurrences, we identified additional ATAC-seq peak subsets containing the best matched known motifs. 
Occurrences of the known motifs best matched (lowest Tomtom p-value) to the 25 most significant de novo 
motifs were identified with the command-line version of FIMO v 5.1.1. We used the default p-value threshold 
of 1 × 10–4 and the same Markov background model that was calculated from the input sequences by analysis 
with MEME-ChIP. As for the analysis of de novo motifs, Bedtools was used to identify ATAC-seq peak subsets 
containing each of the best matched known motifs.

Computations were performed on resources provided by UNINETT Sigma2—the National Infrastructure 
for High Performance Computing and Data Storage in Norway. Figures comparing multiple motifs were created 
with the R/Bioconductor package MotifStack v1.18.033. Motif matrices provided in the HOMER Motif Database, 
the Jaspar database and in the output from de novo motif discovery were used as input to MotifStack.

Results
Similarity measures of open chromatin between brain regions and cell types.  Pairwise inter-
sections in terms of Jaccard statistics of ATAC-seq peaks representing OCRs in the different cell types show a 
separation between neurons and non-neurons, with the inter-region similarity being higher between the non-
neurons (Supplementary Figure S1). Among the neurons, mediodorsal thalamus, putamen and nucleus accum-
bens differ the most from the other brain regions, while cortical regions cluster together. These results are in 
concordance with findings by Fullard et al., where differences were assessed between all individual samples using 
MDS clustering and pi1 estimates20.

Enrichment of PD risk variants in neuronal open chromatin regions.  PD risk variants are signifi-
cantly enriched in OCRs of neurons of the superior temporal cortex (GoShifter adj. p = 0.028, GREGOR adj. 
p = 6.94 × 10–05). There is a tendency that the lowest p-values, although not significant with both enrichment 
tests, are in cortical regions rather than subcortical regions (Table 1). This should be viewed in relation to the 
high inter-region similarity between OCRs in the different cortical regions (Supplementary Figure S1). There is 
no evidence of an enrichment of PEF risk variants or IBD risk variants in neurons from any of the tested brain 
regions (Supplementary Table S2). This indicates that the enrichment of risk variants in OCRs of neurons of the 
superior temporal cortex is specific to PD risk variants and not to disease-associated variants in general.

Enrichment of PD risk variants in open chromatin regions harboring specific transcription fac‑
tor motifs identified by HOMER.  Candidate transcriptional regulators were assessed in OCRs in neu-
rons of the superior temporal cortex, since this was the ATAC-seq peak set passing the significance threshold 
with both enrichment tests. We performed de novo motif discovery with the HOMER software and found that 
22 motifs were enriched in open chromatin (Supplementary Table S3). ATAC-seq peaks were divided into 22 
subsets containing each of the enriched motifs. We also created one subset with all the enriched motifs being 
absent (noMotif), which was intended as a negative control. HOMER compares the de novo motifs to a library 
of known motifs, presenting a list of the best matched known motifs based on a similarity score. The ATAC-seq 
peak subsets are named after the best matched known transcription factor.

When analysing HOMER motif-containing OCR subsets we found that PD risk variants were significantly 
enriched in OCRs harboring the de novo motif matched to the Olig2 motif (GoShifter adj. p = 0.025, GREGOR 
adj. p = 1.39 × 10–03) (Table 2). None of the other motif-containing OCR subsets were significantly enriched 
when both GREGOR and GoShifter were subjected to Bonferroni correction. There are however some OCR 
subsets that have an adjusted p-value < 0.05 with GREGOR and a nominally significant p-value with GoShifter 
(POL010.1_DCE_S_III, NRF1 and NFIA). There is a high degree of concordance between the highest ranked 
motif-containing OCR sets resulting from analysis with GoShifter and GREGOR. Also, none of the negative 
controls are enriched in the Olig2 OCR subset or any of the other motif-containing OCR subsets (Supplemen-
tary Table S4).

16 out of the 90 PD association signals have one or more variants in high LD located in OCRs containing 
the de novo motif best matched to oligodendrocyte transcription factor 2 (Olig2). Several other transcription 
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factors are also closely matched to this de novo motif since they share very similar binding motifs (Supplementary 
Figure S2). This provides additional candidates potentially targeting the enriched subset of open chromatin. All 
candidates do however belong to the basic Helix-Loop-Helix (bHLH) transcription factor family. The noMotif 
OCR subset does not show a significant enrichment of PD risk variants. This subset may however not be that 
well suited as a negative control since it is among the smallest OCR subsets, only constituting 1,6% of the total 
number of OCRs.

Enrichment of PD risk variants in open chromatin regions harboring specific transcription fac‑
tor motifs identified by MEME‑ChIP.  Motif analysis with MEME-ChIP identified 88 de novo motifs 
(118 motifs clustered by similarity) to be enriched (E-value ≤ 0.05). Further analysis was limited to the 25 most 
significantly enriched motifs (Supplementary Table  S5). Known motifs matched to the 25 most significant 
MEME-ChIP de novo motifs overlap several of the known motifs matched to HOMER de novo motifs (Sup-
plementary Table S6). Transcription factors confidently matched to de novo motifs by both motif discovery tools 
have been described to function in neurons, such as MEF2C, SP2/SP1, NRF1 and NEUROD1/bHLH transcrip-
tion factors34–37. We created ATAC-seq peak subsets containing each of the enriched de novo motifs. Seven de 
novo motifs that had no significant motif occurrences and six de novo motifs that had not been matched to any 
known motif (of which two had no significant motif occurrences) were excluded from further analysis. One 
additional subset was excluded since it was smaller than 1000 OCRs. This left 13 de novo motif-containing 
ATAC-seq peak subsets to be tested with enrichment analysis, of which none were significantly enriched with 
PD risk variants, nor with any of the negative controls (Supplementary Table S7).

Based on the assumption that known motifs matched to the short de novo motifs have a higher information 
content resulting in more accurate motif occurrences, ATAC-seq peaks were divided into subsets based on the 
location of the best matched known motifs. 19 out of the 25 de novo motifs with lowest E-value were matched 
to known motifs of which two were matched to the same known motif. Enrichment analysis of ATAC-seq peak 
subsets containing each of the 18 best matched known motifs show a significant enrichment of PD risk variants 
in the OCRs containing the neurogenic differentiation factor 1 (NEUROD1) motif (GoShifter adj. p = 7.20 × 10–03, 
GREGOR adj. p = 7.63 × 10–04) (Table 3). There is a high degree of concordance between the highest ranked motif-
containing OCR sets resulting from analysis with GoShifter and GREGOR. Also, none of the negative controls 
are enriched in the NEUROD1 OCR subset or any of the other motif-containing OCR subsets (Supplementary 
Table S8). 13 out of the 90 PD association signals have one or more variants in high LD located in OCRs contain-
ing a NEUROD1 motif. NEUROD1 is a bHLH transcription factor and is interestingly among the ten known 
motifs best matched to the de novo motif located in the enriched ATAC-seq peak subset based on analysis with 
HOMER (Supplementary Figure S2).

Enrichment testing performed with exclusion of risk signals in the extended MHC region shows similar 
results in all analyses to those found when including this region. OCRs in superior temporal cortex neurons, 
OCR subsets containing motifs linked to Olig2 and OCRs containing the NEUROD1 motif were all significantly 
enriched with PD risk variants also when excluding the extended MHC region. No additional OCR sets were 

Table 1.   Enrichment of PD risk variants within open chromatin regions in neurons from different brain 
regions. The cell type passing the significance threshold with both GoShifter and GREGOR is marked with 
a star and is reported in the text as significantly enriched with PD risk variants. We adjusted for multiple 
testing by Bonferroni correction, adjusting for 14 tests. Unadjusted p-values are provided in parenthesis. 
Adjusted p-val < 0.05 are written in bold. No. ATAC-seq peaks refers to the total number of peaks, representing 
open chromatin regions, in the analysed cell types. PD, Parkinson’s disease; ACC, Anterior cingulate cortex; 
AMY, Amygdala; DLPFC, Dorsolateral prefrontal cortex; HIPP, Hippocampus; INS, Insula; ITC, Inferior 
temporal cortex; MDT, Mediodorsal thalamus; NAC, Nucleus Accumbens; OFC, Orbitofrontal cortex; PMC, 
Primary motor cortex; PUT, Putamen; PVC, Primary visual cortex; STC, Superior temporal cortex; VLPFC, 
Ventrolateral prefrontal cortex.

Cell type GoShifter Adj. p-val (p-val) GREGOR Adj. p-val (p-val) No. ATAC-seq peaks

STC* 0.028 (2.00 × 10–03) 6.94 × 10–05 (4.96 × 10–06) 76145

VLPFC 0.162 (0.012) 2.67 × 10–03 (1.90 × 10–04) 86082

ITC 0.204 (0.015) 4.30 × 10–04 (3.07 × 10–05) 65346

PMC 0.206 (0.015) 3.73 × 10–03 (2.66 × 10–04) 84995

ACC​ 0.325 (0.023) 7.20 × 10–04 (5.14 × 10–05) 70654

OFC 0.403 (0.029) 3.19 × 10–03 (2.28 × 10–04) 81621

INS 0.468 (0.033) 3.97 × 10–03 (2.84 × 10–04) 68261

DLPFC 1 (0.075) 0.021 (1.49 × 10–03) 74825

PVC 1 (0.093) 0.014 (1.02 × 10–03) 51874

NAC 1 (0.105) 0.191 (0.014) 77290

MDT 1 (0.117) 2.97 × 10–03 (2.12 × 10–04) 69913

HIPP 1 (0.135) 0.037 (2.66 × 10–03) 80571

AMY 1 (0.151) 0.072 (5.16 × 10–03) 38564

PUT 1 (0.166) 0.145 (0.01) 100752
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significant with both GoShifter and GREGOR, and also no significant enrichments were found for any of the 
negative controls.

Analysis of open chromatin region subsets based on two different de novo motif discovery 
methods point to the same transcription factor family: bHLH transcription factors.  Analysis 
of OCR subsets based on de novo motif discovery with HOMER and MEME-ChIP both show a significant 
enrichment of PD risk variants in the subset targeted by bHLH transcription factors. The HOMER de novo motif 
matched to Olig2 and the MEME-ChIP de novo motif matched to NEUROD1 (with bHLH transcription factor 
motifs bhlha and TAL1::TCF3 as second and third best match) are highly similar. The similarity between these 
two de novo motifs, as well as between the de novo motifs and best matched known motifs, are illustrated in 
Fig. 2. bHLH transcription factors are known to bind to E-box motifs with the consensus sequence CANNTG, 
corresponding with the identified de novo motifs. In E-box motifs, the central two nucleotides and the sur-
rounding nucleotides provide specificity of binding34.

The PD association signals and corresponding proxy variants that overlap the NEUROD1 OCR subset and 
Olig2 OCR subset are listed in Supplementary Table S9. We find high concordance between PD risk variants 
overlapping the two enriched motif-containing OCR subsets. 12 out of the 13 association signals and 17 out of 
the 20 proxy variants that locate to the NEUROD1 OCR subset are also located in the Olig2 OCR subset (Sup-
plementary Figure S3).

Discussion
Characterization of disease-related transcriptional networks is essential to improve our understanding of patho-
genic processes and possible therapeutic targets. Identification of transcriptional networks that contribute to 
genetic risk mechanisms may be explored through integration of GWAS findings with epigenomic data and 
in silico motif analysis. This has been done in a recent study by Tansey et al., where results point to SPI1 and 
MEF2A/C transcriptional networks as central to Alzheimer’s disease risk mechanisms18. In support of these find-
ings, variants in the proximity of both SPI1 and MEF2C have earlier been identified as significant Alzheimer’s 
disease risk loci38,39. Intriguingly, this suggests that a transcription factor may be implicated in genetic disease 
risk both by variants altering expression of the transcription factor itself, as well as through variants altering its 
binding affinity to regulatory DNA at other loci18.

Table 2.   Enrichment of PD risk variants within motif-containing open chromatin region sets identified with 
HOMER. The motif-containing OCR set passing the significance threshold with both GoShifter and GREGOR 
is marked with a star and is reported in the text as significantly enriched with PD risk variants. We adjusted 
for multiple testing by Bonferroni correction, adjusting for 23 tests. Unadjusted p-values are provided in 
parenthesis. Adjusted p-val < 0.05 are written in bold. No. ATAC-seq peaks refers to the total number of peaks, 
representing OCRs, in the analysed motif-containing OCR sets. The total number of ATAC-seq peaks in 
superior temporal cortex neurons is 76145. PD, Parkinson’s disease; OCR, Open chromatin region.

Motif-containing OCR sets GoShifter Adj. p-val (p-val) GREGOR Adj. p-val (p-val) No. ATAC-seq peaks

Olig2* 0.025 (1.10 × 10–03) 1.39 × 10–03 (6.05 × 10–05) 21924

POL010.1_DCE 0.064 (2.80 × 10–03) 7.18 × 10–05 (3.12 × 10–06) 37574

NRF1 0.407 (0.018) 6.26 × 10–03 (2.72 × 10–04) 7729

NFIA 0.580 (0.025) 0.022 (9.51 × 10–04) 37903

Sp2 1 (0.052) 0.147 (6.39 × 10–03) 7566

Egr2 1 (0.073) 0.103 (4.46 × 10–03) 25202

NFY 1 (0.078) 0.152 (6.63 × 10–03) 5806

PB0080.1_Tbp_1 1 (0.087) 0.774 (0.034) 5118

ETV2 1 (0.171) 0.113 (4.91 × 10–03) 10961

CTCF 1 (0.189) 1 (0.091) 6257

Mef2c 1 (0.205) 1 (0.050) 17566

PB0013.1_Eomes_1 1 (0.221) 1 (0.053) 29438

Atf1 1 (0.297) 0.331 (0.014) 5809

BORIS 1 (0.333) 1 (0.138) 6018

POL002.1_INR 1 (0.336) 1 (0.136) 34917

SPDEF 1 (0.390) 0.172 (0.007) 18884

MafF 1 (0.523) 1 (0.219) 34091

GFY 1 (0.683) 1 (0.543) 1196

Rfx5 1 (0.759) 1 (0.382) 7410

Fra1 1 (0.851) 1 (0.601) 9557

NFIL3 1 (0.901) 1 (0.723) 4431

Rfx1 1 (1) 1 (1) 3337

noMotif 1 (1) 0.542 (0.024) 1196
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In our study, we integrated association signals from the most recent PD GWAS with publicly available ATAC-
seq data coupled with transcription factor motif analysis in an effort to identify transcriptional networks contrib-
uting to PD risk. Enrichment analysis shows that PD risk variants are concentrated at sites of open chromatin in 
neurons of the superior temporal cortex indicating that these cell types mediate genetic risk for PD. The finding 
that neurons from additional cortical regions approach the significance threshold by being significant upon 
multiple testing with one enrichment test and nominally significant with the other enrichment test, suggests 
that a broader range of cortical regions are implicated in PD risk.

The involvement of transcriptional networks was explored in neurons of the superior temporal cortex based 
on the location of candidate motifs identified by de novo motif discovery. Enrichment analysis shows a significant 
overlap between PD risk variants and OCRs harboring motifs matched to transcription factors within a distinct 
family, suggesting that risk variants localize to specific transcription factor targeted OCRs. We find an enrichment 
of PD risk variants in OCRs targeted by bHLH transcription factors. There is a high degree of similarity between 
recognition motifs of members of the large bHLH transcription factor family, which provides several binding 
candidates. bHLH transcription factors are key determinants of neural cell fate specification and differentiation34. 
Many of the transcription factors that are candidates to target this subset of open chromatin are mainly expressed 
and function in the developing nervous system, and thus more likely to be involved in neurodevelopmental 
diseases. However, a developmental component to PD pathogenesis cannot be excluded, conceivably laying the 
groundworks for the brain’s future vulnerability to or resilience against adult onset neurodegeneration34. Some 
bHLH transcription factors also function in adult neurons, such as transcription factor 4 (TCF4), which is the 
second best match to the de novo motif identified by HOMER40. Autosomal dominant mutations and deletions 
in TCF4 cause the neurodevelopmental disorder Pitt-Hopkins syndrome, while common variants at the TCF4 
locus are associated with schizophrenia risk41–44.

Epigenomic studies of the brain have predominantly been conducted in bulk tissue, which may perturb the 
detection of cell type specific regulatory elements due to measurement of an average signal across a heterogene-
ous population of cells. In contrast, Fullard et al. applied ATAC-seq to sorted nuclei20. This enables the distinc-
tion between OCRs in neurons vs non-neuronal cells, which we consider to be a major strength of this dataset.

We draw our conclusions based on results from two different enrichment tests. Due to the overlap between 
OCRs in the different cell types and motif-subsets, adjustment for multiple testing by Bonferroni correction 
may be considered to be a very strict significance threshold potentially leading to false negatives. This is mostly 
relevant to GoShifter, which is reported to have very conservative estimates45. It should however be noted that it is 
only the motif-containing OCR subset passing our set significance threshold which is also significant in analyses 
based on the alternative de novo motif discovery method. We consider it a strength of our study that we employ 
two different methods for de novo motif discovery. HOMER and MEME-ChIP are widely used tools for motif 

Table 3.   Enrichment of PD risk variants within open chromatin region sets containing known motifs 
identified with MEME-ChIP. The motif-containing OCR set passing the significance threshold with both 
GoShifter and GREGOR is marked with a star and is reported in the text as significantly enriched with PD 
risk variants. We adjusted for multiple testing by Bonferroni correction, adjusting for 18 tests. Unadjusted 
p-values are provided in parenthesis. Adjusted p-val < 0.05 are written in bold. No. ATAC-seq peaks refers to 
the total number of peaks, representing OCRs, in the analysed motif-containing open chromatin sets. The total 
number of ATAC-seq peaks in superior temporal cortex neurons is 76145. PD, Parkinson’s disease; OCR, Open 
chromatin region.

Motif-containing 
OCR sets

GoShifter Adj. p-val 
(p-val)

GREGOR Adj. p-val 
(p-val) No. ATAC-seq peaks

NEUROD1* 7.20 × 10–03 (4.00 × 10–04) 7.63 × 10–04 (4.24 × 10–05) 12197

SP1 0.058 (3.20 × 10–03) 5.79 × 10–06 (3.21 × 10–07) 19373

ZNF263 0.472 (0.026) 2.85 × 10–03 (1.59 × 10–04) 27496

NHLH1 0.770 (0.043) 0.552 (0.031) 8288

TEAD2 1 (0.133) 0.097 (5.41 × 10–03) 7000

RBPJ 1 (0.137) 0.790 (0.044) 11637

KLF9 1 (0.206) 0.188 (0.010) 12364

NRF1 1 (0.254) 0.071 (3.92 × 10–03) 7740

SPIC 1 (0.261) 1 (0.075) 8737

SPIB 1 (0.291) 0.422 (0.023) 9300

ZIC1 1 (0.335) 0.221 (0.012) 6952

Stat5a::Stat5b 1 (0.457) 1 (0.140) 9783

ZNF384 1 (0.510) 1 (0.644) 14373

MEF2C 1 (0.557) 1 (0.279) 16923

FOSL2 1 (0.854) 1 (0.519) 9141

FOXP1 1 (0.888) 1 (0.919) 6847

TBP 1 (0.911) 1 (0.816) 5011

CREB1 1 (0.911) 1 (0.363) 2994
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analysis of large DNA sequence data sets. The analyses are performed in parallel and both show an enrichment of 
PD risk variants in OCRs targeted by bHLH transcription factors, thus increasing the robustness of this finding.

We analyse two non-brain related disorders as negative controls and find no evidence of enrichment in cortical 
neurons, showing some degree of specificity of our findings to PD. In further interpretations of our results it is 
important to recognize that the detection of motifs and potential binding of bHLH transcription factors could 
be a marker of an active regulatory region also bound by other regulatory factors, of which one exerts the true 
causal effect on PD risk. We cannot exclude the possibility that an observed enrichment is due to unaccounted 
colocalization with other annotations. This limits the inference of causality and must be taken into account when 
interpreting results from enrichment analysis.

In our study, integration of GWAS signals with sites of open chromatin suggests that neurons in the superior 
temporal cortex and additional cortical regions mediate genetic risk for PD. Motif analysis performed in neurons 
of the superior temporal cortex shows that PD risk variants significantly overlap OCRs targeted by members of 
the bHLH transcription factor family, pointing to an involvement of these transcriptional networks in PD risk 
mechanisms. Additional investigations are needed to further explore the role of bHLH transcription factors in 
PD. Our study also demonstrates that ATAC-seq data coupled with motif analysis may be used in the assess-
ment of hundreds of different transcription factors in a relevant cellular context, something that is not possible 
with existing transcription factor ChIP-seq data. Future studies addressing regulatory mechanisms in PD will 
benefit from improved computational approaches to predict transcription factor binding sites as a complement 
to ChIP-seq. Novel computational methods highlight the importance of both motif-based and chromatin acces-
sibility features as pivotal to yield high performance predictions for most transcription factors46,47. Generation of 
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Figure 2.   Comparison of de novo motifs matched to bHLH transcription factors. Denovo_HOMER is the de 
novo motif identified by HOMER, while denovo_MEME-ChIP refers to the de novo motif identified by MEME-
ChIP. Olig2(bHLH)/Neuron-Olig2-ChIP-Seq (GSE30882)/Homer is the known motif best matched to denovo_
HOMER and is part of the HOMER Motif Database. MA1109.1-NEUROD1 is the known motif best matched to 
denovo_MEME-ChIP and is part of the JASPAR 2018 Core vertebrates non-redundant database. bHLH, Basic 
Helix-Loop-Helix; RC, Reverse complement.
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epigenomic data with increased cellular resolution in brain related cell types would thus provide another valuable 
resource to study the involvement of transcription factors in neurodegenerative diseases.

Data availability
The datasets analysed during the current study are available from Brain Open Chromatin Atlas (BOCA) (https​
://bendl​j01.u.hpc.mssm.edu/multi​reg/resou​rces/boca_peaks​.zip) and UCSC Genome Browser (http://hgdow​
nload​.soe.ucsc.edu/golde​nPath​/hg19/bigZi​ps/lates​t/hg19.fa.maske​d.gz).
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