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Preface

This thesis is submitted in partial fulfilment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented
here was conducted at the Norwegian Geotechnical Institute. This project
has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sktodowska-Curie grant agreement
No. 721403 (SLATE). The computational results presented have been achieved
(in part) using the HPC infrastructure LEO of the University of Innsbruck.

The thesis is a collection of four papers. The common theme is the numerical
simulation of granular flows and their potential to generate tsunamis with
Navier-Stokes type models.
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Chapter 1
Introduction

1.1 Landslides, tsunamis and landslide tsunamis

Landslides and similar gravity driven mass flows (e.g. snow avalanches, debris
flows, mud slides, rock falls) are common events with high socioeconomic impact
(Pudasaini and Hutter, 2007). They occur primarily in steep, mountainous
terrain but also in lakes and the ocean. Landslides can travel over long distances
and unleash high forces and destruction on obstacles in their flow path. Between
1998 and 2017, 4.8 million people have been affected by landslides and they
caused more than 18000 fatalities (Wallemacq et al., 2018).

The prediction of landslides is a complex and multidisciplinary problem
(Pudasaini and Hutter, 2007). Various factors influence the formation of
landslides, e.g. geology, meteorology, or hydrology. Triggers can be manifold,
ranging from earthquakes, over strong precipitation to human activities. All
factors are affected by a high level of uncertainty and a similar level of uncertainty
has to be expected for landslides. This is an important aspect that should be
accounted for in all decisions and models. The dynamic evolution of the landslides
from the initial release to the final deposition is equally complex. Landslides
consist of a mixture of water (sometimes ice or snow), air and granular particles
in various sizes, from fine sediment particles to large rocks, that again, depend
strongly on geology, meteorology and hydrology. Various phenomena emerge from
this complex mixture, e.g. Coulomb friction, dilatancy, liquefaction, fluidisation,
cohesion or segregation. Many of these phenomena are barely described in an
isolated context, yet in a unified manner considering all the interactions.

Nevertheless, a large variety of mathematical models and methods were
developed in the last century to investigate, understand and predict landslides.
The simplest class of models can be described as block models, where kinematic
equations are integrated over the whole landslide volume. These models idealize
the landslide or avalanche as a mass point which is subject to gravity and friction.
The resulting acceleration, velocity and deceleration allows an estimation of
the runout and the destructive impact at a certain point in the path. Notable
examples are the model of Voellmy (1955) or the a-8 model (Bakkehoi et al.,
1983). Many of these models can be solved analytically and applied on a regional
scale.

Further developments extended the early mass point models to continuum-
mechanical models. The first step were depth-integrated flow models, incorpo-
rating variations and the extension of the slide, first in longitudinal direction
(one-dimensional) and further in transversal direction (two-dimensional) (Grigo-
rian et al., 1967; Savage and Hutter, 1989, 1991). Notably, these models were
highly influenced by the depth-integrated Shallow Water Equations, well known
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for the application of water waves. Depth-integrated models are well-established
and applied on a regular basis (Pitman et al., 2003; Sampl and Zwinger, 2004;
Hungr, 1995, 2008; Christen et al., 2010; Pudasaini, 2012; Mergili et al., 2012;
Bouchut et al., 2017; Kim et al., 2019), see also Tab. 1.1.

The next natural step incorporates a complete removal of integration
(except for numerical approximations of the exact solution). This results in
complete three-dimensional continuum mechanical models, e.g. the Navier—Stokes
Equations. Many studies with such models have been conducted in recent years,
among others by Crosta et al. (2009); Meruane et al. (2010); Lagrée et al. (2011);
Staron et al. (2012); Domnik et al. (2013); Savage et al. (2014); Zhang et al.
(2014); Ionescu et al. (2015); Peng et al. (2015); Mast et al. (2015); Dunatunga
and Kamrin (2015); von Boetticher et al. (2016, 2017); Martin et al. (2017); Wang
et al. (2017a,b); Si et al. (2018a); Baumgarten and Kamrin (2019); Gesenhues
et al. (2019). The various approaches differ by their numerical solution method
(Finite Element Method (FEM), Particle Finite Element Method (PFEM),
Finite Volume Method (FVM), Smoothed Particle Hydrodynamics (SPH) or
Material Point Method (MPM)), the number of considered phases (single-phase
or multi-phase), the constitutive framework (elasto-pastic, visco-plastic, plastic,
hypoplastic) and the constitutive relations (Drucker—Prager, Mohr—Couloumb,
Matsuoka—Nakai, Critical State Theory (CST); u(l)-rheology or u(I),o(I)-
rheology, Granular Kinetic Theory (GKT)), see Tab. 1.1 for some examples. All
of the mentioned models consider granular flows and slides as continua, which can
be interpreted as a simplification in itself, as these flows are composed of many
discrete bodies, i.e. grains. The discrete element method (DEM) (e.g. Lacaze
et al., 2008; Guo and Curtis, 2015) takes advantage of this fact and simulates all
grains and the respective contact or impact forces individually. The complexity
of granular flows can be reduced to simple contact problems, however, for a
high computational effort, required to track individual particles and all possible
contacts and interactions. It should be noted that some effects cannot be covered
by the DEM and that additional models are required for e.g. the interaction
with the surrounding fluid or for non-spherical particles (Shan and Zhao, 2014;
Guo and Curtis, 2015; Xu et al., 2019). Despite this manifold attempts, three-
dimensional models are still falling behind depth-integrated models for most
applications. There are multiple reasons for the dominance of depth-integrated
models, e.g. efficiency but also technical and conceptual problems of three-
dimensional models. Furthermore, the simplifications and assumptions of depth-
integrated models fit well to most naturally occurring landslides and an extension
to full three-dimensional models is rarely advantageous.

The interaction of landslides with lakes and oceans can generate large impulse
waves, i.e. tsunamis, which represent a substantial secondary hazard. In fact,
landslides are the second most frequent tsunami source, only surpassed by
earthquakes (Ward, 2001; Harbitz et al., 2014). Respective events are mainly
distinguished by the origin of the landslide, either as subaerial (landslide is
released above the water level) or subaquatic landslides tsunamis (landslide is
released below the water level). Subaquatic landslides can reach much larger
volumes than subaerial landslides, however, the latter are more efficient in terms
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Table 1.1: Examples for landslide and granular flow models, their numerical

solution method and constitutive relations.

Type Model name Solution method  Const. relations References
Savage-Hutter TITAN2D FVM Voellmy-like Pitman et al. (2003); Patra et al. (2005)
DAN Lagrangian solver  Voellmy-like Hungr (1995, 2008)
SamosAT SPH Voellmy-like Sampl and Zwinger (2004)
Shaltop FVM Voellmy-like/p(I)-rheology Mangeney et al. (2007)
FLATModel FVM Voellmy-like Medina et al. (2008)
RAMMS FVM Voellmy /GKT Christen et al. (2010)
Avaflow FVM two-phase Voellmy-like/CST Mergili et al. (2012, 2017)
- FVM/FDM CST Bouchut et al. (2017)
OpenFOAM FVM Voellmy-like/p(I)-rheology Rauter and Tukovié (2018); Rauter et al. (2018)
BingClaw FVM Herschel-Bulkley Kim et al. (2019)
Navier—Stokes - FEM elasto-plastic/Mohr—Coulomb ~ Crosta et al. (2009)
- FVM visco-plastic/CST-like Meruane et al. (2010)
Gerris FVM visco-plastic/u(I)-rheology Lagrée et al. (2011); Staron et al. (2012)
COMSOL FEM visco-plastic/Drucker—Prager Savage et al. (2014)
- PFEM elasto-plastic/Drucker-Prager ~ Zhang et al. (2014)
- FEM visco-plastic/u(1)-rheology Tonescu et al. (2015); Martin et al. (2017)
- SPH hypoplastic/Drucker—Prager Peng et al. (2015)
- MPM elasto-plastic/Matsuoka—Nakai ~ Mast et al. (2015)
- MPM elasto-plastic/u(I)-rheology Dunatunga and Kamrin (2015)
OpenFOAM FVM visco-plastic/Drucker—Prager von Boetticher et al. (2016)
- SPH two-phase CST/u(I)-rheology ~ Wang et al. (2017b,a)
OpenFOAM  FVM two-phase visco-plastic/KT Si et al. (2018a)
- MPM two-phase CST/u(I)-rheology — Baumgarten and Kamrin (2019)
- FEM visco-plastic/u(I)-rheology Gesenhues et al. (2019)
DEM varous models DEM contact model see review of Lacaze et al. (2008)
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of wave generation and both represent a substantial hazard. It should be noted
that most subaquatic landslides are triggered by earthquakes and that these
earthquakes might play a role in the generation of the tsunami (Harbitz et al.,
2006).

Notable examples of subaquatic landslide tsunamis include

the prehistoric (about 11500 BP) BIG’95 slide in the mediterranean sea
that generated waves up to 10 m on the continental shores (Iglesias et al.,
2012),

the prehistoric (about 8000 BP) extremely large Storrega landslide (slide
volume 10*? m?) and the following tsunami which led to inundation heights
of up to 20m at the Faeroes Islands, 15m in Norway, and 6 m in Scotland
(Bondevik et al., 2005),

the 1929 Grand Banks landslide and the following tsunami, causing 28
fatalities at the coast of Newfoundland (Lgvholt et al., 2019),

the 1992 Flores Island tsunami that caused more than 1000 fatalities (Yeh
et al., 1993), or

the 1998 Papua New Guinea slump and tsunami causing over 2100 fatalities
(Synolakis et al., 2002).

Notable examples of subaerial landslide tsunamis include

the 563 lake Geneva (Switzerland) rockfall induced tsunami with inundation
heights of 13 m in Lausanne and 8 m in Geneva (Kremer et al., 2012),

the 1784 earthquake induced rockfall and tsunami in Calabria (Italy) that
caused more than 1500 fatalities in the village Scilla,

the 1792 Mount Unzen landslide tsunami that caused more than 15000
fatalities (Sassa et al., 2016)

the 1888 Ritter Island Volcano (Papua New Guinea) collapse, generating a
10 — 15 m high wave at neighbouring islands (Ward and Day, 2003),

the 1905 and 1936 rockfall generated tsunamis in lake Loen (Norway),
destroying nearby villages and killing most inhabitants (Grimstad, 2006),

the 1934 Tafjord (Norway) rockfall and tsunami with inundation heights
of up to 60 m that caused 41 fatalities (Harbitz et al., 1993),

the 1958 Lituya Bay (Alaska) landslide that generated a tsunami with a
maximum inundation height of 500 m (Franco et al., 2019),

the 1963 Vajont landslide that hit an artificial reservoir (Italy), generating
a 200m high wave that destroyed the village of Longarone and caused
about 2000 fatalities (Panizzo et al., 2005),
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o the 1964 Alaska earthquake, leading to landslides and further on to a
tsunami that caused 13 fatalities and destroyed the village Seward (Lee
et al., 2003),

o the 1979, Lembata Island (Indonesia) landslide and tsunami that caused
539 fatalities (Yudhicara et al., 2015),

e the 1979 Nice accident, where a landslide was released during building
operations, generating a tsunami (Assier-Rzadkieaicz et al., 2000),

o the 1994 Skagway (Alaska) harbour accident, where a collapsing dock
generated a tsunami with up to 10 m high waves (Rabinovich et al., 1999),

o the 2007 earthquake induced landslide in the Aisén Fjord (Chile) that
caused ten fatalities (Sepilveda and Serey, 2009),

o the 2007 landslide and tsunami in lake Chehalis (Canada) that generated
inundation heights of 38 m on the opposite shore (Wang et al., 2015),

e the 2010 Haiti earthquake that triggered a coastal tsunamigenic landslide
in the Bay of Grand Goave, killing at least three people (Fritz et al., 2013),

o the 2014 lake Askja landslide that generated 10 — 15m high waves and
inundation heights up to 70m (see Paper 1V),

o the 2015 Tyndall Glacier landslide and the following tsunami in Taan Fjord
with 5m high waves in the far field (George et al., 2017),

o the 2015 Hongyanzi landslide that generated a tsunami in the Three Gorges
reservoir (China) with up to 6 m inundation height on the opposite shore
(Xiao et al., 2018),

e the 2017 Karrat Fjord landslide tsunami, killing four people and destroying
eleven houses in the village of Nuugaatsiaq (Paris et al., 2019),

o the 2018 Sulawesi earthquake that was accompanied by a large amount of
landslides and a tsunami wave with up to 10m inundation height (Takagi
et al., 2019), or

 the 2018 flank collapse of Anak Krakatoa (Indonesia), generating a tsunami
that caused several hundred fatalities (Grilli et al., 2019).

Pictures of the 1963 Vajont landslide and the caused destruction are shown in
Fig. 1.1 1.

Three major approaches are currently used to model and predict landslide
generated tsunamis (Heller, 2020). Semi-empirical scaling relations (i) that are

IPicture sources: (a) public domain, taken from commons.wikimedia.org/wiki/File:Valle
del Vajont_ 1960.jpg on 20.01.21, (b) public domain, taken from it.wikipedia.org/wiki/File:
Disastro_ Vajont.jpg on 20.01.21, (¢,d) public domain, taken from commons.wikimedia.org/
wiki/File:Longarone_disastro.jpg on 20.01.21.
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Figure 1.1: The Vajont reservoir before (a) and after the 1963 landslide (b).
The landslide displaced large parts of the water and generated a tsunami that
destroyed the village of Longarone, shown before (¢) and after the event (d).

derived from a large set of experiments (e.g. Fritz, 2002), physical laboratory
scale models (ii) (e.g. Lindstrgm et al., 2014) and mathematical-mechanical
models (iii), on which we will focus in the following.

A tsunami event can be split into three major phases (Fritz, 2002). In the
generation phase (i), a water reservoir at rest is disturbed by an earthquake, a
volcanic eruption, a landslide or a similar event. The water wave travels widely
undisturbed during the propagation phase (ii) where it is only affected by the
water body geometry and its depth i.e. the bathymetry. The wave will eventually
reach a shore in the inundation phase (iii) and areas that are located above the
water level will be flooded.

The simulation of tsunamis is, similar to landslides, dominated by depth-
integrated models, such as the Shallow Water Equations or the Boussinesq
Equations. Some models are listed in Tab. 1.2, for a comprehensive list, the
reader is refereed to the excellent review of Yavari-Ramshe and Ataie-Ashtiani
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(2016). These models have substantial advantages in comparison to full three-
dimensional models. Most notably, the wave elevation can be described by a
scalar function (the wave or water height) and the models conserve energy. This
is an important property, especially in the propagation phase. In fact, it has
been shown that three-dimensional models are dissipating wave energy, which
might lead to an underestimation of the respective hazard (Lgvholt et al., 2008).

However, the assumptions of depth-integration might not hold during the
generation or inundation phase. This is especially the case for subaerial landslides
that penetrate the water surface in a violent, chaotic, and turbulent process.
Furthermore, these stages require special treatment in depth-integrated models,
either coupling with a landslide/earthquake model (generation) or special
treatment of dry regions (inundation). Three-dimensional models might solve
some of these problems and are thus studied with increasing interest (Liu et al.,
2005; Gisler et al., 2006; Biscarini, 2010; Abadie et al., 2010; Horrillo et al., 2013;
Shan and Zhao, 2014; Si et al., 2018b; Clous and Abadie, 2019; Abadie et al.,
2020; Romano et al., 2020; Mulligan et al., 2020; Chen et al., 2020; Franco et al.,
2019). In particular, three-dimensional models allow a unified treatment of the
landslide and the tsunami and a direct numerical simulation of the interaction and
the tsunami genesis process. Further, three-dimensional models allow complex
and realistic constitutive models for the landslide material. These properties
give three-dimensional methods a strong potential to substantially improve the
understanding and prediction of landslide tsunamis. The methods and flow
models are the same as for granular flows and landslides (see above), however,
complicated by the additional water-air surface, where the wave is generated
and propagated.

Table 1.2: Examples for tsunami models, their solution method and source
(i.e. landslide) modelling.

Type Model name Solution  Source modelling References

depth-averaged  Avalanche FVM variable bathymetry  Heinrich et al. (2001)
NHWAVE FVM variable bathymetry = Ma et al. (2012, 2015)
GloBouss FDM variable bathymetry — Lgvholt et al. (2008)
HYSEA FVM variable bathymetry — Fernandez-Nieto et al. (2008)
GeoClaw FVM variable bathymetry — Berger et al. (2011)
D-Claw FVM mixture model George et al. (2017)
FUNWAVE FDM variable bathymetry — Kirby et al. (1998)
SWASH SPH variable bathymetry — Tan et al. (2018)

Navier-Stokes - FVM block slide Liu et al. (2005)
SAGE FVM inviscid /plastic slide  Gisler et al. (2006)
THETIS FVM block /plastic slide Abadie et al. (2010, 2020)
Fluent FVM block /viscous slide Biscarini (2010)
TSUNAMI3D FDM inviscid slide Horrillo et al. (2013)
CFDEM FVM DEM Shan and Zhao (2014)
OpenFOAM  FVM granular porous slide  Si et al. (2018b)
THETIS FVM granular slide Clous and Abadie (2019)
OpenFOAM  FVM block/solid slide Romano et al. (2020)
- PFEM  viscous slide Mulligan et al. (2020)
Flow3D FVM viscous slide Franco et al. (2019)
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1.2 Goal and methodology of the thesis

This thesis aims to pick up three-dimensional models for landslides and water
waves and combine them in a unified model to directly simulate the process of
wave generation. Further, the model should be solved numerically to include
arbitrary and complex geometries and properties. Analytical solutions, although
desirable, can not be expected from the complex model and complex geometries.
Considerable emphasis was placed on the efficiency and scalability of the
numerical method to allow the application to full scale events. Further, it
was the goal to develop a model with real predictive power, that does not rely
on the fitting of empirical parameters.

The thesis project is embedded into the Marie Sktodowska-Curie international
training network SLATE, with the overarching goal to understand and quantify
the hazard of submarine landslides.

Three-dimensional models for water surface waves are well established in the
field of Computational Fluid Dynamics (CFD) (Ferziger and Perié¢, 2002). The
vast majority of models relies on the incompressible Navier—Stokes Equations
(see section 1.3), which describe a fluid with good accuracy. The description
of the water surface and the respective waves can be included with different
approaches, e.g. with a moving boundary condition (e.g. Tukovi¢ and Jasak,
2012) or with the application of a multi-phase or multi-component model (e.g.
Hirt and Nichols, 1981). The latter is chosen in this work, as this approach
promises flexibility and a simple implementation of multiple interacting phases
for water, landslide and air.

Fluids are defined by Ferziger and Peri¢ (2002) as ,[...] substances whose
molecular structure offers no resistance to external shear forces: even the smallest
force causes deformation of a fluid [...]” and the Navier—Stokes Equations reflect
this property. It is clear that granular material, i.e. soil, sand or marine sediments,
do not follow this description and large shear forces can be sustained for long
periods. The application of the Navier—Stokes Equations to granular material is
thus problematic and not without restrictions.

However, landslides are first and foremost a flow of granular material, with
limiting states (i.e. release and deposition) resembling the behaviour of a solid.
It has been shown, that this flow regime can be described well as a fluid with
a non-Newtonian viscosity (see section 1.4). The very influential work of Jop
et al. (2006) popularized this approach, although the idea is much older (e.g.
Schaeffer, 1987). Solid material can be expressed as a fluid with infinite or very
high viscosity and represents the limit of the approach, matching the process of
a granular flow with peripheral solid regions (i.e. a landslide) well. Most notable,
this model is consistent with the Navier—Stokes Equations and the surface wave
model and was thus chosen in this work. This allows a seamless integration of
granular flows into the CFD model and a direct numerical simulation of the
wave generation.

The resulting mathematical system is solved with OpenFOAM (see sec-
tion 1.5), an open source library for the solution of partial differential equations
(OpenCFD, 2018; Weller et al., 1998). OpenFOAM was chosen because of the
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simple high level syntax, good support of multiphase systems, complex geome-
tries, and parallelisation (via MPI), and theoretical scalability up to real case
scenarios. The implementation and/or validation of new models and existing
components is presented in four publications (see section 1.6). An introduction
to the basic methods and tools in this thesis is given in sections 1.3, 1.4 and 1.5.

1.3 The incompressible Navier-Stokes Equations and other
conservation laws

The Navier—Stokes Equations are (in this work) understood as the continuum-
mechanical expression of conservation of mass

dm
— =0 1.1
dt Y ( )
and momentum (Newtons’ second law)
dmu
=f 1.2
dt Y ( )

for a fluid (Moukalled et al., 2016; Ferziger and Peri¢, 2002). Here, m is a control
mass, u its velocity and f the sum of all forces acting on it.

The Reynolds’ transport theorem is central for the development of continuum-
mechanical models, based on conservation laws (Ferziger and Peri¢, 2002). It is
given as

dw d 0

- - - — . 1.

i i / YdV at/wdv—l— 7{ Yu-nds, (1.3)
QcMm Qcv

Nov

with the conservative property (mass, momentum, energy) W and its respective
density 1 (x,t) at position x and time t. Q¢ is the volume occupied by the
control mass, (2cy is the matching but stationary control volume and 0€cy its
boundary with the outward pointing normal unit vector n.

Introducing the mass conservation equation (1.1) and the respective density
p into Eq. (1.3) yields the integral form of the mass conservation equation

%/pdV—l— 7{ pu-ndS =0. (1.4)

Qcv v

Gauss’ divergence theorem, given as,

/V-(pu) dV = 7{ (pu)-ndS, (1.5)
Qcv ey

with the divergence operator "V-” can be applied to transform the surface
integral into a volume integral to get

%+V~(pu) dV = 0. (1.6)

Qcv
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The control volume Qcv is arbitrary and it follows that the integrand in Eq. (1.6)
has to be zero. The differential form of the mass conservation equation (Ferziger
and Peri¢, 2002) follows as

dp

— 4+ V. (pu) =0. 1.7

L4V (pw) (17)
The same procedure can be conducted with Newtons’” second law. The forces

on the control volume are specified at this point and we distinguish between

volume forces such as gravity and forces on the boundary such as stresses,

f = /png—l— 7{ ondS, (1.8)

Qcv v

with the gravitational acceleration g and Cauchy’s stress tensor of rank two o
(Irgens, 2008). The differential form of Newtons’ second law follows as (Ferziger
and Peri¢, 2002)
dpu

and is called Cauchy Equations of Motion (Irgens, 2008). Notably, this equation
holds not only for fluids, but also for solids and any other matter.

The limitation to fluids is introduced with the assumption of a specific form
of the stress tensor (Ferziger and Perié¢, 2002),

o=—pl+T¥ = pI42npDd, (1.10)

with the pressure p, the dynamic viscosity n and the deviatoric strain rate tensor,

Ddevzé (Vu+ (Vu)T) —%V-uI, (1.11)
where V7 is the gradient operator. I is the identity matrix of rank two. The
factor 2 in Eq. (1.10) is related to the historic definition of the viscosity. This
assumption states that shear stresses T9¢V can only be present in the material if
there is a respective strain rate D¢, following the definition of a fluid (Ferziger
and Peri¢, 2002). The final momentum conservation equation of the Navier—
Stokes Equations follows as

dpu
%JrV'(pu@u):pg—VerV'(277Ddev), (1.12)
In many cases, we can assume that fluids are incompressible, i.e.
dp
L 1.13
iy (1.13)

and the incompressible Navier—-Stokes Equations follow as

V.u=0, (1.14)
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ag;tu—i—vau@)u):pg—Vp—l—V-(277Dde"). (1.15)
Note, that the density can not be removed from the first two terms of the
momentum conservation equation, because we want to retain the possibility for
spatially varying densities (V p # 0) as present in e.g. multiphase systems.
The presented procedure including Reynold’s transport theorem and Gauss’
divergence theorem can be conducted with all conservative properties to find the
respective differential forms. This is one of the central tools of this thesis and
was applied to a large variety of conservative properties, e.g. volumetric phase
fractions, phase momentum or component indicators. More details can be found
in the respective papers of this thesis.

1.4 Constitutive modelling

The very specific form for the stress tensor in the Navier-Stokes Equations (see
Eq. 1.10) has strong implications for complex fluids such as landslides, as shown
in Paper I. Here, a short introduction to one-dimensional conceptual material
models and their extension to three dimensions is given to facilitate a better
understanding of the respective parts of this thesis.

Basic constitutive models can be classified as either elastic, viscous or plastic
(see Fig. 1.2 and Liingaard et al. (2004)).

Flastic models describe a unique relationship between the (one-dimensional)
stress o and the (one-dimensional) strain e, the stress is proportional to the
deformation. In the simplest case the relationship is linear, as shown in Fig. 1.2,
and the model is described by Hook’s law,

o= Ee, (1.16)

with the elastic modulus E. The schematic representation of an elastic model is
a spring.

Viscous models describe a unique relationship between the (one-dimensional)
stress o and the (one-dimensional) strain rate ¢ = de/3Jt, the stress is proportional
to the velocity at which the deformation occurs. The linear case is called a
Newtonian fluid and is described by

o ="n¢, (1.17)

similar as in the Navier—Stokes Equations. The schematic representation is a
viscous damper.

Plastic models are formulated in terms of a yield stress oy, that has to be
reached to allow a deformation or deformation rate ¢ and which cannot be
exceeded. The model describes two cases,

0 f
= or o<y (1.18)
undefined for o = oy.

The schematic representation is a (frictional) slider.
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Figure 1.2: Basic one-dimensional constitutive models: (a) linear elasticity, (b)
linear (Newtonian) viscosity and (c) plasticity and the respective schematic
representations (a) spring, (b) damper and (c) slider. Redrawn after Liingaard
et al. (2004).

The three basic constitutive models can be combined in various ways to model
complex material behaviour. Models can be combined in a parallel manner,
adding respective stresses and matching strain and strain rate or in a serial
manner, matching stresses and adding strain and strain rate. Simple examples
of such combinations include elasto-plastic models (elastic and plastic model
in series) or the elasto-visco-plastic Bingham model (Liingaard et al., 2004), as
shown in Fig. 1.3. This model predicts an initial elastic deformation until the
stress o exceeds the yield stress oy. Stresses that exceed the yield stress are
absorbed by the viscous damper and a flow at a rate of ¢ occurs. Note that the
elastic part is often excluded in the Bingham model.

Ui
It
In

Figure 1.3: The Bingham model is a popular example for a combined elasto-
visco-plastic model for ice or granular material. Redrawn after Liingaard et al.
(2004).

For realistic applications it is required to extend these models to three-
dimensional stress and deformation states, defined by the rank two stress and
strain or strain rate tensors. Interestingly, different strategies are applied to

12
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extend elastic, viscous and plastic models. Elasticity shows a very general
approach and uses linear algebra to define the three-dimensional Hook’s law as

o = Ce, (1.19)

where C is a tensor of rank four and 81 entries. Notably, many assumptions
on the structure of C can be made and a simplified notation, exploiting the
symmetry of the stress and strain tensor is given as

€11 . % . % —1 bYe % - # 0 0 0 011

2l |FTeg B, woze )0 0|0
es|_|g-37¢ =3¢ ® O 0 Of [os (1.20)
E12 0 0 0 £ 0 0 o2 |’ ‘
£13 0 0 0 0 £ 0f [0

€21 0 0 0 0 0 &/ \ox

with the shear modulus GG. Further, the stress and strain tensors have been
reassembled into a vector and the reciprocal of C is shown to simplify the
notation.

The three-dimensional extension of viscous models was already introduced in
the context of the Navier—Stokes Equations as

o=—pIl+2nDeY, (1.21)

The viscosity is a scalar, which is a strong contrast to the elastic material model,
where the factor of proportion is a tensor of rank four. This approach introduces
a specific assumption about the form of the stress tensor and its consistency with
non-Newtonian fluids is not guaranteed. Notably, the hydrostatic part of the
stress tensor, p, is not resolved by the viscous model and has to be established
in a different way (i.e. the divergence constraint on the velocity).

In plasticity, the simple inequality o < oy is replaced by a complex yield
criterion,

flo) <0, (1.22)

taking into account all components of the stress tensor. Examples for the yield
surface f(o) are given in Paper I. As for elastic models, this approach is very
flexible and a large variety of material properties can be expressed.

Granular materials behave elastic at small deformations and are described best
by a plastic model at large deformations. Implementing this complex behaviour in
a viscous framework, like the Navier—Stokes Equations, is problematic. However,
it has been shown, first by Jop et al. (2006) but also by many other researchers
(e.g. Lagrée et al., 2011; Barker and Gray, 2017), that the decisive behaviour
of granular flows can be encoded in a single scalar viscosity. This is done by
neglecting the elastic behaviour at small deformations and by defining a non-
linear viscosity that mimics plastic behaviour. The closest match is achieved if
the viscosity tends to infinity for o < oy (and thus ¢ — 0) and results in the
stress o0 = oy for € > 0. This is fulfilled by a viscosity of the form

Oy
= —=. 1.23
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It is easy to recognize in Eq. (1.23) that solid material ¢ — 0 is only included as a
limit state and that the asymptote of the viscosity at ¢ = 0 introduces numerical
problems. This issue is solved in this work by truncating the viscosity and the
solid material is basically modelled as a highly viscous fluid. Further issues
appear in the three-dimensional extension because three-dimensional viscous
models are much more limited than their elastic or plastic equivalents (compare
Egs. (1.20), (1.21) and Egs. (1.22)). Paper I investigates the consistency of this
approach with known granular behaviour in three dimensions. The consequence
of truncating the viscosity is investigated in paper II.

1.5 The Finite Volume Method and OpenFOAM

The models developed in this thesis lead to non-linear partial differential
equations. An analytical solution is not achievable, except for trivial cases
and we have to rely on numerical solutions with e.g. the Finite Volume Method.
The Finite Volume Method was chosen in this work because of its flexibility
and availability in form of the open source CFD toolkit OpenFOAM. Notable
alternatives are the Finite Difference and the Finite Element Method, as well
as various Lagrangian methods, such as Smoothed Particle Hydrodynamics or
Material Point Method (see e.g. references in the introduction of Paper III). A
very short introduction into the Finite Volume Method and its most important
aspects is given here to facilitate the understanding of this work. For a more
detailed introduction, the reader is referred to Ferziger and Peri¢ (2002), Jasak
(1996) or Moukalled et al. (2016).

The Finite Volume Method is based on the integral form of conservation
equations. A general convection-diffusion equation for a conservative property W
and its density 1 (x,t), with convective velocity u (x,t), the diffusion coefficient
I'y (x,t) and the source term Sy (x,1),

0
a—:f L Vo(uY) =V T,V + S, (1.24)
~~ convec;i:/e term dif‘fusi:/'e term source term

temporal derivative

is given in integral form as

0
a/wv+/v.(u¢) dvz/v.(mvw) dV+/S¢dV. (1.25)
Q Qcv Qcv

cv Qcv

Using Gauss’ divergence theorem allows the removal of the divergence operators,

%/¢dv+ 7{ n-(uy) dS = 7{ n~(F¢V¢)dS+/S¢dV. (1.26)
Qcv

v v Qcv

The spatial domain is discretized by an arbitrary number of finite volume
cells as shown in Fig. 1.4 that act as control volumes, i.e. Q¢y. Finite volume
cells cover the spatial domain entirely, do not overlap, are convex and bounded
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Figure 1.4: The prototype of a finite volume cell. Redrawn after Tukovi¢ and
Jasak (2012).

by an arbitrary number of flat faces with centre point f and surface area Sy.
The cell P has a volume Vp and centre point xp. Neighbouring cells which share
the face f with cell P are notated with N. The sum of all cells is called mesh. A
second order accurate approximation of the field i) within the cell P is given by

¥ (x,1) = ¥p(t) + Vp(t) (x —xp) (1.27)

and the integral over the cell P follows to second order accuracy as

/w (x,£) AV = bp(t) Vp. (1.28)
Vp

A similar approximation follows for surface integrals which follow as

/¢ (x,t) dS = ¢(t) Sy. (1.29)
Sy

This allows the replacement of the integrals with sums,

0
%VP + Y ng-(upyp) Sp =) ng- Ly (VY)g) S+ Syp Vp. (1.30)
7

f

Values on faces, e.g. 1y can be replaced by a combination of values on centres,
Yp and ¥y, using second order accurate interpolations,

vy =vpa+in (1-a). (1.31)

The factor a depends on the interpolation rule. Various interpolation rules
(second order central, first order upwind) can be found in the literature and
the stability of the method is highly dependent on selecting the appropriate
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rule. Boundary conditions are incorporated by replacing the interpolation rule,
Eq. (1.31), with a relation that reflects the boundary condition.

The time is split into an arbitrary number of time steps with duration At
and the temporal evolution is calculated in a time-marching manner, starting
from a known state called initial condition. The temporal derivative can be
discretized with a simple integration rule, e.g. backward or forward Euler,

Ovp _ ¥p —p
ot At ’

(1.32)

with the known old value 5! at ¢~! and the new unknown value % at
t" = t*=! + At. The scheme is called backward (implicit) Euler if 1) = !
in Eq. (1.30) or forward (explicit) Euler if ¢ = ¢"~! in Eq. (1.30). Implicit
and explicit higher order schemes can be constructed with minor additional
complexity.

The directional derivative in the diffusive term is approximated by

g (V) = L

(1.33)
with dy = |xy — xp|. This approximation is only second order accurate for
specific geometries and correction terms have to be applied in practice.

The fully (implicitly) discretized system can be written as

%_—WV + Y n;-u (wi a + P (1—a))S —
At P 7 i f P N =

Z%Fd},f Sf —|—S¢’p Vp, (1.34)
f

where 9% and 1} remain the only unknowns. Factors of unknowns can be
collected and the discretized equation can be written as

apYp +an Yy = bp, (1.35)

for all cells P, resulting in as many linear equations as cells. The linear system
can be solved by respective algorithms to yield values for 1%. The full solution
of the partial differential equation can be reconstructed with Eq. (1.27).

The convection-diffusion equation is a simple example and we have to deal
with additional difficulties for practical applications. Additional complexity
can be introduced by coupling with other PDEs and non-linear terms (e.g. the
convective term of the momentum conservation equation). In such cases, we
have to rely on an explicit or semi-implicit treatment of the respective terms.
The incompressible Navier—Stokes Equations represent a very special form of
PDE and require specialized algorithms (e.g. PISO) to obtain a solution.

OpenFOAM provides a large range of functionalities with the Finite Volume
Method as the central element. Most notably, this includes data structures
such as meshes, fields, cells or viscosity models and the respective input- and
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output routines, an implementation of the Finite Volume Method and linear
solver for the resulting system. Many recurring programming tasks are simplified
by auxiliary functions or code snippets. A large variety of physical models
has been implemented into OpenFOAM and they can be used with no or little
modification, as done in Paper III. For other cases, it is sufficient to create a new
library that can be loaded by OpenFOAM during runtime, as done in Paper I.
Finally, deeper modifications require a new application or modifications to an
existing application and this was required for Papers II and IV.

Listing 1.1: Solution of a convection-diffusion equation with OpenFOAM.

fvScalarMatrix psiEqgn
(
fvm: :ddt(psi)
+ fvm::div(u, psi)
+ fvm::laplacian(Gamma, psi)
S_psi
)

psiEgn.solve();

The implementation of PDEs is very convenient in OpenFOAM. The
convection-diffusion conservation equation (1.24) can be implemented as shown
in listing 1.1 (the time looping is excluded). The namespace fvm refers to
Finite Volume Method and contains all methods and classes required for the
implicit solution of PDEs. The namespace fvc, i.e. Finite Volume Calculus,
provides additional functionalities, e.g. calculating derivatives based on known
fields, which can be used for explicit solutions or explicit corrections to implicit
solutions.

The OpenFOAM models applied in this work are based on the standard
models multiphaselnterFoam and multiphaseEulerFoam of OpenFOAM-v1812.
Both solvers implement the Navier—Stokes Equations and a multicomponent-
or multiphase-system. multiphaselnterFoam implements a sharp interface and
a single momentum conservation equation that is shared by all components,
multiphase EulerFoam implements a gradual or dispersed interface and a
momentum conservation equation for each phase. Further they allow the
application of custom viscosity models, i.e. the u(/)-rheology in case of this
thesis. The time step duration algorithm was adapted in both solvers to account
for the high viscosity that is found in granular flows (see Lst. A.1). The solver
multiphaseEulerFoam was further extended to include the granular pressure in
the momentum conservation equation (see Paper II and Lst. A.2).

For Paper 1V, the solver multiphaseEulerFoam was further extended as
follows: The momentum conservation equations were changed to account for
a variable density of phases (e.g. pdu/dt — 9(pu)/0t) (see Lst. A.3). The
class phaseModel was extended with various functions (e.g. solveAlphas(...),
correct(...), nHatf(...)) from the class multiphaseMixture of multipha-
selnterFoam to allow a split of phases in various components (see Lst. A.4).
The advection of components within phaseModel is solved with the MULES
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algorithm (Multidimensional universal limiter for explicit solution) and corrected
by the same counter gradient transport term as applied in multiphaseInterFoam.
The component-wise volumetric flux as calculated and corrected by the MULES
algorithm is further multiplied with the component density and the respective
sum over all components is applied in the advection term of the phase momentum
conservation equation.

1.6 Summary of Papers

This thesis covers a wide range of areas, from the theoretical model development
to the practical implementation and application. The four cumulative chapters
lead to the following main conclusions.

Paper | focuses on the implementation of plastic constitutive models into the
Navier—Stokes Equations. In particular, it is shown how (almost) arbitrary
yield criteria can be expressed as a non-linear viscosity. This allows the
simulation of granular flows with computational fluid mechanics frameworks.
The relations between plasticity and viscosity were investigated in
unprecedented levels of detail and many previous ad-hoc assumptions
were formalized and placed on a solid foundation.

Paper Il extends the plastic constitutive models from paper I to granular
multiphase flows, incorporating pore fluid flow and variations of pore
pressure and packing density (porosity). This allows reliable predictions
of subaquatic granular flows with minimal fitting of model parameters.
The packing density and the related excess pore pressure showed to be the
decisive parameter for the mobility of subaquatic granular flows and the
source for many flow patterns observed in laboratory experiments and the
field.

Paper lll demonstrates the ability of the Navier—Stokes Equations and the
applied software framework OpenFOAM to simulate the generation and
propagation of idealized landslide tsunamis. The landslide consists of water
in this study and the exclusion of complex landslide rheologies allowed
a thorough study of the simulated waves. It could be shown that the
applied framework is capable of reproducing the decisive mechanics of wave
generation and propagation. Particular focus was put on the verification
of the numerical solution and estimates for the required mesh resolution,
the time step resolution and the related errors are given. Further, a large
variety of simulations was conducted to empirically investigate the influence
of various landslide parameters on the wave generation.

Paper IV combines the granular multiphase model with the tsunami generation
model and thus papers III and II. The paper demonstrates the simulation
of tsunamis generated by porous granular landslides with good accuracy
and reliability. The model is further applied to a full three-dimensional
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real scale case, the 2014 lake Askja landslide tsunami. This case study
proves the scalability and the consistency of the model for a wide range of
events and scales.
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Abstract

Numerical simulations of granular flows with Navier—Stokes type models
emerged in the last decade, challenging the well established depth-averaged
models. The structure of these equations allows for extension to general
rheologies based on complex and realistic constitutive models. Substantial
effort has been put into describing the effect of the shear rate, i.e. the
magnitude of the velocity gradient, on the shear stress. Here we analyse the
effect of the deformation type. We apply the theories of Mohr—Coulomb and
Matsuoka—Nakai to calculate the stresses under different deformation types
and compare results to the theory of Drucker—Prager, which is formulated
independently of the deformation type. This model is particularly relevant
because it is the basis for many granular rheologies, such as the u(I)—
rheology. All models have been implemented into the open-source toolkit
OpenFOAM?® for a practical application. We found that, within the context
of these models, the deformation type has a large influence on the stress.
However, for the geometries considered here, these differences are limited
to specific zones which have little influence on the landslide kinematics.
Finally we are able to give indicators on when the deformation type should
be considered in modelling of landslides and when it can be neglected.

.1 Introduction

Dense granular flows are substantial parts of many natural hazards, such as
avalanches, landslides, debris flows and lahars. A constitutive description
of granular materials is important for a deeper understanding and improved
prediction of these processes.

The first models for granular materials stem from geotechnics and applications
in the soil mechanics community, with the earliest examples of a mathematical
description being in the 19*" century, when Charles-Augustin de Coulomb
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formulated his famous friction law (see e.g. Pudasaini and Hutter, 2007), based
on the rules found earlier by Guillaume Amontons (see e.g. Holmberg et al.,
2012). It relates normal stress o, and shear stress 7 between two solids and
defines the friction angle ¢ as

tan(¢) = - (I.1)
On

This relation is limited to well defined sliding planes and not generally applicable
to three-dimensional situations. Christian Otto Mohr generalized Coulomb’s law
by determining the decisive shear plane in a failing solid with arbitrary stress
state. The resulting formulation is known as the Mohr-Coulomb (MC) failure
criterion (Yu, 2002). The Mohr—-Coulomb failure criterion describes the failure of
brittle materials, such as concrete and granular material with good accuracy. In
fact, it has been successfully applied to a wide range of problems, especially within
elasto-plastic frameworks (Lubliner, 1990). Various extensions have been applied
to the original idea, introducing strain hardening and softening or so-called caps,
limiting the admissible pressure (Schanz et al., 1999). Matsuoka and Nakai (1974)
proposed a smoother version of the Mohr—Coulomb criterion, the Matsuoka—
Nakai (MN) failure criterion. It has gained a lot of popularity, as it improved
numerical stability as well as physical accuracy. All developments were merged
into modern constitutive models for quasi-static granular materials, such as the
hardening-soil-model (Schanz et al., 1999), Severn-Trent-sand (Gajo and Wood,
1999), SaniSand (Taiebat and Dafalias, 2008), Hypoplasticity (Kolymbas, 1991;
Von Wolffersdorff, 1996) or Barodesy (Kolymbas, 2012; Fellin and Ostermann,
2013; Medicus and Fellin, 2017).

All of the above models assume quasi-static conditions and describe the
stresses at failure. The respective extension to dynamic cases has been of interest
for a long time. Schaeffer (1987) was the first to combine the two-dimensional
Navier—Stokes Equations, with the quasi-static Mohr—Coulomb failure criterion.
His work assumed that the Mohr—Coulomb failure stress is valid beyond failure
and at any strain rate, an assumption which is consistent with ideal plasticity
(Lubliner, 1990), where failure criterion and yield criterion are coinciding. In this
sense we will use henceforth the term yield criterion when computing the stress
in a flowing material. Schaeffer’s theory matches Mohr—Coulomb only for plane
strain (i.e. two dimensional deformations) and incompressible flows, i.e. isochoric
shear. Although he found some problematic instabilities, his work was highly
influential in the granular flow community and his approach was applied for
both, plane strain and fully three-dimensional granular flows, first and foremost
in chemical engineering (van Wachem, 2000; Passalacqua and Fox, 2011).

Early models assumed that the magnitude of the stress tensor remains
constant after failure and independent of the shear rate. This assumption fails
to describe various phenomena from physical experiments, e.g. steady flows on
inclined planes or roll waves (GDR MiDi, 2004; Pouliquen et al., 2006; Johnson
and Gray, 2011; Edwards et al., 2017) and a large amount of research has been
attributed to describe the respective correlations. Most notable are the early
works of Bagnold (1954, 1966) and Voellmy (1955), both combining Coulomb’s
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friction law and an additional dynamic term. More recent developments have
been achieved with kinetic theory (Campbell, 1990; Goldhirsch, 2003) and
with the so-called u(I)-rheology, relating the dimensionless friction coefficient
i = sin(¢) to the dimensionless inertial number I (Pouliquen et al., 2006).

The first generally applicable p(I)-rheology was introduced by Jop et al.
(2006), basically following the approach of Schaeffer (1987) but with a shear
rate dependent yield criterion. The instabilities found by Schaeffer (1987) are
partially present in the model of Jop et al. (2006) and addressed, among others,
by Barker et al. (2015) and Barker and Gray (2017).

Although the success of respective models is impressive, we have to
contemplate that Schaeffer’s approach is limited to plane, incompressible
deformation, i.e. isochoric shear. If his relation is used for arbitrary three-
dimensional deformations, one gets what is commonly known as the Drucker—
Prager (DP) yield criterion in solid mechanics (Drucker and Prager, 1952). The
differences between Mohr-Coulomb and Drucker—Prager are well known (Chen
and Liu, 1990) and may be rather large, depending on the induced deformation
(Maiolino and Luong, 2009; Wojciechowski, 2018). This yields, for example,
remarkable errors in earth pressure calculations (Schweiger, 1994). Furthermore,
it has been revealed that the Mohr—Coulomb yield criterion is fulfilled in discrete
element simulations to a much better degree than the Drucker—Prager yield
criterion (Pahtz et al., 2019).

These circumstances lead to a big gap between Mohr—Coulomb models, and
the recent success of the p(I)-rheology. This gap is what we aim to close with
this work. We will extend the approach of Schaeffer (1987) and Jop et al. (2006)
to different yield criteria. This allows us to implement constitutive models
based on Mohr-Coulomb and Matsuoka—Nakai alongside the classic relation
of Schaeffer (1987) (i.e. Drucker—Prager) into the CFD-toolkit OpenFOAM®
(OpenCFD Ltd., 2004). We are comparing the three relations by inducing
three-dimensional deformations in granular flow simulations. We neglect the
shear rate dependence of stresses in this work to focus solely on the effect of the
yield criterion. However, the u(I)-scaling is perfectly compatible with all of the
presented yield criteria and can be easily reintroduced. To keep computational
demand to an acceptable level, we run axisymmetric cases, some of which have
been validated with physical experiments (Lube et al., 2004). We are able to draw
some conclusions and determine the circumstances for which the widely used
Drucker—Prager relation differs from the traditional Mohr—Coulomb relation.

.2 Method

The incompressible Navier—Stokes Equations are given as

V.u=0, (1.2)

d(pu)
at

+V-(pu@u) =V -T+pg=V-27D)-Vp+pg, (13)
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with velocity u, density p, stress tensor T = TV — pI, strain rate tensor! D,
pressure p = —1/3tr (T) and gravitational acceleration g. In the following, we
will assume that pore-pressure is negligibly small and hence that the pressure p
is equal to the effective pressure p’.

In order to combine granular rheologies with the Navier—Stokes Equations, it
is required to calculate the deviatoric stress tensor T9®V in terms of the known
strain rate tensor,

D =sym(Vu) = % (V u+ (Vv u)T) : (1.4)

and the dynamic viscosity? 7, or equivalently the kinematic viscosity v =n/p
(note the first term on the right-hand side of Eq. (I1.3)). Therefore, without
substantial modification of the underlying equations, all constitutive modelling is
reduced to the scalar viscosity. This introduces some severe limitations, namely
alignment between stress and strain rate tensor, which we will illuminate below.
The hydrostatic part of the stress tensor, —pI can not be established with a
constitutive relation in incompressible flow models (as tr(D) = 0) and is therefore
calculated from the constraint of the continuity equation (I.2) with e.g. the PISO
algorithm (Issa, 1986).

.2.1 A Tensorial Description of Deformation and Stress

The set of all stress tensors, at which yielding occurs forms a surface in stress
space, which we define as the yield surface (see Fig. 1.4). Admissible stress
tensors of static material are located within the yield surface and stress tensors
do not exist outside the yield surface (Lubliner, 1990). Vice-versa, a yield surface,
in addition with the so called flow rule, is sufficient to describe a perfectly plastic
material. As we will show later, the flow rule is required to determine the
location on the yield surface and thus the stress tensor.

Many yield surfaces are defined in terms of stress invariants and we will
shortly introduce the most important notations and relations. The first invariant
is the trace of a tensor,

Ii(A) =tr(A) = A1y + Agg + Asa, (L.5)
and the trace of the stress tensor is proportional to the pressure
I(T) = —3p. (1.6)
The second invariant is defined as

L(A) == (tr(A)* —tr (A?)), (1.7)

|

INote that the strain rate tensor is called streching tensor in soil mechanics.
2The most common symbol for the dynamic viscosity is . However, this symbol is reserved
for the friction coeflicient in granular flows and we will use 7 instead.
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and related to the norm of a tensor, which is defined here as®

Al = /5 r(a2), (1.8)

For the incompressible strain rate tensor we can thus write
L,(D) = -||D|1%, (L.9)
and the same is the case for the deviatoric stress tensor
I(T9%) = — |7 2. (1.10)
Finally, the third invariant is defined as
I3(A) = det(A), (I.11)

and is, in combination with the second invariant, related to the type of
deformation. The type of deformation can be described in terms of the Lode-angle
(Chen and Han, 2007), defined as

1 [ID) 3 \%?
0:§arcs1n< 32 (—IQ(D)> ) (L.12)

A physical interpretation of the Lode-angle is shown in Fig. I.1. Deformation
types can be reduced to three cases for incompressible flows: True triaxial
compression is defined by one negative and two positive principal strain rates
and characterized by a negative Lode-angle. Isochoric shear is the combination
of plane strain (one principal strain rate is zero) and incompressibility, the
Lode-angle in this case is zero. Finally, a positive Lode-angle indicates true
triaxial extension, which is defined by two negative and one positive principal
strain rates. Moreover, the two limiting cases shown in Fig. 1.3 are called triaxial
compression and extension. Note that in reality, deformation types are much
more complicated due to e.g. volumetric deformations.

The Lode-angle as defined by Eq. (I.12) is limited to the interval [—30°,30°],
respectively. For an interpretation in principal stress space as deviatoric polar
angle (Fig. 1.3), the Lode-angle is located in one of six equal sectors, depending
on the order of the principal stresses (Haigh—Westergaard coordinates, Chen and
Han, 2007). For isotropic constitutive models this plays no role and Eq. (I1.12)
can be used throughout all derivations.

The three invariants are sufficient to describe a tensor, except for its
orientation in space (i.e. solid body deformation). However, a rigid body
deformation is not relevant for isotropic constitutive models. This makes
invariants very convenient for defining yield criteria and constitutive models.

3Note that often the Frobenius norm is used instead, defined as |A| = 4/tr (A2) for
symmetric tensors.
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D1 <0,Dy=D3>0 Dy =0 D1 >0,Dy,=D3<0
triax. compression isochoric shear triax. extensions

Figure I.1: Deformation types and the respective Lode-angle. The red solid shows
the undeformed state, the blue solid shows the deformed state. Three deformation
types are compatible with incompressible flows: Triaxial compression, isochoric
shear and triaxial extension. True triaxial compression is a mix of triaxial
compression and isochoric shearing, true triaxial extension a mix of triaxial
extension and isochoric shearing with the respective range of Lode-angles.

.2.2 Stress Tensor Reconstruction

It is common to assume that the deviatoric stress and strain rate tensors are
co-axial, meaning that their eigenvectors are parallel (Schaeffer, 1987; Schranz
and Fellin, 2016; Barker et al., 2017),

T = \;D;, (1.13)

where T¢" and D; are the eigenvectors of the respective tensor. This holds
at least in steady, critical state (Schofield and Wroth, 1968) and allows for
visualisation of the principal stress and strain rate tensors in the same principal-
value-space, which is for example utilized in Fig. 1.2. However, this assumption
is not sufficient to determine the complete stress tensor.

A stricter assumption, which is sufficient to determine the complete stress
tensor is alignment between deviatoric stress and strain rate tensor (Jop et al.,
2006; Barker et al., 2017). Alignment of tensors implies co-axiality and an equal
ratio between eigenvalues. This can be expressed in terms of principal stresses
and strain rates as

[ T9| T _ | T5
Dy | |Da| D3|’

(L.14)

or more generally as

dev
ij

= locally constant. (I.15)
ij

This assumption is commonly applied in granular flows, among others by the
wu(I)-rheology (Jop et al., 2006). It allows for expression of the deviatoric stress
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tensor as the product of a scalar and the strain rate tensor and to establish a
relation compatible with the Navier—Stokes Equations,

T =29 D. (I1.16)

Note that the viscosity 7 is not constant and depends on the pressure and the
strain rate (we will additionally introduce a dependence on the Lode-angle).
Alignment is fundamental for many granular flow theories and its validity is
indicated by good experimental agreement (GDR MiDi, 2004; Jop et al., 2006).

The validity of alignment can also be checked with models that include
non-alignment between stress and strain tensor. We will use the constitutive
soil model Barodesy (Kolymbas, 2012; Medicus and Fellin, 2017) in here, as it
has shown to provide a realistic relation between the directions of stresses and
strain rates at critical state (Medicus et al., 2016). Note that the intrinsic non-
alignment of Barodesy makes it impossible to express it with a scalar viscosity,
making it incompatible with the Navier—Stokes Equations. The stress in critical
state follows from Barodesy as

3p
T-2® (L17)
with
a D

The only constitutive parameter « is usually expressed by the friction angle ¢
but in here used to match Barodesy to the Matsuoka—Nakai criterion,

2 Eyn — 1 — y/(kmn — 1) (kv — 9
o= \/jlog MN \/( MN ) (kv ) , (1.19)
3 kvn — 14+ v/ (kvn — 1) (kv — 9)
where kyin is the constitutive parameter of the Matsuoka—Nakai criterion, see
Eq. (1.34). Note that the factor v/2 in Eq. (I.18) is related to the definition of
the norm following Eq. (I.8).
Furthermore, plasticity theory allows us to classify the popular approach of
alignment in a broader context. The associated flow rule,
9f(T)

p— —_— 1.2
T (I.20)

states that the plastic strain rate tensor (in here simply D, as we assume ideal
plasticity) is oriented normal on the yield surface f(T). This relation follows the
principle of maximal plastic dissipation (Lubliner, 1990) but the yield surface
f(T) can be replaced with arbitrary plastic potentials f(T) in the flow rule
(Eq. (I.20)). In such a case one speaks of a non-associative flow rule. This
procedure is applied often, as this matches soil behaviour better (Lade and
Musante, 1978; Lade et al., 1987; Desrues et al., 2000).
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Inserting the definition for alignment (Eq. (1.16)) into the flow rule (Eq. (1.20))
yields
dev af(T)

2n =A oT ’

(L.21)

which necessarily leads to a von Mises type surface for the plastic potential,
F(T) = [T = kv = 0, (1.22)

with constant kyn. Conveniently, this flow rule is consistent with the continuity
equation (I.2). Note, that associated flow rules for Drucker—Prager, Mohr—
Coulomb and Matsuoka—Nakai predict volumetric strain, which is contradicting
with Eq. (I.2) and experimental observations in critical state. This gives three
methods to determine the direction of the stress tensor with respect to the
strain rate tensor: Associated flow rule given by Eq. (1.20) and von Mises
plastic potential (i.e. alignment), as well as sophisticated soil models, in here
Barodesy. All three approaches are presented and compared in Fig. 1.2 for
the Matsuoka—Nakai yield surface, as this matches Barodesy best (Fellin and
Ostermann, 2013). Results overlap in the deviatoric plane for triaxial extension
and compression but differ substantially for shear. The ad-hoc assumption
of alignment results in strain rate directions close to the associative flow rule
and Barodesy, two physically reasonable models. In particular, the alignment
assumption fits Barodesy and thus experimental behaviour, better than the
associated flow rule.

In the following we will apply a von Mises plastic potential, as this allows
simple implementation of various yield surfaces into the Navier—Stokes equations.
Moreover, this approach guarantees a well defined stress tensor for all relevant
yield surfaces and is compatible with incompressible flows.

.2.3 Yield Criteria

One of the simplest yield criteria, the von Mises yield surface, has been introduced
in Eq. (I.22). It represents basic plastic behaviour and is as such the basis for
visco-plastic rheologies like Bingham or Herschel-Bulkley (Gauer et al., 2006).
However, it only takes into account the second stress-invariant and is thus not
able to cover basic granular behaviour, i.e. pressure-dependent shear strength.

The Drucker—Prager yield criterion is the simplest criterion that takes the
frictional character of granular materials into account (Drucker and Prager,
1952). As such, it connects the pressure with the deviatoric part of the stress
tensor,

f(T) = sin(¢) p — [ T%V|| = 0, (1.23)

with the friction angle ¢. Note that this is a special parametrisation for a
cohesionless material in terms of the friction angle ¢, such that Drucker—Prager
and Mohr—Coulomb match for a Lode-angle 8 = 0, i.e. isochoric plane strain

38



Method

!

T2/D; T1/D,

y
T3/D3

Figure 1.2: Matsuoka—Nakai yield surface and the respective principal stresses
(black) in the deviatoric plane of principal stress/strain space. The strain
rates, which can create these stress states are shown as arrows, attached to the
respective stress states: Associated flow rule (green), Barodesy (orange) and von
Mises plastic potential (i.e. alignment, blue).

(Schaeffer, 1987). This yield surface allows us, in combination with the von Mises
flow rule or equivalently Eq. (I.16), to define the viscosity as

_sin(¢) p

= 31D (L.24)

It is also possible to model the friction coefficient © = sin(¢) as a function of the
inertial number I, which leads to the u(I)-rheology (Jop et al., 2006),

p(d)p

= SB[ (1.25)

This shows that the u(l)-rheology can be classified as a Drucker—Prager yield
surface with a von Mises plastic potential, within the framework of plasticity
theory.

The Mohr—Coulomb criterion additionally takes into account the deformation
type by incorporating both the major and minor principal stresses,

—sin(¢) = 0. (1.26)
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Figure 1.3: The yield surfaces in the deviatoric plane: Drucker—Prager (blue),
Mohr-Coulomb (orange) and Matsuoka—Nakai (green). The angle enclosed
with the horizontal axis is called Lode-angle and its values indicate the type of
deformation: triaxial extension (TXE), triaxial compression (TXC) and isochoric
shear (SHR). True triaxial extension (TTXE) and true triaxial compression
(TTXC) are mixes of respective limiting cases (TXE and TXC) and isochoric
shear (SHR).

This relation can be expressed in terms of the Lode-angle and other invariants
as (Chen and Han, 2007)

_ (sin(f)  cos(6)
1= (S5 -
and the viscosity follows as
_ sin(@)p V3
2[|D|| /3 cos(6) + sin(8) sin(¢)

Note that for § = 0, i.e. isochoric shear, Eq. (I1.28) reduces to Eq. (1.24).
The Matsuoka—Nakai criterion is similar to the Mohr—Coulomb criterion,
however with a continuous, smooth yield surface. It is defined as

) (T4 + %Il(T) ~0 (1.27)

(1.28)

f(T) = % — kyn = 0. (1.29)
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Figure 1.4: Yield surfaces in the three-dimensional principal stress space: von
Mises (a), Drucker—Prager (b), Mohr—Coulomb (c) and Matsuoka—Nakai (d).
The colour marks the Lode-angle 6.

o

Introducing Eq. (I1.16) into Eq. (1.29) leads to a viscosity that represents this
yield surface,

_ i 1
o 0) \/g sin() for —30° <6 <0,
2 -1
n o= a% for 0 < 6 < 30°, (1.30)
p 9 — kmn
for 6 = 0,
L2[|D||V 3 — kun

with
I2(D) (3 — kmn)
a= , 1.31
I3(D) kv (131)
9 — kEvn
h— — _MN 1.32
I5(D) kymn (1.32)
1 —3y/=3(4a3b+2702)
T=3 arctan ( o5 —37h . (1.33)

The first case in Eq. (I1.30) corresponds to true triaxial extension, the second
case to true triaxial compression and the last case to isochoric shear, where
I3(D) = 0. The constant kyn is usually chosen such that Matsuoka—Nakai
fits the Mohr—Coulomb criterion for triaxial extension and compression, i.e. for
0 = +30°. Alternatively, kyn can be chosen such that it fits Mohr—Coulomb
and Drucker—Prager for isochoric shear (6 = 0),

_ 9—3sin?(¢)

by = Ty (L.34)

This is more appropriate for granular flows, as we will show later. Note that all
three relations contain only a single constitutive parameter, the friction angle ¢.
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.2.4 Stationary Zones

As mentioned before, stresses lie only on the yield surface (in other words,
the yield criterion is fulfilled f(T) = 0), if the respective material is flowing.
Otherwise (e.g. in stable zones of the slide, levees and deposition) the stress has
to lie within the yield surface. However, this is not included in the presented
relations and the viscosity will reach a singularity in stationary zones where
|D|| = 0. To allow deviatoric stresses lower than the deviatoric stresses at yield,
we can limit the viscosity to a predefined upper threshold. This way we can
simulate quasi-stationary zones - zones with very high viscosity, that will deform
very slowly. The viscosity threshold should be chosen high enough such that
the deformation is negligible, but low enough to circumvent numerical problems.
However, we want to emphasize that this approach is an extreme simplification of
quasi-static granular material behaviour and results (e.g. stresses) in static zones
are questionable. An elasto-plastic model is more appropriate than the simple
visco-plastic model applied in here. The time step in numerical simulations is
chosen following the stability criterion (CFL condition) as given by Moukalled
et al. (2016). Note that the viscosity has to be taken into account in the
calculation of the CFL number and that without a limitation of the viscosity,
the time step would be very small. This method has been found to be sufficient
for the here presented cases.

.3 Element test

We want to consider three strain rate tensors, representing triaxial compression,
extension and isochoric shear as shown in Fig. I.1 and Tab. I.1. The viscosities
and stress tensors can be calculated explicitly in terms of the known relations
Egs. (1.24), (I.28) and (I1.30). The only parameter is the friction angle ¢, which
was set to 36.5°. Tab. 1.1 shows the respective stresses as absolute and relative
values in relation to the Drucker—Prager yield surface. All models predict
the same stresses for isochoric shear, since they have been calibrated for this
case. In comparison to Drucker—Prager, Matsuoka—Nakai and Mohr—Coulomb
predict higher deviatoric stresses for triaxial compression and lower deviatoric
stresses for triaxial extension, which can be seen in Fig. [.3 as well. The biggest
difference, of 44%, can be observed between Drucker—Prager and Mohr—Coulomb
for triaxial compression. To yield the high stresses of the Mohr—Coulomb model
with Drucker—Prager, a friction angle of 59° would be required, highlighting the
considerable discrepancy between models.

.4 Numerical experiments
For a practical application, the yielding criteria and the respective viscosity
models have been implemented into the CFD-toolkit OpenFOAM. OpenFOAM

provides a convenient interface for the implementation of custom viscosity models,
which can then be used within various solvers (Weller et al., 1998). We chose
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Table 1.1: Element test.

Strain Model | Stress
D,/|D| D,/|D| D./|D| 8 nID|| T /p relative |T|/p relative
T DP | 0.297 0.595 1 0.721 1
—1.155 0.577 0.577  —30° | MC | 0.428 0.857 1.44  0.949 1.32
Y : MN | 0.380 0.756 127 0.862 1.20
i DP | 0.297 0.595 1 0.721 1
—1 0 1 0° MC | 0.297 0.595 1 0.721 1
Yy : MN | 0.297 0.595 1 0.721 1
Ms DP | 0.297 0.595 1 0.721 1
mw . 1.155 —0.577  —0.577  30° MC | 0.287 0.573 0.96  0.703 0.98
Y MN | 0.264 0.528 0.89  0.667  0.925
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the solver multiphaselnterFoam which allows simulation of complex geometries
by tracking multiple phases with phase indicator functions. The first phase is
representing dry sand and applies the granular viscosity model and a density
of ps = 1430kg m—3, whereas the second phase represents air. Because of its
low viscosity (vn = 1.48 - 107> m?s™!) and density (p. = 1kgm™3), it has
neglectable influence on the granular phase. Tracking of the motion of the
interface is realized by transporting phase indicator functions as (sand) and a,
(air) with the velocity u, which is shared among all phases,

0 (07
ot

+u-Va; =0. (1.35)

With known phase indicator values «; (i beeing either s or a), the local density
p and viscosity n can be calculated as the mean of individual phase values, i.e.

p= Z @i Pi, (1.36)

This results in a simple model for granular flows with complex geometries
and large strain. We apply a friction angle of ¢ = 36.5° in all simulations,
similar to Savage et al. (2014). The viscosity is truncated to the interval
vs = [107°,10°] m? s~ 1.

The simplest and most common benchmarks for granular flow models are
two-dimensional column collapses, flows on inclined planes and flows down chutes.
However, they all lead to isochoric plane strain conditions and are therefore
inappropriate for our investigations. As shown with the simple element test,
all models will yield the same results in two-dimensional simulations. This
behaviour has been confirmed with back-calculations of the experiments by
Balmforth and Kerswell (2005). Results are not shown here as they basically
match previous results of e.g. Lagrée et al. (2011) and Savage et al. (2014). It
follows that for a meaningful comparison of the proposed rheologies, we need
to induce three-dimensional deformations. Axisymmetric simulations are an
obvious choice for such a task, as they enforce three-dimensional deformations
while keeping the computational expense comparable to a two-dimensional case.

.4.1 Cylindrical granular collapse

The simplest axisymmetric experiment is the collapse of a granular cylinder
(Fig. 1.5), which is presented in the following. Physical experiments of such have
been conducted by Lube et al. (2004). We choose to simulate two cases with
different aspect ratios, ho/ro = 1/2 and hg/ro = 2. The simulations with an
aspect ratio of 1/2 have been realized with a cylinder of height hy = 0.1 m and
radius rg = 0.2m. By exploiting the radial symmetry of the problem, we could
apply a two-dimensional wedge-shaped mesh (OpenCFD Ltd., 2004) with size
0.5m x 0.2m. The cell size was set to 1.67 mm and a mesh refinement study
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Figure 1.5: Cylindrical granular collapse: Only a small wedge with one cell across
the wedge thickness, as highlighted in the figure, is simulated. The geometry is
described by the aspect ratio rq/hg.

(cell sizes 2.5 mm, 1.67 mm, 1.25 mm) indicated that this resolution is sufficient
for all practical purposes, with relative errors of less than 1%. The simulation
duration was set to 0.5s, which was sufficient for the duration of the collapse of
about 0.35s. The strict stability criterion following Moukalled et al. (2016) and
the high viscosity leads to very small time steps of approximately 10~%s, which
is more restrictive than the traditional CFL type criterion.

Vertical sections of the granular pile at three different times and for all
rheologies are shown in Fig. [.6. In addition, the experimental result of Lube
et al. (2004) for an aspect ratio of 0.54 is shown, scaled to match the final pile
height h, and the final radius r~. Figure 1.7 highlights the Lode-angle 6 and

0.10 Jemnmransraradug:. . . == DR
= XN —= MC
g X3 —-= MN
w 0.05 & X Exp.

0.00 4 . . =

0.0 0.1 0.2 0.3
r(m)

Figure 1.6: Cylindrical granular collapse, aspect ratio 1/2, with various yield
surfaces at ¢ = 0.1s (dotted line), ¢ = 0.2s (dot-dashed line) and ¢t = 0.5s
(dashed line). The grid resolution is 1.67 mm. The colour marks the yield criteria
and the black crosses mark the experimental final pile shape (Lube et al., 2004).
Results are very similar, overlap almost entirely and differ by not more than 1%.

the strain rate ||DJ|, as resulting in the simulation with Matsuoka—Nakai yield
surface at t = 0.2s. These fields are widely similar in all three simulations and
thus not shown repetitively. The differences in stresses between Mohr—Coulomb,
Matsuoka—Nakai and Drucker—Prager are highlighted in Fig. 1.8. Stresses differ
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Figure I.7: Cylindrical granular collapse with the Matsuoka—Nakai yield criterion
at t = 0.2s. The grid resolution is 1.67 mm. The black line marks the free
surface of the granular pile, the colour displays the Lode-angle 6 (top) and the
strain rate ||D|| (bottom).

up to 40% and 25% for Mohr—Coulomb and Matsuoka—Nakai, respectively, which
corresponds approximately to the element test.

Aspect ratio 2 has been realized with a cylinder of height hg = 0.2m and
radius ro = 0.1m. The same meshing strategy as before has been applied,
however, with a computational domain of size 0.4m x 0.3 m. Vertical sections of
the granular pile are shown in Fig. 1.9, for three different times and all rheologies,
together with the experiment of Lube et al. (2004) for an aspect ratio of 1.81. The
Lode-angle 6 and the strain rate |D|| from the simulation with Matsuoka—Nakai
are shown in Fig. .10 for ¢t = 0.1s. The differences in stresses are highlighted
in Fig. [.11. Their maximum is similar as in the previous case.

.4.2 Ring granular collapse

Cylinder collapses show solely negative Lode-angles § = [—30°,0]. The full range
of the Lode-angle can be shown by the collapse of a ring, as shown in Fig. 1.12.
Similarly to a cylinder, a ring allows to take advantage of the axisymmetry
and only a vertical section has to be simulated. We choose an aspect ratio of
ho/ro = 1 and an inner radius r; = 2.5 hg. Taller rings or rings with smaller
inner radii collide at the centre, larger inner radii or smaller rings lead to lower
Lode-angles and less visible effect. Indeed, for r; — oo one approaches the
two-dimensional granular collapse. Vertical sections of the ring at three time
steps are shown in Fig. I.13. Figure 1.14 highlights the Lode-angle 6 and the
strain rate ||D||. The difference in stresses are highlighted in Fig. 1.15.
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Figure 1.8: Cylindrical granular collapse with the Matsuoka—Nakai (top) and
Mohr—Coulomb (bottom) yield criterion. The colour displays the ratio between
the respective criterion and Drucker—Prager.

.5 Discussion and conclusions

All conducted simulations show stable and smooth results. Mesh depended
instabilities, as predicted by Schaeffer (1987) and observed by others (Martin
et al., 2017; Gesenhues et al., 2019) do not show in any of our simulations. We
conclude that the applied meshes are too coarse to resolve the small scale features
that form the growing instabilities. We expect to see these instabilities in further
grid refinements and in such a case the constant friction coefficient u = sin(¢) in
Egs. (I.24), (1.28), and (1.30) should be replaced with the regularised relation of
Barker and Gray (2017). The modification of the yield criteria has no influence
on the ill-posedness in two dimensions and isochoric plane strain conditions.
Thus, all relations will be at least partially ill-posed in three dimensional cases
and the presented yield surfaces will be no replacement for the regularisation of
e.g. Barker and Gray (2017).

We choose to keep the constant friction coefficient in favour of simple equations
and parameters.

The presented cases share some characteristics, which allows some conclusions
on the general behaviour of investigated rheologies. Granular piles are collapsing
while most of the deformation is located in a shear-band that encloses an angle
of 35°-40° with the horizontal plane, roughly matching the friction angle of
the material. This corresponds to the failure mechanism as reported by Lube
et al. (2004). In fact, experiments of Lube et al. (2004) correspond reasonably
well to the numerical simulations, as shown in Figs. 1.6 and [.9. Material below
the shear band is mostly static, leading to a maximum pile inclination similar
to the friction angle, roughly matching theoretical predictions (Schranz and
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Figure 1.9: Cylindrical granular collapse, aspect ratio 2, with various yield
surfaces at ¢ = 0.1s (dotted line), ¢t = 0.2s (dot-dashed line) and ¢ = 0.5s
(dashed line). The colour marks the yield criteria and the black crosses mark
the experimental final pile shape (Lube et al., 2004). The grid resolution is
1.67 mm. The largest difference in geometry is about 5%. Matsuoka-Nakai and
Mohr-Coulomb overlap almost entirely while Drucker-Prager is visibly different.

Fellin, 2016). However, most regions are flatter due to the inertia of fast moving
material.

Stresses in compressive zones differ substantially between the Mohr—Coulomb
criterion and the Drucker—Prager criterion (up to 44%). Differences between the
Matsuoka—Nakai and the Drucker—Prager criterion are smaller (up to 28%) but
still relevant. However, the runout and the final shapes of the granular piles are
little affected by the high variation of stresses. The highest variation in the pile
shape is visible in the simulation of the high column with a difference of 5%. In
other cases, the difference stays well below 1%.

At first glance, it seems unreasonable that a considerable increase of
internal stresses does not affect the kinematics significantly. However, a closer
investigation reveals that shear-bands overlap with regions where the Lode-angle
is close to 0°. This is at least the case for the low collapses (see Figs. 1.16a
and 1.16b). A Lode-angle close to zero means that stresses have to be similar,
as yield surfaces intersect at this point (see Fig. 1.3). Regions of large strain
rates and a non-zero Lode-angle are basically limited to the tall cylinder (see
Fig. I.16¢), which also shows the highest differences in the kinematics. It is
reasonable to assume that these shear bands control the kinematics and runout
of the collapse. The dominance of these zones on the kinematic behaviour can
be further investigated by plotting a histogram of the dissipated energy in terms
of the Lode-angle, Fig. 1.17. All cases show a pronounced peak of dissipated
energy at a Lode-angle of 0°. In fact, in the two low cases, almost all the energy
is dissipated in the interval [—5°, 5°], leading to the similarities in kinematics.
The granular cylinder with high aspect ratio differs from this behaviour, as a
considerable amount of energy is dissipated during true triaxial compression.
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Figure 1.10: Cylindrical granular collapse with the Matsuoka—Nakai yield
criterion at t = 0.1s. The grid resolution is 1.67 mm. The black line marks the
free surface of the granular pile, the colour displays the Lode-angle 6 (top) and
the strain rate |D|| (bottom).

This explains the bigger difference in slide kinematics between models in this
case.

Finally we can estimate the effect of complex yielding criteria in real case
landslides and avalanches. This can be done by introducing the non-dimensional
variables, that are usually applied for landslide and avalanche models (Savage
and Hutter, 1989; Pudasaini and Hutter, 2007; Johnson and Gray, 2011), see
Fig. 1.18. These scaling laws are based on the assumption that the typical height
of the slide H is much smaller than the typical length L,

H
T "¢ < 1L (1.38)
The non-dimensional coordinates and velocities (marked with a hat) follow as
(xaya Z) - L(.’IA?, !?,82), (139)
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Figure I.11: Cylindrical granular collapse with the Matsuoka—Nakai (top) and
Mohr-Coulomb (bottom) yield criterion. The colour displays the ratio between

the respective criterion and Drucker—Prager.

(w,v,w) = (g L)"/? (4,0, e),

(.40)

where z, y are the slope-parallel coordinates (u, v the respective velocities) and
z the slope-normal coordinate (w the respective velocity). Assuming continuous
shearing along the whole flow depth (i.e. Bagnold-profile), the non-dimensional

strain-rate tensor follows as

A

Dyw Dyy D, Dyx Dy
D’y’y

and furthermore the second and third invariants as

5D) = 5 (£) BD),
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Figure 1.12: Ring granular collapse: Only a small wedge with one cell across the
wedge thickness is simulated. The geometry is defined by the height hg, radius
ro and inner radius r;.
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Figure I.13: Ring granular collapse with various yield surfaces (marked by colour)
at t = 0.1s (dotted line), t = 0.2s (dot-dashed line) and ¢t = 0.5s (dashed line).
The grid resolution is 1.67 mm. Results are very similar, overlap almost entirely
and differ by not more than 1%.

I5(D) = giz (%)3/ " L,(D). (1.43)

Introducing the dimensionless variables into the Lode-angle yields
1 33/2 L\ —3/2
6 = 3 arcsin <€ - I,(D) (—IQ(D)) ) , (L44)

showing that 6 is small since it contains ¢ and otherwise only dimensionless
variables. For small angles 6 we can make the approximation sin(f) ~ 6 and get

33/2 . N\ —3/2
~ e Iy(D) (~RMD) " < 1rad (L45)

This means that in shallow granular flows the Lode-angle is close to zero. The
cylinder with an aspect ratio of 1/2 and the ring are avalanching in a relatively
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Figure 1.14: Ring granular collapse with the Matsuoka—Nakai yield criterion at
t = 0.2s. The grid resolution is 1.67mm. The black line marks the free surface
of the granular pile, the colour displays the Lode-angle 6 (top) and the strain
rate | D|| (bottom).

thin layer on top (see Figs. 1.7 and 1.14) and the shallowness assumption holds.
The high cylinder on the other hand collapses completely and the shallowness
assumption cannot be applied. Therefore one has to expect a Lode-angle far
from zero and thus differences between yield criteria.

.6 Summary and outlook

Using the approach of Schaeffer (1987), almost arbitrary yield surfaces can
be expressed as non-Newtonian viscosities and thus implemented into the
incompressible Navier—Stokes Equations. We showed this by implementing
three yield surfaces into the open source toolkit OpenFOAM, namely Drucker—
Prager, Mohr—Coulomb and Matsuoka—Nakai. All three yield surfaces have
been calibrated for isochoric shear. This means that they are equal for two-
dimensional and similar for shear dominated flows. For other deformation types
differences of up to 44% in internal stresses have to be expected. Numerical
simulations of axisymmetric granular collapses revealed such deformation types
and the respective differences. Deformation in mobilised zones was mainly
characterized by shearing, in contrast to static zones, where triaxial compression
was dominant. However, static zones are irrelevant for the kinematics, leading to
a good agreement between yield surfaces in terms of runout. The only exception
was the tall granular collapse with aspect ratio 2, where triaxial compression
dominated the early stage of the rapid collapse.

A scaling analysis based on the shallowness assumption, H/L < 1 and a
Bagnold velocity profile, reveals that deformation in typical landslides and
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Figure 1.15: Ring granular collapse with the Matsuoka—Nakai (top) and Mohr—
Coulomb (bottom) yield criterion. The colour displays the ratio between the
respective criterion and Drucker—Prager.
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Figure I1.16: Shearbands with a shear rate higher than 1s™! (blue) and a Lode-
angle between —5° and 5° (red). Cylindrical collapse with hg/rg = 1/2 at
t =0.2s (a), ring collapse at t = 0.2s (b), cylindrical collapse with ho/ro = 2 at
t=10.2s (c).

avalanches will be dominated by shearing, indicated by small Lode-angles
0 < 1rad. However, in cases where the shallowness assumption does not hold,
predictions of dynamics and kinematics will be different for the presented models.
This is especially the case when dealing with obstacles, as the shear dominated
flow pattern will be disturbed. Zones of triaxial compression and extension
will emerge and deviatoric stresses will vary, leading to further flow pattern
changes and possibly highly varying forces on the obstacles. There is strong
evidence that Mohr—Coulomb and Matsuoka—Nakai might be the better choice
here (Schweiger, 1994; Maiolino and Luong, 2009; Wojciechowski, 2018; Pahtz
et al., 2019). However, a final conclusion can only be drawn with experiments and
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Figure 1.18: Typical height H and length L of a landslide as used in the scaling
analysis of Savage and Hutter (1989).

respective simulations. The extension of a Drucker—Prager yield criterion to a
Mohr—Coulomb yield criterion is straight-forward and can be done by adding an
additional factor, solely depending on the Lode-angle and the friction angle (see
Eq. (I.28)). For the calculation of the runout and especially in depth-integrated
models with complex rheologies (e.g. Baker et al., 2016), the simpler Drucker—
Prager model should be sufficient. The here presented methodology can be
combined with the popular p(/)-rheology by introducing the velocity depended
friction coefficient into the yield surfaces, sin (¢) = u(7). Finally we want to

note that all statements in this paper are limited to incompressible flows. In

compressible flows, even two-dimensional deformations might be characterised
with a Lode-angle unequal zero, making the here found similarities invalid.
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Abstract

The incompressible p(I)-rheology has been used to study subaerial granular
flows with remarkable success. For subaquatic granular flows, drag between
grains and the pore fluid is substantially higher and the physical behaviour
is more complex. High drag forces constrain the rearrangement of grains
and dilatancy, leading to a considerable build-up of pore pressure. Its
transient and dynamic description is the key to modelling subaquatic
granular flows but out of the scope of incompressible models. In this work,
we advance from the incompressible p([)-rheology to the compressible
w(J),é(J)-rheology to account for pore pressure, dilatancy, and the scaling
laws under subaquatic conditions. The model is supplemented with critical
state theory to yield the correct properties in the quasi-static limit. The
pore fluid is described by an additional set of conservation equations
and the interaction with grains is described by a drag model. This
new implementation enables us to include most of the physical processes
relevant for submerged granular flows in a highly transparent manner.
Both, the incompressible and compressible rheologies are implemented into
OpenFOAM and various simulations at low and high Stokes numbers
are conducted with both frameworks. We found a good agreement
of the u(J),4(J)-rheology with low Stokes number experiments, that
incompressible models fail to describe. The combination of granular
rheology, pore pressure, and drag model leads to complex phenomena such
as apparent cohesion, remoulding, hydroplaning, and turbidity currents.
The simulations give remarkable insights into these phenomena and increase
our understanding of subaquatic mass transports.
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[I. The compressible granular collapse in a fluid as a continuum: validity of a
Navier—Stokes model with p(J),4(J)-rheology

II.1 Introduction

Avalanches and landslides, as well as many industrial processes can be classified
as granular flows. Substantially improved rheological formulations have given
rise to numerous attempts to simulate these phenomena with Navier—Stokes
type models. The vast amount of studies relies on the p(I)-rheology and its
derivatives. The core of the p([)-rheology is the Drucker—Prager yield criterion
(Drucker and Prager, 1952; Rauter et al., 2020) and the recognition that the
friction coefficient p is solely a function of the inertial number I (GDR MiDi,
2004; Jop et al., 2006). Further studies found a similar correlation between the
inertial number and the packing density ¢ (Forterre and Pouliquen, 2008).

A similar scaling was found in granular flows with low Stokes numbers St
(see Eq. (I1.31)). The Stokes number is related to the ratio between inertia and
drag force on a particle and thus describes the influence of ambient fluid on the
granular flow dynamics (e.g. Finlay, 2001). Small Stokes numbers indicate a
strong influence of the pore fluid on the particles, and hence also on the landslide
dynamics. In this regime, the viscous number J replaces the inertial number
I as a control parameter for the friction coefficient y and the packing density
¢, forming the so-called u(J),p(J)-rheology (Boyer et al., 2011). Furthermore,
excess pore pressure can be remarkably high under these conditions and it is
imperative to explicitly consider it in numerical simulations. High drag forces
and respectively small Stokes numbers are usually related to small particles.
They are virtually omnipresent in geophysical flows: submarine landslides (Kim
et al., 2019), turbidity currents (Heerema et al., 2020), powder snow avalanches
(Sovilla et al., 2015), and pyroclastic flows (Druitt, 1998) can be dominated by
fine grained components. It follows that a large portion of gravitational mass
flows occurs at low Stokes numbers and a deeper understanding of the respective
processes is relevant for many researchers.

Incompressible granular flow models have been applied in different forms to
various problems in the last decade. Lagrée et al. (2011) were the first to conduct
numerical simulations of subaerial granular collapses with the p(7)-rheology and
the finite volume method. Staron et al. (2012) used the same method to simulate
silo outflows, and Domnik et al. (2013) used a constant friction coefficient to
simulate granular flows on inclined plates. von Boetticher et al. (2016, 2017)
applied a similar model, based on OpenFOAM, to debris flows and many more
examples can be found in the literature. More recently, compressible flow
models have been introduced to simulate subaquatic granular flows at low Stokes
numbers. The applied methods include, e.g., smoothed particle hydrodynamics
(Wang et al., 2017), coupled lattice Boltzmann and discrete element method
(Yang et al., 2017), the material point method (Baumgarten and Kamrin, 2019)
or the finite volume multiphase framework of OpenFOAM (Si et al., 2018a).
Results have often been compared to experiments of Balmforth and Kerswell
(2005) (subaerial) and Rondon et al. (2011) (subaquatic), two works that gained
benchmark character in the granular flow community.

Most of the mentioned applications rely on standard methods from
computational fluid dynamics (CFD). This is reasonable, considering the
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similarity between the hydrodynamic (Navier—-Stokes) equations and the granular
flow equations. However, the pressure dependent and shear thinning viscosity
associated with granular flows introduces considerable conceptual and numerical
problems. The unconditional ill-posedness of an incompressible granular flow
model with constant friction coefficient was described by Schaeffer (1987) and
the partial ill-posedness of the p(I)-rheology by Barker et al. (2015). By carefully
tuning the respective relations, Barker and Gray (2017) were able to regularize
the p(I)-rheology for all but very high inertia numbers. Barker et al. (2017)
described a well-posed compressible rheology, incorporating the j(1)-rheology as
a special case.

Another pitfall of granular rheologies is the concept of effective pressure.
When pore pressure is considerably high (i.e. at low Stokes numbers), it is
imperative to distinguish between effective pressure and total pressure (first
described by Terzaghi, 1925). Effective pressure represents normal forces in the
grain skeleton that have a stabilizing effect, in contrast to pore pressure which
has no stabilizing effect. This has shown to be a major issue, as pore pressure
and consequently the effective pressure, react very sensitively to the packing
density and dilatancy (Rondon et al., 2011).

Besides the rheology, tracking of the slide geometry poses a major challenge.
Surface tracking is usually implemented in terms of the algebraic volume-of-fluid
(VOF) method (e.g. Lagrée et al., 2011; Si et al., 2018a), the level-set method
(e.g. Savage et al., 2014), geometric surface tracking methods (e.g. Roenby et al.,
2016; Mari¢ et al., 2018), or particles based methods (e.g. Baumgarten and
Kamrin, 2019; Wang et al., 2017).

The volume-of-fluid method, which is also used in this work, allows to track
the slide as a single component but also as a mixture of multiple phases (grains
and pore fluid). Components are defined in here as objects (e.g. the landslide)
that completely cover a bounded region in space without mixing with other
components (e.g. the ambient fluid), see Fig. I1.3. The tracking becomes a purely
geometric problem (see e.g. Roenby et al., 2016, for a geometric interpretation).
In contrast, phases (e.g. grains) are dispersed and mixed with other phases
(e.g. pore fluid) to represent the dynamic bulk of the landslide, see Fig. II.1.

The component-wise tracking is used in various landslide models (e.g. Lagrée
et al., 2011; Domnik et al., 2013; Barker and Gray, 2017). Components, i.e. the
slide and the surrounding fluid, are immiscible and separated by a sharp interface.
Usually, this also implies that the model is incompressible. The phase-wise
tracking is commonly applied in chemical engineering (Gidaspow, 1994; van
Wachem, 2000; Passalacqua and Fox, 2011) and has lately been introduced to
environmental engineering (e.g. Cheng et al., 2017; Chauchat et al., 2017; Si
et al., 2018a). This approach allows to describe a variable mixture of grains and
pore fluid that merges smoothly into the ambient fluid. The description of the
pore fluid as an individual phase enables the model to decouple effective pressure
from pore pressure, which is imperative in many flow configurations, e.g. for low
Stokes numbers.

In this work, a two-component and a two-phase Navier—Stokes type model
are applied to granular flows. Both models are implemented into the open-source
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toolkit OpenFOAM (Weller et al., 1998; Rusche, 2002; OpenCFD Ltd., 2004),
using the volume-of-fluid method for component- and phase-wise tracking (see
section I1.2). Subaerial (Balmforth and Kerswell, 2005) and subaquatic granular
collapses (Rondon et al., 2011) are simulated with both models and results are
compared to the respective experiments and with each other.

We apply the u(I),¢(I)-rheology to subaerial cases (St Z 1) and the
w(J),0(J)-rheology to subaquatic cases (St < 1). The two-component model
applies simplified rheologies in form of the incompressible u(I)- and pu(J)-
rheologies. The ¢(I)- and ¢(J)-curves are merged into the particle pressure
relation of Johnson and Jackson (1987) to achieve the correct quasi-static limits
(Vescovi et al., 2013). This yields reasonable values for the packing density at
rest which is imperative for granular collapses with static regions. In contrast to
many previous works (e.g. Savage et al., 2014; von Boetticher et al., 2017; Si et al.,
2018a), we renounce additional contributions to shear strength (e.g. cohesion)
because we do not see any physical justification (e.g. electrostatic forces, capillary
forces, cementing) in the investigated cases. We apply a very transparent
and simple model, focusing on the relevant physical processes and achieve a
remarkable accuracy, especially in comparison to more complex models (e.g. Si
et al., 2018a; Baumgarten and Kamrin, 2019). Further, it is shown that various
experimental setups with different initial packing densities can be simulated with
the same constitutive parameters, whereas many previous attempts required
individual parameters for different cases (e.g. Savage et al., 2014; Wang et al.,
2017; Si et al., 2018a).

The paper is organised as follows: The multi-phase (section II.2.1) and multi-
component (section I1.2.2) models are introduced in section I1.2, including models
for granular viscosity (section 11.2.3), granular particle pressure (sections I1.2.4
and I1.2.5) and drag (section I1.2.6). Results are shown and discussed in
section II.3 for a subaerial case and in section I1.4 for two subaquatic cases.
A conclusion is drawn in section I1.5 and a summary is given in section IL.6.
Furthermore, a thorough sensitivity analysis is provided in the appendix.

1.2 Methods

I.2.1 Two-phase landslide-model

The two-phase model is based on the phase momentum and mass conservation
equations (see e.g. Rusche, 2002). The governing equations for the continuous
fluid phase are given as

O0oe B
% LV (dem) =0 ()
Debete 4 G- (pepene ®u) = V- (6 T0) ~ 6V +
Pc pe g + kge (ug —uc). (I1.2)
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and for the grains as

0
s 1V - (65g) = 0 (13)
0 u
gbga’;g 2+ V- (Pgpgug®@ug) =V - (pgTy) = Vp,— 0, Vp+
Py Pg 8+ kige (U — ug) (IL.4)
Phase-fraction fields ¢, and ¢, i.e. the phase volume over the total volume
Vi
¢ =7 (IL5)

describe the composition of the grain-fluid mixture, see Fig. II.1 (the index i
indicates either c¢ or g). The granular phase-fraction is identical with the packing
density ¢ = ¢,. Phase-fractions take values between zero and one and the
sum of all phase-fractions yields one. The pore fluid is assumed to match the
surrounding fluid and the respective phase-fraction ¢. is therefore one outside
the slide. This way, phase-fraction fields provide not only a mechanism to track
the packing density of the slide, but also its geometry. Every phase moves with
a unique velocity field u;, which is not divergence-free. This allows the mixture
to change, yielding a variable packing density and thus bulk-compressibility,
although phase densities p, and p. are constant. The volume weighted average
velocity is divergence free,

V. a=V.(¢sus +ocuc) =0, (I1.6)

which allows to use numerical methods for incompressible flow.

The pore pressure (or shared pressure) p is acting on all phases equally, while
the grain phase experiences additional pressure due to force chains between
particles, the so called effective pressure (or particle pressure) ps, see Fig. I1.2.
The effective pressure is a function of the packing density in this model and
the balance between effective pressure and external pressure (e.g. overburden
pressure) ensures realistic packing densities. The total pressure can be assembled
as

DPtot = P + Ds- (H-7)

The deviatoric phase stress tensors are expressed as
with phase viscosity v;, phase density p; and deviatoric phase strain rate tensor
1 1
Si =3 (Vui + (Vui)T) ~sV-ul (1L.9)

The viscosity of the pore fluid v, is usually constant and the granular viscosity
Vg is following from constitutive models like the i(1)-rheology (see section I1.2.3).
The total deviatoric stress tensor can be calculated as

T = ¢e Te + ¢, Ty. (IL.10)
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The last terms in Eqgs. (I1.2) and (I1.4) represent drag forces between phases
and kg is the drag coefficient of the grains in the pore fluid. Lift and virtual
mass forces are neglected in this work, because they play a minor role (Si et al.,
2018a).

The granular viscosity v, the effective pressure ps, and the drag coefficient
kg represent interfaces to exchangeable sub-models, presented in sections II.2.3-
11.2.6.

fluid

granule/fluid mixture

Figure II.1: Definition of phase-fractions ¢; and phase velocities u; in and outside
a dense granular avalanche for the two-phase model. Phase velocities can differ,
allowing phase-fractions to change, giving the avalanche compressible properties.

I.2.2 Two-component landslide-model

Many two-phase systems can be substantially simplified by assuming that phases
move together, i.e. that phase velocities are equal,

U X U= ¢gUg + Pc Ue. (I1.11)

This fits very well to completely separated phases that are divided by a sharp
interface (e.g. surface waves in water, Rauter et al., 2021) but also systems of
mixed phases (e.g. grains and fluid) can be handled to some extent (e.g. Lagrée
et al., 2011). The phase momentum conservation equations (II.2) and (II.4) can
be combined into a single momentum conservation equation and the system takes
the form of the ordinary Navier—Stokes Equations with variable fluid properties
(see e.g. Rusche, 2002),

opu

5 TV (pUeW =V T —Vpe +p8g, (IL.12)

V.u=0. (11.13)
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Figure 11.2: Representative volume element of a grain-fluid mixture. The effective
pressure ps (red arrows) represents normal forces in the grain skeleton (black
arrows). The pore-pressure (blue arrows) represents pressure that is equally
shared by pore fluid and grains.

A detailed derivation can be found in appendix I1.7. The pressure is denoted as
Prot, indicating that it contains contributions from hydrodynamic and effective
pressure.

The phase-fraction fields ¢; cannot be recovered after this simplification
and the method switches to the tracking of components instead of phases, see
Fig. I1.3. Components are tracked with so-called component indicator functions
a; (sometimes called phase indicator functions but in here we consequently
distinguish phases from components), being either one if component i is present
at the respective location or zero otherwise,

i (I1.14)
0 otherwise

o {1 if component i is present
;=

Values between zero and one are not intended by this method and only appear
due to numerical reasons, i.e. the discretisation of the discontinuous field (see
section I1.2.7). In here, two component indicator functions are used, one for the
ambient fluid component, a., and one for the slide component, oy (see Fig. 11.3).
Evolution equations for component indicator functions can be derived from mass
conservation equations as

8041-
ot

+V - (1) = 0. (11.15)

The definition of components is straight forward for completely separated
phases, where components can be matched with phases, e.g. water and air. The
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definition of the slide component, on the other hand, is not unambiguous, as it
consists of a variable mixture of grains and pore fluid. A boundary of the slide
component can, for example, be found by defining a limit for the packing density
(e.g. 50% of the average packing density). Further, a constant reference packing
density ¢ has to be determined, which is assigned to the whole slide component.
The density of the slide component follows as

ps = 0ps + (1= 0)pe, (I1.16)

and a similar relation can be established for the deviatoric stress tensor (see
section 11.2.3.1).
The local density p and the local deviatoric stress tensor T can be calculated

as
p= Z Qi Pi = Qs Ps + Qe pe (I1.17)
T=> a;T; =asTs+ a. T, (I1.18)

using component densities p;, as well as component deviatoric stress tensors T;.
Component deviatoric stress tensors are calculated as

with the component viscosity v; and the deviatoric shear rate tensor S. Note
that the deviatoric shear rate tensor S matches the shear rate tensor D, because
the volume weighted averaged velocity field is divergence free,

S=D= % (Vﬁ+ (Vﬁ)T) . (I1.20)

The viscosity of the ambient fluid v, is usually constant and the viscosity of the
slide region vy is following from granular rheology, see section I1.2.3.

.2.3 Rheology
1.2.3.1 Unifying rheologies

Most granular rheologies (e.g. the p(I)-rheology) are defined in terms of the total
deviatoric stress tensor in the slide component Tg. This has to be accounted for
and corrected in the two-phase model if the same viscosity model is used in both
models. Similar to Eq. (I1.16), component viscosities can be related to phase
viscosities as

Ty =¢Ty+ (1 —¢) T, (I1.21)
2 ps VsSg = 2$pg Vg Sg +2(1 — @)pe Ve Se. (11.22)

The contribution of the granular phase to stresses is assumed to be much higher
than the contribution of the pore fluid, ¢py Vs Sg > (1 — ¢)pc Ve Sc. Further,
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sharp interface
(as = a: =0.5)

. ambient component
slide component p

Figure I1.3: Definition of component indicator functions a; and the velocity @
in and outside a dense granular avalanche for the two-component model.

by neglecting the mass of the pore fluid, ps ~ ¢ pg, it follows that kinematic
viscosities have to be similar in both models,

Vs R V. (I1.23)

Alternatively, one can match the dynamic viscosities vs ps and vg pg if the
factor ¢, is removed from the viscous term in Eq. (IL.4). Note, that this
assumptions are fairly accurate for subaerial granular flows but questionable for
subaquatic granular flows. However, multi-phase and multi-component models
differ substantially under subaquatic conditions and a unification is not possible.

1.2.3.2 Drucker—Prager plasticity model

An important characteristic of granular materials is the pressure dependent shear
stress, described by the Drucker—Prager yield criterion (Drucker and Prager,
1952). Schaeffer (1987) was the first to include granular friction in the Navier—
Stokes equations by expressing the Drucker—Prager yield criterion in terms of
the shear rate tensor and the pressure,

S
T, = pps —, (I1.24)
S]]
where the norm of a tensor ||A[ is defined as
1
A = itr (A2?). (I1.25)

The friction coefficient p is constant and a material parameter in the first model
by Schaeffer (1987). The slide component viscosity follows as

b — |Ts || —u Ds
2 ps ||| 2 ps||S|

(11.26)
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This relation has been applied with slight modifications by e.g. Domnik et al.
(2013), Savage et al. (2014) or Rauter et al. (2020). Following the findings in
section I1.2.3.1, the kinematic viscosity of slide and grains have to be similar
and the granular phase viscosity follows as

Tl Ds
g = Y .
2 ps ||Sgl| 2pg0[|Sg||

(11.27)

The viscosity reaches very high values for ||S|| — 0 and very small values for
ps — 0 and both limits can lead to numerical problems. To overcome numerically
unstable behaviour the viscosity is truncated to an interval [Vpin, Vmax]- A
thoughtful choice of 1.« is crucial for the presented method. Small values tend
towards unphysical results, because solid-like behaviour can only be simulated
by very high viscosities. Big values, on the other hand, tend towards numerical
instabilities (see section I1.2.7.3). The ideal value for the maximum viscosity
depends on the respective case and can be estimated with a scaling and sensitivity
analysis (see appendix 11.8.1). The relation

1
Vmax = 77 V |g| Hg, (1128)

10

where H is the characteristic height of the investigated case, was found to give a
good estimate for a reasonable viscosity cut-off. Notably, the Drucker—Prager
yield surface leads to an ill-posed model (Schaeffer, 1987) and the truncation of
the viscosity is not sufficient for a regularization.

Schaeffer (1987) did not distinguish between effective and total pressure in
Eq. (I1.26), limiting the applications of his model substantially. We will explicitly
consider effective pressure in Eqs. (I1.26) and (I1.27) using Eq. (I1.34) or (11.36)
in the two-component model and Eq. (I1.37), (I1.40), or (I1.43) in the two-phase
model to avoid such limitations.

1.2.3.3 u(I)-rheology

The p(I)-rheology (GDR MiDi, 2004; Jop et al., 2006; Forterre and Pouliquen,
2008) states that the friction coefficient u is not constant in dense, dry, granular
flows but rather a function of the inertial number I. The inertial number I is
defined as the ratio between the typical time scale for microscopic rearrangements
of grains with diameter d, tmicro = d/pg/Ps, and the macroscopic time scale of
the deformation, tyaco = 1/2|S||71,

I1=2d|s| %, (IL.29)

S

In the two-phase model, the shear rate S is replaced with the deviatoric shear
rate of grains S,. Various approaches have been proposed for the p(I)-curve, in
here we apply the classic relation, given as

I
Iy +1’

u(I) = gy + (p2 — 1) (11.30)
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where p1, e and Iy are material parameters (Jop et al., 2006). The dynamic
friction coefficient p(7) is introduced into the Drucker—Prager yield criterion,
Egs. (I1.26) or (I1.27) to get the respective granular viscosity.

11.2.3.4 u(J)-rheology

At small Stokes numbers, defined as

St = 242 ||8|| 2=, (IL.31)
VC pC

the pore fluid has substantial influence on the rheology and the microscopic
time scale is defined by the viscous scaling ticro = Ve pe/ps (Boyer et al., 2011).
The friction coefficient is thus no longer a function of the inertial number I but
rather of the viscous number J, defined as

J = 2|82 (I1.32)

S

The functional relation of the friction coeflicient on the viscous number was
described by Boyer et al. (2011) as

J 5
() = pa + (p2 — pa) Jo+J+J+2¢m\/j’ (IL.33)
where py, po, Jo and ¢y, are material parameters (Boyer et al., 2011). The
wu(J)-rheology is taking advantage of the Drucker—Prager yield criterion, similar
to the p(I)-rheology.

Notably, the u(7) and p(J)-rheology can be combined by forming a new
dimensionless number K = J + o I? with a constitutive parameter a (Trulsson
et al., 2012; Baumgarten and Kamrin, 2019). However, this was not required for
the cases presented in this work.

I.2.4 Effective pressure in the two-component model
1.2.4.1 Total pressure assumption

The two-component model is limited in considering pore pressure and dilatancy
effects because the packing density is not described by this model. The
effective pressure can only be reconstructed from total pressure pio; and various
assumptions. The simplest model assumes that the pore pressure is negligibly
small, leading to

Ps = Ptot- (1134)

This assumption is reasonable for subaerial granular flows and has been applied
to such by e.g. Lagrée et al. (2011) or Savage et al. (2014).
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1.2.4.2 Hydrostatic pressure assumption

In subaquatic granular flows, the surrounding high-density fluid increases the
total pressure substantially and it cannot be neglected. Following Savage et al.
(2014), improvement can be achieved by calculating the hydrostatic pore pressure
as

e (x— f (x — 0,
phs — p g (X XO) or g . (X XO) > (1135)
0 otherwise,
and subtracting it from the total pressure,
Ps = Ptot — Phs- (1136)

Here, xq is the position of the free water surface, where the total pressure
is supposed to be zero. For a variable and non-horizontal free water surface,
common in e.g. landslide-tsunamis, this concept is complicated substantially,
and to the authors knowledge, not applied. Furthermore, excess pore pressure,
which is common in low Stokes number flows, is out of the scope for this model.

I.2.5 Effective pressure in the two-phase model
1.2.5.1 Critical state theory

The structure of the two-phase model allows us to include the packing density
in the effective pressure equation. Critical state theory (Roscoe et al., 1958;
Roscoe, 1970; Schofield and Wroth, 1968) was the first model to describe the
relationship between the effective pressure and the packing density. The critical
state is defined as a state of constant packing density and constant shear stress,
which is reached after a certain amount of shearing of an initially dense or
loose sample. The packing density in this state, called critical packing density
Ocrit, is a function of the effective pressure ps. This function can be inverted
to get the effective pressure as a function of the critical packing density. It is
further assumed that the flow is in its critical state ¢y = @crir to get a model
that is compatible with the governing equations. This assumption is reasonable
for avalanches, slides, and other granular flows but questionable for the initial
release and deposition. At small deformations, the packing density might be
lower (underconsolidated) or higher (overconsolidated) than the critical packing
density and the effective pressure model will over- or underestimate the effective
pressure.

A popular relation for the effective pressure (the so-called critical state line)
has been described by Johnson and Jackson (1987); Johnson et al. (1990) as

pe=al5— 0 (11.37)

¢r0p - ¢g ’

where ¢,1,, is the random loose packing density in critical state, ¢y, the random
close packing density in critical state and a a scaling parameter. The scaling
parameter a can be interpreted as the effective pressure at the packing density
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L (¢rep + du1p). Note that we apply a simplified version of the original relation,
2 p p

similar to Vescovi et al. (2013). Packing densities above ¢, are not valid and
avoided by the asymptote of the effective pressure at ¢.cp. If packing densities
higher or equal ¢,., appear in simulations, they should be terminated and
restarted with refined numerical parameters (e.g. time step duration).

I1.2.5.2 ¢(I)-relation

Equation (I1.37) is known to hold for slow deformations in critical state (see e.g.
Vescovi et al., 2013). However, this relation is not consistent with granular flow
experiments. Granular flows show dilatancy with increasing shear rate, expressed
by e.g. Forterre and Pouliquen (2008) as a function of the inertia number I,

¢g(I) = ¢max - A¢ Ia (1138)

where ¢max and A¢ are material parameters. This relation can be transformed
into a model for the effective pressure by introducing the inertial number I,

¢max

This relation has two substantial problems: For ||Sy|| = 0 it yields ps = 0 and for
¢ = 0 it yields ps # 0, which causes numerical problems and unrealistic results.
The first problem is addressed by superposing Eq. (I1.39) with the quasi-static
relation (I1.37), similar to Vescovi et al. (2013). The second problem is solved by
multiplying Eq. (I1.39) with the normalized packing density ¢/, which ensures
that the pressure vanishes for ¢, = 0. The normalization with the reference
packing density ¢ ensures that parameters (Gmax, A¢) will be similar to the
original equation. Further, to reduce the number of material parameters, we set
the maximum packing density in the ¢(I)-relation equal to the random close
packing density ¢,.,. The final relation reads

A 2
Ds = Ps (QHSng ¢ 3 ) (11.39)
g

_ e qbg( Ag )2
po=a St B (25 =0 (1L40)
and is shown in Fig. I1.4 alongside the original relations of Johnson and Jackson
(1987) and Forterre and Pouliquen (2008). Interestingly, this relation contains
many features of the extended kinetic theory of Vescovi et al. (2013) (compare
Fig. I1.4b with Fig. 6b in Vescovi et al. (2013)). Notably, the inertial number
is a function of only the packing density and the shear rate, I = f (¢g, ||Sg||),
because the effective pressure is calculated as function of the packing density.
The same follows for the friction coefficient 1 = f (g, ||Sg||) and the deviatoric
stress tensor ||Tg|| = f (¢g, ||Se||). This highlights that the two-phase model
implements a density-dependent rheology, rather than a pressure-dependent
rheology.

It should be noted that there are various possibilities to combine critical
state theory and the u(I),¢(I)-rheology. An alternative approach including bulk
viscosity is provided by e.g. Schaeffer et al. (2019).
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Figure I1.4: Left: Effective pressure pg following the ¢(I)-relation as a function
of packing density ¢, and deviatoric shear rate ||Sg||. The dashed lines show the
original relation of Forterre and Pouliquen (2008), the continuous coloured lines
show the modified relation and the black line the quasi-static limit following
Johnson and Jackson (1987). Right: The critical packing density as a function
of particle pressure ps and deviatoric shear rate ||Sg||. Dashed lines are following
the original ¢(I)-relation, continuous lines the modified version. The critical
state theory would result in horizontal lines in this plot.

1.2.5.3 ¢(J)-relation

The low Stokes number regime requires the replacement of the inertial number
I with the viscous number J. The dependence of the packing density on the
viscous number was described by Boyer et al. (2011) as

Pm

g = T (I1.41)

and we can derive the effective pressure by inserting the viscous number as

_ 2vcpe IS4

2
Pm
(% -1)

Notably, Boyer et al. (2011) emphasised that ¢y, is not matching the random
close packing density ¢..,, = 0.63 but rather a value close to 0.585. This leads
to substantial problems for large values of ¢, as the relation is only valid for
¢g < dm = 0.585 or ||Sg|| = 0. In other words, shearing is only possible for
®g < om. We solve this issue by allowing a creeping shear rate of Sy at packing
densities above ¢,,. Further and as before, we superpose the relation with
the quasi-static relation of Johnson and Jackson (1987) to yield the correct
asymptotic values for ||Sy|| — 0 known from critical state theory. The final
relation reads

(11.42)

S

- %r 2 c Mc S
pszazg _qﬁqu 4 2erel g2||7 (IL.43)
rcp Iy (fﬁ_m_l)
g
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Figure I1.5: Left: Particle pressure ps following the ¢(J)-relation as a function
of packing density ¢, and deviatoric shear rate ||Sg|. The dashed lines show
the original relation of Boyer et al. (2011), the continuous coloured lines show
the modified relation and the black line the static limit expressed following
Johnson and Jackson (1987). Right: The critical packing density as a function
of particle pressure ps and deviatoric shear rate ||Sg||. Dashed lines are following
the original ¢(J)-relation, continuous lines the modified version. The grey area
shows the region where only creeping shear rates below Sy are allowed.

with
A {¢m+<¢mp—¢m> (So = IISI) for So > S|, (11.44)

Pm = ®m else.

The respective relation is shown in Fig. I1.5 alongside the original relations of
Johnson and Jackson (1987) and Boyer et al. (2011). States with ||S|| > Sp and
Gg > Gm OT Qg > Grep are not intended by this model and simulations should be
terminated if such states appear.

I.2.6 Drag and permeability model

The drag model describes the momentum exchange between grains and pore fluid
in the two-phase model and widely controls permeability, excess pore pressure
relaxation, and the settling velocity of grains. A wide range of drag models
for various situations can be found in the literature. In here we stick to the
Kozeny—Carman relation as applied by Pailha and Pouliquen (2009),

P2 Ve pe
ged?

with the grain diameter d as the only parameter. This relation is supposed to
be valid for small relative velocities and densely packed granular material. It
has been modified to account for higher relative velocities (Ergun, 1952) and
lower packing densities (Gidaspow, 1994), however, which is not relevant for

kge = 150 (I1.45)
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Figure I1.6: Drag coefficient kg (left) and permeability & (right) following the
Kozeny—Carman relation Pailha and Pouliquen (2009) for various grain diameters
(colour) and packing densities (x-axis).

the investigated configurations (see Si et al. (2018a) for an application of the
extended relation). This relation is visualized in Fig. II.6a for various diameters
and packing densities.

The drag coefficient can be reformulated into a permeability coefficient as
known in soil mechanics and porous media. Comparing Darcy’s law (e.g. Bear,
1972) with the equations of motion for the fluid phase, we can calculate the
hydraulic conductivity as

K = L8l (IL.46)
g

and furthermore the intrinsic permeability (e.g. Bear, 1972) as

VC o VC pC _ ¢Cd2

e Kt — - .
[ kgc 150 ¢§

(I1.47)

The permeability is visualized in Fig. II.6b. In a similar manner, the drag
coefficient can be calculated as

ko = 222 (11.48)

K

if the intrinsic permeability of the granular material is known.

I1.2.7 Numerical solution and exception handling

All models are implemented into OpenFOAM-v1812 (Weller et al., 1998;
OpenCFD Ltd., 2004) and solved with the finite volume method (Jasak, 1996;
Rusche, 2002; Moukalled et al., 2016).
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1.2.7.1 Two-component landslide-model

The two-component model is based on the solver multiphaselnterFoam, using
the PISO-algorithm (Issa, 1986) and interpolations following Rhie and Chow
(1983) to solve the coupled system of pressure and velocity. First, an updated
velocity field is calculated without the contribution of pressure. The predicted
velocity field is later corrected to be divergence-free and the pressure follows
from the required correction. Finally, all other fields, e.g. the phase indicator
functions, are updated. This procedure is repeated in each time step.

Components (slide and ambient air or water) are divided by an interface
which is supposed to be sharp. However, the interface is often smeared by
numerical diffusion. To keep the interface between components sharp, the
relative velocity between phases uyj, which was previously eliminated from the
system, is reintroduced in Eq. (IL1.15),

8041-
ot

Eq. (I1.49) is finally solved using the MULES algorithm (Multidimensional
Universal Limiter with Explicit Solution) (Weller, 2008). This scheme limits the
interface compression term (i.e. the term containing u;;) to avoid over- (a; > 1)
and undershoots (a; < 0) of the component indicator fields.

There is no conservation equation for the relative velocity in the two-
component model and it has to be reconstructed from assumptions. Two methods
are known to construct the relative velocity for granular flows. Barker et al.
(2021) suggest to construct the relative velocity for granular flows from physical
effects such as segregation and settling. The relative velocity follows as the
terminal velocity of spheres in the surrounding fluid under the influence of gravity.
Alternatively, one can construct a velocity field that is normal to the interface
and of the same magnitude as the average velocity 1,

+ V. (Oéi ﬁ) + V. (Oéi Q; llij) =0. (11.49)

OéjVOéi—OéiVOéj

u;; = [

. 11.50
|OéjVOéi—OéiVOéj| ( )

This method has a maximum sharpening effect (Weller, 2008) and is thus also
applied in this work.

1.2.7.2 Two-phase landslide-model

The two-phase model is based on the solver multiphaseFEulerFoam. The system
of pressure and average velocity is solved with the same concept as in the
two-component solver. The velocity fields for all phases are first predicted
without contributions from pore pressure p, but including effective pressure
ps- The average velocity is then corrected to be divergence-free and the pore
pressure follows from the required correction. In a further step, the velocity
correction is applied to phase velocities. The solution procedure is described in
depth by Rusche (2002). The interface compression term is not required in this
model because settling and segregation is directly simulated and counteracting
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numerical diffusion. The implementation of the effective pressure term is taken
from SedFoam 2.0 (Chauchat et al., 2017).

1.2.7.3 Time stepping

The numerical solution of transport equations is subject to limitations that pose
restrictions on the solution method. One of these limitations is known as the
Courant-Friedrichs-Lewy (CFL) condition and enforced by limiting the CFL
number. In convection dominated problems, the CFL number is defined as the
ratio of the time step duration At and the cell convection time Az /u,, i.e. the
time required for a particle to pass a cell with size Az,

Uz At
CFL™ = —. I1.51

Az ( )
For the stability of e.g. the forward Euler method, it is required, that the

convection time is smaller than the time step duration,
CFL®™ < 1, (11.52)

and similar limits exist for other explicit methods. This limitation has to be
enforced by choosing the time step duration At according to mesh size and flow
velocity.

However, Eq. (I1.51) is only valid for convection dominated problems. In
the case of granular flows, the viscosity term is dominating over all other terms.
Therefore, the viscosity has to be considered in the calculation of the CFL
number and the time step duration. The respective definition, ignoring the
contribution of convection follows as

G VAL

CFL™ = AT (I1.53)
This relation is imperative for stability of explicit and semi-implicit Navier—
Stokes solvers when viscous forces are dominating. The squared cell size in the
denominator and the high viscosity introduce very strict limitations on the time
step, making computations very expensive. Note that simplified relations for the
one-dimensional case are given in here. The full multi-dimensional conditions
for arbitrary finite volume cells can be found in Rauter et al. (2021).

1.3 Subaerial granular collapse

As a first test of the numerical models, we simulate the granular collapse
experiments of Balmforth and Kerswell (2005) under subaerial conditions. A
sketch of the experiment is shown in Fig. I1.7. The experiment was conducted
between two parallel, smooth walls and the setup is approximated as a 2D granular
collapse. Balmforth and Kerswell (2005) conducted multiple experiments with
different geometries, in here we focus on the experiments with an aspect ratio of
H/L = 1/2, but similar results have been obtained for other aspect ratios. In
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theory, both, the two-component and the two-phase model should be equally
capable of simulating this case because pore pressure plays a minor role. Most
parameters, such as density, quasi-static friction coefficient, and particle diameter
are reported by Balmforth and Kerswell (2005). The missing parameters are
completed with data from the literature. Notably, the experiments are conducted
on a smooth surface, which was incorporated in simulations by switching to a
constant friction coefficient piywa at smooth surfaces. This modification is simple
in the finite volume method because stresses are calculated on cell faces before
their divergence is calculated as a sum over faces.

The Stokes number is estimated to be of order 10® (with [|S|| = 10s™!) for
this experiments and the pu(7),¢(I)-rheology is chosen to describe friction and
effective pressure. Parameters for the u(/) and ¢(I)-curves are chosen in the
physically reasonable range (u2 — p1 = 0.3, Ip = 0.25, A¢ = 0.1) following
various references (e.g. Forterre and Pouliquen, 2008) in combination with values
reported by Balmforth and Kerswell (2005). A wide range of limiting packing
densities can be found in the literature, ¢y, varying between 0.5 (Si et al., 2018a)
and 0.598 (Vescovi et al., 2013), ¢,¢p varying between 0.619 (Vescovi et al., 2013)
and 0.64 (Savage et al., 2014). These parameters are therefore optimized to the
subaquatic case (section I1.4), where extended measurements are available, and
applied to this case without further modification. The average packing density is
assumed to be ¢ = 0.6 following the critical state line at this pressure level. The
applied pressure equation is visualized in Fig. I1.4. From the height H = 0.1 m
the required viscosity threshold vpax can be estimated following Eq. (11.28) to
be of order 1m?s~!. This estimation was validated with a sensitivity analysis
(see appendix I1.8.1). The final set of parameters is given in Tab. II.1.

swinging gate

Air

H Glass beads ‘/

L

Figure 11.7: Experimental column collapse setup of Balmforth and Kerswell
(2005). The aspect ration H/L has been varied throughout the experiments.
We will focus on the experiment L = 0.2m, H = 0.1 m, similar to Savage et al.
(2014).

Regular meshes of square cells are used to cover a simulation domain of
0.5 x 0.2m, which was sufficient to have no artificial influences from boundaries.
Standard boundary conditions are applied at walls (zero velocity, zero pressure
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Table II.1: Material parameters for the subaerial granular collapse simulations.
Note that not all material parameters are required by all models.

phase / comp. par. value description

air Pe lkgm™3 air density
Ve 1.48-107°m?s~!  air viscosity

slide / grains  d 1072 m particle diameter
twan  0.317 wall friction coefficient
11 0.595 quasi-static friction coefficient
2 0.895 dynamic friction coefficient
Iy 0.25 reference inertial number
Umin  1074m?s™! lower viscosity threshold
Umax 1m2s™! upper viscosity threshold
@ 0.60 assumed mean packing density?
s 1430kgm™3 slide density!
Pe 2600kgm—3 particle density?
¢rp  0.53 random loose packing density?
Grep  0.63 random close packing density?
a 130 Pa critical state line parameter?
Ag 0.1 dynamic loosening factor?

Lonly two-component model.
2only two-phase model.

3used to match the kinematic viscosity in the two-phase model following
Eq. (I1.22).

gradient) and the permeable top (zero velocity gradient, zero pressure). Multiple
mesh resolutions were applied to investigate the influence of the grid resolution
on the results (see appendix I1.8.2). The time stepping was investigated with a
similar approach, modifying the limit for CFLY? hetween 1 and 1000 (depending
on model and solver mode, see appendix I11.8.3). In the following, the CFL-
number is limited to 1 and the cell size set to 0.0017 m, which showed to be

sufficient to achieve converged and mesh independent results.

1.3.1 Two-component model

The component indicator for the slide component ag is initialized to 1 within
the square that forms the initial granular column. We assume that hydrostatic
pore pressure is negligible (< 2Pa) and therefore apply Eq. (I1.34) to calculate
the effective pressure.

The simulation covering a simulation duration of 0.8s took 6.9h on eight
cores of LEO4 (High Performance Cluster from the University of Innsbruck,
consisting of Intel Xeon (Broadwell) compute cores). The total pressure, which
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is assumed to match the effective pressure, is shown for three-time steps in
Fig. I1.8, alongside the final pile in the experiment. The continuous black line
shows the sharp free surface, assumed to be located at ags = 0.5. Furthermore,
the velocity field @ is shown as arrows. The collapse takes about 0.4s and the
pile remains in its final shape for the rest of the simulation. The two-component
model matches the experiment well, however, the volume of the final pile is
slightly underestimated. Results are very robust in terms of mesh refinement or
coarsening (see appendix I1.8.2) and mesh dependent instabilities (as e.g. Martin
et al., 2017; Gesenhues et al., 2019) have not been observed.

1
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Figure 11.8: Total pressure, assumed to match the effective pressure in the
two-component model (subaerial case). The black arrows represent the velocity.
The continuous black line shows the free surface of the slide (as = 0.5), the
dashed black line shows the final experimental pile shape of Balmforth and
Kerswell (2005).

1.3.2 Two-phase model

The two-phase model uses the same parameters as the two-component model,
including numerical parameters, such as viscosity threshold and CFL limit. The
phase-fraction ¢, was initialized such that effective pressure is in balance with
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lithostatic vertical stresses, yielding an initial mean phase-fraction of gb_g = 0.608.
This procedure ensures that there will be no dilatancy or compaction in stable
regions of the pile.

The simulation took 9.1 h under the same conditions as the two-component
simulation. A stronger mesh dependency is observed for this model, however,
the runout is converging for fine meshes (see appendix 11.8.2). The pore pressure
and the effective pressure following the extended ¢([I)-theory are shown for three
time steps in Fig. I11.9, alongside the final pile shape in the experiment. The
continuous black line indicates the position of the free surface, assumed to be
located at ¢5 = 0.25. The average velocity is shown as arrows in Figs. I1.9a-c, the
relative velocity of air with respect to grains in Figs. I11.9d-f. The relative velocity
in the initial phase is considerably high, indicating an inflow of air into the bulk
and thus dilatancy. The two-phase model matches the experiment exceptionally
well and the dilatancy in the experiment is matched by the simulation to a high
degree. Note that the effective pressure at rest is directly linked to the packing
density which can be qualitatively estimated from Fig. I1.9f.
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Figure I1.9: Pore pressure (a-c) and effective pressure (d-f) in the two-phase
model (subaerial case). The arrows show the average velocity (a-c) and the
relative velocity (d-f). The continuous black line shows the free surface of the
slide (¢g = 0.25), the dashed black line shows the final experimental pile shape
of Balmforth and Kerswell (2005).
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1.3.3 Discussion and comparison

Both models performed well at simulating the subaerial granular collapse. This
is in line with previous results of e.g. Lagrée et al. (2011) or Savage et al. (2014).
The effective pressure and the total pressure are fairly similar, because excess
pore pressure is dissipating quickly through dilatancy or compaction. The
magnitude of pore pressure in the two-phase model is smaller than 8 Pa and thus
less than 1% of the effective pressure, validating the assumption of neglectable
pore pressure.

The runout is similar in both models, the front is slightly elongated in the
two-phase model. Further, the two-phase model shows a better match with the
experiment at the upper end of the final slope. Both of these minor differences
can be attributed to dilatancy effects. The two-component model is intrinsically
not able to capture this process. Two mechanisms for dilatancy can be observed
in the two-phase model. Firstly, the average effective pressure in the slide is
reduced as it is spreading out and the packing density decreases proportionally to
the effective pressure, as prescribed by the critical state line. Secondly, shearing
can reduce the packing density well below its critical packing density due to
the dynamic contribution of the ¢(I)-theory to effective pressure. The loosely
packed slide will not return to the critical packing density after shearing but
remain in a loose state, forming a hysteresis. The granular material is able to
remain in a loose state because the deviatoric stress tensor counteracts one-
dimensional settling deformations (known as oedometric compression in soil
mechanics). Furthermore, the granular column may have been overconsolidated
in the experiment, however, this was not incorporated in the model due to the
initialisation in critical state.

Dilatancy is rather unimportant under subaerial conditions, as it does not
imply changes in rheology or flow dynamics. Therefore, the two-component
model is well suited for subaerial granular collapses, where pore pressure is
negligibly small and the Stokes number is well above one.

The reduced friction at the smooth basal surface has a small but noticeable
effect on the final pile shape. The runout is longer when incorporating the smooth
surface and matches the experiment better. Previous works (e.g. Savage et al.,
2014) ignored the smooth bottom of the experiment and still obtained accurate
final pile shapes by using a constant friction coefficient. The increased friction of
the p(I)-rheology (in comparison to a constant quasi-static friction coefficient)
compensates for the reduced basal friction quite exactly (see appendix I1.8.4).

The two-component model is less sensitive to grid resolution than the two-
phase model (see appendix 11.8.2) but more sensitive to the time step duration
(see appendix I1.8.3). At the same resolution, both models require roughly the
same computational resources and no model shows a substantial advantage in
this regard.

It is important to carefully choose the time step duration, as it can have
drastic influences on simulation results. Generally, CFLYT has to be limited to
one to guarantee satisfying results, while some cases and solver settings allow
higher CFLY" numbers. This limitation is much stronger than the traditional
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CFL criterion and CFL“"™ is roughly 0.001. Notably, the time step duration is
constant in simulations, At ~ 3-107%s, because the constant maximum viscosity
Vmax in stable regions and the constant cell size Ax controlled the time stepping.

.4 Subaqueous granular collapse

The granular collapse experiments of Rondon et al. (2011) are conducted under
subaquatic conditions and the Stokes number was estimated to be of order 1071
(at [|S|| = 10s7!). Pore pressure, packing density, and permeability play an
important role under these conditions and the complexity increases substantially.
Experiments accounted for the increased complexity by varying the average
initial packing density in experiments between 0.55 and 0.61. The pore pressure
was recorded by a sensor in the bottom plate, approximately below the centre of
the column at = 0.02m (see Fig. I1.10). This sensor showed strong variations
of the pore pressure in dense and loose experiments, indicating its important
role for subaquatic slides.

lifting gate

Ucon liquid
Glass beads

=
AN pressure sensor

Figure I1.10: Experimental column collapse setup of Rondon et al. (2011). The
packing density and the aspect ratio have been varied in the experiment. We
will focus on a densely and a loosely packed case, similar to Savage et al. (2014).

A loose or underconsolidated (¢g = 0.55, L = 0.06 m, H = 0.048 m) and a
dense or overconsolidated (¢g = 0.6, L = 0.06 m, H = 0.042m) simulation are
conducted in this work to investigate the sensitivity of the model. As before, the
experiments were conducted between two parallel, smooth walls and the setup is
approximated with 2D simulations. Most material parameters are reported by
Rondon et al. (2011), parameters for the p(.J) and ¢(J)-curves are supplemented
with data from Boyer et al. (2011). The quasi-static friction coefficient ju is
taken from Si et al. (2018a). The particles have a diameter of d = 0.225 mm and
are immersed into a Ucon solution (for details, see Rondon et al., 2011) with a
viscosity of v, = 1.2-1075m?s™! (about 10 times higher than water), leading
to a very low permeability of x ~ 1071%m? following Eq. (I1.47). Early tests
revealed that the two-phase model reacts very sensitively to the critical state line
parameters ¢,,, ¢rep, and a. Parameters from the literature (e.g. the critical
state line applied by Si et al., 2018a) lead to unrealistic granular pressures at
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Table I1.2: Material parameters for the subaquatic granular collapse simulations.
Note that not all material parameters are required by all models.

phase par. value description

ucon mix  pe 1000kg m—3 ucon mix density
Ve 1.2-107°m?s™!  ucon mix viscosity

slide d 2.25-10"*m particle diameter
1 0.340 quasi-static friction coefficient
L2 0.740 dynamic friction coefficient
Jo 0.005 reference viscous number
Vmin  107%*m2s™! lower viscosity threshold
Vmax 1m?s™! upper viscosity threshold
) 0.60 assumed mean packing density?>
s 1900kg m—3 slide density!
Pg 2500 kg m—3 particle density?
énp  0.53 random loose packing density?
¢rep  0.63 random close packing density?
a 130 Pa critical state line parameter?
¢m  0.585 dynamic reference packing density?
So 5571 maximum creep shearing?

Lonly two-component model.

2only two-phase model.

3used to match the kinematic viscosity in the two-phase model following
Eq. (I1.22).

¢ = 0.60 and could thus not be applied. We set the limiting packing densities
to ¢yp = 0.53 and ¢, = 0.63 to allow initial average packing densities between
0.55 and 0.61. The scaling variable a was found by matching the peak pore
pressure in the dense simulation with the respective measurement (see Fig. I1.14).
The total set of parameters used for both cases is shown in Tab. II.2.

Regular meshes of square cells with size 0.0005m are applied, covering
a simulation domain of 0.15m x 0.105m (dense case) and 0.25m x 0.105m
(loose case). The CFL number CFLY" is limited to 10 in order to keep
computation times to a reasonable level. A sensitivity study was conducted to
proof convergence at this grid size (see appendix I1.8.2) and CFLY™ number
(see appendix 11.8.3).

I.4.1 Two-component model - dense case

The hydrostatic pore pressure is high under subaquatic conditions and the two-
component model applies Eq. (I1.36) to consider its influence on the effective
pressure. All parameters are taken from Tab. I1.2. The evolution of the slide
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geometry, the effective pressure and the velocity @ are shown in Fig. I1.11,
alongside the final experimental pile shape. The final pile shape of the model
corresponds roughly to the experiment. The velocity, on the other hand, is
roughly corresponding to the loose case, and the collapse is completed after
1s, whereas the dense experiment took more than 30s. The simulation and its
failure mechanism are similar to the subaerial case where the free unsupported
side of the pile is collapsing until reaching a stable slope inclination. Notably,
neither the dense nor the loose experiment showed such a failure mechanism (see
Fig. I1.15). No excess pore pressure is included in this model and a hypothetical
pressure sensor at the bottom of the column would measure constantly 0 Pa as
indicated in Fig. 11.14.
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Figure I1.11:  Effective pressure at ¢t = 0.2s (a), t = 0.4s (b) and t = 1.0s
(c) in the two-component model (subaquatic dense case). The black arrows
represent the velocity. The continuous black line shows the free surface of the
slide (as = 0.5), the dashed black line shows the final experimental pile shape of
Rondon et al. (2011).

.4.2 Two-component model - loose case

The two-component model provides only a few and ineffective possibilities to
consider variations of the packing density. To simulate the loose granular collapse
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with this model, the average packing density is changed to ¢ = 0.55 and the
bulk density correspondingly to ps = 1825kgm?. Further, the initial column
geometry is changed as reported by Rondon et al. (2011). All other parameters
match the dense case. Changing rheology parameters, e.g. py or us (as e.g.
Wang et al., 2017) is technically possible but does not help in understanding the
physical process or the influence of packing density.

The difference to the dense simulation is very small and thus not shown in
here (see, e.g. Bouchut et al., 2017, for similar results). As before, the final pile
shape is close to the dense experiment while the simulated velocity is close to
the loose experiment. The runout is slightly longer as in the dense simulation
because the loose column is slightly taller.

1.4.3 Two-phase model - dense case

The two-phase model allows us to explicitly consider variations in the initial
packing density. The dense case is initialized with a homogeneous packing density
of 0.60. The evolution of the dense granular column as simulated with the two-
phase model is shown in Fig. I1.12, alongside three states of the experiment at
t =3s, 6s and 30s. The simulation covering a duration of 10s, took 240h on 8
cores of LEO4. The dense case is dominated by negative excess pore pressure
(Fig. I1.12a-e), meaning that pore pressure within the slide is lower than outside.
The effective pressure (Fig. I1.12f-j) is respectively higher, which increases the
shear strength of the column. Initially, the shear strength is high enough to delay
the collapse and to keep the column mostly stable. The pore pressure gradient
leads to the suction of fluid into the column (Fig. I1.12g-h) and the granular
material is dilating. Dilation reduces the effective pressure and allows the column
to collapse. This happens first near the free surface on the unsupported side of
the column, leading to a breaching-like flow of grains (Fig. I1.12g-h). Grains mix
with fluid at the breaching edge, reducing packing density, effective pressure,
and thus friction to very low values. The resulting mixture behaves like a small
turbidity current and reaches long run-outs with shallow slopes, as visible in
Fig. I1.12i-j. The zone of low particle pressure extends towards the centre of the
column with time and further mobilisation occurs. At t = 0.5s, we can see the
formation of a shear band. The grains above the shear band slide off, first as a
triangular cohesive block (note the uniform velocity field in Fig. I1.12b), which
disintegrates between t = 1s and ¢t = 3s (Fig. 11.12i). The overall process is
finished (i.e. tenq) in the simulation after roughly 10, while the experiment took
about 30s. The final pile form and the failure mechanism match the experiment
very well, which can be seen best in a comparison with the videos provided by
Rondon et al. (2011), see Fig. I1.15. Further, a good match with the measured
excess pore pressure is achieved, as shown in Fig. 11.14. The time scale and
velocity of the collapse, on the other hand, differ substantially between simulation
and experiment. Notably, pore pressure p and effective pressure ps do not sum
up to the total vertical load, as a considerable fraction of the vertical load is
transferred to the ground by viscous stresses.
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Figure I1.12: Pore pressure (a-f) and effective pressure (g-1) at ¢t = 0.05s (a, g),
t=0.5s(b,h),t=1s(c,i),t=3s(d, ), t =6s (e, k) and the final state (f,1)
using the two-phase model (subaquatic dense case). The black arrows represent
the average velocity (a-f) and the relative velocity (g-1). The final state (tenq) is
reached at ¢ = 10s in the simulation (small velocities remain) but ¢t = 30s in
the experiment. The black line shows the free surface of the slide, assumed at

¢s = 0.25. The free surface of the experiment is shown for comparison as a black
dashed line.
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I.4.4 Two-phase model - loose case

The simulation of the loose granular column uses the same parameters as the
dense simulation. The packing density in the column is initialized homogeneously
to ¢ = 0.55 and its height is increased as reported by Rondon et al. (2011). The
simulation covering a duration of 6s took 213h on 8 cores of LEO4. As a result
of the very loose packing, the effective shear strength is low and the column
collapses rapidly and entirely, without any static regions. The pore pressure has
to support the majority of the weight and is respectively high (Fig. I1.13a). The
effective pressure increases at the rapidly flowing front, at t = 0.25s (Fig. 11.13g)
due to the dynamic increase of effective pressure following the ¢(J)-theory. The
increase in effective pressure leads to a proportional increase in friction and the
front is slowed down, Fig. I1.13h-i. Although the effective pressure is low in
comparison to the dense case (four times lower), the friction is sufficient to bring
the slide to a stop. The final slope inclination is shallow and the low quasi-static
particle pressure is sufficient to support the slope, Fig. 11.13j. The packing
density increases slightly during the collapse but the stability is mostly gained
by reducing the slope inclination. The final pile shape matches the experiment
very well, only a small amount of granular material forms a turbidity current
that exceeds the runout of the experiment. The simulated velocity is higher than
in the experiment but the difference is less severe than in the dense case. The
simulated excess pore pressure differs remarkably from the measured excess pore
pressure as shown in Fig. I1.14. Two stages can be observed in the simulated
excess pore pressure history. First, the simulation shows a high peak of excess
pore pressure, exceeding the highest experimental pore pressure by a factor of
two. The peak dissipates quickly, as the slide and thus overburden pressure
leave the region where the pore pressure sensor is installed. This first peak is
not appearing in the experiment, where the highest pore pressure is reached in a
flatter peak at a later point in time. In a second phase, starting at ¢ = 1s, the
pore pressure dissipates much slower. In this phase, the pore pressure dissipation
is driven by compaction of the granular material and slightly underestimated by
the model.

1.4.5 Discussion and comparison

The subaqueous granular collapse clearly exceeds the capabilities of the two-
component model. The high sensitivity to the initial packing density can not
be explained with this model and the loose and dense simulation are virtually
similar. Results of the two-component model lie between the two extreme cases
of the loose and dense experiment, matching the velocity of the loose and the
run-out of the dense experiment. This is reasonable, considering that the missing
excess pore pressure is stabilizing the dense column and destabilizing the loose
column. This model is not sufficient for a practical application, as the runout
is substantially underestimated in the loose case. Extremely long run-outs on
slopes with 2° inclination have been observed in nature (e.g. Bryn et al., 2005)
and they can not be explained with a granular two-component model.
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Figure I1.13: Pore pressure (a-e) and effective pressure (f-j) at ¢t = 0.05s (a,
f), t = 0.25s (b, g) , t = 0.65s (c, h), t = 1.30s (d, i) and the final state
(tena = 6.0s) (e, j) using the two-phase model (subaquatic loose case). The black
arrows represent the average velocity (a-e) and the relative velocity (f-j). The
black line shows the free surface of the slide, assumed at ¢ = 0.25. The free
surface of the experiment is shown for comparison as a black dashed line.

The two-phase model can take advantage of its ability to capture excess pore
pressure. It outperforms the two-component model by showing the correct final
pile shapes (Figs I1.12f and II.13e) and a consistent sensitivity to pore pressure
and initial packing density (Fig. I1.14). The failure mechanism of both, the dense
and the loose experiment, are successfully simulated (see Fig. I1.15), indicating
that the two-phase model captures the most important physical phenomena.
The model fails in two aspects, as the pore pressure peak in the loose case and
the time scale in the dense case differ by a factor of 2 and 3, respectively.

It should be noted that no exhausting parameter fitting was required for
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Figure I1.14: The excess pore pressure as a function of time for the subaquatic
granular collapses. The loose simulation (red) shows a strong peak of excess
pore pressure that exceeds the experimental measurement (upper black dashed
line). The dense simulation (blue) fits the experimental measurement (lower
black dashed line) well. The two-component simulation forms a horizontal line
at p = 0 Pa as it neglects excess pore pressure.

these results. Solely the critical state line is optimized to yield the correct pore
pressure, all other parameters were selected a priori following Rondon et al.
(2011), Savage et al. (2014), and Boyer et al. (2011). Notably, some of the issues,
e.g. the overestimated velocity of the loose collapse, might be resolvable with
fitting parameters. Furthermore, the model allows us to simulate both cases
with the same set of parameters with good accuracy. This distinguishes this
work from earlier attempts (e.g. Savage et al., 2014; Wang et al., 2017; Si et al.,
2018a), where some parameters were fitted individually to the dense and loose
case.

The excess pore pressure plays an important role in subaquatic experiments
because it controls shear strength and friction. Dilatancy, compaction, and the
dynamic particle pressure further influence friction and thus the kinematics
of the slide. The dense column is only able to collapse after decreasing its
packing density and thus its effective shear strength. The column is dilating
until reaching the limiting packing density ¢.,. Before this packing density is
reached, the shear rate is limited to the creeping shear rate Sy. A relatively high
value was used for this parameter and a lower creeping limit would be desirable,
especially considering the error of the time scale in the dense simulation (see
appendix I1.8.5). However, strong oscillations were observed when choosing lower
values for Sy because the shear rate often exceeded Sy before dilating sufficiently.

The bottom of the dense column is further compacting in the simulation, up
to a packing density of 0.604. This is reasonable as the initial particle pressure
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dense experiment dense simulation

dense experiment dense simulation

loose experiment loose simulation

hydroplaning 0

Figure II.15: Selected snapshots of the experiments from Rondon et al. (2011)
(a,d,g), the simulations (b,e,h) and corresponding sketches (c,f,i). The distance
between marks on the axes is 0.02m. The snapshots highlight the gliding of a
cohesive block and breaching (a,b,c), the remoulding of the block due to shearing
(d,e,f) and the formation of hydroplaning and turbidity currents (g,h,i) at the
loose front.

of 303.3Pa at ¢ = 0.60 is below the overburden pressure of 370.8 Pa of the pile.
At the same time, negative excess pore pressure can be observed at the bottom
of the column. Compaction and negative excess pore pressure seem to contradict
each other at first glance. However, the negative excess pore pressure in the
upper parts of the column is so strong, that fluid is flowing upwards from the
bottom of the column. This can be seen in the relative velocity field (Fig. 11.12h),
but also the gradient of pore pressure (Fig. I11.12b) indicates that pore liquid
will flow upwards.

The front speed of the loose collapse is entirely controlled by the dynamic
contribution of the pu(J),¢(J)-rheology to effective pressure and friction.
Simulations with critical state theory (constant friction coefficient p and the
quasi-static effective pressure model of Johnson and Jackson (1987)) exceed the
experimental runout by far (see Appendix 11.8.4). This is a strong contrast to
the subaerial case where acceptable results could be achieved with critical state
theory.

The dynamic contribution to particle pressure and friction plays also an
important role in the dense case, although this pile collapses very slow. The
thin layers of grains that are breaching from the unsupported column flank
reach packing densities far below ¢,1, = 0.53 due to mixing with the ambient
fluid. At this packing density, the quasi-static contribution to effective pressure
vanishes, and the runout of these particles is entirely controlled by dynamic
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particle pressure and friction. The runout of the breaching flank could not be
controlled in simulations with critical state theory (see appendix 11.8.4).

The pore pressure in the loose case differs qualitatively and quantitatively
from the measurement. Within the applied model, it seems reasonable that a
high initial peak decreases quickly, as substantial amounts of grains and thus
overburden pressure leave the region of the pressure sensor. Similar results with
an early, short, and strong peak and a slow further dissipation, close to the
measurement, have been obtained with other frameworks, e.g. by Bouchut et al.
(2017) or Baumgarten and Kamrin (2019).

The dilatancy of the dense column is substantially faster in the numerical
model than in the experiment, although the permeability is underestimated
following the comparison of the pore pressure. Therefore it is unlikely that
permeability is the cause for this discrepancy and we assume that inaccuracies
in the rheology are responsible. The pu(J),p(J)-rheology describes the steady
shearing of a fluid-grain mixture very well (Boyer et al., 2011). However, the
transient transition towards the steady packing density at a certain effective
pressure is not described. This transition depends on the permeability of
the granular material but also on its viscosity (shear and bulk viscosity). As
mentioned before, the high value for the creeping shear rate Sy, could be
responsible for this issue but it might also be related to the missing bulk
viscosity or a mismatch of constitutive parameters. Bulk viscosity could delay
the dilatancy in the early stage of the dense collapse, bringing the time scale
of the collapse in the simulation closer to the experiment. Bulk viscosity could
further help to decrease the pore pressure peak in the loose case, as some of the
pore pressure could be transformed into viscous pressure. Schaeffer et al. (2019)
suggests a form for the bulk viscosity which has the potential to improve these
aspects.

Savage et al. (2014) and Si et al. (2018a) include a cohesive shear strength into
their model to correct some of these problems and to fit results to the experiment.
However, there is no evidence for cohesive forces in a fully submerged granular
flow. Neither electrostatic forces nor cementing have been reported by Rondon
et al. (2011). Apparent cohesion can be traced back to negative excess pore
pressure, which is directly simulated by the numerical model. Notably, Si et al.
(2018a) are able to control the slide velocity very well. However, this is achieved
by fitting the cohesion to the respective case and by a strong overestimation of
the negative excess pore pressure, reaching values around 500 Pa at the pressure
sensor at t = 3s (see Fig. 5 by Si et al., 2018a).

Baumgarten and Kamrin (2019) applied a similar model (elasto-plastic
multiphase model with pu(K),¢(K)-scaling) to the same cases. The results
show similar problems, i.e. an overestimation of the pore pressure in the loose
case and an overestimation of the collapse velocity in the dense case. Notably,
we achieve similar results in these test cases with a substantially simpler model.
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II.5 Conclusions

The Navier—Stokes Equations can be an adequate tool for accurate simulations
of granular flows when they are complemented with the correct rheologies.
Substantial progress has been made in recent years with the p(I)-rheology
and its extensions to compressible flows and low Stokes number flows. The
incompressible p(7)-rheology fits well into the multi-component framework of
OpenFOAM and the compressible u(1),¢(I)-rheology fits well into the multi-
phase framework, as previously shown by e.g. Chauchat et al. (2017). We apply,
for the first time, the compressible p(1),¢(I)-rheology to granular collapses and
avalanching flows. The superposition with the critical state theory is imperative
to get realistic packing densities at rest and a stable solver. For subaerial, i.e. high
Stokes number flows, dilatancy plays a minor role and results of the compressible
model are similar to the incompressible model. However, the dilatancy predicted
by the compressible model is able to close the gap between the experiments and
the incompressible model. Further, the compressible model should be well-posed
(Barker et al., 2017; Heyman et al., 2017; Schaeffer et al., 2019), in contrast
to many incompressible granular flow models (Barker et al., 2015). Note that
bulk viscosity, which is imperative for a well-posed rheology (e.g. Schaeffer et al.,
2019), was not considered in this study. However, the coupling of the granular
phase to the pore fluid has a similar effect as bulk viscosity and might be able to
restore a well-posed system. For a guaranteed well-posed compressible rheology
that collapses to the u(I),p(I)-rheology in steady state, the reader is referred to
Schaeffer et al. (2019).

The upsides of the compressible two-phase model come at the cost of more
parameters and a stronger mesh dependence. Furthermore, code and case setup
are more complicated with the two-phase model and simulations are more prone
to failure if initial conditions or parameters are not well suited for the case.
Therefore, the incompressible model might be better suited for some flows at high
Stokes numbers, especially considering regularized rheologies that are well-posed
for a wide range of flow regimes (e.g Barker and Gray, 2017). Notably, we did
not encounter any problems with the partial ill-posedness of the p(1)-rheology,
which could be related to relatively coarse grids, high numerical diffusion, the
short simulation duration or the truncation of the viscosity.

The extension to low Stokes number flows is made possible by the pu(.J),o(J)-
rheology. At low Stokes numbers, it is imperative to consider excess pore pressure
and a two-phase model is required. Therefore, the incompressible p(J)-rheology
is rather impractical and becomes only applicable after supplementing it with
the ¢(J)-curve to the compressible pu(.J),¢(J)-rheology. The dynamic growth of
pressure and friction is substantial for accurate results, highlighting the value of
the u(J),o6(J)-rheology. The fitting of parameters was reduced to a minimum
and only the critical state line had to be optimized to the experiments. It should
be noted that these parameters could be determined by measuring the critical
packing density at a few pressure levels, making the simulations free of any fitted
parameter. The compressible two-phase model reacts sensitive to the packing
density, recreating the final runout, pile shape, and failure mechanism of the

94



Conclusions

experiments very well. The model still lacks in some aspects, e.g. the time scale
and the velocity of the dense collapse and the pore pressure peak in the loose
collapse.

It was shown that the incompressible two-component model can be derived
from the compressible two-phase model by neglecting the relative velocity between
phases. This simplification yields reasonable results for subaerial granular flows
at high Stokes numbers but fails to describe the subaquatic granular flows at
low Stokes numbers. This seems to be contradictory, as the relative velocity
(which was neglected in the incompressible model) is very small in the subaquatic
case (see Figs. I11.12 and I1.13) but considerable high in the subaerial case (see
Fig. I1.9). This apparent paradox can be resolved by the fact that unhindered
density changes have no notable influence on the flow dynamics. However, if
changes in packing density are constrained, pore pressure will build up and the
rheology of the material will change drastically. Thus, pore pressure, rather than
compressibility is the key factor that allows the two-phase model to accurately
capture the flow mechanics. The two-phase model provides many other upsides
aside from the inclusion of pore pressure. The continuous transition from dense
granular material to pure ambient fluid should be useful for the simulation of
granular free streams (Viroulet et al., 2017), turbidity currents (Heerema et al.,
2020) and powder snow avalanches (e.g. Sovilla et al., 2015). Other studies
showed that the two-phase model is useful for sediment transport (Chauchat
et al., 2017) and other dilute particle-fluid mixtures (e.g. Passalacqua and Fox,
2011).

OpenFOAM provides a good platform to evaluate concepts (e.g. the multi-
component and multi-phase methodology) and models (e.g. u(l),p(I) and
wu(J),p(J)-rheologies). The implemented rheologies can be further coupled
with segregation (Barker et al., 2021) or tsunami simulations (e.g. Si et al.,
2018b). However, the segregated semi-implicit solver strategy of OpenFOAM
sets limits to models and execution velocity, as (part of the) viscous terms and
the particle pressure are included explicitly. This showed to be problematic and
a fully implicit solver, that solves all equations simultaneously, might be superior
in this regard.

The model can help to understand the extreme outruns of submarine
landslides, such as the Storegga landslide (e.g. Bryn et al., 2005) and the big
variation in tsunamigenic potentials (e.g. Lgvholt et al., 2017). Theories, such as
hydroplaning and remoulding (e.g. De Blasio et al., 2004) can be quantitatively
described by the critical state theory and its dynamic extension in form of the
w(J),¢(J)-rheology. Hydroplaning, formerly described as the flowing of sediment
on a thin layer of liquid can be interpreted as a region of low or even zero packing
density and vanishing effective pressure. This can be observed in Fig. I1.15g-
i, where the front of the loose slide is lifted by pressure in the surrounding
fluid. Remoulding can similarly be explained with critical state theory as an
overconsolidated sample that is dilating during shearing (see Fig. I1I.15a-f). The
two-phase model and its capability to describe various and realistic failure
mechanisms with different time scales are particularly valuable for understanding
the tsunamigenic potential of submarine landslides and the respective slopes.
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The dense column collapses very slowly, reaching velocities of up to 0.1ms~! in

small layers near the surface. The loose column collapses entirely with velocities
up to 0.4ms~!. The tsunamigenic potential of a landslide scales with initial
acceleration and the mobilized volume (e.g. Lgvholt et al., 2017) and a substantial
difference in tsunamigenic potential follows for the dense and the loose slide.
This shows that packing density, excess pore pressure and permeability are key
parameters in controlling stability, failure mechanism, slide acceleration, and
tsunamigenic potential.

Many full-scale subaquatic landslide simulations are based on Bingham fluids,
a visco-plastic rheology independent of the pressure (e.g. Kim et al., 2019). This
seems to stand in strong contradiction to the model applied here. However,
the simulation of the loose case shows that packing density changes are small.
For a nearly constant packing density, the effective pressure decouples from
overburden pressure because the weight is absorbed entirely by pore pressure. As
a consequence, overburden pressure and friction will decouple and the microscopic
granular friction will appear as cohesion on a macroscopic scale. The macroscopic
description as a Bingham fluid is therefore surprisingly consistent with the
findings in this work, especially for fine grained marine sediments with low
permeabilities.

1.6 Summary

This work highlights a path to extend the incompressible p([7)-rheology for
subaerial granular flows to the compressible p(.J),¢(J)-rheology for subaquatic
granular flows. The implementation of the u(I),¢(I)-rheology in a multiphase
framework and the p([l)-rheology in a multi-component framework allows
us to conduct subaerial granular collapses with two different models. The
application shows consistency between the incompressible p(7)-rheology (e.g.
Lagrée et al., 2011) and the compressible u(1),¢(I)-rheology. Notably, substantial
modifications to the ¢(I)-curve are required for a practical application of the
rheology. The simulations show that compressibility and dilatancy have a small
influence on high Stokes number flows because excess pore pressure is negligibly
small.

The implementation of the u(J),¢(J)-rheology extends possible applications
to low Stokes number flows, e.g. subaquatic granular collapses. The incompress-
ible model reaches its limitations under these conditions and the compressible
model is required for an accurate simulation. Other than previous attempts, we
applied the exact same set of parameters to an initially dense and loose granular
collapse with satisfying results. Notably, the application of the u(J),p(J)-
rheology does not require an extensive fitting of constitutive parameters. The
comparison between the compressible model and experiments uncovered discrep-
ancies in the time scale and the pore pressure. These could be indicators for
issues in the rheology, e.g. a missing bulk viscosity or issues with the creeping
regime that had to be introduced for numerical stability. The well-posedness of
the proposed model is not guaranteed and should be investigated in the future.
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The compressible two-phase model has a wide range of applications and
the results have implications on many problems in geoscience. Applications to
sediment transport and scouring (Cheng et al., 2017) have been shown with a
similar model. We further expect the applicability to turbidity currents and all
other gravitational mass flows with low and high Stokes numbers. Furthermore,
Si et al. (2018b) showed the applicability of a similar model to landslide tsunami
simulations by incorporating the free water surface.
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II.7 Appendix: Derivation of the two-component model

The two-component model can be derived from the two-phase model by summing
up the mass and momentum conservation equations. The sum of the mass
conservation equations (II.1) and (I1.3) yields

OPc + g
T +V

and with the definitions ¢. + ¢ = 1 and U = ¢, uc + ¢z u; we can derive the
continuity equation of the two-component model, Eq. (I1.13).

The sum of the momentum conservation equations (I1.2) and (IL.4) is slightly
more complex and approximations are required due to non-linearities. Therefore,
we will cover each term individually in the following. The sum of the time
derivatives of Egs. (I1.2) and (II.4) can be simplified with the definition of the
volume averaged velocity U, the local density p = ¢c pc + ¢ ps and the relative
velocity u, = u; — u. to

(pcue + pgug) =0 (I1.54)

0 0
ot (¢ pe uc + bg Pg ug) = ot (¢ pe (T — ¢gur) + @g pg T+ ¢cuy)) =

opi 0 _opu
ot + E (¢g Gc Uy (pg - pC)) ~ ot (1155)

The second term in Eq. (I1.55) vanishes if the relative velocity is zero or if
the phase densities are equal. The two-component model assumes that phase
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velocities are equal (Eq. II.11) and the second term can be neglected. The error
in the momentum conservation is expected to be small in relation to limitations
of the incompressible rheology.

The sum of the convective fluxes follows a similar pattern,

V  (de peuc @ e + ¢ pg ug ® Ug) =
V(@cpe (M= dgur) ®@ (W= dgur) + dg pg (W+ ge ) ® (TW+ ¢ wy)) =
Y (pROW) + V- (fe by (@8 U+ 0, @) (9 — po)) +
V(¢ g ur @ s (@g pe + Gc pg)) # V- (pURT). (I1.56)

The second and third term vanish if the relative velocity is zero. Notably, only
the second term vanishes if the phase densities are equal due to the non-linearity
in the convection term. For the approximation of the two-component model, it
is sufficient to recover the first term, as the relative velocity is neglected.

The terms on the left hand side of Eqgs. (I1.2) and (I1.4), can be summed up
without further assumptions,

V (¢ Tc+ ¢ Ty) =V - T,
¢c Vp—l—gbng—i-Vps - thota

G P8+ Og P& =P8,
kge (ug —uc) + kge (ue — ug) =0,

and the momentum-conservation equation of the two-component model,
Eq. (II1.12) can be assembled.

1.8 Appendix: Sensitivity study

The numerical models require a wide range of parameters. Most parameters
are physical and can be derived from experiments and literature. However,
some parameters are purely numerical and their values can not be derived
from experiments. The following parameter study was used to derive numerical
parameters that have been applied in simulations. The most influential numerical
parameters are the grid size Az, the maximum Courant number CFLYT | related
to the time step At, and the maximum viscosity vyax. Furthermore, the effect
of dynamic friction, i.e. the difference between a constant friction coefficient
and the p(I) or u(J)-rheology is investigated. The applied model and the flow
regime (subaerial or subaquatic, dense or loose) are shown for each figure in the
upper left edge.

I.8.1 Influence of the maximum viscosity

The maximum viscosity is one of the most influential numerical parameters in
the applied model. It should be reasonably high to mimic solid behaviour, but
as small as possible to improve numerical stability and to keep computational
expense low. A reasonable limit can be found by investigating the dimensionless
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governing equations, in which the respective scales are isolated. The momentum
conservation of the Navier—Stokes Equations can be written as

1 1
—+V-(u®u):—;Vp—|—§VV2u—|—g (IL.61)

for a single incompressible Newtonian fluid with density p and constant viscosity
v. By scaling space with the height of the slide H, the velocity with the
respective free fall velocity /|g| H, the time with the free fall time \/H/|g|, and
the pressure with the respective hydrostatic pressure p|g| H, the dimensionless
variables (marked with a hat) can be established as

x =H%, (I1.62)
1. 1/0 8 o\t
v (£ 22 11.
v Ty T (a&’ay’az) ) (11.63)
u =+/|g| H 1, (IL.64)
H .
t = =1 (I1.65)
g
p  =plglHp. (IL.66)

Introducing the dimensionless variables into the momentum conservation equation
and dividing by |g| yields

ot ~ ~ 1 ~ 2 g
=~ + V- (a®a)=-Vi+,/—=vV a+ = 11.67
ot ( ) lg| H3 g (L67)

In the case of a solid-like behaviour, the viscous term should be dominating over
all other terms. All terms, except for the viscous term, are of order one and we
can deduce that the inequality

1 1
————Vmax — I1.68
\ el e~ 2 (I11.68)

should be fulfilled to simulate the behaviour of a solid. ¢ is a small dimensionless
number, indicating the magnitude of viscous stresses over other terms. The
viscosity which is required for a solid-like behaviour can be calculated as

1
Viax > - Vgl H3, (11.69)

as a function of respective scales by choosing the magnitude of viscous stresses
over other terms, . The required magnitude for € can be estimated by conducting
a numerical sensitivity analysis.

Variations of vp.x (and thus €) are presented in Fig. I1.16 for the subaerial
case at t = 0.8, using the two-component model. The value of Vpya = 1m?s7!
is adequate for this example and the left side of the pile stays nearly static as it
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is the case in the experiment. The respective value for the dimensionless scaling
factor € follows as 0.1 (H = 0.1m, |g| ~ 10ms?), indicating that viscous forces
have to be about 10 times higher than all other contributions to the momentum
conservation equation. For lower viscosities, the pile is notably deformed and
shows no stable regions and no granular characteristics. Rather, the pile shows
the characteristics of a visco-plastic fluid (see rheology comparisons by Lagrée
et al., 2011), which indicates that the viscosity threshold was dominating the
simulation. Notably, cases with high maximum viscosity are stable after t = 0.4 s
while cases with low maximum viscosity keep flowing beyond ¢ = 0.8s. For
an application of granular rheologies in OpenFOAM, we suggest a maximum
viscosity following Eq. (I1.28) with ¢ = 1/10.

two-component, subaerial

0.15 A Vmax (mS_Q)
= (.01
m— (.05
— 0.10 A
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~ 0.5
N
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== Exp.
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0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
x (m)

Figure I1.16: Pile shape at ¢ = 0.8s of the subaerial granular collapse with
various values for v, using the two-component model. The high influence
of this numerical parameter and the unphysical effect of low values is clearly
visible. The dashed black line shows the final pile shape of the experiment for
comparison. The two-phase model behaves similarly.

I.8.2 Grid sensitivity

The grid sensitivity is an important issue for complex flow models and we provide
a full grid sensitivity analysis for the multi-component and the multi-phase model.
The grid sensitivity study for the multi-component model is solely conducted
for the subaerial case because the mechanics of this model is similar in all cases.
The final pile shape of the investigated case is shown in Fig. I1.17 for various
grid resolutions. This model reacts very robustly to coarse grids and 30 cells
along the pile height are sufficient to get accurate results for the final pile shape.

The two-phase model is more complex in terms of grid sensitivity. Three
different failure mechanisms of the granular column can be observed in the
simulations with the two-phase model. The three mechanisms react differently to
a variation of the grid resolution. In some cases, the model reacts very sensitively
to coarse grids and a grid refinement study should always be performed when
applying this model. Fig. I1.18 shows the grid convergence analysis for the
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Figure 11.17: Grid sensitivity of the two-component model for the subaerial case.
The model behaves similarly in the subaquatic cases. The black dashed line
shows the experimental final pile shape for reference.

subaerial, the subaquatic dense, and subaquatic loose case. The two-phase model
is slightly more sensitive to coarse girds than the two-component model in the
subaerial case, see Fig. I1.18a. The problematic area is the thin flow front and
the issue is probably related to the mixed role of the phase-fraction field.

The two-phase model is very sensitive to coarse grids in the subaquatic dense
case, see Fig. [1.18b. Breaching of a thin layer of grains on the unsupported side
of the column leads to a reduced phase-fraction in cells that contain the slide
surface. This reduces the effective pressure in all of those cells and further the
shear strength, accelerating the collapse. The result is a mesh dependency of the
final pile shape and the collapse velocity. The mesh had to be refined down to a
cell size of 0.0005 m, to achieve accurate results. Notably, the difference between
the smallest two cell sizes is still remarkably at the front of the collapse. An
additional refinement step would be desirable, but this would have exhausted
the available computational resources.

The loose subaquatic case can be simulated with good accuracy on a relatively
coarse mesh as shown in Fig. II.18c. This is not surprising as the failure
mechanism and flow pattern is much simpler. In particular, the effective pressure
discontinuity at the free surface is weaker than in the dense case and thus requires
a smaller grid resolution.

1.8.3 Time step duration sensitivity

The time step duration is investigated similarly as the grid resolution. The
time step duration is not fixed but adapted to velocity (CFL®“") and viscosity
(CFLY®), relative to the grid size. The viscous contribution to the CFL number
is always much bigger in the investigated cases and the time step sensitivity
study was conducted based on this value. Notably, stability can be guaranteed
only for CFLY™ < 1. However, the CFLY® number allows only an estimation of
the stability and in some cases larger time steps are possible.
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Figure I1.18: Grid sensitivity of the two-phase model for the subaerial case (a),
the dense subaquatic case (b) and the subaquatic loose case (c¢). The black
dashed lines show the experimental final pile shapes for reference.

The two-component solver can operate in two modes, using a full momentum
predictor step or a reduced momentum predictor step. The full momentum
predictor step solves the full linearised system of the discretized momentum
conservation equation. The reduced momentum predictor step calculates an
explicit prediction of the velocity field based on the velocity field of the last time
step. This has a substantial influence on the stability when viscous stresses are
dominating.

Fig. I1.19a shows the final pile shape for various time step durations and the
full momentum predictor step in the two-component model. Notably oscillations
in pressure can already be seen at CFLYT = 2 (not shown) and they grow
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substantially for higher CFLdiH. numbers. The pressure oscillations start to
influence the pile shape at CFLY® = 10 and the pile is completely distorted for
CFLY™ = 100.

The two-component model is more robust to larger time steps when operating
with the reduced momentum predictor step, see Fig. I1.19b. Pressure oscillations
start approximately at CFLY® = 100 and the first influence on the slide geometry
can be observed at CFLYT = 1000. Anyway, it is recommended to run the two-
component model with small enough time steps to prevent pressure oscillations,
ideally at CFLYT = 1, as done in this work.
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Figure 11.19: Sensitivity of the two-component model on the time step duration,
expressed by the viscous CFL number. The solver was operated with the full
momentum predictor (a) and the reduced momentum predictor (b).

The two-phase model reacts less sensitive to large time step durations. In
fact, simulations were stable up to CFLYT = 1000. No pressure oscillations
could be observed and the final pile shape is nearly unaffected for all cases, see
Fig. I1.20. However, the accuracy got worse for large time step durations and
we observed a slower initial acceleration for CFLY® = 1000. No subaquatic
simulations with the two-phase model and CFLY™ = 1 have been conducted, as
this would have exhausted the computational resources.
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Figure I1.20: Sensitivity of the two-phase model on the time step duration,
expressed by the viscous CFL in the subaerial case (a), the subaquatic, dense
case (b) and the subaquatic, loose case (c).

1.8.4 Influence of dynamic friction and wall friction

The effect of the dynamic increase of friction following the u(7)-rheology and the
effect of the reduced wall friction were investigated with both models. Results are
shown in Fig. I1.21a for the two-component model and in Fig. I1.21b for the two-
phase model. The models do not react sensitively to the variation of the friction
model and the basal friction coefficient. The runout is slightly underestimated in
simulations with the p(/)-rheology on a rough surface. However, the introduction
of the smooth surface elongates the runout and the simulations fit the experiment
well. Simulations with a constant friction coefficient on a rough surface fit the
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experiment also well, simulations with constant friction coefficient on a smooth
surface overestimate the runout.
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Figure I1.21: Influence of dynamic friction, dynamic effective pressure and wall
friction on the final pile shape in the two-component model (a) and the two-phase
model (b).

The dynamic contribution to effective pressure and friction is imperative
for simulations at low Stokes numbers. Fig. I1.22 shows the dense and loose
subaquatic two-phase simulations with critical state theory and pu(.J),¢(J)-theory.
The outrun cannot be controlled without the dynamic contributions of the
w(J),p(J)-theory and exceeds the final runout very quickly.

1.8.5 Influence of the creep shear rate

The influence of the creep shear rate Sy is shown in Fig. 11.23 for the subaquatic
dense case. This figure shows an early time step at t = 1.0s and the final pile
shape at ¢t = 10s. A reduction of the creeping shear rate from 5s~! to 1s7!
leads to a slower initial collapse of the column. The delayed collapse is desirable
and brings the simulation closer to the experiment. However, the low value for
Sy leads to oscillations in the particle pressure because the simulation accelerates
and reaches shear rates beyond Sy too quickly. The simulation with Sy = 5571
shows no oscillations and has thus been utilized in the main part of this work.
Notably, a smaller time step duration will allow smaller values for Sy, however
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Figure I1.22: The dense granular collapse at ¢t = 6.0s (a) and the loose granular
collapse at ¢t = 0.65s (b), simulated with critical state theory and u(J),¢(J)-
rheology. The dashed black line shows the final experimental pile shape. The
simulations with critical state theory clearly exceed the experiment early in the
simulation.

for an increased computational cost. The final pile shape is barley affected by
the change in Sp.
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Abstract

Landslide tsunamis and impulse waves are hazardous events with severe
socioeconomic impacts. A long standing problem with simulations of
these events is the generation stage, where landslides and water interact.
Depth-averaged models like the Saint-Venant or Boussinesq Equations
lose their validity for such applications. Therefore, we have to rely on a
full treatment of the hydrodynamics, for instance by applying the Navier—
Stokes Equations and Computational Fluid Dynamics (CFD). However,
applications of fully three-dimensional methods to landslide tsunamis
are sparse, and have often been outperformed by depth averaged models
when compared to experimental data. In this work, we evaluate the
multiphase Navier-Stokes Equations as implemented in OpenFOAM®
in terms of impulse wave generation. We focus on a simplified two-
dimensional setup where the landslide consists of water, in order to
circumvent additional complexities due to treatment of landslide rheologies.
We conduct a thorough grid refinement study and compare results to
experiments to investigate model convergence, stability, and accuracy. The
simulations display good agreement with the experimental data if the
Courant-Friedrichs-Lewy (CFL) condition, is modified to account for the
specific properties of the multiphase system. Further, we use the validated
model for sensitivity studies and to review various scaling relations for
landslide generated tsunamis. The application of numerical models allows
us to perform broad parametric tests and dissect the underlying physics
of these predictive equations systematically. We found that the first
wave crest may be well estimated by solely the landslide mass in our
setting. Including additional properties related to landslide momentum can
improve the predictive skill, while other parameters lead to no substantial
improvement.
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lll.1 Introduction

Landslides are the second most frequent tsunami source (Harbitz et al., 2014).
Recently, the 2018 Anak Krakatoa landslide induced tsunami caused several
hundred fatalities (e.g. Grilli et al., 2019). Several other landslide events of
the last decade generated impulse waves with run-up heights of up to 150 m
(e.g. Gylfadottir et al., 2017; George et al., 2017; Paris et al., 2019). Landslide
tsunamis have traditionally been modelled through depth-integrated (i.e., two-
dimensional) models, reducing the complexity and improving the accuracy in
comparison to fully three-dimensional models (e.g. Lovholt et al., 2015; Yavari-
Ramshe and Ataie-Ashtiani, 2016). The assumptions of depth-integrated models
fit well with the propagation stage of tsunamis and for some cases (e.g. submarine
landslides, earthquakes) also to the generation stage. However, the generation
can be influenced by a highly rotational and depth-varying velocity field, a
complex water surface (e.g. breaking waves) and other processes that stand
in strong contrast to the assumptions of depth-integrated and potential flow
models. This is especially the case for tsunamis generated by subaerial landslides
that impact the water reservoir, such as the Vajont landslide (e.g. Panizzo
et al., 2005), the Ritter volcano eruption (e.g. Ward and Day, 2003) or the
hypothetical La Palma island collapse (e.g. Gisler et al., 2006; Lovholt et al.,
2008; Abadie et al., 2012). Moreover, depth averaged models have shown to face
difficulties related to strong non-linearities (e.g. Lovholt et al., 2013) and steep
topographies (Lgvholt and Pedersen, 2009). For such cases, the most appropriate
approach requires a minimum degree of simplification, which implies solving
full three-dimensional continuum mechanical models, i.e. the Navier—Stokes
Equations. Some studies couple three-dimensional models with depth-averaged
models, either for landslides (Domnik et al., 2013), impulse waves (Lgvholt
et al., 2008) or other large scale flows, which are too extensive for a complete
three-dimensional treatment (Mintgen and Manhart, 2018). For a comprehensive
comparison the reader is refereed to these publications. Notably, a wide range of
alternative and mixed methods was investigated: Savage-Hutter model coupled
with Navier—Stokes Equations (e.g. Ma et al., 2015), discrete element method
coupled with Navier—Stokes Equations (e.g. Shan and Zhao, 2014), smoothed
particle hydrodynamics (e.g. Pastor et al., 2008; Heller et al., 2016) or particle
finite element method (e.g. Mulligan et al., 2020) are a few of the promising
approaches.

Modelling landslide tsunamis with the Navier—Stokes Equations implies
solving a multiphase system. At least two phases, water and air, are required to
simulate surface water waves. In addition, the landslide should be treated as
an individual phase, to take into account the respective properties. Turbulence,
that cannot be resolved with the numerical method must be taken into account
by the mathematical model. This issue is usually tackled with turbulence
models, and especially the Reynolds-averaged Navier—Stokes (RANS) Equations
in combination with the k-e-model have become popular for practical applications
(Launder and Spalding, 1974). In addition, the complex rheology of the granular
and porous landslide must be adequately described. Various rheologies have been
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suggested (e.g. Jop et al., 2006; Boyer et al., 2011; Savage et al., 2014; Barker
et al., 2017; Si et al., 2018a), however, a unified description of partially and fully
water-saturated landslides is still too complex and too poorly understood for
many applications. Furthermore, the porosity of granular materials leads to
dynamic bulk density changes and excess pore pressure, substantially influencing
the rheology (e.g. Ilstad et al., 2004; Rondon et al., 2011). Indeed, most studies
with Navier—Stokes Equations rely on simplified rheologies (e.g. Newtonian or
Herschel-Bulkley fluids) that do not consider the granular character and the
porosity of landslides (e.g. Gisler et al., 2006; Abadie et al., 2010, 2012; Viroulet
et al., 2013, 2016; Gabl et al., 2015; Kim et al., 2019). Others use rigid bodies to
simulate landslides and similar objects (e.g. Heinrich, 1992; Liu et al., 2005; Chen
et al., 2020; Romano et al., 2020). Si et al. (2018b) is one of the few examples of
combining a surface wave model and granular flows in terms of Navier—Stokes
Equations.

In the present numerical study, we will omit the complex nature of the
landslide to focus solely on the tsunami generation and propagation. This way
we avoid possible shortcomings in the treatment of the landslide, artificially
impacting the wave generation and leading to a less transparent analysis. We
are guided by the experiments of Bullard et al. (2019), where the landslide was
pure water in contrast to many other experiments, where granular materials
were used (e.g. Viroulet et al., 2013; Fritz, 2002). The rheology of the landslide
is hence described fairly well by a simple Newtonian fluid in combination with
the turbulence model.

The goal of this work is to verify and validate the multiphase solver of the
open source CFD toolkit OpenFOAM® (OpenCFD, 2018) in terms of impulse
wave generation and propagation. In particular, we are able to demonstrate
that the criterion for adaptive time stepping in OpenFOAM, known as Courant-
Friedrichs-Lewy (CFL) condition (see section III.2.2), is insufficient for the
presented cases and we introduce a better performing extension. We compare
results to the experimental observations of Bullard et al. (2019), showing that
the numerical model is able to reproduce the experimental results without any
parameter fitting.

In a further step, the verified and validated model is applied for a sensitivity
and scaling analysis that goes beyond the experimental results. Numerical
simulations allow a high degree of automation and even the tank geometry can
be modified with little effort. This enables us to investigate a large variety of
still water depths and impact angles. We test a wide range of semi-empirical and
theoretical scaling relations (Fritz, 2002; Heller and Hager, 2010; Zitti et al., 2015;
Mulligan and Take, 2017; Bullard et al., 2019) and use basic statistical methods
in an attempt to find the most influential landslide properties for this particular
setting. Combined, we present 16 simulations for verification, 16 simulations
for validation and 112 simulations for the scaling analysis. All simulations are
conducted in a two-dimensional domain (a vertical slice of the tank), although
the mathematical model is capable of fully three-dimensional simulations.

The paper is organised as follows: In section II1.2, we will introduce the
multiphase Navier—Stokes Equations as implemented in OpenFOAM and an
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improved stability criterion for the time step duration that allows us to achieve the
required accuracy in tsunami simulations. Further, we introduce dimensionless
landslide and tsunami properties and scaling relations from the literature. We
verify and validate the method in section II1.3 in terms of the experiments of
Bullard et al. (2019). Section II1.4 extends the parameter space of simulations
for a comprehensive sensitivity and scaling analysis, followed by a discussion in
section IIL.5. Finally, we give a summary and an outlook in section III.6.

1.2 Methods

I1.2.1 Mathematical model

We apply the unsteady multiphase RANS Equations to simulate a system of
multiple fluids (in here water and air), given as

V-u=0, (IIL1)
opu
W—i—v-(pu@u):—Vp+V-(2(u+Mt)D)+pg. (I11.2)
a(,;); + V- (Oéi 11) + ZV . (Oéi Q llr’ij) = 0. (III3)
J

Phase indicator functions «; are defined as

i (x,1) {1 phase ¢ present at x,t, (I11.4)

0 otherwise,

and allow tracking of the various phases. Numerical diffusion is counteracted
by the third term in Eq. (IIL.3) using the relative velocity between phases u, ;;,
which is constructed to ensure sharp interfaces (Rusche, 2002; Weller, 2008;
Marschall et al., 2012). The local fluid density p(x,t) and molecular dynamic
viscosity u(x,t) follow from present phases and the respective densities p; and
viscosities ;,

p =2 ai(x,1) pi, (I11.5)

p= 2 ai(X, 1) pi- (111.6)

We assume constant fluid densities and viscosities in the following, as this
describes water and air reasonably well. All phases advect with the velocity
u(x,t) and the strain rate tensor D is defined in terms of its gradient as

D= % (Vu+ (VwT). (IT1.7)

The gravitational acceleration is g and p(x,t) is the pressure field. The eddy
viscosity i (x,t) is supposed to consider effects of turbulence that is not resolved

116



Methods

by the numerical discretisation and is calculated with the k-e-model (Launder
and Spalding, 1974) as

k2
pe=pCp—. (I1L.8)

The turbulent kinetic energy k(x,t) and rate of dissipation €(x,t) follow as

opk

W—FV'(pku) =
V-((?—i—u)Vk)—l—ut(QD):Vu—pe, (I11.9)
k
%—i—v-(peu) =
2
V.((ﬂ—l—u) Ve)—FCl:te(QD):Vu—CQp%. (I11.10)
Oc

Standard parameters, C,, = 0.09, o, = 1.0, 0. = 1.3, C1 = 1.44, Cy = 1.92
(Versteeg and Malalasekera, 2007), have been applied in early model tests and
the achieved accuracy required no adjustment.

ll.2.2 Numerical solution and stability

The computational domain (in time and space) is discretized to solve the
governing equations (III.1) to (II1.10). The spatial domain is divided into
a finite number of polyhedra and the finite volume method (e.g. Weller et al.,
1998; Jasak, 1996; Moukalled et al., 2016) is applied to discretize all spatial
derivatives. The temporal domain (i.e., the simulation time) is split into a
finite number of time steps, and the equations are solved in a time-marching
manner. Pressure-velocity coupling is conducted with a semi-implicit method,
similar to the PISO algorithm (Issa, 1986) and the governing equations are solved
sequentially. Temporal derivatives are discretized with a semi-implicit Euler
scheme. The govering equations for phase indicator functions are solved with the
MULES algorithm (multi-dimensional limiter for explicit solution, Weller, 2006).

A sequential solution implies that components of the velocity are solved
independently and only coupled through explicit terms. This gives rise to
stability criteria that limit the time step duration At, known as CFL condition
(Courant et al., 1928). For convection dominated cases (and uniform grid size
Az), the CFL number is given as

lu| At

CFLCODV —
Az’

(I11.11)

and has to be limited to a value that is characteristic for the time integration
scheme (e.g. 1 for explicit Euler). This is done by choosing the time step duration
At accordingly. High viscosity in the transient convection diffusion equation
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(IT1.3) leads to a stronger constraint of the time step duration (see appendix
II1.7 for an in-depth discussion) and the CFL number for such a case is given as

~ At
CFLYT = 220 T11.12
A2 ( )
As we will show in the following, criterion Eq. (III.12) is imperative for
convergence, stability and reliability in our applications, which will often lead to
a stricter time step constraint than Eq. (III.11).

lll.2.3 Dimensionless properties and scaling relations

We compare numerical simulations and physical experiments with several past
experiments from literature. The comparison is based on semi-empirical relations
for the near field wave amplitude a,,, that are derived from respective experiments.
These relations are defined in terms of standardized dimensionless parameters,
encoding the average landslide velocity Tg, the average landslide thickness 5,
the landslide width b, the landslide mass mg, the landslide density pg, the total
landslide duration Atg, the water reservoir density p,, and the water reservoir
depth hg, see Fig. III.1. All landslide parameters are averaged over the duration
of the impact (Atr59, see section I11.3.2) in this work, however, some previous
works apply the respective peak values (e.g. Heller and Hager, 2010). The
derivation of these properties from simulation and experiment is specific to the
case setup and thus explained in the respective section. The dimensionless slide

Ps, Ms

Us

Aty

Figure III.1: Landslide (shown in red) and wave (shown in blue) properties.
Note that the definition of the averaged velocity and landslide thickness depends
on the respective setup and is not generally applicable.

mass is defined as

UR

s U1g

the dimensionless slide thickness as

S = (I11.14)

5
ho’

118



Methods

and the slide Froude number as
Us
Vaho

We note that the slide Froude number in principle defines regions of subcritical
(F < 1, wave runs away from the landslide), critical (F = 1), and supercritical
(F > 1, wave remains in the generation region) flow. However, as F is based on
the terminal water depth hg, some supercritical flow will always take place near
the shoreline. Further, the dimensionless landslide impact duration is defined as

AT = At, |2, (IIL.16)
ho

and the relative slide density as the ratio between slide and reservoir densities,

F =

(I11.15)

R=1 (I11.17)
P
However, R is unity throughout this work, as ps = py,. Furthermore, the cosine
of the impact angle « is used in some scaling relations.
The dimensionless near field wave amplitude is defined as
(m

Ap = —. II1.18
- (11L.15)

Five scaling relations for this important wave parameter,
Am,SR = Am,SR (M, F, S, AT, R, COS((X)) , (11119)

were experimentally evaluated by Bullard et al. (2019) and the test is repeated
here with the numerical results. The first relation is given by Heller and Hager
(2010) for granular slides as

4 6 \*/°
A HH10 = 9 F4/5 §2/5 M/5 cos (?a) . (111.20)
Zitti et al. (2015) found
Amz1s = éFl/E’ §3/20 N19/20 cos ()20 (IIL.21)
and
Amzar = %Fl/f’ M3 AT=Y/5 cos ()10 (I11.22)

for buoyant slides, e.g. snow avalanches. Mulligan and Take (2017) derived an
approximation based on physical principles,

Apg =1+ RSF2 cos () — 1, (I11.23)
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and Bullard et al. (2019) corrected it for high mobility slides to

A qmax = \/ 1+2RSF? cos (o)’ — 1. (I11.24)

In addition, we will test the scaling relation of Fritz (2002) for granular landslides,
given as

1
Am oz = 7 F7/5 §4/5, (I11.25)

Note that some of these relations address different systems than investigated
in here, e.g. granular material (Amy ro2, Am aH10) and buoyant slides (Am z15,
A zat). Further, definitions for the slide parameters can vary, e.g. by applying
averaged or peak landslide parameters. An overview over respective parameter
ranges can be found in Tab. III.1. It should not be expected that they are
applicable without modification. Therefore, we will systematically evaluate and
optimize the respective structures for our conditions in section II1.4. We also
stress that the experimental setups have been different, ranging from gravity
driven liquid slides to piston-accelerated granular slide. This has to be taken
into account when the scaling relations are compared with the outcome of the
present simulations. Furthermore, some of the experiments might be influenced
by scaling effects, expected at reservoir depths of h = 0.2m or less (Heller et al.,
2008).

Table II1.1: Parameter ranges of experiments on which the semi-empirical scaling
relations are based on.

Parameter this study Bullard et al. (2019) Fritz (2002) Heller and Hager (2010)  Zitti et al. (2015)

material liquid liquid granular granular granular
porosity 0 ~0-0.3 ~ 0.5 ~0.4 ~ 0.5

F 0.041-3.5 2.1-54 1.1-4.7 0.86-6.8 0.84-1.9

S 0.017-.0.4  0.04-0.36 0.076-0.66 0.09-1.6 0.026-0.31
M 0.025-5.3  0.077-6.3 0.12-2.4 0.11-10.0 0.029-0.53
R 1 1 1.7 0.59-1.7 ~ 0.5

o 10° - 60°  30° 45° 30° - 90° 30°

1.3 Validation simulations

ll.3.1 Simulation setup

For the verification of the numerical method and the validation of the
mathematical model, we first aim to reproduce the physical experiments of
Bullard et al. (2019). The landslide is represented by an elevated water reservoir
having a volume Vj. It is released from rest and accelerates due to gravity
along the sliding plane inclined with an angle a = 30°, finally reaching the
water reservoir with a still water depth ho (Figs. II1.2 and II1.3). We used
the solver multiphaseInterFoam (v1812) that implements Eqgs. (III.1)-(III.10)
and we extended it to consider the viscous contribution to the CFL criterion
(Eq. (II1.12)). We make use of two phases in the simulation, namely water
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P1P2 P3 P4 PS5 P6 P7 P8 P9

a =304 5
0 1931 6.0 8.8 11.3 16.8 22.0 26.6 326

Figure III.2: Overview over the simulation setup following the physical
experiments of Bullard et al. (2019). Nine gauges are registering the wave
amplitude at P1-9. Distances are shown in meters.

_ 3
Vo =0.473m VO = 0.368 m3

VO = 0.236 m3 VO =0.123 m3
i”o.mmiﬂo.%n‘lo.%m Jo2m

Figure II1.3: Close-up of the ramp: the initial volume V;; and the still water depth
ho has been varied between 0.1 m?® and 0.4 m? and 0.15m and 0.60 m, respectively.
The coarsest mesh is shown in grey in the background. The slide velocity vg(t)
and thickness s(t) are measured up at S1 in the numerical simulations (moved
up from S2 where it is measured in the experiments).

(pw =1000kgm—3, py, = 1073 kgm~1s™1), represented by the phase indicator
Oy and air (p, = 1kgm™3, pu, = 1.48 - 107 kgm~1 s 1), represented by the
phase indicator a,. Note also that different phases for the landslide and the water
reservoir are possible with the applied method, enabling different rheologies and
densities in the landslide. However, this was not required for the investigated
cases, as the water phase is used to represent both the reservoir water body and
the sliding material.

The experiment was conducted in a tank with width b = 2.1 m. The reservoir
that initially holds the landslide is restricted to a width of 1.7m for constructive
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reasons related to the release mechanism. We approximate the experimental
setup with a two-dimensional numerical setup that corresponds to a tank with
constant width b. The reduced width of the landslide reservoir cannot be modelled
directly with a two-dimensional setup and we approximate this geometry with a
decreased fill height, keeping the landslide volume V[ constant. The respective
volume equivalent fill heights are shown in Fig. I1I.3. The error related to
this simplification is expected to be small in comparison to other modelling
uncertainties. All boundaries are modelled as impenetrable walls (u = 0,
n-Vp = 0, with the boundary normal vector n), except the horizontal top
boundary of the tank, which is modelled as a free outlet (n-Vu =0, p =0,
n - Vay, = 0 for outward pointing velocity and oy, = 0 for inward pointing
velocity). The initial conditions for ay, and «, are defined by the landslide
volume Vj and the still water depth hg, the velocity is initially zero. We use four
different landslide volumes (roughly 0.1 m?® — 0.4 m?, see Tab. I11.2) and four
still water depths (0.15m — 0.60 m, see Fig. II1.3) leading to overall 16 different
cases that have been simulated for validation. Simulations and experimental
measurements are synchronised with the arrival time of the landslide at the
water basin (i.e. arrival of the landslide front at point S1), which we define as
t=0s.

The experimental slope and tank geometry is covered by a body fitted mesh
with a height of 1.5m, as shown in Fig. I11.2. For the exact geometry we refer
to Bullard et al. (2019). The mesh was generated using cartesian2DMesh, a
mesh generator of the cfMesh toolbox (Juretié¢, 2015). The mesh is dominated
by hexagons with aspect ratio one and the faces align with the horizontal
water surface. This circumvents numerical artefacts of the free surface at rest.
The meshed tank is sufficiently tall to cover the highest waves and to keep
enough distance from the boundary to prevent potential influences. Local mesh
refinements were applied to the landslide slope, the impact area and the location
of the free water surface, reducing the mesh size locally by a factor of four (see
Fig. II1.3). The total simulation duration was set to 20s which is sufficient to
cover the full wave propagation through the tank for most cases, except very
shallow ones.

A mesh refinement study (cell sizes and cell numbers in Tab. II1.3) was
conducted for the case with hp = 0.3m and Vy; = 0.4m?3. Additional
investigations with other configurations (not shown) provided similar findings.
The mesh refinement study was repeated with four different time step durations
(defined by CFL criteria, see Tab. I11.3), leading to overall 16 simulations that
were executed for verification. The time step duration is dynamically adapted
following the CFL criterion and its average lies between 10=%s and 1073 s, the
smallest time step with At ~ 107°s is found in the sliding phase. In the initial
simulations we observed severe convergence problems with the conventional
(i.e. convective) CFL condition (Eq. (III.11)), independent of the chosen limit.
We found an appropriate time stepping method limited by CFLYT < 1.0 and
CFL®™ < 0.5 and an appropriate mesh size of 0.01 m that have been used for all
simulations if not stated otherwise. This simulation is presented in form of a time
sequence in Fig. I11.4, showing landslide release (t = —1.25s), wave generation

122



Validation simulations

Table II1.2: Volumetric discharge, timings of the slide and mean slide properties.
The discharged volume V' is calculated by integrating the product of slide
thickness and slide velocity at the measurement point (S1 or S2).

Case discharge slide dur. gen. dur. slide vel. slide thickness
\% Aty At7s Vs 5
Experiment
Vo =0.123m> 0.122m>® 0.97s 0.38s 510ms~ Tt 0.022m
Vo =0236m? 0.223m>® 1.13s 0.50s 511ms~' 0.031m
Vo =0.368m? 0.360m>® 1.10s 0.57s 541ms~!  0.042m
Vo =0473m? 0.627m® 1.17s 0.62s 6.53ms~!  0.055m
Numerics
Vo =0.123m> 0.118m?® 1.20s 0.59s 5.03ms~t 0.014m
Vo =0.236m% 0.227m>® 1.43s 0.63s 5.83ms~ " 0.023m
Vo =0.368m? 0.356m> 1.60s 0.68s 6.34ms~! 0.030m
Vo =0.473m3 0.460m>® 1.69s 0.71s 6.6lms~* 0.036m

(t =0— 1.25s), wave propagation (¢t = 1.25 — 12.5s), inundation (t = 15s) and
wave reflection (¢ = 17.5s). Different stages of the impulse wave are highlighted
in Fig. II1.5. The impact and wave generation is shown in Fig. III.5¢ and II1.5d
alongside a fotograph of the experiment in Fig. I1I.5a and III.5b. Notably, a
large bubble of air gets trapped by the plunging wave. A similar pattern can be
observed in the experiment, however, the air is dispersed by turbulence into small
bubbles. The propagating wave is highlighted in Fig. II1.5d and the inundation
in Fig. III.5e.

Table II1.3: Difference in first wave crest at Gauge P9 between experiment and
simulation for various meshes and time step settings.

Az =0.015m Az =0.0125m Ax=00lm Az =0.0075m
N =0.48M N =0.69M N =1.08M N =1.88M
CFL*™ < 0.5 | 0.027m (14%) 0.014m (8%) 0.196m (105%) 0.150m (81%)
CFL™ < 0.1 | 0.020m (11%) 0.014m (7%) 0.020m (11%)  0.038m (20%)
CFL*™ < 0.05 | 0.031m (16%) 0.009m (5%) 0.025m (14%)  0.051m (28%)
CFLY™ < 1.0 | 0.025m (13%) 0.014m (8%) 0.001m (1%) 0.001m (1%)

1.3.2 Derivation of landslide metrics from simulations

All landslide parameters are extracted from the simulation with a line probe at
S1, as shown in Figs. I111.2 and II1.3. Bullard et al. (2019) used cameras with
view centre point S2 to extract the same parameters from the experiments. We
changed the position from S2 to S1 to simplifying the postprocessing, because
the original position was partially submerged in some cases. Differences between
position S1 and S2 are small (maximum difference in velocity ~ 0.2ms™!,
maximum difference in thickness ~ 0.003m) and can be neglected. The slide

thickness s(t) is calculated as the highest point at S1 in a slope parallel coordinate
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Figure II1.4: Time sequence of the simulation with Vo = 0.4 m?3, hg = 0.3m,
CFLY® < 1 and Az = 0.01 m.

system where a,, exceeds 0.5,

s(t) = max(Z|a,, (z,0>0.5), (I11.26)

with the slope local coordinate x = (#,2)” as shown in Fig. II1.3. The depth-
averaged slide velocity at S1 is calculated by averaging over the water phase,

[ aw(z 1) [u(z,0)]d2
0

vs(t)

- (IIL.27)
[ aw(2,t)d2
0

The slide thickness and velocity are presented and compared with the physical
experiment in Fig. I11.6 for all four slide volumes V{;. The mean slide thickness

. Atrse
5= Ao, s(t) dt (TT1.28)
and mean slide velocity
Atrse
7, = At;% ualt) dt (I11.29)
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Figure II1.5: Stages of the landslide tsunami in detail and in comparison with the
experiment: (a, ¢) the early impact and the plunging wave, (b, d) the formation
of a shallow wave, (e) propagation of the wave and (f) indentation and reflection
of the wave on the counter slope. The parameter and colour scale are as in
Fig. I11.4.

are calculated as averages over the time period At;5e,, which is the time during
which 75% of the volume passes the point. The total landslide duration At
is defined as the time period during which the slide height s(¢) continuously
exceeds 0.0008 m (in accordance with Bullard et al. (2019)). The total mass is
calculated as

msz//bpwaw(é,t) lu(z,t)| dz dt, (I11.30)
00

with the width of the tank b = 2.10m. Timings and averaged properties of the
slide are presented and compared with the physical experiment in Tab. II1.2.

I1.3.3 Derivation of wave metrics from simulations

The wave properties are measured at nine virtual gauges (i.e. line probes) that
are positioned as in the experiments, see Fig. II1.2. The free surface elevation
n;(t) at the i-th wave gauge is calculated as

ni(t) = max(z|a, (z,1)>0.5) — ho- (IT1.31)

Single droplets, which are recognized as short and high peaks in 7;(t), are
excluded. The resulting free surface elevation time series 7; is shown in Fig. I11.7
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Figure II1.6: Simulated slide thickness (coloured lines, left) and depth-averaged
slide velocity (coloured lines, middle) and landslide momentum (coloured lines,
right). For comparison the experimental data is shown in grey.

for different cell sizes and time step durations. The full set of results, with all
combinations of Vy and hg, is shown in appendix III.8. The first wave crest
at gauge i, an,; is identified as the first local maximum within an interval of
0.4 s that exceeds the minimum value within this interval for 0.04 m. The time
that corresponds to the first local maximum is defined as arrival time. The first
wave crest is shown as a function of the still water depth for all gauges and all
simulations in Fig. II1.8 to investigate the wave crest limit a, ; — 0.6 ho, that
was found by Bullard et al. (2019). The near field wave amplitude as used in
scaling relations is defined as the first wave crest at gauge P1 (Bullard et al.,
2019), am = am1-

Table IIL.4: Errors at selected gauges for the converged (Ax = 0.01m,
CFLY < 1.0) simulation with Vj = 0.4m3, hy = 0.3 m.

before breaking: | P1 P3
A, | 0.032m (8%) 0.088m (36%)
Aty | 0.13s (14%)  0.26s (12%)
after breaking: | P5 P9
Aty ; | 0.013m (6%) 0.001m (1%)
Aty | 0.14s (3%) 0.37s (3%)

1.3.4 Verification

We verify the numerical method by ensuring convergence through grid refinement.
Considering the early stage of the wave generation, all time stepping criteria
perform well. It can be seen in Fig. I11.7 that the convective CFL criterion is
stricter than the diffusive CFL criterion until ¢ = 0.5s. In other words, the flow is
convection dominated (CFLY < CFL™) until the impact because of the fast
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Figure I11.7: Wave gauges of experiments with a landslide volume of V = 0.4m?
and water height hp = 0.3 m. Results of different meshes are shown and offset
vertically by 0.15m for the sake of clearness. Conventional time stepping (left)
with CFL®"Y < 0.5 and improved time stepping with CFL“™ < 0.5 and
CFLY® < 1. Results with the conventional time stepping criterion are affected
by instabilities and diverge from the exact solution with mesh refinement. Results
with the improved time stepping are reasonable and converge towards the exact
solution for finer meshes. The last two columns show the CFL-numbers. It is
clear that unphysical behaviour is related to CFLY® > 1 (left). The first wave
crest at gauge P9 is also highlighted in Tab. II1.3.
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Figure II1.8: The first wave crest at Gauges P1-9 for all 16 simulations as a
function of the still water depth hg. The colour marks the landslide volume.
Coloured lines represent simulations, grey lines the respective experiments by
Bullard et al. (2019). The black dashed line marks the found limit of a,, — 0.6 hy.
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travelling landslide and the assumption of the traditional CFL criterion holds.
The model behaviour changes drastically during wave propagation which can be
seen best at the last gauge P9. The traditional time stepping criterion becomes
unstable and the numerical method diverges for finer meshes. The contribution
of the viscous term to the CFL number, CFLdiH, reaches values 50 times higher
than CFL®™. This shows that the momentum transfer is dominated by viscous
stresses at the later stages of the simulations. This issue could only be solved
with the modified (i.e. diffusive) condition, Eq. (III.12) and both, the wave crest
(Tab. I11.3) and the arrival time converge towards the exact solution. Further,
we found with this analysis that results show a numerical uncertainty (Roache,
1997) of a few percent at a mesh resolution of Az = 0.0l m. This mesh size
was hence used in all simulations. The case with Az = 0.01m, hg = 0.3m and
Vo = 0.4m? requires an execution time of roughly 24 h on 20 cores of an Intel
Xeon E5-2690 v4 CPU. The same simulation with Ax = 0.0075 m takes roughly
70 h, while changes in hg and V{y have little influence on the execution time. This
shows that further refinement is problematic due to the inverse quadratic scaling
of CFLY® with the cell size Az.

11.3.5 Validation
I11.3.5.1 Landslide

The slide, represented in terms of the landslide thickness s(¢) and landslide
velocity vg(t) at S1 is compared with the physical experiment (at S2) in Fig. I11.6.
The landslide velocity vs matches the experiment fairly well. Interestingly, the
smallest landslide (Vo = 0.1m?) and the largest landslide (Vy = 0.4m?) fit
best, with differences in mean velocity of less then 0.1ms™! (1%). On the
other hand, the two mid-sized landslides display mean velocity differences up to
0.83ms~! (15%), as the velocity in simulations increases steadily with landslide
volume while experiments show a jump between 0.3 and 0.4m?. The landslide
velocity is close to the free fall velocity that follows from this drop height
(Vmax = 7.5ms_1) and it is safe to assume that basal friction played a minor
role in these experiments. The landslide thickness s differs more strongly in all
cases. The maximum slide thickness is underestimated by the numerical method,
especially for the largest landslide, where a difference in mean slide thickness of
35% can be observed (the difference in the peak is higher). The tail is stretched
out and is thicker in the simulations, compensating the reduced volume flux in
the front of the landslide, leading to an overall similar volume in experiments and
simulations (see Tab. II1.2). Only the largest landslide differs substantially from
this observation and the experiment shows an apparent discharge of 0.627 m?
that exceeds the initial landslide volume (0.473 m?3) by 33%. It should be noted
that the thickness of the tail is below the cell size of Ax ~ 0.0l m and that the
numerical model cannot resolve such small length scales. The smallest resolvable
length scale can be identified in Fig. II1.6a as 0.005 m which roughly corresponds
to half of the cell size.
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Figure II1.9: Dimensionless mean properties of the landslides, the dimensionless
landslide mass M, the landslide Froude number F and the dimensionless landslide
thickness S, plotted against the dimensionless wave amplitude A,,. The grey
circles represent experimental results of Bullard et al. (2019), the coloured marks
represent numerical results, coloured after the water depth hg, and the marks
indicate the landslide volume V.

I1.3.5.2 Wave

The simulated wave is compared to the experiment in terms of the first wave
crest and the arrival time. A direct comparison of the wave gauge data (n;(t)) is
not practical, as a small error in arrival time can lead to a large apparent error.
The respective difference is shown in Tab. I11.4 for selected wave gauges of the
case Vp = 0.4m3, hy = 0.3m and lies between 1% and 36%, depending on the
position of the gauge. The difference is larger in the near field and reaches its
peak in the region where the wave is likely breaking while it reduces substantially
in the far field. The wave crest amplitude is shown for all configurations and all
gauges in Fig. I11.8 with similar differences. Furthermore this figure highlights
the breaking of waves, which eventually leads to a wave amplitude limit of
am,; — 0.6 hy in physical experiments and numerical simulations. The trailing
waves that are present in experimental results, especially in the case V5 = 0.1 m?,
ho = 0.6m, can also be found in the numerical simulations (see Fig. III1.16),
however they are substantially lower. Finally, the wave is reflected by the slope
at the far end of the flume and the simulation is able to describe this process
reasonably well in most cases.

lll.3.6 Scaling relations

The range of dimensionless properties from simulations and experiments is shown
in Fig. I11.9, alongside the dimensionless near field wave amplitudes. Scaling
relations are compared to the wave crest as extracted from simulations and from
physical experiments in Fig. I11.10. Moreover, it shows the relative difference,

130



Sensitivity and scaling analysis

defined as

Ay sk — A
e %, (I11.32)

with Ay, sgp being predicted with one of Eqs. (III1.20)-(II1.25) and A,, the
corresponding numerical or experimental result. Note that input data for the
semi-empirical relation Ay, gg was chosen in correspondence to A,,, either from
the experiment or the numerical simulation. Further, it should be noted that a
positive difference indicates that the semi-empirical relation overestimates the
wave amplitude.

The best fitting relation in terms of experimental results is given by Ay, ¢ max
(Eq. (IT1.24)) with an average relative difference of 25%, while the largest
difference was given by Azi5 (Eq. (II1.21)) with 79%. The same was observed
with respect to numerical results with average relative differences of 29% and
79%, respectively. This had to be expected as Ay, qmax Was developed for these
high mobility flows while Az15 aims to describe buoyant landslides. Interestingly,
the relative difference of Apg2 (Eq. (IIL.25)) collapses to a single line, indicating
a good fit but a mismatch of a constant factor. These preliminary results on
scaling relations are valuable and interesting but show several problems, such
as the narrow parameter space and the high correlation between the different
landslide parameters. Furthermore, scaling relations have not been adjusted to
the characteristics of the presented cases. The extended scaling and sensitivity
analysis below aims to resolve some of these problems.

ll.4 Sensitivity and scaling analysis

The concept of a gravity driven, naturally developing landslide is not very
convenient for a well defined sensitivity analysis of slide parameters S, F, M,
AT and basin parameters hg and «. Parameters cannot be explicitly controlled
and we have to rely on initial conditions to manipulate landslide parameters.
Moreover, parameters are widely correlated in such a case (see Fig. I11.9). In this
section, the gravity driven landslide as used in section II1.3 is therefore replaced
with a well controlled boundary condition near to the point of impact as shown
in Fig. IT1.11. Natural events span over a wide range of parameters, from slow
cliff collapses to fast slides that accelerated on long slopes and we aim to cover
this wide range with the modified simulation setup. This concept is similar to
the experiments of Fritz (2002), however, with water instead of granules as slide
material. With this concept we can lock the slide thickness s(t) =3, the slide
velocity vs(t) = Ts and the landslide duration Atg to predefined values. The
landslide mass

ms = ps bS5 T Aty (I11.33)

is correlated to these parameters and the landslide density ps. Geometrical
properties such as the slope angle o and the still water depth hy can be set
during geometry generation and simulation initialisation. Note that a variation
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Figure III.10: Semi-empirical models for the first wave crest, Aro2, Annio,
Az158, Azisat, Aq and Ay max compared to the measured first wave crest in
the experiments (grey marks) and the numerical results (coloured marks). The
respective differences are shown below. The colour represents the slide Froude
number F and the form represents the landslide volume V;;. The black dashed
line indicates a perfect fit.
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of the geometry leads to different impact positions (i.e. the point where landslide
and reservoir touch first, see Fig. II1.11) in relation to the position of the first
gauge. However, we estimate that the influence of this variation on the wave
generation is small, considering the small change of the wave amplitude between
P1 and P2 in the verification cases. Another benefit of the modified case setup
is the reduced computation time as the landslide slope and the time before slide
impact are not simulated. Moreover, the simulation duration and tank extension
are reduced to 10 m and 5 s, respectively, and we focus on the first wave gauge
P1.

P1

Figure III.11: Modified simulation setup for the sensitivity analysis. Four
geometries for four impact angles are shown. The inlet boundary condition,
indicated by the arrows, prescribes the velocity u over the slide thickness s
for a duration of At. The wave is recorded as before at P1. The geometry is

automatically generated and the position of the inlet follows from the still water
depth hg.

Table I11.5: Slide parameters in the sensitivity analysis. Underlined parameters
are combined with all other parameters, non-underlined parameters are combined
only with underlined parameters.

slide duration Ats slide velocity U5  slide thickness 5 angle o  depth hg

0.25s Ims—! 0.01lm 10° 0.15m
0.50s 2ms~! 0.02m 20° 0.30 m
1.00s 3ms ! 0.04 m 30° 0.45m
1.50s 4ms! 0.06 m 40° 0.60 m
6ms—! 0.08 m 50° 0.75m

60° 0.90 m

We choose parameters as presented in Tab. II1.5 to extend the coverage of the
parameter space in comparison to section II1.3. In particular, we are interested
in lower Froude numbers to investigate the regime change between subcritical
(F < 1) and supercritical (F > 1) wave generation. To reduce the number
of required simulations, only selected parameters (underlined in Tab. II1.5)
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are combined with all other parameters. This way, we reduce the number of
simulations to 112, without influencing the parameter resolution significantly.
Each parameter is applied in at least four simulations. All simulations with the
simplified case setup have been executed on a high performance cluster within
24 hours, using about 400 Intel Xeon E5-2690 v4 cores.

The relationship between the simulated dimensionless slide parameters and
the first wave crest is presented in Fig. II1.12. It can be seen that we achieve
a wide range of slide parameters and that they are not as correlated as before.
The results of the scaling relations and the respective differences are presented
in Fig. II1.13 (see also Tab. II1.6). The best fitting relation for this setup is
Aisa¢ with an average relative difference of 23%, followed by Ay pgio with a
relative difference of 27%. As before, the difference of relation Aggo (Eq. (I11.25))
collapses to a line and the respective difference is similar with roughly 70%.
This fact is very interesting and hints towards a strong predictive power of this
relation.

A simple statistical analysis gives a good overview over the significant
correlations between landslide parameters and the wave amplitude. The
correlation between wave amplitude and landslide parameters is given in terms of
correlation coefficients as R(M, Ay,) = 0.88, R(F, Ayn) = 0.74, R(S, Am) = 0.78,
and R(AT, Ay,,) = 0.32. The correlation between the wave amplitude A,, and
the slope angle « is very low, R(cos(a), Ay, ) = 0.06.

Further, a multiple regression was conducted to derive multiple scaling
relations with increasing numbers of parameters. Inspired by the high single
parameter correlation of landslide mass M with wave amplitude A,,, we first
tested a scaling relation solely based on this parameter. The two free parameters
were optimized to fit the numerical results, leading to

Aypq = 0.45 MO-33, (I11.34)

The wave amplitude is predicted by this relation with an average relative error
of 26% and the correlation (R-value) between the relation and simulation is 0.91.
A second scaling relation (two parameter relation), inspired by Fritz (2002), is
based on Froude number F and slide thickness S,

Ay g = 1L.3FH2 8097 (I11.35)

and yields an average relative difference of 20%. The correlation between
predicted and simulated amplitude is 0.95. Powers of F and S are very similar to
values reported by Fritz (2002) but the constant factor is about 5 times higher.
This was already indicated by Fig. I11.13, where the difference of relation (I11.25)
was appearing as a line. Other relations based on two parameters show a similar
performance, e.g.,

Ano2 = 1.0 M99 AT0-58, (II1.36)

based on landslide mass M and landslide duration AT (average difference 18%
and R-value 0.94). Taking into consideration three parameters,

AM,B = 0.83 F0.76 50.52 MOAO, (11137)
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reduces the average relative difference to 16% (R-value 0.95). Adding the impact
angle a (four parameters),

Appg = 0.89 FO-80 G050 1038 ¢56(5)0-57, (I11.38)

improves results slightly (difference 14%, R-value 0.95). Note that with the
present setup, all these parameters and the dimensionless landslide duration AT
are related through (see also Eq. (I11.33))

M = SFAT (I11.39)

and they can be exchanged respectively in Eqgs. (II1.37) and (II1.38). Three
selected scaling relations (An1, Awm,2, Am3) are compared with simulation
results in Fig. I11.14 alongside the relative difference.

Notably, not all relations perform similar if they are applied to the cases of
Bullard et al. (2019). As shown in Tab. III.6, especially relations involving the
total landslide mass M perform poorly. Ay 2, based on Apge, performs best in
such a scenario.

Table II1.6: Average difference between scaling relations when compared to
experiments and numerical simulations. The first block shows relations from
literature, the second block shows relations optimized to the inlet driven
simulations. They are compared to experiment and the gravity driven simulations
(grey numbers) without further optimization.

Scaling rel. optimized for | Experiment gravity driven inlet driven
Aroo granular slides 68% 73% 1%
© | Agmio granular slides 43% 40% 29%
% Ayiss buoyant slides 79% 79% 55%
< | AzispT buoyant slides 59% 62% 25%
= Ag granular slides 50% 58% 72%
Aq max liquid slides 29% 25% 47%
< | Ama simulations 55% 52% 26%
8| Ampe simulations 24% 15% 20%
g | Am2o simulations 72% 64% 18%
8| Ams simulations 31% 20% 16%
Ang simulations 26% 16% 14%

1.5 Discussion

l1.5.1 Verification

We observed severe problems with the convective CFL condition (Eq. (IIL.11)).
A reduction of the limit on CFL®™ (as done from 0.5 to 0.1 and further to 0.05)
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Figure I11.12: Dimensionless mean properties of the landslides in the modified and
extended simulation setup. The dimensionless landslide mass M, the landslide
Froude number F, the dimensionless landslide thickness S, the dimensionless
landslide duration AT and the cosine of the impact angle cos(a) are plotted
against the dimensionless wave amplitude A,,. The colour represents the still
water depth hg, the mark represents the impact angle a.

helps to some regard, however, a reliable convergence can only be achieved with
the full CFL criterion, including the viscous contributions CFLY™. This can be
traced back to the fact that the momentum conservation equation is dominated
by viscous stresses. The diffusive term of the partial differential equation has to
be taken into account in stability considerations, as already shown by Courant
et al. (1928) (see also Ferziger and Peri¢, 2002; Moukalled et al., 2016, for a more
specific interpretation in terms of Navier—Stokes Equations). The domination of
viscous stresses can have many reasons, in our cases it can be related to the small
scale of the experiment and the respectively small cell size (compare scaling of
Eq. (II1.11) with Eq. (I11.12)) while the viscosity itself is not exceptionally high.
Furthermore, the jump of the viscosity at the free surface might be problematic.

Most numerical results converge well with the correct time stepping criterion
and we estimated a numerical uncertainty of a few percent. Some gauges (P2
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to P5) differ from this trend, but these deviations can likely be linked to wave
breaking. This issue could probably be addressed by fine-tuning the parameters
of the turbulence model, but investigating this is beyond the scope of this paper.

Generally, as reported by Roenby et al. (2017), 10 to 20 cells along the
wave crest are required in OpenFOAM with MULES for accurate results of
non-breaking waves. This was confirmed by our results which also contain
breaking waves. The applied mesh size of Ax = 0.01 m was sufficient for most
waves, although small waves with a,, < 0.1 m appear too diffusive in simulations
(find the full set of simulations in appendix II1.8). This is especially the case
for the trailing wave train following the first wave crest. This confirms once
more that at least 10 cells along the wave crest should be used in OpenFOAM.
Results appear very accurate with 20 cells along the wave crest and we expect
no further improvement with finer meshes as results converge rapidly towards
the exact solution. Moreover, further refinement is very expensive for a long
tank as used in here, as the numerical cost grows quickly (with 1/Az") due to
the strict stability criterion. It should be noted that this issue might not be
equally severe for real scale cases. The length scale will be substantially bigger
in real scale cases while the viscosity will be similar (depending on landslide
rheology). This scaling behaviour will allow comparably large time steps and
lower execution times for larger cases.

ll.5.2 Validation

Aside from numerical accuracy, the applied mathematical model was tested for
physical accuracy, i.e. if it is appropriate for the considered problem. This is
achieved by a comparison of the slide thickness, the slide velocity, the first wave
crest amplitude and the arrival time of the wave in simulations and experiments.
We want to stress that it is important to only use converged results with low
numerical uncertainty in such a comparison.

The simulated landslide velocity fits reasonably well to the experiments with
two outliers (Vo = 0.2 m? and Vy = 0.3 m3). The reason for this discrepancy
could not be conclusively explained. However, we assume that the difference
remains within the uncertainty of the experiments and we found the numerical
results to be reasonable. The error in the slide thickness is substantially higher.
The numerical method is not able to resolve the thin tale of the landslide and it
appears with a thickness of 0.005m in simulations (see Fig. II1.6). An unrealistic
amount of fluid is accumulated in the tail. This volume is missing in the front
and middle region of the slide where the thickness is respectively underestimated.
Finally, a droplet forms from all the fluid that was left on the slope and that
could not be resolved by the numerical method.

This behaviour was observed with all mesh sizes during verification. This
might indicate that a substantially finer mesh is required or that the method
is not suitable to resolve the thin tale of the fluid landslide. Depth-integrated
flow models are not affected by such problems and will perform better in this
situation. This issue does not affect the inlet driven simulations for the scaling
analysis as the landslide entered the simulation domain close to the impact area
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with constant and resolvable thickness. The relative error in the maximum slide
thickness is roughly 30% for the three small landslides but almost 50% for the
largest landslide. The higher error for the largest slide is related to the increased
discharge in the experiment (133% of initial landslide volume). The additional
volume in the experimental landslide can probably be traced back to entrainment
of air into the turbulent slide which is not represented by the numerical model.

Notably, the boundary layer of the slope has not been resolved either. This
layer is of high importance for the basal friction and thus the velocity of the
landslide. However, basal friction seems not important in the investigated setup
and the velocity is not affected by this issue. This might change for other
materials such as granular slides, where the friction is substantially higher and
depending on a well resolved boundary layer.

The simulated wave amplitude and the arrival time compare generally well
to the experiment. We observe that the error diminishes in the far field. This
indicates that the turbulent generation stage and wave breaking is the most
challenging problem, while wave propagation and the prediction of the limit
am,; — 0.6 ho is remarkably accurate. Note, that the limit found in experiments
and numerical simulations is considerably lower than the breaking limit for
solitary waves close to 0.8 times the water depth.

The highest relative error in the verification case appears at P3 (36%). This
difference is likely related to the breaking of the wave, which takes place before
P3 in the experiment but after P4 in the numerical simulation. Accordingly,
the error at P5 is small (6%) and the far field error at the last gauge, P9, is
even smaller (1%). In fact, breaking of waves and the amplitude thereafter
is predicted well by the numerical method, compare Fig. I11.8. However, the
timing is very sensitive to diffusive processes in the flow and the exact onset is
hence hard to predict with the numerical method. This leads to large errors and
partially diverting results at Gauges P2 to P5.

Extending the validation to cases beyond the verification case Vy = 0.4 m?,
ho = 0.3m, we found that experimental and numerical near field amplitudes
match generally well, with only a few cases giving larger errors (above 25%). The
same is the case for far field amplitudes, however, where the error increases for
lower wave amplitudes and thus lower landslides volumes to Aay, 9 = 0.014m for
Vo =0.3m3 and Aay 9 = 0.016m for Vy = 0.2m3. This most likely corresponds
to the numerical uncertainty, which is related to the number of cells across the
wave crest.

ll.5.3 Scaling relations

The six semi-empirical scaling relations have been compared to the experimental
measurements of Bullard et al. (2019) and the respective numerical results in
Fig. IT11.10 and Tab. I11.6. Further, we extended the parameter space substantially
with a simplified setup. In particular, we aimed to cover the more subcritical
wave generation indicated by F < 1, different impact angles and higher reservoir
depths. The simple statistical analysis showed that the total landslide mass M
is the most reliable and most influential landslide parameter for this setting.
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Moreover, F and S are second most important when used as single correlation
parameters. According to our simulations, the impact angle a plays no relevant
role for the wave amplitude. However, it should be noted that these results are
limited to almost frictionless landslides with density ratio R = 1 and that the
impact angle might play a role in buoyant or granular slides.

The multiple regression gives us further insight into the wave generation
mechanism. The scaling relation with landslide mass M yields an average relative
error of 25% in relation to the simulations. Taking into account the velocity of
the landslide at impact can reduce the average relative error to 17%. Both of
these relations perform exceptionally good considering their simple structure
and the wide range of parameters. In fact, the scaling with F and S (A2,
Eq. (II1.35)) yields consistently good results in all simulations as well as in
experiments of Bullard et al. (2019) and Fritz (2002). The difference found in
the constant factor of this relation might be related to the relative density R and
a respective extension might further improve the predictive skills of this relation.

Ay (Eq. (IT1.34)) and An2.2 (Eq. (IIL.36)) including the landslide mass
M describe the inlet driven simulations well but the predictions can not be
transferred to the setup of Bullard et al. (2019), where they perform poorly. We
conclude that the landslide mass is transferred into wave energy more efficiently
in the inlet driven simulations. This is most likely related to the shape of the
landslide and the low energy tail of the naturally evolving landslide which does
not contribute to tsunami genesis. The shape of the landslide might be an
important factor in real case landslide tsunamis and different failure mechanisms
(e.g. cliff collapses with short travel distances (Viroulet et al., 2013)) might
require different scaling relations and parametrisations. Equation (II1.35), based
on F and S, is not affected by these issues as F and S are estimated from the
highly energetic front and middle part of the landslide that actually contribute
to tsunami genesis (compare tsunami generation duration At75e,). This shows
the limits of scaling relations and that they cannot be transferred to different
situations without substantial uncertainties. Properties of the landslide that are
not described by mean parameters can have a significant impact on the wave
generation and scaling relations are not able to cover these influences. This also
highlights the added value of numerical simulations which are able to describe
various situations with a single set of parameters.

Interestingly, the simulations allow an estimation of the tsunami generation
duration. Fig. II1.12 shows that the wave amplitude remains constant after the
landslide duration reaches a value of approximately AT = 4. Further simulations
with landslide durations up to AT = 15 (not shown) confirmed this conjecture
and we estimate the tsunami generation duration to be not longer than

At gen max ~ 4 | [0 (I11.40)
g

The landslide mass impacting the reservoir within this duration can be transferred
into the tsunami while the remaining mass has no first order effect on the near
field wave amplitude.
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In the setting investigated here, the basin and especially the impact area
are very shallow, which means that the landslide is displacing the water mass
horizontally during the impact, mimicking a collisional process. Our findings
suggest that the landslide mass M (or volume) has a first order effect on the
tsunami generation and that the displaced water volume in the basin is the
primary factor controlling the tsunami generation. Further, the scaling can be
improved by including the Froude number F, indicating that the momentum
transfer between the landslide and the water reservoir plays a secondary but
still notable role. We anticipate that non-linear effects in the generation phase
are also the reason for the non-linear best fit relationship. Combining more
than two parameters does not improve the predictive skill of the semi-empirical
relations substantially in our case. We further note that there is no substantial
difference between sub-critical (F < 1) and critical (F > 1) landslides (see
Fig. III.14a). A possible reason is that the present configuration resembles a
horizontal displacement or pushing rather than a changing bottom topography
that moves independently from the wave, such as for submarine landslides (e.g.
Lovholt et al., 2015). Moreover, all of the simulations involve supercritical
generation in the shallow region of the impact near the shoreline, which implies
that the definition of the Froude number in terms of the terminal depth is
somewhat artificial. Finally, it should be noted that these observations are
limited to idealized water slides and that granular or buoyant slides might
behave different.

1.6 Conclusion and outlook

The experiments of Bullard et al. (2019) allowed us to verify and validate
OpenFOAM for landslide tsunamis. The landslide was represented in an idealized
manner by water, allowing us to ignore granular rheology and porosity of the
landslide. Furthermore, we ignored variations across the tank width to reduce the
experiments to a two-dimensional problem. The multiphase solver of OpenFOAM
is well suited to simulate the process, if the correct Courant-Friedrichs-Lewy
criterion is considered. However, the CFL criterion is often used in a simplified
form, which we found to be insufficient for impulse wave simulations. The strict
stability criterion that we applied leads to a substantial increase in computational
cost, especially for fine meshes. The applied CFL criterion can be further refined
by taking into account that a part of the viscous term is included implicitly.
In the long term, an implicitly block-coupled solver (e.g. Uroié et al., 2019),
not limited by such a stability condition, is desired to solve these performance
issues. In real scale cases this stability criterion might be less problematic due
to its scaling with cell size and viscosity. This indicates that the numerical cost
of real scale impulse wave cases (as conducted with other tools before, see e.g.
Gisler et al., 2006; Gabl et al., 2015) with OpenFOAM might be manageable.
The cell size at the free surface should be smaller than 1/10 of the expected
wave amplitude (see also Roenby et al., 2017). Geometric interface convection
schemes (see e.g. Marschall et al., 2012; Roenby et al., 2017) might achieve the
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same accuracy with less cells. The required grid resolution is achievable for
impulse waves with relatively high wave amplitudes (in relation to the simulation
domain). However, tsunamis with small amplitude in relation to the simulation
domain are out of the scope of this method and depth-integrated models should
be applied. The landslide and especially its thin tail and its bottom boundary
layer could not be properly resolved in this study, leading to an underestimation
of the flow thickness in the tsunamigenic part of the landslide. The slide velocity
was not affected, presumably because the boundary layer and basal friction
played a minor role in the investigated setup. A more realistic representation
of the landslide with complex rheologies might require a substantially higher
resolution of the landslide slope.

We executed a sensitivity and scaling analysis in order to evaluate the
predictive power of semi-empirical scaling relations. We found that a simple
scaling relation involving solely the landslide mass or volume performs surprisingly
well. This can be traced back to the wave generation process which relies to
leading order on the displacement of water in the basin. The sensitivity study
revealed an upper limit of the tsunami generation duration, after which the first
wave crest cannot be influenced by the landslide. In most cases the landslide
duration is not sufficient for the wave to run away and the Froude number,
quantifying this effect, has less influence compared to submarine landslides.
Including the Froude number and thus the landslide velocity into the semi-
empirical relation gives a slightly better correlation, which implies a second
order effect of momentum transfer from the landslide into the water reservoir.
Furthermore, multi-parameter scaling relations involving three or more landslide
parameters did not notably improve the predictive power of the semi-empirical
relations. However, this observation is limited to the simplified model applied in
here and might not translate to granular and buoyant slides. We noticed that
scaling relations based on the total landslide mass cannot easily be transferred
between our two simulation setups, which we relate to a more efficient wave
generation in the second setup. The scaling relation based on the Froude number
and the slide thickness performed better in this regard and achieved good results
in both setups with a single set of parameters. However, Froude number and
slide thickness are significantly harder to identify and to predict than the total
landslide mass.

The applied numerical method is flexible and allows a wide range of further
studies. Three dimensional cases and real scale cases are in the range of
possibilities with high performance computing. Dynamic mesh refinement and
load balancing might further increase the efficiency (Rettenmaier et al., 2019).
Granular and other visco-plastic rheologies can be included in a simple way
by introducing a non-Newtonian viscosity relation (e.g. Rauter et al., 2020).
Porosity and pore fluid effects, on the other hand, require deeper modification of
the numerical method (e.g. Cheng et al., 2017; Si et al., 2018b). Natural terrain
can be included in simulation with complex body-fitted meshes (Rauter et al.,
2018).
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lI.7 Appendix: Stability and time stepping

Hyperbolic equations (III1.2)-(IIL.3) introduce characteristic velocities at which
disturbances are propagated and the numerical method has to account for
this properties. The elliptical pressure equation derived from Eq. (III.1) is
exempted as it is solved implicitly. The characteristic velocity of the momentum
conservation equation (II.3) is usually the highest and introduces the strongest
limitations in terms of time step duration. We will show in the following
the derivation of the maximum time step duration at which stability can be
guaranteed. For the presented simulations, it was imperative to consider the
exact limit and not the approximation that is usually applied in OpenFOAM.
Equation (II1.3) can be written in a simplified partially discretized form as (see,
e.g., Moukalled et al., 2016)

. u u
Vppz;.l P —|—Z( 1SfIlf 11} 1)uflz

s

convect‘i:/e term
zuf sy v (9 (5 (7w7),

~
diffusive term

~Vp (Vp)p + Ve pp ' g+, (IT1.41)

where the index f indicates values on a face f which is located between cells P
and N (see Fig. II1.15). Face values are calculated by interpolating values on cell
centres P and N. The contributions of molecular and turbulent viscosity have
been combined into the viscosity u as their effect on stability is similar. The
velocity at the face uy is in the following approximated with the upwind scheme
for an outward pointing velocity vector as uy = up. It can be shown that this
is the worst case in terms of transient stability and thus an upper limit for the
stability criterion. ny is the outward pointing (from P to IV) face normal vector
and Sy the face area. Vp is the cell volume of cell P and dpy is the distance
between cell centres P and N.

The index i indicates fields at the unknown time step t?, the index i — 1 at
the last known time step t'~! = t' — At, where At is the time step duration
(see Fig. I11.15). Discretization of the pressure gradient term is not required
at this point. Furthermore, the transposed component of the viscous term is
ignored for simplicity (note that this would be accurate for constant viscosity)
and it is assumed that its magnitude matches its non-transposed part, which can
be written as a diffusion term. It is further assumed that the diffusion term is
included explicitly, although only the transposed component of the viscous term
is included explicitly in OpenFOAM. This way, we can estimate the limitation
introduced by the transposed component. The stability of transient cases depends
on the coefﬁcients of u’, and ué;l in this equation, which are collected and
written as a’s and aZ 1. For the solution to be stable and converging, it is
required that a', and a5 L ie. coefficients of temporal neighbours, have different
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Figure II1.15: Discretisation of space is conducted with finite volume cells, the
time is split into a finite number of time steps.

signs (opposite signs rule, see e.g. Moukalled et al., 2016). All coefficients of u’,
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are strictly positive, implying that coefficients of ué;l

b = > 0, (111.42)
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have to be negative for a stable solution. This imposes a restriction on the time
step duration At,

Vppl!
5 (p}_l Syny-uf *’“‘f—)

which is generally known as the CFL condition (after Courant et al., 1928). The
Courant-number for equation (II1.41) is defined as

. . g
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At <

(I11.44)

CFL = , (111.45)

Vp Pio_l
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and limited to a specific value for stability, in case of the forward Euler scheme,
CFL < 1 (Moukalled et al., 2016). Contributions of diffusion or viscosity
(containing p) and convection (containing u) are simple to identify and two limit
cases of neglectable viscosity

At % (p}_l S¢ng - u}_l)

CFL®™ = — , (111.46)
and neglectable convection
S
At > (Mf —dPJ;V)
cPLif - T~ 7 (IT1.47)

can be found. The latter is similar to the Fourier number in heat conduction
problems (Incropera et al., 2007). Equations can be simplified for one-dimensional
equidistant (Az) grids (Vp = Az Ay Az, Sy = Ay Az, dpy = Az) and constant
fields to Eqgs. (II1.11) and (III.12), which are commonly known and simpler to
interpret. However, it should be noted that neither of those should be called
Courant-number of Eq. (I11.41), as they only cover respective parts or limit cases.
If the viscosity p is constant, it is possible to implicitly consider the respective
term in a segregated solving routine, and only the non-linear convective term has
to be considered in the stability criterion (Eq. (II1.46)). Furthermore, assuming
flowing water with a velocity of 10ms™!, the contribution of viscosity would
only be relevant for very fine meshes with grid size Az < 1075 m. Therefore, the
contribution of viscosity is often neglected, which is also the case in OpenFOAM.
However, considering high viscosity flows (e.g. landslides) or flows with low
particle velocities (e.g. surface waves), this leads to instabilities with devastating
consequences for results. The here investigated flows have a remarkably high
turbulent viscosity and a relatively low convection (velocity) in the later stages
of wave propagation. Furthermore, small cells are required to describe the free
surface waves. All these circumstances lead to a notable contribution of viscosity
to the CFL-number and the full relation has to be considered.

.8 Appendix: Validation simulations

In the following, we will provide the wave gauge data of all 16 simulations, that
have been conducted for validation of the numerical routine. These simulations
give a good overview over accuracy of the mathematical model and the numerical
solution in various situations. This wave gauge data has been summarized in
Fig. I11.8 in form of the first wave crest.
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Chapter 2
Summary and outlook

This thesis spans over a very broad topic, from granular landslides, their rheology
and the role of pore fluid to their interaction with water bodies and tsunamis.
All developments and investigations were carried out for the goal of a unified
simulation of landslides and tsunamis within a single framework. The Navier—
Stokes Equations and non-Newtonian rheologies like the p(7)-rheology made this
possible while keeping the complexity to a reasonable level. The models that were
developed and applied in this thesis have been implemented in the open source
toolkit OpenFOAM. This did not only simplify and accelerate the task but also
ensure that the models are usable by other scientists and engineers in the future.
Papers I and II established the required rheologies and their implementation into
OpenFOAM. Paper III investigated the capabilities of OpenFOAM to predict
landslide generated tsunamis, their propagation and breaking mechanisms and
paper IV combined the first three works into a unified simulation of granular
landslides and tsunamis. It should be noted that paper IV is still in preparation
and results might still change.

The work focused on the establishment of the basic three-dimensional model
and leading order effects, such as granular rheology and permeability. Many
effects are not included and there are vast opportunities to improve and extend
the presented model. Most notably, the applied granular rheology is still a very
strong simplification of the complex behaviour of granular materials, the critical
state theory is not fully implemented and scale effects that can be observed in
nature are not fully reproduced. The implementation of the full critical state
theory might be especially valuable for the initial phase and quasi-static regions
of landslides. At the current stage, this regime is not handled sufficiently and
the initialisation and release volume has to be established with other soil models
or observations. Further, the interaction with water bodies can be improved
by including surface tension, capillary forces, a turbulence model or a better
interface tracking algorithm, just to name a few examples. Nevertheless, the
model provides a good baseline for further model developments but also for the
investigation and prediction of landslide tsunamis. The model parameters and
their determination, especially a priori or without extensive knowledge of an
event are still problematic, although the presented model provides new insights
and some upsides in comparison to traditional depth-integrated models.

The full three-dimensional model is computationally more expensive than
simplified depth-integrated two-dimensional models. Further, numerical diffusion
of the wave has to be expected if the computational resolution is not sufficiently
fine. These are strong drawbacks, however they are balanced by substantial
upsides, such as a direct simulation of the interaction between slide and water
body, breaking waves and inundations. There might be cases where the increased
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insights of the three-dimensional model are worth the high numerical expense,
especially for real cases with suspected high socio-economic impact. Growing
computational resources might make the full three-dimensional model more
affordable and practically applicable in the future. There are various other ways
to exploit the upsides of the presented method, either by learning to improve
simplified methods or by some sort of coupling.
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Appendix A
Selected examples of code

The following section provides some code examples that have been instrumental
for the presented computations. The code is not complete but provides all
important information to achieve a consistent implementation to reproduce the
results, although own effort will be required for a working implementation.

A.1 Extension of time step duration algorithm to high
viscosity

The code in Lst. A.1 was executed in multiphase FulerFoam alongside the existing
calculation of the Courant number. The time step is then chosen such that all
Courant numbers remain under pre-defined limits. A similar calculation was
added to multiphaselnterFoam, however adapted to the specific solver.

Listing A.1: Calculation of the viscous Courant number in multiphase EulerFoam.
scalar viscosityCoNum = 0.0;

forAllIter(PtrDictionary<granularPhaseModel>, fluid.phases(), iter)
{

granularPhaseModel& phase = iter();
volScalarField nuEff(turbulence->nut() + phase.nu());

scalarField sumPhi
(

fvc::surfaceSum
(
0.5+mag(fvc::interpolate(phasexnuEff)+mesh.magSf ()x*
mesh.surfaceInterpolation::deltaCoeffs())
)().primitiveField()
DE
scalar vCoNumPhase = gMax(sumPhi/mesh.V().field())+*runTime.deltaTValue();

viscosityCoNum = max(viscosityCoNum, vCoNumPhase);

A.2 Implementation of particle pressure
The code in Lst. A.2 was added to multiphaseEulerFoam for Paper II.

Listing A.2: Implementation of particle pressure in pEqn.H of multiphaseFEuler-
Foam.
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volScalarField pp(phase.granularPressure());
pp = min(pp, phase.psModel().pmax());

surfaceScalarField gradPpf = fvc::snGrad(pp)x*mesh.magSf();

forAll(p_rgh.boundaryField(), patchi)

{
if (isA<zeroGradientFvPatchScalarField>(p_rgh.boundaryField()[patchi]))
gradPpf.boundaryFieldRef () [patchi] = 0.0;

phiHbyAs[phasei] += - fvc::interpolate(rAUs[phaseil)x*gradPpf/phase.rho();

HbyAs[phasei] += - rAUs[phaseilx*fvc::reconstruct(gradPpf)/phase.rho();

A.3 Changes to include components (i.e. subPhases) in
multiphaseEulerFoam

The following code is a selection of the modifications to multiphase EulerFoam
that was required for Paper IV. In particular, the momentum conservation
equation was modified to allow a variable phase density (Lst. A.3) and to allow
a split of phases in components (called subphases in the code, Lst. A.4).

Listing A.3: The new phase momentum conservation equation in UEqn.H to
account for variable phase densities. The residual phase fraction avoided the
complete vanishing of phase fractions and improved stability. This change
enforces other changes (multiplications with rho) in pEgqn.H.

const volScalarField alpha® = max(alpha, phase.residualPhaseFraction());

new fvVectorMatrix
(
fvm::ddt(alpha, phase.rho(), U)
(alpha0-alpha)*fvm::ddt(phase.rho(), U)
fvm: :div(

phase.alphaRhoPhi(),

u

)
fvm::laplacian(alpha®xphase.rho()*nuEff, U)
fvc::div
(

+ +

alphaOx*phase.rho()x*
nuEffxdev2 (T(fvc::grad(U))),
"div(Rc)"

);
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Listing A.4: The new phase model to account for the additional handling of
subPhases or components

void Foam::phaseModel: :solveAlphas(const scalar cAlpha)

{

if (subPhases_.size() < 2)

{
alphaRhoPhi_ = alphaPhi_xfvc::interpolate(rho());
return;

}

word alphaScheme("div(phi,alpha)");
word alpharScheme("div(phirb,alpha)");

surfaceScalarField alphaPhiRel = alphaPhi_;

surfaceScalarField phic(mag(alphaPhiRel/U_.mesh().magSf()));
phic = Foam::min(cAlphaxphic, Foam::max(phic));

PtrList<surfaceScalarField> alphaPhiCorrs(subPhases_.size());
int phasei = 0;
forAllIter(PtrDictionary<subPhase>, subPhases_, iter)
{
subPhase& alpha = iter();
alphaPhiCorrs.set
(
phasei,
new surfaceScalarField
(
“phi" + alpha.name() + "Corr",
fvc::flux(alphaPhiRel, alpha, alphaScheme)

);

surfaceScalarField& alphaPhiCorr = alphaPhiCorrs[phaseil;
forAllIter(PtrDictionary<subPhase>, subPhases_, iter2)

{
subPhase& alpha2 = iter2();
if (&alpha2 == &alpha) continue;

surfaceScalarField phir(phic*nHatf(alpha, alpha2));

alphaPhiCorr += fvc::flux

(
-fvc: :flux(-phir, alpha2, alpharScheme),
alpha,
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alpharScheme
)
}

MULES: :limit

(
1.0/U_.mesh().time().deltaT().value(),
*this,
alpha,
alphaPhiRel,
alphaPhiCorr,
zeroField(),
zeroField(),
1,
0,
true

)

phasei++;

}
MULES: : limitSum(alphaPhiCorrs);
alphaRhoPhi_ = dimensionedScalar(dimensionSet(1, 0, -1, 0, 0), Zero);

phasei = 0;
forAllIter(PtrDictionary<subPhase>, subPhases_, iter)

{
subPhase& alpha = iter();

surfaceScalarField& phi = alphaPhiCorrs[phasei];
phi += upwind<scalar>(U_.mesh(), alphaPhiRel).flux(alpha);

MULES: :explicitSolve
(
xthis,
alpha,
phi,
zeroField(),
zeroField()
)

alphaRhoPhi_ += phixalpha.rho();
phasei++;

Foam: : tmp<Foam: :surfaceVectorField> Foam::phaseModel: :nHatfv

(
const volScalarField& alphal, const volScalarField& alpha2

) const

{
surfaceVectorField gradAlphaf

(
fvc::interpolate(alpha2)xfvc::interpolate(fvc::grad(alphal))
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- fvc::interpolate(alphal)x*fvc::interpolate(fvc::grad(alpha2))
DE
return gradAlphaf/(mag(gradAlphaf) + deltalN_);
}

Foam: :tmp<Foam: :surfaceScalarField> Foam::phaseModel: :nHatf
(

const volScalarField& alphal, const volScalarField& alpha2
) const

{
return nHatfv(alphal, alpha2) & U_.mesh().Sf();

}

void Foam::phaseModel: :correct()

{
forAllIter(PtrDictionary<subPhase>, subPhases_, iter)
iter().correct();
PtrDictionary<subPhase>::const_iterator iter = subPhases_.begin();
rho_ = iter()*xiter().rho();
for (++iter; iter != subPhases_.end(); ++iter)
rho_ += iter()xiter().rho();
iter = subPhases_.begin();
mu_ = iter()x*xiter().rho()*xiter().nu();
for (++iter; iter != subPhases_.end(); ++iter)
mu_ += iter()xiter().rho()*iter().nu();
nu_ = mu_/rho_;
}
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