
UNIVERSITY OF OSLO
Department of Informatics

Reachability
Analysis of Complex
Planar Hybrid
Systems

Research Report
No. 412

Hallstein Hansen,
Gerardo Schneider,
and Martin Steffen

ISBN 82-7368-374-5
ISSN 0806-3036

November 2011

Reachability Analysis of Complex Planar Hybrid
Systems

Hallstein Hansen1, Gerardo Schneider2,3, and Martin Steffen3

1 Buskerud University College, Kongsberg, Norway
hallsteinh@hibu.no

2 University of Gothenburg, Sweden
University of Oslo, Norway

gersch@chalmers.se
3 University of Oslo, Norway

msteffen@ifi.uio.no

Abstract. Hybrid systems are systems that exhibit both discrete and
continuous behavior. Reachability, the question of whether a system in
one state can reach some other state, is undecidable for hybrid systems
in general. The Generalized Polygonal Hybrid System (GSPDI) is a re-
stricted form of hybrid automaton where reachability is decidable. It is
limited to two continuous variables that uniquely determine which loca-
tion the automaton is in, and restricted in that the discrete transitions
does not allow changes in the state, only the location, of the automaton.
One application of GSPDIs is for approximating control systems and
verifying the safety of such systems.
In this paper we present the following two contributions: i) An optimized
algorithm that answers reachability questions for GSPDIs, where all cy-
cles in the reachability graph are accelerated. ii) An algorithm by which
more complex planar hybrid systems are over-approximated by GSPDIs
subject to two measures of precision. We prove soundness, completeness,
and termination of both algorithms, and discuss their implementation.

1 Mathematical preliminaries

We start with a short reminder of facts about Euclidean geometry on the plane,
as well as two-dimensional vectors and operations on them. Then we present
differential equations and inclusions, and control systems. We proceed by in-
troducing hybrid automata, a useful model for hybrid systems. We finish this
section with truncated affine multi-valued functions, the underlying functions
for computing reachability of GSPDIs, which are introduced in the next section.

1.1 Vectors and planar geometry

In the following we assume that, unless stated otherwise, vectors are normal-
ized so that two vectors are equal if and only if their directions are equal.

Definition 1 (Unit circle and arcs) The unit circle T = {(x, y) | x ∈ R, y ∈
R,

√
x2 + y2 = 1} is the circle with center at the origin and radius 1 (see Figure

1). For a normalized, non-zero vector x we have that x ∈ T.

– An arc ∠b
a is a portion of the unit circle, bounded by its end points, a and

b, where a is assumed located clockwise of b. The length of an arc, written
|∠b

a | is also the angle between a and b, measured in the interval [0, 2π). We
write x ∈ ∠b

a if vector x is located clockwise of b and counter-clockwise of
a. Assume that x is located clockwise with respect to y. We write ∠y

x ⊆ ∠b
a ,

if both x ∈ ∠b
a and y ∈ ∠b

a , and so forth.
– The points (x, y) on the unit circle form the commutative circle group {x+
yi ∈ C | |x+ yi| = 1}. Multiplication and division in this group corresponds
to adding and subtracting angles, e.g. if the angle of (x1, y1) is θ1 and the
angle of (x2, y2) is θ2 then (x1 + y1i) · (x2 + y2i) = θ1 + θ2, modulo 2π.

|∠b
a |

b

∠y
x ∠b

a

a

|∠y
x|

y

x

l

g

m

dθ
dt

θ

Fig. 1: Left: A unit circle, illustrating angles and arcs. Right: A damped pendu-
lum.

1.2 Differential inclusions

Differential equations are an important mathematical tool for modeling, simulat-
ing, and analyzing physical phenomena. They describe the relationship between
the value of some physical property such as position, velocity, temperature, etc.
and their rate of change with respect to time. A differential equation is deter-
ministic by nature. The generalization to differential inclusions allow to model
the non-deterministic evolution of systems.

Definition 2 (Differential equation) An ordinary first-order differential equa-
tion (ODE) relates a function x(t) to its derivative dx

dt , expressed as dx
dt =

2

f(t, x(t)), where t ∈ R≥0 often is interpreted as time. A system of first-order
ODEs relates several functions x1, . . . , xn to their derivatives dx1

dt , . . . ,
dxn

dt :

dx

dt 1
= f1(t, x1(t), . . . , xn(t))

...
dx

dt n
= fn(t, x1(t), . . . , xn(t))

An n-th order ODE can be transformed into a system of n first-order ODEs.
The system is linear if the functions x appear to the power of one, non-linear
otherwise.

Example 1 (Pendulum). A damped pendulum of mass m, length l, and gravita-
tional acceleration g, see Figure 1, can be modeled as a second-order non-linear
ODE relating the angle θ(t), angular velocity dθ

dt , and angular acceleration d2θ
dt2

of the pendulum. The damping by friction is represented by a constant c:

d2θ

dt2
= − c

ml

dθ

dt
− g

l
sin θ(t) .

Differential equations describe deterministic behavior: Given some initial con-
figuration the system will always have the same evolution. For systems with un-
certainties or perturbations, the behavior is no longer deterministic as there are
many possible evolutions for a given initial state. This requires a more general
definition.

Definition 3 (Differential inclusion [8]) A differential inclusion system is
of the form

dx1

dt
∈ F1(t, x1(t), . . . , xn(t))

...
dx1

dt
∈ Fm(t, x1(t), . . . , xn(t))

where Fi(t, (x1(t), . . . , xn(t)) is a subset of elements from Rn.

The parameter t, usually representing time, does not necessarily have to be an
independent variable. A system given by y(t) = f(t, x(t)) is time-invariant if the
system state with time-shifted input f(t, x(t+ δt)) is equal to the system state
with time-shifted output y(t+ δt) = f(t+ δt, x(t+ δt)), that is f(t, x(t+ δt) =
f(t+ δt, x(t+ δt)) for all t and δt.

Example 2 (Pendulum). The damped pendulum from Example 1 is deterministic
and described by a differential equation. If we now let the damping vary a little
by substituting the coefficient c by c+ e where e is drawn non-deterministically
from some interval E ⊆ R, we get:

d2θ

dt2
∈ {−c+ e

ml

dθ

dt
− g

l
sin θ(t) | e ∈ E} .

3

Later we will work with a particular class of differential inclusion systems,
defined next.

Definition 4 (Time-invariant differential inclusion system (TIDIS)) Let
E be a subset R. Let x(t), y(t) ∈ R be state variables of the (unknown) functions
x and y, and f and g be first order, time-invariant, possibly non-linear ODEs.
We define the differential inclusions F and G as F (x(t), y(t)) = {f(x(t), y(t), e) |
e ∈ E} and G(x(t), y(t)) = {f(x(t), y(t), e) | e ∈ E}. A time-invariant differ-
ential inclusion system (TIDIS) is a tuple S = 〈Q, F, G〉, where the domain
Q ⊆ R2 is a convex polygon. Furthermore

dx

dt
∈ F (x(t), y(t)) and

dy

dt
∈ G(x(t), y(t)) .

where (x(t), y(t)) ∈ Q.

The possible behaviors of a TIDIS S at a given point (x(ti), y(ti)) is the set
of vectors F (x(ti), y(ti))×G(x(ti), y(ti)) ⊆ R2.

Example 3 (Pendulum). For the damped pendulum, if we let x = θ and y = dθ
dt

we can model the pendulum by the following TIDIS:

dx

dt
∈ {y(t)} and

dy

dt
∈ {−c+ e

ml
y(t)− g

l
sinx(t) | e ∈ E} .

For reachability it is only relevant whether, not when, some point is reached.
Hence the length of the behavior vectors is unimportant and we can normalize
the behavior of a TIDIS as follows:

Definition 5 (Normalization) Let T be the unit circle. Then the normalized
dynamics of a TIDIS S is given by the function N : R2 → 2T:

N (x(t), y(t)) = {f(x(t), y(t), e)
r

,
g(x(t), y(t), e)

r
) | e ∈ E, r 6= 0}

where
r =

√
f(x(t), y(t), e)2 + g(x(t), y(t), e)2.

Note that the function N is undefined for points where r = 0, i.e. where both
f(x(t), y(t), e) and g(x(t), y(t), e) equal 0. To simplify notation we refer to the
point (x(ti), y(ti)) as pi = (xi, yi), the set of normalized dynamics of pi as p̂i
decomposed as x̂i and ŷi, and the normalized dynamic vector as ṗi = (ẋi, ẏi),
ṗi ∈ p̂i. See Figure 2-a) and 2-b) for an illustration.

Given a TIDIS S with state pi where (0, 0) ∈ p̂i, then pi is an equilibrium
point. If p̂i = {(0, 0)}, then S cannot change its state from state pi. We denote
by p+

i and p−i the upper and lower behavior limit vectors of p̂i, the vectors in p̂i
such that for all other vectors ṗi ∈ p̂i, we have ṗi ∈ ∠p

+
i

p−i
. See Figure 2-c) for a

visualization. If p̂i contains one element only, then the behavior is deterministic
at point pi and p+

i = p−i .

4

c)b)a)

1

1

ṗi

p̂i

x̂iẋi

ẏi

ŷi

System behavior

y

pi

System state

x

1

1

p̂i

x̂i

ŷi

System behavior with behavior limit vectors

p−i

p+
i

Fig. 2: a) A point pi; b) A possible future evolution, given by ṗi, included in the

normalized dynamics p̂i; c) the behavior limit vectors (∠p
+
i

p−i
.)

1.3 Lipschitz continuity

The more rapidly a system changes, the less precise the analysis may be and
the more costly it is to analyze its behavior to obtain a given precision. Prob-
lematic in particular are behaviors which change abritrarily fast, respectively
areas where the behavior changes arbitrarily fast. Systems are called locally Lip-
schitz continuous if there exists areas with a finite upper bound on the change
of behavior, and this corresponding bound is a measure of the state change.

Definition 6 (Behavior distance) Let A = [a, a,] and B = [b, b] be arcs on
the unit circle. Then the behavior distance d [A,B] is defined as |a− b|+ |a− b|.

Lemma 7 (Metric) The behavior distance is a metric.

Proof. A metric must obay the following 4 conditions:
1. d [A,B] ≥ 0 (Non-negativity)
2. d [A,B] = 0 ⇔ A = B (Identity)
3. d [A,B] = d [B,A] (Symmetry)
4. d [A,C] ≤ d [A,B] + d [B,C] (Triangle inequality)
The conditions easy to check: non-negativity holds as the distance is the

defined as the sum of two absolute values. The fact |a−b|+|a−b| = 0 iff a = b and
a = b gives the second condition. Symmetry follows directly from the definition
of absolute values. The triangle inequality holds on R. Thus |a−c| ≤ |a−b|+|b−c|
and |a−c| ≤ |a−b|+ |b−c| yields |a−c|+ |a−c| ≤ |a−b|+ |a−b|+ |b−c|+ |b−c|.

With a metric for the image of the normalized dynamics p̂ of a point, we
define what it means for the normalized behavior of a TIDIS to be Lipschitz
continuous.

5

Definition 8 (Lipschitz continuity) Let P ⊆ R2 be a convex polygon. A
function f is Lipschitz continuous (or just Lipschitz for short) on P if there
exists a constant K ∈ R such that for all points pi and pj in P ,

d [f(pi), f(pi)] ≤ K‖pi − pj‖ ,
where d [·] is a metric.

Example 4. The normalized behavior of the (deterministic) damped pendulum
given by

dx

dt
= y(t) and

dy

dt
= −0.25y(t)− sinx

is not Lipschitz continuous at the origin. Consider, e.g, the behavior at points
(x, 0) and (−x, 0) and let x approach 0. Hence ‖(x, 0)−(−x, 0)‖ approaches 0, but
for any x the normalized behavior at (x, 0) is always (0,−1), and at (−x, 0) it is
(0, 1). For the system to be Lipschitz continuous we require d [p̂i, p̂i] ≤ K‖pi−pj‖
for some fixed K, that is π ≤ K‖(x, 0)−(−x, 0)‖ for all x. Since ‖(x, 0)−(−x, 0)‖
can be infinitely small we can always disprove this inequality.

1.4 Hybrid automata

We now introduce hybrid automata [15], a common mathematical model for
hybrid systems, i.e., systems exhibiting both continuous and discrete behavior
[1].

Definition 9 (Hybrid automata) A hybrid automaton H is a tuple
(Loc,Var ,Tra,Act , Inv ,Guard ,Asg), where

– Loc = {l1, . . . , lm} is a finite set of locations.
– Var = {x1, . . . , xn} is a finite set of real-valued variables and V the set of

their possible valuations. The state of a hybrid automaton is the current
location and current valuations of the variables, (li, x1, . . . , xn).

– Inv, the invariants, is a function that maps a set of predicates on the vari-
ables to the locations, Inv(l) ⊆ V .

– Tra is a set of transitions, tuples of Loc × Loc.
– Guard is a function that maps a set of guards to transitions, where each

guard G(l,l′) ⊆ V .
– Asg is a function that maps a set of assignments to transitions, where each

assignment A(l,l′) ⊆ G(l,l′) × Inv(l′)
– Act is a function that maps continuous functions, activities, from time, R≥0,

to valuations V , on the locations.

We assume that the activities of each location can be written as a TIDIS of
the n variables of Var . For a variable x we will refer to its valuation at time t
as x(t).

6

x ≥ m

ẋ = −Kx

x = M

x = m

x ≤ M

ẋ = K(h− x)

offon

Fig. 3: A thermostat

Example 5 (Thermostat). A classical example of a hybrid automata is the ther-
mostat where x is the current temperature, see Figure 3. Here ẋ = K(h − x)
and ẋ = −Kx, where the constant K is dependent on the environment and the
constant h on the heater, written as two TIDISs of one equation each. The con-
straints x ≤ M and x ≥ m are the invariants of the on and off locations, and
the transition guards are x = M and x = m, where M is the upper bound and
m the lower bound on the environment temperature.

In general, the more expressive a class of hybrid automata is, the less prop-
erties are decidable [1]. In this paper we focus on hybrid automata subject to
certain restrictions, e.g. that the interiors of the invariants of each location are
disjoint. We define this using the notion of mesh of a polygon [3], which basi-
cally constitutes a partition of the polygon, except of for overlaps at the borders
between different location invariants:

Definition 10 A mesh of a convex polygon Q is a collection M = {Ml | l ∈
Loc} of closed subsets of Q such that

– ∪l∈LocMl = Q
– For all l 6= l′,Ml∩Ml′ = β(Ml)∩β(Ml′), where β(Ml) denotes the border

of set Ml.

Example 6. In Figure 4-a) the following 4 sets constitute a mesh of R2:

– Moff = {(x, y) | ¬(x < 0 ∧ y > 0)}
– Mmax = {(x, y) |

√
x2 + y2 ≤ 1

3 ∧ (x ≤ 0 ∧ y ≥ 0)}
– Mproportional = {(x, y) |

√
x2 + y2 ∈ [13 ,

5
3] ∧ (x ≤ 0 ∧ y ≥ 0)}

– Mmin = {(x, y) |
√
x2 + y2 ≥ 5

3 ∧ (x ≤ 0 ∧ y ≥ 0)}
We see, for example, thatMoff ∩Mmax = β(Moff)∩ β(Mmax) = {(x, y) | (x ∈
[−1

3 , 0] ∧ y = 0) ∨ (y ∈ [0, 1
3] ∧ x = 0)}.

In this paper we consider a subclass of hybrid automata, where on one hand
we limit ourselves to planar, non-overlapping systems without resets, but on the
other we consider systems with changing, non-deterministic, non-linear behavior.

Definition 11 (Continuous non-overlapping hybrid automaton) Given a
meshM of a convex polyhedron Q, a continuous non-overlapping hybrid automa-
ton (CN-HA) C is a hybrid automaton subject where

7

−1/3−5/3

off

−4/3 −3/3

y

x

min

max

−2/3

−3/3

−5/3

−1/3

−2/3

−4/3

proportional

Fig. 4: a) The locations of a proportionally controlled pendulum hybrid automa-
ton. b) Example trajectory.

– For each l ∈ Loc, Inv(l) =Ml.
– (l, l′) ∈ Tra if and only if β(Ml) ∩ β(Ml) 6= ∅.
– For every transition (l, l′)
• the guard G(l,l′) is given by β(Ml) ∩ β(Ml).
• the assignment A(l,l′) is the identity map x := x for all x ∈ G(l,l′).

Note that in the following we assume that an enabled transition automatically
is taken. The pendulum of Figure 4 illustrates the restrictions of CN-HAs: Lo-
cations invariants are not overlapping and trajectories are continuous. Since the
borders between locations are one-dimensional, the area of β(Inv(l)) is 0. Figure
5-a) illustrates two regions l1 and l2 separated by a curved line representing the
border between the regions.

Definition 12 (Run) An execution of a hybrid system starting from some
state s0 = (l0, v0) is called a run, consisting of two kinds of state changes:

– Discrete transitions: (li, vi)→ (li+1, vi+1).
– Time delay, or continuous evolution: (li, vi) →ti (li, fi(ti)), where fi ∈

Act(li), ti ∈ R≥0

A run is an alternating sequence of continuous evolutions and discrete transi-
tions: s0 7→f0

t0 s1 7→f1
t1 . . . sN , where N can be ∞, subject to

– fi(0) = vi
– fi(ti) ∈ Inv(li), for all 0 ≤ t ≤ ti.
– If s′i = (li, f(ti)) is the continuous evolution of si, then si+1 is the discrete

transition successor of s′i.

8

l1

l2

b
a

Fig. 5: a) A border region with a curved border between locations l1 and l2,
with example behavior vectors. b) The resulting behavior in the region for a
hypothetical GSPDI.

An example of a run of a hybrid system is shown in Figure 6-a). In the
following we assume that all hybrid automata are non-Zeno, i.e., time can always
progress. When investigating a CN-HA we are only interested in the continuous
evolutions of the runs: The discrete transitions are restricted to the identity map,
and any valuation of the variables belong to a single location only, except for
the borders. Thus we introduce the notion of a continuous trajectory [6,3], see
Figure 6-b).

Definition 13 A run ρ of a hybrid automaton H, where fi is the activity of
location li, has corresponding trajectory τ(I, ξ), where I ⊆ R≥0 and ξ is a
continuous and almost-everywhere differentiable function ξ : R≥0 → R2 if ρ
satisfies:

– I =
∑N
i=0[0, ti].

– For all 0 ≤ i ≤ N and all t ∈ [0, ti], ξ(t) = fi(t).
– For all 0 ≤ i < N we have fi(ti) = fi+1(0).

The set of all trajectories of a hybrid automaton H is denoted as [H]. For
valuations xs and xf , a trajectory τ(I, ξ) with ξ(0) = xs and ξ(t) = xf for some
t ∈ I is denoted as xs 7→ξ xf . When I is implicit, we write ξ ∈ [H]. We define
reachability in terms of trajectories.

Definition 14 (Reachability) Given a hybrid automata H, an initial state si
and a final state sf , reachability is defined as:

Reach(H, xs, xf) ≡ ∃τ(I, ξ) ∈ [H] . xs 7→ξ xf .

9

b)

l1

l2

l3

l2 l1

l3

pb

pc

a)

Fig. 6: a) Run of a hybrid automaton where the dashed lines represent discrete
resets. pb refers to two states (l1, xb, yb) and (l2, xb, yb). b) Trajectory of a CN-
HA. pc refers to a single state (xc, yc), where location l2 is implicit.

1.5 Control systems

A control system consists of a plant, a system which performs some task, and
a controller, a device that modifies the behavior of the plant to ensure correct
operation. The proportional controller is a much-used controller [7], and we will
show how we can model it as a hybrid automaton.

Definition 15 (Proportional controller) Let S be a TIDIS and let the con-
stant kp represent the ability of the controller to change the state of the TIDIS
(called the gain), and let the constants umin and umax represent the limits of the
range of influence of the controller. At time t, let ε(t) be the difference between
the desired state SP (t) of S (called the set point) and the actual state PV (t) of
S (called the process value) such that ε(t) = SP (t)−PV (t). Then a proportional
controller u is defined as

u =


0 if ¬a

umax if a ∧ ε(t) ≥ εmax
kpε(t) if a ∧ εmin < ε(t) < εmax
umin if a ∧ ε(t) ≤ εmin

where a is a boolean predicate on the state variables of the system, εmin = umin

kp
,

and εmax = umax

kp
.

From this definition we give a definition of a TIDIS controlled by a propor-
tional controller as a hybrid automaton.

Definition 16 (Proportionally controlled TIDIS) Given a TIDIS S = 〈Q, F, G〉,
a proportionally controlled TIDIS (PC-TIDIS) S ′ = 〈Q, F, G, A〉 is a hybrid
automaton A restricted to domain Q and with Act = {F,G} for all locations
l ∈ A, as shown in Figure 7:

10

– Var = {x, y}.
– The locations, with invariants and activities are as follows:
• off
∗ Invariant: Inv(off) = {¬a}
∗ Activity: {dxdt = F (x, y, E, 0),dydt = G(x, y, E, 0)}

• max
∗ Invariant: Inv(max) = {a ∧ ε ≤ εmax}
∗ Activity: {dxdt = F (x, y, E, umax),dydt = G(x, y, E, umax)}

• min
∗ Invariant: Inv(min) = {a ∧ ε ≥ εmin}
∗ Activity: {dxdt = F (x, y, E, umin),dydt = G(x, y, E, umin)}

• proportional
∗ Invariant: Inv(proportional) = {a ∧ εmax ≥ ε ≥ εmin}
∗ Activity: {dxdt = F (x, y, E, kpε),dydt = G(x, y, E, kpε)}

– The transitions and guards are:
• (max, off) – Guard: (¬a)
• (off ,max) – Guard: (a ∧ ε ≥ εmax)
• (max, proportional) – Guard: (a∧ ≤ εminε ≤ εmax)
• (proportional,max) – Guard: (a ∧ ε ≥ εmax)
• (proportional, off) – Guard: (¬a)
• (off , proportional) – Guard: (a∧ ≤ εminε ≤ εmax)
• (proportional,min) – Guard: (a ∧ ε ≤ εmin)
• (min, proportional) – Guard: (a∧ ≤ εminε ≤ εmax)
• (min, off) – Guard: (¬a)
• (off ,min) – Guard: (a ∧ ε ≤ εmin)

Note that the relational operators <,> have been changed to ≤,≥ to ensure
that Inv(l) and β(l) are closed sets for all l ∈ Loc.

Example 7 (Proportionally controlled pendulum). We want to force the pendu-
lum to move about the equilibrium point (0, 0) in a circle of radius 1, ε(t) =
1 − √

x(t)2 + y(t)2. By setting umin = −2, umax = 2 and kp = 3 we get
εmin = − 2

3 and εmax = 2
3 . The controller operates by increasing the acceler-

ation of the pendulum as it descends in one direction, i. e. a = (x < 0 ∧ y > 0).
The invariants of the locations of the resulting hybrid automaton are illustrated
in Figure 4-a), and an example trajectory in Figure 4-b).

1.6 Truncated affine multi-valued functions

For systems having non-linear continuous dynamics it is in general it is
not possible to give an efficient reachability algorithm. The solution is to over-
approximate complex dynamics by simpler ones. In this work we will use positive
affine functions as approximations.

11

dx
dt

= F (x, y, E, kpǫ)
dy
dt

= G(x, y, E, kpǫ)

(a ∧ ǫmin ≤ ǫ ≤ ǫmax)

proportional
dx
dt

= F (x, y, E, 0)
dy
dt

= G(x, y, E, 0)

off

dx
dt

= F (x, y, E, umin)
dy
dt

= G(x, y, E, umin)

min

dx
dt

= F (x, y, E, umax)
dy
dt

= G(x, y, E, umax)

max

(¬a)

(a ∧ ǫ ≤ ǫmin)

(a ∧ ǫ ≥ ǫmax)

(a ∧ ǫmin ≤ ǫ ≤ ǫmax)

(a ∧ ǫmin ≤ ǫ ≤ ǫmax)

(¬a)

(a ∧ ǫ ≤ ǫmin)

(a ∧ ǫ ≥ ǫmax)
(a ∧ ǫmin ≤ ǫ ≤ ǫmax)

(¬a)

(¬a)

(a ∧ ǫ ≥ ǫmax)

(a ∧ ǫ ≤ ǫmin)

Fig. 7: Proportionally controlled TIDIS

Definition 17 A positive affine function f : R → R is a function such that
f(x) = ax + b, a > 0. The inverse of f is the positive affine function f(x)−1 =
1
ax− b

a .

In the vein of interval arithmetic [19], we can use two affine functions for
over-approximation.

Definition 18 An affine multivalued function (AMF) F : 2R → 2R, written
F = [fl, fu], is defined by F ([l, u]) = [fl(l), fu(u)] where fl and fu are positive
affine functions. An inverted affine multivalued function F−1 : 2R → 2R , is
defined by F−1([l, u]) = [f−1

u (l), f−1
l (u)].

We recall a useful result about the fixpoints of AMFs:

Lemma 19 ([6]) Let [l0, u0] be any interval and Fn([l0, u0]) = [ln, un]. Then
the following properties hold:

(1) The sequences ln and un are monotonous;
(2) They converge to limits l∗ and u∗ (finite or infinite), which can be effec-

tively computed.

In particular we are interested in AMFs with restricted inputs and outputs.

12

Definition 20 Given an AMF F and two intervals S ⊆ R+ and J ⊆ R+, a
truncated affine multivalued function (TAMF) FF,S,J : 2R → 2R is defined as
follows: FF,S,J(I) = F (I) ∩ J if I ∩ S 6= ∅, otherwise FF,S,J(I) = ∅. In what
follows we will write F instead of FF,S,J . For convenience we write F(x) =
F ({x} ∩ S) ∩ J if I = [x, x].

We say that F is normalized if S = Dom(F) = {x | F (x) ∩ J 6= ∅} and
J = Im(F) = F(S), and will henceforth assume that all TAMFs are normalized.
Unlike a differential inclusion, a multi-valued function is deterministic: The same
input gives the same output. Thus an affine multi-valued function can be thought
of as representing the set of all possible evolutions of a non-deterministic system.

2 Introduction

Hybrid systems combine discrete and continuous behavior. Traditionally, their
continuous part is described by differential equations, or more generally by differ-
ential inclusions, capturing the system’s evolution over time. The discrete part
usually corresponds to switches between different modes, where each mode, as
said, is characterized by differential inclusions.4 Many interesting physical sys-
tems can be modelled by hybrid systems. One prominent example are control
systems [7] where a controller device with discrete states affects the system, e.g.,
a plant, to assure that it adheres to given requirements. A simple thermostat is
a typical control system where there is a discrete change between two modes,
each modelled by specific differential inclusions: one mode representing heating,
and one for cooling. For such systems, we are interested in reachability : start-
ing from a given initial state or configuration, can the system evolve into some
some other configuration or state, i.e., can it reach it? Often, one is interested in
whether some undesirable configuration is reachable; if not, the system is called
safe. For instance, a requirement of a thermostat may be that, when starting
from any room temperature less than 30 degrees, the temperature never exceeds
30 degrees.

Many properties of general hybrid systems are known to be undecidable [?],
including reachability. Hence, various restricted classes have been proposed and
investigated. In this paper we deal with planar hybrid systems, in particular
with so-called Generalized Polygonal Hybrid Systems (GSPDIs for short) [24].
A GSPDI consists of a finite partition of the plane into polygonal regions, each
governed by a specific differential inclusion. For that model, we are not merely
interested in that reachability is decidable, but to obtain an algorithm efficient
enough to be used in practice. Secondly, we use of GSPDIs to approximate more
complex planar systems.

Reachability for GSPDIs is decidable and [24] gives an algorithm with a
double exponential complexity. The use of differential inclusions renders the
behavior of GSPDIs non-deterministic and their reachability graphs in general
4 As differential inclusions subsume differential equations as a particular case we will

in general use the first term unless it is necessary to make the distinction.

13

include many complex, non-simple cycles. Though reachability searches can be
optimized by considering only simple cycles and furthermore by using accelera-
tion so that many such cycles can be analyzed without iteration, many of them
still need to be iterated. Moreover, to be exhaustive, the search needs to ana-
lyze all possible cycles in the worst case. In fact, to prevent excessive iteration,
earlier implementations of the reachability algorithm in the GSPeeDI tool only
generate cycles as a last resort [12]. In order to make the approach more feasible
in practice, it is desirable to accelerate all the cycles, thus further reducing the
time complexity.

Though not many real systems can directly be expressed as GSPDIs, there
has been a theoretical interest in their study as GSPDIs are a class of hybrid
systems lying on the border between decidability and undecidability [?,?]. With
reachability being decidable, one can use to use GSPDIs to over-approximate
other systems, and since the underlying continuous dynamics of GSPDIs is quite
rich, one still may obtain a realistic models which allows to derive properties for
the underlying concrete system. Safely over-approximating a system gives a semi-
decision procedure for reachability: If unreachable in the approximating GSPDI,
the corresponding state is unreachable in the underlying system as well, but the
converse, obviously, is not the case: reachability in the abstract GSPDI does not
imply corresponding reachability in the concrete system and no information can
be inferred in that case. In such an inconclusive outcome it is possible to use
series of automatic refinements to get better, i.e., more precise approximations.
Moreover, GSPDIs have been used to approximate differential equations [14],
and algorithms and tools have been developed for that purpose [24,12,13].

This paper is a revised and extended version of the earlier papers [13,14,?].
Besides including the full proofs and more examples, we present the following new
results: i) We provide a reachability algorithm GSPDIs which avoids to iterate
cycles. We prove that the algorithm is sound, complete, and that it terminates.
This result dramatically reduces the complexity of the algorithm and, to our
knowledge, there are no other similar results in the analysis of hybrid systems.
ii) An implementation of the algorithm as part of the tool GSPeeDI, and showing
empirical evidence of how cycle acceleration results in increases in performance.

The rest of the paper is organized as follows. Section 1 gives the mathematical
background needed for the rest of the paper, including previously known results
pertaining to GSPDIs and other classes of hybrid automata. Section 4 describes
the new reachability algorithm for GSPDIs and proves that cycle iterations can
be avoided. We also describe the tool GSPeeDI [11], implementing the reacha-
bility algorithm for GSPDIs, and a semi-decision procedure for the reachability
analysis of differential equations. In Section 5 we present an algorithm to over-
approximate CN-HAs using GSPDIs, proving that this over-approximation is a
semi-decision procedure. We discuss related work in Section 6 and we conclude
in Section 7 with directions for future work.

14

3 Generalized polygonal hybrid systems (GSPDIs)

So far we have introduced cncepts regarding the continuous evolution of hybrid
automata, TIDISs, and CN-HAs. This section introduces another class of hybrid
system, namely GSPDIs. We define what a GSPDI is, some related definitions
and results, before we describe an algorithm for deciding reachability in the next
section.

Definition 21 (GSPDI) A Generalized Polygonal Hybrid System (GSPDI) is
a pair G = 〈P, F〉, where P is a finite partition of the plane. Each P ∈ P, called
a region, is a convex polygon with area area(P). The union

⋃
P of all regions

is called the domain of the GSPDI and assumed to be a convex polygon of finite
area itself. F is a function associating a pair of vectors to each region, i.e.,
F(P) = (aP ,bP), which describes an affine differential inclusion. Every point
on the plane has its dynamics defined according to which polygon it belongs to:
if p ∈ P , then ṗ ∈ ∠bP

aP
.

b a
R

e3

e1

e2

e4

e5
e6

e7

e8

ξ

e9 e10

Fig. 8: A GSPDI.

Example 8. Figure 8 shows an example GSPDI. For instance, the polygonal
region R in the right has four edges e1, . . . , e4 and the arc ∠b

a limits the behavior
in the region.

15

The diameter of the smallest disk that contains a region P is denoted diam(P).
The continuous evolution of a GSPDI is in general non-deterministic, and with-
out jumps we can extend the definition of a trajectory to GSPDIs.

Definition 22 (GSPDI Trajectory) A trajectory ξ of a GSPDI G, written
ξ ∈ [G], is a continuous and almost-everywhere differentiable function ξ : R≥0 →
R2 s.t. the following holds: whenever ξ(t) ∈ P for some P ∈ P, then its derivative
ξ̇(t) ∈ ∠bP

aP
. We write [G] for all the trajectories of G.

In Figure 8 the trajectory ξ obeys the dynamics of the regions of the GSPDI.
Due to the restrictions on their dynamics, not many systems can be directly
modelled as a GSPDI. Instead, we show how a CN-HA, which allows non-linear
dynamics, can be approximated by a GSPDI.

Definition 23 (Approximation) A GSPDI G approximates a CN-HA C (writ-
ten G ≥ C) if ξ ∈ [C] implies ξ ∈ [G].

In the following we assume that |∠bP
aP
| ≤ π for all P ∈ P. If |∠bP

aP
| > π,

then the region is reach-all, meaning that all points in E(P) are reachable from
any other in the region [13].5 The trajectories of a GSPDI can be straightened
without loss of generality [6], turning them into a collection of lines traversing
the edges of the GSPDI. For reachability purposes we would like to distinguish
the edges by which way, or both, trajectories can traverse them.

Given a P ∈ P, then for each P ′ ∈ P, P 6= P ′, such that β(P) ∩ β(P ′) 6= ∅,
we say that β(P)∩β(P ′) is an edge of P . Let E(P) be the set of edges of region
P . We say that an edge e ∈ E(P) is an entry-only edge of P if for all x ∈ e and
for all c ∈ ∠bP

aP
, we have x + ct ∈ P for some t > 0. e is exit-only if the same

condition holds for some t < 0. Intuitively, an entry-only (exit-only) edge of a
region P allows at least one trajectory in P starting (terminating) on edge e,
but allows no trajectories in P terminating (starting) on edge e.

We write in(P) to denote the set of all entry-only edges of P , and out(P) to
denote the set of exit-only edges of P . We call the set E(P) \ (in(P) ∪ out(P))
the inout edges of P , inout(P). The line determined by an edge e is denoted as
line(e).

Definition 24 A region P such that inout(P) = ∅ is called a good region. For
a GSPDI where all P ∈ P are good we say that the goodness assumption holds,
and refer to the system as an SPDI [6].

If we abstract away the exact path of a trajectory, we can characterize it by
the edges it traverses.

Definition 25 (Signature) For a GSPDI G, the signature of a trajectory ξ ∈
[G] is the ordered sequence of edges Sig(ξ) = e1 . . . en . . . traversed by ξ.

5 Whenever |∠bP
aP | > π then from the reachability point of view it is the same as

|∠bP
aP | = 2π, or in other words any trajectory is allowed in P .

16

As an example, the signature of trajectory ξ in Figure 8 is e1e4e5e6e7e8e9e10.
Given a region P , we introduce a one-dimensional coordinate system on each

edge e ∈ E(P). For this edge we choose a point of origin, given by a vector v, and
a directional vector e. The vector e has a clockwise direction with respect to the
border of P for edges in out(P), and counter-clockwise for edges in in(P). Thus
an inout edge e will have two distinct characterizations depending on whether
it is considered as an input edge or as an output edge, ei and eo.

We characterize the edge e by its extreme points el, eu ∈ R, such that e =
{v + xe | el ≤ x ≤ eu}. In the following we will use x ∈ R2 to denote a point
on an edge e, and (e, x) to denote the local coordinate of x with respect to e.
An edge-interval (e, [x, y]) denotes the interval between two local coordinates x
and y of e, where we note that the coordinates are the same if e is seen as an
output edge with respect to some region P , or as an input edge with respect to
the other region P ′. We assume in the following that e = {v + xe | 0 ≤ x ≤ 1}.
Thus, the largest possible edge-interval for any edge is [0, 1]. We call (e, [0, 1]) a
full edge-interval.

Since a GSPDI does not have discrete evolutions we will focus on the contin-
uous evolution and the time-successors of the systems. Specifically we will look
at edge-to-edge reachability ; how to, from a subset of an input edge ei, compute
the points reachable on an output edge eo. First we define what we mean by
reachability.

Definition 26 (Point-to-point reachability) For a region P , vector c, and
ei ∈ in(P), eo ∈ out(P) and points xi ∈ ei, xo ∈ eo, we define the predicate
xi

c→ xo to hold if there exists a t ∈ R+ such that xo = tc + xi.

If ei ∈ in(P) and eo ∈ out(P) then reachability between the two edges can
be expressed as a successor function mapping a single point on ei to a single
point on eo.

Definition 27 Let ei ∈ in(P), eo ∈ out(P), xi = (ei, xi) and c ∈ ∠bP
aP

. The
point-to-point successor following c is Succceieo

(xi) = xo if xi
c→ xo. We say

that the vector c points in (into P) across ei, and that it points out (of P)
across eo. We also say that c is good with respect to ei and eo.

Note that in the following we are restricting ourselves to vectors that are good
with respect to some input and output edges. Later we will relax this restriction.
Given the above restriction we can easily compute xo given xi.

Lemma 28 ([6]) Assume a region P with ei ∈ In(P), eo ∈ Out(P), a point
(ei, xi), and a vector c ∈ ∠bP

aP
which is good with respect to ei and eo. Then the

following function is a successor:

Succceieo
=

eiĉ
eoĉ

xi +
(vi − vo)ĉ

eoĉ
.

We call this the standard construction for successors.

17

We use these positive affine functions to define truncated multi-valued func-
tions that are used to compute reachability for intervals.

Definition 29 (Edge-to-edge successor) For a region P , arc ∠b
a , output edge

eo and input edge ei with some edge-interval (ei, I), a truncated affine function
Succeieo

is an edge-to-edge successor if for all intervals S′ ⊆ S, J ′ ⊆ J we have
that Succeieo(S′) = J ′ if and only if there exists xi ∈ S′, xo ∈ J ′ and c ∈ ∠b

a

such that xi
c→ xo holds.

The following lemma shows how the positive affine successor Succceieo
is used

to construct the successor Succeieo
as a TAMF. For arc ∠bP

aP
and edge-interval

(ei, [l, u]) where [l, u] ⊆ [0, 1] we have:

Lemma 30 ([6]) Succeieo
([l, u]) = [Succbeieo

(l),Succaeieo
(u)] ∩ [0, 1].

The signature of a trajectory of a GSPDI may include one or more cycles, a
repetition of edges traversed. Cycles are of paramount importance when it comes
to solving instances of the reachability problem for GSPDIs.

Definition 31 (Simple cycle) An alternating sequence of distinct edges and
interval successors e1 Succe1e2 e2 Succe2e3 . . . Succen−1en enSuccene1 , is a simple
cycle, and we denote it (e1 . . . en). The successor obtained as Succe1e2 ◦ · · · ◦
Succene1 is called the cycle successor of the cycle.

Definition 32 (Continuous and disjoint cycles) Let us assume a simple cy-
cle σ = (e1 . . . en), an edge-interval (e1, I1) and a set {I} of edge-intervals
(e1, Ii), where each edge-interval with i ≥ 1 is generated by successive appli-
cations of Succσ on (e1, I1). If Succσi

(Ii) and Ii are adjacent or overlapping
intervals then the cycle σ is continuous with respect to (e1, I1), otherwise it is
disjoint.

Cycles present a problem when performing reachability searches. Many non-
linear systems exhibit phenomena such as equilibrium points, or limit cycles,
which cannot be left by any trajectory. It is not possible to reach neither equi-
librium points, nor limit cycles, they can only be approached as limits, leading to
trajectories looping infinitely. For instance, the pendulum and the Van-der-Pol
equation exhibit this kind of behavior, see Figure 9. In many cases the reach-
able set of a cycle can be computed without iteration, by analyzing the cycle
successor. This is called acceleration [6].

Definition 33 (Continuous cycle acceleration) Let us consider a simple cy-
cle σ with cycle successor Succσ, which is continuous with respect to some edge-
interval (e, [l, u]). Assume Succσ consists of the positive affine functions fl and
fu and that [L,U] = S ∩ J . Given also the fixpoints l∗ and u∗ of Succσ. Then
an interval I on e is said to be computed by a continuous cycle acceleration if
the following holds:

I = [max(L,min(l, l∗)),min(U,max(u, u∗))].

18

Fig. 9: Trajectories of non-linear systems, the damped pendulum with a trajec-
tory spiraling towards an equilibrium point on the left, and the van der Pol
oscillator with a trajectory approaching a limit cycle on the right.

The reachability algorithm for GSPDIs is not performed on the underlying
hybrid automaton but on a reachability graph having the edges as nodes (and
not regions).

Definition 34 (Edge graph, [21]) Given a GSPDI G, the reachability graph
of G with partition P is the graph (N,E) where E consists of tuples of the form
(N × N) with the region edges as nodes: N =

⋃
P∈P E(P); and two types of

transitions:

– Edge-to-edge transition: (e1, e2) ∈ E if there exists a successor Succe1e2 with
S ∩ J 6= ∅.

– Cycle transition: For all edges e and all cycles σ with e as the first node,
(e, e) ∈ E if S ∩ J 6= ∅ for Succσ.

Example 9. In Figure 10 we see an edge-interval N . It has three successor inter-
vals E1, E2, and E3 on three different edges, plus the cycle successor interval
C computed by acceleration.

4 Reachability analysis of GSPDIs

In this section we present new results concerning the reachability analysis of
GSPDIs. We start by giving an informal description of earlier algorithms we have
developed [24,13]. We proceed by giving a special construction of edge-to-edge
successors for edges that are not good, key to prove one of our main result in this
section, namely that reachability may be performed without iterating any simple
cycle (i.e., we accelerate all cycles). We finally provide our new reachability
algorithm and prove that it is sound, complete, and that it terminates.

19

N

E1 E2
E3

C

Fig. 10: An edge-node, N , its edge successors E1, E2, E3, and cycle successor C

4.1 Informal description of previous GSPDI reachability algorithms

To better understand our new reachability algorithm we informally explain
in what follows the original reachability algorithm for GSPDIs proposed in [24],
and improved in [13].

The reachability algorithm of [24] gave special treatment to inout edges, using
directed edges to differentiate between the edge used as an input, and when it
is used as an output. Depending on in which direction the trajectory traverses
an inout edge e1, the edge will be considered as an input edge in for one region,
but as an output edge for the adjacent region, and similarly the inverse edge e−1

1

would be an output edge in the first region and an input edge in the second one.
In other words, any path passing through edges such as σ = e0e1e2 . . . ene

−1
1 en+1

could in principle be analyzed without problem. Since e1 and e−1
1 are considered

distinct edges the above path does not contain any cycle.
The problem with such paths is that it allows to ‘bounce’ off an edge. Note

that any pair of edges e0e1 is part of a path if e0 is an input edge of a region, and
e1 is an output edge of the same region. One could then calculate the TAMF for
such a trajectory. However, ee−1 can now be part of a valid path, whose behavior
cannot be expressed as a normal TAMF, rather by a TAMF which needs to be
manipulated by applying an auxiliary function (called Flip in [24]) in order to
facilitate the treatment of such bounces in paths. There are some problems with
the solution sketched in [24]: (i) Simple cycles containing bounces need special
treatment; (ii) There are many implicit assumptions in the theoretical results,
making unfeasible the implementation of the algorithm.

The solution introduced in [13] to the above problems were to: (i) Prove that
the treatment of simple cycles containing bounces can be avoided; (ii) Make all

20

the assumptions explicit, allowing an effective implementation of the algorithm.
The reachability solution given in [13] is not based on the one presented in [24]
(which is a depth-first search algorithm), but rather on an adapted version of the
breadth-first search algorithm for SPDIs shown in [21]. The algorithm works in a
standard manner on a directed graph where the edges are nodes and successors
are transitions (cf. Definition 34). From an initial edge-interval all possible child
edge-intervals are generated and put in a queue. These are then handled in turn.
The search is finished whenever some goal edge-interval is reached (success),
or the queue is empty (failure). There are two kinds of transitions: Those that
represent ordinary successors Succeieo , and those that represent the successor
Succsk , iterating a cycle s any k number of times.

In the rest of this section we present an improved reachability algorithm,
following a breadth-first search strategy as in [13], but with the additional inter-
esting feature that all (simple) cycles will be treated without needing to iterate
them (i.e., all cycles can be accelerated).

4.2 Edge-to-edge successors for inout edges

The standard construction of an edge-to-edge successor Succeieo
, see Lemma

28, requires ei to be entry-only and eo to be exit-only. The presence of inout
edges in a GSPDI complicates the construction of edge-to-edge successors, as
the construction requires positive affine functions.

c1

c4

c5

ei

R1

R3

R2

eo

c3

c2

Fig. 11: Vectors illustrating the problems in creating successors from GSPDIs.

Figure 11 illustrates the problem. Any one of the five vectors c1 . . . c5 might
possibly be in the dynamics of region R2. Following a good vector, c1, in the

21

positive direction maps a single point on ei to a single point on eo, and the
standard construction can be used. However, following c2 in a positive direction
will never cause an intersection with line(eo). Following c3 leads us out of the
region, and the result is a negative affine function. Following both c4 and c5

from some points on ei we reach points on eo, but not through some positive,
affine function.

We will handle this problem by first giving a definition of a total arc that
allows any point to be reached from any other.

Definition 35 Given a GSPDI G = 〈P, F〉, a region P ∈ P and two edges
ei, eo ∈ E(P), an arc α is a total arc if for all xi ∈ ei and all xo ∈ eo there
exists a c ∈ α such that xi

c→ xo holds.

The following lemma shows that a total arc preserves reachability for any arc
∠b

a :

Lemma 36 Given a GSPDI G = 〈P, F〉, a region P ∈ P and two edges ei, eo ∈
E(P) with total arc α. Then if xi

c→ xo for some c ∈ ∠b
a , then c ∈ ∠bP

aP
∩ α.

Proof. Any c ∈ ∠bP
aP

for which xi
c→ xo holds, xi ∈ ei, xo ∈ eo, is also in α.

When computing ∠bP
aP
∩α, we say that we are pruning the behavior of P with

respect to ei and eo, and we denote this pruned behavior as ∠b′

a′ . An example
of pruning may be seen in Figure 12, where l denotes the vector from the ’left’
endpoint of ei, vi, to the ’right’ endpoint of eo, vo+eo, and u the vector between
the two other endpoints, vi + ei to vo.

R2

la

u
b ∩ =

b′ a′

vi

vo

vo + eo
vi + ei

Fig. 12: A total arc and the pruning computation

Lemma 37 Given a GSPDI G = 〈P, F〉, a region P ∈ P, and edges ei, eo. Then
∠u

l is a total arc for ei and eo.

Proof. Succceieo
(x) is necessarily contained in [Succleieo

(x),Succueieo
(x)] for any

x ∈ [0, 1], since l and u represent the extremal lines between points in ei and eo.

22

After pruning, the two kinds of vectors left in ∠b′

a′ are good vectors or vectors
parallel to either or both of ei and eo. We will compute reachability for the
pruned arcs by constructing point-to-point successors for the parallel vectors,
and constructing interval successors for the rest of the vectors.

If we consider all vectors in ∠b′

a′ that are good, that is, they all point in
across ei and out across eo, then it should be trivial to construct a good interval
successor for this arc. However, ∠b′

a′ may contain vectors that intersect line(eo)
at some point at infinity. In an earlier work we showed how we could use ±∞ as
constant approximations for the interval successors [13].

4.3 Point-point-successors

The standard construction of Succceieo
(Lemma 28) is computed from the expres-

sion below, where ĉ represents the right rotation of c:

voĉ + xoeoĉ = viĉ + xieiĉ.

An assumption in the standard construction is that neither eiĉ nor eoĉ are
zero, or in other words that c is parallel to neither, guaranteeing to have well-
formed AMFs. However, as this is not the case in general (for non-good regions)
we will need to consider the problematic cases in order to extract the conditions
to preserve the edge-to-edge reachability (for xo

c→ xi). We consider the following
three cases.

Case ei||c: In this case we get that all input values give the same constant
value xo,

voĉ + xoeoĉ = viĉ + xieiĉ

voĉ + xoeoĉ = viĉ

xo =
viĉ
eoĉ

+
voĉ
eoĉ

.

Case eo||c: In this case only the intersection point of line(eo) and line(ei)
causes line(eo) to be reached,

voĉ + xoeoĉ = viĉ + xieiĉ

voĉ = viĉ + xieiĉ

xi =
vi − vo

ei
ĉ.

Case eo||c, eo||c: eo is reachable from ei only if line(ei) = line(eo),

voĉ = viĉ.

From all of the above we see that it is always possible to construct a (non-
standard) successor that is conservative, in the sense that reachability is pre-
served.

23

R2
a

b

R3

e1

b

a e2

a

b

R1

e3
a′

b′

Fig. 13: The region R2 shows both original dynamics ∠b
a and modified dynamics

∠b′

a′ .

Theorem 38 Given a GSPDI G = 〈P, F〉, a region P ∈ P with dynamics ∠b
a

such that ∠b
a ≤ π, and two edges ei, eo ∈ E(P). Then we can construct successors

(point-to-point and interval) that preserve edge-to-edge reachability.

Example 10. Consider the partial GSPDI of Figure 13, with the cycle (e1e2e3).
The successors Succe1e2 and Succe3e1 are good, but in region R2 we see that
neither a nor b are good. We prune ∠b

a and get ∠b′

a′ = ∠u
l (the two dashed

lines), and subsequently we are able to compute an interval successor through
the standard construction, using the pruned dynamics ∠b′

a′ .

4.4 Cycle acceleration

As is well known in reachability, iterating cycles may lead to algorithmic solu-
tions with high computational complexity. However, with the ability to compute
and compose edge-to-edge successors and consequently to compute successor
functions for cycles, we can accelerate cycles: A simple computation determines
the exit set of the cycle and likewise whether a point on the cycle is reachable or
not. Before presenting our main result concerning cycle acceleration (Theorem
47), we present a series of auxiliary lemmas used in the proof of the theorem.

Lemma 39 Given a GSPDI G = 〈P, F〉, a region P ∈ P, and two edges ei, eo ∈
E(P). For a successor Succeieo

, if either of the functions Succbeieo
= cl and/or

Succaeieo
= cu, where cl and cu are real constants, then cl ≤ 0 and/or cu ≥ 1.

Proof. From Lemma 5 and the procedure from constructing successors from [13],
we know that cl and cu are either ±∞, or are defined by the value (vi−vo)ĉ

eoĉ
, the

point where line(ei) and line(eo) intersects, which is a point not in the interior
of P .

Lemma 40 Given a GSPDI G = 〈P, F〉, a region P ∈ P and σ a simple cycle
with e ∈ E(P) as the first edge of σ. If σ is continuous with respect to some
edge-interval (e, [l, u]), then acceleration computes exactly the interval reachable
on e by iteration starting from (e, [l, u]).

24

Proof. We want to show that [max(L,min(l, l∗)),min(U,max(u, u∗))] contains
exactly the reachable set of a cycle σ on the edge e.

First we show that all trajectories iterating the cycle are contained in the
acceleration interval: Assume a trajectory ξ ∈ [G], where ξ(0) ∈ (e, [l, u]). If L > l
or U < u, then either l, u or both are not part of the cycle. Since, by monotonicity
[6], we know that Succnσ(l) ≤ Succnσ(ξ(0)) ≤ Succnσ(u), the trajectory will never
leave [min(l, l∗),max(u, u∗)]. Since any value outside [L,U] does not belong in
the reachable set from iterating the cycle, this limitation also holds.

Then we show that the acceleration interval only contains the intervals gen-
erated by iterating. We see that [l, u] contains what is already reached, and [l∗, u∗]
are the limits of what can (eventually) be reached. The interval [min(l, l∗),max(u, u∗)]
contains only this reachable set, while the limitation to [L,U] ensures than only
trajectories on the cycle are included.

Example 11. An example of cycle acceleration is given in Figure 14. We see
that max(L,min(l, l∗)) in this case is l, which determines the lower limit of the
reachable interval: The iteration does not increase the reached set, since l∗ > l.
The upper limit is given by min(U,max(u, u∗)), in this case U : The iteration
increases the reachable set until the cycle is left at U .

0 1

UulL u∗l∗

Fig. 14: Cycle acceleration, reachable set on cycle in blue.

The following lemma shows that it is possible to calculate how many itera-
tions are needed to reach/pass a given point when iterating a a cycle.

Lemma 41 (Iterated value of positive affine function) Given a positive affine
function f(x) = ax+ b and a value x0 ∈ R such that the sequence x0, . . . is in-
creasing with fixpoint x∗. Let X be any number between x0 and x∗. Then the
number of iterations required to reach X is given by n = ηf (x0, X), where

ηf (x0, X) = loga
X − aX − b
x0 − ax0 − b

25

If n is an integer then fn(x0) = X, otherwise ffloor(n)(x0) < X and fceiling(n)(x0) >
X gives the closest values, smaller and larger, to X. The corresponding case also
holds when x0, . . . is a decreasing sequence.

Proof. We get this by rearranging fn(x0) = anx0 + a−an

1−a b+ b:

fn(x0)
(1− a)
b

= an
x0(1− a)

b
+ a− an + (1− a)

an
x0(1− a)

b
= fn(x0)

1− a
b

an =
fn(x0)− afn(x0)− b

x0 − ax0 − b

n = loga
X − aX − b
x0 − ax0 − b , where fn(x0) = X

Example 12. The positive affine function 0.85x+ 0.3 has fixpoint 2.0. We want
to know, given x0 = 0.1, at which iteration 1.0 is passed. So we use Lemma 41
to compute n ≈ 3.95, which means 1.0 is passed between the third and fourth
iteration of f . For the function 1.5x − 0.5 which is decreasing for x0 = 0.9, we
get than 0.0 is passed at n ≈ 5.68.

The following two lemmas show results concerning reachability inside disjoint
cycles, as well as what is the reachable set when leaving such cycles, i. e. the
exit set.

Lemma 42 (Disjoint cycle reachability) Let σ with start interval (e, [l, u])
be a disjoint cycle, and let x ∈ [L,U]. Let {I} denote the set of disjoint edge-
intervals (e, I1), . . . , (e, In) where Ii+1 = Succσ(Ii) with I1 = [l, u]. Then the
question of whether (e, x) ∈ {I} can be answered without computing {I} explic-
itly.

Proof. In the following we consider the case where x0 . . . is increasing. We com-
pute n = ηfl

(l, x) as by Lemma 41, and the interval [ffloor(n)
l (l), ffloor(n)

u (u)].
We have that ffloor(n)

l (l) ≤ x < f
floor(n)+1
l (l), and thus if x is reachable, then

it will be in the interval [ffloor(n)
l (l), ffloor(n)

u (u)].

Lemma 43 (Disjoint cycle exit) Given a disjoint cycle σ, then the exit set
on all edges e, e 6∈ σ, can be computed without iterating the cycle.

Proof. First we assume that the fixpoints of σ actually allows it to leave the cycle.
The disjoint nature of the successor makes leaving the cycle impossible until
either L or U are reached. We consider the case where the cycle is left by passing
L. Then we can compute the penultimate interval [ffloor(n)

l (l), ffloor(n)
u (u)] using

n = ηfl
(l, L), from which no trajectories can leave since L is not passed yet. Since

this is the last interval before the cycle is left we only have to iterate once to
leave.

26

The following result shows that if the reachable set of an iterated cycle starts
out being continuous, then it will never become disjoint (though the opposite is
possible).

Lemma 44 Given two positive affine functions fl and fu where fu(x) ≥ fl(x)
for any x. If for any two values l ≤ u we have that fl(l) ≤ u ≤ fu(u) (fu(u) ≥
l ≥ fl(l) respectively), then fl(fl(l)) ≤ fu(u) (fu(fu(u)) ≥ fl(l) respectively).

Proof. Call fl(l) for l′. Then we have l′ ≤ u and subsequently fl(l′) ≤ fu(u)
which holds due to monotonicity and the requirement that fu(x) ≥ fl(x) for any
x. The decreasing case can be proved in a similar manner.

The proofs of Lemmas 42 and 43 give us the following procedure.

Procedure 45 (Incomplete cycle acceleration procedure) Given a sim-
ple cycle σ and edge-interval (e, [l, u]). If Succσ([l, u])∩ [l, u] is non-empty, then
the cycle is continuous. Otherwise perform the following two computations:

– Reachability: (e, x) ∈ {I} is determined by whether x ∈ [ffloor(n)
l (l), ffloor(n)

u (u)],
where n = ηfl

(l, xn).
– Exit set: Perform acceleration as per Definition 33 to determine if exiting
σ is possible, and the limit L or U the cycle will cross . Then the inter-
val produced by the penultimate iteration of σ before it exits is given by
[ffloor(n)
l (l), ffloor(n)

u (u), where either n = ηfl
(l, L) or n = ηfu(u, U).

Definition 46 (Incomplete cycle acceleration) Given a simple cycle σ and
edge-interval (e, [l, u]). If Succσ([l, u]) ∩ [l, u] = ∅, then the computation as de-
scribed in Procedure 45 is called the incomplete acceleration of σ with respect to
(e, [l, u]).

For an illustration of the definition (and procedure) above, see Figure 15,
where is is assumed that the successor function of a given cycle σ is Succσ =
[0.8x+ 0.188, 0.81x+ 0.19], showing a point 0.5 that is not reached, a point 0.6
that is reached, and the penultimate and exiting edge-intervals with U = 0.8

LU = [0,0.8]

Not reached: 0.5 6∈ [0.505, 0.527]
Reached: 0.6 ∈ [0.592, 0.617]

[0.09,0.11] The start interval

[0.797,0.835] Exiting
[0.762,0.796] The penultimate interval

n = 0 1 2 3 6 7 84 5

Fig. 15: A successor function [0.8x+ 0.188, 0.81x+ 0.19]

As a consequence of all the above we have the following result.

27

Theorem 47 (No cycle iteration) The reachability question for GSPDIs can
be answered without having to iterate any simple cycle.

Proof (Proof sketch). We will first show that we do not have to iterate to compute
the fixpoints of any cycle, and then that we can decide reachability and exit sets
also without iteration.

1. By Lemma 19 we know that we either can compute the fixpoints of the
positive affine functions of the AMFs of any successor, or we know that
x∗ ≤ L ∨ x∗ ≥ U by Lemma 39, in both cases without needing to iterate.

2. In order to prove that we can decide reachability and exit sets also without
iteration, we separate our analysis in two cases, depending on whether the
cycle is continuous or disjoint.
(a) For a continuous cycle we can compute the reachable set by Lemma 40

and the exit sets directly by the edge-to-edge successors.
(b) For a disjoint cycle we can compute the exit set as per Definition 46,

derived from the proof of Lemma 43. We cannot compute the reachable
set of the disjoint intervals {I} without iterating. But we can however,
given a point x, check whether (e, x) ∈ {I}, also as per Definition 46,
derived from the proof of Lemma 42.

From the above, we have proved that we can decide reachability without needing
to iterate (simple) cycles.

4.5 Reachability algorithm

The high computational cost of iterating, and of generating [?], cycles gives us an
incentive to analyze cycles as soon as they appear in a search. We have developed
an algorithm for deciding reachability for GSPDIs based on a standard breadth
first search algorithm (Algorithm 1). The algorithm iterates through a queue of
edge-intervals, starting from the initial point Src. In a breadth-first search the
children of each node being considered are computed. In our case we compute
1) the edge-to-edge successors of (e, I), 2) the set reachable on (e, I) due to
acceleration of any continuous cycle, if applicable, and 3) the exit set due to
acceleration of any disjoint cycle, also if applicable. The test Dst ∈ children is
to be interpreted as determining whether Dst is contained in the list children of
edge-intervals and whether Dst is reachable from the incomplete acceleration of
any disjoint cycle, if applicable.

We finally prove that our reachability algorithm is is sound, complete, and
it terminates.

Theorem 48 Algorithm 1 is sound, complete, and it terminates.

Proof (Proof sketch).
The algorithm is a breadth-first search method where new edge-intervals are

added to the todo list if and only if they are visited by some trajectory, either

28

Algorithm 1 GSPDI breadth-first reachability search algorithm.
1: Input: Src,Dst
2: visited := [Src]
3: todo := [Src]
4: while Not empty todo do
5: (e, I) := todo.get()
6: children := (e, I).successors() + (e, I).accelerated()
7: if Dst ∈ children then
8: Return REACHED
9: end if

10: visited .add(children)
11: todo.add(children)
12: end while
13: Return NOT-REACHED

by an edge-to-edge successor or a cycle successor. The question is thus whether
these successors are sound and complete or not.

By Theorem 38 we know that the edge-to-edge successors are sound and
complete. To reduce the run-time of the algorithm we know that we do not
have to iterate any cycle, by Theorem 47, which forces us to consider soundness
and completeness for acceleration. Acceleration of continuous cycles is sound
and complete by Lemma 40. We must show soundness and completeness for the
incomplete acceleration of disjoint cycles. We know that given a disjoint cycle
σ we can, by Lemma 42, resolve the question of whether x ∈ (e, I) for any
edge-interval (e, I), e ∈ σ precisely, which is our definition of soundness and
completeness. For any e 6∈ σ, Lemma 43 preserves the soundness of the exit set
from σ and, since the method described is to compute edge-successors of the last
iteration of the cycle before leaving, we also have completeness.

As there is only a finite number of cycles in a GSPDI, and since we do not
need to iterate any cycle, we know that the algorithm terminates.

4.6 The GSPeeDI tool

The tool GSPeeDI solves the reachability question for GSPDIs [11,12]. GSPeeDI
implements a tool chain of three separate stages:

– System to GSPDI : A system with possibly non-linear dynamics is approx-
imated by a GSPDI. The current version of GSPeeDI, version 2.2, non-
conservatively approximates non-linear autonomous systems.

– GSPDI to edge-graph: An edge-graph is built from a GSPDI, including gen-
erating the edge-to-edge successors from the region-wise arcs ∠b

a .
– Reachability search: Given a GSPDI, a starting point and final point, the

tool decides whether the final point is reachable from the initial for the
given GSPDI. This part of the tool chain is based on the theory presented
in this section.

29

Fig. 16: GSPeeDI screen shot: A GSPDI based on the pendulum

0.1

0.5

0.1

U

pen

Fig. 17: a) Disjoint cycle reachability . b) Disjoint cycle exit set.

GSPeeDI can handle GSPDIs consisting of more than a thousand regions,
such the one based on the damped pendulum as shown in Figure 16, generated
by the tool by (non-conservatively) hybridizing a system of autonomous differ-
ential equations, see [14]. The reachable set, in bold, shows that from the initial
point, located at (−3.05,−0.05), the GSPDI only evolves in an ellipse around

30

Fig. 18: Van der Pol oscillator GSPDIs and reach sets. a) 378 regions. b) 789
regions

the equilibrium point (0, 0), consistent with the damped pendulum’s evolution
slowly spiraling in towards (0, 0).

The cycles accelerated in Figure 16 are all continuous, so we show how the tool
handles disjoint cycles in Figure 17. Please note that demonstrating a disjoint
cycle requires the angles |∠b

a | to be so small as to appear to be single vectors in
all regions in the figure. In Figure 17-a) the tool shows that point 0.5 is reachable
from point 0.1 without iterating the cycle. The cycle is iterated once before the
tool discovers the presence of a cycle, and then a total number of 9 iterations are
skipped to verify that 0.5 ∈ [0.4573, 0.5323]. The intervals drawn are the only
intervals actually computed by the tool. In Figure 17-b) the tool shows how the
cycle’s penultimate iteration is calculated with start point 0.1. A total number of
12 iterations are skipped to arrive at the interval [0.7215, 0.8006], and the cycle
is left during the next iteration as the limit U is 0.8589.

As an illustration of the speedup in execution time we can get from using
incomplete acceleration we have run the tool on the van der Pol oscillator [?]:

dx

dt
= y(t)

dy

dt
= −µ(x(t)2 − 1)y(t)− x(t)

A typical trajectory of such a system is illustrated in Figure 9, and screenshots
of two GSPDIs generated from such a system, along with example reachable
sets, are shown in Figure 18. In Table 1 we list the times spent on building the
reachable sets, starting from point (−2, 3.5). In the table we see that the speedup
from the previous version of tool, without incomplete acceleration, to the new
version which implements incomplete acceleration, is substantial.

31

GSPDI # Size (regions) Previous version (2.1) New version (2.2)

1 378 50s 6s
2 789 316s 45s

Table 1: Time to build reach set for van der Pol oscillator GSPDIs

5 Approximation algorithm

In the previous section we presented an algorithm to efficiently perform reacha-
bility analysis of GSPDIs. In this section we present results concerning applying
GSPDIs as an approximation model for other complex planar systems for which
reachability is hard (undecidable or not known).

5.1 Proportionally controlled TIDISs

In particular we will be dealing with proportionally controlled TIDISs (PC-
TIDIS, cf. definition 16). We first show that PC-TIDISs are are a subclass of
CN-HAs (cf. definition 11), and that it is possible to hybridize a CN-HA into a
GSPDI. Then we introduce measures of precision which enable us to compare
the respective precision of two approximating GSPDIs. Finally we give an al-
gorithm which takes a CN-HA and precision bounds as input, and outputs an
approximating GSPDI that respects the precision bounds.

In the rest of the paper we assume that CN-HA and GSPDI have the same
domain and range (usually a convex polygon, unless otherwise specified).

Lemma 49 (CN-HAs) If a hybrid automaton H is a PC-TIDIS, then it is
also a CN-HA.

Proof. The lemma follows directly from Definition 16: A PC-TIDIS has identity
maps as assignments, and the state uniquely determines the current location of
the automaton, since any enabled transition is automatically taken.

The runs of a CN-HA have the same properties as those of a GSPDI.

Lemma 50 (CN-HA trajectory) The runs ξ of a CN-HA C are continuous
and almost-everywhere differentiable functions R≥0 → R2, and so trajectories

Proof. The runs of a CN-HA have R2 as their image, and time (R≥0) as their
domain by Definition 13. From Definition 13 we also have that a run of a hybrid
automaton consists of a sequence of intervals, where the run is continuous and
almost everywhere differentiable in each interval. Since by Definition 11 we do
not have resets in a CN-HA, the runs will also be continuous across interval
boundaries and, assuming non-zeno behavior, almost everywhere differentiable.

Example 13. The trajectory evolves in location l1 during time interval [0, t1]
until in reaches the border between l1 and l2, where f1(t1) = f2(0).

32

Note that, compared to the run of the general hybrid automaton in Figure 6-
b), the invariants of the locations do not overlap, and the value of the CN −HA
trajectory does not change at the border due to the identity map, although its
behavior may do so.

In what follows we characterize what it means for a GSPDI to approximate
a CN-HA.

Lemma 51 (Approximation) Let C be a CN-HA, and G = 〈P,F〉 a GSPDI.
If for any region P ∈ P and for all trajectories ξ ∈ C and points ξ(t) ∈ P it is
the case that ξ̇(t) ∈ ∠bP

aP
, then G ≥ C.

Proof. The lemma follows directly from Lemma 50 and Definitions 13 and 23.

In the following we assume for all regions P ∈ P that ∠bP
aP

is the arc with the
shortest length such that Lemma 51 holds. If we make finer and finer partitions
P of the domain Q of C, we can generate GSPDIs whose behaviors become more
and more restricted while still being approximations of some CN-HA C.

There will be some limit to how restricted the behavior of a GSPDI may
be and still remain an over-approximation, as it must contain the behavior of
the underlying CN-HA. If we consider the behavior of a single region P , the
following definition is useful for finding a lower bound on this behavior.

Definition 52 (Minimal behavior) For a CN-HA C with domain Q and a
region P ⊆ Q, a minimal behavior point minP is a point minP ∈ P such that

|∠min+
P

min−P
| ≤ |∠p+p− | for all p ∈ P . The arc length |∠min+

P

min−P
| is the minimal behavior

of P .

The normalized behavior in a region P can never be less than in one of its

minimal behavior points, |∠bP
aP
| 6< |∠min+

P

min−P
|. This lower bound on the normalized

behavior does not get smaller as we partition P , since the resulting sub-partitions
may have minimal behavior points with larger behavior.

Lemma 53 (Increasing minimal behavior) Let C be a CN-HA with domain

Q, P ⊆ Q be a region, and P ′ ⊆ P be a sub-region of P , then |∠min
+
P

min−P
| ≤ |∠min

+
P ′

min−
P ′
|.

Proof. By definition |∠min
+
P

min−P
| ≤ |∠p+p− | for all p ∈ P , and P ′ is contained in P .

The lemma is illustrated in Figure 19. As we partition region P0, we see that
the difference in length between the minimal behavior and the arc ∠b

a is smaller
in the resulting regions P1 and P2 than in P0. This property forms the basis of
the following definition:

Definition 54 (Measures for precision) Let us assume a CN-HA C and a
GSPDI G = 〈P,F〉 such that G ≥ C, and two disjoint sets X,Y such that P = X∪

33

∠P+
0

P−
0

P0

∠bP0
aP0

P1

P2

∠bP1
aP1

∠bP2
aP2

∠P+
1

P−
1

∠P+
2

P−
2

Fig. 19: The effect of partitioning on the minimal behavior and arcs of regions.

Y. Let θ : R2 → [0, 2π] be a function that maps a region P ∈ P to |∠bP
aP
|−|∠min+

P

min−P
|.

We will overload this function symbol and let θ : 2R2 → [0, 2π] and δ : 2R2 → [0, 1]
be functions such that

1. θ(X) is the maximum θ(X) of all X ∈ X.
2. δ(Y) is the relative weight of the regions of Y, area(∪Y)

area(∪P) .

Let Θ ∈ [0, 2π] and ∆ ∈ [0, 1]. We say that G obeys the bounds Θ and ∆ if
θ(X) ≤ Θ and δ(Y) ≤ ∆ for partition P where P = X ∪ Y.

Polygon P minP |minP | |∠bP
aP | θ(P)

[1, 1]× [2, 2] (π/2, 1) 0.003 0.396 0.393
[1, 1.5]× [2, 2] (π/2, 1.5) 0.004 0.157 0.153
[1.5, 1.5]× [2, 2] (π/2, 1.5) 0.004 0.148 0.144
[1.5, 1.75]× [2, 2] (π/2, 1.75) 0.005 0.072 0.067
[1.75, 1.75]× [2, 2] (1.75, 1.75) 0.005 0.070 0.065
[1.75, 1.875]× [2, 2] (1.75, 2.0) 0.005 0.040 0.035
[1.875, 1.875]× [2, 2] (1.875, 2.0) 0.005 0.036 0.031
. . .
[1.999, 1.999]× [2, 2] (1.999, 2.0) 0.005 0.0053 0.0003

Table 2: Partitioning of the damped pendulum.

Example 14. For the pendulum given by

dx

dt
∈ {y(t)}

34

dy

dt
∈ {−25 + e

100
y(t)− sinx | e ∈ [−1, 1]}

we show the decreasing precision measure θ(P) by partitioning a region [1, 1]×
[2, 2] as in Table 2. The increasing size of the minimal behavior |minP | and de-
ceasing size of the arc ∠bP

aP
together force the precision measure θ(P) to decrease.

Before we show the existence of GSPDIs that approximate any CN-HA C
while still obeying bounds Θ and ∆, we need the following lemma.

Lemma 55 (Vanishing sub-partition) Let ε ∈ R+ and let X ⊆ Q be a set
such that area(X) = 0. Then there exists a subpartition Y of Q where each Y ∈ Y
is a convex polygon and X ⊆ ∪Y, such that area(∪Y) ≤ ε.

Proof. Since the area of X is 0, X is a collection of one- and zero-dimensional
entities. We let the partition Y be a closer and closer approximation of lines and
points respectively, until area(∪Y) ≤ ε.

For a CN-HA there does exist a GSPDI that obeys any precision bounds.

Lemma 56 (Existence of approximation) Given an CN-HA C and bounds
Θ and ∆, there exists a GSPDI G = 〈P, F〉, G ≥ C such that G obeys Θ and ∆.

Proof. The lemma imposes two conditions on the precision of G, namely that
both G and Θ obey ∆.

1. For the first condition we will consider a Lipschitz region P ∈ PL of C.
Definition 8 of Lipschitz continuity gives us d [p̂i, p̂j] ≤ K‖pi − pj‖ for all
points pi, pj ∈ P , where K is the Lipschitz constant of P . The upper bound
on ‖pi−pj‖ is the diameter of the smallest disk containing P , diam(P), thus
d [p̂i, p̂j] ≤ K ·diam(P). If we make diam(P)→ 0 we have d [p̂i, p̂j]→ 0 since
K is a constant, and in particular for some minimal behavior point minP of

P , d [p̂i,∠min+
P

min−P
]→ 0. Because of this, and as a consequence of Lemma 53, the

behavior arc of P approaches that of some minimal behavior point minP as

P shrinks, i.e. ∠b
a → ∠p

+
minP

p−minP

, and consequently θ(P) = |∠b
a | − |∠p

+
minP

p−minP

| → 0.

If we repeat this for all P ∈ PL, we get θ(P) → 0, thus θ(P) can be made
smaller than any Θ.

2. The Lipschitz condition holds in all of Q, except for the arbitrarily small
neighborhoods of the non-Lipschitz points, and the border β(Q) (as illus-
trated in Figure 5-a) as the behavior at each side of the border is governed
by a different TIDIS. We know by Lemma 55 that there exists a PN with
area(∪PN) ≤ ∆ · area(Q) that contains the non-Lipschitz points and the
border, since both have area 0.

Thus, since θ(P) ≤ Θ and area(∪PN) ≤ ∆ · area(Q), for any Θ and ∆ we have
that G obeys both bounds.

35

Algorithm 2 Construct a GSPDI from a CN-HA with bounds Θ and ∆.
1: Input: CN-HA C, Θ ∈ [0, 2π], ∆ ∈ [0, 1]
2:
3: Empty queue PBAD , and empty collection POK

4:
5: PBAD .insert(Q)
6: while area(PBAD) > ∆ · area(Q) do
7: P := PBAD .remove()
8: ∠bP

aP := P .getAngle(P .locations())

9: |∠min+
P

min−
P

| := P .getMinimalBehavior(P .locations())

10: if |∠bP
aP | − |∠

min+
P

min−
P

| ≤ Θ then

11: POK .insert(P)
12: else
13: {P1, . . . , Pn} := P.doPartition()
14: PBAD .insert(P1, . . . , Pn)
15: end if
16: end while
17: return POK ∪ PBAD

Lemma 56 guarantees that there always is a GSPDI with θ(X) and δ(Y)
arbitrarily small for sets X,Y, trivially by letting PL = X and PN = Y. To
actually arrive at such a GSPDI, one can iteratively partition the domain Q
finer and finer with diam(P) → 0 for all P ∈ P. For that purpose, we assume
a function doPartition, which when applied to a partition of Q produces a sub-
partition of convex polygons, for instance by splitting one particular polygon
of the current partition. In the following we will assume that the doPartition
function is being applied in a breadth-first manner, but other strategies might
be employed.

Lemma 57 (Partition) Assume a CN-HA C, bounds Θ and ∆, and that the
doPartition function is being employed following a breadth-first strategy on Q.
Then in a finite number of steps a partition P is generated such that there exists
a GSPDI G = 〈P, F〉 with Q = ∪P, and where θ(PL) ≤ Θ, δ(PN) ≤ ∆, and
G ≥ C.

Proof. The lemma requires application of doPartition iteratively such that θ(PL)
and δ(PN) get smaller than the given upper bounds. The breadth-first strategy,
where each polygon is split in two equally-sized sub-polygons, guarantees that
the regions of the partition of the domain of G get arbitrarily small, and so
Lemma 56 will apply.

In Algorithm 2 we present a method for realizing Lemma 57. The algorithm
takes a CN-HA C and bounds Θ and ∆ as input, and yields as output a partition
P which forms part of a GSPDI G = 〈P, F〉 with G ≥ C and where furthermore
P can be divided into two sets, POK and PBAD , such that θ(POK) ≤ Θ and
δ(PBAD) ≤ ∆ (cf. Algorithm 2).

36

To maintain the successively finer partitioning of the given domain Q, the
algorithm uses two collections of regions POK and PBAD . As loop invariant of
the while iteration, the union of POK and PBAD is a partition of the initial
convex polygon Q. The collection POK contains regions P where θ(P) is less
than or equal to Θ. The collection PBAD , on the other hand, contains those
regions whose angles are yet to be computed.

The collection PBAD keeps the regions in a queue, and during each iteration,
the first region P is removed from the head of the queue. For each region we

compute the angle ∠bP
aP

and the minimal behavior |∠min+
P

min−P
|.

If θ(P) is small enough, i.e., if |∠bP
aP
| − |∠min+

P

min−P
| ≤ Θ, then P is considered

finished and moved to POK . Otherwise P is partitioned, and the sub-polygons
P1, . . . , Pn are placed at the back of the queue PBAD . The while loop is executed
until the area of PBAD is less than or equal to the desired threshold, ∆ ·area(Q).
The return value is the union of POK and PBAD , which is a valid partition P of
Q, satisfying both Θ and ∆.

Note that the algorithm does not compute two sets of convex polygons where
the underlying CN-HA is Lipschitz in one and not in the other. Instead, these
properties are implicitly used to allow the computation of two sets POK and
PBAD where θ(P) ≤ Θ for all P ∈ POK and where the area of ∪PBAD ≤
∆ · area(Q) (cf. also Definition 54 which gives the measures of precision).

By the properties of ∠bP
aP

, Algorithm 2 ensures that all the trajectories of the
CN-HA are also trajectories of the generated approximating GSPDI (Lemma
51) that is, the algorithm is sound. It also satisfies that θ(P) ≤ Θ and δ(P) ≤
∆ (Lemma 57), which guarantees completeness, and also termination of the
algorithm.

Theorem 58 Algorithm 2 is sound, complete, and it terminates.

Proof. The soundness of the algorithm is a direct consequence of the approx-
imation Lemma 51: As an invariant, the domain Q is partitioned into regions
P (split into PBAD and POK). Initially, the partition consists of one polygon,
Q, and the loop either keeps the partition or refines it by replacing one poly-
gon by sub-polygons. Each iteration/partition corresponds to a GSPDI, which
approximates the CN-HA by Lemma 51.

As for completeness: the algorithm works by successively partitioning the
polygons of PBAD . For each P considered, there are two options: Either |∠bP

aP
| ≤

Θ, in which case it is moved from PBAD to POK , or not.
The question is whether the area of PBAD eventually will be less that ∆ ·

area(Q). By Lemma 57 and its proof we know that our strategy for applying
doPartition will generate two sets PL and PN , the area of the latter which can be
made arbitrarily small, and that we can find an arbitrarily small upper bound on
θ(P), for each P ∈ PL. So we let Θ be an upper bound of these θ(P), eventually
forcing PBAD ⊆ PN . By having the upper bound of area(∪PN) as ∆ · area(Q),
we have that θ(POK) ≤ Θ and δ(PBAD) ≤ δ(PN) ≤ ∆.

37

Finally, the algorithm terminates when the area of PBAD is less than ∆ ·
area(Q). The proof of completeness shows that this is always possible to achieve.
In addition, Lemma 57 guarantees that the breadth-first strategy will generate
a PN with a sufficiently small area in a finite number of steps.

6 Related work

In this section we will focus on other works concerning the reachability computa-
tion for hybrid systems, which we discussed in section 4, and on other approaches
for approximating the behavior of non-linear dynamics, which was the topic of
section 5.

The seminal paper on algorithmic analysis of hybrid systems is [16]. Here the
notion of time simulation is introduced, which give a formal definition of the
relation between reachability in an original system, and reachability in an ap-
proximation. The idea of partitioning is introduced and defined as a finite set of
predicates on the flow in each location, a so-called flow split. Each flow transition
of the transformed automaton will have an alternating sequence of flow and silent
jump transitions with only the identity map for resets. It has been proved that
every hybrid automaton is splittable. Nonlinear hybrid automata are approxi-
mated by linear hybrid automata, for which there is exists an efficient, though
not necessarily terminating, algorithm for deciding reachability [1]. Two meth-
ods given in the paper for generating approximations are the clock translation
and linear phase-portrait algorithms. Clock translation, replacing each variable
x by a clock tx, i.e. that dtx

dt = 1, is applicable if x is an independent, monoton-
ically determined variable. The reachability problem is recursively enumerable
for the resulting hybrid automata. The linear phase-portrait approximation does
not suffer from the restrictions of clock translation, and the resulting automa-
ton over-approximates the original using either piecewise constant bounds as
flow (rate translation) or differential inequalities of the form Ax ≥ b, and linear
inequalities to partition the state space. Here each variable is treated indepen-
dently, whereas we over-approximate the behavior based on the state of both
variables x and y.

The above theory has been implemented in the tool Hytech [17], which an-
swers reachability questions in linear hybrid automata. The Hytech+ system
[18], is an updated version of Hytech. Hytech+ extends the class of hybrid au-
tomata accepted by the system from linear to non-linear dynamics (polynomials,
exponentials, and trigonometric functions), while the partitions are limited to
hyper-rectangles. Interval ODE solvers are used to compute over-approximations
of the continuous part of the hybrid automata.

A tool for solving reachability questions is d/dt [4], which takes input based
on linear differential inclusions. This approach has later been extended and the
concept of hybridization is introduced [3]: The dynamics of a (possibly non-
hybrid) non-linear system is transformed into a hybrid system with simpler dy-
namics through over-approximation. In a sense, our work may be considered a
special subclass of this technique, and so we have borrowed and adapted their

38

use of meshes (which they restrict to hypercubes) and continuous traces. The
continuous development is assumed to be a continuous vector field, and for each
cell of the mesh a function is constructed by interpolation, and the approxima-
tion error is computed based on either the Lipschitz constant, or the second
derivative if applicable.

The PHAVer tool tries [10], in addition to allowing piecewise affine dynamics
to be over-approximated to linear dynamics, to remedy the slow convergence of
this algorithm. This is done by conservatively limiting the bits of the coefficients
of the linear terms, and pruning constraints.

The HSolver tool [26] is able to do safety verification of non-linear hybrid sys-
tems through approximation using interval arithmetic. The state space is broken
up into hyper-rectangles, and these rectangles are refined into sub-rectangles if
their refinement reduces the reachable set of the abstraction. Rectangles that can
no longer be reached are pruned away. The abstraction the reachability search is
performed in is a discrete transition system, and transitions between rectangles
are based on whether there is a trajectory from one to the other in the original
system, based on constraint propagation [25]. The tool is general: It supports
any number of variables, assignments, and functions including the trigonomet-
ric functions. However, the algorithm includes iterating to find fixpoints, where
termination of the iteration process is guaranteed by the finite precision of the
floating point numbers of the implementation.

A GSPDI is a generalization of the less expressive Polygonal Hybrid Systems
[6]; a similar system with the added restriction that all vectors be good vis-a-vis
each pair of input and output edge. All the results presented in this paper also
hold for Polygonal Hybrid Systems.

Any method that ensures that an over-approximation is truly conservative
must also ensure that the results of the numerical computations used in an imple-
mentation must also be conservative. This is guaranteed by interval arithmetic
[19]. In interval arithmetic the value of π could be represented as the interval
[3.14, 3.15], which contains the true value of π.

Methods that over-approximate the flow of non-linear dynamics include in-
terval global optimization methods [29], which is directly applicable for our work,
and interval solvers for ordinary differential equation [20]. In the former the ex-
trema of the function to be optimized is sure to be contained in the interval
returned by the method. In the latter, we have that while an ordinary ODE
solver will compute the best approximation to the value of the input ODE at
some time t, the interval ODE solver will compute an interval in which the value
of the input ODE at time t is sure to be contained.

7 Conclusion and future work

In this paper we have presented a new reachability algorithm for GSPDIs, with
the feature that cycles in the reachability graph can be accelerated. This is,
to our knowledge, a quite remarkable result given the complex nature of the
trajectories of GSPDIs.

39

Besides, we have defined a restricted form of non-linear hybrid automaton,
the CN-HA, and shown how a proportional controller may be modeled using
this representation. CN-HAs can be over-approximated by a class of hybrid au-
tomata, the GSPDIs, which have simpler dynamics. We presented an algorithm
that takes a CN-HA as input and produces a GSPDI as output, obeying bounds
derived from our precision measures.

Exploiting Lipschitz continuity for reachability checking and simulation is
not new in itself. It is for instance inherent in the hybridization approach of [2],
and is also used for hybrid computation [9]. A main difference is that we consider
systems that may be Lipschitz continuous only in parts of the plane. A Lipschitz
continuous system has an upper bound, the Lipschitz constant, on how fast the
system’s dynamics changes. We exploit the phenomenon that a system may be
Lipschitz continuous almost everywhere, and have different Lipschitz constants
for different subsets of the plane. We minimize the area where the system is
not Lipschitz continuous, and treat areas where the Lipschitz constant is large
more thoroughly than areas where it is small, to get as good an approximation
as possible. This comes with a computational price, as we must identify the
Lipschitz constant for each area we consider, using non-linear global optimization
tools. We need, however, to identify these areas only once, and then we can
perform multiple reachability computations

One line of future work is incorporating support for enhancements, optimiza-
tions and utilities currently available for the SPeeDI tool [27], that have been
already explored theoretically for SPDIs. This include the computation of the
phase portrait of a system [5], which may allow both optimizations [23] and
compositional parallelization [22] of the reachability analysis algorithm. Note
that the implementation of such features will not add to the complexity of the
tool as all the information needed to compute the phase portrait (invariance,
viability and controllability kernels, and semi-separatrices) is already computed
when analyzing simple cycles (see [22,23] for more details).

In the future we would like to provide a prototype implementation based on
interval global optimization methods [29], and integrate this into the reachability
checker GSPeeDI [11,12]. We can investigate whether other kinds of controllers,
such as the Proportional, Integral, Derivative (PID) controllers, can be repre-
sented as CN-HAs. To facilitate the analysis of TIDISs regulated by controllers
that cannot be represented as CN-HAs, we can look at extending the definition
of a GSPDI to a hierarchical GSPDI [28].

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computuer Science, 138:3–34, February 1995.

2. Eugene Asarin, Thao Dang, and Antoine Girard. Reachability analysis of nonlinear
systems using conservative approximation. In HSCC’03, volume 2623 of LNCS,
pages 20–35, 2003.

40

3. Eugene Asarin, Thao Dang, and Antoine Girard. Hybridization methods for the
analysis of nonlinear systems. ACTA INFORMATICA, 43:451–476, 2007.

4. Eugene Asarin, Thao Dang, Oded Maler, and Olivier Bournez. Approximate reach-
ability analysis of piecewise-linear dynamical systems. In HSCC’00, pages 20–31,
2000.

5. Eugene Asarin and Gerardo Schneider. Widening the boundary between decidable
and undecidable hybrid systems. In 13th International Conference on Concurrency
Theory (CONCUR’02), volume 2421 of LNCS, pages 193–208. Springer-Verlag,
2002.

6. Eugene Asarin, Gerardo Schneider, and Sergio Yovine. Towards computing phase
portraits of polygonal differential inclusions. In 5th International Workshop on
Hybrid Systems: Computation and Control (HSCC’02), volume 2289 of LNCS,
pages 49–61. Springer-Verlag, March 2002.

7. Eugene Asarin, Gerardo Schneider, and Sergio Yovine. Algorithmic analysis of
polygonal hybrid systems, part I: Reachability. TCS, 379(1-2):231–265, 2007.

8. Karl J. Åström and Richard M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008.

9. Jean Pierre Aubin and A. Cellina. Differential Inclusions: Set-Valued Maps and
Viability Theory. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1984.

10. Balth Van der Pol and J. Van der Mark. Frequency Demultiplication. Nature, 120,
1927.

11. Jean Della Dora, Aude Maignan, Mihaela Mirica-Ruse, and Sergio Yovine. Hybrid
computation. In ISSAC, pages 101–108, 2001.

12. Goran Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech.
In HSCC’05, volume 3414 of LNCS, pages 258–273, 2005.

13. Hallstein A. Hansen. GSPeeDI. http://heim.ifi.uio.no/hallstah/gspeedi/.
14. Hallstein A. Hansen. Safety verification of non-linear, planar control systems with

differential inclusions. In 8th IEEE International Conference on Embedded Software
and Systems (IEEE ICESS-11), Changsha, China, 16-18 November 2011. IEEE
Computer Society. To appear.

15. Hallstein A. Hansen and Gerardo Schneider. GSPeeDI –A Tool for Analyzing
Generalized Polygonal Hybrid Systems. In ICTAC’09, volume 5684 of LNCS,
pages 336–342, August 2009.

16. Hallstein A. Hansen and Gerardo Schneider. Reachability Analysis of GSPDIs:
Theory, Optimization, and Implementation. In 25th Annual ACM Symposium on
Applied Computing –Software Verification and Testing track (SAC-SVT’10), pages
2511–2516, Sierre, Switzerland, March 22-26 2010. ACM.

17. Hallstein A. Hansen, Gerardo Schneider, and Martin Steffen. Reachability analysis
of non-linear planar autonomous systems. LNCS, Teheran, Iran, 20-22 April 2011.
Springer. To appear.

18. T. A. Henzinger. The theory of hybrid automata. In LICS’96, pages 278–292.
IEEE Computer Society, 1996.

19. T.A. Henzinger, Pei-Hsin Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on Automatic Control, 43(4):540 –554, April
1998.

20. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s decidable about
hybrid automata? In STOC’95, pages 373–382. ACM Press, 1995.

21. Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model
checker for hybrid systems. Software Tools for Technology Transfer, 1:110–122,
1997.

41

http://heim.ifi.uio.no/hallstah/gspeedi/

22. Thomas A. Henzinger, Benjamin Horowitz, Rupak Majumdar, and Howard Wong-
Toi. Beyond HYTECH: Hybrid systems analysis using interval numerical methods.
In in HSCC, pages 130–144. Springer, 2000.

23. R. E. Moore. Interval Arithmetic and Automatic Error Analysis in Digital Comput-
ing. Ph.D. dissertation, Department of Mathematics, Stanford University, Stan-
ford, CA, USA, November 1962. Also published as Applied Mathematics and
Statistics Laboratories Technical Report No. 25.

24. Venkatesh Mysore and Amir Pnueli. Refining the undecidability frontier of hybrid
automata. In 25th International Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS’05), volume 3821 of LNCS, pages
261–272. Springer, 2005.

25. Nedialko S. Nedialkov. Interval tools for ODEs and DAEs. In Proceedings of the
12th GAMM - IMACS International Symposium on Scientific Computing, Com-
puter Arithmetic and Validated Numerics, Washington, DC, USA, 2006. IEEE
Computer Society.

26. G. Pace and G. Schneider. Model checking polygonal differential inclusions using
invariance kernels. In VMCAI’04, volume 2937 of LNCS, pages 110–121, 2003.

27. Gordon Pace and Gerardo Schneider. A compositional algorithm for parallel model
checking of polygonal hybrid systems. In ICTAC’06, volume 4281 of LNCS, pages
168–182, 2006.

28. Gordon Pace and Gerardo Schneider. Static analysis for state-space reduction of
polygonal hybrid systems. In FORMATS’06, volume 4202 of LNCS, 2006.

29. Gordon J. Pace and Gerardo Schneider. Relaxing goodness is still good. In IC-
TAC’08, volume 5160 of LNCS, pages 274–289, 2008.

30. Stefan Ratschan. Efficient solving of quantified inequality constraints over the real
numbers. ACM Transactions on Computational Logic, 7(4):723–748, 2006.

31. Stefan Ratschan and Zhikun She. Safety Verification of Hybrid Systems by Con-
straint Propagation Based Abstraction Refinement. ACM Transactions in Embed-
ded Computing Systems, 6(1):573–589, 2007.

32. G. Schneider and G. Pace. SPeeDI. http://www.cs.um.edu.mt/~svrg/Tools/

SPeeDI/index.html.
33. Gerardo Schneider. Algorithmic Analysis of Polygonal Hybrid Systems. PhD thesis,

VERIMAG – UJF, Grenoble, France, July 2002.
34. Robert E. Tarjan. Enumeration of the Elementary Circuits of a Directed Graph.

Technical report, Ithaca, NY, USA, 1972.
35. Thomas Weise. Global Optimization Algorithms Theory and Application . E-book,

2nd edition, 2009. http://www.it-weise.de/.

42

http://www.cs.um.edu.mt/~svrg/Tools/SPeeDI/index.html
http://www.cs.um.edu.mt/~svrg/Tools/SPeeDI/index.html
http://www.it-weise.de/

	Reachability Analysis of Complex Planar Hybrid Systems

