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Abstract
Background: The pathophysiology in atopic dermatitis (AD) 
is not fully understood, but immune dysfunction, skin barrier 
defects, and alterations of the skin microbiota are thought to 
play important roles. AD skin is frequently colonized with 
Staphylococcus aureus (S. aureus) and microbial diversity on 
lesional skin (LS) is reduced compared to on healthy skin. 
Treatment with narrow-band ultraviolet B (nb-UVB) leads to 
clinical improvement of the eczema and reduced abun-
dance of S. aureus. However, in-depth knowledge of the tem-
poral dynamics of the skin microbiota in AD in response to 
nb-UVB treatment is lacking and could provide important 
clues to decipher whether the microbial changes are prima-
ry drivers of the disease, or secondary to the inflammatory 
process. Objectives: To map the temporal shifts in the micro-
biota of the skin, nose, and throat in adult AD patients after 
nb-UVB treatment. Methods: Skin swabs were taken from 

lesional AD skin (n = 16) before and after 3 treatments of nb-
UVB, and after 6–8 weeks of full-body treatment. We also ob-
tained samples from non-lesional skin (NLS) and from the 
nose and throat. All samples were characterized by 16S rRNA 
gene sequencing. Results: We observed shifts towards high-
er diversity in the microbiota of lesional AD skin after 6–8 
weeks of treatment, while the microbiota of NLS and of the 
nose/throat remained unchanged. After only 3 treatments 
with nb-UVB, there were no significant changes in the micro-
biota. Conclusion: Nb-UVB induces changes in the skin mi-
crobiota towards higher diversity, but the microbiota of the 
nose and throat are not altered. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

Atopic dermatitis (AD) is the most prevalent inflam-
matory skin disease, with a broad impact on patients’ 
quality of life and on the health care system [1, 2]. It is 
characterized by itchy, red, scaly skin and increased risk 
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of skin infections [3]. The pathogenesis is complex, and 
immune dysfunction, skin barrier defects, and alterations 
in the skin microbiota are thought to play important roles 
[2, 4, 5]. Whether the microbial abnormalities are pri-
mary drivers of AD or whether they are secondary events 
resulting from inflammation or skin barrier dysfunction 
is still not fully elucidated.

Colonization of the skin with Staphylococcus aureus (S. 
aureus) is more frequent in patients with AD [6, 7], and 
the abundance of S. aureus correlates with disease sever-
ity [7–9]. This is partly explained by S. aureus thriving 
better in the higher pH conditions of AD skin than in the 
more acidic environment of healthy skin [10]. In AD skin, 
there is an increased relative abundance of S. aureus and 
S. epidermidis, while on the genus level, Cutibacterium, 
Streptococcus, Acinetobacter, Corynebacterium, and Pre-
votella are decreased [11, 12].

During eczema flares, the lesional skin (LS) microbio-
ta becomes less diverse, but after weeks of adequate ther-
apy, it seems to approximate diversity levels comparable 
to baseline [13–19]. A recent review emphasized the in-
consistent findings on bacterial diversity on LS versus 
non-lesional skin (NLS) in AD [20]. While most studies 
report lower diversity on LS than NLS [12, 21, 22], some 
report no differences [23, 24].

Interestingly, the nasal microbiota in AD patients is 
more uniform than in healthy controls [23], and the mi-
crobial composition in the nose correlates to AD severity 
in children with increased abundance of Staphylococcus 
spp. in more severe AD [25, 26].

Phototherapy with narrow-band ultraviolet B (nb-
UVB) exerts anti-bacterial effects [27–29] and alters the 
levels of the anti-microbial peptides (AMPs) defensins, 
S100-proteins, cathelicidin, and ribonuclease 7 [30–32]. 
Previous studies have shown, by culture-based methods, 
that UVB treatment decreases the relative abundance of 
S. aureus in AD skin in adults and children [33–35]. How-
ever, conventional culturing fails to grow 80% of bacte-
rial species, and applying culture-independent methods 
like 16S rRNA gene sequencing means the whole bacte-
rial community can be characterized [36, 37].

We aimed to map the changes in the skin, nose, and 
throat microbiota with 16S rRNA gene sequencing before 
and after 6–8 weeks of full-body nb-UVB treatment in 
adult patients with AD. We also wanted to explore wheth-
er only 3 treatments of nb-UVB could induce any shifts 
in the skin microbiota before signs of clinical remission 
were evident.

Materials and Methods

Patients
Adults (n = 16) with AD, according to the criteria of Hanifin 

and Rajka [38], were recruited to the study and the same cohort 
has been described previously [39]. Prior to inclusion, systemic 
antibiotics and immunosuppressive therapy were avoided for 4 
weeks. Topical immunosuppressive therapy (corticosteroids and 
calcineurin inhibitors) and topical anti-bacterial therapy were 
avoided for 2 weeks. Structured interviews were performed and 
disease severity and morbidity were assessed with validated scor-
ing tools: the Eczema Area and Severity Index (EASI) [40], the 
SCORing Atopic Dermatitis (SCORAD) index [41], the Patient-
Oriented Eczema Measure (POEM) [42], and the Dermatology 
Life Quality Index (DLQI) [43]. Saliva was collected in OrageneTM 
DNA saliva sampling kits (DNA Genotek, Ottawa, ON, Canada) 
and tested for the 3 most common mutations in the genes encod-
ing filaggrin (FLG): R501X, R2447X, and 2282del4. Serum sam-
ples, to measure IgE, eosinophils, and vitamin D levels, and micro-
bial samples were collected. 

Intervention
The nb-UVB minimal erythema dose [44] was established by 

Dermalight® 80 MED-tester (Dr Hönle, Medizintechnik, Gilch-
ing, Germany) and 1 lesion with active AD was chosen, primar-
ily the antecubital crease. This lesion was irradiated with 1 MED 
on days 0, 2, and 4 with the small, hand-held nb-UVB device, 
Dermalight® 80. Subsequently, the patients underwent full-body 
nb-UVB 3 times a week for 6–8 weeks, with incremental dosages, 
with a total of 12–25 treatments. Clinical severity scores (EASI, 
SCORAD, POEM, and DLQI) were registered before treatment 
(day 0), after 3 treatments (day 7), and after 6–8 weeks of treat-
ment.

Microbial Sampling
Microbial samples were collected at 3 time points: on days 0 

and 7 (before and after local short-term nb-UVB treatment on 
days 0, 2, and 4) and after full-body treatment (3 times/week for 
6–8 weeks). Samples were collected by rubbing a dry ESwab (Co-
pan, Brescia, Italy) against an area of 5 cm2 of LS and NLS for  
30 s. LS samples were primarily taken from the antecubital crease, 
while NLS skin was sampled from the nates, regarded as UV-naïve 
skin before treatment. Nose samples were obtained by rotating a 
dry Eswab in both anterior nares and the throat samples by rub-
bing the fauces. All samples were immediately frozen and stored 
at –80  ° C.

DNA Extraction and Amplicon Sequencing
Bacterial DNA was isolated from Eswab after enzymatic prely-

sis by mixing 200 µL sample with 50 µL enzymatic TE lysis buffer 
(lysostaphine [SAE0091] 2,5U, mutanolysin [sae0092] 25U, lyso-
zyme [L4919] 3 mg [Sigma-Aldrich, St. Louis, USA]) for 30 min at 
37  ° C, adding 20 µL proteinase K (RPROTKSOL-RO, Sigma-Al-
drich), and incubated at 56  ° C for 30 min. 200 µL was extracted on 
a MagNA Pure 96 system (Roche, Mannheim, Germany) with a 
DNA and Viral NA small volume kit (Roche). Previously evalu-
ated primers (341F: 5′-CCTACGGGNGGCWGCAG-3′; 805R: 
5′-GACTACHVGGGTATCTAATCC-3′), preceded by heteroge-
neity spacers, were used for amplification of the V3-V4 region of 
the 16S rRNA gene [45]. Library construction and sequencing was 
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performed on Illumina MiSeq (Illumina Inc., San Diego, USA), 
using a 600 cycle V3 kit. To resolve species-level affiliations within 
the genus Staphylococcus, we implemented a tuf-gene sequencing 
approach as previously described [46].

Pre-Processing of Sequencing Data
Raw reads were demultiplexed using the bcl2fastq conversion 

software (Illumina, San Diego, CA, USA). Heterogeneity spacers 
and primers were trimmed off at an 8% error rate (1 mismatch per 
primer sequence) with cutadapt (v2.3) of 16S rRNA and tuf gene 
reads [47]. Both primers had to be detected in the respective reads 
to retain a read pair. We used the R package dada2 (v1.12.1) for 
amplicon sequence variant (ASV) inference from trimmed reads 
[48]. Except for the truncation lengths (Appendix 1), the dada2 
pipeline was used with default settings. Consensus removal of chi-
meras was performed. Samples with a read count < 5,000 after 
quality filtering were re-sequenced. ASVs resulting from 16S 
rRNA gene sequences were taxonomically classified with dada2’s 
assignTaxonomy() and addSpecies() functions, using the Silva ref-
erence database and species-level training set (v132), respectively 
[49]. Staphylococcal ASVs from tuf gene sequences were classified 
with the assignTaxonomy() function, based on the taxonomic da-
tabase designed by Iversen et al. [46].

The ASV count tables and taxonomic table were integrated us-
ing the R package phyloseq [50]. The 16S rRNA gene-derived 
count data of skin, nose, and throat samples was separately sub-
jected to contaminant identification removal using the R package 
decontam [51] and manually contaminant removal (Appendix 2). 
One skin sample with < 4,500 reads after merging was excluded 
from downstream analysis.

Statistical Analysis
Statistical analyses were performed in R v3.6.0 [52] with the 

packages phyloseq and its dependencies, vegan, cluster, factoex-
tra, markovchain, and lmerTest [50, 53–58]. Visualizations were 
generated with ggplot2, diagram, and ComplexHeatmap [59–61]. 
For each sample, bacterial alpha diversity, the diversity within 
samples, and measurements of both species’ richness and even-
ness, were calculated on raw counts by the inverse Simpson index. 
Alpha diversity on LS and NLS before treatment was compared 
using a paired Wilcoxon signed-rank test. Alpha diversity before 
treatment, and after local short-term and full-body treatment for 
6–8 weeks was compared by paired Wilcoxon signed-rank tests. 
Correlation between the number of nb-UVB sessions and change 
in bacterial diversity was calculated by Spearman’s rank correla-
tion. All presented taxonomic barplots are based on relative abun-
dance.

The count data was Hellinger-transformed, i.e., sample-wise 
proportions were calculated, and subsequently square root-trans-
formed. Principal co-ordinates analysis (PCoA) based on the Bray-
Curtis distance was performed to visualize differences in the bacte-
rial community structure over time. Samples were grouped into 
community state types (CSTs) by partitioning around medoid 
(PAM) clustering, based on the Jensen-Shannon distance. A con-
sensus decision about pre-determining the optimal number of 
clusters was made by means of the gap statistic, silhouette width, 
and the elbow method. CST dynamics were visualized as Markov 
chains showing transition probabilities between CSTs over time.

We performed canonical correspondence analysis (CCpnA), a 
multivariate constrained ordination method, to model bidirec-

tional relations between ASV abundances and CST affiliation, al-
pha diversity, and disease severity. The function cca() from the 
package vegan [53] was used.

The 16S rRNA gene and tuf gene sequences are available 
through the European Nucleotide Archive (ENA) at the European 
Bioinformatics Institute (EBI) under accession No. PRJEB41859.

Table 1. Adults with atopic dermatitis (n = 16)

Median age, years (range) 25.5 (20–73)
Sex

Female 11
Male 5

Filaggrin mutationa

WT 12
Mutation 4

Serum IgEb

Elevated 8
Normal 8         

Eosinophil countc

Elevated 2
Normal 10
Not available 4

Vitamin D supplementation
Yes 9
No 7

Median number of nb-UVB sessions (range)  20 (12–25)

Values express n, unless otherwise indicated. Serum was sam-
pled from all patients prior to nb-UVB treatment for the measure-
ment of IgE and eosinophils. nb-UVB, narrow-band ultraviolet B; 
WT, wild type.

a Saliva was genotyped for the most common mutations in the 
genes encoding filaggrin: R501X, R2447X, and 2282del4. Patients 
with the R501X mutation were heterozygous; 1 patient was com-
pound heterozygous (2 different mutations: R501X/R2447X).

b Reference range 0–114 kU/L.
c Reference range <0.4 × 109/L. 

Table 2. Vitamin D levels and clinical severity scores before and 
after treatment

Before treatment After treatment

Serum vitamin Da levels 44–116 (81.1) 67–174 (123.4)
EASI 3.6–14.7 (9.1) 0–24.3 (5.1)
SCORAD 22.5–65 (40.8) 5–69.5 (27.2)
POEM 8–23 (16.6) 4–23 (10.6)
DLQI 5–22 (11.2) 1–11 (5.3)

Values express range (mean). EASI, Eczema Activity and Se-
verity Index; SCORAD, SCORing Atopic Dermatitis index; 
POEM, Patient-Oriented Eczema Measure; DLQI, Dermatology 
Life Quality Index.

a 25-OH-vitamin D (reference range 37–131 nmol/L). 
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Results

Adults with AD (n = 16) were included (11 females and 
5 males; median age 25.5 years [range 20–73 years]) and 
clinical and demographic data are presented in Table 1. 
Four of the patients had a mutation in the gene encoding 
FLG (Table 1). At inclusion, most patients scored a mod-
erate AD (Table 2), and after 6–8 weeks of treatment there 
was a reduction in all the severity scores in most patients 
as previously described [39]. Vitamin D levels increased 
significantly (Table 2; online suppl. Fig. S1; see www.
karger.com/doi/10.1159/000515236 for all online suppl. 
material).

Bacterial Diversity Increases on LS after 6–8 Weeks of 
nb-UVB
The bacterial alpha diversity increased on LS after 6–8 

weeks of treatment with nb-UVB (p = 0.013; Fig. 1a). In 
contrast, the difference before and after treatment on NLS 
was not significant (Fig. 1b). We observed a trend of low-
er alpha diversity on LS than on NLS before treatment, 
although not significant (data not shown). There was no 
correlation between the number of nb-UVB sessions and 
change in bacterial diversity for LS (Spearman’s rank cor-
relation ρ: 0.1320122, p = 0.65) or NLS (Spearman’s rank 
correlation ρ: –0.2702212, p = 0.37; data not shown).

The relative proportions of the different genera on LS 
compared to NLS before and after treatment are shown 
in Figure 1c; the plot shows greater abundance of Staphy-
lococcus on LS than on NLS before and after treatment. 
The relative abundance of Staphylococcus was higher on 
LS than on NLS before treatment (p = 0.001, Fig. 1d). Af-
ter treatment for 6–8 weeks, the relative abundance of 
Staphylococcus was still higher on LS (p = 0.001, Fig. 1e). 
We further did tuf-sequencing to explore whether the rel-
ative abundances of S. aureus and S. epidermidis changed 
after treatment, but we did not observe any significant 
changes after 6–8 weeks of treatment with nb-UVB (data 
not shown). Also, we did not find any significant changes 
in the abundance of Pseudomonadaceae (data not shown).

Dynamics of the Bacterial Communities
To investigate the dynamics of the bacterial commu-

nity, we did clustering into CSTs, and 4 different CSTs 
were identified. CST 1 and CST 4 were mainly dominated 
by the family Staphylococcaceae. At the genus level, CST 
1 and CST 4 were dominated by Staphylococcus, while 
CST 3 was dominated by Pseudomonas (Fig. 2). We im-
plemented a CCpnA to model multivariate relationships 
between CST affiliation, alpha diversity, and clinical se-
verity scores, which visually confirmed the clustering of 
the samples into 4 CSTs (Fig. 3). CSTs 1 and 4 were more 
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Fig. 2. Community state types (CSTs) in adults with atopic dermatitis. Four different CSTs were identified. At 
the genus level, CST 1 and CST 4 were dominated by Staphylococcus, while CST 3 was dominated by Pseudomo-
nas. Each column represents 1 sample.

Fig. 1. Bacterial alpha diversity increases on lesional skin after nb-UVB treatment for 6–8 weeks in adults with 
atopic dermatitis. InvSimpson diversity before and after treatment on lesional skin (LS; p = 0.013; a) and non-
lesional skin (NLS; p = 0.305; b). c Proportions of predominant genera on LS and NLS before and after nb-UVB 
treatment: Staphylococcus (in yellow). Each column represents 1 sample. The relative abundance of Staphylococ-
cus was higher on LS than NLS for untreated (p = 0.001; d) and treated skin (p = 0.001; e).
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ultraviolet B; FilaggrinMUT/WT, filaggrin mutation present/wild 
type; EASI, Eczema Activity and Severity Index; SCORAD, Scor-
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common in LS than in NLS samples. Clinical severity 
scores were higher in samples grouped into CSTs 1 and 4 
and lower in samples grouped into CST 2 (Fig. 3).

Clinical severity scores were higher when an FLG mu-
tation was present (Fig. 3) but due to the small number of 
patients with a mutation, this association remains incon-
clusive and must be confirmed in a larger study popula-
tion. Transition probabilities between CSTs were visual-
ized as Markov chains (online suppl. Fig. S2). CSTs 1 and 
4 were the most stable, while CST 2 was more dynamic. 
Although not statistically significant, we observed a trend 
towards decreasing clinical severity scores when shifting 
to CST 2 after nb-UVB treatment compared to switching 
to or staying in another CST (data not shown).

Nose and Throat Microbiota Are Not Affected by Full-
Body nb-UVB Treatment
We could not find any changes in alpha diversity in the 

nose or throat after 6–8 weeks of full-body treatment with 
nb-UVB (data not shown). The relative abundance on the 
genus level in the nose is shown in Figure 4a; according 
to the plots, there were no major alterations before and 
after treatment. We also tested if the relative abundance 
of the genus Staphylococcus was altered, but it did not 
change (Fig. 4b). We could not observe any major chang-
es in the relative abundance on the genus level in the 
throat either (Fig. 4c).

Short-Term Treatment Does Not Result in Observable 
Microbiota Shifts
To shed light on whether nb-UVB could induce early 

shifts in the skin microbiota before any signs of clinical 
remission were evident, we looked at alpha diversity on 
LS before and after only 3 treatments of local nb-UVB. 
We did not observe any statistically significant changes in 
microbial alpha diversity (online suppl. Fig. S3) and the 
relative abundance of the genus Staphylococcus was not 
changed (data not shown). Plots of relative abundances 
on the family or genus level did not reveal any major al-
terations (data not shown).

Discussion

In this study, we show that full-body nb-UVB treat-
ment for 6–8 weeks changes the composition of the mi-
crobiota on LS, but not on NLS, in AD. We have previ-
ously shown that gene expression changes are evident in 
AD skin after only 3 treatments of nb-UVB; specifically, 
we found altered gene expression of several AMPs and 

transcripts related to inflammation, epidermal structure, 
and keratinization [39]. In contrast, we found no signifi-
cant changes in the skin microbiota after 3 treatments of 
nb-UVB. Taken together, these findings may suggest that 
the changes in the microbiota are secondary to skin in-
flammation and not a primary driver of AD pathogene-
sis, a question which has been raised by several authors 
[2, 4, 5].

Our findings of diversity change during treatment are 
in line with previous studies where alpha diversity in-
creased with clinical improvement [15, 16, 62]. Conven-
tional culturing methods have shown that UVB re-estab-
lishes the skin microbiota in AD [33–35], but this is the 
first study using 16S rRNA gene sequencing to show that 
nb-UVB alone induced changes in the microbiota. A pre-
vious study showed increased alpha diversity after 4–6 
weeks of treatment with nb-UVB combined with topical 
corticosteroids [62], but no significant difference from 
treatment with corticosteroids alone, implying no addi-
tional effect of nb-UVB. In the group treated with com-
bination therapy, however, clinical severity scores (EASI) 
decreased further 3 weeks after discontinuing treatment, 
indicating a possible positive long-term effect of nb-UVB 
[62].

Topical corticosteroid treatment for 4 weeks has also 
been shown to increase the alpha diversity in children 
with AD [15], but a shorter treatment duration (7–10 
days) did not have any effect on bacterial diversity in in-
fants [63]. A study on dupilumab (a monoclonal antibody 
blocking interleukin [IL]-4 and IL-13) in adult AD pa-
tients showed increased alpha diversity and a lower abun-
dance of S. aureus on LS and NLS after 16 weeks of treat-
ment, but the effect did not last; 18 weeks after discon-
tinuation of treatment, the microbiota closely resembled 
the pre-treatment state [21].

The effect of UVB is not restricted to AD, as a recent 
study in healthy subjects (n = 6) showed that both UVA 
and UVB influence the composition of the skin micro-
biota [44]. In this  study on healthy skin, the relative 
abundance of Pseudomonadaceae decreased after nb-
UVB exposure [44], but we could not replicate this find-
ing in our material. This could possibly reflect the differ-
ences in the skin microbiota in healthy and atopic skin. 
In psoriasis, another chronic inflammatory skin disease, 
nb-UVB treatment induces no significant alterations in 
alpha or beta diversity but significant changes on the ge-
nus level [64].

The nasal microbiota in patients with AD is less di-
verse than in healthy controls [23]. We hypothesized that 
full-body nb-UVB treatment might also modulate the na-
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sal and throat microbiota. However, we found no chang-
es in alpha diversity in the nose or throat after 6–8 weeks 
treatment with nb-UVB, suggesting that UVB irradiation 
of the skin has less effect on the microbiota on mucosal 
surfaces. We are not aware of any studies having explored 
the effect of nb-UVB on the nasal or throat microbiota in 
AD. However, a recent study showed that nb-UVB irra-
diation of the skin in healthy individuals is associated 
with increased diversity of the gut microbiota [65]. This 
modulation was restricted to individuals not on vitamin 
D supplements, suggesting that vitamin D levels could 
influence the microbial composition of the gut. Limited 
UVB exposure and low vitamin D is thought to partly ex-
plain the prevalence of several other chronic inflamma-
tory diseases and the correlation between latitude and 
disease severity [66, 67]. In our study, half of the partici-
pants took some form of vitamin D supplements (Table 
1), but we did not stratify on this parameter in our analy-
ses. Serum vitamin D levels increased in our cohort, con-
firming previous reports [68–70].

Our patient cohort is well-characterized, and disease 
severity is scored by validated scoring tools in line with 
guidelines from the Harmonizing Outcome Measuring 
Eczema (HOME) initiative, in order to make different 
studies easier to compare [71]. The patient population 
seems quite representative of adult AD patients; approxi-
mately 25% had an FLG mutation which corresponds to 
previously reported numbers [72]. Most of the patients in 
our cohort responded well to treatment with nb-UVB 
[39], consistent with previous reports on nb-UVB treat-
ment [73, 74].

The main limitation of our study is the small sample 
size, which rendered it mainly explorative; further studies 
with more participants are needed to validate our results. 
Although16S rRNA gene sequencing provides extensive 
information about microbial communities on the skin 
[37], the copy number of the 16S rRNA gene varies be-
tween bacterial species and may lead to an over-represen-
tation of some species [75]. Furthermore, 16S rRNA gene 
sequencing results are compositional rather than abso-
lute, and our analysis did not determine any cause-and-
effect relationships [36]. Taxonomy is dependent on the 
reference database used [36] and technical aspects like 
sampling technique, DNA extraction, and sequencing 
protocol may introduce some degree of uncertainty, es-
pecially between studies [76, 77]. To introduce as little 
variation as possible, all samples in this study were pro-
cessed and treated the same way.

Despite the obvious dysbiosis in the eczematous skin 
of patients with AD, treatments modulating the micro-

biota have not been central in clinical practice. Two 
small-scale trials reintroduced commensal skin bacteria 
in human subjects with AD. Topical application of coag-
ulase-negative Staphylococcus spp. decreased the coloni-
zation by S. aureus [78], and topical application of the 
Gram-negative Roseomonas mucosa led to clinical im-
provement [79]. More knowledge regarding the complex 
interplay between the skin microbiota and the immune 
system could pave the way for more individualized treat-
ment.

Treatment with nb-UVB for 6–8 weeks in adults with 
AD induced shifts in the skin microbiota in LS, but did 
not affect the microbiota of NLS, or the nose and throat. 
The changes in LS appeared after clinical remission was 
evident, suggesting that the microbial changes are sec-
ondary, rather than primary, in the pathogenesis of AD.

Key Message

UVB treatment for 6–8 weeks increases bacterial diversity in 
lesional skin in atopic dermatitis.

Appendix 1

Truncation Length Adjustments
For 16S rRNA reads, truncation lengths were adjusted to 270 

bp for forward reads and 210 bp for reverse reads. For tuf gene 
reads, forward reads were truncated at 270 bp and reverse reads 
were truncated at 241 bp.

Appendix 2 

Contaminant Removal
Contaminants were identified and removed manually: ASVs 

classified no further than class-level and belonging to either the 
phyla Cyanobacteria, Plantomycetes, Chloroflexi, and Deinococ-
cus-Thermus, or the orders Rhizobiales, Rhodobacterales, and 
Oceanospirillales. From the skin sample data set, 38 ASVs were 
identified as contaminants and removed (decontam method “ei-
ther”, frequency threshold 0.1, prevalence threshold 0.25). In ad-
dition, 224 ASVs were removed manually. From the nasal data set, 
we removed 27 ASVs (decontam method “either”, frequency 
threshold 0.05, prevalence threshold 0.25), and 89 ASVs were re-
moved manually. We removed 47 ASVs from the throat data set 
(decontam method “either”, frequency threshold 0.1, prevalence 
threshold 0.25). Twenty-five ASVs were manually removed. After 
contaminant removal, read counts of re-sequenced samples were 
merged.
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