
UNIVERSITY OF OSLO
Department of Informatics

Handling
Information
Overload on Usenet

Advanced Caching
Methods for News

Jan Ingvoldstad

Cand Scient Thesis

4th August 2001

Abstract

Usenet is the name of a world wide network of servers for group communica-
tion between people. From 1979 and onwards, it has seen a near exponential
growth in the amount of data transported, which has been a strain on band-
width and storage. There has been a wide range of academic research with
focus on the WWW, but Usenet has been neglected. Instead, Usenet’s evolu-
tion has been dominated by practical solutions.

This thesis describes the history of Usenet in a growth perspective, and
introduces methods for collection and analysis of statistical data for testing the
usefulness of various caching strategies. A set of different caching strategies
are proposed and examined in light of bandwidth and storage demands as well
as user perceived performance.

I have shown that advanced caching methods for news offers relief for
reading servers’ storage and bandwidth capacity by exploiting usage patterns
for fetching or prefetching articles the users may want to read, but it will not
solve the problem of near exponential growth nor the problems of Usenet’s
backbone peers.

Preface

When I first started my studies at the University in Oslo in the autumn of
1991, I thought I was going to be a mathematician, and followed my first
class in university level mathematics with vigor. After my service in the Royal
Norwegian Navy in 1992 to early 1993, I returned to the university in time
for the second semester’s start in August, not knowing which course to take
next. An advisor said I should take the introductory course in informatics
“because everybody needs it”. This was interesting enough, but I immediately
got hooked on the Internet, on e-mail, on FTP, on MUDs, and of course on
Usenet.

I was an on-and-off student for several years, partially working for money,
partially studying, and probably mostly writing e-mail, Usenet articles and play-
ing MUD. When the time came to begin work on my degree in communica-
tions technology, I wondered, “what am I going to write about?” I really did
not expect it to be Usenet, but I suspect others saw that coming, especially
when I started administering a news server myself.

When I started thinking about Usenet, it did not take long before I saw
that there was might be room for improvement. It developed into much more
than an idea. I also saw that there was very little written about Usenet in the
way I do.

Some of the later ideas have come thanks to the inspiration of other, more
experienced people on Usenet, and this thesis would have been impossible
without them. I have also had great help with minor programming issues,
consistency checking and typo hunting. Thanks to Stig S. Mathisen at Nex-
tra for statistics, and the system administrators at Ifi for letting me play with
their reading server. Special thanks go to Knut Erik Borgen, Olav Andree Bre-
vik, Kjetil T. Homme, Lars Syrstad, Magne Syrstad, and my advisor, Gisle Han-
nemyr.

Oslo, 4th August 2001.

i

Chapter Overview

1. INTRODUCTION

Introduction to the thesis, followed by an overview of how Usenet
works, its history, how it has developed and grown, challenges with
how it is being distributed, ending with an introduction to the advanced
caching solutions for handling some of the challenges.

2. METHODS USED

How I went about writing this thesis.

3. PRIOR ART AND OTHER WORK

Prior work with Usenet distribution, caching, proxying etc. that I am
aware of.

4. DISCUSSION OF CACHING STRATEGIES

Discussion and preliminary evaluation of the caching strategies intro-
duced at the end of the first chapter.

5. FINDINGS

Presentation and discussion of data collected at Nextra and Ifi.

6. CONCLUSION

Results of the findings and outline of future work.

7. APPENDIX A
Some sources for discussions and findings in the thesis, including mate-
rial not readily available and software modifications.

8. APPENDIX B
News articles used in the thesis.

ii

Contents

1 Introduction 1
1.1 What Is Usenet? . 2
1.2 The Usenet Model . 3

1.2.1 Message Format . 4
1.2.2 Message Distribution and Storage 5

1.3 The History and Development of Usenet 15
1.3.1 The Beginning of Usenet 15
1.3.2 Big Changes . 16
1.3.3 Traffic Growth in a Historical Perspective 16

1.4 Challenges and Problems With Today’s Distribution Model . . 17
1.4.1 Continued Traffic Growth 18
1.4.2 Spam and Filtering . 24

1.5 Handling the Challenges . 24
1.5.1 Requirements for Caching Strategies 25
1.5.2 Different Caching Strategies 27

1.6 Research Questions . 29

2 Methods Used 31
2.1 Search for Prior Art . 31
2.2 Significant Assumptions . 32
2.3 Data Collection and Interviews 32
2.4 Data Analysis . 33

3 Prior Art and Other Work 35
3.1 Caching Web Proxies . 35

3.1.1 Network Appliance’s NetCache 35
3.1.2 A Distributed WWW Cache 36

3.2 Usenet Performance Improvements 37
3.2.1 DNEWS . 37
3.2.2 Inktomi Traffic Server 2.0 38
3.2.3 KNews . 38
3.2.4 NNTPCache . 39
3.2.5 Leafnode . 39

iii

3.2.6 DeleGate . 39
3.3 Other Work . 40

3.3.1 Satellite Newsfeeds . 40
3.3.2 Limitating Binary Distributions 42
3.3.3 Encoding, Compression and Filtering 42
3.3.4 Header-Only Feeds . 45
3.3.5 Administrative Improvements 46
3.3.6 Current Practice . 47

4 Discussion of Caching Strategies 49
4.1 Simple Caching Strategies . 49

4.1.1 Single article caching 49
4.1.2 Protocol command caching 50
4.1.3 Time based caching 50

4.2 Metadata Dependent Caching Strategies 51
4.2.1 Author caching . 51
4.2.2 Thread caching . 51
4.2.3 Subject caching . 52
4.2.4 Group caching . 53
4.2.5 (Sub)hierarchy caching 54
4.2.6 Prefetching groups/hierarchies 54
4.2.7 General header caching 54

4.3 Complex Strategies . 55
4.3.1 Statistical caching/prefetching 55
4.3.2 News reader controlled caching/prefetching 55

4.4 Fetching articles when there is a cache miss 56
4.4.1 Group/hierarchy repositories 56
4.4.2 Injecting server repositories 56
4.4.3 Reverse path lookup 57

5 Findings 59
5.1 Statistics from Nextra . 59

5.1.1 Error Sources . 60
5.1.2 Data . 61
5.1.3 Preliminary Evaluation 63

5.2 Statistics from Ifi . 65
5.2.1 Error Sources . 66
5.2.2 Data . 67
5.2.3 Comparison with Nextra 68
5.2.4 Preliminary Evaluation 74
5.2.5 Data from Ifi Only . 74

5.3 Discussion . 79

iv

6 Conclusion 83
6.1 Answers to Research Questions 83

6.1.1 Which strategy or strategies are better for bandwidth? 84
6.1.2 Which strategy or strategies are better for disk usage? . 84
6.1.3 Which strategy or strategies are better for user perceived

performance? . 84
6.1.4 Will caching proxies (as suggested) be a general im-

provement to Usenet ? 84
6.2 Future Work . 85

Bibliography 87

A Sources 91
A.1 Changes to INN . 91
A.2 Man Page: newsoverview(5) 98
A.3 Selected Newsgroups From Nextra 99
A.4 Answers to Questions on news.software.nntp 105

B News Articles 109
B.1 Rich Salz Announcing INN Testing 109
B.2 Curt Welch on Limiting Feed Size 111

B.2.1 Header-Only Feeds . 111
B.2.2 Text Feeds vs Header-Only Feeds in Size 115

B.3 Katsuhiro Kondou Quitting 117

Index 117

v

vi

List of Tables

1.1 News headers defined in RFC 1036 4
1.2 The Big 8 hierarchies . 9
1.3 Example hierarchies . 10
1.4 NNTP commands, RFC 977 11
1.5 Additional NNTP commands, from INN 2.2 11
1.6 Information stored in NOV databases 14
1.7 Usenet growth 1979 to 1988 17
1.8 Usenet feed size 1988 to 2000 (based on [Nixon, 2000]) . . . 20
1.9 Usenet articles 1988 to 2000 (based on [Nixon, 2000]) 20
1.10 Usenet feed size 1988 to 2001 (based on [Kondou, 2001]) . . 22
1.11 Usenet articles 1988 to 2001 (based on [Kondou, 2001]) . . . 23

3.1 Strategy comparison for Usenet performance improvements . 41
3.2 Responses from news.software.nntp 47

5.1 Nextra: Total ARTICLE and XOVER commands 61
5.2 Nextra: Groups with XOVER commands and no ARTICLE com-

mands . 61
5.3 Nextra: Groups with ARTICLE commands and no XOVER com-

mands . 61
5.4 Nextra: Groups with no ARTICLE or XOVER commands 62
5.5 Nextra: Statistics on XOVER commands per group 62
5.6 Nextra: Statistics on ARTICLE commands per group 62
5.7 Nextra: XOVER per group with both ARTICLE and XOVER . . 63
5.8 Nextra: ARTICLE per group with both ARTICLE and XOVER . 64
5.9 Ifi: Total NNTP command count 67
5.10 Ifi: Total ARTICLE vs XOVER commands 68
5.11 Ifi: Groups with XOVER commands and no ARTICLE commands 69
5.12 Ifi: Groups with ARTICLE commands and no XOVER commands 69
5.13 Ifi: Groups with no ARTICLE or XOVER commands 70
5.14 Ifi: Statistics on XOVER commands per group 71
5.15 Ifi: Statistics on ARTICLE commands per group 71
5.16 Ifi: XOVER per group with both ARTICLE and XOVER 74
5.17 Ifi: ARTICLE per group with both ARTICLE and XOVER 74

vii

5.18 Ifi: Unique header count . 75
5.19 Ifi: Statistics on all read events per unique article 75
5.20 Ifi: Statistics on some NNTP commands per group 76
5.21 Ifi: Unique header count, older articles 76
5.22 Ifi: Unique header count, newer articles 77
5.23 Ifi: Statistics on read events per unique article 79

viii

List of Figures

1.1 Some example news headers 5
1.2 A model for e-mail . 7
1.3 The Usenet distribution model simplified 8
1.4 Distribution network among Usenet peers simplified 9
1.5 Example of headers for PGP-verification 13
1.6 Directory structure for a news spool under Unix 14
1.7 Size of a full Usenet feed August 1998 – February 2000 19
1.8 Articles in a full Usenet feed August 1998 – February 2000 . . 19
1.9 Size of a full Usenet feed November 1998 – June 2001 21
1.10 Articles in a full Usenet feed November 1998 – June 2001 . . . 21
1.11 Projected size of a full Usenet feed to December 2001 22

3.1 A distributed WWW cache . 37

5.1 Nextra: News system configuration, mid May 2001 60
5.2 Nextra: XOVER commands per group 63
5.3 Nextra: ARTICLE commands per group 64
5.4 Ifi: News system configuration, July 2001 65
5.5 Ifi: XOVER commands per group 70
5.6 Ifi: ARTICLE commands per group 71
5.7 Ifi vs Nextra: XOVER commands per group 72
5.8 Ifi vs Nextra: XOVER commands per group 73
5.9 Ifi: Statistics on read events per article 78

ix

x

Chapter 1

Introduction

Usenet is the name of a world wide network of servers for group communica-
tion between people.

Since Usenet was created in 1979, it has seen an impressive growth from
a small academic community to a network used by millions of people from
a wide variety of backgrounds all over the world. The total size of the data
flowing through Usenet has been more than tripling every year between 1993
and 2001.

This growth has not been without problems, and has raised significant
challenges in how to handle the ever increasing volume of Usenet data flow.
Very few are able to handle all of Usenet, and as the amount of users and
data they produce increase, as do the challenges with having enough network
bandwidth and storage capacity. Spending great sums of money on hardware
components relieves the situation, but it does not solve it.

My motivation for this thesis was to find a way to reduce the problems
we see today. I have introduced the idea of advanced caching methods as
a general improvement for parts of the Usenet distribution network, as well
as discussed other work that has been done to relieve network bandwidth
and storage capacity. I also introduce methods for analyzing and evaluating
caching strategies based on statistical data from news servers.

Advanced caching will be an improvement for those news servers with
users that do not read every available news article, which goes for most if not
all news servers with users. However, caching does not solve the problem of
exponential growth. When the available technology no longer can support
enough network bandwidth and storage capacity, this will limit itself.

In this chapter, I first provide an introduction to Usenet architecture and
technology, followed by Usenet’s history from the perspective of growth and
the challenges of this growth, as well as a brief mention of some other trends
and suggestions for dealing with the volume of Usenet data traffic. Towards
the end of the chapter, in section 1.5.2, I present advanced caching strategies
that may help handling these challenges. I then pose questions about what

1

way these methods may improve on Usenet.
To my knowledge, there are no peer reviewed sources for the growth of

Usenet in a historical perspective or for caching of news in particular. The de-
velopment of Usenet technology has been a community effort rather than an
academic one, and many of the conventions and standards have been informal
at first to be standardized later. The search for prior art is discussed in chapter
2 along with other methods such as data collection and interviews. The prior
art that I found relevant is discussed in chapter 3.

In chapter 4, I discuss the strategies mentioned briefly in section 1.5.2 in
more detail.

Chapter 5 shows and illustrates my findings from the data collection. The
conclusion in chapter 6 discusses and concludes from these findings, and iden-
tifies several areas of future work.

I have attempted to structure and word the thesis for an audience that is
not familiar with Usenet, its historical background, how it used to work, what
the protocols are, or how it works today. It is an advantage to have some
familiarity with the Internet, the WWW, e-mail and networks.

Readers familiar with how Usenet works, its history of growth, and the
problems arising from it may want to skip the introductory chapter until sec-
tion 1.5.

Users are presented as if they are male. I have no data that shows whether
the typical user is male or female, so this is merely for my own convenience.

Definitions that I introduce are marked clearly, while Usenet specific ter-
minology is explained as it is used with the terms emphasized.

1.1 What Is Usenet?

News is a distributed platform for group communication — mainly between
humans — based on a network of servers all around the world. “Usenet” is an
abbreviation for “Unix User Network”, but is also known under other names,
specifically “NetNews”, simply “News” [Hardy, 1993] or “Usenet News”. News
is a slightly misleading name for what Usenet is meant for: asynchronous com-
munication between people, as opposed to news items distributed by mass
media.

[Salzenberg et al., 1998] defines Usenet the following way:

Usenet is the set of people who exchange articles tagged with
one or more universally-recognized labels, called "newsgroups"
(or "groups" for short). There is often confusion about the pre-
cise set of newsgroups that constitute Usenet; one commonly ac-
cepted definition is that it consists of newsgroups listed in the
periodic "List of Active Newsgroups" postings which appear reg-
ularly in news.lists.misc and other newsgroups. A broader defi-
nition of Usenet would include the newsgroups listed in the ar-

2

ticle "Alternative Newsgroup Hierarchies" (frequently posted to
news.lists.misc). An even broader definition includes even news-
groups that are restricted to specific geographic regions or orga-
nizations. Each Usenet site makes its own decisions about the set
of groups available to its users; this set differs from site to site.

This thesis uses the broader definition of Usenet, including the infrastruc-
ture behind it.

The communication between users is largely controlled by local adminis-
trators of the news service — the news administrators — at a news service
provider (NSP). An NSP can also be a full Internet Service Provider (ISP).

While Usenet is today mostly a part of the Internet, using the same basic
network protocols for communication between servers, it has been common
to say that “Usenet is not the Internet”. The reason for this is that the transport
of news itself is not fundamentally dependent on the Internet; it just is the
most used platform today.

There is much more to Usenet than I mention in this chapter, which is
intended as an introduction and overview of what I consider relevant for un-
derstanding this thesis. Some parts have been simplified in order to avoid too
much excruciating detail. I recommend turning to [Hauben and Hauben, 1995]
for another historical perspective, [Tanenbaum, 1996] (section 7.5, pp. 669-
680) for views based on computer networks, [Udell, 1998] for the groupware
perspective, [Spencer and Lawrence, 1998] for administering Usenet systems,
and [Spafford and Moraes, 1998] for a software history.

1.2 The Usenet Model

The Usenet News model has the following major aspects to consider:

• Message format

• Message distribution

• Message storage

The main flow of Usenet is commonly through the Internet, using the
Network News Transfer Protocol (NNTP) [Kantor and Lapsley, 1986], a TCP1

based protocol for transmission. Most Internet standards are described in
RFCs2, and the IETF3 is working on several new standards. Usenet’s standards
are described in RFCs, but there are de facto Usenet standards not included in
the RFCs, although the IETF is working on standardising these enhancements.

1Transmission Control Protocol
2Request For Comments
3Internet Engineering Task Force

3

Header Description
Date Alleged time posted
From Alleged author and e-mail address
Newsgroups Comma-separated list of target newsgroups
Message-ID Unique article identifier
Path News servers the article passed through
Subject Subject/topic of discussion
Approved E-mail address of moderator for moderated newsgroup
Control Control article, see section 1.2.2 on page 12
Distribution Hierarchies the article is distributed to
Expires Suggested deletion date for the article
Followup-To List of newsgroups followups are directed to
Keywords Keywords identifying the article
Lines Number of lines in the article body
Organization Organization the author or originating host claims to belong to
References References to former articles, list of Message-IDs
Reply-To E-mail replies are wanted to this address
Sender Alleged actual sender of the article
Summary Brief summary of the article
Xref List of newsgroups and corresponding article numbers

Table 1.1: News headers defined in RFC 1036
The top 6 headers, marked with bold text, are mandatory.

Communication is in the form of articles. An article is simply a single text
message, authored by one or more entities, usually humans. Some mailing lists
are automatically reposted to Usenet. Other automated postings are common.

In the case of human users, the author writes the article in his favorite
text editor, and then sends it to a newsgroup (also simply called a group) on
a news server (called the injecting server) using a specialized program for
news, a newsreader. This process is called posting an article.

The text editor can be internal to the newsreader or vice versa, for in-
stance MS Outlook Express and Gnus respectively. The newsreader program
is also referred to as a user agent (UA) for consistency with similar e-mail and
WWW terminology).

1.2.1 Message Format

The article format (RFC 1036, [Horton and Adams, 1987]) is based on that of
Internet mail (e-mail) messages (RFC 822, [Crocker, 1982]).

Articles are logically divided into two separate parts, head (also called
headers) and body. The headers contain meta-information about the article,
such as who allegedly posted the article, from where, at what time, to which

4

From: Jan Ingvoldstad <jani+news@tsathoggua.rlyeh.net>
Subject: How do newsadmins deal with news traffic today?
Newsgroups: news.software.nntp
Date: 30 Apr 2001 13:03:01 +0000
Message-ID: <ygtlmoiwnei.fsf@tsathoggua.rlyeh.net>
Sender: jani@tsathoggua.rlyeh.net
Path: nntp.uio.no!uio.no!news.tele.dk!148.122.208.681!

news2.oke.nextra.no!nextra.com!news.klingenberg.no!
tsathoggua.rlyeh.net!not-for-mail

Figure 1.1: Some example news headers

newsgroups, with what subject of discussion, a unique message ID, and the
path through which servers the article has been passed to avoid re-relaying to
those servers. Other headers may be used, but these are not relevant here;
I will discuss some of these when necessary. See table 1.1 on the preceding
page and figure 1.1, required headers are in bold.

The article’s body contains the actual message, which must be plain text,
including quotations of former articles in the same discussion. Usually the
author adds a signature, which contains information about the author, a quip,
a quote from a book or movie, or all of these at the same time. This signature
is considered part of the body.

A Note on the Path Header The Path header has a syntax from before the
DNS4 was created, and each news server identifier is separated by a “bang”
– ’!’. This ID is either a name registered in the UUCP5 maps or, since the
introduction of DNS, the full DNS name of the server. The identifier must only
be in place for relaying servers where the article passed as a news article, so
if it passes via e.g. an e-mail server, there should be no entry for that. The
last entry is not considered part of the path entry, and is in the case of a user
agent normally the local part (see RFC 822) of an e-mail address, and the “not-
for-mail” entry is there in case it is difficult or impractical to supply that local
part. With this last exception, it is supposed to be possible to send an e-mail
to each entry in the path list, plus the local part after the path list.

1.2.2 Message Distribution and Storage

While the news article format is compliant with the Internet mail message
format, news distribution is significantly different from mail distribution.

4Domain Name System
5Unix-to-Unix CoPy, a data copying protocol

5

Many mailreaders are also newsreaders6, which causes some initial confu-
sion for users on this issue.

News articles are commonly spread by a flooding algorithm between news
servers, also known as news feeders/feeding servers or peers. Where each
downstream peer gets a newsfeed of articles from their upstream peer. This
is called a “pushed” stream, similar to the “push” technology used for WWW

The receiving servers reject articles they already have instead of requesting
the ones they do not have. This is called a pull stream, like clients pulling
documents off the WWW. Note that it is possible for the downstream peer to
request articles from their upstream peer, but it is not commonly used.

So far, this is deceptively similar to Internet mail, which is also can be sent
from server to server until finally received by the user’s mailbox, although the
current practice is to send e-mail directly to the server local to the receiving
user. However, users do not get this feed directly in their own mailbox, as
would be the case with Internet mail and mailing lists. Instead, their news-
reader fetches a list of newsgroups and articles from the news server, using
NNRP7. An illustration is shown in figure 1.3 on page 8. This kind of news
server is called a reader/reading server. I will refer to this function as read-
ing server from now on, in order to avoid confusion between human reader,
newsreader program and reader server.

The user then chooses which newsgroups to read articles from from his
newsreader’s subscription list. This list of subscribed newsgroups is updated
by the user. When the user has chosen a newsgroup, he then can choose
which articles to read within that newsgroup.

Note on Built-in Filtering in Newsreaders Many newsreaders offer filter-
ing methods based on patterns in article headers and body in the form of a
so-called kill file. If an article matches this pattern, the newsreader will not
download the article, and if it is already downloaded, it will not display it.
Some newsreaders offer additional functionality in form of a score file. This
is also a kind of filter, but unlike a kill file, the choice is not black or white.
Scoring is more flexible, and allows the user to set positive or negative values
for various patterns. These values are cumulative. In addition to setting values
for patterns, the user specifies a score threshold for which articles should be
displayed. This way, it is possible to e.g. ignore certain authors, unless they
post with a subject the user finds more interesting (high score for the subject
pattern) than he finds the author uninteresting or annoying (low score for the
author pattern).

Articles are stored on these central news servers, making them shared as
opposed to mailing lists, where each user effectively stores his own message
copy in his mailbox. This does not prevent the user from downloading and

6MS Outlook Express and Gnus are such combined news- and mailreaders.
7Network News Reader Protocol, basically NNTP with a few changes

6

UA UA

MTA MTA MTA

posting receipt

relaying

MTS

messaging

Figure 1.2: A model for e-mail [Rose, 1993]

storing his own copy.

Another way to explain the distribution of news from peer to peer, is
to compare it to the message transfer system (MTS) of relaying mail transfer
agents (MTA) in OSI’s message handling system (MHS, from the X.400 recom-
mendations [Rose, 1993]). This is close enough to Internet e-mail in how it
works that the comparison makes sense; Internet e-mail only issues receipts
upon failed delivery, and then to the sender of the message. Messages are
stored and forwarded for each node on the path from the sending UA to the
receiving UA in both models. The important difference is that for Usenet
news, messages are not distributed directly to the end users; they have to re-
quest them from their local reading server. Figure 1.2 shows the e-mail model,
and figure 1.3 on the next page shows the similar Usenet model.

As opposed to e-mail, is that news is not a reliable medium of transport for
messages. News was not designed for reliability, and there are control mecha-
nisms that allow people to remove their own articles after they were posted.
It is possible for one reading server to offer articles within one same news-
group that another news server does not, yet responses to these articles may
show up on both servers. This will typically happen if an article is attempted
sent from one of the servers to the other, and the other does not respond
or accept it before a predefined timeout at the first server. Where e-mail via
SMTP usually will generate a response to the message sender if the message
could not be delivered, news offers no such service. This is good for the users,
whose mailboxes would be overflowing with such responses if there should
be one generate for each of the news servers that could not receive it, con-
sidering that there are tens of thousands of news servers the article may have
been attempted distributed to.

While figure 1.3 on the following page shows the general idea behind
how an article is distributed, it hides the fact that different peers have a vary-

7

UA UA

feeding
server

injecting
server

reading
server

reading
server

reading
server

posting reading

Usenet feeding peers

feed

messaging

Figure 1.3: The Usenet distribution model simplified

ing number of newsfeeds. Even worse, it does not show that peers do not
transport exactly the same amount of articles everywhere to everyone. What
really happens is that each of the news administrators has made agreements
with one or several news administrators about which newsgroups or hierar-
chies they will distribute between themselves. Some of these transport as
much data as they can get — a full newsfeed — and can be considered part
of a Usenet “backbone”. Others transport other amounts of data. In addition
to these differences in newsfeed size, these peers do not necessarily connect
with the closest other peer. These issues are attempted visualized in the fairly
complex figure 1.4 on the next page. The real Usenet distribution network is
far more complex.

Information Structure

Articles are organized in newsgroups (discussion groups), similar to mailing
lists in that they each have a name and a particular topic of discussion. In
difference from mailing lists, newsgroups are organized in named hierarchies.

It is possible for an article to be posted to several newsgroups simultane-
ously; this is called crossposting.

The newsgroup names are on the form:

hierarchy_name[.subhierarchy_name]*.group_name

8

Small newsfeed

Medium newsfeed

Large newsfeed

Backbone

Small peer

Medium peer

Large peer

Backbone peer

Figure 1.4: Distribution network among Usenet peers simplified

Hierarchy What
comp Computers
humanities Arts and humanities
misc Miscellaneous
news Usenet
rec Recreational
sci Science
soc Social/Sociology
talk General discussions

Table 1.2: The Big 8 hierarchies

The names bear some significance to what the topic of discussion on that
particular group is, both in that it has influence on what is to be discussed
there, and in that it shows what actually is discussed. In addition to its name,
most groups have a brief description stored at the reading server.

The core of Usenet’s organization is eight top level topically organized
hierarchies (see table 1.2) frequently referred to as the Big 8. The alternate
hierarchy alt, which is more “free” in how groups are created and organized,
is also considered part of the core by many users and news administrators.

There are also national and local hierarchies that not necessarily follow this
organization scheme for choice of top level names, but use similar schemes
for their own subhierarchies. See also table 1.3 on the next page for a list
of example hierarchies. Below, I attempt to show the hierarchical structure
through a couple of example newsgroups:

9

Hierarchy What Function Organization
swnet Swedish Generic Topical
no Norwegian Generic Topical
norge Norwegian Geographic Geographical
ntnu University Generic Topical
uio University Generic, classes Topical
3dfx 3dfx corp. Products Topical
microsoft Microsoft corp. Products, technologies Topical
demon ISP Demon, UK Generic, support Topical
online ISP Nextra, Norway Generic, support Topical

Table 1.3: Example hierarchies

• comp.lang.c
The top hierarchy comp is a short for “computer(s)”. The subhierarchy
lang is a short for “language” within the general topic of computers,
so we understand it to mean computer language. The final part of the
name tells us it deals with C, a programming language. This group has
the description “Discussion about C.”.

• rec.arts.sf.movies
The top hierarchy rec is a short for “recreation(al)”. The subhierarchy
arts is self-explanatory, while the name of its subhierarchy sf contain the
initials for “science fiction”. This group has the description “Discussing
SF motion pictures.”.

The group description stored at the reading server helps people to select
the correct group, in case the group name does not reflect the topic well
enough. It is also common for popular groups to have charters, describing
desired content, usage, and user behaviour, plus FAQs8.

Within groups, articles (even the crossposted ones) belong to an inner
structure, called a thread. If a new article is posted in response — a followup
— to an older article, the newsreader is supposed to create a header — Ref-
erences — with the Message-ID of the older article. If the References header
already exists, it should keep the old content of it and add the Message-ID of
the older article to the end of that content.

A Note on the Subject Header If the user does not choose to change the
subject of the article he is posting a followup to, the UA is supposed to ap-
pend “Re: ”9 (Latin for “with regard to”) at the beginning of the subject.
Some UAs have the misconception that “Re” means “reply”, and translates

8Frequently Asked/Answered Questions, usually in a list form
9The space following the colon is mandatory.

10

Command Description
ARTICLE Get the complete article with number artno or Message-ID mid

AUTHINFO User authentication

BODY Get the body of article with number artno or Message-ID mid

GROUP Change group to the specified newsgroup, get available article numbers

HEAD Get the headers of article with number artno or Message-ID mid

HELP Lists summary of available commands

IHAVE We have article with Message-ID mid, and are prepared to send it

LAST Jump to the previous message in the current newsgroup if possible

LIST List various data, default is available newsgroups and articles

MODE reader Change connection mode from server to reader

NEWGROUPS List new newsgroups since a date and time

NEWNEWS List new articles in the specified newsgroup since a date and time

NEXT Jump to the next message in the current newsgroup if possible

POST Post an article in accordance with the news article format

QUIT Exit and close connection

SLAVE Tell the server that we are a slave server, not a user

STAT Get the Message-ID of article number artno, mark it as the current article

Table 1.4: NNTP commands, RFC 977

“Re” into abbreviations of other languages’ word for “reply”. This causes prob-
lems when standard compliant UAs parse the same subject line, and append
“Re: ” again, because the subject did not start with it already.

NNTP Commands

Table 1.4 shows NNTP commands as defined in RFC 977, and table 1.5 shows
those additional commands supported by INN10 2.2.

10InterNetNews, a news transport system created in 1991 by Rich Saltz, [Salz, 1991]

Command Description
LISTGROUP List article numbers in a newsgroup

XGTITLE Get the title/description for a newsgroup

XHDR Get a specific header for a range of articles, current newsgroup

XOVER Get NOV data for a range of articles, current newsgroup

XPAT Get headers matching a pattern by range or Message-ID, current newsgroup

XPATH Get the file name of a stored article by Message-ID

Table 1.5: Additional NNTP commands, from INN 2.2

11

Control Mechanisms

To control the creation, modification, and removal of newsgroups, and to give
users a chance of withdrawing articles after they have been posted, there is a
special kind of articles known as control messages.

Using a very basic authentication scheme through the Control header,
one can send newgroup, checkgroups, rmgroup, cancel and supersedes mes-
sages, which the news servers of the world may choose to honor or ignore,
depending on the administrator’s policy.

Article Level Control The cancel and supersedes control message types
are there to control actual articles. Sending a cancel message should — if it
is honored11 — result in the removal of the article you ask to cancel out. A
supersedes message has its own header, Supersedes, but is effectually just
a combined cancellation of an old article, with a new article attached; effec-
tively, it replaces the old one. The header can also be used for repositioning
the new article within the thread it belonged to.

Newsgroup Level Control The newgroup, checkgroups and rmgroup con-
trol message types are for creating newsgroups, updating a list of newsgroups
(including descriptions) and removing newsgroups.

Modes of Participation When a newsgroup is created or modified, the
group essentially has three different modes of participation by the users. These
are:

1. Reading rights only

2. Reading and posting rights

3. Reading and limited posting rights (moderated newsgroup)

A moderated newsgroup is no different from an ordinary newsgroup, with
a few exceptions. All articles posted to such a newsgroup are automatically
forwarded via e-mail to a moderator. That moderator can either be a program
or a person, who checks the articles according to some criteria defined for
that particular newsgroup. Articles that fulfill those criteria are posted to
the newsgroup through the use of the Approved header. Other articles are
discarded, and sometimes returned to their originating author.

11Not all news servers honor cancel and supersedes messages, because it is very easy to
forge these message types, making it easy to get rid of other people’s articles.

12

From: moderator@dana.de
Subject: cmsg checkgroups
Newsgroups: de.admin.news.announce,de.admin.news.groups,

de.alt.admin
Followup-To: de.admin.news.misc
Date: 06 Jul 2001 15:53:54 -0000
Sender: moderator@dana.de
Control: checkgroups
Approved: moderator@dana.de
Message-ID: <checkgroups_2001-07@dana.de>
X-PGP-Key: 0xD3033C99
X-PGP-Sig: 2.6.3ia From,Sender,Newsgroups,Followup-To,Subject,

Control,Approved,Message-ID,Date
iQCVAwUBO0XfEnU26rXTAzyZAQFq5gP9HK0//6qBiPjChcARIZoCZvmZh
EHFGWpzkXLemOVzPD32MDUQ6oMgqUohhVxDIK24AHNxm74QtokTKuVv0u
OnBaubYHCrm9CGOQMD6k7ztfib10+2iKSisB6hQaPgudH/fg3VlVrSIYr
6p33IFGzD1xMKTnPdEHso3KIsnHMKM9U=
=Q4mo

Figure 1.5: Example of headers for PGP-verification

Verification of Identity Currently, there is no built-in verification of iden-
tity in NNTP. News administrators choose whether to honor the different con-
trol message types, and to which degree they do so. A common solution is
to require that creating, updating or removing newsgroups requires an addi-
tional set of headers for PGP12 authentication, X-PGP-Key and X-PGP-Sig,
which are used for verifying the named headers (see figure 1.5 for example
PGP headers and headers meant for verification).

Storage Methods

Since articles are basic text files, the basic storage method is a simple Unix
filesystem hierarchy, following the group hierarchies, and storing articles in
numbered files as they were accepted by the news server. The storage area
for news is called a news spool. A typical structure as seen from a user of a
Unix system is shown in figure 1.6 on the next page. “ls ” is a Unix command
for listing files and directories, and the “-F ” option displays the ending ’/’
for directories. “/var/spool/news ” is the directory where news articles
traditionally are stored under Unix.

Some of the headers are stored in news overview (NOV) databases, to
make it easier on the reading server when user agents want to get an overview
of certain header information for several articles. The NNTP command for

12Pretty Good Privacy, a commonly used software for authentication by a choice of several
cryptography standards.

13

$ ls -F /var/spool/news/comp/arch/
7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815
7816 7817 7818 7819 7820 7821 7822 7823 7824 arithmetic/
bus/ embedded/ fpga/ hobbyist/ storage/
$ ls -F /var/spool/news/comp/arch/arithmetic
651 652 653 655 656 657 658 659

Figure 1.6: Directory structure for a news spool under Unix

Article number (or filename)
Subject header
From header
Date header
Message-ID header
References header
Byte count
Line count (Lines header)
Optional additional headers (must include header name)

Table 1.6: Information stored in NOV databases

doing that is XOVER, which works on a per group basis.
Table 1.6 shows the information that will be stored in a NOV database, in

the order user agents will receive them ([Collyer, 1992], included in A.2 on
page 98). User agents typically request overview data when they are about
to display a summary of the available articles in a group. This means that the
user is either subscribing to the group or that he is looking it over.

Headers stored in NOV are quick to fetch, because there is less data to
manage for the news server. If other header data is needed, the news server
must look in the article store for these headers. This is very resource demand-
ing for the news server, and normally includes the same work as looking up an
individual article; only the amount of data received by the user agent differs.

DEFINITION 1 (READ EVENT)
When a newsreader fetches data from the news server that does not exist
in the news overview data, we call it a read event. The NNTP commands
that always cause a read event are ARTICLE and BODY. With INN 2.2, the
commands HEAD, XHDR and XPAT also do so.

A read event is not necessarily the result of a direct request for an article
by a user. Advanced user agents offer filtering and scoring of articles that may
cause many more read requests than there are articles being read.

14

Other methods have been used, including concatenation of several arti-
cles into single files, cyclic news spools (ring buffers), or more traditional
databases.

Common for all these methods is that articles usually are stored for a lim-
ited time, determined by those administering the news server. Cyclic news
spools are self-limiting on space; when the spool is full, the news server writes
new articles over old articles. Traditional spools have expire times set on a
group or hierarchy level, so that articles older than the specified time (e.g. 2,
7 or 31 days) are removed from the news spool. In both cases, expired news
articles usually remain unavailable to the user from that reading server. They
can remain available through proxying methods, such as one reading server
acting as a slave towards a master with longer news retention times. If the
slave does not have a particular article, it forwards the request to its master.

1.3 The History and Development of Usenet

In 1999, Usenet News turned 20 years. In those 20 years, many things have
changed, but some underlying principles have remained.

When BBSes (Bulletin Board Systems) were very popular, many people ex-
pressed that Usenet was just another BBS. Where BBSes (with few exceptions)
were limited to single computers and people connected with their modems
(or whatever means they had) to post their messages and discuss with others
of like or different mind, Usenet was from the beginning a distributed system,
where messages were transmitted between different computers to be avail-
able from more servers. Usenet was probably best compared with a network
of BBSes, each carrying the same discussions.

1.3.1 The Beginning of Usenet

The birth of Usenet is linked to a single event: An operating system upgrade
rendered existing bulletin board software non-functional, which caused two
graduate students at Duke University in North Carolina, Tom Truscott and Jim
Ellis, to develop the idea of a distributed news system. This was in the fall of
1979 [Hauben and Hauben, 1995].

At first, Usenet was a substitute for a broken bulletin board system, an
experiment with UUCP, based on a 3-page Unix shell script. The script al-
lowed people to subscribe to different groups, post and read notes in se-
quence, and also post to different groups at the same time (crossposting)
[Hauben and Hauben, 1995].

Steve Bellovin, one of the people who Truscott and Ellis presented their
design to, wrote the shell script using Unix V7 to test the design concept. The
first Usenet was a two-server setup, but it evolved quickly. Bellovin notes:

"We estimated a maximum size of 100 sites, and 1-2 articles a day,

15

net-wide...you couldn’t read things out of order. The goal there
(and in many other spots) was to have software free of databases.
Instead, we chose to let the file system do the work."

[Hauben and Hauben, 1995]

1.3.2 Big Changes

Usenet became a hierarchical structure of discussion groups, each group a
community, with its own expectations of conduct, the so-called netiquette.
Using UUCP for distribution and the old structure worked well for a few
years, but it became obvious to the news administrators that the distribution
model would not hold, and that the hierarchical structure needed a revolu-
tion. The result was a new communication protocol, NNTP, a new article
format (RFC 1036) a process of renaming hierarchies (“The Great Renam-
ing” [Bumgarner, 1995]) during 1987 and 1988.

Both the distribution protocol and the article format were changed. In
February 1986, the current protocol — NNTP — was described by Brian Kan-
tor (U.C. San Diego) and Phil Lapsley (U.C. Berkeley) in RFC 977
[Kantor and Lapsley, 1986].

The current article format was described by M. Horton (AT&T Bell Labs)
and R. Adams (Center for Seismic Studies) in RFC 1036 in December 1987.
Since then, the de facto article format has changed somewhat (“Son-of-RFC
1036”, [Spencer, 1994]), and modifications have been made to the distribu-
tion protocol (RFC 2980, [Barber, 2000]), through efforts from the INN project
and other news software programmers. The IETF is working on a new set of
Usenet standards to reflect current and future practice and needs (Article for-
mat: [Lindsey, 2001], NNTP: [Barber, 2001]).

After “The Great Renaming”, Usenet consisted of the top level comp, misc,
news, rec, sci, soc and talk hierarchies. The humanities hierarchy followed
later. These are most commonly referred to as the “Big 8”. Today, “Usenet”,
“News” or both refer to a seemingly arbitrary selection of the many available
hierarchies in the world, not just the “Big 8”.

1.3.3 Traffic Growth in a Historical Perspective

Usenet traffic — meaning the number and size of the daily accepted flow of
articles for a site that attempts to get “all” that is posted to Usenet — has never
increased slowly, at least not volume measured in bytes. According to Hardy
([Hardy, 1993], citing Gene Spafford), the rate of growth was fairly constant
from 1979 to 1988 (see table 1.7 on the facing page, based on a similar table
in [Spafford, 1990]).

About 1993, the use of services available via the Internet (such as Usenet)
began increasing dramatically with the introduction of the World Wide Web
(WWW), and the following success stories of the commercial ISPs.

16

Year Sites (Growth) Art/Day (Growth) Size/Day (Growth)
1979 3 (-) 2 (-) ? (-)
1980 15 (400%) 10 (400%) ? (?)
1981 150 (900%) 20 (100%) ? (?)
1982 400 (167%) 50 (150%) ? (?)
1983 600 (50%) 120 (140%) ? (?)
1984 900 (50%) 225 (88%) ? (?)
1985 1 300 (44%) 375 (67%) 1 MB (?)
1986 2 500 (92%) 500 (33%) 2 MB (100%)
1987 5 000 (100%) 1 000 (100%) 2.5 MB (25%)
1988 11 000 (120%) 1 800 (80%) 4 MB (60%)

Table 1.7: Usenet growth 1979 to 1988

From then to now, we have seen a change from a mostly academic envi-
ronment to a common public service, available to millions of users across the
world. Usage has also changed from being mostly text with a few pictures and
sound clips, to many more pictures and even movies. This non-text content is
also known as binaries.

Even full-blown CD ISO images and DVD ISO images have been posted to
newsgroups meant for binaries, while home bandwidth has increased from
300 baud modems to “broad-band” technologies like DSL13 and cable modem.
This was foreseen in [Hardy, 1993]:

The increasing use of Usenet to send binary data such as pictures
and sounds, and in the future, animations and video, will push
these requirements significantly higher in the near future.

As a result of these changes and the increase in users, a full newsfeed
can contain around 100 000 newsgroups, delivered at a rate of more than 1.5
million articles for a total of more than 300 gigabytes a day, between tens of
thousands of servers14. The next section will explain these numbers further.

1.4 Challenges and Problems With Today’s Distribu-
tion Model

With a volume of around 300 gigabytes in 1.5 million articles each day for one
huge server [Kondou, 2001], there are obviously problems with storage space
and bandwidth, if you wish to store everything you can receive of articles for
more than a day.

13Digital Subscriber Line, subtypes SDSL (symmetric), ADSL (asymmetric), VDSL (very high
speed DSL)

14Freenix’ “Top 1000 Usenet sites” [Freenix, 2001] lists the most-distributing servers

17

Many people think that articles should be stored for at least a month, and
say that “disk space is cheap”. Perhaps that is true if you count in EIDE based
hard disks, which cost from around 2 USD/GB. 15

If you want to run a news server with a newsfeed of the size mentioned
earlier, and you want to store all articles for a month, you will need only
9000 GB of that “cheap” storage space. That is around 18 000 dollars, if we
assume that the above cost increases linearly with storage space and ignore
the problem of having hardware, space and cooling to support that many
(more than 100) drives. But it is not really that simple. News administrators
tell me that they do not want to rely on cheap disks, because they need a high
degree of reliability, and also a high degree of performance, so they depend
on SCSI disks, which are far more expensive, at least three times more so than
EIDE. 16

The large feed news server must each second be able to receive and write
more than 17 articles sized 210 kilobytes, if the 1.5 million articles (300 GB)
are spread evenly over the day. That may be easy enough for the news server
and the local network, but this is also traffic intended for the Internet. This is
approximately 30 Mbps before any IP packet overhead, which means a mini-
mum of a dedicated T3 line 17 would be needed.

It should be evident that having a news server with a large feed is not a
small investment, and that saving some of the storage space and bandwidth
by not taking a large feed will save money.

In the following section, we will have a closer look at the continued
growth of Usenet.

1.4.1 Continued Traffic Growth

Hardy writes in The Usenet System [Hardy, 1993] that

Usenet has continued to grow exponentially since its creation in
1979 by two graduate students at Duke University, with traffic vol-
ume increasing recently by as much as 10-15% per month. A full
newsfeed at a typical site might average more than 30 megabytes
per day (about 10 times the size of the King James Bible, orf 100
paperback novels, or [10 200 A4 pages].).

Let us examine how the growth of Usenet has continued, from 1988 to
2001.

At the time I started working with this thesis, I only had the graphs from
[Nixon, 2000] (figures 1.7 on the next page and 1.8 on the facing page) to

15Typical EIDE disk, e.g. an 80 GB Maxtor, according to www.pricewatch.com, 2001-07-16
16A typical SCSI disk, e.g. a 73 GB Hitachi, costs about USD 650, according to

www.pricewatch.com, 2001-07-16.
17T1 = 1.5 Mbps, T2 = 4.5 Mbps, T3 = 45 Mbps

18

Figure 1.7: Size of a full Usenet feed August 1998 – February
2000 [Nixon, 2000]

Figure 1.8: Count of articles in a full Usenet feed August 1998 – February
2000 [Nixon, 2000]

19

Source Date Size/Day Growth
Yearly Monthly

[Spafford, 1990] 1988 Oct 4 MB 60% 4%
[Van Hees, 1993] 1993 Oct 56.8 MB 70% 4.5%
[Nixon, 2000] 1998 Aug 18 GB 231% 10.5%
[Nixon, 2000] 2000 Feb 120 GB 254% 11%

Accuracy is 1% yearly, 0.5% monthly

Table 1.8: Usenet feed size 1988 to 2000 (based on [Nixon, 2000])

Source Date Arts/Day Growth
Yearly Monthly

[Spafford, 1990] 1988 Oct 1 800 80% 5%
[Van Hees, 1993] 1993 Oct 16 800 56% 4%
[Nixon, 2000] 1998 Aug 700 000 116% 6.5%
[Nixon, 2000] 2000 Feb 1 100 000 35% 2.5%

Accuracy is 1% yearly, 0.5% monthly

Table 1.9: Usenet articles 1988 to 2000 (based on [Nixon, 2000])

work with. It seemed like Usenet had a stable near exponential growth in
feed size, and that this trend would continue indefinitely. Another apparent
trend was that feed size would continue growing stronger than the number of
articles, see tables 1.8 and 1.9.

My impression then was that Usenet feeds would continue to grow un-
til technical limitations made it extremely difficult or impossible to sustain
the enormous data flow, especially considering the enormous growth rate be-
tween 1993 and 1998 — the greatest growth in Usenet’s history so far.

However, in March 2000, [Nixon, 2000] went off the web, and updates on
the feed sizes were no longer available. I was forced to look for another source
of information, and got a pointer to [Kondou, 2001], which has a different
starting point in both feed size and number of articles registered, and reveals
that there is no different trend from 1998 to 2001. I have asked for and looked
at other sources for data, but the general agreement among experienced news
administrators has been that [Kondou, 2001] is the most reprecentative for
a full newsfeed’s size. The other sources of data seemed in general to be
less stable in terms of feed size and number of articles per day, and they also
showed lower numbers for both volume and number of unique articles. In
other words, [Kondou, 2001] appeared more complete.

In a news article in news.software.nntp in June 2001 (copy in B.3 on
page 117), I was made aware that Katsuhiro Kondou was about to leave his job
administering newsfeed.mesh.ad.jp, the host the graphs in [Kondou, 2001]

20

Figure 1.9: Size of a full Usenet feed November 1998 – June
2001 [Kondou, 2001]

Figure 1.10: Count of articles in a full Usenet feed November 1998 – June
2001 [Kondou, 2001]

21

Figure 1.11: Projected size of a full Usenet feed to December
2001 [Kondou, 2001]

Source Date Size/Day Growth
Yearly Monthly

[Spafford, 1990] 1988 Oct 4 MB 60% 4%
[Van Hees, 1993] 1993 Oct 56.8 MB 1 70% 4.5%
[Kondou, 2001] 1998 Dec 22 GB 218% 10%
[Kondou, 2001] 2000 Feb 64 GB 150% 8%
[Kondou, 2001] 2001 Feb 240 GB 275% 11.5%
[Kondou, 2001] 2001 Jun 280 GB 76% 4%

Accuracy is 1% yearly, 0.5% monthly

Table 1.10: Usenet feed size 1988 to 2001 (based on [Kondou, 2001])

are taken from. Steady newsfeeds are too dependent on active news adminis-
trators, and a decline in incoming feeds followed. Therefore, the numbers for
July cannot be trusted, and I have chosen to focus on the days around June
1 instead. A look at figures 1.9 on the preceding page and 1.10 on the page
before seems to confirm that situation; there is a noticeable gap in the number
of articles and the volume of news shortly after the middle of June.

It is interesting to see that the growth rate for the feed size seems to have
diminished between February and June of 2001. Figure 1.9 on the preceding
page and 1.10 show that there has been a much lower growth rate for those
four months than earlier. Figure 1.11 shows the projected feed size accord-
ing to [Kondou, 2001], where there also was a similar decline in growth rate
between November 1999 and April 2000. The growth in number of articles
is a bit more steady, although it saw a decline from 1998 and onwards, from
nearly 60% a year to between 30% and 50% a year.

Table 1.10 shows the daily feed size for several periods of time since 1988
until now. The number of 30 MB/day from [Hardy, 1993] is an estimate for
a “typical site”, while he later estimates between 25 and 50 MB over 13 000

22

Source Date Arts/Day Growth
Yearly Monthly

[Spafford, 1990] 1988 Oct 1 800 80% 5%
[Van Hees, 1993] 1993 Oct 16 800 56% 4%
[Kondou, 2001] 1998 Dec 700 000 58% 6%
[Kondou, 2001] 2000 Feb 950 000 30% 2%
[Kondou, 2001] 2001 Feb 1 350 000 47% 3%
[Kondou, 2001] 2001 Jun 1 500 000 37% 2.5%

Accuracy is 1% yearly, 0.5% monthly

Table 1.11: Usenet articles 1988 to 2001 (based on [Kondou, 2001])

articles per day across 62 000 sites. These numbers are inaccurate at best,
while the numbers from [Van Hees, 1993] are exact measurements over sev-
eral news servers in Europe from September to November 1993. I used the
middle of the period (33 days), because only a partial feed was available to
Van Hees in the first and last periods.

Vacation times may disturb the most recent and detailed results (from
[Kondou, 2001]) slighty; historically, there have been dips in the growth dur-
ing holidays and vacations.

As mentioned earlier, we see a downshift in the growth rate for feed size
around February 2001. Informal comments made by participants in the news-
groups news.software.nntp and alt.binaries.news-server-comparison in-
dicate that one possible reason may be that the Satellite based NSP Cidera has
lowered the maximum article size they allow through their feeding servers.
Cidera has not responded to questions per e-mail on this subject.

It seems safe to assume that the trend of near exponential growth will
continue, although possibly with the currently slightly diminished growth rate
(5-6% monthly increase in size, 2-3% in number of articles).

However, if the rate of growth picks up again to more than a doubling
every year, storing full Usenet feeds for even shorter periods of time may
become increasingly expensive, because the traditional doubling in size of
harddisks every thirteen months (90% yearly increase) seems to stop around
2005, and replacement technology is not expected to be ready until two or
three years later [Toigo, 2000]. Bandwith is perhaps the limiting factor here,
since bandwidth growth traditionally has been lower than the growth in disk
size. In 1969, the ARPAnet had a backbone of 56 kbps, and in 1999, the
US backbone is upgraded to 2.5 Gbps [Zakon, 2001]. This equals a yearly
increase in bandwidth of 43%, too little to sustain continued growth in the
full feed size.

23

1.4.2 Spam and Filtering

A large ISP and NSP — for instance Nextra18 in Norway — can have several
hundred thousands of customers. Still, the customers do not read all the
articles. According to interviews with Nextra’s news administrator, Stig S.
Mathisen, Nextra’s customers read 450 000 articles a day within the no hier-
archy in October 1998. Only 150 000 unique articles were available in that
hierarchy at that time, but not all of those 150 000 articles were read, and
a great deal of the articles were read several times. Section 5.1 on page 59
shows and discusses some statistical data from Nextra.

In total, the customers read less articles than what is received every day,
which (combined with the numbers for the no hierarchy) means that a lot of
articles are left unread.

News administrators I have been in contact with believe that a lot of stor-
age space and bandwidth is wasted on unread articles. They try to reduce
disk usage by avoiding groups and hierarchies with contents that may be il-
legal, filtering out so-called “spam” (massive posting of irrelevant articles to
many newsgroups) and binaries (articles containing pictures, movies, com-
puter programs etc., i.e. anything that is not plain text). According to these
news administrators, about 95-98% of the volume of a full newsfeed comes
from binaries, but these are only a small part of the number of articles.

However, the filtering techniques the news administrators use are not a
part of the news system itself. They are a collection of arbitrary utilities they
find handy, combined with “blacklists” that are sometimes distributed through
other channels, and other times generated manually by the news administra-
tors in question. One such blacklisting system is the NoCem advisories posted
to the newsgroups news.lists.filters and alt.nocem.misc.

1.5 Handling the Challenges

Compared to Usenet, documents on the web live a long time. The web
site Deja19, later bought by Google20 and renamed Google Groups21, have
attempted to store all news articles, with the exception of most binaries, for
eternity. They have failed in that they do not have all news articles for the time
period they are covering. Some of these are missing because authors have re-
served themselves against being stored by use of the optional X-No-Archive
header, which Google honors by not storing these articles. It is not uncom-
mon for regular news servers to not get all articles that are posted to Usenet,
but it is regrettable that those who set out to store and provide “everything”
are unable to do so. Note that Google Groups does not try to store binary

18Telenor Nextel until a name change medio 2000
19www.deja.com
20www.google.com
21groups.google.com

24

articles, which makes their task more manageable. The National Library of
Norway preserves articles posted to the no hierarchy as a part of Norway’s
cultural heritage.

A news article cannot be changed once it is posted, but it can be cancelled
and replaced by other articles, or simply be expired (deleted) because the
news server attempts to conserve storage space. Such removal of articles
happen all the time, since news administrators want to limit the use of storage
space, and partially because there are automated utility news programs which
cancel spam (see section 1.4.2 on the preceding page).

To handle the ever-increasing traffic on Usenet, I propose the introduction
of advanced caching proxies. While caching proxies have been common for
the WWW for a few years, this has not been the case for Usenet .

DEFINITION 2 (PROXY)
In the context of Usenet, a proxy is an intermediate server that transpar-
ently to user agents or downstream peers provides articles that it itself does
not have, but are available from one of the proxy’s upstream peers.

DEFINITION 3 (CACHING)
For Usenet, caching means copying and storing incoming data, and keep-
ing that data for a period of time.

Introducing such caching proxies may produce a challenge in itself, since
Usenet works well — in spite of the enormous amounts of data transmitted
every day — because of the flooding algorithm. Changing the algorithm may
have unforeseen and undesired consequences, in terms of usability, flow and
group control.

DEFINITION 4 (PREFETCHING)
Fetching data from an upstream peer before it is requested by user agents
or downstream peers.

It is useful to note that Usenet’s flooding algorithm can be viewed as a
time based prefetching caching mechanism, in that everybody gets a recently
posted article as soon as possible after it is posted, and that it is then only up
to the leaf nodes — the reading servers — to decide how many of these are
available to their users.

The following subsections are based on ideas of the author, as well as some
input from several experienced news administrators.

1.5.1 Requirements for Caching Strategies

If a caching proxy would be used, it is important for the users that they do
not notice a negative difference between it and an ordinary reading server. If
they do, they will want to use the ordinary servers instead.

25

It is difficult to say whether the users will even notice the presence of
a caching proxy in a negative way; we do not know what the average user
expects when reading Usenet. With traditional Usenet reading servers, articles
seem to disappear after arbitrary periods of time, decided upon by the news
administrators. In addition comes the unpredictable “holes” in newsfeeds,
where articles do not show up when the users expect them to.

We also must not forget the other concerns, which also influence the
users’ view of their Usenet service. If the NSP cannot afford to sustain the
incoming number of articles the users want, the users are more likely to see
such “holes” among the available articles. Bandwidth suffers when many users
try to get large amounts of data from the Internet, and the pushed newsfeeds
ensure that at least some of the things people want are available much closer
to the base of their network connection, possibly saving costly long distance
bandwidth. But the availability of that data depends on storage, and as men-
tioned in section 1.4 on page 17, this has been an increasing problem in the
later years. Although it seems more bandwidth friendly than storage friendly,
that may also not be true. Since bandwidth capacity is growing slower than
storage capacity (see the end of section 1.4.1) and there are many unread ar-
ticles among those the NSP receive. There are probably important gains to be
made here as well.

Caching proxies for news is a compromise that at the same time tries
to cater for bandwidth, storage, and the users, by adapting the availability
of hierarchies, groups, and articles according to what people actually read.
Because of this compromise, caching will not help the backbone servers.

The general idea is to have a caching proxy which initially does not carry
any articles, except in a few hierarchies or groups selected by the news ad-
ministrators. Several of the approaches mentioned below depend on a header-
only feed (dicussed in section 3.3.4 on page 45), so that the proxy has a
chance of keeping track of the information it bases its caching algorithm on.

A caching proxy for Usenet would store and keep individual articles, news-
groups and/or hierarchies until a certain lower limit of available disk space in
terms of blocks, files or bytes is reached (e.g. in a ring buffer), or it would
expire articles, groups and/or hierarchies after a certain time has passed, sim-
ilarly to how news expiry works with a regular, pushed newsfeed today.

Whether it is a distributed cache that uses partitioning between differ-
ent caching servers ([Danzig, 1998], see also section 3.1.1 on page 35) or a
cache cluster consisting of frontend and backend servers to balance the load
([Kurcewicz et al., 1998], see also section 3.1.2 on page 36) is not something
I will attempt to evaluate. It may be of interest that the metadata in the case
of Usenet is either NOV data or complete article headers.

DEFINITION 5 (METADATA)
Metadata is data about data. In the case of news, this is NOV data or
complete article headers, which allows news servers to utilize advanced

26

caching techniques. It can also be other data, such as blacklisting filters.

1.5.2 Different Caching Strategies

Based on my own experience with and observations of news, as well as feed-
back from other experienced news users and administrators, I have identified
a few different approaches to caching for Usenet. As far as I know, these are
not described in literature. These approaches are briefly presented in the rest
of this subsection, and more thoroughly discussed in chapter 4.

Simple Caching Strategies

1. Single article caching
The proxy only fetches the article requested, and keeps it in the cache.

2. Protocol command caching
The proxy caches specific protocol commands, and the results of these
commands, e.g. fetching of newsgroup overview data, article headers
or article bodies.

3. Time based caching
The proxy fetches the article requested, as well as prefetching other
articles within a given timeframe, before or after the requested article.

Metadata Dependent Caching Strategies

1. Author caching
Articles with the same author as the article just read are prefetched and
cached.

2. Thread caching
The proxy keeps track of all articles in a thread in a separate datastruc-
ture, in order to know which articles have been posted as followups
to any article. When an article is requested, the proxy fetches that ar-
ticle, and any other articles belonging to the same thread. If there are
no other articles, the single article that was requested is still cached, as
with single article caching.

3. Subject caching
Articles with the same or similar subject as the article just read are
prefetched and cached.

4. Group caching
When an article is requested, the proxy prefetches all the other articles
in the same group(s).

27

5. (Sub)hierarchy caching
The same as group caching, except the proxy prefetches the other
groups in the same (sub)hierarchy.

6. Prefetching groups/hierarchies
Without any action on the user’s behalf, the proxy prefetches (or is fed,
like a normal news server) some selected groups and/or hierarchies,
which will be available to the user as if it were a normal reading server.

Complex Strategies

1. General header caching
The proxy prefetches (or is fed) headers for a selection of groups and/or
hierarchies. One way to do this is to get all the headers of all the groups
or hierarchies which are not among some selected unwanted groups
or hierarchies, another is to get the headers of all explicitly wanted
groups/hierarchies. If it is fed, this is a header-only feed.

2. Statistical caching/prefetching
The proxy analyzes usage patterns and adapts a combination of other
caching strategies based on this.

3. News reader controlled caching/prefetching
The user agent specifies general criteria for which articles the user may
be interested in. As an example, the user may know whether he could
be interested in reading other articles posted at around the same time as
any article he is trying to read, or if he is interested in the same thread,
etc. It can also include statistical analysis of the user’s usage pattern.

Any of these may or may not produce a decent caching result for the users,
and most can be combined.

Article Retrieval and Storage Strategies

The proxy can fetch/be fed articles, groups and/or hierarchies from different
types of news servers. In the case of a cache miss, the proxy must fetch
articles itself from a peer, usually from its upstream peers. Mentioned below
are a few different ways of reaching the articles the proxy does not have in its
cache.

• Group/hierarchy repositories
The proxy is aware of one or several group and/or hierarchy reposito-
ries, where all articles ever posted to that group/hierarchy should be
found. These do not exist in an organized way today.

28

• Injecting server repository
The injecting server (the server where the article was posted to first)
keeps all articles posted on that server forever. These do not exist in an
organized way today.

• Reverse path lookup
The proxy looks up news servers along its feed path. This requires that
it knows which servers are feeding it news (or allow it to fetch news),
which is common for news servers today.

1.6 Research Questions

While it would be interesting to find ways to limit the size of a full feed, this
is not a primary goal for this thesis. By limiting the amount of binaries one’s
news server accepts, there are big gains in terms of bandwidth, without hav-
ing to resort to any kind of advanced caching. Efforts with these and other
improvement suggestions are discussed in chapter 3.

It is a matter of policy which newsgroups and hierarchies the news admin-
istrator finds acceptable, and which the administrator does not. If, however,
the reason for unacceptability is that the groups in question are not read,
caching may provide a more flexible solution in the long term.

From the viewpoint of a news administrator, there are three different kinds
of newsgroups:

Required Newsgroups that the reading server must offer to users, no matter what.

Unwanted Newsgroups that the reading server will not offer to users, no matter
what.

Other Newsgroups it does not matter for anyone but the users whether are
available or not, or that are unwanted because they are not being read.

It is this last category, the other newsgroups, that we can hope to ac-
complish something with. My general idea is that if the availability of arti-
cles, newsgroups and hierarchies in this category is dynamically adjusted by a
caching proxy, then it is possible to save bandwidth and storage without any
loss to the users.

I aim to establish the following:

• Which strategy or strategies are better for bandwidth?

• Which strategy or strategies are better for disk usage?

29

• Which strategy or strategies are better for user perceived perfor-
mance?

• Will caching proxies (as suggested) be a general improvement to
Usenet ?

Bandwidth usage would benefit most if there are no cache misses, and that
as few and as small as possible articles are fetched by or fed to the proxy as
seldom as possible.

Disk usage has most to gain if no articles are ever stored in the proxy
except in main memory, so that nothing is stored on disk.

The users would gain the most in perceived performance if all articles they
could possibly want are prefeteched and stored locally, and if the strategy in
question does not use too many system resources in providing articles to the
users.

Caching proxies as they are suggested in this thesis would be a general
improvement to Usenet if the sum of bandwidth usage, disk usage and user
perceived performance is better than that of traditional news servers.

In chapter 4, I discuss the caching strategies presented in the previous sec-
tion in light of the above questions. I also suggest some methods for testing. I
present, evaluate and discuss my findings from data collection in chapter 5.

30

Chapter 2

Methods Used

The thesis is based on ideas I developed through several years’ use of Usenet,
a year of administering a news server, and discussions with various news ad-
ministrators about the workings and challenges of news distribution.

During work with the thesis, I faced several problems. In this chapter, I
first present how I searched for prior art, followed by a section dealing with
conscious assumptions I consider significant. The next section is about data
collection and interviews, and the last about data analysis.

2.1 Search for Prior Art

Searching for prior art was done in several ways:

• Discussions with news administrators, my advisor, and associate profes-
sors at the Department of Informatics at the University of Oslo about
possible prior art

• Discussions and searches on Usenet

• Internet searches

• Library searches

My discussions with news administrators and associate professors revealed
no scientific articles about Usenet caching and Usenet proxies, nor did the
discussions on Usenet. My advisor gave me the GroupLens reference in asso-
ciation with an earlier essay on Usenet.

The Usenet searches were done with the news search engine Deja/Google
Groups. These searches revealed only technical publications in the form of In-
ternet standards that I already was aware of, Hardy’s document [Hardy, 1993]
and the Inktomi solution [Inktomi Corporation, 2000].

31

For Internet searches, I used the search engines Altavista1 and Google.
Library searches were done via BIBSYS, Inspec and ISI. The Internet searches
and library searches revealed very few relevant article abstracts, and of the
few that did, several proved to be irrelevant upon closer examination.

From what I have found, there are no peer reviewed sources dealing with
caching of news in particular, nor with the growth of Usenet in a historical
perspective. One article dealt with collaborative filtering of Usenet.

For this reason, I have looked at and commented some articles about
caching web proxies for the purpose of finding usable similarities with what
I am trying accomplish with caching of news.

I have also used a variety of other sources, including documentation for
software, descriptive documents and statistics found on the web, technical
documentation, Internet standards in the form of RFCs, articles found on
Usenet as well as an essay I wrote in early 1998.

2.2 Significant Assumptions

The most significant assumption is that from statistical data from traditional
news servers, it should be possible to test how suggested caching strate-
gies compare to traditional news servers, by examining varying granularities
of data and calculating how the number of articles and total size of articles
changes with the different strategies.

I have also assumed that as long as it is technically possible for users to
generate and send more and bigger news articles, they will. This assumption
is based on observations on Usenet’s growth in section 1.3.3 on page 16.

2.3 Data Collection and Interviews

To my knowledge, there were no existing surveys on Usenet reading habits
when I started work on this thesis. In consultation with my advisor, I made
an early decision not to perform any quantitative surveys to establish Usenet
reading habits, in order to limit the scope of the thesis. In retrospect, this has
limited the usefulness of my data collection and analysis.

Some news statistics were downloaded from the web sites of major news
distributors (Supernews [Nixon, 2000] in the US and Mesh [Kondou, 2001] in
Japan), other through the cooperation of anonymous news administrators.

I conducted several informal interviews via e-mail and personal conver-
sations with news administrators that revealed what they perceived as key
challenges, how they dealt with the Usenet flow before, how they deal with
it today, and how they plan to deal with it in the future.

1www.altavista.com

32

These interviews also helped develop the possible and suggested strate-
gies, which were decided upon before proceeding with gathering statistical
data and testing.

In addition to these interviews, I have posted numerous questions to the
discussion group news.software.nntp, to collect data on how news admin-
istrators perceived the issues, and how they dealt with them. Only three
responses were received.

I contacted the biggest Norwegian ISP, Nextra, for usage statistics on their
reading server. They helped providing a general overview of article article
requests and XOVER commands, through a simple group-by-group statistic on
reading usage. Time constraints and limited resources limited the detail of the
data I could get from their busy servers.

I also wrote a set of patches2 for INN. The patches cause INN to write
detailed information on usage to log files. The intention was to have these
patches installed with an upgrade of Ifi’s reading server for two to three weeks
before the Easter of 2001. This upgrade did not happen. After long delays, in
July Ifi allowed me to apply a patch to their running reading server software,
INN version 2.2. This has caused a problem with evaluation of the data, since
I then had to collect data during summer vacation. I collected information
on what articles were read, at what time, what the content of these articles’
headers were, plus general NNTP commands sent to the server.

2.4 Data Analysis

Testing was performed by analysis and comparison of the statistical data points
collected.

Nextra’s data was analyzed for reading patterns on a group level, to see
whether many groups are unread over time or not.

For this examination, Nextra’s news administrator had extracted summary
data. Further examination was done with Perl3 scripts I wrote.

At Ifi, I wrote several Perl scripts for extracting data from logs. I also
wrote other scripts for examining the extracted data. Errors in the log format
combined with data corruption caused variances in the basis for evaluation.

Ifi’s data was also analyzed for reading patterns. The more detailed infor-
mation on reading made it possible to split most of the read events into two
time periods: one for articles written before logging of commands started, and
one for articles written while commands were logged, allowing shallow sta-
tistical examination of data. Time constraints did not permit more thorough
analysis or evaluation.

2Patches are modifications to software source code
3Perl is a scripting programming language.

33

34

Chapter 3

Prior Art and Other Work

In my search for prior art on caching of news, I mentioned in chapter 2 that
there were few relevant sources of information to be found. In this chapter, I
first present two web proxies to show some general features of caching. Later,
I present the few attempts at Usenet performance improvements, followed by
other work for dealing with large Usenet feeds.

3.1 Caching Web Proxies

A web proxy is a server that acts as an intermediate server between one or
several users agents on one side and one or several web servers on the other.
The proxy server forwards URL requests to these web servers, and the result
of these requests back to the users, unless there are filtering rules preventing
that in the proxy.

A caching web proxy is a proxy that in addition to forwarding URL re-
quests also stores a copy of — caches — each unique request and the result
of that request. The copy is kept in the cache for as long as the configura-
tion of the proxy specifies. When another user agent connects and requests
the same URL, the proxy gives the user agent the cached copy of the result
instead of forwarding the connection to the web server at the other end.

3.1.1 Network Appliance’s NetCache

Network Appliance’s NetCache is an architecture developed to be a “scalable,
commercially supported, highly available Web cache” [Danzig, 1998]. It uses
separate state machines for HTTP, FTP, Gopher, and supports persistent con-
nections. The main focus is on WWW caching. A NetCache implementation
holds “fetch modules” for the varius TCP based protocols it supports, a stor-
age manager (to optimize I/O1 for as few disk accesses as possible), a TCP/IP2

1Input and output
2Internet Protocol

35

transparency stack, web page filters and client access controls, and client side
protocol processing for diverse protocols (HTTP, SSL3 tunnels, DNS lookup,
and extensible protocols).

For WWW, NetCache uses the GET if-modified-since operator to guaran-
tee that it returns up-to-date URLs4, but does not support HTTP 1.1’s opaque
cache validators yet. URLs can be verified on every reference or at config-
urable time intervals, but will not be cached if the MIME5 headers specify
negative expire times, are carrying cookies, are password protected pages or
is a result of queries or CGI6 like programs.

The cache can be scaled upwards by partitioning (division of the work
load between several proxies), partially because the most popular web browsers
support automatic configuration of proxies. Another architecture feature is
hierarchically partitioned cache-to-cache workload, based on a hashing al-
gorithm that uses the string length of the host name in the requested URL,
while specifying primary and secondary cache servers for each hash bucket.
If needed, the cache can be made transparent to the user agents so that no
proxy configuration is necessary at all.

3.1.2 A Distributed WWW Cache

[Kurcewicz et al., 1998] suggests and implements a prototype for a distributed
WWW cache cluster, based on functional decomposition, filtering algorithms
for what is cached in main memory, and a two-level routing scheme for load
sharing by routing arrays to avoid a single point of failure.

They criticize the solution based on automatic configuration that is pre-
sented in [Danzig, 1998] (see section 3.1.1 above) for having problems when
caching popular web servers; the load distribution becomes uneven because
the hash function directs requests for the one server address to the same
proxy every time, and that the auto-configuration scheme relies on the client
web browser, although it offers a workable solution for persistent HTTP con-
nections. Likewise, they criticize traditional hierarchically connected caches
for using available main memory too liberally, and for creating problems with
peering relation communication, since ICP (Internet Caching Protocol) does
not scale well within a hierarchical structure. The fundamental problem is, ac-
cording to the authors, that these solutions implement each cache as a mono-
lithic entity:

No attempt is made to coordinate meta-data and document place-
3Secure Sockets Layer
4Uniform Resource Locator
5Multipurpose Internet Mail Extensions is a standard mostly used for sending more

complex content than plain text via the Internet, and is mainly described in RFCs 2045
[Freed and Borenstein, 1996a], 2046 [Freed and Borenstein, 1996b], 2047 [Moore, 1996],
2048 [Freed et al., 1996], and 2049 [Freed and Borenstein, 1996c].

6Common Gateway Interface

36

F1

F2

F3

Fn

M1

B1

Bm

B3

B2

M2

Metadata 1

FT Frontend routing table

Fn Frontend n

Bm Backend m

Mx Manager x

Manager routing tableMTx

FT

FT

FT

FT

Metadata 2

MT1

MT2

Metadata 1 = All Metadata - Metadata 2

Figure 3.1: A distributed WWW cache with two metadata managers
[Kurcewicz et al., 1998]

ment globally.

Their architecture is based on three different types of server functions:
frontend, backend and metadata manager. In such a distributed cache system,
there can be several of each of these, but each manager manages a different
part of the metadata. Figure 3.1 illustrates this.

3.2 Usenet Performance Improvements

To my knowledge, there are only two commercial products for news caching,
Inktomi’s Traffic Server and DNEWS. There are also a few non-profit initia-
tives, KNews, NNTPCache, Leafnode and DeleGate. In table 3.1 on page 41,
these products are compared with the caching strategies suggested in 1.5.2
on page 27.

3.2.1 DNEWS

DNEWS [NetWin Ltd., 2001] is a popular news server software package that
is used by many large scale sites. It can be administered remotely via a web
interface. Access to the news server is configurable by pattern matching on
domain name, on IP address, and on newsgroup name. It also allows this to
be configured on a per user basis.

Articles can be expired not only by age, but also by limiting the number
of articles in a group.

37

Filtering of spam can be done by configuring rulesets. For instance, one
can check for excessive crossposting, too many too similar articles in succes-
sion, and filter on patterns in any article headers or article body.

For caching and prefetching, DNEWS can do group caching by fetching
newsgroup lists from an upstream peer at regular intervals. It allows its clients
to use this list for choosing newsgroup subscriptions as if they were directly
available on the DNEWS news server. Articles in these groups are prefetched
only if the groups are actively requested by clients. From what I have learned,
the first article in a so far unread group is not immediately available when it is
requested; the user gets a message back explaining that articles in that group
will be availble the next time he or she attempts to read a message. This is
then a limited form of group caching.

DNEWS also supports another mode of operation with header-only feeds,
for offering binaries without storing them on the reading server. In these
cases, large articles are fetched from the upstream peer when they are re-
quested. DNEWS claims 90% saved bandwidth and storage space for this
mode. I assume this also means that DNEWS caches these articles once they
have been fetched, so that it is a form of single article caching.

3.2.2 Inktomi Traffic Server 2.0

Inktomi Traffic Server 2.0 [Inktomi Corporation, 2000] is a proprietary solu-
tion for news servers by the Inktomi corporation. It employs group caching,
and the cache can be updated on demand, at configurable intervals and, if
necessary, by receiving a conventional newsfeed.

The server is designed not only to act as a replacement for the reading
or injecting server, but can cooperate with other Traffic Server installations
in the same network for load distribution or redundancy, as well as serve up-
stream of other installations.

An interesting feature is the ability to control the amount of bandwidth
dedicated to a client connection for download.

3.2.3 KNews

Robert Krten designed a news server for QNX7, named KNews, with two
basic components: One to get and store articles, and another to keep track of
the articles [Krten, 1996].

Krten’s improvements are mostly on a QNX-specific level, yielding better
efficiency in handling articles in one server, while leaving the problem of
distribution alone.

7A Unix-like realtime micro-kernel based operating system, [QNX, 2001]

38

3.2.4 NNTPCache

NNTPCache [Assange et al., 2001] is a program designed for running on the
same computer as the user agent, pretending to be a reading server. It hides
one or several actual reading servers based on pre-defined patterns. This
makes it possible to pretend that one has a virtual newsfeed that is much
larger than the actual newsfeed.

NNTPCache is thus a similar solution to Inktomi’s (see section 3.2.2 above),
but it works transparently with or without other NNTPCache installations.
It supports cryptographic solutions for stopping/removing “spam” through
automatic treatment of NoCem spam advisories (mentioned briefly in sec-
tion 1.4.2 on page 24 and 3.3.3 on page 44). In addition, it is possible for
the users or groups of users (e.g. based on hostname/IP address) who want
it, to turn on regular expression based filtering of headers and content. NNT-
PCache can also function as an NNTP application proxy.

Whenever a newsreader or other program claiming to be a newsreader
connects to NNTPCache and issues reading commands, NNTPCache caches
these commands and the resulting data, so this is protocol command caching
(see section 1.5.2 on page 27). No other strategy is involved.

NNTPCache expires articles from its cache based on available disk space
(counted in terms of blocks, files or bytes) or time, all configurable.

3.2.5 Leafnode

Leafnode [Krasel, 2001] is a news server designed for few users (up to a few
tens of newsreaders) on a slow connection (modem based or similar speeds).
It works by fetching articles in newsgroups that have been read within a time
period (default being one week), and posting articles to that upstream peer
on behalf of the users.

Leafnode does not scale very well, and sometimes loses articles as a side
effect of how it handles errors.

This is a combination of single article caching, group caching, and time
based caching.

3.2.6 DeleGate

According to [Sato, 2001],

DeleGate is a multi-purpose application level gateway, or a proxy
server which runs on multiple platforms (Unix, Windows and
OS/2). DeleGate mediates communication of various protocols
(HTTP, FTP, NNTP, POP, Telnet, etc.), applying cache and conver-
sion for mediated data, controlling access from clients and rout-
ing toward servers. It translates protocols between clients and
servers, merging several servers into a single server view with

39

aliasing and filtering. Born as a tiny proxy for Gopher in March
1994, it has steadily grown into a general purpose proxy server.
Besides proxy, DeleGate can be used as a simple origin server for
some protocols (HTTP, FTP and NNTP).

An origin server is the same as a regular server for the services it deliv-
ers. In the case of Usenet, this means that it would receive and send regular
newsfeeds with its peers.

For NNTP, DeleGate can transparently merge connections to different
news servers (also based on hierarchy or group), share these connections
with several users, whose access is allowed or denied on a per user, host,
newsgroup or hierarchy basis.

It also allows creation of aliases for newsgroup names, a feature not sup-
ported by regular news servers.

Other features include automatic MIME, PGP encoding/decoding, charac-
ter encoding/decoding, and protocol conversion for clients (such as NNTP
client to POP8 mailbox and HTTP client to NNTP server).

DeleGate caches data in its “inherent format”. What this means for news,
is that when someone requests a news article through DeleGate, it caches the
raw article data as is, without additional work. As with NNTPCache, this is a
form of protocol command caching or single article caching.

Data is stored for a period of time on the system DeleGate runs on, simi-
larly to how NNTPCache does it, or it can connect to another caching server
using ICP.

3.3 Other Work

This section presents other work than caching and specific news servers that
has been done to help relieve the problems with the size of Usenet feeds.

3.3.1 Satellite Newsfeeds

There are a few commercial actors that deliver streaming Internet data over
satellite to cheap satellite ground stations, e.g. Cidera9, iBeam10 and Loral11.

The advantage of a satellite stream for a newsfeed is that it offers reason-
ably high bandwidth from the satellite feed provider to the satellite ground sta-
tion. These low-cost stations are sometimes called VSATs12 [Tanenbaum, 1996]
(section 2.8.1, p. 165). Such satellite feeds are one-way only, and traditionally

8Post Office Protocol
9www.cidera.com

10www.ibeam.com
11www.loral.com
12Very Small Aperture Terminals

40

[tb]

Strategy D
N

E
W

S

In
k

to
m

i

K
N

ew
s

N
N

T
P

C
ac

h
e

Le
af

n
o

d
e

D
el

eG
at

e

Single article X (X) X (X)
Protocol command X X
Time based X
Author
Thread
Subject
Group X X X
(Sub)hierarchy
Prefecthing groups/hierarchies
General header
Statistical
News reader controlled

Table 3.1: Strategy comparison for Usenet performance improvements
The table separates from top to bottom between simple strategies, metadata based

strategies and more complex strategies.

downstream. Feeding data upstream is usually done via ground-based con-
nections, but it is of course technically possible to have two one-way satellite
feeds; one upstream and one downstream.

Satellite feeds are vulnerable to weather and atmospheric disturbances,
and have a comparatively high latency because of the geosynchronous orbit,
which is 36 400 km above ground level. The minimum round-trip latency is
about 480 ms, because of the speed of radio waves13 [Pratt and Bostian, 1986].
Comparatively, ground based feeds will not have to “travel” more than a frac-
tion of this distance.

For satellite feeds to take off the load of existing ground based lines, it is
therefore necessary that the ground based newsfeeds are artificially delayed
for a few seconds to have a good margin for the articles to arrive through the
satellite feed first.

In order to receive a satellite feed, Cidera provides a satellite dish, a satel-
lite receiver box, a switch, and a special service adapter.

Cidera uses 52" dishes, a bit larger than the minimum for VSATs per 1994,
but it also offers a better downlink speed; 22 Mbps, compared to 512 kbps in
1994 [Tanenbaum, 1996].

According to [Cidera Inc., 2001], they are able to supply up to 22 Mbps

13≈ 300 000 km/s in vacuum

41

this way, which is close enough to the needed 30 Mbps for a full newsfeed
that it ought to suffice for most uses.

This kind of performance is exactly what a reading server for Usenet needs,
reducing bandwidth costs significantly compared to ground based feeds. (See
[Phifer, 2001] and [Tanenbaum, 1996] section 2.8.3 p. 169.)

3.3.2 Limitating Binary Distributions

A common solution to bandwidth and storage problems is to limit the in-
coming flow of binaries. In Usenet’s hierarchical structure, the subhierar-
chy alt.binaries is there for the purpose of distributing such binaries. In
[Salz, 1991], one way of limiting binary distribution is suggested, simply by
excluding all newsgroup names containing “pictures” or “binaries”. However,
this method is not reliable, since there is nothing that inherently prevents
people from posting binaries to other groups.

Curt Welch of NewsReader.Com14 estimated in December 1999 that a
text only newsfeed was 2 GB/day, when a full newsfeed — including bina-
ries — was between 50 and 100 GB/day (see section 1.4.1 on page 18 and
[Welch, 1999b], section B.2.2 on page 115)). If it safe to assume that binaries
are the most significant part of volume growth, and thus that text volume has
increased in proportion with the number of articles rather than with the to-
tal volume of Usenet, then it is reasonable to expect that a text-only feed is
around 5 GB/day in June 2001.

3.3.3 Encoding, Compression and Filtering

Most news servers today support 8-bit transport, although the RFC 977 strongly
suggests that everything transported as news should be 7-bit data, and RFC
1036 defines the character set as the 7-bit ASCII. Because of this and that 7-bit
transport is still common for e-mail, and many newsreaders also are mailread-
ers, texts using 8-bit character sets such as ISO Latin-1 are often encoded by
newsreaders.

Pictures, sound or movies in binary form are not immediately transferable
as articles or e-mail, because they are not plain text ASCII. Such content —
binaries — is also encoded in plain text ASCII.

As I mentioned in sections 1.3.3 on page 16 and 1.4.2 on page 24, most of
the volume comes from binaries, and news administrators who do not want
all of these try to use filters to save disk space.

In addition to filtering, more size efficient encoding and compression have
been suggested as means of reducing Usenet volume.

14NewsReader.Com is a web based NSP

42

Encoding and Decoding

There are several typical encoding schemes in use on Usenet today. For bina-
ries, the most common is probably “uuencode”, followed by “base 64”. 8-bit
text is either sent unencoded or encoded with quoted-printable or base 64.

Quoted-printable encoding — a part of the MIME standard — replaces
ASCII control characters and characters not in the ASCII character set with an
escape character followed by two hexadecimal numbers. The escape charac-
ter is ’=’. If this character appears in the text, it is encoded as “=3D”, “3D”
being the hexadecimal code for the character number of ’=’ in ASCII. This
scheme is rarely used for encoding binaries, because of a huge overhead, of-
ten more than 100% of the original file size.

Base 64 and uuencode expand the size of the binaries so that, roughly, 3
bytes of binary data becomes 4 bytes of text data, which means an overhead
of 37% to 40% in practice.

This year, Jeremy Nixon of Supernews15 has come up with an alternative
encoding scheme, called QPLite16. The scheme takes advantage of the com-
mon support for 8-bit transport, and does not encode every non-ASCII byte.
Instead, it encodes only the three characters harmful for news transport: NUL
to ’=00’, CR to ’=0D’ and LF to ’=0A’, plus the quoted-printable escape charac-
ter ’=’ to ’=3D’. The overhead for encoding NULs for some types binaries has
been estimated to up to 7%, but Nixon claims a common overhead of about
3%.

Decoding depends on the decoding software recognizing the part of the
article body that contains the encoded binaries as different from the rest of the
article body. [Spencer, 1994] recommends using MIME for specifying charac-
ter set and encoding, so that it is easier for software to treat other than 7-bit
articles correctly. MIME can also be used for encapsulation of combinations
of binary and text as different parts of messages. This encapsulation makes it
straightforward to treat each such part separately.

Material encoded with uuencode, base64 and quoted-printable are eas-
ily recognizable for software even without MIME encapsulation, and this has
probably stopped such encapsulation from being used frequently. A series
of tests performed in alt.binaries.news-server-comparison revealed that
only a few newsreaders failed to decode QPLite encoded material with their
regular quoted-printable decoders. It is probably trivial to modify these to also
support decoding of QPLite.

Compression

Recent discussions in the newsgroups alt.binaries.news-server-comparison
and news.software.nntp have led to suggestions on using end to end (usu-

15Supernews is a major NSP
16“quoted-printable light”

43

ally user agent to user agent) compression of article bodies and some headers
to improve the conditions for reading servers.

Many of the binaries are already in some compressed form, as is the case
for MPEG movies, JPEG images, and MP3 sound. This makes it difficult to
compress them further.

On the other hand, text content including article headers compresses
well.

This can be combined with other efforts, such as more efficient encoding
in the form of QPLite or similar standards, and more intelligent caching or
prefetching.

Filtering

As mentioned in sections 1.4.2 on page 24 and 3.2.4 on page 39, news ad-
ministrators use various filtering techniques to limit the impact of unwanted
traffic, such as spam, binaries in newsgroups that are not intended for bina-
ries, and HTML postings to newsgroups where that is not allowed according
to the newsgroup charter.

For years, there have been heated debates about the efforts against spam
on Usenet. One attempt of dealing with the spam was to send out cancel mes-
sages for nearly each spam message that went out. In several waves, this has
escalated in to periodic wars, with tens of thousands of simultaneous cancel
messages and re-posting of original messages across the net. The problems for
news sites around the world varied greatly. On at least three occasions, a site
I administered collapsed under the flow of such messages.

These control message attacks have partially been caused by the HipCrime
software, which is constructed for generating and sending massive amounts of
control messages. News administrators have responded with creating NoCem
spam advisories and software for dealing with these advisories automatically,
removing the spam without going through the built-in control mechanisms of
Usenet. Other software, such as Jeremy Nixon’s Cleanfeed17, filters incoming
and outgoing articles before the news server sees them. Spam Hippo is yet
another approach, and implements filter persistence, while Cleanfeed stores
everything in main memory.

A few years back, there was also a research project called GroupLens that
applied collaborative filtering to Usenet [Konstan et al., 1997]. It worked by
using metadata servers external to Usenet for evaluation based filtering of
Usenet content. These servers kept track of user evaluations about articles
that had been read, and from these results predicted what the users would
want to read. User agents were modified to transparently connect to these
servers and display a prediction of whether the user wanted to read the ar-
ticles in question or not. In [Ingvoldstad, 1998], I saw problems with the

17Currently maintained by Marco d’Itri

44

scalability of the GroupLens model from one modest workstation for a fairly
large number of users (10 000) reading a small number of newsgroups (10-20).
This model remains an interesting experiment, but it requires that someone
reads and evaluates the articles for it to work. Therefore, it will not work if
only a single NSP implements it; several will have to cooperate, and then we
run into scaling problems.

3.3.4 Header-Only Feeds

Between December 1999 and March 2000, there were discussions in the
newsgroup news.software.nntp on so-called “header-only feeds”, and the
implications that would have for news distribution performance.

A header-only feed implies that only the headers of articles are distributed
instead of both headers and body. News server software such as Diablo sup-
port this option already.

In its simplest form as suggested by Curt Welch in an article to
news.software.nntp in December 1999 ([Welch, 1999a], included in sec-
tion B.2.1 on page 111), the header-only feed means that each news server
at first only receives the headers of the articles posted. When the user re-
quests an article through the user agent, it asks a specified server (listed in a
new header, “Body”), for the article body. The server then caches the article
for other users. The body server would be the injecting server, or a sepa-
rate server (at the same site, apparently) that gets copies of all articles posted
through the injecting server.

In other words, this changes at least parts of the distribution system to be
pull-on-demand, instead of push, and it is a suggestion along the lines of a com-
bination of the Single article caching, General header caching and In-
jecting server repository strategies mentioned in section 1.5.2 on page 27
and discussed in sections 4.1.1 on page 49, 4.2.7 on page 54 and 4.4.2 on
page 56.

Followups to Curt Welch’s initial article have pointed out several weak-
nesses, such as server capacity and bandwidth problems when one body
server is asked by a multitude — up to several thousands — of servers for
article bodies.

Other problems include lack of redundancy; news becomes more like the
WWW, because availability depends on the stability of the body servers in
terms of individual line capacity, computing power, system stability, and up-
time.

Additional suggestions on news.software.nntp include the use of addi-
tional strategies, such as Reverse path lookup and a central news backbone,
where servers generally keep everything.

In general a header-only feed is at a comparatively manageable size com-
pared to that of a full newsfeed. The volume of these headers are between 1
and 5 GB/day. [Welch, 1999a] has 1 GB/day, and a few sampled measurements

45

of NOV data indicates that the average size of those are somewhere between
300 and 500 KB per article. It should be safe to assume it is less than 5 GB/day,
unless header sizes are more than six time greater than what is stored in NOV.
See also section 1.3.2 on page 16

3.3.5 Administrative Improvements

The following software is mentioned in “Usenet Software: History and Sources”
[Spafford and Moraes, 1998].

Gup

Gup — the Group Update Program — is a semi-automatic system for updating
newsfeeds remotely. This adresses part of the problem with the grey area of
groups mentioned in section 1.6 on page 29, in that it becomes easier for
news administrators to add groups on request from users. This effort does not
act directly upon request from users, though; the administrator in question
will have to approve the request.

The README file for Gup [Delany and Herbert, 1993] explains the opera-
tion of the program in the following way:

Gup, the Group Update Program is a Unix mail-server that lets a
remote site change their newsgroups subscription without requiring
the intervention of the news administrator at the feed site.

Once installed, the news administrator at the remote sites simply
mails commands to gup to make changes to their own site’s
subscription list. Not only is no intervention required at the
feed site, but gup checks the requests for valid newsgroup names,
patterns that have no effect and so on, giving the requester
precise information about the effect of their subscription.

Dynafeed

Dynafeed [Templeton, 1993] allows news administrators to give remote con-
trol over feeding of news on the group level. There is one set of programs
for the upstream peer, and one program for the downstream peer. The up-
stream peer checks incoming e-mail that controls the feeds, similarly to Gup.
The downstream peer may run a program for scanning of the user agent’s sub-
scription list, so that it only receives those groups that are actually being read.
This information can also be maintained manually by the news administrators.
The weakness of this is that different user agents keep subscription lists in
different ways, and that it would be difficult to maintain.

46

Site A Site B Site C
Number of peers 5 30 “enough”
Number of users < 2 000 < 10 000 “many”
Articles accepted/day 1.2-1.3 million
Volume accepted/day 140 GB 190 GB 220-250 GB
Reduction by filtering on articles 2% not answered not answered
Reduction by filtering on volume 50% not answered 12-14%
Load balancing no maybe yes
Header-only feed yes no not answered

Table 3.2: Responses to questions in news.software.nntp on how news ad-
ministrators handle Usenet feed size

3.3.6 Current Practice

I asked some questions in news.software.nntp at 2001-04-30, and got an-
swers from three news administrators. Two answered by e-mail, and a third
answered in the newsgroup shortly after I had posted an anonymized sum-
mary of the two responses 2001-05-27. Table 3.2 shows key data from the an-
swers, which are included in the appendix, section A.4 on page 105. The sites
and their news administrators were promised anonymity. Site A is medium
sized, Site B is fairly large, and Site C is huge, and could be considered part of
the Usenet backbone.

Since there were so few answers, it is difficult to say anything conclusive
with basis in this alone. Thanks to prior discussions and informal interviews
with other news administrators, I have been able to establish that at least limit-
ing binary feeds and filtering are common practice among news administrators
today. The combination of prefetching and caching is considered interesting,
but not much has been done to experiment with it. The exception is group
caching, as implemented by Inktomi and Leafnode (sections 3.2.2 and 3.2.5).

47

48

Chapter 4

Discussion of Caching
Strategies

Unless we choose against supporting existing user agents, including legacy
software, which will make the introduction of a new news distribution system
rather unrealistic, it is important for the usability of a new news distribution
system that the structure of the underlying system remains transparent to the
user agent. I will therefore mainly focus on solutions that will not necessitate
changes in the user agent nor additional user interaction.

For deciding which solutions are good and which solutions are bad, data
on how users read articles must be collected. This usage pattern must then be
compared with what patterns the different solutions depend on for working.

For each caching strategy below, see also the introductory explanations
in section 1.5.2 on page 27. As mentioned there, these strategies are derived
from my own experience.

Most of the caching strategies depend upon the use of an upstream peer
that can provide articles on request. The last section in this chapter discusses
those strategies mentioned in 1.5.2 on page 27.

4.1 Simple Caching Strategies

Simple caching strategies do not require metadata to function properly.

4.1.1 Single article caching

Since the proxy only fetches the article requested, that is, only single articles,
this method is effective only if an article is likely to be read by more than one
person or more than once.

I believe the effect of this kind of caching — as long as it is not combined
with any other methods — is good but limited. The cache will get a miss for
each new unique article read event. If unique articles usually have several read

49

events within a reasonable timespan, the comparative overhead for fetching
single articles may be relatively low.

I expect this method to be decent to good in hit rate, bandwidth, and disk
usage. User perceived performance can range from good in the case of cache
hits, to bad in case of misses where the article requested is unavailable from
the nearest upstream peer.

4.1.2 Protocol command caching

This method is simple to implement, in that it does not try to be too smart
about electing things to cache, but rather depends on actual usage patterns
as they occur. It does not force the proxy to fetch additional articles ahead of
time.

As with single article caching, it presents a minor overhead whenever a
previously unencountered command is received. It then has to pass the com-
mand along to the actual reading server. While it is possible to uncertainly
predict some of the commands that will be encountered in the future, it does
not make prefetching based on these commands alone a good choice, as the
commands are on a lower level than that of article, group, and hierarchy.
Those are arguments to the commands, and specific examination and caching
of those arguments belong to more coarse grained caching approaches.

These problems may make it hard to make effective use of protocol com-
mand caching for sites with many users with varied usage patterns, but it
works well for smaller sites, according to [Assange et al., 2001].

This method should, like single article caching, perform decently in terms
of hit rate, bandwidth and disk usage. However, in terms of user perceived
performance, I expect it to perform poorly, because of the lower level of
caching compared to single article caching.

4.1.3 Time based caching

This approach assumes that if someone reads an article, other articles posted
around the same time as that article are likely to be read as well. Since articles
are spread over a great number of newsgroups, this is probably most efficient
when users subscribe to many newsgroups and read them often.

The approach may prove to be more efficient if it is done on a group
by group basis, if users are loyal to a specific set of newsgroups and follow
them. If implemented with current NNTP commands (listed in tables 1.4 on
page 11 and 1.5 on page 11), it can easily be done on a per group basis, since
the NEWNEWS command only checks for new articles in a specific group.
Checking all groups — as this approach calls for — can also be done, but the
overhead increases with the number of groups available on the server, so I do
not think this method is very efficient if used alone.

50

Another point is that this is nearly exactly what news is about today, since
it prefetches an amount of articles, but it is pulling articles rather than having
them pushed, which will result in a small overhead in network traffic because
of the extra commands required.

Considering that there are over 20 000 different newsgroups, there may
not be any relation at all between when an article is posted (or when it arrives)
and the articles people read, unless this is limited on a per group basis. Also,
if the news provider has a fairly large mass of users, this may quickly break
down if the provider has users reading news constantly. The effect of the
proxy would then be that of a pulling news server instead of one receiving a
push, and instead of decreasing, the bandwidth and storage demands remain
or increase.

Compared to the two previously mentioned strategies, I think this method
has a higher degree of bandwidth and disk usage, as well as bad user perceived
performance.

4.2 Metadata Dependent Caching Strategies

The following strategies require a feed of metadata from their upstream peer.
As a minimum, NOV data must be available, and for some methods additional
headers are needed. It is probably practical to use a complete header-only
feed for that purpose.

4.2.1 Author caching

It may be a reasonable assumption that when someone has requested an arti-
cle by one particular author once (or a given number of times), that someone
wants to read more articles by that person. It is difficult to say whether this is
effective or not in general without measuring usage patterns, but it is pretty
certain to be effective in limited cases, such as Linux developers looking for
articles by Linus Torvalds. If this method should be effective, each article
prompting a read event should be written by a comparatively small group of
different authors.

A negative effect is that the pattern matching necessary for performing au-
thor caching will require substring matching in news headers, and this incurs
a performance penalty in terms of processing power.

Author caching should have about the same degree of bandwidth and disk
usage as time based caching, but user perceived performance ought to be
even worse because of the pattern matching.

4.2.2 Thread caching

Caching per thread is effective if users can be assumed to be interested in
a specific discussion when they read one article in that discussion. Since a

51

thread is supposed to contain all articles in that discussion, the user would
then be able to find the rest of the discussion already in the cache. Other
users may be interested in the same discussion because of word-of-mouth, or
because they already have read articles in the discussion before.

The methods probably needs adjustable parameters, such as for how long
after an article in a thread is read the proxy should keep track of a thread and
add articles to the thread cache when they become available at the upstream
servers. Differentiated parameters for low-traffic and high-traffic periods, such
as vacations and semester start at a school are also something to consider.

For all read events, this method seems to be able to get an even better hit
rate than single article caching, because it has the chance of getting articles
from the read threads into its cache before other articles in the thread are
requested. Another way to look at this is to have a standard pushed feed to
the proxy, where the proxy simply gives a negative response to any articles
that do not belong to the threads it wants to cache, which may save some
response time if the other articles in the thread are offered after the first.
With the pushed feed, the proxy will not attempt to fetch any articles itself
unless there are cache misses. In the event that an earlier rejected article
is requested, the pushed feed solution will cause additional network usage
compared to only pulling articles.

It should be possible to measure some of the potential success of thread
caching by building the reverse References tree manually from the References
header of articles read by users and comparing the number of such threads
and subthreads with the number of article read events.

I believe this strategy has the greatest potential of all single strategies men-
tioned here, provided it is implemented by pulling articles. This is difficult
to back up with hard data, and would require detailed statistical data from a
practical implementation to test its limits.

I expect thread caching to have a high hit rate and user perceived perfor-
mance, as well as decent bandwidth and disk usage.

4.2.3 Subject caching

Caching by subject is a different strategy than caching by thread. A thread
may continue while the subject changes, and the same or a similar subject
may be found across several threads. Sometimes, threads are broken up (no
References header) when the subject changes, yet the subject retains a part
of the original subject. The new subject can then be called a continuation of
the old subject.

For instance,

Subject: Netscape doesn’t load my home page

52

could typically be changed from one article to the next to:

Subject: Stupid users (was: Netscape doesn’t load my home page)

If the thread was broken up, the text following “was” would be our only
clue that this was a followup article to the original one. Some people break
up threads on purpose, as per RFC 1036 recommendations, others do it by
accident because they do not know how to use their user agent or their user
agent does not do things the right way, leaving the subject unchanged.

Considering that the topic of a thread may change without the References
header being cut down on, thread caching may cache a lot of articles that are
not of interest. Subject header caching would help, provided that we could
rely on people changing subjects when they change topic. Unfortunately, we
cannot rely on that, so the effectiveness of this method is dubious.

There is another problem with subject caching, and that is that user agents
do different things when treating subjects. In the cases where non-ASCII char-
acters are present in the subject, these are sometimes encoded with quoted-
printable (see section 3.3.3 on page 43 for more about this encoding scheme),
and other times with other schemes. If subject caching should take this into
consideration, it would require more processing power when examining sub-
jects, and therefore reduce performance.

Another way of doing subject caching could be to look at similarities be-
tween articles each user agent is requesting. If there is an overweight of ar-
ticles with “madonna” in the subject, it is not unreasonable to assume that
the users might be interested in more madonna articles, and that pre-fetching
those articles would be useful. This does demand a higher degree of analysis
work on the server’s part, and may not really give a net “profit” in terms of
performance, because of the extra processing power required.

Whatever solution is chosen for subject caching, the same problem as with
author caching remains; for every single cache miss, the server must perform
resource intensitive pattern matching on text strings.

Subject caching can be expected to have poor user perceived performance,
perhaps even worse than author caching. Bandwidth and disk usage perfor-
mance is hard to predict, as it depends on how much of a subject one does
pattern matching on.

4.2.4 Group caching

Caching all the articles available in an entire group may be effective if the
volume of the group is low, and it is a fair assumption that users reading one
article in a group would be interested in other articles in the same group. If the
group has a high volume, pulling down the articles will be relatively slower,

53

and the user might not get the articles requested unless these are fetched on
a per-article basis until they are in the group cache. It could also be possible
to start the caching process when a user requests headers for the group.

As with thread caching, the method may need adjustable parameters on
when the group caching process is supposed to “time out” if nobody con-
tinues reading it. Whole groups may be expired if the caching method is
exclusive, that is, no other methods than group caching is employed.

One suggested implementation of group caching, is to read each user
agent’s subscription list. This is impractical, since different software keeps
the subscription lists in different ways, and not necessarily in a place that is
readable for the reading server. Another way to do it would then be to request
the subscription list from the user agent, but that would require changes in all
news reading software I am aware of.

Group caching should be effective when there are read events for most of
the articles in a group. To measure this, one must know exactly how many
articles there are in a group, what their Message-IDs are, and compare those
with requests for articles in that group.

While being good for hit rate and user perceived performance, I do not
think it will be good for disk usage. Bandwidth usage is also likely to suffer,
unless the hit rate is very high.

4.2.5 (Sub)hierarchy caching

This method shares the same problems and benefits as group caching, on a
larger scale. It increases the risk that there are unread groups with many
articles in them. I believe this method is too coarse grained to be of good use.
I will not look further into this one.

4.2.6 Prefetching groups/hierarchies

Since this method works without interaction with a user agent, there are no
big differences between this approach and today’s, with the possible excep-
tion that the proxy might be pulling articles instead of receiving a feed.

If the proxy is going to get all the articles in a group or an entire hierarchy,
I do not see the point in pulling the articles, when today’s method seems to
be working adequately for that purpose.

I expect prefetching of groups and hierarchies to be bad for bandwidth
and disk usage, while very good for user perceived performance.

4.2.7 General header caching

Caching only article headers is an approach that will reduce the volume dis-
tributed by a great deal. Estimates made by news administrators (see sec-
tion 3.3 on page 40) indicate that if only headers were distributed, the total

54

volume of articles would be reduced by a factor of 20 to 100. This is for a
full header distribution. Distributing only a limited set of headers, for instance
only those that are by default in the NOV format plus the Path header should
provide an even more effective reduction in bandwidth and storage demands.

While it is unrealistic to hope that users will be satisfied with only headers,
this will mean that unread articles only appear as headers on the servers in
question. For most caching methods mentioned earlier in this chapter (not
necessarily including group and hierarchy caching, which can be initialized
without having the headers first), either some or all headers must be known
to the proxy, and so must the group and hierarchy structure.

The general header caching approach is therefore a sound basis for the
other caching methods, but not good in itself.

4.3 Complex Strategies

The remaining two strategies are more complex strategies than those men-
tioned so far. They can combine different strategies mentioned earlier, and
possibly provide a higher hit rate for read events.

4.3.1 Statistical caching/prefetching

Automatic measurement of statistical data to figure out how the users read
news is a tempting way of combining other strategies without manual re-
configuration. It eases administration of the caching proxy, as well as probably
offering the best kind of hit rates for the kind of reading pattern the news ad-
ministrators want to encourage; low disk usage, low bandwidth usage, both,
or neither.

However, if the statistical model is static itself, it could be vulnerable to
changes in user behavior patterns. These pattern can change if we are a grow-
ing NSP, or a new trend in what is popular among readers appears. This ef-
fectively reduces the efficiency and effectiveness of the statistical model until
the pattern stops changing, unless it can predict these changes.

4.3.2 News reader controlled caching/prefetching

Relying on the user agent to do anything in a pseudo-intelligent manner for
caching is probably not a good idea, but parts of a caching scheme could be
done by newer software with such options.

If the user in combination with the user agent can help the proxy with
detailing the expected pattern the user will display in requesting articles, it
could be made easier to make sure that the articles are already in place when
the user wants them, while other articles would have to be fetched by auto-
matic rules, like the ones mentioned earlier in this chapter.

55

A serious drawback with this solution is that it requires changes in user
agents, and that the method only will work for these changed user agents.

4.4 Fetching articles when there is a cache miss

In the event of a cache miss, the proxy will usually try to fetch the article from
some other news server. This section deals with the three methods mentioned
briefly in section 1.5.2 on page 27.

4.4.1 Group/hierarchy repositories

Group/hierarchy repositories require that there are several, redundant, central
news servers, providing some kind of news backbone where articles within a
given time frame are available to all the proxy servers.

To provide sufficient redundancy — in case servers, hierarchies, groups or
articles for some reason become unavailable — this will probably mean that a
few of the news servers with a very high load today will have that very high
load in the future also, unless there is a way of distributing that load on other
servers.

For a proxy belonging to an NSP that does not keep a group or hierarchy
repository, this method is good for disk usage, but probably bad for band-
width and user perceived performance. In the cases where the NSP serves
the repositories itself, the bandwidth will be local to the NSP’s network and
therefore not a problem. Disk usage may be high for the repository, but low
for the proxy.

4.4.2 Injecting server repositories

An injecting server repository seems a lot like the way the WWW works today.
A single server (or set of servers) holds the original article (each comparable
to a web page), and in order for a user agent to read it, the client software (in
this case, the news proxy) has to retrieve the original article.

This may cause great problems for injecting servers with low bandwidth
but popular articles, as news proxies around the world attempt to get them.
Injecting servers may not be able to guarantee the presence of articles “for-
ever”, and this solution is also very fault intolerant. Articles may simply be-
come unavailable because of temporary network problems, and the lack of
redundancy can make access time more than noticeably slow.

Injecting server repositories are probably very good for storage, but obvi-
ously bad for user perceived performance and bandwidth.

56

4.4.3 Reverse path lookup

Looking up along the feed path is an interesting technique that has a similar
implementation in the Diablo news server. The Diablo news server allows the
news administrator to define a set of servers that can provide articles within a
certain group or hierarchy. When the Diablo server does not have an article,
it forwards the article request to one of the servers in the set.

The reverse path lookup method would expand on this method by defin-
ing those willing to provide articles as the same news servers that feeds the
relevant hierarchy/group/articles to this server. If those servers do not have
the article, they ask their upstream peer. It is of course necessary to look out
for loops in the feed graph, to make sure a server that has previously been
asked is not asked again.

Another implementation could use the Path header in the article format,
and ask each server given an entry there. A problem with this is that the news
server itself may not have exactly the same host name as the name given in
the Path header.

The news article format only requires that the name given in the Path
header is valid and unique for the site. Figure 1.1 on page 5 shows an example
of this; “uio.no ” is not a host name, yet it uniquely identifies the feeding
server at the uio.no domain. Therefore, to ensure that such an implementation
would work, new syntax would have to be added to the Path header to tell us
when a news server there also is willing to serve hierarchies/groups/articles
on special request.

Looking up along the reverse feed path to one’s upstream peers is likely
to be quite efficient in terms of bandwidth usage, and not too bad in terms
of user perceived performance. Disk usage is not an issue for anyone but the
upstream peer that keeps the articles.

57

58

Chapter 5

Findings

In this chapter, I will show and examine the results of data collection from
Nextra and Ifi. I do not separate between read events and actual articles being
read, unless it is possible and practical to do so. For Nextra, there was only a
small amount of data collected, while for Ifi, I had the opportunity to examine
each connection to the reading server more closely.

5.1 Statistics from Nextra

The Norwegian ISP Nextra has a customer base of around 500 000, which
makes them a fairly large ISP. I have used them to get information on reading
habits on a newsgroup level.

They use a fairly simple server setup, with one feeding/numbering server
and two reading/injecting servers in a simple DNS based round-robin load bal-
ancing scheme. The feeding server numbers the articles, and sends duplicate
feeds to the reading servers. This ensures that the same articles have identical
numbers on each reading server, which in terms of available articles makes it
transparent to the users which server they connect to. Reading Server 2 has
comparatively little article storage, and acts as a slave towards Reading Server
1 in the cases where a user agent requests an article only Reading Server 1
has. See figure 5.1 on the following page.

The feeding server performs filtering of newsgroups, binaries and other
unwanted articles before delivering articles to the reading servers, reducing
the total size of incoming articles by at least 80%, according to Nextra.

Nextra’s news administrator, Stig S. Mathisen, provided me with statistical
data from their reading servers. A small test in advance revealed that if we
were to extract data for all the available groups, it would take two or three
days, not including manual work. For the sake of simplicity, we selected 309
groups (see appendix A.3 on page 99) that were evenly distributed from an
alphabetical list of the groups that were accessed by users.

Data was collected for the time period 2001-05-12 to 2001-05-18 as a

59

Chaining slave
(old articles only
stored on one reader)

UA UA

UA
UA

UA

UA UA

UAOther peers

Reading

Reading

News spool

Feeding
Server Server 1

Server 2

(Numbering
server)

Figure 5.1: Nextra: News system configuration, mid May 2001

whole, showing the number of ARTICLE and XOVER commands per group.
Another term for ARTICLE command is article request, which I will be using
for variation.

In the section about storage methods in the introduction (1.2.2 on page 5),
I explained briefly what the XOVER command does. The count of XOVER
commands show how often user agents lists information (table 1.6 on page 14)
about the available articles in a group, while the ARTICLE commands show
how often an article with both headers and body is required.

5.1.1 Error Sources

Because of the coarseness of measurements and that the measurements were
made at the reading servers, I can identify the following significant source of
errors:

Reading Server 2 acts as a slave towards Reading Server 1. When an article
does not exist on a slave, it will pass along the request for that article to its
master, in this case Reading Server 1. These requests are registered in both
Reading Server 1 and Reading Server 2, and were not possible to separate on
Reading Server 1.

Because of this uncertainty, I have kept the data in the three separate
data sets they were generated in: one for each reading server, and an addi-
tional for the articles on Reading Server 1 that were not fetched in slave mode
(“noslave”).

60

Groups Commands ARTICLE/
Server count % ARTICLE XOVER XOVER
Reading Server 1 165 54% 92 429 244 988 37.7%
Reading Server 2 123 40% 49 828 120 603 41.3%
Reading Server 1, noslave 140 45% 54 438 164 802 33.0%

Accuracy is 1% for groups, 0.1% for ARTICLE/XOVER commands

Table 5.1: Nextra: Total ARTICLE and XOVER commands

Groups XOVER commands
Server count % count %
Reading Server 1 20 6% 1 556 0.6%
Reading Server 2 16 5% 6 020 5.0%
Reading Server 1, noslave 22 7% 1 753 1.1%

Accuracy is 1% for groups, 0.1% for XOVER commands

Table 5.2: Nextra: Groups with XOVER commands and no ARTICLE com-
mands

5.1.2 Data

Table 5.1 shows the total number of ARTICLE and XOVER commands with
the number of groups these commands were issued in. On average for the
two servers, less than 50% of the groups saw both ARTICLE and XOVER com-
mands.

Table 5.2 shows the number of groups with XOVER commands but no
ARTICLE commands, and the total number of XOVER commands for those
groups. These XOVER command counts tell us that the groups were accessed,
but that the user or user agent (by kill file or score file) decided that the articles
were not wanted during the period of measurement.

Table 5.3 shows the total number of read events for groups that had no

Groups ARTICLE commands
Server Count % count % of total
Reading Server 1 25 8% 1 548 1.7%
Reading Server 2 16 5% 84 0.2%
Reading Server 1, noslave 18 6% 511 0.9%

Accuracy is 1% for groups, 0.1% for ARTICLE commands

Table 5.3: Nextra: Groups with ARTICLE commands and no XOVER com-
mands

61

Groups
Server Count %
Reading Server 1 144 47%
Reading Server 2 186 60%
Reading Server 1, noslave 169 55%

Table 5.4: Nextra: Groups with no ARTICLE or XOVER commands

Server Sum Min Avg Max SD
Reading Server 1 244 988 0 792.84 109 734 6767.99
Reading Server 2 120 603 0 390.30 50 379 3067.04
Reading Server 1, noslave 164 802 0 533.34 69 638 4401.31

Table 5.5: Nextra: Statistics on XOVER commands per group

XOVER commands. This means that these article requests are based on other
information than what the user agents would have gotten from issuing XOVER
commands on that server. Some of these article requests for Reading server 1
are likely to come from the slave, and could be related to the lack of article
requests seen in 5.2 on the page before. Groups that have seen no interest
from users, that is, groups without both ARTICLE and XOVER commands, are
shown in table 5.4.

Figure 5.2 on the next page illustrates the number of XOVER commands
for each group in the sample, sorted for each reading server by number of
XOVER commands. Similarly, figure 5.3 on page 64 show the number of ARTI-
CLE commands. The numbers have been put on a logarithmic scale to make
the graphs readable. A few groups have the available articles examined often
and also have many associated article requests.

The most popular group — no.alt.frustrasjoner — has 109 734 XOVER
commands and 58 949 ARTICLE commands on Reading Server 1 (69 638 and
29 354 in noslave mode, respectively), and 50 379 XOVER commands and 32
709 ARTICLE commands on Reading Server 2. The next groups among the
top five differ in popularity for the two servers and noslave mode. Tables 5.6
and 5.5 help to complete the picture. The average numbers for XOVER and

Server Sum Min Avg Max SD
Reading Server 1 92 429 0 299.12 58 949 3373.15
Reading Server 2 49 828 0 161.26 32 709 1869.39
Reading Server 1, noslave 54 438 0 176.17 29 354 1703.63

Table 5.6: Nextra: Statistics on ARTICLE commands per group

62

Figure 5.2: Nextra: XOVER commands per group
(Groups are numbered from 1 to 309.)

Server Groups Sum Min Avg Max SD
Reading Server 1 165 244 988 0 1 484.78 109 734 9206.20
Reading Server 2 123 120 603 0 980.51 50 379 4801.34
Reading Server 1, noslave 140 164 802 0 1 177.16 69 638 6480.58

Table 5.7: Nextra: Statistics on XOVER commands per group with both ARTI-
CLE and XOVER commands

ARTICLE commands per group vary between servers, and so does the stan-
dard deviation. Reading Server 1 has both the greatest number of XOVER and
ARTICLE commands, and seemingly the greatest variation if we take only the
standard deviation numbers into account, but figures 5.2 and 5.3 on the fol-
lowing page give a different presentation; the differences between servers are
not very great.

5.1.3 Preliminary Evaluation

Although the data does not tell us anything about what to think about reading
patterns in the terms of threads, subject, author, etc, it does seem to show
that there is room for improvement on the group level. If all groups with zero

63

Figure 5.3: Nextra: ARTICLE commands per group
(Groups are numbered from 1 to 309.)

Server Groups Sum Min Avg Max SD
Reading Server 1 165 92 429 0 560.18 58 949 4600.21
Reading Server 2 123 49 828 0 405.11 32 709 2946.25
Reading Server 1, noslave 140 54 438 0 388.84 29 354 2514.60

Table 5.8: Nextra: Statistics on ARTICLE commands per group with both AR-
TICLE and XOVER commands

64

UA UA

UA UA

Other peers

Reading

News spool

Feeding
ServerServer

Figure 5.4: Ifi: News system configuration, July 2001

XOVER and ARTICLE commands were removed, the statistical data would be
as presented in tables 5.7 on page 63 and 5.8 on the facing page. The standard
deviation would have increased a lot, but we would also have reduced band-
width and storage demands for the reading servers. Group caching seems to
be a good choice here, but other strategies may be better over all, considering
that user agents check the contents of groups far more often than they ask for
articles.

5.2 Statistics from Ifi

Ifi has a relatively small user base of 3-4 000. They can satisfy the news reading
users with a very simple setup, based on one feeding server (Diablo) and one
reading/injecting server (INN 2.2). See figure 5.4. As opposed to Nextra, the
feeding server does not number the articles.

Ifi has several different group retention policies. One local hierarchy —
ifi — is archived indefinitely, a few others are archived between seven and 90
days. The rest of the groups and hierarchies are stored in different cyclic news
spools, depending on how important they are considered for the users.

The collection of data at Ifi started 2001-07-07 01:50 MET DST and ended
2001-07-12 16:11 MET DST. Since Ifi is an academic department of the Univer-
sity of Oslo, the timeframe may be unrepresentative of typical Usenet reading
habits, because a lot of students and some employees are on summer vacation.
I am not aware of any studies that show how this would influence reading

65

habits. I think it is reasonable to claim that this is a low traffic period.
Data were collected from 3 538 sessions with significantly more detail

than at Nextra. A session is initiated when a client connects to the reading
server. This means that it is possible to have a session without having any
commands executed by INN. For each session, I logged to file each of the
NNTP commands issued by the client. Whenever an ARTICLE, BODY or HEAD
command was issued by the client, I also logged the headers for the articles in
question, since these commands force a read event in the reading server. This
generated a total of nearly 900 MB of data. After data collection, the data was
re-formatted to reduce unnecessary redundancy.

I also tried to use data from the reading server’s active file to get infor-
mation on available articles in the news server, since the bulk of Ifi’s articles
are stored in cyclical spools that cannot be read without a major program-
ming effort. The active file is a file that contains a list of all available news-
groups, along with the article numbers of the last and the first available arti-
cles in these groups. However, some random samples revealed that at in many
groups, these numbers are imprecise at best. Between the first article number
in the group and the last, there can be a gap of several thousands before the
next article. In my random sample of 21 groups, there were a claimed total
of 31 743 articles available, but according to extraction of headers from the
overview database, there were 28% less, 22 663. Extraction of overview data
for even such a small number of groups took between ten and fifteen minutes
(I did not time it exactly), while it also put additional strain on the reading
server. If I were to extract overview data for the groups that were requested
in the time period of measurement, that would have taken many hours, ef-
fectively also disrupting usage of the reading server for Ifi’s users. I therefore
chose to let it be.

5.2.1 Error Sources

The patches to the news server software has a small shortcoming; it writes its
data to log files with file names derived from the time a session was initiated,
with a coarseness of one second. In the case of 319 article read events, this
resulted in corrupt output when two or more sessions were writing to the
same file simultaneously. For an additional 2 article read events, the Message-
ID header was treated as unique when counting Message-IDs, but they were
in fact duplicates.

If a command is issued without a positive response from the server, it still
counts as a command in my code. In the case of read events, this would
happen if an article is requested, but it does not exist in the reading server’s
news spool.

My scripts for extracting data from the log files also have a few shortcom-
ings, in that they are not very tolerant towards minor corruption in the log
files. In addition to this, NNTP command counts presented later are the result

66

Command Count
ARTICLE 51 284
AUTHINFO 14
BODY 622 899
GROUP 41 927
HEAD 624 992
HELP 1
IHAVE 0
LAST 1
LIST 359
LISTGROUP 632
MODE 3 464
NEWGROUPS 762
NEWNEWS 0
NEXT 0
POST 20
QUIT 0
SLAVE 0
STAT 1
XGTITLE 10
XHDR 13 941
XOVER 11 171
XPAT 0
XPATH 0

Table 5.9: Ifi: Total NNTP command count

of a count of substring matches for “] COMMAND” (where COMMAND is the
NNTP command in question). If these strings occurs in the headers of a news
article, they are counted one additional time.

Since I run calculations in several steps, based on data already re-formatted
by other scripts, there are some points of corruption that sometimes lead to
differing numbers between different kinds of measurements. Usually, these
differences are fairly small and negligible.

5.2.2 Data

Table 5.9 shows the count of NNTP commands by clients connecting to Ifi’s
reading server. See tables 1.4 on page 11 and 1.5 on page 11 for descriptions
of these commands.

Five of these commands cause a read event in INN 2.2. These are:

• ARTICLE

67

Groups Commands
count % ARTICLE XOVER ARTICLE/XOVER
1 099 9.8% 51 824 11 171 464%

Table 5.10: Ifi: Total ARTICLE vs XOVER commands

• BODY

• HEAD

• XHDR

• XPAT

The total number of such read events is 1 313 115. There were no XPAT
commands executed. Due to implementation details in INN 2.2, I ignored
XHDR in collection of headers based on read event. This means that the the
total number of read events measured except XHDR is 1 299 175. However,
due to the output corruption mentioned earlier, only 1 182 605 read events
were recognized, and of those, only 856 091 caused my code to exctract head-
ers for the article in question. 855 772 of these succeeded without any notice-
able corruption, and that will be the basis for further calculations. It is also
possible that the reading server failed to deliver any data in response to some
of the read events, for instance if the article asked for did not exist.

These read events were caused by a total of 2 143 sessions. The remaining
1 395 sessions caused other types of events.

In the six days of measurement, Ifi had an average of 11 257 available
newsgroups. These newsgroups had on average about 3.95 million unique
articles available. The incoming newsfeeds had a total of approximately 1.26
million unique articles with a volume of approximately 20 GB. Only 1 099 of
the newsgroups were entered with the GROUP command.

5.2.3 Comparison with Nextra

For comparison with Nextra, I have measured against the ARTICLE commands
in groups that were entered at Ifi.

A comparison of table 5.10 compared with table 5.1 on page 61 shows
that Ifi has many more ARTICLE than XOVER commands.

There are two possible reasons for this. One is that dialup users — which
Nextra presumedly has a lot of — use software that uses XOVER a lot to handle
the overview metadata before deciding whether to download specific articles,
and that they often do not download actual articles at all. Ifi’s users have
access to news via Unix computer labs, and most thus read news over the local
network, staying online. These users do not have to conserve their personal

68

Groups XOVER commands
count % count %

40 0.4% 408 3.7%

Table 5.11: Ifi: Groups with XOVER commands and no ARTICLE commands

Groups ARTICLE commands
Count % count % of total

76 0.7% 12 604 24.7%

Table 5.12: Ifi: Groups with ARTICLE commands and no XOVER commands
There were 50 927 measured ARTICLE commands as a side effect of scripting

bandwidth when reading news, so they have a greater freedom in skimming
actual articles rather than settling for the overview information when selecting
what to read. Also, if the users use kill or score files (see “Note on Built-in
Filtering in Newsreaders” in section 1.2.2 on page 5), the dialup users are
likely to filter only on overview data or headers, and if they are offline when
reading news, that is also all they have to work with unless they downloaded
all the articles in the group before hanging up. The users who have access to
the reading server from a local network can filter on additional headers and
even the body without worrying about article download time. If the filter
attempts a pattern match, it will likely send an ARTICLE command. I know
of one such user myself. If he chooses to read a group with 5 000 unread
articles, his newsreader’s score filter will cause 5 000 read events even before
he looks at the first article.

Another point of comparison is that only about 10% of the groups at Ifi saw
ARTICLE or XOVER commands, compared nearly 50% at Nextra. The reason
may be that Nextra’s users are more heterogenous than Ifi’s, but I cannot put
much weight on this, since the data from Ifi was collected during summer
vacation.

Table 5.11 does differs a bit from Nextra’s table 5.2 on page 61 in the rela-
tive amount of XOVER commands, and significantly in the number of groups.

For groups with no XOVER commands, there is a significant difference
between Nextra and Ifi. As table 5.12 shows (compare with 5.3 on page 61),
there are a great number of ARTICLE commands for groups where no XOVER
commands were issued. Groups that were entered, but without both ARTICLE
and XOVER commands are shown in table 5.13 on the following page. The
difference from Nextra in table 5.4 on page 62 is great; 96% of the available
groups at Ifi saw no particular interest from users, compared to between 47%
and 60% in the sample from Nextra. If we look at the number of visited groups
instead of the total number of groups, the number is much closer with its 61%

69

Groups Visited Groups
Count % Count %
10807 96.0% 673 61%

Table 5.13: Ifi: Groups with no ARTICLE or XOVER commands

Figure 5.5: Ifi: XOVER commands per group
(Groups are numbered from 1 to 1 099.)

uninteresting groups, but still higher than Nextra.
Figure 5.5 illustrates the distribution of XOVER commands per group for

Ifi, and figure 5.6 on the next page show the number of ARTICLE commands.
As with Nextra, a few groups are examined often and also have many associ-
ated article requests.

Figure 5.7 on page 72 and 5.8 on page 73 illustrate the distribution of
XOVER and ARTICLE commands per group with similar data from Nextra,
normalized for the number of groups examined at Nextra. The difference is
pretty clear in the case of XOVER commands, and show that there is a greater
variance for the groups at Nextra. For ARTICLE commands, figure seems to
show that there is less difference between Nextra and Ifi.

Tables 5.14 on the facing page and 5.15 on the next page confirm the
impression from the graphs while showing that the maximum values are far
lower than at Nextra.

70

Figure 5.6: Ifi: ARTICLE commands per group
(Groups are numbered from 1 to 1 099.)

Groups Sum Min Avg Max SD
1 099 8240 0 7.50 928 42.30

Table 5.14: Ifi: Statistics on XOVER commands per group

Groups Sum Min Avg Max SD
1 099 50 927 0 46.34 2 044 177.89

Table 5.15: Ifi: Statistics on ARTICLE commands per group

71

Figure 5.7: Ifi vs Nextra: XOVER commands per group
(Groups are numbered from 1 to 1 099 for Ifi, 1 to 309 for Nextra, but the graph is

normalized to 309 groups.)

72

Figure 5.8: Ifi vs Nextra: xOVER commands per group
(Groups are numbered from 1 to 1 099 for Ifi, 1 to 309 for Nextra, but the graph is

normalized to 309 groups.)

73

Groups Sum Min Avg Max SD
426 8 240 0 19.34 928 66.23

Table 5.16: Ifi: Statistics on XOVER commands per group with both ARTICLE
and XOVER commands

Groups Sum Min Avg Max SD
426 50 927 0 119.55 2 044 269.98

Table 5.17: Ifi: Statistics on ARTICLE commands per group with both ARTICLE
and XOVER commands

5.2.4 Preliminary Evaluation

Compared to Nextra, Ifi has a very high number of ARTICLE commands rela-
tive to the number of XOVER commands. In the previous section, I mentioned
kill or score filters as a plausible explanation for part of this pattern, and that
Nextra’s users may be more heterogenous than those at Ifi. These uncertain-
ties makes it unwise to jump to any conclusion about the differences between
Ifi and Nextra.

Tables 5.16 and 5.17 show the statistical data for groups if we ignore those
groups with zero ARTICLE and XOVER commands. We see then that the dis-
proportion between Ifi and Nextra in XOVER commands remain, and it does
not change the notion that there are important differences in reading patterns.

5.2.5 Data from Ifi Only

Table 5.18 on the facing page shows the number of unique, different headers
from articles or article headers read in these sessions, plus the count of actual
threads, as measured by the content of References headers and unique Subject
headers. A From header’s uniqueness is measured without regard to case of
characters or whitespace. This also goes for a Subject header, where the string
“Re:” is disregarded if it begins the subject. At the bottom of the table are
subjects at the start of a thread (as defined by the References header) and
Subject headers that are not a continuation of another Subject header. An
example of the latter is shown in section 4.2.3 on page 52.

The Date header is a bit tricky, because the date format used differs slightly
from article to article.1 I have therefore not been able to reduce the detail of
the Date header from including seconds.

The third and fourth columns are the number of unique headers per ses-
sion and the number of read events per unique header.

1A curious thing: some even use two-digit numbers for the year, only one to one and a half
year after the noise about Y2K problems.

74

Header Count Per Session Read events/header
From 16 738 7.8 51.1
Subject 23 362 10.9 36.6
Newsgroups 1 548 0.7 552.8
Date 87 605 40.9 9.8
Message-ID 88 829 41.5 9.6
Followup-To 286 0.1 2992.2
References threads 17 378 8.1 49.2
Threads (reverse References) 61 155 28.5 14.0
Subject starting threads 16 473 7.7 51.9
Subject, not continuation 17 074 8.0 50.1

Table 5.18: Ifi: Unique header count

Sum Min Avg Max SD
856 091 1 9.60 233 10.37

Table 5.19: Ifi: Statistics on all read events per unique article having a read
event

Per session, there were about 399 read events, and 41 unique articles re-
quested.

The “Threads” number in table 5.18 tells us that there were a total of
61 155 articles that were referenced in other articles requested in the time
period. These articles being referenced are not necessarily among the same
articles as those that were read. 43 745 of those that were in the threads
database were among the requested articles, which leaves 45 084 articles that
do not belong to any thread.

The number of unique groups listed in the Newsgroups header of articles
fetched because of a read event (1 548) is about 14% of the average of available
groups (11 257). However, only 10% (1 099) of the available groups were
actually entered. There were read events for 88 829 unique articles, but that
is only about 2% of the total 3.95 million available articles.

On average, each unique article that is read has nearly 10 read events.
Table 5.19 shows that the spread of read events per article is fairly large. We
also see that the users on average enter a group for each 553nd read event, or
each 57th unique article.

Table 5.20 on the following page show that there are significant variations
on the number of ARTICLE, BODY, HEAD, GROUP, XHDR, and XOVER com-
mands issued per unique group.

A significant difference from Nextra is that it was possible to check the
date an article was posted. Tables 5.21 on the next page and 5.22 on page 77

75

Command Sum Min Avg Max SD
ARTICLE 50 927 0 46.34 2 044 177.89
BODY 458 455 0 417.16 224 606 7 569.87
HEAD 460 521 0 419.04 224 551 7 568.62
GROUP 41 474 0 37.74 684 108.15
XHDR 6 008 0 5.47 832 36.88
XOVER 8 240 0 7.50 928 42.30

Table 5.20: Ifi: Statistics on ARTICLE, BODY, GROUP, XHDR and XOVER com-
mands per unique group

Header Count Per session Read events/header
From 9 618 7.9 82.7
Subject 14 068 11.6 56.5
Newsgroups 1 068 0.9 744.6
Date 58 280 48.1 13.6
Message-ID 58 799 48.6 13.5
Followup-To 202 0.2 3936.7
References threads 9 763 8.1 81.5
Threads (reverse References) 31 537 26.0 25.2
Subject starting threads 9 323 7.7 85.3
Subject, not continuation 11079 9.1 71.8

Table 5.21: Ifi: Unique header count, articles from before 2001-07-07

76

Header Count Per session Requests/header
From 9 058 5.5 6.7
Subject 10 732 6.5 5.6
Newsgroups 1 089 0.7 55.6
Date 29 325 17.7 2.1
Message-ID 30 030 18.1 2.0
Followup-To 140 0.1 432.5
References threads 7 615 4.6 8.0
Threads (reverse References) 12 208 7.4 4.96
Subject starting threads 7 232 4.4 8.4
Subject, not continuation 8 951 5.4 6.8

Table 5.22: Ifi: Unique header count, articles from 2001-07-07 to 2001-07-12

show the stats split between articles posted before 2001-07-07 and articles
posted at and after 2001-07-07, respectively. Note that about two thirds of the
unique articles requested had a posting date of before 2001-07-07.

There were 1 211 sessions generating 795 217 read events for articles older
than 2001-07-07, and 1 656 sessions generating 60 555 read events for articles
from the period 2001-07-07 to 2001-07-12. In other terms, there were read
events for 13 times as many older articles as for newer articles.

For a better view of how the read events are distributed per unique article,
I have prepared statistics for three time periods: Before 2001-07-01, 2001-
07-01 to 2001-07-06, and 2001-07-07 to 2001-07-12. The middle period is
extracted from the older articles, because I want to know something about
articles from a similar time period to the one I measured read events for.

Figure 5.9 on the next page illustrates the distribution of read events per
article. Only 86 453 articles were possible to sort in this way; the rest had
corrupted date field after parsing. The figure has been normalized for the
newer articles, a count of 30 030 (35%). Older articles total 48 482 (56%), and
articles from the middle period total 7 941 (9%).

Among older articles, the average number of read events is definitely higher
than for others, but there are large “plateaus” of articles with exactly the same
number of read events. 24 6212 articles had exactly 12 read events each, and
nearly 13 330 had exactly 30 read events each. Over 80% of the older articles
are read ten times or more.

Similarly, 1 6103 articles from the middle time period had exactly 12 read
events, 4 684 had exactly one read event, and 9344 articles had two read
events each. However, only about 25% of the articles are read ten times or

2The graph makes it seem like less than 20 000 because of normalization.
3Looks like more than 5 000 because of normalization.
4Masked by read events for the newer articles in the graph.

77

Figure 5.9: Ifi: Statistics on read events per unique article having a read event
Articles from before 2001-07-01 are numbered from 1 to 48482, from 2001-07-01 to

2001-07-06 are numbered from 1 to 7941, from 2001-07-07 to 2001-07-12 are num-

bered from 1 to 30030. The graph has been normalized to 30030 unique articles.

78

Date range Count % Min Avg Max SD
Before 2001-07-01 754 180 88% 1 15.56 233 10.43

2001-07-01 to 2001-07-06 37 066 4% 1 4.67 42 6.55
2001-07-07 to 2001-07-12 60 555 7% 1 2.02 54 2.39

Total 856 091 100% 1 9.60 233 10.37

Table 5.23: Ifi: Statistics on read events per unique article, three time periods
The total includes 4 290 read events for 2 376 articles that did not have a valid date.

more, while those with one read event each make up 50% of the articles in
that time period.

For newer articles, there were 18 352 articles with exactly 1 read event
each, and more than 6 516 articles with exactly two read events each. These
articles account for approximately 60% and 20% of the total of new articles.

Table 5.23 shows the specific numbers of read events with minimum, av-
erage, maximum and deviation for each time period and the total. This shows
clearly the greater spread between minimum and maximum article counts for
older articles, as well as that most of these articles are read more often than
the more recent articles from 2001-07-01 and later.

What is not shown is that a number of the older articles were dated from
1997 to 2000. These articles total 10 490, or nearly 12%. Another curious
point is that 449 157 of the read events was for a single group.

5.3 Discussion

The coarse comparison of Nextra with Ifi in section 5.2.3 on page 68 shows
that there are no read events for a very large portion of the groups that also
see XOVER commands. This formed an initial suspicion that a majority of the
groups may not be read at all within the time of measurement, and indicates
that group caching may help significantly. The more detailed numbers from
Ifi seem to confirm that suspicion, since the read events are for only 14% (1
548) of the available 11 257 groups according to the Newsgroups header, or
only 10% (1 099) groups according to the use of the GROUP command.

The data from Ifi was collected during midsummer break, which is a pe-
riod with low usage. I cannot assume that this is directly transferable to
medium or high usage periods, but the data are valid nonetheless; low us-
age periods can be expected for most reading servers, and I consider it a good
thing if they adapt the available groups accordingly with group caching.

It is a problem that group caching may lead to a great number of extra,
unread articles per group compared to other strategies. This causes unnec-
essary bandwidth usage when fetching the articles in a group, and does not
preserve storage either. In addition, fetching of a new group can be initiated

79

very often. Table 5.9 on page 67 shows that there are more than 41 thousand
group changes, while there were far fewer groups than that available. If group
fetching is initiated often and people read more groups at other times of year
than during summer, the server is likely to use a lot of bandwidth at a time for
fetching various newsgroups. This can adversely effect user perceived perfor-
mance, but my data does not support a more thorough examination of this
point.

Considering that there were 3.95 million available articles in Ifi’s news
spool, and a total of 1.26 million incoming articles, a number of 88 829 unique
articles requested is very small (section 5.2.2 on page 67). This is also a possi-
ble effect of vacation time. However, that there are only 2% read articles, and
that these are in 10% of the groups should be a clear indication that caching
entire groups is far from as effective as more fine grained methods.

Figure 5.9 on page 78 visualizes the distribution of unique articles with Ifi’s
number of associated read events for the three time periods. This distribution
is interesting. For two large ranges of articles totalling nearly 80% of the span,
old articles seem to have almost exactly the same amount of read events as-
sociated with them. Apart from these two ranges, the number of read events
varies a lot. More recent articles have in general fewer read events. Since the
old articles read are about 56% of the read articles, it is pretty clear that Ifi’s
users want to read older articles. But still, a full 35% of the articles were from
the week I collected data for, so I think it is fair to say that new articles are
interesting as well.

This pattern seems to be good for single article caching combined with a
long expire time. From what I can see from these data, single article caching
could have a cache hit rate of nearly 90% for articles over all, which is very
good. However, if we disregard articles older than 2001-07-01, the hit rate
drops, because 61% of the newer articles and 59% of those from the middle
period are read only once. For Ifi this summer, a short expiry time would have
been a disadvantage in hit rate and therefore user perceived performance.
An advantage is that single articles will not be fetched together in the same
way that a group fetch would, meaning that bandwidth usage would be less
intense. It is possible that this large number of older articles being read is a
side effect of vacation time and people catching up with old, unread articles.
If this is the case, a short expiry time may not be disadvantageous to hit rate
after all.

I mentioned thread based caching in connection with table 5.18 on page 75.
The penalty in form of additional articles fetched is not very high; for the ar-
ticles with read events at Ifi, only 20% extra articles would be fetched on a
whole. Compared to group caching, this seems like a small gain on its own,
though. Also, fewer articles will be fetched at a time, which should improve
on bandwidth usage and response time to the user. Compared to single arti-
cle caching, the differences in response time and bandwidth usage should be
negligible, but disk usage will be greater.

80

Caching by similar subject is also worth considering in terms of hit rate.
There are about as many different subjects as there are different threads, if
one does substring matching. The possible problem for subject caching is
that it requires additional processing power, while the competition from sin-
gle article caching, thread caching, and group caching do not. This has an
adverse effect on user perceived performance, perhaps to a stronger degree
than group caching, since the server will have to compare subjects for every
single cache miss. The comparative scarcity of different article authors, how-
ever, is probably a bit better, if the numbers from Ifi are anything to go by, but
comparison of text strings must be done anyway.

Time based caching for these articles seems futile; as mentioned at the
end of section 5.2.2 on page 67 near table 5.23 on page 79, almost 12% of
the articles that were read were from between 1997 and 2000. The newer
articles are unfortunately not so nicely distributed, and the data here is not
good enough to tell what alternative caching strategies would help. I think
this kind of filtering is harmful to the principle of caching as little as possible.

However, the NSP can choose to introduce penalties for requests for older
articles. One such penalty can be that articles older than a certain point in
time, for instance one month back, will never be cached, only fetched from
an upstream peer if available. This means that there is a real risk that such
an article will not be available at all, and if it is, it will take a longer time to
get it for the proxy reading server. Another way is to charge customers per
read event they cause in the proxy or per byte downloaded5, so that those
who use filtering methods causing read events pay more, perhaps enough or
even more than enough to finance the extra storage or bandwidth needed to
ensure this availability.

5NSPs like Giganews and NewsReader.com already charge for the capacity their users want

81

82

Chapter 6

Conclusion

I have presented the history of Usenet from a growth perspective, and shown
that there are technical problems with the its continued growth. Smaller sites
cannot afford to offer their users all the newsgroups they might want to read,
and the problem seems to be growing.

While other solutions than caching — such as filtering — greatly reduce
the size of a full newsfeed, they are rigid and do not adapt the incoming flow
depending on usage, as caching will.

The world wide web has used various caching methods for years, and a
lot of work and research has been done to optimize caching for the web.
However, nobody has worked with solutions for news.

My proposed advanced caching methods for Usenet will help the smaller
sites to appear to offer a greater amount of newsgroups and articles, but does
not address the problem of the seemingly exponential growth. However, even
a linear reduction in newsfeed size will buy the news administrators time to
postpone the next hardware upgrade, which means they will save money.
One small weakness is that I do nothing to help the backbone Usenet sites,
which are the ones who carry the bulk of Usenet traffic today.

The following section of this chapter will — as far as possible — give an-
swers to the research questions posed in section 1.6. The last section looks
at the unresolved issues and proposes future research and work for improve-
ment of Usenet.

6.1 Answers to Research Questions

In section 1.6, I asked a few research questions. Unfortunately, the data I have
collected is not good enough that I can draw any definitive conclusions about
what works best in which situation. Below, I present the answers I can give
based on the discussion in section 5.3 of findings and results.

83

6.1.1 Which strategy or strategies are better for bandwidth?

As mentioned at the end of section 1.6, bandwidth benefits most from having
no cache misses. While no cache misses is unrealistic if we are going to have
a caching proxy, there are a few strategies that should present better cache
hit rates than others.

According to my discussion in chapter 4, these are: Single article caching,
protocol command caching, and thread caching. My findings in chapter 5
show that this may be correct, but the data does not support any definite
conclusion on the subject.

6.1.2 Which strategy or strategies are better for disk usage?

Not having anything stored on disk is realistic in the case of proxies, as op-
posed to not having cache misses. Strategies that allow all or most data to be
cached in main memory should be better here.

The ones I claimed to be better in chapter 4 were: Single article caching,
protocol command caching, and thread caching. Disk usage seemed to be
slightly higher for thread caching than the other three. However, this depends
highly on usage patterns, and the data I collected is not of high enough quality
to back up a solid conclusion on the subject.

6.1.3 Which strategy or strategies are better for user perceived
performance?

In section 1.6, I made the obvious claim that users would see the best per-
formance if articles were already stored locally when requested, and if system
resource usage was low.

The strategies in chapter 4 I thought would give the best performance
were, ranked from highest to lowest: Statistical caching, prefetching groups
or hierarchies, group caching, and thread caching.

My findings were that this is very dependent on expiry time for the cache,
and probably usage patterns as well. Group caching seemed to be a better
basis than single article caching and thread caching, but again the data does
not support a definitive conclusion.

6.1.4 Will caching proxies (as suggested) be a general improve-
ment to Usenet ?

Throughout my presentation of the problems, as well as my discussion in
chapter 4, I claimed that it would. While the findings do not support conclu-
sions about which caching strategies are better, there can be no doubt that
caching would be a general improvement for Usenet, as evidenced by the
amount of unread groups and articles at Nextra and Ifi, even after filtering in
the case of Nextra.

84

Considering that it may be possible to gain up to 50% hit rate from simple
article caching alone at Ifi, and the claims from DNEWS (section 3.2.1) of
90% less bandwidth usage for binary groups, caching is not unrealistic for
providing a reading service, but it remains unproven whether it may work for
other kinds of news servers. It is also impossible to say how well caching will
work, based on the data I have presented.

As for the availability of data when there is a cache miss, my test data
cannot tell me directly which strategy would be better, of those I mentioned in
section 4.4. I think highly of the reverse path lookup strategy (section 4.4.3),
but there are indications in figure 5.9 on page 78 that for reading patterns
similar to the ones displayed at Ifi, a cache that expires articles after just one
or two weeks will have to fetch these articles again later. For these kinds of
sites, it would perhaps be better if older articles were available from injecting
server repositories or central group/hierarchy repositories, rather than asking
the regular upstream peer to provide them.

6.2 Future Work

As a result of the work with this thesis, I have learned that there is more work
that can be done with Usenet, both in practice and in an academic setting. I
also have some ideas on how to build on the work of this thesis, and perhaps
come to better conclusion based on better data.

To build a more complete model of how to decide what caching strategies
are best, a news usage survey would help. If this was combined with more
solid statistical software packages for existing news servers than the minor
patches I wrote for INN, I think it should be possible to examine usage pat-
terns closely enough to determine which caching strategies would work best.
I would also like to see tests and evaluations of how the different strategies
can be combined for optimum performance. The methods I have been us-
ing for evaluating the strategies suggested can be developed further for use
in practical tests of thread based caching and statistical caching. A real life
implementation of the best strategies would be a natural next step.

It would also be interesting to look at the entire problem from a differ-
ent perspective. In the field of distributed operating systems, there is a term
called Distributed Shared Memory. Briefly explained, this means that what
programs see as memory local to one computer in fact is distributed over
several. This is similar to how the different article retrieval storage strategies
mentioned at the end of section 1.5.2 would seem to a user, if working prop-
erly, but I have not looked at it from this angle. This shared memory approach
could be combined with Curt Welch’s idea of header-only feeds mentioned in
section 3.3.4, where he proposes a new “Body” header that could e.g. contain
an URI (Universal Resource Identifier, defined in RFC 1630) pointing to one
or several places where the body of the article can be fetched from.

85

86

Bibliography

[Assange et al., 2001] Assange, J., Bowker, L., and nntpcache crew, T. (2001).
What is NNTPCache? http://www.nntpcache.org/about.html.

[Barber, 2000] Barber, S. (2000). RFC 2980: Common NNTP extensions.
RFC.

[Barber, 2001] Barber, S. (2001). Network news transport protocol. Internet
Draft.

[Bumgarner, 1995] Bumgarner, L. S. (1995). USENET — The Great Renaming
— 1985–1988. http://www.vrx.net/usenet/history/rename.html.

[Cidera Inc., 2001] Cidera Inc. (2001). Cidera usenet news service.
http://www.cidera.com/services/usenet_news/index.shtml.

[Collyer, 1992] Collyer, G. (1992). newsoverview - netnews overview files.
newsoverview(5) man page.

[Crocker, 1982] Crocker, D. H. (1982). RFC 822: Standard for the Format of
ARPA Internet Text Messages. RFC.

[Danzig, 1998] Danzig, P. (1998). Netcache architecture and deployment.
Computer Networks and ISDN Systems, 30:2081–2091.

[Delany and Herbert, 1993] Delany, M. and Herbert, A. (1993). gup - a group
update program. ftp.mira.net.au:/unix/news/gup-0.4.tar.gz.

[Freed and Borenstein, 1996a] Freed, N. and Borenstein, N. (1996a). RFC
2045: Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies. RFC.

[Freed and Borenstein, 1996b] Freed, N. and Borenstein, N. (1996b). RFC
2046: Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types. RFC.

[Freed and Borenstein, 1996c] Freed, N. and Borenstein, N. (1996c). RFC
2049: Multipurpose Internet Mail Extensions (MIME) Part Five:
Conformance Criteria and Examples. RFC.

87

[Freed et al., 1996] Freed, N., Klensin, J., and Postel, J. (1996). RFC 2048:
Multipurpose Internet Mail Extensions (MIME) Part Four: Registration
Procedures. RFC.

[Freenix, 2001] Freenix (2001). Top 1000 Usenet sites.
http://www.top1000.org.

[Hardy, 1993] Hardy, H. E. (1993). The Usenet System. ITCA Yearbook.

[Hauben and Hauben, 1995] Hauben, R. and Hauben, M. (1995). On the
Early Days of Usenet: The Roots of the Cooperative Online Culture.
http://www.columbia.edu/~rh120/ch106.x10.

[Horton and Adams, 1987] Horton, M. and Adams, R. (1987). RFC 1036:
Standard for USENET Messages. RFC.

[Ingvoldstad, 1998] Ingvoldstad, J. (1998). Usenet news som plattform for
effektiv gruppekommunikasjon. Essay written in Norwegian as a part of
studies at Ifi.

[Inktomi Corporation, 2000] Inktomi Corporation (2000). NNTP Caching
for Usenet Services.
http://www.inktomi.com/products/network/traffic/tech/nntp/index.html.

[Kantor and Lapsley, 1986] Kantor, B. and Lapsley, P. (1986). RFC 977:
Network News Transfer Protocol — A Proposed standard for the
Stream-Based Transmission of News. RFC.

[Kondou, 2001] Kondou, K. (2001). Daily Usenet Article statistics on
newsfeed.mesh.ad.jp. http://newsfeed.mesh.ad.jp/flow/.

[Konstan et al., 1997] Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L.,
Gordon, L. R., and Reidl, J. (1997). GroupLens: Applying Collaborative
Filtering to Usenet News. Communications of the ACM, 40(3):77–87.

[Krasel, 2001] Krasel, C. (2001). Leafnode, an NNTP server for small sites.
http://www.leafnode.org.

[Krten, 1996] Krten, R. (1996). Improving Usenet news performance. Dr
Dobb’s Journal, 21(5):66, ++.

[Kurcewicz et al., 1998] Kurcewicz, M., Sylwestrzak, W., and Wierzbicki, A.
(1998). A distributed WWW cache. Computer Networks and ISDN
Systems, 30:2261–2267.

[Lindsey, 2001] Lindsey, C. H. (2001). News article format. Internet Draft.

[Moore, 1996] Moore, K. (1996). RFC 2047: Multipurpose Internet Mail
Extensions (MIME) Part Three: Message Header Extensions for Non-ASCII
Text. RFC.

88

[NetWin Ltd., 2001] NetWin Ltd. (2001). Dnews usenet news server
software. http://netwinsite.com/dnews.htm.

[Nixon, 2000] Nixon, J. (2000). Newsfeed Size — How big is Usenet,
anyway? http://newsfeed-east.supernews.com/feed-size/.

[Phifer, 2001] Phifer, L. (2001). Cidera’s internet broadcast backbone. ISP
Planet. http://www.isp-planet.com/technology/2001/cidera.html.

[Pratt and Bostian, 1986] Pratt, T. and Bostian, C. W. (1986). Satellite
Communications. John Wiley & Sons.

[QNX, 2001] QNX (2001). QNX 4 Realtime OS.
http://www.qnx.com/products/os/qnxrtos.html.

[Rose, 1993] Rose, M. T. (1993). The Internet Message. Prentice-Hall.

[Salz, 1991] Salz, R. (1991). Seeking beta-testers for a new NNTP transfer
system. article in news.software.nntp. Message-ID:
<3632@litchi.bbn.com>.

[Salzenberg et al., 1998] Salzenberg, C., Spafford, G., and Moraes, M. (1998).
What is usenet? article in news.answers,
http://www.faqs.org/faqs/usenet/what-is/part1/.

[Sato, 2001] Sato, Y. (2001). DeleGate Home Page.
http://www.delegate.org/delegate/.

[Spafford, 1990] Spafford, G. (1990). Re: The List again :-).
http://communication.ucsd.edu/bjones/Usenet.Hist/Nethist/0014.html.

[Spafford and Moraes, 1998] Spafford, G. and Moraes, M. (1998). Usenet
software: History and sources. article in news.answers,
http://www.faqs.org/faqs/usenet/software/part1/.

[Spencer, 1994] Spencer, H. (1994). "Son-of-RFC1036": News Article Format
and Transmission. "Internet Draft-to-be".

[Spencer and Lawrence, 1998] Spencer, H. and Lawrence, D. (1998).
Managing Usenet. O’Reilly & Associates. Out of print.

[Tanenbaum, 1996] Tanenbaum, A. S. (1996). Computer Networks.
Prentice-Hall International, 3rd edition.

[Templeton, 1993] Templeton, B. (1993). The dynamic usenet feeding
system. ftp.clarinet.com:/sources/dynafeed.tar.Z. Looking Glass Software
Limited.

[Toigo, 2000] Toigo, J. W. (2000). Enterprise storage: Hitting the wall at 150
gb/in2. http://www.esj.com/fullarticle.asp?ID=102600101754AM.

89

[Udell, 1998] Udell, J. (1998). Practical Internet Groupware. O’Reilly &
Associates. Out of print.

[Van Hees, 1993] Van Hees, K. (1993). VM NNTP: A TCP/IP Server
Application For News. Computer Networks for Research in Europe, a
supplement to Computer Networks and ISDN Systems.

[Welch, 1999a] Welch, C. (1999a). Header-only feeds. article in
news.software.nntp. Message-ID:
<19991216152219.196$Pi_-_@newsreader.com>.

[Welch, 1999b] Welch, C. (1999b). Re: Header-only feeds. article in
news.software.nntp. Message-ID:
<19991216223728.072$QK@newsreader.com>.

[Zakon, 2001] Zakon, R. H. (2001). Hobbes’ internet timeline.
http://www.zakon.org/robert/internet/timeline/. version 5.3.

90

Appendix A

Sources

This appendix contains source material for discussions in the thesis. This
material is likely not to be available from other sources.

A.1 Changes to INN

Included below are the patches for significant changes in INN at Ifi.
The following data was generated from the original source files and the

patched source files with this command:

diff -rub inn-work.orig inn-work.jani

diff rub /local/src/news/inn/inn work/include/config.h.in inn work/include/conf...⇒
...ig.h.in

/local/src/news/inn/inn work/include/config.h.in Tue Oct 27 05:24:54 1998
+++ inn work/include/config.h.in Sat Jul 7 00:04:39 2001
@@ 6,6 +6,14 @@

#ifndef __CONFIG_H__
#define __CONFIG_H__

+
+/* Define that you are Jan or Lars, for thesis work */
+#define JAN_LARS
+
+#ifdef JAN_LARS
+/* Extra logging information for thesis work */
+#define L_JAN_LARS LOG_DEBUG
+#endif

/* Change to fork() if your vfork() is broken */
#define FORK() vfork()

91

diff rub /local/src/news/inn/inn work/nnrpd/Makefile inn work/nnrpd/Makefile
/local/src/news/inn/inn work/nnrpd/Makefile Tue Oct 27 05:24:58 1998

+++ inn work/nnrpd/Makefile Sat Jul 7 00:51:17 2001
@@ 14,7 +14,8 @@

article.o group.o commands.o misc.o newnews.o \
perl.o post.o loadave.o track.o udp.o

ALL = nnrpd actived
+# ALL = nnrpd actived
+ALL = nnrpd

all: $(ALL)

diff rub /local/src/news/inn/inn work/nnrpd/article.c inn work/nnrpd/article.c
/local/src/news/inn/inn work/nnrpd/article.c Tue Oct 27 05:24:59 1998

+++ inn work/nnrpd/article.c Sat Jul 7 01:33:18 2001
@@ 834,6 +834,9 @@

ARTNUM art;
char *msgid;
ARTNUM tart;

+#ifdef JAN_LARS
+ char *jlheader;
+#endif /* JAN_LARS *

/* Find what to send; get permissions. */
ok = PERMcanread;

@@ 922,6 +925,53 @@
return;

}
Reply("%d %s %.512s %s\r \n" , what >ReplyCode, buff, msgid, what >Item);

+#ifdef JAN_LARS
+ /* Setup timing to see how much extra time this takes */
+ JLSysLog(1, "Header dump");
+
+ if (msgid != NULL) {
+ JLSysLog(0, "Message ID: %s" , msgid);
+ } else {
+ JLSysLog(0, "Message ID not found");
+ }
+ /* QIOrewind(ARTqp); */
+ if ((jlheader = GetHeader("From" , FALSE)) != NULL) {
+ JLSysLog(0, "From: %s" , jlheader);
+ } else {
+ JLSysLog(0, "From not found");
+ }
+ /* QIOrewind(ARTqp); */
+ if ((jlheader = GetHeader("Subject" , FALSE)) != NULL) {
+ JLSysLog(0, "Subject: %s" , jlheader);
+ } else {

92

+ JLSysLog(0, "Subject not found");
+ }
+ /* QIOrewind(ARTqp); */
+ if ((jlheader = GetHeader("References" , FALSE)) != NULL) {
+ JLSysLog(0, "References: %s" , jlheader);
+ } else {
+ JLSysLog(0, "References not found");
+ }
+ /* QIOrewind(ARTqp); */
+ if ((jlheader = GetHeader("Date" , FALSE)) != NULL) {
+ JLSysLog(0, "Date: %s" , jlheader);
+ } else {
+ JLSysLog(0, "Date not found");
+ }
+ /* QIOrewind(ARTqp); */
+ if ((jlheader = GetHeader("Newsgroups" , FALSE)) != NULL) {
+ JLSysLog(0, "Newsgroups: %s" , jlheader);
+ } else {
+ JLSysLog(0, "Newsgroups not found");
+ }
+ /* QIOrewind(ARTqp); */
+ if ((jlheader = GetHeader("Followup To" , FALSE)) != NULL) {
+ JLSysLog(0, "Followup To: %s" , jlheader);
+ } else {
+ JLSysLog(0, "Followup To not found");
+ }
+ JLSysLog(1, "End of header dump");
+#endif /* JAN_LARS */

if (what >Type != STstat) {
if (ARTmem)

ARTsendmmap(what >Type);
diff rub /local/src/news/inn/inn work/nnrpd/nnrpd.c inn work/nnrpd/nnrpd.c

/local/src/news/inn/inn work/nnrpd/nnrpd.c Tue Oct 27 05:25:01 1998
+++ inn work/nnrpd/nnrpd.c Sat Jul 7 01:51:02 2001
@@ 614,6 +614,22 @@

}

+#ifdef JAN_LARS
+#if defined(STDC_HEADERS) || defined(HAVE_STDARG_H)
+# include <stdarg.h>
+# define JL_VA_PARAM(type1, param1, type2, param2) (type1 param1, type2 par...⇒
...am2, ...)
+# define VA_PARAM(type, param) (type param, ...)
+# define VA_START(param) (va_start(args, param))
+#else
+# ifdef HAVE_VARARGS_H
+# include <varargs.h>
+# define JL_VA_PARAM(type1, param1, type2, param2)(type1 param1, param2, v...⇒

93

...a_alist) type2 param2; va_dcl
+# define VA_PARAM(type, param) (param, va_alist) type param; va_dcl
+# define VA_START(param) (va_start(args))
+# endif
+#endif
+#endif /* JAN_LARS */
+

#if !defined(VAR_NONE)

#if !defined(VAR_NONE)
@@ 785,6 +801,11 @@

struct group *grp;
GID_T shadowgid;

#endif /* HAVE_GETSPNAM */
+#ifdef JAN_LARS
+ time_t JLlogtime;
+ char JLlogname[SMBUF];
+ char JLb;
+#endif /* JAN_LARS */

#if !defined(HPUX)
/* Save start and extent of argv for TITLEset. */

@@ 1073,6 +1094,14 @@
/* Exponential posting backoff */
(void)InitBackoffConstants();

+#ifdef JAN_LARS
+ sprintf(JLlogname,"/local/lib/news/log/jani/news.debug_jani.%d.log" ,...⇒
time(NULL));
+ if((JLlogfile=fopen(JLlogname,"a"))==NULL) {
+ syslog(L_NOTICE,"Error opening jani’s debug log ’%s’" ,JLlogname);
+ }
+ JLSysLog(0, "Starting");
+#endif /* JAN_LARS */
+

/* Main dispatch loop. */
for (timeout = INITIAL_TIMEOUT, av = NULL; ;

timeout = innconf >clienttimeout) {
@@ 1153,11 +1182,104 @@

continue;
}
TITLEset(av[0]);

+#ifdef JAN_LARS
+ /* Log exactly what command the user made */
+ JLb = buff[11];
+ buff[11] = ’ \0’ ;
+ if (strcmp(buff, "LIST ACTIVE") != 0) {
+ buff[11] = JLb;
+ JLSysLog(0, "%s" , buff);

94

+ } else {
+ buff[11] = JLb;
+ }
+#endif /* JAN_LARS */

(*cp >Function)(ac, av);
}

Reply("%s\r \n" , NNTP_GOODBYE_ACK);
+#ifdef JAN_LARS
+ JLSysLog(0, "Stopping");
+ if(JLlogfile!=NULL) {
+ fclose(JLlogfile);
+ }
+#endif /* JAN_LARS */

ExitWithStats(0);
/* NOTREACHED */

}
+
+#ifdef JAN_LARS
+void
+JLSysLog JL_VA_PARAM(int, timestamp, const char *, fmt) {
+ va_list args;
+ char tmpfmt[SMBUF];
+ char *logmess;
+ static TIMEINFO Session;
+ TIMEINFO Now;
+ int size;
+ int tmp;
+
+ VA_START (fmt);
+ /* We’re only interested in getting the session time at the first invocatio...⇒
...n. */
+ if (!Session.time) {
+ if (GetTimeInfo(&Session) < 0) {
+ syslog(L_FATAL, "can’t gettimeinfo %m");
+ exit(1);
+ }
+ }
+ if (timestamp) {
+ if (GetTimeInfo(&Now) < 0) {
+ syslog(L_FATAL, "can’t gettimeinfo %m");
+ exit(1);
+ }
+ sprintf(tmpfmt, "[JLsessID %d.%06d, %d.%06d] %s" , Session.time, Session....⇒
...usec, Now.time, Now.usec, fmt);
+ } else {
+ sprintf(tmpfmt, "[JLsessID %d.%06d] %s" , Session.time, Session.usec, fmt...⇒
...);

95

+ }
+ va_end (args);
+
+ /* Assume that most output is shorter than SMBUF, and take the
+ penalty for e.g. longer headers like References */
+ size = SMBUF;
+ if ((logmess = malloc (size)) == NULL) {
+ /* Ick. Do the INN thing for malloc failure. For now, just
+ print a debug message and return and pretend that nothing
+ serious is wrong. */
+ syslog(L_JAN_LARS, tmpfmt,
+ "Failed to allocate memory for log message.");
+ return;
+ }
+ while (1) {
+ VA_START(tmpfmt);
+ tmp = vsnprintf(logmess, size, tmpfmt, args);
+ va_end(args);
+
+ if (tmp > 1 && tmp < size) {
+/* printf("%s\n",logmess); */
+/* syslog(L_JAN_LARS, logmess); */
+ if(JLlogfile!=NULL) {
+ fprintf(JLlogfile,"%s\n" ,logmess);
+ }
+ return;
+ }
+ if (tmp > 1) {
+ /* If vsnprintf() returned the size of the string that
+ would be written excluding the trailing ’\0’, which is
+ correct according to C99, use that for the new size and
+ save lots of time */
+ size = tmp + 1;
+ } else {
+ /* Bleh, old vsnprintf(), let’s try to be quick about it
+ anyway */
+ size *= 2;
+ }
+ if ((logmess = realloc (logmess, size)) == NULL) {
+ /* Ick (again). Do the INN thing for memory alloc
+ failure. For now, just print and return. */
+ syslog(L_JAN_LARS, tmpfmt,
+ "Failed to allocate memory for log message.");
+ return;
+ }
+ }
+}
+#endif /* JAN_LARS */
diff rub /local/src/news/inn/inn work/nnrpd/nnrpd.h inn work/nnrpd/nnrpd.h

96

/local/src/news/inn/inn work/nnrpd/nnrpd.h Tue Oct 27 05:25:01 1998
+++ inn work/nnrpd/nnrpd.h Sat Jul 7 01:28:59 2001
@@ 48,6 +48,10 @@

#define Reply printf
#endif /* defined(VAR_NONE) */

+#ifdef JAN_LARS
+void JLSysLog(int timestamp, const char *fmt, ...);
+FILE *JLlogfile;
+#endif /* JAN_LARS */

/*
** A group entry.

97

A.2 Man Page: newsoverview(5)

This is documentation for the format of news overview files.

NEWSOVERVIEW(5) NEWSOVERVIEW(5)

NAME
newsoverview - netnews overview files

SYNOPSIS
/usr/spool/news/group/.overview

DESCRIPTION
Each newsgroup directory contains a file named
‘.overview’, containing one-line summaries of articles in
that group. Fields are separated by tabs, and any tabs or
newlines in the original articles headers have been
replaced with spaces. The fields are, in order: article
number (file name), subject, author, date, message-id,
references, byte count, line count, and optionally other
headers, as arranged locally (none are supplied by the
database maintenance software, as shipped). The line-
count and references field may be empty. If the optional
other headers are present, they include their header key-
word and colon; if they are absent entirely, the tab after
the line-count field may also be absent.

The file is maintained in numerical order, by article num-
ber.

At the time of writing (late 1992), the lines in an
overview file are typically 150-300 characters long, and
an overview file for a typically busy group is often
30,000 bytes to 60,000 bytes long, with notable exceptions
exceeding 500,000 bytes.

EXAMPLES
A few lines from one overview file, with tabs displayed as
‘|’ and lines continued after ‘\’.

8870|strange message id’s: <something>QUIT|schmitz@scd.hp.com (John Schmitz)\
|18 Sep 1992 19:57:16 GMT|<19dcasINNce@hpscdf.scd.hp.com>||821|
8871|Re: BNF rule for newsgroup names?|kris@tpki.toppoint.de (Kristian Koehntopp)\
|Fri, 18 Sep 1992 17:51:09 GMT|<1992Sep18.175109.21999@tpki.toppoint.de>\
|<43GQBM4D@cc.swarthmore.edu> <BuLB9y.7Dp@world.std.com>\

<BuLG5A.xH@cs.psu.edu> <339@blars.UUCP>|926||Supersedes: <1234@foovax>

FILES
/usr/spool/news/group/.overview

SEE ALSO
newsdb(5)

HISTORY
Written by Geoff Collyer as part of the C News project.

BUGS
The contents of the line-count field should not be
believed and are really pretty worthless yet popular.

98

A.3 Selected Newsgroups From Nextra

Below are the 309 groups that were selected from an alphabetical list of news-
groups available from Nextra’s reading servers.

alt.0d
alt.adoption
alt.amateur-comp
alt.animals.dogs.collies.open-forum
alt.apocalypse
alt.arts.origami
alt.autos.audi
alt.autos.volvo
alt.bbs.first-class
alt.binaries.e-book.palm
alt.binaries.images.fun
alt.binaries.multimedia.utilities
alt.binaries.pictures.animals
alt.binaries.pictures.drag-racing
alt.binaries.pictures.erotica.d.moderated
alt.binaries.pictures.erotica.fetish.latex
alt.binaries.pictures.erotica.male.bodybuilder.moderated
alt.binaries.pictures.fishing
alt.binaries.pictures.movie-posters
alt.binaries.pictures.strippers
alt.binaries.radio-control
alt.binaries.sounds.midi.classical
alt.binaries.starwars
alt.books.david-weber
alt.building.architecture
alt.cars.lotus
alt.cellular.umts
alt.chinchilla
alt.collecting.pens-pencils
alt.comp.freeware.gdp
alt.comp.periphs.mainboard
alt.comp.periphs.videocards.nvidia
alt.consciousness.mysticism
alt.crime.bail-enforce
alt.current-affairs.muslims
alt.disability.blind.social
alt.drugs.ecstasy
alt.emergency.services.dispatcher
alt.ezines.rad
alt.fan.countries.greece
alt.fan.elton-john
alt.fan.jen-aniston
alt.fan.mailer-daemon
alt.fan.pornstar.darrian
alt.fan.starwars
alt.fashion.crossdressing
alt.flame.girlfriend
alt.food.wine
alt.fuckin.rowin.mate
alt.games.black+white
alt.games.diablo2
alt.games.fucking
alt.games.metal-gear-solid
alt.games.nintendo.pokemon
alt.games.rpg.ufa
alt.games.upcoming-3d

99

alt.games.video.xbox
alt.grad-student.tenured
alt.ham-radio.am
alt.help.businesscalc
alt.horology
alt.hvac
alt.inner.circle
alt.irc.efnet
alt.irc.webnet
alt.ketchup
alt.legend.king-arthur
alt.lycra.pictures
alt.marshmellow.peeps
alt.mens-rights
alt.motd
alt.movies.kubrick
alt.music.4-track
alt.music.blues
alt.music.deftones.moderated
alt.music.gogos
alt.music.lyrics
alt.music.nin
alt.music.portishead
alt.music.sex-pistols
alt.music.tool
alt.necronomicon
alt.norway.fishhead
alt.org.team-os2
alt.paranormal
alt.personals.intercultural
alt.php.sql
alt.politics.usa.constitution.gun-rights
alt.psst.hoy
alt.radio.pirate
alt.religio.konfuceo
alt.revisionism
alt.rv
alt.sci.time-travel
alt.sex.abstinance
alt.sex.cu-seeme
alt.sex.fetish.motorcycles
alt.sex.fetish.white-mommas
alt.sex.leri
alt.sex.prom
alt.sex.strip-clubs
alt.sex.weight-gain
alt.skinheads
alt.soft-sys.corel.draw
alt.sport.horse-racing.systems
alt.sports.hockey.nhl.phila-flyers
alt.stop.spamming
alt.support.crossdressing
alt.support.mcs
alt.swedish.chef.bork.bork.bork
alt.tasteless
alt.test
alt.transgendered
alt.tv.animaniacs.pinky-brain
alt.tv.commercials
alt.tv.frasier
alt.tv.law-and-order
alt.tv.networks.cbc

100

alt.tv.real-world
alt.tv.simpsons
alt.tv.tiny-toon
alt.usa-sucks
alt.video.letterbox
alt.yoga
aus.radio.scanner
ba.jobs
bit.listserv.techwr-l
bofh.config
bofh.jobfh.offered
bofh.sysops
borland.public.cppbuilder.activex
borland.public.datagateway
borland.public.jbuilder.announce
borland.public.jbuilder.jbcl
cern.delphi.bg
comp.ai.genetic
comp.archives.msdos.d
comp.data.administration
comp.databases.sybase
comp.editors
comp.graphics.algorithms
comp.graphics.packages.3dstudio
comp.infosystems.www.authoring.cgi
comp.lang.basic.powerbasic
comp.lang.forth
comp.lang.ml
comp.lang.perl.tk
comp.mail.headers
comp.os.cpm
comp.os.ms-windows.ce
comp.os.ms-windows.programmer.networks
comp.os.msdos.programmer
comp.os.os2.setup.storage
comp.protocols.dns.bind
comp.publish.prepress
comp.society
comp.std.c++
comp.sys.amiga.applications
comp.sys.apollo
comp.sys.cdc
comp.sys.ibm.pc.games.naval
comp.sys.intergraph
comp.sys.mac.hardware.storage
comp.sys.mentor
comp.sys.pen
comp.sys.sgi.bugs
comp.sys.unisys
comp.unix.amiga
comp.unix.tru64
cz.comp.linux.suse
de.alt.flame
de.alt.ufo
de.comp.sys.amiga.comm
de.rec.musik.rock+pop
dk.bolig
dk.edb.internet.software.mail+news
dk.edb.os2
dk.edb.system.beos
dk.fritid.dyr.hest
dk.helbred.behandling.alternativ

101

dk.marked.privat.bilstereo
dk.opslag.stillinger
dk.teknik.telefoni.isdn
england.jobs.offered
europa.viages.tourismo
fido7.kharkov.pickup
fido7.ru.anekdot
fido7.ru.sex
fido7.ua.os2.crack
fr.rec.plongee
free.autos.daihatsu
free.ebooks-2000
free.inter-vieri
free.it.auto.lancia-delta
free.it.radio.scanners
free.napster
free.ti.amici.nt.amatore
free.uk.music.classical
free.uk.talk.orkney-shetland
gnu.bash.bug
gnu.gdb.bug
hun.lists.hix.auto
hyssing.net.adsl
it.binari.x.hentai
linux.debian.devel
linux.dev.kernel
linux.postgres
linux.wine.users
microsoft.public.access.security
microsoft.public.biztalkserver.setup
microsoft.public.dotnet.csharp.general
microsoft.public.es.pocketpc
microsoft.public.exchange2000.setup.installation
microsoft.public.games.zone.asherons_call
microsoft.public.internetexplorer.win95
microsoft.public.nordic.ie40
microsoft.public.officedev
microsoft.public.project.vba
microsoft.public.sqlserver.datamining
microsoft.public.vb.bugs
microsoft.public.vb.winapi
microsoft.public.vstudio.general
microsoft.public.win2000.enable
microsoft.public.win2000.setup
microsoft.public.win95.msdosapps
microsoft.public.windows.inetexplorer.ie55.outlookexpress
microsoft.public.windowsme.software
microsoft.public.windowsnt.terminalserver.client
microsoft.public.xsl
misc.invest.technical
misc.wanted
muc.lists.freebsd.ports
net.config
net.sexuality.stories
netscape.public.mozilla.os2
news.groups
nl.naturisme
no.alt.frustrasjoner
no.alt.sjokolade
no.annonser.it.telekom
no.fag.medisin.diverse
no.fritid.jakt

102

no.it.maskinvare.diverse
no.it.os.unix.linux.nettverk
no.it.telekom.diverse
no.kultur.humor
no.samfunn.helse.funksjonshemming.diverse
no.sport.fotball
nordunet.announce
norge.oppland
novell.lanalyzerforwindows
novell.support.os.server.netware5x
online.xdsl
opera.magic
pl.comp.grafika.grafika3d
rec.arts.anime.creative
rec.arts.comics.reviews
rec.arts.movies.lists+surveys
rec.arts.sf.movies
rec.arts.theatre.musicals
rec.autos.makers.vw.watercooled
rec.aviation.ifr
rec.bicycles.misc
rec.collecting.stamps.discuss
rec.food.drink.beer
rec.games.chinese-chess
rec.games.frp.misc
rec.games.roguelike.moria
rec.games.video.sega
rec.mag.dargon
rec.music.artists.ani-difranco
rec.music.country.old-time
rec.music.makers.synth
rec.parks.theme
rec.photo.marketplace.digital
rec.radio.amateur.space
rec.sport.archery
rec.sport.volleyball
rec.video.desktop
redhat.kernel.general
sci.astro.amateur
sci.electronics.equipment
sci.environment.waste
sci.med.aids
sci.physics.relativity
se.dator.programmering.diverse
se.politik.forsvar
sfnet.harrastus.sukututkimus
soc.culture.asian.american
soc.culture.haiti
soc.culture.thai
soc.genealogy.marketplace
soc.history.science
soc.religion.shamanism
south-wales.misc
staroffice.com.support.stardesktop
swnet.fritid.jakt
swnet.pryltorg
talk.religion.buddhism
uk.comp.os.win2000
uk.games.video.playstation.forsale
uk.media.tv.sf.startrek
uk.railway
uk.rec.fishing.sea

103

uk.rec.subterranea
us.config
z-netz.alt.sat-tv
z-netz.rechner.atari.8-bit
z-netz.rechner.ibm.programmieren

104

A.4 Answers to Questions on news.software.nntp

The three sites where news administrators answered have been labeled “Site
A”, “Site B”, and “Site C”. “Site A” is a medium sized site, “Site B” is fairly large,
while “Site C” is huge. The questions are included below as they were asked,
but the answers have been anonymized and summarized. The questions were
asked on news.software.nntp 2001-04-30, and the third answer came 2001-
05-28, the day after I posted a summary of the first two to the group.

• How many articles are you offered and how many do you accept
per day, in average for the past month or so?

Sites A and B estimated the number of offered articles as three and eight
times as many as the accepted articles. Site C answered that this de-
pends on the number of feeds.

Accepted articles were around 1.2 to 1.3 million per day for all three
sites.

• What is the total volume of the offered (that may be tricky :) and
accepted articles in the same period?

None of the sites are able to measure the volume of articles that were not
accepted. The volume of accepted articles per day was approximately
140 GB for Site A, 190 GB for Site B, and between 220 and 250 GB for
Site C.

• How many peers serve you, and how many do you serve?

Site A has 5 peers, Site B has approximately 30, and Site C answered that
they have enough peers.

• How many users do you serve?

Site A serves less than 2 000 users, Site B serves less than 10 000, and
Site C does not know how many end users there are, because many of
their clients are corporate accounts.

• Does the size of a "full" feed (assume an excess of 300 GB/day,
tripling every 13 months) pose a problem for your servers’ and
network’s capacity?

Simply put, yes, at least from a business and cost perspective.

• If so, do you have a plan to deal with it, and what would that be?

Sites A and B answered that they would be upgrading when economi-
cally viable, moving traffic from expensive commodity network connec-
tions to zero-cost links, growing the business. Site C did not answer.

105

• What is the internal news network and server architecture?

Site A and B use a dedicated feeding server with standard NNTP news-
feeds. On the reader side, A used a traditional news spool, while B used
cyclical spools. Site C has multiples of everything as well as custom
software on the reading side.

• Do you use any kind of load balancing, on any level, and if so,
what kind?

The different sites varied wildly from no load balancing (Site A) to a fairly
advanced setup (Site C) using automated switching within a server farm.

• Do you try to carry "all" groups/hierarchies, or do you have
some specific limitations to which groups/hierarchies you don’t
want, and which groups/hierarchies you want?

For the feeders, all try to allow everything in transit, but Site B has a limit
on binaries to some peers because of bandwidth costs to those, and Site
C weeds out unused hierarchies or hierarchies that are not propagated.

• Is there a grey area of groups that you may or may not want,
which really depends on what your users or downstream peers
request?

This question was partially misunderstood, because of the way the ques-
tion was phrased. One relevant answer was that legal issues may have
a bearing on what is being carried. After a clarification on my side in
a summary posted to the newsgroup, Site C responded that they had a
partially automatic setup for creation and removal of newsgroups based
on PGP signed control messages where possible, in hierarchies with-
out formal procedures wholly automatically, and otherwise on a manual
request basis.

• Do you use a header-only feed, and if so, how do you provide
the bodies to the readers?

Site A had the front end reading servers receive header-only, and read
the articles directly from the news spool of the feeding server based on
data from the headers. Site C did not answer the question.

• If not, why aren’t you using a header-only feed?

Site B answered that the network architecture was good enough that it
would be pointless. Site C did not answer the question.

• What do you consider the pros and cons of a header-only feed?

Site A thought there were no obvious cons the way it is implemented
there, and that it forms a basis for a simple and robust distributed archi-
tecture, where the front end knows whether a given article has expired
or not. Site C did not answer the question.

106

• If your reader doesn’t have an article available, and it is requested
by a user agent, does it attempt to get it anyway, and if so, how?
Does it try to fetch that specific article, or that article plus several
others by References, newsgroup, or other grouping methods?

At Site A, the reading server always knows what it has and what it does
not have. At Site B, the reading server will not attempt to get the article
anyway. Site C did not answer the question.

• Can your feeder or injector accept automated requests for spe-
cific articles, or grouped articles as mentioned above, for imme-
diate feeding to a downstream peer?

Essentially, no, unless NNTP reader commands are used for specific arti-
cles. Site C did not answer the question.

• Do you try to limit the traffic (including control messages) by
means of filtering, and if so, what kind?

Site A limits article size between the feeding server and the reading
server. Site B runs Cleanfeed in paranoia mode, no measurements made,
plus anti-spam feature enabled in the feeder. Site C also performs ex-
tensive filtering on spam misplaced or excessive numbers of binaries,
abusive cross-posting, etc.

• How much does that filtering reduce accepted volume and amount
of articles (including control messages)?

Site A sees a reduction in volume by 50% and article count by 2%. Site
B did not answer the question. Site C sees a reduction in volume from
220-250 GB/day to 190-220 GB/day.

• How do you store your articles? Cyclic spools, traditional one-
file-per-article, combination, or other means?

Site A concatenates articles into large files with NNTP wire format. Site B
uses a traditional news spool. Site C uses a custom designed cyclic news
spool. This is all on the reading servers; the feeding servers generally
try to avoid storing articles other than temporarily.

107

108

Appendix B

News Articles

The purpose of this appendix is to provide some news articles that may not
be readily available in the future.

B.1 Rich Salz Announcing INN Testing

Path: papaya.bbn.com!rsalz
From: rsalz@bbn.com (Rich Salz)
Newsgroups: news.software.nntp,news.admin,comp.org.usenix
Subject: Seeking beta-testers for a new NNTP transfer system
Message-ID: <3632@litchi.bbn.com>
Date: 18 Jun 91 15:47:21 GMT
Followup-To: poster
Organization: Bolt, Beranek and Newman, Inc.
Lines: 72
Xref: papaya.bbn.com news.software.nntp:1550 news.admin:15565 comp.org.usenix:418

InterNetNews, or INN, is a news transport system. The core part of the
package is a single long-running daemon that handles all incoming NNTP
connections. It files the articles and arranges for them to be forwarded
to downstream sites. Because it is long-running, it can be directed to
spawn other long-running processes, telling them exactly when an article
should be sent to a feed. This can replace the "watch the logfile" mode
of nntplink, for example, with a much cleaner mechanism: read the
batchfile on standard input.

InterNetNews assumes that memory is cheap and fast while disks are slow.
No temporary files are used while incoming articles are being received,
and once processed the entire article is written out using a single
writev(2) call (this includes updating the Path and Xref headers). The
active file is kept in memory (a compile-time option can be set to use
mmap(2)), and the newsfeeds file is parsed once to build a complete matrix
of which sites receive which newsgroups.

InterNetNews uses many features of standard BSD sockets including
non-blocking I/O and Unix-domain stream and datagram sockets. It is
highly doubtful that the official version will ever provide support for
TLI, DECNET, or other facilities.

INN is fast. Not many hard numbers are available (that is one requirement
of being a beta-site), but some preliminary tests show it to be at least
twice as fast as the current standard NNTP/C News combination. For

109

example, Jim Thompson at Sun has had 20 nntpxmits feeding into a 4/490,
and was getting over 14 articles per second, with the CPU 11% utilized. I
was getting 10 articles/second feeding into a DECstations 3100, with the
program (running profiled!) 50% idle and the load average under .7. (It
is a scary thing to see several articles filed with the same timestamp.)

The sys file format is somewhat different, and has been renamed. The
arcane "foo.all" syntax is gone, replaced with a set of order-dependant
shell patterns. For example, instead of "comp,comp.sys.sun,!comp.sys" you
would write "comp.*,!comp.sys.*,comp.sys.sun"; to not get any groups
related to binaries or pictures, you write "!*pictures*,!*binaries*".

There are other incompatibilities as well. For example, ihave/sendme
control messages are not supported. Also the philosophy is that that
invalid articles are dropped, rather than filed into "junk." (A log
message is written with the reason, and also sent back to the upstream
feed as part of the NNTP reject reply.) The active file is taken to be
the definitive list of groups that an article wants to recieve, and if
none of an article’s newsgroups are mentioned in the active file, then the
article is invalid, logged, and dropped.

The history and log files are intended to be compatible with those created
by C News. I want to thank Henry and Geoff for their kind permission to
use DBZ and SUBST. You will need to be running C News expire or a B2.11
expire that has been modified to use DBZ.

The InterNetNews daemon does not implement all NNTP commands. If sites
within your campus are going to post or read news via NNTP, you will need
the standard NNTP distribution. The daemon will spawn the standard nntpd
if any site not mentioned in its "hosts.nntp" file connects to the TCP
port. InterNetNews includes a replacement for the "mini-inews" that comes
with the standard NNTP distribution. This can be used on any machine that
posts news and connects to an NNTP server somewhere; its use is not
limited to INN. At some point I hope to have a replacement nntpd
optimized for newsreaders, and an NNTP transmission program. These will
remove the need for any external software beyond the C News expire program.

If you would like to beta-test this version, please FTP the file
pub/usenet/INN.BETA from cronus.bbn.com for directions. It will be a
fairly tightly-screened beta: DO NOT ASK ME FOR COPIES! Once the system
is stable, it will be freely redistributable. I hope to have the official
release by August 7, so that schools can bring the system up before the
semester starts.

/rich $alz
--
Please send comp.sources.unix-related mail to rsalz@uunet.uu.net.
Use a domain-based address or give alternate paths, or you may lose out.

110

B.2 Curt Welch on Limiting Feed Size

B.2.1 Header-Only Feeds

Path: nntp.uio.no!uio.no!news-spur1.maxwell.syr.edu!news.maxwell.syr.edu
!newspeer1.nac.net!netnews.com!news-xfer.newsread.com!netaxs.com
!newsread.com!feed.newsreader.com!news2.newsreader.com
!flame-test.newsreader.com!not-for-mail

Subject: Header-Only feeds (was: A nice side benefit of WebReader)
From: curt@kcwc.com (Curt Welch)
Date: 16 Dec 1999 20:22:19 GMT
Organization: NewsReader.Com
Message-ID: <19991216152219.196$Pi_-_@newsreader.com>
Newsgroups: comp.lang.java.softwaretools,news.software.readers,

alt.usenet.offline-reader,news.software.nntp
Followup-To: news.software.readers,news.software.nntp
References: <38569b7a$0$224@nntp1.ba.best.com>

<6aJWOE2g9YI1qQ46VtGbCuiICWXm@4ax.com>
<3856bc3d$0$229@nntp1.ba.best.com>

X-User: Curt@NewsReader.Com
X-Face: "p}G*1KH{+F7EYGKLb>ogDguabZ+%,?^epeFB!nzu‘)‘$=QcvL1KF6<0GH!Tbc!Sqo[|tV5

%IW48mQf3K=Ci&gZ7]]aazx@]Y-nq!r5{yH/#,?@lDdUDvOfByB2hVW0.@OM%{l/{cT’{w
X-Url: http://CurtWelch.Com/
Lines: 213

uomini@fractals.com (Robert Uomini) wrote:
> Sorry about the munged message. Here it is in its entirety:
>
> One nice benefit of the transparent HTML technology, even if you
> don’t post HTML articles, is that it can potentially save significant
> disk space on news servers worldwide. Here’s how:
>
> When you post an article which makes use of the technology, only the
> NNTP header

The article header has nothing to do with NNTP. You are confusing
two different standards.

> (including the URL of the article) is sent to Usenet. So,
> if a news server knows that all the clients it serves understand
> transparent HTML, there’s no need to send a synopsis of the article;
> the body of the article becomes redundant. This technique works even
> if the article consists of plain text, as long as it’s wrapped in the
> standard <HTML><BODY>...</BODY></HTML> tags.

No, you can’t wrap plan text in that and have it come out correctly.
You have to include <PRE> tags and do escape processing on
the <, > and & characters to make it display correctly.

But if it’s plain text the best way is to just make the server know
that and give it a type of text/plain instead of text/html and then
it works fine. (at least it works fine for web browsers, don’t know
if your webreader can support text/plain correctly).

> Think of the disk space which can be saved...

I wonder if this idea might actually be useful. Not for the stupid
HTML support that webreader seems to tout, but just as the basis for
restructuring how Usenet works to deal with the bandwidth issue. I’ve
been thinking about this as I’ve read this thread and thought it might
be worth while to discusse it. So here are some of my thoughs on the
issue (mostly created as I wrote this).

111

I’ve added news.software.nntp to the newsgroups and set followup
to n.s.n and n.s.r because I think to work, this has to be mostly done
at the server level and not the newsreader level.

What I’m thinking about is creating a standard to allow header-only feeds
to become the norm. I use this internally on my servers where my front-end
servers get header-only feeds and are able to process all the NNTP commands
locally but go to the back-end servers for the actual articles. And
lots of other sites have done this with Diablo as well (I use my own
custom servers instead of Diablo).

It’s a great technique because a header-only server can keep up with a full
feed with with only a small fraction of the CPU power, disk space, and
bandwidth, yet it offloads a large percentage of the user load from the
back-end servers.

So maybe it would make sense to try and transform Usenet so everyone was
passing around header-only versions of the articles. The full version of
the article would remain only on central servers, normally the server it
was posted on.

I think the only protocol change that needs to be made is a new article
header which would both indicate that the article was a "header-only"
article, and tell where to go to get the article.

I’m thinking Body: would be a good candidate for this. I’m not sure what
syntax would be best for the content of this header however. A URL could
work, but it strikes me that you don’t want to allow the full range
of URLs. I’m thinking we would just use NNTP to get the articles from the
remote server like the way DIABLO works. So all you need is a host name
and an optional username/password and port. Maybe the URL syntax is the
way to go but have a well defined standard for what’s allowed and what’s
not allowed.

A header only feed at todays news volume levels is only around 1GB/day
and 100Kbps of bandwidth. That’s two orders of magnatude smaller than
a full feed.

Only the largest ISPs seem to be able to run a news server these days
and even some the largest seem to be cutting back their feeds because
they can’t justify the cost of a full feed. Just about all ISPs would
be able to justify running their own header-only server.

So how does the net convert to this? I’m thinking it would work something
like this. We do it all at the server level. We build servers that have
the fetures needed to support the function. For any article posted localy,
the server adds the Body: header and is willing to accept connections from
anywhere for people to read those articles. You might even set up a
seperate server to hold just the articles posted locally and the Body:
headers would point everyone to that server (and of course your main
server(s) would have to feed all local articles there as well).

These "new" servers would be able to accept both normal articles and
header-only articles with Body: headers. When a user requests an article
that the server only has the header for, the server makes a connection
to the remote site and gets the article and sends it to the user. But
it also caches the article for other users --- i.e., it acts like a
caching server.

When feeding, you could configure these "new" servers do do a few
different things. For compatibility with current servers, they must have

112

the option of doing full article feeds. They would send the entire article
even it was posted localy. But they would still add Body: headers to local
articles they were willing to serve to the world.

For downstream feeds that were both able and willing to take the
header-only articles, only the header for the local articles would be
passed. And if the server had articles with Body: headers, only the header
of those articles would be feed, even if the entire article happened to be
on the server.

The third feed option is a complete header-only feed. Any article which
already had the Body: header would be feed as is. But articles without
the Body: header would have one added and the feeding server would then
be acting as the "body server" for all those articles. This of course
would only be done on a limited basis because no one would be willing to
server all of Usenet to the world for free.

And since the servers are able to deal with a mix of full articles and
header only articles, there’s always the options of controling what’s feed
as a full article and what’s feed as header-only. For example, if you have
the bandwidth, you can accept full articles for all the small articles,
but get header-only copies of articles over a certain size.

It seems to me that any ISP willing to outsource their news might prefer to
run a header-only feed from the outsourcer. It’s a small simple box to run
(compared to a normal news server), gives their users fast xover response,
and acts as an article cache so articles read by their users only need to
tranist their external links once. And since they are paying for the
service, the outsourcer in this case will be willing to act as the master
server for all articles without Body: headers. This is very similar to
running one of the caching servers that already exist today, but then we
have the option of making that local server act as the store house for the
locally posted articles.

The problem with this of course is why would any usenet site be willing to
act as an article server to the world for their local articles. Under the
current system, when a user posts an article, you only have to send it out
to your feeds once. But if you act as a server, you will most likely have
to send it out a lot more. Maybe even thousands of times.

In this system, you are serving the article not to every user that reads
it, but to every usenet server where at least one user reads it. And in
theory, you would only send it to each of those servers at most once.

And some sites could set up caching servers to be used by groups of
servers. Say for example an ISP that sells/provides news feeds could act as
a central caching server for all their down-stream feeds. They could send
out header only feeds to their down-stream customers where the Body: lines
were all modified to point back to their server. When their server
receives a request for the article, it once again sees that it’s only got
the header and then chains back to the orignal site.

People would be willing to set up their servers as "body-servers" to the
world if overall it meant they would be able to reduce their bandwith
usage. So the question is, would it reduce the overall volume if we all
switched to this or not? I’m not sure.

But, a very good side effect of this system is that sites now become more
responsiple for what there user’s post. Not as much in terms of
responsibility for the content, but more so in terms of responsibility of
the bandwidth costs of distributing the post. Part of the problem with the
current Usenet design is that costs don’t get allocated correctly. People

113

pay to read news, not to post it. But posting is what costs the most
money.

So why don’t we charge users to post? Because it’s not "our" money they
spend when they do that. A single post costs hundreds of dollars in
bandwidth usage to distribute throughout the world, but it costs the local
site almost nothing. So we don’t charge. So the user doesn’t get charged
based on what they really "cost" usenet.

But in this new header-only system, we pay very little for the incomming
feed, and pay a lot for the outgoing articles posted by our users. So
now we are motivated to control how much they post, or charge more based
on the volume they post. And that’s the way it should work, unlike what
we have today. They people who post should carry a substantial portion
of the cost instead of all the readers.

I’d think that retention time would be overall much better with this new
system as well. Or overall, we would need a lot less disk space to get
the same amount of retention. The retention for the headers would take
1/100 of what it takes now. And local posts generally take a lot less
space so they could be retained for much longer periods.

If posting ends up costing the person doing the post more, overall volume
should go down, and quality should go up. Spam should go down as well
because it will become very expensive to bulk post hundreds or thousand
articles.

At first, when both the old a new systems are still in use, spammers will
obviously prefer to spam in the old system (i.e. send out full articles).
But if this new system works, then that would just motivate the net to
force a conversion to the "new" system.

One problem I see is that when you read news with this new system, you end
up getting news from lots of different places. And like the web, you will
end up getting errors from some percentage of those - or get very slow
performance etc. You need lots of servers to be working correctly, not
just your local server. If it becomes too hard to read news, say because
every third article is not available, then this just won’t work.

Then there’s the issue that when you post an article, the header will
propigate much faster than it has in the past. So then, you get lots of
people trying to read the article in a very short period of time. So the
problem isn’t that you have to serve the article to 1000 other sites, but
that you have to do most of that within 5 minutes of posting the article?
It’s hard to know how much of a problem that would really be without
actually trying it.

What other problems are there with this idea?

--
Curt Welch http://CurtWelch.Com/
curt@kcwc.com Webmaster for http://NewsReader.Com/

114

B.2.2 Text Feeds vs Header-Only Feeds in Size

Path: nntp.uio.no!uio.no!news-spur1.maxwell.syr.edu!news.maxwell.syr.edu!
newsfeed.usit.net!feed.newsreader.com!news2.newsreader.com!
flame-test.newsreader.com!not-for-mail

Subject: Re: Header-Only feeds (was: A nice side benefit of WebReader)
From: curt@kcwc.com (Curt Welch)
Date: 17 Dec 1999 03:37:28 GMT
Organization: NewsReader.Com
Message-ID: <19991216223728.072$QK@newsreader.com>
Newsgroups: news.software.readers,news.software.nntp
References: <38569b7a$0$224@nntp1.ba.best.com>

<6aJWOE2g9YI1qQ46VtGbCuiICWXm@4ax.com>
<3856bc3d$0$229@nntp1.ba.best.com>
<19991216152219.196$Pi_-_@newsreader.com>
<brad-1F6669.00533517121999@news.skynet.be>

X-User: Curt@NewsReader.Com
X-Face: "p}G*1KH{+F7EYGKLb>ogDguabZ+%,?^epeFB!nzu‘)‘$=QcvL1KF6<0GH!Tbc!Sqo[|tV5

%IW48mQf3K=Ci&gZ7]]aazx@]Y-nq!r5{yH/#,?@lDdUDvOfByB2hVW0.@OM%{l/{cT’{w
X-Url: http://CurtWelch.Com/
Lines: 55
Xref: nntp.uio.no news.software.readers:69158 news.software.nntp:81319

Brad Knowles <brad@shub-internet.org> wrote:
> In article <19991216152219.196$Pi_-_@newsreader.com>, curt@kcwc.com
> (Curt Welch) wrote:

> How about something like
> <nntp://news.your.dom.ain[:port]?user=name?pass=snark/message-id>? Or
> does the URL syntax allow for userids and passwords already?

I keep getting confused on the syntax of the news: url. But I think
it’s like the other ones so it’s something like:

news:[//[user[.password]@]host[:port]/]message-id|newsgroup-name

With the < > missing from the Message-ID which BTW, sucks.

or is it user:password? I forget.

People seldom use the host name in news: url’s so we don’t see them much.

> And where would this syntax be defined?

I tend to go to http://www.w3.org/ to start looking for that type of stuff.
There’s an RFC that defines urls isn’t there?

> > A header only feed at todays news volume levels is only around 1GB/day
> > and 100Kbps of bandwidth. That’s two orders of magnatude smaller than
> > a full feed.
>
> Last I checked, a text-only feed was about 1GB/day, or roughly
> 100Kbps bandwidth. Are you saying that the headers of the binary
> articles are roughly as large as the bodies of the non-binary articles?

Last I checked I though it was closer to 2GB/day, but..

A header only feed of all the articles I’m sure is smaller than a full body
feed of only the text articles. And adding the headers of the binary files
to a text only feed would make such a small difference that no one would
notice.

115

The binary files make up around 90% of the volume, but only 10% or so
of articles. So adding binary headers to a text only feed will probably
only increase the feed size by 5%. The day to day variance is around
that so it would be hard to notice the difference.

And if you took the bodies off of a text only feed, making it a header
only feed, the volume would only drop by maybe 30% (just a guess).

My 1GB/day number was just a rough estimate (say +- 20%). So to that same
degree of accuracy, a text only feed, or a full header only feed or
a text only feed with binary headers is all about the same size. For
all these, we are still talking close to 1/100 the size of a full feed.

--
Curt Welch http://CurtWelch.Com/
curt@kcwc.com Webmaster for http://NewsReader.Com/

116

B.3 Katsuhiro Kondou Quitting

Path: nntp.uio.no!uio.no!news-spur1.maxwell.syr.edu!news.maxwell.syr.edu
!nntp-relay.ihug.net!ihug.co.nz!usenet.net.nz!news.darkmere.gen.nz
!not-for-mail

From: Simon Lyall <simon@darkmere.gen.nz>
Newsgroups: news.software.nntp
Subject: mesh.ad.jp stats page
Date: 18 Jun 2001 06:13:43 GMT
Organization: Darkmere Private Access Internet, Auckland, NZ.
Lines: 16
Message-ID: <9gk66nolv1@red.darkmere.gen.nz>
NNTP-Posting-Host: green.darkmere.gen.nz
X-Trace: red.darkmere.gen.nz 992844823 25279 203.109.158.194 (18 Jun 2001

06:13:43 GMT)
User-Agent: tin/1.4.1-19991201 ("Polish") (UNIX) (Linux/2.2.17 (i586))
Xref: nntp.uio.no news.software.nntp:92777

I’ve just been informed by Katsuhiro Kondou that he will soon no longer be
the newsadmin at mesh.ad.jp and the news operation there will been losing
most peers.

Are there any other stats pages that are graphing a near full feed?

--
Simon J. Lyall | Very Busy | Web: http://www.darkmere.gen.nz/
"Inside me Im Screaming, Nobody pays any attention." | eMT.

"The slippery KY-covered gerbil seemed, to Patrick, to be eyeing him up
unpleasantly. The gerbil, obviously a veteran of the process, even
looked like he enjoyed it. "

- "The Heimlich Manouvre" staring P Dunford & Doctor von Heimlich.

117

Index

3dfx hierarchy, 10

ADSL, 17
alt hierarchy, 9
alt.binaries hierarchy, 42
Approved header, 4, 12
ARTICLE command, 11, 14, 60–71,

74–76
article, 4, 6, 10, 25

number, 4, 11, 14
article headers, see headers
articles, 4, 26
arts hierarchy, 10
ASCII, 42, 43
authentication, 12

PGP, 13
AUTHINFO command, 11, 67
author, 4, 5

backbone, 8, 26, 45, 47
bandwidth, 30, 40
base 64, see encoding, base 64
Big 8, 9
binaries, 17, 42
blacklisting, 24, 27
blacklists, 24
BODY command, 11, 14, 66–68, 75,

76
body, 4, 5, 38, 45
body server, see server, body

cable modem, 17
cache, 36, 38, 39
caching

definition, 25
caching proxy, 25
caching server, see server, caching

caching algorithm, 26
caching proxy, 25, 55
cancel, 12
CD, 17

ISO images, 17
CGI, 36
charters, see newsgroup charter
checkgroups, 12
Cidera, 23
Cleanfeed, 44, 107
communication, 2
comp hierarchy, 9, 10
Control header, 4, 12
control, 12

message, 12
attacks, 44
cancel, 12
checkgroups, 12
newgroup, 12
rmgroup, 12
supersedes, 12

message type, 13
message types, 12
messages, 44

cookies, 36
CR character, 43
crossposting, 8
cyclic news spool, see news spool,

cyclic

database, 15
Nov, 14

Date header, 4, 14, 74–77
Deja, 24, 31
DeleGate, 39, 40
demon hierarchy, 10

118

description, 10
Diablo, 45, 57, 65
dialup, 69
discussion groups, see newsgroups
Distribution header, 4
DNEWS, 37
DNS, 5, 36, 59
downlink, 41
downstream, 41
downstream peer, see peer
DSL, 17
DVD

images, 17

e-mail, 4–7, 42, 46
address, 4, 5

editor, 4
EIDE disk, 18
encoding

base 64, 43
QPLite, 43
quoted-printable, 43
uuencode, 43

expire, 15, 26, 39
expired, 25
Expires header, 4
expiry, 26

FAQ, 10
feeder, see server, feeding
feeding server, see server, feeding
filtering, 69
flooding algorithm, 6
flooding algorithm, 25
followup, 4, 10, 27
Followup-To header, 4, 75–77
Freenix, 17
From header, 4, 14, 74–77
FTP, 35, 39

gateway, 39
Gnus, 4, 6
Google

Groups, 24, 31
Gopher, 35, 40

Great Renaming, 16
GROUP command, 11, 67, 68, 75,

76, 79
group, see newsgroup
GroupLens, 31, 44

HEAD command, 11, 14, 66–68, 75,
76

head, 4
header-only feed, 26, 28, 38, 45,

106
headers, 4, 5, 13, 26, 28, 33, 38,

45, 54, 55, 66, 74
filtering of, 39

HELP command, 11, 67
hierarchies, 8, 9, 26
HipCrime, 44
HTML, 44
HTTP, 35, 36, 39, 40
humanities hierarchy, 9

ICP, 36, 40
identity

verification of, 13
IETF, 3, 16
Ifi, 59, 65, 70
ifi hierarchy, 65
IHAVE command, 11, 67
injecting server, see server, inject-

ing
Inktomi, 38, 39

Traffic Server, 38
INN, 11, 14, 16, 33, 65–68, 91
Internet, 3

Protocol, 35
standards, 3

Internet service provider, see ISP
Internet Caching Protocol, see ICP
Internet mail, see mail
IP, 35
ISO Latin-1, 42
ISP, 3, 16, 24

Keywords header, 4
kill file, 6, 69

119

KNews, 38

lang hierarchy, 10
LAST command, 11, 67
Leafnode, 39
LF character, 43
Lines header, 4, 14
Linux, 51
LIST command, 11, 67
LISTGROUP command, 11, 67
local part, 5

mail, 4, 6
mailing lists, 4, 6, 8
message, 4
message format, 5
reader, see mailreader

mailbox, 6, 40
mailreader, 6
mass media, 2
master, 60
media, see mass media
message, 4, 5

distribution, 3
format, 3
storage, 3

message ID, see Message-ID
Message-ID, 4, 5, 10, 11
Message-ID header, 4, 14, 66, 75–

77
metadata, 49, 51

definition, 26
MHS, 7
microsoft hierarchy, 10
MIME, 36, 40, 43

headers, 36
misc hierarchy, 9
MODE command, 67
moderator, 12
MTA, 7
MTS, 7

National Library of Norway, 25
NetCache, 35
NetNews, see Usenet

Network Appliance, 35
newgroup, 12
NEWGROUPS command, 11, 67
NEWNEWS command, 11, 50, 67
News, see Usenet
news, 16

administrators, 3, 8, 24–26, 32,
46

article, 4, 5, 12, 25
article format, 5, 57
articles, 4, 6, 39

organization of, 8
caching, 37
distribution, 5

algorithm, 6
distributors, 32
feed, see newsfeed
feeder, see server, feeding
groups, see newsgroups
model, 3
overview, 13
reader, 4
retention, 15
server, 4, 6, 12, 25, 40, 44
service, 3

provider, see NSP
spool, 13, 107

cyclic, 15, 65, 107
news hierarchy, 9
news feed, see newsfeed
news groups, see newsgroups
news server, see news server
newsfeed, 26, 38–40

full, 8, 17, 42
size, 8

newsfeeder, see server, feeding
newsfeeds, 40
newsgroup, 4, 7, 8, 42

charter, 10, 44
moderated, 4, 12

newsgroup name, 8
newsgroup topic, 8
Newsgroups header, 4, 75–77
newsgroups, 2, 4–6, 8, 26, 39

120

creating, 12
removing, 12
updating, 12

newsreader, 4, 6, 10, 39
NEXT command, 11, 67
Nextra, 59, 68, 70
NNRP, 6
NNTP, 3, 6, 13, 14, 16, 33, 39, 40,

67
commands, 11, 50, 66, 67

NNTPCache, 39, 40
no hierarchy, 10, 25
NoCem, 24, 39, 44
norge hierarchy, 10
noslave, 60
NOV, 11, 13, 14, 26, 46, 55

database, 14
NSP, 3, 23, 24, 26, 42, 43, 55, 56,

81
ntnu hierarchy, 10
NUL character, 43
numbering server, see server, num-

bering

online hierarchy, 10
Organization header, 4
origin server, see server, origin
OS/2, 39
OSI, 7
Outlook Express, 4, 6
OVER command, 73

Path, 5
Path header, 4, 55, 57
peer, 6, 8, 40

downstream, 6, 46
upstream, 6, 38, 39, 46, 51

performance, 30
Perl, 33
PGP, 13, 40

headers, 13
plain text, 5, 42
POP, 39, 40
POST command, 11, 67

Post Office Protocol, see POP
posting, 4
prefetching, 25, 27

definition, 25
proxy, 26, 27, 39, 54

definition, 25
pull stream, 6
push technology, 6

QNX, 38
QPLite, see encoding, QPLite
QUIT command, 11, 67
quoted-printable, see encoding, quoted-

printable, 53

Re:, 10, 74
read event, 49, 51, 52, 67, 75

definition, 14
read events, 68, 75, 77
reader server, see server, reading
reading server, see server, reading
rec hierarchy, 9, 10
References header, 4, 10, 14, 52,

53, 74–77
Renaming, see Great Renaming
Reply-To header, 4
RFC, 3

822, 4, 5
977, 11, 16, 42
1036, 4, 16, 42, 53
1630, 85
2045, 36
2046, 36
2047, 36
2048, 36
2049, 36
2980, 16

ring buffer, see news spool, cyclic
rmgroup, 12

satellite, 40
dish, 41
feed

provider, 40
feeds, 41

121

ground station, 40
receiver, 41
stream, 40

sci hierarchy, 9
score file, 6, 69
scoring, 6, 14
SDSL, 17
Sender header, 4
server

body, 45
caching, 26, 40
feeding, 6, 23, 59, 65, 106, 107
injecting, 4, 38, 45, 59, 65
numbering, 59
origin, 40
reading, 7, 9, 13, 25, 26, 33,

38, 39, 42, 54, 59, 60, 65,
67, 106, 107

relaying, 5
service adapter, 41
sf hierarchy, 10
signature, 5
SLAVE command, 11, 67
slave, 15, 60
slave mode, 60
SMTP, 7
soc hierarchy, 9
spam, 24, 25, 39, 107

advisories, see NoCem
Spam Hippo, 44
spool, see news spool
SSL, 36
STAT command, 11, 67
store and forward, 7
Subject header, 4, 14, 53, 74–77
subject, 5
subscription list, 54
subscription list, 6, 46
Summary header, 4
Supersedes header, 12
supersedes, 12
swnet hierarchy, 10

talk hierarchy, 9

TCP, 3, 35
telnet, 39
text

plain, 5, 42
text editor, see editor
text message, see message
thread, 10, 74–77
topic, see subject, 8, 10

UA, 4, 7, 10
uio hierarchy, 10
Unix, 13, 39
Unix User Network, see Usenet
upstream, 41
upstream peer, see peer
URI, 85
URL, 35, 36
Usenet, 1–3, 9, 15–18, 24, 25, 30,

31, 40, 42, 44, 84
model, 3
standards, 3
Unix User Network, 2

Usenet News, see Usenet
user

agent, 4, 5, 35, 36, 46, 54
user agent, 14
UUCP, 5, 15, 16
uuencode, see encoding, uuencode

VDSL, 17
VSAT, 40, 41

web, 20, 24
browser, 36
cache, 35, 36
page, 56
proxy, 35
server, 36
sites, 32

web server, 35
Windows, 39
WWW, 4, 6, 16, 25, 36

cache, see web cache

X-No-Archive header, 24

122

X-PGP-Key header, 13
X-PGP-Sig header, 13
X.400, 7
XGTITLE command, 11, 67
XHDR command, 11, 14, 67, 68,

75, 76
XOVER command, 11, 14, 33, 60–

65, 67–72, 74–76, 79
XPAT command, 11, 14, 67, 68
XPATH command, 11, 67
Xref header, 4

123

