
Solving Partial Differential
Equations by the Finite
Difference Method on a
Specialized Processor

Simen Håpnes

Thesis submitted for the degree of
Master in Computational Science: Physics

60 credits

Department of Physics
Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO

Autumn 2021

Solving Partial Differential
Equations by the Finite
Difference Method on a
Specialized Processor

Simen H̊apnes

© 2021 Simen H̊apnes

Solving Partial Differential Equations by the Finite Difference Method on a
Specialized Processor

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

The emergence of specialized processors in recent years has largely been driven
by providing high computational performance for artificial intelligence (AI)
workloads. However, these technological advancements are also of interest for
high performance computing (HPC) for general scientific applications. In this
thesis, selected stencil-based numerical schemes for solving partial differential
equations (PDEs) have been implemented for execution on the Graphcore in-
telligence processing unit (IPU), a processor with 1,472 cores and distributed
memory chunks of 624 kB located near each core. The schemes were also im-
plemented to be executed on two 32-core CPUs, with the OpenMP framework.

The heat equation was solved on the IPU for structured 2D, and 3D meshes.
The computations and problem sizes were scaled to execute in parallel on up to
16 IPUs. For all executions, the problem size pushed the limit of the available
on-chip memory. Additionally, the PDE system of the Aliev-Panfilov model for
cardiac excitation was solved for a structured 2D mesh. This demonstrates the
IPU’s applicability for a real-life physics-based application. The computations
involved iteratively applying 5-point and 7-point stencils, for the 2D and 3D
systems, respectively. The IPU was demonstrated to achieve remarkable perfor-
mances, achieving a throughput of up to 1.44 TFLOPS. Careful programming
led to an effective use of the distributed in-processor memory of the IPU, which
is designed to provide high memory bandwidth. The 3D heat equation reached
5.15 TB/s memory bandwidth on one IPU.

The extension to multi-IPU computations also showed performances consistent
with the scalable design of IPU systems, so-called IPU-PODs. The multi-IPU
performance of the 2D heat equation achieved a better speedup than its 3D
counterpart, while both showed performance increases that scaled well.

This thesis demonstrates an attempt to apply a specialized AI-processor to
selected general scientific computing workloads. In this context, the advantages,
challenges, and weaknesses of employing the IPU have been discussed.

1

Acknowledgments

I would like to thank my supportive supervisors: Xing Cai, Are Magnus Bruaset,
and Morten Hjorth-Jensen, for the advice and guidance you have given. I also
must sincerely thank Xing and Are for taking the time to have regular meetings,
for providing thorough feedback to my drafts, and for teaching me a lot about
computing research.

I would also like to thank Truls Edvard Stokke and Alexander Titterton for all
you have taught me about IPUs, and for being available to answer my many
technical questions. Additionally, a big thank you to Truls for contributing with
codes in the early work of this thesis.

I am also incredibly thankful for the weekly meetings with Xing, Are, Truls,
and Alex. These meetings have truly taught me a lot and inspired me to work
hard.

Last but not least, a warm thank you to Felicia Jacobsen and Jon Andre Ottesen
for having taken time out of your busy lives to review this thesis thoroughly.

2

Contents

1 Introduction 6

2 Background 8
2.1 A Brief History of Processors . 8

2.1.1 The CPU and GPU . 8
2.1.2 Specialized Architectures 9

2.2 IPU Hardware Architecture . 10
2.2.1 Overview . 10
2.2.2 Tile . 13

2.3 Design Principles . 16
2.3.1 Bulk Synchronous Parallelism 16
2.3.2 Scalability . 17
2.3.3 Graph Programming . 17

3 IPU Programming 19
3.1 Overview . 19
3.2 Poplar . 21

3.2.1 Glossary . 21
3.2.2 Poplar Programming . 22

3.3 Implementation of a Benchmark 22
3.3.1 The STREAM Triad Benchmark 22
3.3.2 Implementation . 23
3.3.3 Optimization . 31
3.3.4 Performance . 37

3.4 Programming Advice . 39
3.4.1 Environment Variables . 39
3.4.2 Profiling . 39
3.4.3 General Workflow in Poplar 39

4 The 2D Heat Equation by Finite Differences 41
4.1 Motivation . 41
4.2 Background . 42
4.3 Methods . 43

3

CONTENTS 4

4.3.1 IPU Implementation . 43
4.3.2 CPU Implementation . 51

4.4 Results . 53
4.5 Discussion . 54

5 The 3D Heat Equation by Finite Differences 57
5.1 Background . 57
5.2 Methods . 58

5.2.1 IPU Implementation . 58
5.2.2 CPU Implementation . 63

5.3 Results . 64
5.4 Discussion . 64

6 Multi-IPU Executions of the Heat Equation 68
6.1 Methods . 68

6.1.1 Scaling the Problem Sizes 68
6.1.2 Work Division . 69
6.1.3 Measurements . 70

6.2 Results . 71
6.3 Discussion . 74

7 The Aliev-Panfilov Model 77
7.1 Background . 77
7.2 Methods . 79

7.2.1 IPU Implementation . 79
7.2.2 CPU Implementation . 81

7.3 Results . 83
7.4 Discussion . 83

8 Conclusion 85

List of Abbreviations

AI Artificial Intelligence.

BSP Bulk Synchronous Parallel.

CPU Central Processing Unit.

GPU Graphics Processing Unit.

HPC High Performance Computing.

IPU Intelligence Processing Unit.

MIMD Multiple Instruction, Multiple Data.

ML Machine Learning.

PDE Partial Differential Equation.

5

Chapter 1

Introduction

In recent years, many processors that are specialized for machine learning appli-
cations have emerged [1]. The IPU is one of these processors [2]. It is designed
to be used as an accelerator for machine learning (ML) and for AI compu-
tations [2, 3]. This thesis tests the IPU’s applicability for a specific class of
algorithmic patterns often found in general scientific computing. More specif-
ically, various stencil-based computations were implemented and benchmarked
by solving PDEs with the finite difference method. Such problems are typical
workloads in computational science, which require high performance.

Computational science is an important tool to many scientific fields and is only
at the beginning of centuries of growth [4]. The number of applications of
computational science is large, ranging from data science, quantum computing,
image processing, evolutionary algorithms, process simulation, deep learning
and big data [5]. This has led to a strive for computers and algorithms with
higher performance, thus allowing more accurate simulations, data analyses of
larger amounts of data, or faster program executions.

Increasing computational performance is a complex goal which the field of HPC
addresses. Wilson [4] argues that there are four main barriers in increasing
the performance in computational science: software productivity, error control,
algorithmic development and the fostering of technological advances. This thesis
emphasizes the fourth barrier. In this sense, in order to increase performance in
scientific computing it is important to choose suitable hardware and software.
In extension, it is essential to implement highly optimized codes that exploit
characteristics of the software and hardware, as well as the features of the specific
application at hand.

During the last year, the IPU has been used in several studies. Most of these
have focused on its potential in deep neural networks [6]. In 2021, Graph-
core released their first results for IPU’s performance in MLPerf : a popular

6

CHAPTER 1. INTRODUCTION 7

benchmark for image classification (ResNet-50) and natural language process-
ing (BERT) [7]. Further, some studies have also explored the IPU’s applicability
for HPC workloads. For instance, one study performed microbenchmarks for
latency, bandwidth, and matrix multiplications on the IPU, and compared the
performance to the theoretical limits [8].

This thesis presents the application of selected algorithmic patterns found in
HPC workloads. One computational problem studied in the thesis features
some similarities to a recent study conducted by Louw and McIntosh-Smith [9].
That study employed two stencil-based computations: a Gaussian blur image
filter and a 2D Lattice Boltzmann fluid simulation. They achieved performances
comparable to that of modern graphics processor units (GPUs) [9]. This thesis
on the other hand, covers different computations, and additionally employs 3D
meshes. First, the heat equation was discretized by the finite difference method,
and solved on the IPU, both for structured 2D and 3D meshes. Second, the
scalability of IPU systems was studied by scaling these computations from 1
IPU up to 16 IPUs. Additionally, a real-life application of a numerical model
for cardiac excitation was implemented, namely the Aliev-Panfilov model. This
model requires a much larger number of operations per stencil compared to the
heat equation.

The scientific problems that this thesis seeks to answer can be summarized in
four research questions:

1. How good performance can the IPU provide for the selected scientific
computing workloads?

2. What technical challenges does low-level IPU programming involve?

3. What limitations does the IPU exhibit for general scientific computing
workloads?

4. What differences and similarities are found when asking the three afore-
mentioned questions for multi-IPU systems compared to single-IPU sys-
tems?

The areas studied in this thesis contribute to computational science by trying
to adopt technological advancements made by the semiconductor industry. The
IPU is one of many processors that have emerged for AI workloads [1], and
this thesis demonstrates the development processes of scientific programs on
the IPU, which also highlights some general aspects of parallel computing and
heterogeneous computing. All the developed codes can be found at https:

//github.com/simehaa/IPU.

https://github.com/simehaa/IPU
https://github.com/simehaa/IPU

Chapter 2

Background

This chapter consists of three sections, a brief history of processors, an overview
of the IPU’s hardware architecture, and the key design principles behind the
IPU.

2.1 A Brief History of Processors

2.1.1 The CPU and GPU

In November 1971, a 4-bit central processing unit (CPU) under the product
name Intel 4004 was released [10]. This was the world’s first commercial single-
chip microprocessor1. It marked the beginning of decades of exponential growth
of compute power [10]. Today, the CPU is still one of the main components of
a computer, but it has undergone a lot of development. A CPU consists of
one or more cores, which is a computing unit that performs instructions such
as arithmetic, logic, and I/O operations. A central concept in the history of
the CPU’s development was the introduction of multi-core CPUs. They turned
out to provide much higher performance in many applications, and a higher
performance per watt ratio [11].

An important milestone in the history of computing technology was the adop-
tion of parallelism. Traditional computer programs were written to be executed
sequentially, where one instruction executes after another. However, many com-
puter programs consist of workloads that can be broken down into several in-
dependent parts. In order to take advantage of this, technology also had to
support it, which is possible through the usage of multiple workers. One article
argues that power, memory, and instruction level parallelism walls are some of
the factors that have forced microprocessor manufacturers to produce parallel

1The Intel 4004 contained 2,300 transistors, ran at a clock speed of up to 740 kHz, and
delivered 60,000 instructions per second while dissipating 0.5 watts [10].

8

CHAPTER 2. BACKGROUND 9

microprocessors [12]. Today, there is a large demand for parallel computer pro-
grams, since they provide high performance in the tasks of which they solve.
Modern CPUs typically exhibit parallelism through having multiple cores, typ-
ically in the range from two to several tens.

There are also several other types of processing units, with specialized function-
ality, most notably the GPU. This processor was specifically designed to perform
3D graphics rendering, which requires many floating-point calculations [13]. A
GPU is a many-core processor which, similarly to the CPU, has undergone a
long path of development. The modern GPU is a highly parallel programmable
processor, often exhibiting core counts in the range of several thousands, and
it features peak arithmetic and memory bandwidth that substantially outpaces
its CPU counterpart [14]. The modern GPU has a wide list of applications
and is considered a general-purpose processor. Its ability to perform a great
variety of tasks is referred to as the general-purpose GPU [15], which has be-
come a common term in the literature. Some of the driving forces of modern
GPU development are the gaming industry, general purpose scientific comput-
ing, and machine learning applications: most notably the training of deep neural
networks.

2.1.2 Specialized Architectures

An early observation about the doubling of the density of components per in-
tegrated circuit at regular intervals is popularly referred to as Moore’s law. It
served as an accurate prediction and became a central driving force in pro-
duction of new processors for many years [16]. Today on the other hand, AI
performance seems to be a central driving force to many processor manufactur-
ers. An analysis done by OpenAI discusses that from 1959 to 2012, the largest
AI-models exhibited a trend of a 2-year doubling time, like that of Moore’s law.
It was uncommon to adopt GPUs for AI applications before 2012, which marks
the beginning of a second era of AI performance. In this modern era, the amount
of compute in the largest AI models saw a rapid increase to a 3.4-month dou-
bling time [17]. A 2020 survey of machine learning accelerators2 demonstrates
that there are many AI-specialized processors that have emerged in the recent
years [1]. Although these processors are specialized for machine learning appli-
cations, they could also be of high interest for other computing fields if they
provide the flexibility to be used on other workloads. It is important to try to
adopt these technological advancements in order to overcome one of the barriers
of increasing performance in computational science.

A heterogeneous computing system is a type of system that consists of mixed
architectures, and the need for these systems was discussed as early as 1993 [18].

2The terms AI accelerator, ML accelerator, machine intelligence accelerator, and deep
neural network accelerator are used in the literature. This can create confusion since they
all more or less refer to processors that provide high performance in training and inference of
advanced or deep neural network models.

CHAPTER 2. BACKGROUND 10

Programs that can be broken down into various homogeneous subtasks can ben-
efit from such systems, because a user can decompose and assign the subtasks to
the various suitable architectures to reach an overall faster execution time [19].
Today, heterogeneous computing systems are very common, and some examples
include general purpose GPUs, field-programmable gate arrays, Google’s tensor
processing unit, Intel’s neural network processor, and AMD’s accelerated pro-
cessing unit [20]. An IPU machine is also a heterogeneous computing system
since it consists of IPUs and a CPU. Program executions on IPU machines take
advantage of both processors.

2.2 IPU Hardware Architecture

2.2.1 Overview

At the time of writing, there are two generations of the IPU, the Colossus
GC2 MK1 IPU and the Colossus GC200 MK2 IPU. This study intends to
emphasize the bleeding-edge technology, and only studies the second generation.
An illustration of the MK2 IPU is shown in Figure 2.1.

CHAPTER 2. BACKGROUND 11

Figure 2.1: An illustration of the Colossus MK2 GC200 IPU [2]. The
processor features 1,472 independent tiles, each containing a core and
624 kB local in-processor memory.

Figure 2.1 shows the hardware components found on an IPU. This processor
is designed for exhibiting a large count of independent cores, and for scalabil-
ity. Therefore, the IPU contains components that provide high bandwidth of
communication between the tiles, namely the IPU-Exchange, featuring 8 TB/s
all-to-all bandwidth. Additionally, IPU-Links allow for fast communication be-
tween several IPUs, featuring 320 GB/s chip-to-chip bandwidth.

Figure 2.2 shows the M2000 : an IPU-machine that contains four Colossus MK2
GC200 IPUs. Figure 2.2a shows an illustrative overview of the components,
and Figure 2.2b shows an image of the M2000.

CHAPTER 2. BACKGROUND 12

(a) An illustration of the M2000.

(b) An image of the M2000

Figure 2.2: An illustration and an image of the M2000, which is an
IPU machine featuring four Colossus MK2 GC200 IPUs [21]. It is
designed as a blade that can be a part of larger blade servers.

CHAPTER 2. BACKGROUND 13

The M2000 can be used as a building block in larger IPU systems. The IPU-
POD64 is one of the larger systems that combines 16 M2000s, totaling at 64
IPUs [22]. To take things further, up to 1,024 IPU-POD64 can be combined,
which totals 65,536 IPUs [22].

Terminology

The terms IPU-Core, IPU-Exchange, IPU-Links, IPU-Tiles, and In-Processor-
Memory are registered trademarks of Graphcore. To simplify things, these will
be referred to as core, exchange, links, tiles, and in-processor memory.

2.2.2 Tile

The MK2 IPU consists of 1,472 tiles. Each tile contains both a computing core
and local in-processor memory. This design gives the IPU some important prop-
erties that make it differ from the traditional CPU and GPU. The in-processor
memory is only accessible to its connected core during the computational phases,
which means that the IPU exhibits a distributed memory model. Furthermore,
the core has low-latency communication access to the in-processor memory, be-
cause it is in the core’s vicinity. The in-processor memory is capable of both
storing variables and executable code. This means that each individual tile can
perform a completely unique computation, which ultimately makes the IPU a
true multiple instruction, multiple data (MIMD) processor.

In the context of CPU and GPU programming, one often refers to their cores.
However, it is more suitable to refer to the entire tiles in the context of IPU
programming, due to the core’s closely connected in-processor memory.

Core

The IPU-Core is a computing component that consists of six threads, which
during execution, operates one-at-a-time in a round-robin schedule. All six
threads are identical and contain two asymmetric pipelines, main and aux. Both
pipelines can execute a large set of instructions [23]. The pipelines are designed
for two different purposes:

• Main is designed primarily to perform control flow, address manipulation,
integer arithmetic and load/store operations [23].

• Aux is designed primarily to perform floating-point computations [23].

In each thread, the two pipelines have their associated register files, the main
register file and the aux register file. Both files only contain 64 bytes each, and
some of this space is reserved. The remaining space is used to store values that
will be used by instructions. This effectively means that the execution pipelines
rely on often fetching data from the in-processor memory.

CHAPTER 2. BACKGROUND 14

In-processor Memory

IPU exhibits a distributed memory model, where every core has its own dedi-
cated in-processor memory, which is shared among the six threads. The memory
is static random-access memory, which is typically used as fast on-chip memory.
On the other hand, dynamic random-access memory is often used as off-chip
memory3 [24].

In Figure 2.3, the memory address space of the in-processor memory is illus-
trated.

Figure 2.3: An illustration of memory address space of the in-
processor memory on a single tile [25]. Note: the figure shows both
IPU generations, where GC200 is the second one.

As shown in Figure 2.3, there are two regions in the address space, non-interleaved
memory and interleaved memory. These two regions feature different character-
istics. Both memory regions are grouped into banks and elements. A summary
of the properties of the two memory regions is shown in Table 2.1.

3The IPU machine M2000 also include dynamic random-access memory as off-chip memory,
since each machine includes 2 DDR4-2400 DIMM DRAM slots [21]. This allows for a much
larger memory capacity, but also slower compared to the on-chip memory.

CHAPTER 2. BACKGROUND 15

Region Size Interleaved Banks (size) Elements (size)

0 208 kB No 13 (16 kB) 13 (16 kB)
1 416 kB Yes 26 (16 kB) 13 (32 kB)

Table 2.1: An overview of the number of memory elements and banks
within the two memory regions in the in-processor memory of a tile
on the MK2 [23].

There are some practical differences between the two memory regions. Variables
can be constrained to be stored in the interleaved region. The main advantage
of the interleaved region is that it allows for up to 128-bit loads4. Furthermore,
both memory regions support a variety of load and store instructions:

• Loading 64, 32, 16, and 8 bits.

• Storing 64 and 32 bits.

Memory Alignment

The memory alignment of a variable is defined as the highest power-of-two
number that the memory address is divisible by. Memory addresses are typically
represented as hexadecimal numbers, and the memory alignment is then the
divisibility of these.

All load and store instructions must be naturally aligned, which means that the
memory alignment of a variable must at least match the width of an operand.
This requirement will be referred to as the alignment requirement. For example,
in order to load a single precision float (4 bytes), the pointer address of that
element must be divisible by 4.

It is possible for the programmer to specify the memory alignment of variables,
and it can never be less than the size of the variable (in bytes). The alignment
can however be constrained to higher multiples of the variable, e.g., for an array
of floats (4 bytes) it can be set to 8. This could facilitate loading or storing two
floats concurrently. Understanding and utilizing higher memory alignment can
lead to higher performance. One reason to increase the alignment of variables
is to use wider instructions, which is often referred to as vectorization. On the
other hand, a constrained alignment might also impose memory arrangement
phases, i.e., phases between execution phases where data must be re-arranged
in memory. To achieve higher performance, a general goal is to achieve vector-
ization whilst avoiding memory arrangement phases. In summary, it is possible
to explore the effects of varying alignment, and if used carefully, it might lead
to great performance increases.

4In the interleaved memory region, it is both possible to perform one 128-bit load with
the instruction ld128 , or to concurrently do two 64-bit loads and one 64-bit store with the

instruction ld2xst64pace [23].

CHAPTER 2. BACKGROUND 16

2.3 Design Principles

2.3.1 Bulk Synchronous Parallelism

The IPU is designed according to the (BSP) paradigm. In short, this means
that the executions cycle through four phases in this order: synchronization,
exchange, computation, and waiting. Figure 2.4 conceptualizes these phases.

Figure 2.4: A conceptualization of BSP on the IPU [25]. The figure
illustrates the phases of tiles along the timeline of an execution on
the IPU.

During the computational phases, each tile operates using its core with six
threads and its local in-processor memory [25]. When a tile is finished with its
work, it enters the waiting/synchronization phase, which is regarded as the same
phase in the documentation [25]. Eventually, when all tiles have reached the
synchronization phase, the IPU enters an exchange phase where any necessary
communication among tiles is performed. It is noteworthy to mention that
waiting/synchronization and exchange are implicitly handled by the software
frameworks, which makes it easier to develop parallel programs.

Execution Contexts

During execution of a program on the IPU, the six threads on each tile can
execute in two types of hardware execution contexts, a supervisor context and
six worker contexts [23]. The supervisor context is responsible for controlling the
execution, synchronization, and exchanges, and initially during an execution,
the supervisor context runs in all six threads [23]. Later, up to six independent
computing processes can run as worker contexts, each occupying one thread.
Whenever a worker context finishes its work, the thread is again occupied by
the supervisor [23].

CHAPTER 2. BACKGROUND 17

The execution contexts are handled implicitly by the software frameworks. How-
ever, for low-level assembly programming for the IPU, it could be useful to know
that some instructions are supported in only the supervisor context or the worker
context. Additionally, being aware of the execution contexts on the IPU can
help in understanding how the BSP is incorporated on the IPU.

2.3.2 Scalability

The BSP paradigm is commonly used in scientific computing, and it can act as
a foundation for scalable parallel performance [26]. One could argue that the
IPU was built for scalability due to the limited 900 MB in-processor memory
on one IPU, which is not sufficient for many modern computations, e.g., AI
applications. Memory limitation is considered one of the main bottlenecks of
modern deep learning models, which often require more memory than what one
GPU accelerator (typically 8–32 GB) can accommodate [27]. Therefore, there
is a need for scalability in the computer industry which is largely driven by AI
performance [17].

The IPU-POD64 has a total of 57.6 GB of in-processor memory. If the need
for memory is higher than the available in-processor memory, it is also possible
to use the off-chip DRAM, which is referred to as streaming memory in the
documentation. It is possible to connect systems with up to 216 = 65, 536
IPUs, totaling 59.0 TB in-processor memory, which indicate that the supported
scalability should not be a problem for multi-IPU programs.

2.3.3 Graph Programming

IPU programs are built around the idea of computational graphs that hold
information about dependencies. An illustration of a computational graph is
shown in Figure 2.5.

CHAPTER 2. BACKGROUND 18

Figure 2.5: An illustration of a computational graph in an IPU pro-
gram [25].

The most important data variable in IPU programs is the tensor, which is a
multi-dimensional array-like object. Tensors can be stored across many tiles,
and computations can operate on slices of these tensors. The computations
in IPU programs are referred to as vertices. Since the IPU has a completely
distributed memory model, both tensors and vertices must be assigned to tiles.
Because of this, both data and computational dependencies quickly arise. The
graph is a hierarchical organization of all tensors and vertices, including their
dependencies throughout the execution.

The graph programming framework makes the IPU a flexible MIMD processor.
Additionally, the graph implicitly handles both computational and data depen-
dencies, which makes parallel programming feasible. This might have positive
implications for general scientific computing on the IPU.

Chapter 3

IPU Programming

This chapter intends to serve as a practical guide to get started with Poplar
programming in C++.

3.1 Overview

Developing programs for the IPU can be done in multiple ways. Figure 3.1
shows a wide overview of the frameworks that are supported on the IPU. It is
possible to do Python programming with custom Python libraries for machine
learning, most notably TensorFlow and PyTorch. This is highly relevant for
those who want to use the IPU for ML applications. It is also possible to do
C++ programming along with the Poplar framework [28, 29].

19

CHAPTER 3. IPU PROGRAMMING 20

Figure 3.1: An overview ranging from hardware, drivers, and software
frameworks for the IPU [28].

Poplar is a framework provided by Graphcore, which was co-designed along
with the IPU [28]. It has a central role in most of the programming aspects
regarding the IPU. As illustrated in Figure 3.1, Poplar builds the foundation
on which the higher-level ML libraries are based on. At a low-level, the Poplar
software development kit provides a C++ interface, which allows the programmer
to develop fine-tuned IPU programs.

PopLibs is a set of libraries that provides application-level functions that can
be used in Poplar programs (see Figure 3.1). PopLibs is useful for those who
might want pre-built linear algebra functions, random number generators for
tensors, sparse tensor operation functions, and more [29].

There are three resources that cover a wide variety of Poplar programming in
C++:

• The Poplar and PopLibs User Guide [29] is an introductory user guide.

• The Vertex Programming Guide [23] covers more technical aspects of the
IPU’s architecture and introduces low-level assembly programming for the
IPU.

• The Poplar and PopLibs API Reference [30] is a thorough documentation
of the libraries within both Poplar and PopLibs.

This chapter intends to provide a practical guide to Poplar programming in C++.

CHAPTER 3. IPU PROGRAMMING 21

A typical programming process is covered by implementing a benchmark and
suggesting optimization steps that can increase the performance of the code.

3.2 Poplar

3.2.1 Glossary

The Poplar framework contains many technical terms. The most central terms
are summarized Table 3.1.

Term Description

Codelet An implementation that declares a vertex.
Compute set A set of vertices to be executed in parallel.
Device A Poplar object referring to one or more IPUs used in the

execution.
Engine A Poplar object that controls device executions.
Graph A Poplar object that is a representation of an execution and

its data and computational dependencies.
Host Referring to a CPU machine.
Program A Poplar object that declares a device execution.
Target A Poplar object that declares the execution target.
Tensor A multi-dimensional array-like Poplar object.
Vertex Device code that can be executed by a single thread.

Table 3.1: An alphabetically sorted list of technical terms that are
used in Poplar programming.

The two terms device and host are often used when explicitly referring to either
one or more IPUs or the connected CPU machine. This is relevant in the context
of the heterogeneity that executing an IPU program involves.

The terms compute set, device, engine, graph, program1, target, and tensor are
some of the most central C++ objects in Poplar. Note that the term device is
a Poplar object in addition to being a spoken/written reference to the one or
more IPUs that are used in a program execution.

The terms vertex and codelet are closely related. Vertices are executable code
that can run on one thread, or in parallel on many threads, on the IPU. Codelets
are the actual implementations of vertices, being a C++ class with some imple-
mentation restrictions.

1The term program is under the Poplar namespace in C++. This term will be explicitly
referred to as Poplar programs in order to distinguish it from the traditional program term.

CHAPTER 3. IPU PROGRAMMING 22

3.2.2 Poplar Programming

Poplar provides fine-grained control over the program execution and handles
some of the tedious aspects of parallel programming such as setting up data
exchanges and synchronization. These features of Poplar highlight that it pro-
vides software productivity: an important attribute in the context of parallel
programming. As stated in Chapter 1, software productivity can be considered
one of four barriers in improving computational performance.

When getting started with Poplar programming, it is beneficial to familiarize
oneself with all the central Poplar objects. As an overview, a general Poplar
workflow involves these steps:

1. Define a target (choose to either use a physical IPU or an emulator).

2. Create the device object, which represents the target.

3. Create the graph object.

4. Build the program by adding data and computations to the graph:

– Declare tensors and map them to tiles.

– Declare compute sets, and assign vertices to them.

5. Create a vector of Poplar program objects.

6. Compile the graph and Poplar programs.

7. Create the engine object.

8. Use the engine to control input and output streams between host and
device, and to control the Poplar program executions.

3.3 Implementation of a Benchmark

3.3.1 The STREAM Triad Benchmark

The standard benchmark for the measurement of computer memory bandwidth
(STREAM) consists of programs that have been used for several decades as
benchmarks for CPUs [31, 32]. The programs are written in standard C and
Fortran. Table 3.2 shows the four different kernels that are included in the
STREAM program.

CHAPTER 3. IPU PROGRAMMING 23

Name Kernel FLOP/iter. Read/iter. Store/iter.

Copy a[i] = b[i] 0 1 1
Scale a[i] = q*b[i] 1 1 1

Sum a[i] = b[i] + c[i] 1 2 1
Triad a[i] = b[i] + q*c[i] 2 2 1

Table 3.2: The four benchmark kernels in the STREAM program,
where a , b , and c are long arrays, and q is a scalar.

The STREAM benchmarks are common in high performance computing. There-
fore, a customized benchmark from the STREAM suite can serve as a suitable
introduction to IPU programming. The standard version of the benchmarks
uses 64-bit elements and operands, but there are also 32-bit variants of the
benchmarks. Only the Triad kernel was implemented, which is the last kernel
shown in Table 3.2. Additionally, only single precision (32-bit) floats were used,
because double precision is not supported on the IPU.

The STREAM benchmarks for the CPU have a rule for the length of the arrays
involved. They should all be at least 4 times the size of the sum of the last-level
caches used in the run, or 1 million elements, whichever is larger [32]. Since the
IPU exhibits a different memory model, the situation becomes slightly different.
There is no cache, and only distributed in-processor memory per tile. Therefore,
the length of the arrays was set to be large enough to almost fill the in-processor
memory on the IPU (900 MB).

3.3.2 Implementation

Device

In Poplar programming, the device object represents either a physical device
or simulation that will execute the graph [29]. When defining the device,
a target must be chosen. The target poplar::TargetType::IPU specifies that
the device will represent physical IPU hardware. It is also possible to use
poplar::TargetType::IPU_MODEL , which will result in an emulated CPU execution2.

Listing 3.1 shows a function that can be used to create a device representing
physical hardware.

2If IPU MODEL is used, then the rest of the code can be treated as if the target was IPU,
but the performance will probably be much worse. However, IPU MODEL can be useful to
familiarize oneself with IPU programming, or for testing.

CHAPTER 3. IPU PROGRAMMING 24

1 #include <Poplar/DeviceManager.hpp>

2

3 poplar::Device getIpuDevice(unsigned num_ipus) {

4 auto manager = poplar::DeviceManager::createDeviceManager();

5 auto device_ids = manager.getDevices(poplar::TargetType::IPU, num_ipus);

6

7 for (auto &device_id: device_ids) { // Loop over accessible device IDs

8 if (device_id.attach()) { // Check availability, i.e., not used by another

program↪→

9 return std::move(device_id);

10 }

11 }

12

13 throw std::runtime_error("No hardware device available.");

14 }

15

16 int main (int argc, char** argv) {

17 unsigned num_ipus = 1;

18 auto device = getIpuDevice(num_ipus); // Function on lines 3-14

19

20 // Obtain useful information from device

21 auto &target = device.getTarget();

22 unsigned num_tiles = target.getNumTiles();

23 unsigned num_worker_contexts = target.getNumWorkerContexts();

24 double clock_frequency = target.getTileClockFrequency();

25 std::uint64_t total_memory = target.getMemoryBytes();

26 }

Listing 3.1: A C++ code that creates a device: an object which rep-
resents a combined entity of one or more IPUs.

The function, getIpuDevice() in Listing 3.1 can be used to create a device with

a desired number of IPUs. The getDevices() method on line 5 returns a list

of devices that fulfills the criteria (number of IPUs and target type) and can
potentially be an empty list. In the listing, a loop iterates over the possible
device IDs, and checks the availability by using the attach() method. If this
method returns true , then the device is available and can be used. Table 3.3
shows the possible device IDs in an IPU-POD64.

CHAPTER 3. IPU PROGRAMMING 25

Number of IPUs Device IDs

1 0–63
2 64–95
4 96–111
8 112–119
16 120–123
32 124–125
64 126

Table 3.3: Overview of device IDs for the IPU-POD64.

Tensors

A tensor is a common term from linear algebra. For instance, scalars, vectors
and matrices are tensors, but so are also higher dimensional representations of
numbers. In Poplar, a tensor is an object which can hold a collection of numbers.
In this thesis, the term tensor will only refer to the Poplar object and not the
mathematical term.

Tensors are arguably one of the most important variables in IPU program-
ming. They are similar to numpy.ndarrays from the Python library NumPy
and contain a wide variety of methods which use NumPy-like syntax. Within
Poplar, Graphcore provides a framework called PopLibs which supports many
application-level functions such as linear algebra operations, neural network
functions, operations on tensors and on sparse tensors, and operations for pop-
ulating tensors with random numbers.

Vertex

A vertex is executable code that can run in a worker context (see section 2.3.1)
on a single thread on the IPU. The vertex implementation is referred to as a
codelet, which is written as a C++ class with a special format in a separate file.

Both tensors and vertices are distributed on a per-tile basis. However, it is
possible to assign multiple vertices to each tile. Then, the supervisor context
on the tile will distribute the vertices to threads as worker contexts. In order
to fully utilize the IPU, the workload should be split into six vertices per tile,
because there can be six worker contexts per tile.

In Poplar, the codelet is implemented in a separate file, because it is compiled by
a dedicated compiler, namely popc. Listing 3.2 shows a codelet that computes
the STREAM Triad kernel.

CHAPTER 3. IPU PROGRAMMING 26

1 #include <poplar/Vertex.hpp>

2

3 using namespace poplar;

4

5 class TriadVertex : public Vertex {

6 public:

7 TriadVertex();

8

9 Output<Vector<float>> a;

10 Input<Vector<float>> b;

11 Input<Vector<float>> c;

12 const float q;

13

14 bool compute () {

15 for (std::size_t i = 0; i < a.size(); ++i)

16 a[i] = b[i] + q*c[i];

17

18 return true;

19 }

20 };

Listing 3.2: A simple C++ file which contains one codelet, the class
TriadVertex, which computes the Triad kernel.

The codelet, TriadVertex in Listing 3.2 highlights some syntax requirements.
The codelet, which is a class, must inherit from the base class Vertex . Second,
the codelet must include a compute function, which takes no arguments, and

return true 3.

There are three possible vertex-variables that can connect tensors to the vertex:
Input (read), Output (write), and InOut (read and write). These types can

be used in combination with Vector (1D) and VectorList (2D). For instance,
Vector<Input<Vector<T>>> becomes a 2D variable. Poplar will implicitly set up

data streams for the vertex-variables. However, one must ensure that the di-
mension of a vertex-variable matches the dimension of the tensor when assigning
the vertex. The tensor-connecting vertex types can at most be two-dimensional.
This means that higher-dimensional tensors must be flattened to 1D or 2D in
order to be connected to a vertex. In addition to the tensor-connecting types,
additional C++ type parameters can also be assigned to the vertex, such as
float q on line 12 in Listing 3.2.

Graph

The graph is a representation of data and computational dependencies through-
out the entire IPU execution. It is one of the most central C++ objects provided

3When the vertex returns true, the worker context is finished and the thread is occupied
by the supervisor context as the thread enters a waiting/synchronization phase in the context
of BSP.

CHAPTER 3. IPU PROGRAMMING 27

in Poplar, and it is responsible for putting together many of the concepts that
have been introduced so far. Figure 3.2 shows a simple conceptualization of the
graph for the Triad implementation.

Figure 3.2: An illustration of a graph representation of the Triad
benchmark. There are many vertices, each connected to read from
slices of b and c , and to write to a . The vertices represent compu-
tations, and the arrows represent dependencies.

In Figure 3.2, the squares represent tensors, the blue circles represent vertices,
and the arrows represent dependencies. Moving on, b and c are predeter-
mined tensors that have no dependencies (there are no arrows pointing into
them). The resulting tensor, a depends on the computations on all tiles, which
in turn depend on the data in b and c . In parallel programming, the depen-
dencies between variables and computations can quickly become complex (see
for instance Figure 2.5), but these dependencies are implicitly handled by the
graph.

In Poplar, creating and completing the graph object includes numerous steps.
This includes declaring tensors, setting tile mappings for these, defining compute
sets, adding vertices to these compute sets, and declaring data streams. Listing
3.3 shows the parts of the implementation of the Triad benchmark that involves
the graph.

CHAPTER 3. IPU PROGRAMMING 28

1 // Create graph object

2 poplar::Graph graph{target};

3 graph.addCodelets("codelets.gp"); // pre-compiled codelets.cpp

4

5 // Declare Tensors, device variables

6 auto a = graph.addVariable(poplar::FLOAT, {num_tiles, num_worker_contexts,

size_per_worker}, "a");↪→

7 auto b = graph.addVariable(poplar::FLOAT, {num_tiles, num_worker_contexts,

size_per_worker}, "b");↪→

8 auto c = graph.addVariable(poplar::FLOAT, {num_tiles, num_worker_contexts,

size_per_worker}, "c");↪→

9

10 // Perform tile mapping of a

11 for (std::size_t i = 0; i < num_tiles; ++i) {

12 graph.setTileMapping(a[i], i); // 2D slices

13 }

14

15 // Apply same tile mapping to b and c

16 graph.setTileMapping(b, graph.getTileMapping(a));

17 graph.setTileMapping(c, graph.getTileMapping(a));

18

19 // Create compute set object

20 auto compute_set = graph.addComputeSet();

21

22 // Assign vertices to this compute set

23 for (std::size_t i = 0; i < num_tiles; ++i) {

24 // There will be num_worker_contexts vertices per tile (not a requirement)

25 for (std::size_t j = 0; j < num_worker_contexts; ++j) {

26 // Assign vertices to tiles

27 auto v = graph.addVertex(compute_set, "TriadVertex");

28 graph.connect(v["a"], a[i][j]); // 1D slices: dimensionality must match with

the vertex type↪→

29 graph.connect(v["b"], b[i][j]);

30 graph.connect(v["c"], c[i][j]);

31 graph.setInitialValue(v["q"], q);

32 graph.setTileMapping(v, i); // Tile mapping of vertex

33 }

34 }

35

36 // Define data streams

37 auto device_to_host_a = graph.addDeviceToHostFIFO("a_stream", poplar::FLOAT,

a.numElements());↪→

38 auto host_to_device_b = graph.addHostToDeviceFIFO("b_stream", poplar::FLOAT,

b.numElements());↪→

39 auto host_to_device_c = graph.addHostToDeviceFIFO("c_stream", poplar::FLOAT,

c.numElements());↪→

Listing 3.3: A code snippet that shows a workflow with the graph
object in Poplar. The dependencies imposed by the graph in this
code snippet is illustrated in Figure 3.2.

Listing 3.3 declares three 3D tensors, a , b , and c . The first dimension
represents the number of tiles, the second dimension represents the number of

CHAPTER 3. IPU PROGRAMMING 29

worker contexts, and the third dimension represents the number of elements that
each worker context computes. This approach imposes the disadvantage of the
total size needing to be a multiple of 8832 (the number of threads in an IPU).
However, the workload is guaranteed to be balanced, which is an important
aspect in parallel programming. This is especially true for the BSP paradigm,
where the execution time is bound by the slowest worker.

The workflow of the graph in Listing 3.3 can be summarized in these steps:

• Lines 2–3 declare the graph and add the pre-compiled codelet.

• Lines 6–8 add tensors to the graph. These must be mapped to tiles, which
is done for one of the tensors on lines 11–13. Further, the tile mapping is
re-applied to the other two tensors on lines 16–17.

• Lines 20–34 add vertices to the graph. Every vertex must be a part of
a compute set, which is a grouping of vertices that will be executed in
parallel. Further, like tensors, vertices must also be mapped to tiles.

• Lines 37–39 declares three data streams that will later be used to send
data between host variables and the tensors on the device.

Poplar Programs

A Poplar program is the base class for creating control programs that define
how vertices will be executed [29]. It is possible to combine Poplar programs
by using them as building blocks in more complex programs. There are several
types of Poplar programs, and some of the most common ones are

• Execute is used to execute a compute set,

• Repeat is used to repeat a Poplar program for a specified number of iter-
ations,

• Sequence is used to combine multiple Poplar programs together,

• Copy is used to copy data, between two tensors or between a tensor and
a data stream, and

• If is used to conditionally execute a Poplar program.

There are several other types of Poplar programs which can be found in the
API reference [30]. Listing 3.4 contains a code snippet which shows an example
of a workflow with Poplar programs.

CHAPTER 3. IPU PROGRAMMING 30

1 // Program 0: data stream to device

2 auto host_to_device = poplar::program::Sequence({

3 poplar::program::Copy(host_to_device_b, b),

4 poplar::program::Copy(host_to_device_c, c)

5 });

6

7 // Program 1: executions of vertex

8 auto inner_loop = poplar::program::Repeat(

9 num_iterations,

10 poplar::program::Execute(compute_set)

11);

12

13 // Program 2: data stream from device

14 auto device_to_host = poplar::program::Copy(a, device_to_host_a);

15

16 // Combine programs in a vector

17 std::vector<poplar::program::Program> programs{

18 host_to_device,

19 inner_loop,

20 device_to_host

21 };

Listing 3.4: An example implementation which sets up three Poplar
programs and uses various program commands. The three data
streams host_to_device_b , host_to_device_c , and device_to_host_a , and the
compute set compute_set are parts of the graph, declared in Listing
3.3.

Listing 3.4 shows the implementation that declares the Poplar programs used
for the Triad benchmark. There are three Poplar programs, which in the end
are combined to a standard C++ vector. The first program is used to populate
b and c by copying data from data streams. The second program repeatedly

executes the compute set, which performs the Triad benchmark parallelized.
The third program is used to copy the data from the tensor a to a data stream,
which can be used to obtain the results, and to control that it is correct.

Engine

The engine object is the run-time component of Poplar [29]. It takes one pa-
rameter: the graph and control programs compiled into an executable Poplar
object. Listing 3.5 contains a code snippet that shows the workflow with the
engine object.

CHAPTER 3. IPU PROGRAMMING 31

1 // Compile graph and programs, declare engine

2 auto exe = poplar::compileGraph(graph, programs);

3 poplar::Engine engine(std::move(exe));

4

5 // Connect the graph data streams to the host memory addresses

6 engine.connectStream("a_stream", &host_a[0], &host_a[host_a.size()]);

7 engine.connectStream("b_stream", &host_b[0], &host_b[host_b.size()]);

8 engine.connectStream("c_stream", &host_c[0], &host_c[host_c.size()]);

9 engine.load(device);

10

11 // Executions of programs

12 engine.run(0); // Program 0: copy host variables "b" and "c" to device

13 engine.run(1); // Program 1: repeatedly execute the compute set

14 engine.run(2); // Program 2: copy device variable "a" to host

Listing 3.5: An example of the set up and usage of the engine object
in Poplar.

Listing 3.5 shows the engine workflow used in the Triad benchmark, and can be
summarized in these steps:

• Lines 2–3 compile the graph and programs, and then use this executable
to declare the engine.

• In lines 6–8, the data streams that were first declared in the graph (lines
37–39 in Listing 3.3), then included in Poplar programs (lines 2–5 and 14
in Listing 3.4), are now connected to host memory addresses by using the
engine’s connectStream() method.

• Line 9 loads the compiled program onto the device.

• Lines 12–14 are used to execute the three Poplar programs that are con-
tained in the programs vector.

3.3.3 Optimization

Theoretical Peak Performance

The peak performance of this benchmark can be estimated by studying the
possible memory and compute instructions. The widest memory operations
on a single thread are 64-bit store and 128-bit load (only from the interleaved
memory region). It is also possible to perform simultaneous load and store,
which is ideal for the Triad benchmark as it needs to load from both b and c ,
and store to a . Theoretically, the instruction ld2xst64pace can load 64-bits

from both b and c and store 64-bit to a during one clock cycle, facilitating
two 32-bit Triad kernels per tile per clock cycle.

The aux pipeline supports multiply-accumulate instructions, which performs one
multiplication and one addition in the same instruction, i.e., b[i] + q*c[i] . The

CHAPTER 3. IPU PROGRAMMING 32

instruction f32v2axpy performs two 32-bit versions of this kernel, vectorized,
during one clock cycle. Therefore, this compute instruction facilitates two 32-
bit Triad kernels per tile per clock cycle.

Two ideal instructions for the Triad benchmark have been identified. They
can execute synchronously in the two execution pipelines, main and aux. The
six worker contexts operate sequentially. Hence, there can be at most 1,472
executing threads per clock cycle. On every tile, there are 4 floating point
operations (FLOPS), 16 bytes loaded, and 8 bytes stored per clock cycle. By
assuming a clock frequency of 1,330 MHz, the theoretical peak performance
(both of this benchmark and the IPU in general) is shown in Table 3.4.

Processor TFLOPS Load BW Store BW Total BW

MK2 IPU 7.83 31.32 TB/s 15.66 TB/s 46.98 TB/s

Table 3.4: The theoretical best computational throughput (FLOPS)
and memory bandwidth (BW) on a single IPU. A clock frequency of
1.330 GHz is assumed.

Preliminary Code

The Triad benchmark has been set up to exhibit a balanced workload on all the
tiles and threads of the IPU. Therefore, when optimizing the code, the focus
should lie on the codelets. In more complex programs, it could be beneficial to
optimize the setup of the graph and Poplar programs as well. However, for this
benchmark, the performance relies heavily on the codelet.

The Triad benchmark lacks communication phases, which arguably is one of the
most important aspects of parallel programming. Communication is covered in
later chapters.

Analysing Assembly Code

The compiler popc can be used to write the assembly code of the vertex into
a file. Listing 3.6 shows the assembly code that corresponds to the loop of
TriadVertex (lines 15–16 in Listing 3.2).

CHAPTER 3. IPU PROGRAMMING 33

1 .LBB0_7: # =>This Inner Loop Header: Depth=1

2 ld32 $a3, $m9, $m15, 1

3 ld32step $a2, $m15, $m9+=, 2

4 ld32 $a5, $m8, $m15, 1

5 ld32step $a4, $m15, $m8+=, 2

6 f32v2mul $a4:5, $a0:1, $a4:5

7 f32v2add $a2:3, $a2:3, $a4:5

8 st32 $a3, $m7, $m15, 1

9 st32step $a2, $m15, $m7+=, 2

10 brnzdec $m6, .LBB0_7

Listing 3.6: A snippet of the assembly code that corresponds to the
loop of TriadVertex (from Listing 3.2).

The assembly code in Listing 3.6 can be broken down. Lines 2–10 contain one
instruction per line, where the first word is the instruction name. The following
words are parameters, e.g., a0-a15 and m0-m15 are registers that can hold 32
bits. The 9 instructions in the loop perform two 32-bit Triad kernels:

• Lines 2–5 load four 32-bit elements from b and c .

• Lines 6–7 perform the multiplication and addition, b[i] + q*c[i] , vector-
ized for two kernels.

• Lines 8–9 store the results from the two kernels to a .

• Line 10 contains a loop overhead instruction that points to the beginning
of the loop, if it is not finished.

Some of the weaknesses of TriadVertex is that all memory instructions are only
32-bit wide, when in theory, it is possible to use up to 128-bit loads, and 64-
bit stores. Another weakness is that the two pipelines, main and aux, do not
execute synchronously.

Implementing a Codelet with Memory Constraints

As a starting point, the simplest codelet introduced in Listing 3.2 is used as
a template. Then, two constraints on how the tensors are stored in the in-
processor memory were applied. This could potentially help the compiler in
applying wider instructions and possibly achieve vectorization. The new codelet
is shown in Listing 3.7.

CHAPTER 3. IPU PROGRAMMING 34

1 class [[poplar::constraint("elem(*b)!=elem(*c)")]]

2 TriadVertexMemory : public Vertex {

3 public:

4 TriadVertexMemory();

5

6 Output<Vector<float, VectorLayout::SPAN, 8, false>> a;

7 Input<Vector<float, VectorLayout::SPAN, 8, true>> b;

8 Input<Vector<float, VectorLayout::SPAN, 8, true>> c;

9 const float q;

10

11 bool compute () {

12 for (std::size_t i = 0; i < a.size(); ++i)

13 a[i] = b[i] + q*c[i];

14

15 return true;

16 }

17 };

Listing 3.7: A codelet that introduces constraints on how the variables
are stored in memory. The first constraint is on line 1, where the two
variables, b and c should not be stored in the same memory element.
Lines 6–8 employ additional constraints on the three vector variables.

The codelet in Listing 3.7 applies a memory constraint in an attempt to achieve
wider memory instructions. On the first line, the two tensors, b and c are
constrained to be stored in different memory elements. This is a requirement in
order to concurrently load 64-bits from both tensors simultaneously. It is also
possible to apply a similar constraint to specify that two variables should be
stored in different memory regions by writing "region(*a)!=region(*b)" .

The second type of memory constraint can be found in the contents of the
Vector types, on lines 6–8. In addition to specifying that it should be a vector

of floats, it is possible to provide three additional arguments:

• The first parameter specifies how the variable is stored in memory. For
instance, VectorLayout::SPAN stores the pointer address to the beginning
of the vector and the size of it.

• The second parameter specifies the minimum alignment, in bytes. It was
set to 8 in order to allow for 8 bytes wide memory instructions.

• The third parameter controls whether to store the variable in interleaved
memory. This was set to true for b and c , because it is a requirement
for concurrently loading 64-bit from both variables.

The memory constraints that were applied do not guarantee an increase in
performance. However, satisfying these requirements could potentially help the
compiler in applying wider memory instructions. Listing 3.8 shows the assembly
that corresponds to the loop of TriadVertexMemory.

CHAPTER 3. IPU PROGRAMMING 35

1 .LBB1_7: # =>This Inner Loop Header: Depth=1

2 ld64step $a2:3, $m15, $m9+=, 1

3 ld64step $a4:5, $m15, $m8+=, 1

4 f32v2mul $a4:5, $a0:1, $a4:5

5 f32v2add $a2:3, $a2:3, $a4:5

6 st64step $a2:3, $m15, $m7+=, 1

7 brnzdec $m6, .LBB1_7

Listing 3.8: The assembly code corresponding to the loop of Triad-
VertexMemory.

Listing 3.8 shows that every memory instruction is 64-bit wide, instead of be-
ing sequences of two 32-bit instructions. This is a consequence of specifying
constraints on how the variables are stored in memory.

The constraints in TriadVertexMemory were applied to help the compiler in
achieving 128-bit wide load. This memory operation requires that b and c

should both be stored in interleaved memory, and in different memory elements.
However, this was not applied by the compiler, since they are loaded sequen-
tially in two 64-bit loads on lines 2–3. Another optimization that could have
been applied by the compiler is co-issues. This means that the main and aux
pipelines execute instructions synchronously. If this had occurred, the instruc-
tions would appear inside curly brackets in the assembly code, which is not the
case. In Listing 3.8, on could for instance have loaded b[i] and b[i+1] whilst

performing the multiplication q*c[i] and q*c[i+1] . If the compiler had per-
formed either of the two optimizations mentioned in this paragraph, the number
of clock cycles could have been 5 instead of 6. This indicates that the compiler
is subject to improvement.

Implementing a Codelet with Inline Assembly

There are more optimization steps that can be applied in order to cut down the
number of instructions per iteration. First, in order to utilize both execution
pipelines simultaneously, it is beneficial to co-issue instructions whenever pos-
sible. Second, loop overhead instructions can be avoided. There is a so-called
rpt (repeat) loop which does not contain loop overhead. Ideally, co-issuing

the two instructions mentioned at the beginning of section 3.3.3 inside a repeat
loop exploits the theoretical best performance that the IPU can offer. This can
be done by implementing inline assembly code directly in the codelet, which is
demonstrated in Listing 3.9.

CHAPTER 3. IPU PROGRAMMING 36

1 class [[poplar::constraint("elem(*b)!=elem(*c)")]]

2 TriadVertexAssembly : public Vertex {

3 public:

4 TriadVertexAssembly();

5

6 Output<Vector<float, VectorLayout::SPAN, 8, false>> a;

7 Input<Vector<float, VectorLayout::SPAN, 8, true>> b;

8 Input<Vector<float, VectorLayout::SPAN, 8, true>> c;

9 const float q;

10

11 bool compute () {

12 const std::size_t iter = a.size()/2 - 2;

13 auto packed_ptr = __builtin_ipu_tapack(&c[0], &b[0], &a[0]);

14 __asm__ volatile(

15 R"(

16 {

17 ld2x64pace $a0:1, $a2:3, %[ptr]+=, $m15, 0

18 uput $TAS, %[q]

19 }

20 {

21 ld2x64pace $a0:1, $a2:3, %[ptr]+=, $m15, 0

22 f32v2axpy $a4:5, $a0:1, $a2:3

23 }

24 {

25 ld2x64pace $a0:1, $a2:3, %[ptr]+=, $m15, 0

26 f32v2axpy $a4:5, $a0:1, $a2:3

27 }

28 nop

29 rpt %[iter], (2f - 1f)/8 - 1

30 1:

31 {

32 ld2xst64pace $a0:3, $a4:5, %[ptr]+=, $m15, 0

33 f32v2axpy $a4:5, $a0:1, $a2:3

34 }

35 2:

36 {

37 st64pace $a4:5, %[ptr]+=, $m15, 0

38 f32v2gina $a4:5, $a14:15, 0

39 }

40 st64pace $a4:5, %[ptr]+=, $m15, 0

41)"

42 :

43 : [ptr] "r"(packed_ptr), [iter] "r"(iter), [q] "r"(q)

44 : "$a0", "$a1", "$a2", "$a3", "$a4", "$a5", "memory"

45);

46 return true;

47 }

48 };

Listing 3.9: The codelet TriadVertexAssembly, which solves the Triad
benchmark, and introduces inline assembly code. The highlighted
lines (29–35) contain the rpt instruction and a loop body with one
co-issue of instructions.

CHAPTER 3. IPU PROGRAMMING 37

Listing 3.9 introduces a few new concepts of vertices. The assembly code is the
raw string on lines 15–41. The memory constraints are now required, because
64-bits will be loaded from both b and c (in total: 128-bit load). The assembly
code contains a repeat loop. The loop body is the co-issue on lines 32–33, which
performs two Triad kernels in one clock cycle.

The instructions before the loop are required due to several reasons:

• The co-issue on lines 17–18 loads the first two floats from b and c .
Additionally, the scalar q are loaded into the TAS internal state element,

which is where the f32v2axpy instruction expects it to be.

• The co-issue on lines 21–22 loads two subsequent values from b and c ,
and performs the first f32v2axpy instruction. The results end up in the
so-called accumulator state.

• The co-issue on lines 25–26 the two next subsequent values from b and c

and performs the second f32v2axpy instruction. This time, the previous
results are stored in registers, which is where the results must be before
they can be stored into memory.

In the loop, the current results from the f32v2axpy instruction are stored in
the accumulator state. The previous results are stored in registers, and the
results before those are stored to memory. The compute instruction is two steps
ahead of storing the results to memory. This effectively means that the last and
second-to-last results must be stored after the loop:

• The co-issue on lines 37–38 stores the second-to-last result to memory and
fetches the last results from the accumulator state.

• The last instruction on line 40 stores the last result to memory.

The number of loop iterations is set to a.size()/2 - 2 . It is half the number of
elements due to vectorization, and additionally subtracted by two, because two
computations are done prior to the loop.

3.3.4 Performance

Table 3.5 shows the results of the three vertices from the STREAM Triad bench-
mark.

CHAPTER 3. IPU PROGRAMMING 38

Vertex Throughput Minimal % of Peak Relative
Name [TFLOPS] Bandwidth Performance Performance

TriadVertex 0.87 5.19 TB/s 11.05 1.00
TriadVertexMemory 1.30 7.79 TB/s 16.57 1.50
TriadVertexAssembly 7.76 46.55 TB/s 99.07 8.96

Table 3.5: Performance of three vertices that performed the Triad
benchmark on the MK2 IPU at 1,330 MHz. The time was the average
execution time of 100,000 executions of the benchmark. Each of the
vectors consisted of 66.24 million single precision floats.

The results in Table 3.5 are averaged from 100,000 IPU executions. The threads
solved 7500 elements each, which means that the total length of the tensors was
66.24 million elements. The memory usage of the three tensors was 794.9 MB,
which is 84.5% of the 900 MB available memory. There are also some memory
gaps due to the constraint, as well as vertices and other programs. Therefore,
the size of the tensors approaches the maximum on-chip memory capacity.

The loops of TriadVertex , TriadVertexMemory , and TriadVertexAssembly used 9, 6,
and 1 clock cycles, respectively. Therefore, the expected performance increases
of the optimized vertices compared to the first vertex are 1.5 times, and 9 times.
The results showed relative speed-ups of 1.50 times, and 8.96 times which is very
consistent with expectations. This consistency suggests that the assembly code
can provide a good prediction to the performance.

A programmer who is new to Poplar programming should at least be able to
reach the performance of TriadVertexMemory. This is because the vector vari-
ables in vertices should always specify the additional parameters (vector layout,
minimum alignment and whether to be stored in interleaved memory). Triad-
VertexMemory only achieved 16.57% of the theoretical peak performance. This
result suggests that the compiler is not able to optimize the vertex to reach
anywhere near peak performance by a standard Poplar implementation of this
benchmark. The demonstration of the performance of TriadVertexAssembly
also highlights the current importance of writing inline assembly code for HPC
programs on the IPU, because it can lead to a significant performance increase.
However, the IPU became available relatively recently, and the software, includ-
ing the compiler, is under constant development. Therefore, it is reasonable to
assume that the compiler could be able to increase the performance of Triad-
VertexMemory in future releases.

The TriadVertexAssembly achieved a performance of 7.76 TFLOPS on a single
processor and reached 99.07% of the theoretical peak performance. This perfor-
mance is unrealistically high in more complex programs due to two reasons. It
is unfeasible to many developers to even resort to assembly programming, and
the assembly programming itself could become increasingly harder to implement

CHAPTER 3. IPU PROGRAMMING 39

than the demonstration in this chapter, because most applications are consider-
ably more advanced than the Triad benchmark. Therefore, similar performances
should not be expected in more complex programs. This result should rather
be considered as an upper boundary for practically achievable performance.

3.4 Programming Advice

3.4.1 Environment Variables

There are several environment variables which can be helpful in Poplar program-
ming. These must be set in the terminal shell before executing the program.
Full information about environment variables can be found in the documenta-
tion [29]. Two of them should be emphasized:

• The POPLAR_LOG_LEVEL variable can be set to the values OFF , WARN , ERR ,
TRACE , DEBUG , or INFO . The value of this variable affects the verbosity of

terminal outputs during the execution.

• The POPLAR_ENGINE_OPTIONS variable can be used to control profiling and
other settings of the engine object. It must be set to a JSON-like object,
e.g., {"autoReport.all":"true","autoReport.directory":"./report"} generates
a profiling report in the current directory. For a full list of the options that
this variable can take, see the Poplar and PopLibs API Reference [30].

3.4.2 Profiling

To study metrics of a program such as the BSP-phases throughout execution or
the memory usage per tile, there is a GUI profiling tool called PopVision Graph
Analyzer (PopVision). As mentioned in section 3.4.1, the environment variable
POPLAR_ENGINE_OPTIONS can enable profiling for an execution. A profiling report is

a large folder of detailed execution data. Whenever a program is executed with
profiling enabled, the performance of the program will be affected. Therefore,
one must typically run the program both with and without profiling.

A profiling report can be studied in PopVision. A graphical user interface
provides a comprehensive overview of the execution:

• The execution trace shows a timeline of stages during the execution, pre-
sented in a “BSP-manner”.

• The memory report, which shows detailed metrics of the memory usage.

3.4.3 General Workflow in Poplar

Consider an application that is to be implemented on the IPU. Before creating
the two C++ files, the main program and the codelets, one should fetch a pen
and paper. Poplar programming is designed around the idea of a computational
graph. Therefore, it is beneficial to draw the computations as a graph. This

CHAPTER 3. IPU PROGRAMMING 40

should involve writing down the variables, which presumably should be tensors,
and the computations as vertices. Dependencies should also be included in the
planning.

Once the graph is imagined, the main program should focus on constructing
the Poplar graph. To the graph, tensors should be added and mapped to tiles.
Furthermore, one or more compute sets should also be added to the graph. The
compute sets should in turn include a high number of vertices, arguably one
vertex for every thread.

Lastly, it is important to write optimized codelets. When compiled, they become
vertices, which define the computations to be executed by a single thread. This
constitutes the computational phases, where much of the execution time is spent.
One should always specify the additional parameters that can be given to the
Vectors and VectorList variables. It is especially important to choose suitable
memory alignment and memory region. For instance, if the in-processor memory
architecture is understood well, the Triad benchmark should undoubtedly store
the two input variables in the interleaved region, and the output in the non-
interleaved region.

Chapter 4

The 2D Heat Equation by
Finite Differences

4.1 Motivation

Solving PDEs numerically is a common problem encountered in scientific com-
puting. One of the main approaches for such computations is by using stencil
computations, which are based on finite difference approximation of derivatives.
The motivation for solving these types of problems on the IPU is that they could
serve as relevant benchmarks for general purpose scientific computing problems.
This chapter covers how the heat equation was discretized by finite differences
in two dimensions and how these computations were implemented on the IPU.
In the next chapter, this work will be extended to three dimensions.

The overarching goal in this chapter is to study how good performance 2D
stencil computations can achieve on the IPU. The computational problem was
implemented in C++ with Poplar, which highlights the process of developing a
typical scientific application for this specialized processor. In Poplar, parallelism
is set up by distributing data and instructions by a graph-based approach. This
type of development could be interesting for readers looking to solve other types
of computing problems on the IPU, by taking inspiration from the development
process presented in this chapter.

The PDE that was implemented is the 2D isotropic diffusion equation (also
known as the heat equation, since undirected flow of heat is a form of diffu-
sion). This is a prototypic PDE problem that describes how a property, e.g.,
temperature, evolves in substances.

41

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 42

4.2 Background

This section will explain the underlying mathematics behind the diffusion equa-
tion. This is a general equation that can be used to model changes in physical
properties, such as heat. In order to numerically solve the PDE with a stencil-
based approach, the equation is discretized by a finite difference scheme. The
diffusion equation is given by

∂u

∂t
= κ∇2u, (4.1)

where κ is a diffusive constant and u = u(x, t) is a property, e.g., temperature, at
the time t and point x in space, using Cartesian geometry. The diffusion equa-
tion can be discretized by approximating the derivatives by finite differences.
The first and second-order derivatives are approximated as

du

dx
≈ u(x+ h)− u(x)

h
, and (4.2)

d2u

dx2
≈ u(x+ h)− 2u(x) + u(x− h)

h2
, (4.3)

where h is the spatial step size. The exact solutions for the derivatives are given
in the limit where h → 0, and the finite difference approximations are given
when h has a finite value. The discretization of the derivatives uses the for-
ward difference in time, and the central difference in space, which is an explicit
method for solving the heat equation numerically. Equation (4.2) is also known
as the forward Euler method, which approximates the first order derivative.

When employing the heat equation numerically, u is represented by a finite
mesh. A special case of the heat equation was applied, namely the isotropic heat
equation. This corresponds to spatial invariance, which means that the equation
exhibits the same dynamics in all dimensions. Numerically, this invariance is
incorporated by separating the points with a uniform distance h. For a 2D
mesh, the discretized heat equation becomes

ut+δij = (1− 4α)utij + α
(
uti+1,j + uti−1,j + uti,j+1 + uti,j−1

)
. (4.4)

Here, α = κδ/h2, and δ is the time step. Equation (4.4) was employed as a
stencil-based algorithm. The right-hand side represents a 5-point stencil that
can be slid over the inner points of a regular 2D mesh, by looping over the indices
i and j. However, the algorithm is only numerically stable and convergent when
α ≤ 0.5.

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 43

Note that the stencils require four neighboring points in space and are therefore
undefined at the boundaries. The Dirichlet boundary condition was used, which
means the inner points of the 2D mesh were updated, whereas the boundary
elements were kept constant.

The stencil-based numerical algorithm provides an approximated solution to
the heat equation. The error depends on the spatial and temporal step sizes, h
and δ. To achieve higher accuracy for a given problem, one could use a smaller
step size between the points, or smaller time steps. Ultimately, more accurate
simulations come at the cost of requiring more computations, which in turn
could benefit from higher computational performance.

4.3 Methods

The discretized 2D heat equation was implemented for the IPU and CPU. The
two processors solved the same computational problem, which was a 2D mesh of
8000×8000 single precision elements, for 1000 time steps. The IPU program was
implemented in C++, along with the Poplar framework. The CPU program was
implemented in the programming language C, along with the multi-threading
framework OpenMP.

4.3.1 IPU Implementation

Work Division

Single-IPU executions were performed in a highly parallel fashion. The 2D mesh
was represented by two tensors, a and b , which were distributed among the
tiles. The computational workload was further divided to utilize all threads.
This corresponds to assigning 6 vertices to each of the 1,472 tiles on a MK2
IPU.

The first consideration when solving the heat equation parallelized is how to
partition and distribute the mesh. For this problem, an algorithm to find the
number of partitions along both height and width was implemented. The goal
of this algorithm was to minimize the total communication volume, also referred
to as the halo region. This algorithm is shown in Listing 4.1.

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 44

1 // height = 8000, width = 8000, and tile_count = 1472;

2 float smallest_halo_region = std::numeric_limits<float>::infinity();

3 std::vector<std::size_t> partitions(2);

4

5 // Try all unique combinations where nh*nw = tile_count

6 for (std::size_t nh = 1; nh <= tile_count; ++nh) {

7 if ((tile_count % nh) == 0) { // then nh (number along height) is a factor

8 std::size_t nw = tile_count / nw; // and nw (number along width) must be the

other factor↪→

9 std::size_t slice_height = (height - 2)/nh;

10 std::size_t slice_width = (width - 2)/nw;

11

12 // Circumference of a data partition

13 std::size_t halo_region = 2.0*(slice_height + slice_width);

14 if (halo_region < smallest_halo_region) {

15 smallest_halo_region = halo_region;

16 partitions = {nh, nw};

17 }

18 }

19 }

Listing 4.1: An algorithm to find the optimal number of partitions
along the height and width directions. The algorithm was constrained
to utilize all available tiles, and to choose the set that minimizes the
communication volume, which is also referred to as the halo region.

The partitioning algorithm shown in Listing 4.1 was constrained to utilize all
tiles. Therefore, the number of partitions along height and width can only take
a finite set of values1. Furthermore, the split that minimizes the necessary
communication volume was chosen.

After the partitioning was found, the tensors were divided into slices and dis-
tributed among the tiles. If the height and width were not be divisible by the
number of partitions in each direction, some tiles would receive data partitions
with at most one element wider and higher than the smallest partitions. For the
8000×8000 mesh, the workload to be divided was the inner mesh of 7998×7998
elements. The partitioning algorithm resulted in 46 partitions along the height
and 32 along the width, and 7998 is not divisible by either. Therefore, the
resulting data partitions contained between 173× 249 and 174× 250 elements.
This corresponds to a 0.98% larger workload for the tiles that receive the largest
data partitions.

The Poplar implementation of the tile mapping of a and b is shown in Listing
4.2.

1The possible sets of partitions when using one MK2 IPU are {1, 1472}, {2, 736}, {4, 368},
{8, 184}, {16, 92}, {32, 46}, {64, 23}, {23, 64}, {46, 32}, {92, 16}, {184, 8}, {368, 4}, {736, 2},
and {1472, 1}.

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 45

1 for (std::size_t x = 0; x < nh; ++x) {

2 for (std::size_t y = 0; y < nw; ++y) {

3

4 // tile_id runs from 0, 1, 2, ..., nh*nw (=num_tiles)

5 unsigned tile_id = y + x*nw;

6

7 // Evaluate offsets (partition the inner mesh, but include boundaries in

tile mapping)↪→

8 int offset_top = (x == 0) ? 0 : 1;

9 int offset_left = (y == 0) ? 0 : 1;

10 int offset_bottom = (x == nh - 1) ? 2 : 1;

11 int offset_right = (y == nw - 1) ? 2 : 1;

12

13 // Find low and high indices of the slice

14 int x_low = x*(height - 2)/nh + offset_top;

15 int y_low = y*(width - 2)/nw + offset_left;

16 int x_high = (x + 1)*(height - 2)/nh + offset_bottom

17 int y_high = (y + 1)*(width - 2)/nw + offset_right

18

19 // Map a slice of a to a specific tile ID

20 graph.setTileMapping(a.slice({x_low, y_low}, {x_high, y_high}), tile_id);

21 }

22 }

23

24 // Apply the same tile mapping to "b"

25 const auto& tile_mapping = graph.getTileMapping(a);

26 graph.setTileMapping(b, tile_mapping);

Listing 4.2: The tile mapping of tensor a to all the tiles on one IPU,
where nh and nw are the number of partitions along the height and
width direction, respectively.

Listing 4.2 highlights a convenient way to ensure that several tensors are tile
mapped identically. On lines 25–26 the tile mapping of a is re-applied for b .
Note that if a tensor is not completely mapped, Poplar will throw an error that
says incomplete tile mapping.

The Poplar programs were set up to perform “back-and-forth” computations
between the two tensors. More precisely, two unique compute sets were declared.
These two compute sets were identical in all other aspects except for having
swapped the tensors a and b. Listing 4.3 shows the implementation of one of
the compute sets.

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 46

1 // In this compute set in=a and out=b. Similarly, there is an opposite compute

set where in=b and out=a. The computation will alternate between these two

compute sets.

↪→

↪→

2 auto compute_set = graph.addComputeSet("HeatEquation_a_to_b");

3

4 for (std::size_t x = 0; x < nh; ++x) {

5 for (std::size_t y = 0; y < nw; ++y) {

6

7 // tile_id should run from 0, 1, ..., nh*nw (=num_tiles)

8 unsigned tile_id = index(x, y, nw);

9

10 // Start indices

11 unsigned tile_x = block_low(x, nh, height-2);

12 unsigned tile_y = block_low(y, nw, width-2);

13

14 // loop over worker contexts

15 for (std::size_t worker_i = 0; worker_i < num_workers_per_tile; ++worker_i)

{↪→

16

17 // Dividing tile work by further splitting up the mesh along the height

(x)↪→

18 unsigned x_low = tile_x + block_low(worker_i, num_workers_per_tile,

tile_height) + 1;↪→

19 unsigned worker_height = block_size(worker_i, num_workers_per_tile,

tile_height);↪→

20 unsigned x_high = x_low + worker_height;

21

22 unsigned y_low = tile_y + 1;

23 unsigned worker_width = tile_width;

24 unsigned y_high = y_low + worker_width;

25

26 // Assign vertex to graph

27 auto v = graph.addVertex(compute_set, vertex); // std::string vertex is

the name↪→

28 graph.connect(v["in"], in.slice({x_low-1, y_low-1}, {x_high+1,

y_high+1}));↪→

29 graph.connect(v["out"], out.slice({x_low, y_low}, {x_high, y_high}));

30 graph.setInitialValue(v["worker_height"], worker_height);

31 graph.setInitialValue(v["worker_width"], worker_width);

32 graph.setInitialValue(v["alpha"], alpha);

33 graph.setTileMapping(v, tile_id);

34 }

35 }

36 }

Listing 4.3: The setup of a compute set, which includes assignment of
vertices to it. This compute set performs one time step of equation
(4.4). Note that the input slice for each vertex (line 28) is padded
compared to the tile mapping shown in Listing 4.2. This imposes
Poplar to fetch “missing” data in a communication phase prior to the
execution of the vertex.

The executions of compute sets are the computational phases of the execution,

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 47

whereas between these phases there are communication phases. In Poplar, com-
munication phases are not explicitly implemented. By assigning input slices
that require more data than which is already mapped to the same tile, the
necessary communication will automatically be handled. The data points that
must be communicated will be referred to as the halo region for that tile. Poplar
automatically constructs communication phases, because the graph implicitly
knows that the halo regions must be fetched from the respective tiles where the
data is mapped to, prior to the execution of this compute set.

The compute set shown in Listing 4.3 performs one time step of the heat equa-
tion. Each tile contained a workload which exactly corresponded to the tile
mapping in Listing 4.2. However, the work was further divided among multi-
ple workers, by splitting up the slices further along the height. Therefore, six
vertices were assigned to each tile.

Vertices

In this section, two different codelets that compute the heat equation are pre-
sented. Vertices are compiled codelets: a set of instructions executed by a single
worker context. The first codelet was fast and simple to implement, whereas
the second was more technically challenging to implement. The second codelet
included several optimization steps for improved performance. Listing 4.4 shows
the simple codelet that solves the 2D heat equation.

1 class HeatEquationSimple : public Vertex {

2 public:

3 HeatEquationSimple();

4

5 // "in" is padded, thus has shape [worker_height+2, worker_width+2]

6 Vector<Input<Vector<float, VectorLayout::SPAN, 4, false>>> in;

7 Vector<Output<Vector<float, VectorLayout::SPAN, 4, false>>> out;

8 const int worker_height;

9 const int worker_width;

10 const float alpha;

11

12 bool compute () {

13 const float beta{1.0f - 4.0f*alpha};

14 for (int i = 1; i < worker_height + 1; ++i) {

15 for (int j = 1; j < worker_width + 1; ++j) {

16 out[i-1][j-1] = beta*in[i][j] + alpha*(in[i-1][j] + in[i+1][j] +

in[i][j-1] + in[i][j+1]);↪→

17 }

18 }

19 return true;

20 }

21 };

Listing 4.4: A simple codelet that computes the 2D heat equation
on an input, in , and writes the results to out , both of which are
connected to slices of a tensors.

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 48

The codelet in Listing 4.4, involves a double loop that slides the 5-point stencil
row-wise across the input slice. Line 16 corresponds to equation (4.4), where
a constant factor beta is computed prior to the loop. Next, Listing 4.5 shows
the optimized codelet.

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 49

1 #include <ipudef.h> // for float2

2

3 class HeatEquationOptimized : public Vertex {

4 public:

5 HeatEquationOptimized();

6

7 Vector<Input<Vector<float, VectorLayout::SPAN, 8, false>>> in;

8 Vector<Output<Vector<float, VectorLayout::SPAN, 4, false>>> out;

9 const int worker_height;

10 const int worker_width;

11 const float alpha;

12

13 bool compute () {

14 const int half_worker_width = worker_width/2 + (worker_width % 2);

15 const float beta{1.0f - 4.0f*alpha};

16 typedef float float2 __attribute__((ext_vector_type(2)));

17 float2 temp; // Temporary variable

18

19 // Loop over rows, only update left/right column

20 for (int i = 1; i < worker_height + 1; ++i) {

21 // Left column

22 int j = 1;

23 out[i-1][j-1] = beta*in[i][j] + alpha*(in[i+1][j] + in[i-1][j] +

in[i][j+1] + in[i][j-1]);↪→

24

25 // Right column (only if worker_width is even)

26 if (worker_width % 2 == 0) {

27 j = worker_width; // right column

28 out[i-1][j-1] = beta*in[i][j] + alpha*(in[i+1][j] + in[i-1][j] +

in[i][j+1] + in[i][j-1]);↪→

29 }

30 }

31

32 // Loop over rows, update inner columns, vectorized

33 for (int i = 1; i < worker_height + 1; ++i) {

34 // Illustration of two stencils along worker_width

35 // a b

36 // c d e f

37 // g h

38

39 // Declare float2 pointers, a:b, d:e, and g:h

40 const float2 * __restrict__ north = (float2 *) &in[i - 1][0];

41 const float2 * __restrict__ middle = (float2 *) &in[i + 0][0];

42 const float2 * __restrict__ south = (float2 *) &in[i + 1][0];

43

44 // Loop over inner columns, vectorized

45 for (int j = 1; j < half_worker_width; ++j) {

46 temp.x = middle[j - 1].y + middle[j].y; // c + e

47 temp.y = middle[j].x + middle[j + 1].x; // d + f

48 temp = beta*middle[j] + alpha*(north[j] + temp + south[j]);

49 out[i - 1][2*j - 1] = temp.x; // Store left stencil

50 out[i - 1][2*j - 0] = temp.y; // Store for right stencil

51 }

52 }

53 return true;

54 }

55 };

Listing 4.5: An optimized codelet that performs the 2D heat equation
for a structured 2D mesh.

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 50

The codelets in Listing 4.4 and 4.5 perform the exact same computation. How-
ever, the latter includes optimization steps to enforce vectorization: handling
two-and-two 32-bit elements in parallel. On line 7, in is constrained to have an
alignment of 8 bytes, which means that 8-byte wide instructions can be applied
to the first element in every row, and every second element from there. The
float2 temp variable can hold two 32-bit floats, each accessible through temp.x

and temp.y .

The vectorization in Listing 4.5 was set up to simultaneously solve two neigh-
boring stencils along the width-direction. However, the leftmost column had
to be solved unvectorized due to memory alignment requirement2. Therefore,
the loop on lines 20–30 was included to handle the leftmost column. Later, the
vectorized loop solves two-and-two stencils. On lines 46–48, temp is computed
so that it holds the solution of both stencils. The results are stored sequentially,
because the alignment of out cannot be guaranteed to be 8-byte, which is a
requirement for a vectorized store operation.

IPU Execution

The performance of the computations relies heavily on two factors. First, achiev-
ing efficient communication phases relies on the partitioning of the mesh, and the
general setup that imposes communication. Second, the computational phases
rely solely on the vertices, which can be affected by the codelet implementations.
The performance was measured by evaluating the wall time of 1000 time steps
by using the chrono tools in C++.

The PDE solver was executed on a single IPU. The 2D mesh was set up to
nearly fill the in-processor memory with a problem size of 8000 × 8000 = 64
million elements. The performance was measured by two metrics, computational
throughput and minimal memory bandwidth. The throughput is a measurement
of the average number of floating-point operations per second. For the 2D
heat equation, the throughput was calculated by taking 6 arithmetic operations
multiplied with the number of stencils and the number of time steps, and divided
by the wall time. The calculation reads

throughput =
(6 operations)(inner area)(no. time steps)

(measured wall time)
. (4.5)

The minimal memory bandwidth represents the lower bound of the total memory
traffic that must have taken place. This includes both the amount of data that
was stored to and loaded from the in-processor memory per second. The amount
of memory traffic in the communication phases was added up. The amount of
memory traffic in the computational phases was found by counting 5 memory

2The leftmost column in the output corresponds to the leftmost stencils which are centered
at the second column of the input. Thus, the center values have an alignment of 4. Hence,
64-bit vectorization cannot be applied, because it requires 8-byte alignment

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 51

operations per stencil, multiplied with the amount of data in the inner area of
the mesh. Lastly, these two numbers were added together, and multiplied with
the number of time steps, and divided by the wall time. Hence, the calculation
becomes

communication ops. = (2 ops.)(communication volume), (4.6)

computation ops. = (5 ops.)(inner area), (4.7)

minimal bandwidth = (comm. ops. + comp. ops.)
(4 bytes)(no. time steps)

(measured wall time)
.

(4.8)

Someone with a sharp eye might say that there should be 6 memory operations
per stencil: loading 5 elements plus storing 1. However, the limited register files
can hold enough data to solve two stencils per iteration. Furthermore, after
inspecting the assembly code, two stencils only required loading 8 elements and
storing 2, which is an average of 5 memory operations per stencil.

The heat equation is more generally known as the isotropic diffusion equation,
which can also be used for noise reduction in images. As a demonstration of this
application, the heat equation was applied on an input image of 4289 × 2835
pixels and one channel. This computation was included for both illustrational
purposes, and as a double check that the computations worked as intended.

The codes were compiled with Poplar SDK 2.2.0, GCC 7.5.0, and the -O3
optimization flag. Lastly, PopVision was used to study executions that were
performed with profiling enabled, which could provide further insight and un-
derstanding of the performance.

4.3.2 CPU Implementation

The discretized 2D heat equation was implemented in C with OpenMP for the
CPU to serve as a comparison to the IPU implementation. The CPU execution
featured the same problem size as the IPU execution with a 2D mesh of 8000×
8000 single precision elements, and the execution ran for 1000 time steps. A
snippet of the OpenMP CPU code is shown in Listing 4.6.

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 52

1 #pragma omp parallel private(i,j,k)

2 {

3 for (k = 0; k < num_iterations; ++k) {

4 #pragma omp for

5 for (i = 1; i < height - 1; ++i)

6 for (j = 1; j < width - 1; ++j)

7 b[i][j] = beta*a[i][j] + alpha*(a[i-1][j] + a[i][j-1] + a[i][j+1] +

a[i+1][j]);↪→

8

9 #pragma omp single

10 {

11 // pointer swap

12 tmp = b;

13 b = a;

14 a = tmp;

15 }

16 }

17 }

Listing 4.6: A snippet of the OpenMP implementation of the 2D
heat equation that was executed on a CPU. The code allows for a
multi-threaded CPU execution.

The time usage was measured by using OpenMP’s built-in wall time tool. This
number was used to calculate two metrics. The throughput of the CPU code
was calculated the same way as for the IPU code, as shown in equation (4.5).
The minimal memory bandwidth was calculated differently than for the IPU
execution. The main reason for this is that the CPU system features a shared
memory model, and the CPUs additionally feature several levels of cache. This
means that the theoretical minimal memory traffic is considerably lower than
for the IPU, because on the CPU, many of the elements can be re-used from
cache. Therefore, the minimal memory bandwidth is calculated by assuming the
ideal case where the entire mesh is loaded and stored once. This corresponds to
2 memory operations, multiplied with the number of bytes per element (4), the
total area, and number of time steps, and divided by wall time.

minimal bandwidth =
(2 operations)(4 bytes)(total area)(no. time steps)

(measured wall time)
.

(4.9)

In total, the minimal bandwidth represents the least amount of memory traffic
that must have taken place between the memory and the CPUs.

The CPU execution was performed on a Linux server with two AMD Epyc 7601
(Naples) 32-core CPUs, connected in a dual-socket. In total, the execution ran
on 128 threads. The code was compiled with GCC 11.1.0, linked with OpenMP
4.5, and with the optimization flag -O3.

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 53

4.4 Results

Table 4.1 shows the performance for the two different vertices, on the MK2 IPU,
and the OpenMP implementation on the CPUs. All three executions performed
the 2D heat equation on an 8000× 8000 mesh of single precision elements and
ran for 1000 time steps.

Processor Vertex Time Throughput Minimal
Bandwidth

CPU N/A 4.05 s 94.73 GFLOPS 126.37 GB/s
IPU HeatEquationSimple 0.39 s 0.98 TFLOPS 3.31 TB/s
IPU HeatEquationOptimized 0.30 s 1.28 TFLOPS 4.28 TB/s

Table 4.1: The execution time, throughput, and minimal bandwidth,
for three codes that all performed the 2D heat equation on a 8000×8000
mesh for 1000 time steps.

An inspection of the assembly codes of the two IPU codelets revealed that
HeatEquationSimple used a total of 22 clock cycles per two stencils, while HeatE-
quationOptimized on the other hand, used 16 clock cycles per two stencils. Fur-
ther, a study of execution profile using PopVision revealed several other metrics
about the execution. Table 4.2 shows the clock cycle counts for both the com-
pute and exchange phases per time step of the heat equation.

Codelet OnTileExecute [Cycles] DoExchange [Cycles]

HeatEquationSimple 516,189 44,943
HeatEquationOptimized 398,492 44,943

Table 4.2: The number of clock cycles for one time step during ex-
ecutions of the heat equation on the IPU. OnTileExecute denotes
the computational phases, and DoExhcange denotes the internal ex-
change (tile-to-tile).

Figure 4.1 shows two images: an initial noisy image of Mona Lisa, and the
resulting smoothed image after the heat equation was applied on it for 100 time
steps with a fixed α = 0.1.

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 54

(a) A noisy image. (b) A smoothed image.

Figure 4.1: The left image is a noisy 1-channel image of the famous
Mona Lisa painting, containing 4289 × 2835 pixels. The right image
shows the result after the heat equation has been applied on it, on
the IPU for 100 time steps.

4.5 Discussion

Table 4.1 shows that the IPU executions achieved substantially higher perfor-
mance than the CPU execution. The two IPU executions, the HeatEquation-
Simple vertex and the HeatEquationOptimized vertex, achieved 10 and 14 times
higher throughput than the CPU execution, respectively. However, the IPU fea-
tures 1472/64 = 23 times more cores. Therefore, if the throughput is adjusted
to a per-core basis, the IPU cores achieved 45% and 59% of the performance of
a CPU core, for the two IPU implementations. This result suggests that even
on a per-core basis, the IPU was not very far behind a modern CPU.

Comparing the achieved minimal memory bandwidth of the executions can be
considered a less fair metric than the computational throughput, because the
two processors exhibit very different architectures. Regardless, the minimal
bandwidth measurements were 26 and 34 times higher for the IPU executions
than the CPU execution. The performance gaps are much larger compared to
the corresponding gaps from the throughput measurements. The cacheless IPU

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 55

architecture relies on fetching data from the in-processor memory more often
than the CPU. Further, the IPU features a distributed memory model, which
means that data must be communicated among the tiles. Lastly, due to the large
tile count, the IPU has considerably higher theoretical peak memory bandwidth
than the CPU.

When comparing the two IPU implementations against each other, the opti-
mized vertex executed 1.3 times faster than the simple vertex. This was ex-
pected because the optimized vertex enforced a higher degree of vectorization,
which means that the execution pipelines will handle more elements simul-
taneously. An inspection of the assembly codes also revealed that the inner
loop of the optimized vertex cut down the number of clock cycles from 22 to
16. These numbers could be used to estimate an upper bound of the per-
formance increase 1.4 times faster for the optimized vertex. This number is
likely higher than the measured speedup, because it only takes the inner loop
body into consideration, and not the rest of the vertex code. By looking at
the total clock cycle counts in Table 4.2, the expected performance increase
is (516189 + 44943)/(392492 + 44943) ≈ 1.3 times, which corresponds to the
observed speedup. Lastly, vectorization was something that the compiler could
have applied to the simple vertex too. Therefore, the performance gap between
the two vertices highlights a potential for improvement for the compiler.

The IPU computations were controlled against a CPU computation to ensure
that the results were correct. First, a very small mesh of 4 × 4 elements and
1–2 time steps were controlled against both a by-hand calculation, and a CPU
code. Second, executions on larger meshes were controlled against the CPU
code. This highlights the incorporation of error-control, which is important in
general scientific computing.

Figure 4.1 shows the effects of the heat equation when applied to a 1-channel
image. This application served as a verification that the computations worked
as intended. For instance, if the code was set up wrong and did not perform
the computations for a row or a column, it would be apparent in the smoothed
image.

Solving the heat equation by finite difference on the IPU required many floating-
point computations. This scientific application can benefit from high degrees
of parallelism. Low-level Poplar programming in C++ was able to reach a high
performance for 2D stencil-based computations. The implementation of HeatE-
quationSimple is feasible to new users of Poplar. Even this implementation,
which was considerably faster to implement than the optimized vertex, sub-
stantially outperformed the dual-CPU execution, parallelized by OpenMP with
128 threads.

The 2D heat equation was implemented and tested on the IPU to discuss chal-
lenges in adopting this AI-specialized processor for scientific computing work-
loads. It would be interesting to extend the computation to unstructured
meshes, which can be used in physics-simulations of more advanced real-life

CHAPTER 4. THE 2D HEAT EQUATION BY FINITE DIFFERENCES 56

problems. In developing such programs, it would be harder to partition the
data, and to equally distribute the workload. However, Poplar’s graph pro-
gramming framework could ease some of the challenges of implementing such
programs.

Chapter 5

The 3D Heat Equation by
Finite Differences

5.1 Background

In Chapter 4, the discretized heat equation was introduced. It was derived
by using an explicit finite difference scheme. The equation was applicable to
a regular 2D mesh, where the distances between the points were uniform and
constant. The discretized heat equation can be extended to three dimensions,
which is given by

ut+δijk = (1− 6α)utijk+ (5.1)

α
(
uti+1,j,k + uti−1,j,k + uti,j+1,k + uti,j−1,k + uti,j,k+1 + uti,j,k−1

)
,

where u is a regular 3D mesh, α = κδ/h2, κ is a constant property of the
substance, δ is the time step, and h is the uniform spatial step size. The
finite difference discretization applied the forward difference in time, and central
difference in space, which is an explicit method for solving the heat equation
numerically. The right-hand side of equation (5.1) represents a 7-point stencil,
which can be employed as a numerical algorithm. The scheme is only stable
and convergent for α ≤ 0.5.

The stencils are only defined for the inner nodes of a 3D mesh. The Dirichlet
boundary condition was applied. Hence, the inner elements were updated by
the stencil, whereas the boundary nodes were kept constant.

57

CHAPTER 5. THE 3D HEAT EQUATION BY FINITE DIFFERENCES 58

5.2 Methods

For the 3D heat equation, a mesh that pushed the limited memory capacity of
one IPU was used. This was a mesh of 360×360×360 single precision elements.
The same mesh and precision were also used in the CPU implementation.

5.2.1 IPU Implementation

Work Division

The tensors were instantiated as 3D tensors, which were partitioned into smaller
3D slices. Each partition was mapped to a different tile on the IPU. It is
desirable to divide the mesh in a way that minimizes the surface area of each
partition. Therefore, an algorithm that searched for the number of partitions
in each dimension was implemented. The algorithm was constrained to utilize
all tiles and searched for the partitioning that minimized the communication
volume. The algorithm is shown in Listing 5.1.

1 float smallest_surface_area = std::numeric_limits<float>::max();

2 std::size_t nh, nw, nd;

3 for (std::size_t i = 1; i*i <= tile_count; ++i) {

4 if (tile_count % i == 0) { // then i is a factor

5

6 // Further, find two other factors, to obtain exactly three factors

7 std::size_t other_factor = tile_count/i;

8 for (std::size_t j = 1; j <= other_factor; ++j) {

9 if (other_factor % j == 0) { // then j is a second factor

10 std::size_t k = other_factor/j; // and k is the third factor

11 std::vector<std::size_t> splits = {i,j,k};

12

13 // test all (6) ways to assign i, j, k as nh, nw, nd

14 for (std::size_t l = 0; l < 3; ++l) {

15 for (std::size_t m = 0; m < 3; ++m) {

16 for (std::size_t n = 0; n < 3; ++n) {

17 if (l != m && l != n && m != n) {

18 float slice_height = float(height)/float(splits[l]);

19 float slice_width = float(width)/float(splits[m]);

20 float slice_depth = float(depth)/float(splits[n]);

21 float surface_area = 2.0*(slice_height*slice_width +

slice_depth*slice_width + slice_depth*slice_height);↪→

22 if (surface_area <= smallest_surface_area) {

23 smallest_surface_area = surface_area;

24 nh = splits[0];

25 nw = splits[1];

26 nd = splits[2];

27 }}}}}}}}

Listing 5.1: An algorithm to find a partitioning of the mesh that
minimizes the total communication volume.

CHAPTER 5. THE 3D HEAT EQUATION BY FINITE DIFFERENCES 59

The algorithm in Listing 5.1 can be summarized as follows:

1. Factorize the tile count into three factors. All combinations will be tested.

2. Given the three factors, test all ways of dividing the mesh, which are 3! = 6
combinations.

3. For every given partitioning possibility, calculate the surface area of the
resulting partition, which corresponds to the communication volume.

4. Choose the combination that minimizes the surface area.

Note that the surface area calculated in step 3 does not represent the complete
communication volume. Some tiles will be given partitions that consist of one
extra element per dimension. However, the surface area of the smallest partition
is a sufficiently good estimate of the communication volume.

When the partitioning was found, the graph could be constructed. The tensors
were split up and distributed among the tiles. Since the height, width, or depth
might not be divisible by the respective number of partitions in that direction,
some tiles got assigned workloads that were larger than the others. The data
imbalance would at most result in one extra element per dimension. For the
360× 360× 360 mesh, the number of partitions were 23, 8, and 8. This resulted
in tile workloads between 15 × 44 × 44 and 16 × 45 × 45 elements. Hence, the
largest workloads were 11.6% larger than the smallest.

Vertices

After the tensors were distributed, the vertices were assigned. Poplar implicitly
handled necessary communication. This was done by requiring tensor data that
did not reside on the tile the vertex was assigned to. The inputs to each vertex
were padded compared to the tile mapping. Hence, the inputs have a data
requirement beyond the data that was already stored on the tile. This imposes
Poplar to set up communication messages to fetch the missing data from other
tiles, prior to the execution of the vertex. Listing 5.2 shows how the vertices
are assigned to the graph.

CHAPTER 5. THE 3D HEAT EQUATION BY FINITE DIFFERENCES 60

1 out_slice = out.slice(

2 {x_low, y_low, z_low},

3 {x_high, y_high, z_high}

4);

5

6 // Pad the input

7 in_slice = in.slice(

8 {x_low-1, y_low-1, z_low-1},

9 {x_high+1, y_high+1, z_high+1}

10);

11

12 auto v = graph.addVertex(compute_set, vertex);

13 graph.connect(v["in"], in_slice.flatten(0,2));

14 graph.connect(v["out"], out_slice.flatten(0,2));

15 graph.setInitialValue(v["worker_height"], worker_height);

16 graph.setInitialValue(v["worker_width"], worker_width);

17 graph.setInitialValue(v["worker_depth"], worker_depth);

18 graph.setInitialValue(v["alpha"], alpha);

19 graph.setTileMapping(v, tile_id);

Listing 5.2: A code snippet that shows the part of the program where
a vertex is assigned. This piece of code is taken from a nested loop
that iterates over all tiles and threads.

The vertex-variables that can be connected to tensor slices can at most be 2D
(even though tensors can be of higher dimensions), as first introduced in section
3.3.2. This effectively means tensors with three or more dimensions must be
flattened in order to be connected to a vertex. On lines 2–3 in Listing 5.2, the
tensor slices are flattened from 3D to 2D, where the depth dimension is kept.
The first index represents both height and width, and the second index only
goes along the depth1.

Two codelets with different purposes were implemented. The first served as a
fast and simple implementation, and the second was optimized by enforcing a
higher degree of vectorization. Listing 5.3 shows the simple codelet.

1With this flattening, accessing element [i][j][k] of the original 3D tensor, are now

done with two indices, [j + worker_width*i][k] instead.

CHAPTER 5. THE 3D HEAT EQUATION BY FINITE DIFFERENCES 61

1 class HeatEquationSimple : public Vertex {

2 public:

3 HeatEquationSimple();

4

5 Vector<Input<Vector<float, VectorLayout::SPAN, 8, false>>> in;

6 Vector<Output<Vector<float, VectorLayout::SPAN, 4, false>>> out;

7 const unsigned worker_height;

8 const unsigned worker_width;

9 const unsigned worker_depth;

10 const float alpha;

11

12 unsigned idx(unsigned x, unsigned y, unsigned w) {

13 /* Index corresponding to [x,y] for a row-wise flattened 2D variable */

14 return y + x*w;

15 }

16

17 bool compute () {

18 const float beta{1.0f - 6.0f*alpha};

19 const unsigned iw = worker_width + 2; // width of "in" which is padded

20

21 for (std::size_t x = 1; x < worker_height + 1; ++x) {

22 for (std::size_t y = 1; y < worker_width + 1; ++y) {

23 for (std::size_t z = 1; z < worker_depth + 1; ++z) {

24 out[idx(x-1,y-1,worker_width)][z-1] = beta*in[idx(x,y,iw)][z] +

25 alpha*(

26 in[idx(x+1,y,iw)][z] +

27 in[idx(x-1,y,iw)][z] +

28 in[idx(x,y+1,iw)][z] +

29 in[idx(x,y-1,iw)][z] +

30 in[idx(x,y,iw)][z+1] +

31 in[idx(x,y,iw)][z-1]

32);

33 }

34 }

35 }

36

37 return true;

38 }

39 };

Listing 5.3: A codelet that solves the discretized heat equation for a
3D mesh. Since the input is padded, the corresponding element of
the output must be indexed with an offset of -1.

In Listing 5.3, the tensor-connecting variables are 2D. The codelet was written
to iterate over and update every element of the output. Inside the loop, the
discretized heat equation was implemented. Note that the input is padded
compared to the output. The loop indices are set up with respect to the input,
which means that the corresponding element of the output must be indexed
with offsets.

CHAPTER 5. THE 3D HEAT EQUATION BY FINITE DIFFERENCES 62

In addition to the HeatEquationSimple vertex, the HeatEquationOptimized ver-
tex was implemented much like the optimized 2D vertex. Vectorization was
enforced, which in this case meant that two-and-two stencils were solved si-
multaneously. The vectorization was performed along the depth dimension,
because this dimension was kept when the tensors were flattened. Therefore,
the alignment of this dimension was controlled and set to 8, which meant that
vectorization could be enforced.

IPU Execution

Equation (5.1) was applied to a 360 × 360 × 360 mesh of single precision ele-
ments, for 1000 time steps on the IPU. The wall time around the execution was
measured by using the chrono tools in C++ and was used to calculate two met-
rics. The first was the computational throughput, which represents the average
rate of floating-point operations per second (single precision). The throughput
was calculated by taking 8 arithmetic operations per stencil, multiplied with the
number of inner elements and number of time steps, and divided by the wall
time. The number 8 was found by adding up the additions and multiplications
in equation (5.1). The calculation of the throughput is given by

throughput =
(8 operations)(inner volume)(no. time steps)

(measured wall time)
. (5.2)

The second metric that was measured was the minimal memory bandwidth.
This was calculated by summing up the number of memory operations in both
communication phases and computational phases. Next, this number was mul-
tiplied with 4 bytes (size per element) and number of time steps, and divided
by the measured wall time. These steps are summarized as

communication ops. = (2 ops.)(communication volume), (5.3)

computational ops. = (7 ops.)(inner volume), and (5.4)

minimal bandwidth = (comm. ops. + comp. ops.) (5.5)

(4 bytes)(no. time steps)

(measured wall time)
. (5.6)

The computational phases only require 7 (32-bit) memory operations per stencil
instead of 8. This is because the registers can hold enough values to solve two
stencils at a time, and two stencils only require loading 12 and storing 2 elements,
which on average is only 7 memory operations per stencil. On the other hand,
the number of memory operations in the communication phases was found by
adding up the halo regions for all tiles. In total, the minimal bandwidth is the
least amount of memory traffic that must have taken place during the execution.

CHAPTER 5. THE 3D HEAT EQUATION BY FINITE DIFFERENCES 63

The codes were compiled with Poplar SDK 2.2.0, GCC 7.5.0, and the -O3 op-
timization flag. The IPU program was executed twice, both with and without
profiling enabled. This is important because profiling significantly affects per-
formance. The profiling report was analysed in PopVision to provide further
insights into the performance.

5.2.2 CPU Implementation

The discretized 3D heat equation was implemented in standard C along with
OpenMP. A 3D mesh of 360 × 360 × 360 single precision elements was used.
Therefore, two float arrays were allocated by using triple pointers. Then, the
heat equation was computed by allowing OpenMP to use 128 different threads.
At the end of each time step, the pointers were swapped. Listing 5.4 shows a
code snippet from the CPU implementation.

1 #pragma omp parallel private(t,i,j,k)

2 {

3 for (t = 0; t < num_iterations; ++t) {

4 #pragma omp for

5 for (i = 1; i < height - 1; ++i)

6 for (j = 1; j < width - 1; ++j)

7 for (k = 1; k < depth - 1; ++k)

8 b[i][j][k] = beta*a[i][j][k] + alpha*(a[i+1][j][k] + a[i-1][j][k] +

a[i][j+1][k] + a[i][j-1][k] + a[i][j][k+1] + a[i][j][k-1]);↪→

9 #pragma omp single

10 {

11 // pointer swap

12 tmp = b;

13 b = a;

14 a = tmp;

15 }

16 }

17 }

Listing 5.4: The OpenMP CPU implementation of the discretized
heat equation for a 3D mesh.

The wall time was measured by using OpenMP’s built-in wall time tool. Two
metrics of the execution were computed by using the measured wall time. First,
the throughput was calculated by the same equation as for the IPU executions,
as shown by equation (5.2). Second, the minimal bandwidth was calculated
by assuming the ideal case where the entire mesh must be loaded and stored
once per time step. Therefore, this metric was calculated by multiplying the
entire volume with 2 memory operations, 4 bytes, and number of time steps,
and divided by the measured wall time. The calculation can be summarized as

CHAPTER 5. THE 3D HEAT EQUATION BY FINITE DIFFERENCES 64

minimal bandwidth =
(2 operations)(4 bytes)(total volume)(no. time steps)

(measured wall time)
.

(5.7)

The CPU code was executed on a Linux server with two AMD Epyc 7601
(Naples) 32-core CPUs. The code was compiled with GCC 11.1.0, along with
OpenMP 4.5, and the -O3 optimization flag.

5.3 Results

Table 5.1 shows the results from computing the discretized heat equation on a
3D mesh of 360× 360× 360 ≈ 46.6 million elements, for 1000 time steps.

Processor Vertex Time Throughput Minimal
Bandwidth

CPU N/A 8.83 s 41.55 GFLOPS 42.25 GB/s
IPU HeatEquationSimple 0.43 s 0.87 TFLOPS 3.11 TB/s
IPU HeatEquationOptimized 0.26 s 1.44 TFLOPS 5.15 TB/s

Table 5.1: The measured performance for three executions of the
discretized heat equation on a 360× 360× 360 mesh of single precision
elements, for 1000 time steps.

Table 5.2 shows additional information of the IPU executions extracted from
the execution trace in PopVision: the clock cycle counts for both computational
and communications phases in one time step of the heat equation.

Vertex OnTileExecute [Cycles] DoExchange [Cycles]

HeatEquationSimple 570,165 43,505
HeatEquationOptimized 343,893 43,505

Table 5.2: The number of clock cycles for one time step during the
execution of the heat equation on the IPU. OnTileExecute denotes
a computational phase, and DoExhchange denotes a communication
phase.

5.4 Discussion

Table 5.1 shows that both IPU executions significantly outperformed the CPU
execution. This can be shown by the two measured metrics, throughput and

CHAPTER 5. THE 3D HEAT EQUATION BY FINITE DIFFERENCES 65

minimal memory bandwidth. The HeatEquationSimple and the HeatEqua-
tionOptimized vertices achieved throughput measurements of 21 and 35 times
higher than the CPU, respectively. This was a substantial performance increase.
It was expected that the measured throughput would be a lot higher on the IPU,
because of the abundance of tiles and low-latency in-processor memory. Fur-
thermore, since the IPU system exhibits 1472/64 = 23 times more cores than
the CPU system, the throughput can be adjusted to a per-core basis. The
IPU core then achieves 91% and 151% of the computational throughput of a
CPU core, for the two IPU implementations, respectively. This result suggests
that for this computational workload, the IPU is substantially better than the
CPU, even per-core. This shows that the many-core design of the IPU does not
necessarily mean that the performance of each individual core is compromised.
This could be partially explained by a memory bandwidth bottleneck for this
application. If that is the case, then the result suggests that the distributed
in-processor memory architecture can limit this bottleneck considerably.

The minimal memory bandwidth measurements of the two IPU implementations
were 3.11 and 5.15 TB/s. Based on the minimal memory bandwidth in Table 5.1,
the simple and optimized IPU implementations reached 74 and 122 times higher
rates than the CPU, respectively. These performance gaps are much higher than
the corresponding gaps based on throughput measurements. This is because the
minimal bandwidth was calculated differently for the two processors, which arise
from the fact that the CPU and IPU exhibit very different memory models. The
IPU does not have cache, and thus relies on fetching data from memory much
more often than the CPU, at least in the ideal situation where the CPU can reuse
data from cache. An advantage of the IPU’s distributed memory model is that
it has a much higher core count (1,472), and each core has its own low-latency
memory located on the same tile. The CPUs on the other hand, have much
fewer cores (64) and exhibit a shared memory model. Furthermore, the CPUs
also have several levels of shared cache, which means that they theoretically do
not have to load as much data from the memory as the IPU.

The 2D heat equation in Chapter 4 and the 3D heat equation in this chapter
have very similar implementations. On the other hand, the results showed some
noticeable differences. First, the computational throughput measurements of
the IPU codes achieved comparable performance, where the 2D vertices achieved
0.98 and 1.28 TFLOPS. In 3D, the vertices achieved 0.87 and 1.44 TFLOPS.
This means that the 3D case achieved lower performance than the 2D case in the
simple implementations, but higher performance in the optimized ones. This
result also indicates that the optimization had a much larger effect for the 3D
application, achieving a speedup of 1.65 times, whereas the optimization in 2D
only resulted in a speedup of 1.30 times.

It is important to include the simple vertices, even though they were expected
to perform worse than their optimized counterparts. This is because it is most
realistic for a programmer of general scientific computing to implement these, at
least as a starting point. The optimized vertices are more technically difficult to

CHAPTER 5. THE 3D HEAT EQUATION BY FINITE DIFFERENCES 66

implement, requiring additional time and effort. The simple 2D vertex achieved
a higher performance than the corresponding simple 3D vertex, of 0.98/0.87 ≈
1.13 times. A possible explanation for this is that the compiler finds it harder
to optimize the 3D case.

An interesting observation is that when comparing the optimized vertices, the
performance gap is inversely proportional to the performance gap between the
simple vertices. The optimized 3D vertex executed 1.44/1.28 ≈ 1.13 times
faster than its 2D counterpart. An inspection of the assembly codes for the 3D
vertices revealed that the inner loops used 27 (simple) and 16 (optimized) clock
cycles. In contrast, the inner loops of the 2D vertices used 22 (simple) and 16
(optimized) clock cycles.

The simple vertex in 3D achieves quite low performance compared to the other
vertices, which is also shown by the performance tables (4.1 and 5.1). The need
for 27 clock cycles could be due to the limited number of registers, which ulti-
mately could force the use of more memory operations. However, the observed
performance of the optimized vertex immediately disproves this. Consider that
the optimized vertex demonstrates the upper bound of achievable performance
for this application. The simple vertex only achieves 59% of the optimized one.
Therefore, it can only be concluded that this result suggests that the compiler
has a large potential in improving the simple 3D vertex.

The optimized heat equation vertices used 16 clock cycles in both 2D in 3D,
which is a remarkable result. The 3D vertex strictly requires four additional
floating-point operations (two extra additions per stencil) and loading an addi-
tional 16 bytes of data. It might seem unfeasible that the additional workload
3D imposes was performed without compromising the number of clock cycles
(compared to 2D). However, this is possible through co-issues. Each thread
on the IPU has two execution pipelines, main and aux. This means that the
additional operations needed in the 3D case can be included “for free”.

Table 5.2 shows that the communication phases remained unchanged for the two
vertices, and that the optimization only cut down the clock cycle counts for the
computational phases. This result is consistent with the expectation, because
the optimization steps that were taken should only affect the computational
phases.

The CPU implementation of the 3D heat equation was very similar to the 2D
implementation from Chapter 4. However, the performance was much worse in
the 3D case, at 41.55 GFLOPS and a minimal bandwidth of 42.25 GB/s. The
2D code achieved 94.73 GFLOPS and a minimal bandwidth of 126.27 GB/s.
The performance gap was significant, and it was likely caused by a memory
bandwidth bottleneck. Every 3D stencil requires neighboring data points from
the 3D mesh in all three dimensions. Since the mesh was a triple pointer float
array, two of the neighboring points will be close in memory (depth), two other
points will be further away in memory (width), and the two remaining points
will be furthest away (height). The data was physically very spread out, which

CHAPTER 5. THE 3D HEAT EQUATION BY FINITE DIFFERENCES 67

was likely costly to fetch. On the other hand, the 2D CPU code achieved a much
higher performance. In 2D, each stencil only requires four neighbor elements in
total, and only two of them are stored further away in memory. Surely, this is
a requirement that is easier to satisfy than the 3D case and will probably be
more successful with cache. This strengthens the idea that the 3D CPU code
suffers from a memory bottleneck, at least to a larger degree than in 2D.

The extension of the heat equation from 2D to 3D highlighted a general chal-
lenge in Poplar programming. Higher-dimensional tensors (3D and up) must be
flattened to 1D or 2D in order to be connected to a vertex. This is arguably a
weakness in Poplar programming for scientific computing, because 3D variables
often are involved, and it can be inconvenient and cumbersome to manually
handle the more advanced indexing of higher dimensional variables in lower
dimensional types. As a consequence, this could increase the chance of user
errors.

Scientific computing is interested in both 2D and 3D computations. On single-
IPU executions, the IPU was demonstrated to achieve good performances for
the selected stencil-based numerical schemes for solving partial differential equa-
tions. The measured performance of the IPU computations seemed less depen-
dent on the problem at hand compared to the CPU. This was demonstrated by
comparing the 2D and 3D application: the IPU achieved comparable perfor-
mances, whereas the CPU seemed to suffer from a memory bandwidth bottle-
neck in 3D.

A suggestion for future improvement is included. The heat equation has been
implemented and solved for a structured 3D mesh on the IPU. The code was
highly parallelized and each tile was assigned similar workloads. However, the
IPU is highly flexible and is able to run MIMD programs. In this regard, it could
be interesting to solve the heat equation for unstructured meshes. This type
of computation is closer to real-life use cases of the heat equation. Therefore,
it would be interesting to see if the IPU is able to achieve high performance in
such computations.

Chapter 6

Multi-IPU Executions of
the Heat Equation

Scalability is one of the key design goals of the IPU. Since the IPU’s applicability
to general scientific computing workloads is studied, it is important to investi-
gate the performance when scaling such computations to run on multiple IPUs.
Additionally, new aspects and challenges are also discussed in this chapter.

6.1 Methods

6.1.1 Scaling the Problem Sizes

Following the principles explained in Chapter 4 and 5, the discretized heat equa-
tions in two and three dimensions were solved on multiple IPUs. To perform
these computations, chip-to-chip communication is required. Global communi-
cation has a bandwidth of 320 GB/s, which is much slower than the internal
communication, with a bandwidth of 8 TB/s [2]. Therefore, it was particularly
important to optimize the work division.

It is desirable to push the limited memory capacity of the in-processor memory.
Hence, when going from 1 to several IPUs, the number of elements in the meshes
were subsequently increased. Although the total memory capacity increases
proportionally with the number of IPUs, the available memory increases less
than this. This is because more of the limited space must be dedicated to
communication buffers. Therefore, the 2D and 3D meshes were scaled almost
linearly with the number of IPUs, but slightly less. This was done with trial
and error. Table 6.1 shows the resolutions of the meshes.

68

CHAPTER 6. MULTI-IPU EXECUTIONS OF THE HEAT EQUATION 69

Number of IPUs Dimensions Elements Total Data

1 2D 8000× 8000 512 MB
2 2D 10000× 10000 800 MB
4 2D 14000× 14000 1.59 GB
8 2D 19000× 19000 2.89 GB
16 2D 27000× 27000 5.83 GB

1 3D 360× 360× 360 373 MB
2 3D 403× 403× 403 524 MB
4 3D 508× 508× 508 1.05 GB
8 3D 640× 640× 640 2.10 GB
16 3D 806× 806× 806 4.19 GB

Table 6.1: The increasing 2D and 3D meshes with the number of
IPUs. These meshes were used for the multi-IPU executions in this
chapter.

6.1.2 Work Division

The total 2D and 3D meshes were partitioned twice, hierarchically. The reason
behind this approach is that the execution of the heat equation involved two
levels of communication: chip-to-chip communication and tile-to-tile communi-
cation. The overall goal can be summarized as two prioritized tasks:

1. Minimize the chip-to-chip (global) communication costs.

2. Minimize the tile-to-tile (internal) communication costs.

First, the meshes were distributed among the available IPUs along one dimen-
sion: the 2D mesh was partitioned along width, and the 3D along depth. This
imposed workload imbalances of at most one element along the respective di-
mension of the partitioning. The reason why the top-level work division only
partitioned along one dimension, was that the number of IPUs was relatively
low.

The second-level partitioning was on each IPU. The data partitions were in
turn distributed among all 1,472 tiles of every IPU. This partitioning was done
by finding the number of partitions in each dimension based on the respective
algorithms (Listing 4.1 for 2D and Listing 5.1 for 3D). To recall, these algorithms
minimize the internal exchange volume.

The total mesh refers to the full 2D or 3D mesh. Due to the Dirichlet boundary
condition, the stencils were only applied to the inner mesh. The boundary nodes
were kept constant. In order to construct balanced workloads, it was desirable
to equally distribute the inner, and not the total mesh. The work division can
be summarized in these steps:

1. Start with a 2D mesh of size h× w or 3D mesh of size h× w × d.

CHAPTER 6. MULTI-IPU EXECUTIONS OF THE HEAT EQUATION 70

2. Divide the inner mesh among n IPUs, by splitting along one dimension.
Thus, each IPU gets assigned a workload of (h− 2)× (w − 2)/n in 2D or
(h−2)× (w−2)× (d−2)/n in 3D. The division might impose a workload
imbalance of at most one element in the respective dimension.

3. On each IPU, use an algorithm to find the partitioning that uses all tiles
and minimizes the tile-to-tile communication volume.

To summarize, the results of the partitioning are illustrated in Table 6.2.

No. IPUs Dims. Total Mesh Workload/Tile Work Balance

1 2D 8000× 8000 173× 249 99.0%
2 2D 10000× 10000 156× 217 98.9%
4 2D 14000× 14000 152× 218 98.9%
8 2D 19000× 19000 206× 148 98.9%
16 2D 27000× 27000 146× 210 98.9%

1 3D 360× 360× 360 15× 45× 45 89.6%
2 3D 403× 403× 403 17× 25× 50 90.9%
4 3D 508× 508× 508 22× 31× 31 93.9%
8 3D 640× 640× 640 20× 27× 40 89.3%
16 3D 806× 806× 806 25× 35× 25 93.4%

Table 6.2: The partitioning of the 2D and 3D meshes. The workload
per tile represents the smallest data partition solved by a tile for
the given problem: other tiles might receive workloads containing up
to one extra element per dimension. The work balance is found by
taking the smallest tile workload divided by the largest.

6.1.3 Measurements

The time usage of the IPU executions was measured by using the chrono tools
in C++. This number was in turn used to calculate two metrics: computational
throughput and minimal memory bandwidth. The computational throughput
was measured by equation (4.5) for 2D, and by equation (5.2) for 3D.

The minimal memory bandwidth was calculated to account for all memory op-
erations (ops.) in computational phases, global exchange phases, and internal
exchange phases, given by

global = (4 ops.)(global communication volume)(no. IPUs − 1), (6.1)

internal = (2 ops.)(internal communication volume)(no. IPUs), and (6.2)

compute = (N ops.)(inner volume). (6.3)

To summarize, the number of global memory operations is found by taking 4

CHAPTER 6. MULTI-IPU EXECUTIONS OF THE HEAT EQUATION 71

operations (2 loads and 2 stores) between every IPU that should communicate
with each other. Here, the external communication volume is simply the height
in 2D, and height×width in 3D. The number of internal memory operations
accounts for both storing and loading the entire internal communication volume
on every IPU. Lastly, the number of memory operations in compute phases
counts N memory operations per stencil, where N = 5 in 2D and N = 7 in
3D. Next, the three numbers of memory operations in these three phases were
added together. Then, the bandwidth was found by

minimal bandwidth = (internal + global + compute)
(4 bytes)(no. time steps)

(measured wall time)
.

(6.4)

To summarize, equation (6.4) represents the minimum rate of data that is both
loaded from and stored to the in-processor memory per second.

The IPU codes were compiled with Poplar SDK 2.2.0, GCC 7.5.0, and the -O3
optimization flag.

6.2 Results

The measured performance of all executions, including both the 2D and 3D heat
equation solved on various number of IPUs are shown in Table 6.3.

No. IPUs Dimensions Time Throughput Minimal Bandwidth

1 2D 0.30 s 1.32 TFLOPS 4.28 TB/s
2 2D 0.28 s 2.17 TFLOPS 7.20 TB/s
4 2D 0.27 s 4.35 TFLOPS 14.64 TB/s
8 2D 0.25 s 8.59 TFLOPS 29.14 TB/s
16 2D 0.25 s 17.23 TFLOPS 58.85 TB/s

1 3D 0.26 s 1.44 TFLOPS 5.15 TB/s
2 3D 0.23 s 2.30 TFLOPS 8.30 TB/s
4 3D 0.26 s 4.05 TFLOPS 14.67 TB/s
8 3D 0.26 s 7.99 TFLOPS 29.10 TB/s
16 3D 0.32 s 13.15 TFLOPS 48.05 TB/s

Table 6.3: The measured performance of executions solving the heat
equation on the IPU, with an increasing number of IPUs as well as
problem sizes.

To better illustrate the performance increases, Figure 6.1a shows the compu-
tational throughput vs. number of IPUs, and Figure 6.1b shows the minimal
bandwidth vs. number of IPUs.

CHAPTER 6. MULTI-IPU EXECUTIONS OF THE HEAT EQUATION 72

(a) Computational throughput

(b) Minimal memory bandwidth

Figure 6.1: The measured performance of the heat equation in both
2D and 3D, and for executions ranging from 1 to 16 IPUs. Note that
all axes are scaled logarithmically.

CHAPTER 6. MULTI-IPU EXECUTIONS OF THE HEAT EQUATION 73

The computational throughput per core was calculated by dividing by the num-
ber of cores (1,472) involved in each computation. This performance metric is
shown in Figure 6.2.

Figure 6.2: The computational throughput performance per comput-
ing core for executions of the 2D and 3D heat equation on 1 to 16
IPUs.

Next, screenshots from the execution trace view in PopVision are included.
These illustrate the different BSP phases of the execution timelines. Figure
6.3a shows one time step of the 2-IPU execution, and Figure 6.3b shows one
time step of the 4-IPU execution.

CHAPTER 6. MULTI-IPU EXECUTIONS OF THE HEAT EQUATION 74

(a) BSP phases on 2 IPUs

(b) BSP phases on 4 IPUs

Figure 6.3: Screenshots from PopVision illustrating the BSP phases
during one time step of the 3D heat equation executed on 2 and 4
IPUs, respectively. The timeline goes from left to right.

The colors in Figure 6.3 represent various execution phases: green is global ex-
change, red is compute, yellow is synchronization (not visible). The blue and
pink represent internal exchange, i.e., tile-to-tile communication. PopVision
groups together the blue tile-to-tile communication phases and the red compu-
tational phases because both execute independently on one tile. However, when
the blue phases occur, the red becomes pink instead.

6.3 Discussion

The measurements in Figure 6.1 show how the performance scales with the
number of IPUs. Both computational throughput and minimal memory band-
width show that the heat equation scaled steeper for 2D compared to 3D. The
latter achieved a noticeably higher performance on 1 and 2 IPUs. On 4 and
8 IPUs, the computational throughput was slightly higher in 2D, whereas the
minimal bandwidth was almost identical. Lastly, on 16 IPUs, the 2D application
outperformed its 3D counterpart. The overall trend of a steeper performance
increase in 2D compared to 3D is expected, because the communication costs
in 3D increases more than in 2D when scaling.

The computational throughput per core is shown in Figure 6.2. Starting at 1
IPU, this number is 0.90 GLOPS/core and 0.98 GFLOPS/core for 2D and 3D,
respectively. The figure shows that the throughput per core decreases for all 3D
executions, which is expected to be caused by exponentially increasing commu-
nication costs. On the other hand, the 2D heat equation shows a performance

CHAPTER 6. MULTI-IPU EXECUTIONS OF THE HEAT EQUATION 75

decrease from 1 to 2 IPUs, which is caused by the introduction of global com-
munication. However, from 2 to 16 IPUs, the 2D application roughly maintains
the computational throughput per core. This result has positive implications
for scaling 2D PDE solvers to execute on multiple IPUs.

Figures 6.3a and 6.3b show the BSP phases of executions on 2 and 4 IPUs,
respectively. The time steps consist of global exchange (green), tile-to-tile ex-
change (blue), and compute (red). When contrasting these two figures, a com-
munication imbalance becomes apparent. The code was set up to send and
receive data between IPU i and IPU i + 1. This effectively means that the
“outer” IPUs only have to communicate with one other IPU, whereas the “in-
ner” IPUs must communicate with two IPUs. Therefore, the performance of
chip-to-chip communication phases is bound by the amount of data that was
communicated by the inner IPUs. The 2-IPU execution is balanced, whereas
the 4-IPU execution features an imbalance. This imbalance will occur for all
executions involving 4 or more IPUs. However, the relative performance loss is
less significant for executions that involve a higher number of IPUs.

The work division is one of the key aspects to consider when developing multi-
IPU codes. In this chapter, the top-level partitioning was only performed along
one dimension. Another possibility was to divide the meshes into two dimen-
sions. By using a 2D partitioning, the execution is expected to be more balanced
for the higher number of IPUs, because the communication volume among all
IPUs is more balanced. However, 1D partitioning among the IPUs was employed
because the number of IPUs was relatively low.

The internal communication costs were minimized by using an algorithm, which
minimized the internal communication volume. A disadvantage that the 3D
problem exhibits can be seen in Table 6.1. The 3D problems feature larger
workload imbalances than the 2D ones. This is caused by the fact that it
becomes harder to evenly distribute the workload with an extra dimension.
Due to the limited memory capacity, each tile can only fit a given problem
size. In 2D, this max size was roughly in the range of 200 × 200 elements.
For 3D however, the largest workloads per tile were only roughly 30 × 30 × 30
elements. Since the 3D problem features significantly smaller side lengths and
an additional dimension, one extra element per dimension will have a relatively
larger impact on the workload balance.

Multi-IPU development involved an additional technical challenge compared to
single-IPU development. For the 16-IPU executions, the compilation required
more than 200 GB of host memory and several hours to complete. Larger
executions of the 2D and 3D heat equation on 32 IPUs were attempted but
were unsuccessful due to running out of host memory (755 GB) when the graph
and programs were compiled at runtime. This could be caused by the demand
of a very large number of communication messages, and the compiler likely
faced a combination problem that skyrocketed the memory usage. It should
be noted that the software ecosystem around the IPU, including compilers and
run-time libraries, are under continuous improvement as the user-community

CHAPTER 6. MULTI-IPU EXECUTIONS OF THE HEAT EQUATION 76

and the range of use cases expand. Therefore, the observed compilation cost for
multi-IPU execution might be reduced in the future.

This chapter demonstrated that the performance of multi-IPU executions of the
heat equation met the expectation of the scalable design principle. The software
frameworks allowed the programming process to easily extend the implementa-
tion to run on multiple IPUs. This is valuable for general scientific computing.
Further, a particularly interesting finding was that the 2D application featured
a steeper performance increase than a 3D counterpart, which was likely caused
by higher communication costs in 3D.

Lastly, some suggestions for future improvements are in order. For the heat
equation, which now has been tested on multiple IPUs, it would be interesting
to compare these results with multi-GPU executions of similar problems. Such
comparisons could provide further insight into how the measured performances
depended on IPU characteristics, and even more interestingly: which processor
would achieve the best performance? It is also of interest to study other common
scientific computing workloads, both on a single IPU, and how the performance
would scale on multiple IPUs for such problems. Such studies could strengthen
the findings in this chapter.

Chapter 7

The Aliev-Panfilov Model

This chapter demonstrates the IPU’s applicability of a real-life physics-based ap-
plication, namely the Aliev-Panfilov model of electrocardiology. The application
in this chapter takes inspiration from a 2011-study by Hanslien et al. [33]. That
study included two numerical schemes for solving the Aliev-Panfilov model, and
in this chapter, one of those is implemented for the IPU.

7.1 Background

The Aliev-Panfilov model is a set of PDEs that model electric pulse propagation
in cardiac tissue. It was constructed to include the qualitative behavior of
cardiac tissue, while being computationally feasible. There is a bidomain model
that accounts for both the transmembrane and extracellular electrical potentials,
and a monodomain model that only includes the transmembrane potential. The
monodomain Aliev-Panfilov model reads

∂e

∂t
= δ∇2e− ke(e− a)(e− 1)− er, and (7.1)

∂r

∂t
= −

[
ε+

µ1r

µ2 + e

]
[r + ke(e− b− 1)] . (7.2)

Here, e is the scaled transmembrane potential, r is a variable that represents
recovery of the tissue, and a, b, µ1, µ2, k, ε, and δ are positive constants.

The forward Euler solution scheme for the Aliev-Panfilov model was derived by
Hanslien et al. [33], and is given by

77

CHAPTER 7. THE ALIEV-PANFILOV MODEL 78

en+1
i,j − eni,j

∆t
= δ

eni+1,j − 2eni,j + eni−1,j

∆x2
+
eni,j+1 − 2eni,j + eni,j−1

∆y2
(7.3)

− keni,j(eni,j − a)(eni,j − 1)− eni,jrni,j ,

rn+1
i,j − rni,j

∆t
=−

[
ε+

µ1r
n
i,j

µ2 + eni,j

] [
rni,j + keni,j(e

n
i,j − b− 1)

]
. (7.4)

Equation (7.3) represents a 5-point stencil, which is undefined at the boundary
nodes. The zero gradient boundary condition was employed, given by ~n · δ∇e =
0, where ~n is a unit vector, orthogonal to the boundary. The boundary condition
is satisfied when two opposing neighbors in a stencil are equal, because that
translates to a zero gradient in the direction they lie along. For instance, on
the east-edge boundary, the right stencil-element eni,j+1 is undefined. However,
if this element is replaced with the left stencil-element, eni,j−1, the boundary
condition is satisfied.

The constants were set to the same values as in the study of Hanslien et al. [33].
They were µ1 = 0.07, µ2 = 0.3, k = 8.0, ε = 0.01, a = b = 0.1, and δ = 0.00005.
Further, the distance between the points was set to h = 1/7000, and the time
step was set to ∆t = 0.0001.

Bounds on the Numerical Method

The forward Euler scheme suffers from a time step restriction [33]. Given a
uniform 2D mesh where ∆x = ∆y, the two equations

0 ≤eni,j ≤ 1, and (7.5)

0 ≤rni,j ≤ r+ (7.6)

must be satisfied, where,

r+ = k

(
b+ 1

2

)2

. (7.7)

It was showed by Hanslien et al. [33] that equations (7.5) and (7.6) were satisfied
when

∆t ≤ min

{
1

4δ
∆x2 + max(ka, k(1− a)) + r+

,
1

ε+ µ1

µ2
r+

}
. (7.8)

With the constants used, this becomes

∆t ≤ min {0.000102, 1.74} = 0.000102. (7.9)

The bound on ∆t was incorporated as a test function in the code.

CHAPTER 7. THE ALIEV-PANFILOV MODEL 79

7.2 Methods

7.2.1 IPU Implementation

The numerical algorithm was the implementation of equations (7.3) and (7.4).
This section presents new challenges of the implementation of the Aliev-Panfilov
model compared to the 2D heat equation.

The Aliev-Panfilov model requires two different meshes, e and r, unlike the
heat equation, which only involves one. Since the right-hand side of equation
(7.3) represents a 5-point stencil, e cannot be updated in-place. Therefore, two
tensors named e_a and e_b were allocated. The r mesh on the other hand,
can be updated in-place, and was therefore represented by one tensor.

The 2D meshes contained 7000× 7000 single precision floating-point elements.
The work division was found by using an algorithm that minimizes the com-
munication volume. This was the same algorithm as for the 2D heat equation
in Listing 4.1. This resulted in 46× 32 partitions. Consequently, the tiles were
assigned workloads of different sizes between 152× 218 and 153× 219 elements.
Hence, some tiles had 1.1% larger workloads than the tiles with the smallest
workloads.

The zero gradient boundary condition on e had to be implemented. The two
tensors representing e were padded with one element on all four sides. This
method presents a way of handling the boundary condition outside the vertex,
and without changing the stencil. The boundary nodes were set equal to the
immediate inner nodes prior to each time step:

• For the north boundary, copy the values of the third row to the first.

• For the south boundary, copy the values of the third last row to the last.

• For the west boundary, copy the values of the third column to the first.

• For the east boundary, copy the values of the third last column to the last.

The computations was still only be performed on the inner mesh of 7000×7000
elements. However, the introduced padding is used to satisfy the boundary
condition. To recall, when two opposing neighbors in a stencil are equal, the
net gradient is zero in the direction they lie along.

Listing 7.1 shows the codelet solving the Aliev-Panfilov model.

CHAPTER 7. THE ALIEV-PANFILOV MODEL 80

1 #include <poplar/Vertex.hpp>

2

3 using namespace poplar;

4

5 class AlievPanfilov : public Vertex {

6 public:

7 AlievPanfilov();

8

9 Vector<Input<Vector<float, VectorLayout::SPAN, 4, false>>> e_in; // padded

10 Vector<Output<Vector<float, VectorLayout::SPAN, 4, false>>> e_out;

11 Vector<InOut<Vector<float, VectorLayout::SPAN, 4, false>>> r;

12 const int worker_height;

13 const int worker_width;

14 const float delta;

15 const float epsilon;

16 const float my1;

17 const float my2;

18 const float h;

19 const float dt;

20 const float k;

21 const float a;

22 const float b;

23

24 bool compute () {

25 const float d_h2 = delta/(h*h);

26 for (int i = 1; i < worker_height + 1; ++i) {

27 for (int j = 1; j < worker_width + 1; ++j) {

28 // Computation of new e

29 e_out[i-1][j-1] = e_in[i][j] + dt*(

30 d_h2*(-4*e_in[i][j] + e_in[i+1][j] + e_in[i-1][j] + e_in[i][j+1] +

e_in[i][j-1]) -↪→

31 k*e_in[i][j]*(e_in[i][j] - a)*(e_in[i][j] - 1) -

e_in[i][j]*r[i-1][j-1]↪→

32);

33

34 // Computation of new r

35 r[i-1][j-1] += dt*(-epsilon - my1*r[i-1][j-1]/(my2 + e_in[i][j]))*

36 (r[i-1][j-1] + k*e_in[i][j]*(e_in[i][j] - b - 1));

37 }

38 }

39 return true;

40 }

41 };

Listing 7.1: A codelet that solves the Aliev-Panfilov model. In total,
the inner loop body involves 28 floating-point operations, and at least
24 bytes are loaded and 8 bytes stored.

Listing 7.1 contains the vertex type InOut for the first time in this thesis. This
type is convenient as it gives the vertex the ability to both read from and write
to a tensor. When compared to the 2D heat equation, the Aliev-Panfilov model
involves a lot more arithmetic operations compared to the heat equation, which
does not increase the complexity much. Additionally, the model involves the

CHAPTER 7. THE ALIEV-PANFILOV MODEL 81

usage of two fields instead of one, which does somewhat increase the complexity.

The wall time of an execution of 1000 time steps was measured by using the
chrono tools in C++. With this, the computational throughput was calculated.
This is a measure of the number of floating-point operations per second (single
precision), and it was calculated by counting 28 floating-point operations per
stencil per time step, giving

throughput = 28
(area)(no. time steps)

measured wall time
. (7.10)

A second metric that was calculated by using the measured wall time, was the
minimal memory bandwidth. This represents the minimal amount of memory
traffic that must have taken place during the execution. It was calculated by
adding together the number of memory operations in the communication phases
and in the computational phases. This number was in turn multiplied by 4 bytes
and number of time steps, and divided by wall time. As a summary, the minimal
bandwidth was found by

communication ops. = (2 ops.)(communication volume), (7.11)

computation ops. = (8 ops.)(area), (7.12)

minimal bandwidth = (comm. ops. + comp. ops.)
(4 bytes)(no. time steps)

(measured wall time)
.

(7.13)

The number of communication phase memory operations was 2 times the com-
munication volume, because it accounts for both storing and loading this data.
Further, the number of computational phase memory operations was 8 times
the area of the mesh, because each stencil must load 6 and store 2 elements
(accounting for both e and r).

The codes were compiled with Poplar SDK 2.2.0, GCC 7.5.0, and the -O3 opti-
mization flag.

7.2.2 CPU Implementation

The Aliev-Panfilov model was implemented in standard C along with OpenMP
to serve as a benchmark for the IPU code. Three double-pointer float arrays
were used, two to represent e and one for r. However, e was padded in order to
handle the boundary condition, in the same manner as for the IPU code.

A snippet of the CPU code is shown in Listing 7.2.

CHAPTER 7. THE ALIEV-PANFILOV MODEL 82

1 #pragma omp parallel private(i,j,t)

2 {

3 // Perform Forward-Euler Aliev-Panfilov model

4 for (t = 0; t < num_iterations; ++t) {

5 // Handle boundary conditions west and east

6 #pragma omp for

7 for (i = 1; i < height - 1; ++i) {

8 e[i][0] = e[i][2];

9 e[i][width - 1] = e[i][width - 3];

10 }

11

12 // Handle boundary conditions north and south

13 #pragma omp for

14 for (j = 1; j < width - 1; ++j) {

15 e[0][j] = e[2][j];

16 e[height - 1][j] = e[height - 3][j];

17 }

18

19 // Perform stencil computations

20 #pragma omp for

21 for (i = 1; i < height - 1; ++i) {

22 for (j = 1; j < width - 1; ++j) {

23

24 // Computation of new e

25 e_bar[i][j] = e[i][j] + dt*(

26 d_dx2*(-4*e[i][j] + west + east + south + north) -

27 k*e[i][j]*(e[i][j] - a)*(e[i][j] - 1) - e[i][j]*r[i][j]

28);

29

30 // Computation of new r

31 r[i][j] = r[i][j] + dt*(-epsilon - my1*r[i][j]/(my2 +

e[i][j]))*(r[i][j] + k*e[i][j]*(e[i][j] - b - 1));↪→

32 }

33 }

34

35 // Pointer swap

36 #pragma omp single

37 {

38 tmp = e_bar;

39 e_bar = e;

40 e = tmp;

41 }

42 }

43 }

Listing 7.2: A snippet of the OpenMP CPU code, which allows for a
multi-threaded execution. The code solves the Aliev-Panfilov model
by the forward Euler scheme.

The wall time of the execution was measured by using OpenMP’s built-in wall
time tool. This number was used to calculate the computational throughput
and minimal memory bandwidth. The throughput was calculated similarly as
for the IPU code, shown by equation (7.10).

CHAPTER 7. THE ALIEV-PANFILOV MODEL 83

The minimal memory bandwidth was calculated differently for the CPU code,
because the two processors feature very different memory architectures. For the
CPU execution, the minimal bandwidth was calculated by considering that the
both meshes must be loaded and stored at least twice, which gives

minimal bandwidth =
(4 ops.)(4 bytes)(area)(no. time steps)

measured wall time
. (7.14)

The CPU code was compiled with GCC 11.1.0, along with OpenMP 4.5, and
the -O3 optimization flag. The code was executed on a Linux server with two
AMD Epyc 7601 (Naples) 32-core CPUs, totalling 128 threads.

7.3 Results

Table 7.1 shows the measured performance of the IPU and CPU executions of
solving the Aliev-Panfilov model the same problem size.

Processor Time Throughput Minimal Bandwidth

CPU 20.49 s 66.94 GFLOPS 19.13 GB/s
IPU 1.086 s 1.26 TFLOPS 1.45 TB/s

Table 7.1: The performance for solving the Aliev-Panfilov model on
2D meshes of 7000×7000 single precision elements, for 1000 time steps.

7.4 Discussion

The performance of the IPU implementation, shown in Table 7.1, shows a
promising result. The computational throughput of the IPU execution was
19 times higher than the CPU execution. If adjusted to per-core, an IPU core
achieved on average 82% of the throughput of a CPU core. The results were
computed significantly faster on the IPU. Furthermore, the IPU reaches 0.86
GFLOPS/core, and the CPU reaches 1.05 GFLOPS/core. The performance
per core suggests that an IPU core can almost provide as high performance as
a CPU core, which is remarkable. Compared to the CPU, the IPU has a big
advantage in its large number of cores, but additionally does not compromise
much on the performance per core.

The measured minimal memory bandwidth on the IPU was 1.45 TB/s. The
computational phases contributed to 99.5% of this number, whereas the com-
munication phases only accounted for 0.5%. Compared to the CPU execution,
the IPU reached 76 times higher minimal memory bandwidth. However, using
the minimal bandwidth to compare the two processors might not be suitable,
because they feature very different memory architecture designs. Regardless,

CHAPTER 7. THE ALIEV-PANFILOV MODEL 84

the result undoubtedly shows that the IPU can achieve a very high memory
bandwidth, even for an application that arguably is bound by arithmetic oper-
ations. This suggests that the low-latency in-processor memory model of the
IPU can be suitable for a physics-based computational workload.

Implementing a parallel program to solve the Aliev-Panfilov model was more
technically challenging in Poplar. This is because the meshes and workloads
must be partitioned to all the tiles involved. In the OpenMP framework on the
other hand, the work is automatically distributed by allowing different workers
(CPU threads) to handle different indices of the loop.

The Aliev-Panfilov model simulates a much more complicated set of equations
compared to e.g., the heat equation. Hence, these results demonstrate that the
IPU can provide high performance to more complex applications, borrowed from
general scientific computing.

Lastly, a suggestion for future improvements is presented. An interesting class
of computational workloads for general scientific computing is sparse matrix-
vector multiplications. These operations are central to many physics-based ap-
plications. It would be particularly interesting to benchmark the performance of
such computations on the IPU. The results of such applications could strengthen
the results in this thesis to hold for a wider variety of scientific applications.

Chapter 8

Conclusion

A selection of general scientific computing workloads was performed on the IPU.
The heat equation, discretized by finite differences, was solved for structured
2D and 3D meshes, by parallel computations scaling from 1 to 16 IPUs. Addi-
tionally, a real-life application was implemented and solved on the IPU, namely
the Aliev-Panfilov model for cardiac excitation.

There were four research questions proposed in Chapter 1:

1. How good performance can the IPU provide for the selected scientific
computing workloads?

2. What technical challenges does low-level IPU programming involve?

3. What limitations does the IPU exhibit for general scientific computing
workloads?

4. What differences and similarities are found when asking the three afore-
mentioned questions to multi-IPU systems compared to single-IPU sys-
tems?

Answer to Research Question 1: The selected computational workloads were
solved on IPU and CPU systems, by setting up identical problems with single
precision floating point elements. The IPU significantly outperformed the CPUs
for all computations, even providing a higher rate of FLOPS per core in one
computation. The 3D heat equation achieved the highest performance on one
IPU, reaching a minimal memory bandwidth of 5.15 TB/s and a throughput
of 1.44 TFLOPS. For the 2D heat equation, 3D heat equation, and the Aliev-
Panfilov model, the IPU achieved 14, 35, and 19 times more FLOPS than the
corresponding CPU computations, respectively. If adjusted to a per-core per-
formance, this corresponds to 0.59, 1.51, 0.82 times, respectively. This shows
that one IPU-core reached lower performances than one CPU-core for the 2D

85

CHAPTER 8. CONCLUSION 86

applications, but remarkably higher performance for the 3D application. Ad-
ditionally, the IPU’s architecture exhibits the advantage of containing 1,472
cores, which is in the same order of magnitude as some GPUs. This suggests
that the IPU, which was mainly designed for AI, can provide high performance
for selected scientific computing applications.

Answer to Research Question 2: The development process of IPU programs is
built around two well-established concepts in parallel programming: BSP and
computational graphs. Using Poplar, most of the effort in developing programs
for the IPU lies in constructing the graph object and writing the vertices. The
programmer has a very fine-grained control over the execution and has the pos-
sibility to implement MIMD programs. The graph-based framework implicitly
handles communication and data dependencies, which is an advantage with re-
gards to the simplicity of writing IPU programs. A programmer that is used
to shared memory models might have to reassess how they approach parallel
programming when coding for the IPU. A distributed memory model imposes
additional challenges. In addition to partitioning the workload, the data must
also be distributed. Furthermore, the partitioning and data distribution must
be optimized with respect to each other in order to achieve high performance.

Answer to Research Question 3: The limited memory capacity is the main
limitation of the IPU. The distributed in-processor memory is the cornerstone
for IPU applications, and it imposes strengths and weaknesses. On the positive
side, the architecture was demonstrated to be able to provide remarkably high
memory bandwidths. This is likely due to the memory components being in
the vicinity of each core, which combined makes a tile, and the large number of
tiles. This can undoubtedly be a significant advantage for many applications.
A potential negative aspect of the architecture is that the memory has a limited
capacity of 900 MB per chip, which translates to 624 kB per tile. Therefore,
if an application has a memory requirement that exceeds the capacity of an
IPU, the programmer is left with two choices. One could either resort to taking
advantage of off-chip memory which will considerably reduce performance, or
one could scale the application to include enough IPUs to fit the problem.

Answer to Research Question 4: The IPU is designed for scalability by being
able to provide higher performance in larger multi-IPU systems for AI work-
loads [7]. However, this thesis specifically intended to study the scalability of
the IPU for non-AI workloads. When scaling the heat equation to multi-IPU
systems, the 2D heat equation showed a steeper performance increase than its
3D counterpart. However, the performance scaled well with the number of IPUs
for both applications. Therefore, the results for these workloads were consistent
with the IPU’s design principle for AI workloads. The scaling of the implemen-
tation from single to multi-IPU executions was effortless, due to the purposeful
design of the Poplar framework. The main challenge in these extensions was to
optimally partition the problems. There are two clear weaknesses of multi-IPU
development. The first weakness is the limited memory. The selected appli-
cations demanded that each tile must communicate with several others, which

CHAPTER 8. CONCLUSION 87

in turn imposes a need for more communication buffers on the in-processor
memory. This puts additional pressure on the already limited memory capac-
ity. Effectively, this means that the size of the application, e.g., resolution of
the meshes, cannot be scaled linearly with the number of IPUs involved. The
second weakness is the surprisingly high demand for resources when the graph
and Poplar programs are compiled at runtime. However, the software ecosys-
tem around the IPU is under continuous improvement. Therefore, the observed
compilation cost for multi-IPU execution might be reduced in the future.

As closing words, some suggestions for future improvements are in order. One of
the overarching intentions of this thesis was to study the performance and chal-
lenges of using a specialized processor for general scientific computing workloads.
Only stencil-based algorithms for solving PDEs of varying complexity have been
tested. This only includes a narrow selection of scientific applications, and it
would be of interest to test other common computational workloads. For in-
stance, in physics and astronomy, many-particle simulations are common com-
putational problems that demand high performance. Another interesting use-
case is sparse matrix-vector multiplications, which is a central computational
operation in many physics-based applications. If the IPU achieves promising
results in such applications, it would strengthen the findings of this thesis by
extrapolating them to a wider variety of applications. Lastly, it would be in-
teresting to benchmark the results in this thesis against state-of-the-art GPU
computations of similar problems. For a fair comparison, this would require
significant work on optimization of the GPU code, for instance in CUDA. This
would be out of scope for this thesis, which is dictated by the given time limi-
tation for the master’s project.

Bibliography

[1] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Sid-
dharth Samsi, and Jeremy Kepner. Survey of machine learning acceler-
ators. In 2020 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–12, 2020.

[2] IPU processors. https://www.graphcore.ai/products/ipu, 2021. Ac-
cessed: 2021-07-08.

[3] About us. https://www.graphcore.ai/about, 2021. Accessed: 2021-07-
08.

[4] Kenneth G. Wilson. Grand challenges to computational science. Future
Generation Computer Systems, 5(2):171–189, 1989. Grand Challenges to
Computational Science.

[5] Anupama Luthra. Computational Science and its Applications. 04 2020.

[6] Research papers. https://www.graphcore.ai/resources/

research-papers, 2021. Accessed: 2021-07-13.

[7] Performance results. https://www.graphcore.ai/

performance-results, 2021. Accessed: 2021-09-23.

[8] Zhe Jia, Blake Tillman, Marco Maggioni, and Daniele Paolo Scarpazza.
Dissecting the graphcore IPU architecture via microbenchmarking. CoRR,
abs/1912.03413, 2019.

[9] Thorben Louw and Simon McIntosh-Smith. Using the graphcore IPU for
traditional hpc applications. EasyChair Preprint no. 4896, EasyChair,
2021.

[10] Andrew Danowitz, Kyle Kelley, James Mao, John P Stevenson, and Mark
Horowitz. CPU DB: recording microprocessor history. Communications of
the ACM, 55(4):55–63, 2012.

[11] P. Gepner and M.F. Kowalik. Multi-core processors: New way to achieve
high system performance. In International Symposium on Parallel Com-
puting in Electrical Engineering (PARELEC’06), pages 9–13, 2006.

88

https://www.graphcore.ai/products/ipu
https://www.graphcore.ai/about
https://www.graphcore.ai/resources/research-papers
https://www.graphcore.ai/resources/research-papers
https://www.graphcore.ai/performance-results
https://www.graphcore.ai/performance-results

BIBLIOGRAPHY 89

[12] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James
Gebis, Parry Husbands, Kurt Keutzer, David A Patterson, William Lester
Plishker, John Shalf, Samuel Webb Williams, et al. The landscape of par-
allel computing research: A view from berkeley. 2006.

[13] Chris McClanahan. History and evolution of GPU architecture. A Survey
Paper, 9, 2010.

[14] John D. Owens, Mike Houston, David Luebke, Simon Green, John E.
Stone, and James C. Phillips. GPU computing. Proceedings of the IEEE,
96(5):879–899, 2008.

[15] Jayshree Ghorpade, Jitendra Parande, Madhura Kulkarni, and Amit
Bawaskar. GPGPU processing in CUDA architecture. CoRR,
abs/1202.4347, 2012.

[16] R.R. Schaller. Moore’s law: past, present and future. IEEE Spectrum,
34(6):52–59, 1997.

[17] AI and compute. https://openai.com/blog/ai-and-compute/#fnref1,
2018. Accessed: 2021-07-13.

[18] A.A. Khokhar, V.K. Prasanna, M.E. Shaaban, and C.-L. Wang. Hetero-
geneous computing: challenges and opportunities. Computer, 26(6):18–27,
1993.

[19] Howard Jay Siegel, John K Antonio, Richard C Metzger, Min Tan, and
Yan Alexander Li. Heterogeneous computing. ECE Technical Reports,
page 206, 1994.

[20] Olivier Terzo, Karim Djemame, Alberto Scionti, and Clara Pezuela. Het-
erogeneous Computing Architectures: Challenges and Vision. CRC Press,
2019.

[21] Graphcore Ltd. IPU-MACHINE: M2000 Datasheet, dec 2020.

[22] Graphcore Ltd. IPU-M2000 SCALE-OUT: IPU-POD64 Datasheet, dec
2020.

[23] Graphcore Ltd. Vertex Programming Guide, jun 2021.

[24] Preeti Ranjan Panda, Nikil D Dutt, and Alexandru Nicolau. On-chip vs.
off-chip memory: the data partitioning problem in embedded processor-
based systems. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 5(3):682–704, 2000.

[25] Graphcore Ltd. IPU Programmer’s Guide, oct 2020.

[26] Rob H Bisseling and William F McColl. Scientific computing on bulk
synchronous parallel architectures. 1993.

https://openai.com/blog/ai-and-compute/#fnref1

BIBLIOGRAPHY 90

[27] David Ojika, Bhavesh Patel, G. Anthony Reina, Trent Boyer, Chad Mar-
tin, and Prashant Shah. Addressing the memory bottleneck in AI model
training. CoRR, abs/2003.08732, 2020.

[28] Poplar graph framework software. https://www.graphcore.ai/

products/poplar, 2021. Accessed: 2021-07-15.

[29] Graphcore Ltd. Poplar and PopLibs User Guide, mar 2021.

[30] Graphcore Ltd. Poplar and PopLibs API Reference, mar 2021.

[31] John D. McCalpin. Memory bandwidth and machine balance in current
high performance computers. IEEE Computer Society Technical Commit-
tee on Computer Architecture (TCCA) Newsletter, pages 19–25, December
1995.

[32] John D. McCalpin. STREAM: Sustainable memory bandwidth in high
performance computers. Technical report, University of Virginia, Char-
lottesville, Virginia, 1991-2007. A continually updated technical report.
http://www.cs.virginia.edu/stream/.

[33] Monica Hanslien, Robert Artebrant, Aslak Tveito, Glenn Terje Lines, and
Xing Cai. Stability of two time-integrators for the Aliev-Panfilov system.
International Journal of Numerical Analysis & Modeling, 8(3), 2011.

https://www.graphcore.ai/products/poplar
https://www.graphcore.ai/products/poplar

	Introduction
	Background
	A Brief History of Processors
	The CPU and GPU
	Specialized Architectures

	IPU Hardware Architecture
	Overview
	Tile

	Design Principles
	Bulk Synchronous Parallelism
	Scalability
	Graph Programming

	IPU Programming
	Overview
	Poplar
	Glossary
	Poplar Programming

	Implementation of a Benchmark
	The STREAM Triad Benchmark
	Implementation
	Optimization
	Performance

	Programming Advice
	Environment Variables
	Profiling
	General Workflow in Poplar

	The 2D Heat Equation by Finite Differences
	Motivation
	Background
	Methods
	IPU Implementation
	CPU Implementation

	Results
	Discussion

	The 3D Heat Equation by Finite Differences
	Background
	Methods
	IPU Implementation
	CPU Implementation

	Results
	Discussion

	Multi-IPU Executions of the Heat Equation
	Methods
	Scaling the Problem Sizes
	Work Division
	Measurements

	Results
	Discussion

	The Aliev-Panfilov Model
	Background
	Methods
	IPU Implementation
	CPU Implementation

	Results
	Discussion

	Conclusion

