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Abstract
Aalen’s linear hazard rate regression model is a useful and increasingly popular alter-
native to Cox’ multiplicative hazard rate model. It postulates that an individual has
hazard rate function h(s) = z1α1(s) + · · · + zrαr (s) in terms of his covariate val-
ues z1, . . . , zr . These are typically levels of various hazard factors, and may also be
time-dependent. The hazard factor functions α j (s) are the parameters of the model
and are estimated from data. This is traditionally accomplished in a fully nonparamet-
ric way. This paper develops methodology for estimating the hazard factor functions
when some of them are modelled parametrically while the others are left unspecified.
Large-sample results are reached inside this partly parametric, partly nonparametric
framework, which also enables us to assess the goodness of fit of the model’s paramet-
ric components. In addition, these results are used to pinpoint how much precision is
gained, using the parametric-nonparametric model, over the standard nonparametric
method. A real-data application is included, along with a brief simulation study.

Keywords Counting processes · Event history · Goodness of fit processes · Linear
hazard regression model · Semiparametric

1 Introduction and summary

Suppose individual i has observable covariate values zi,1, . . . , zi,r and that these are
thought to influence the probability distribution of his life time Ti . The most usual way
of modelling this is through Cox’ regression model for the hazard rate hi (s), which
takes this to be of the form h0(s) exp(β1zi,1 + · · · + βr zi,r ) for certain parameters
β1, . . . , βr . Aalen’s linear hazard rate regression model has over the past few decades
become a useful and popular alternative. It postulates that individual i has hazard rate
function
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hi (s) = h(s | zi ) = zi,1α1(s) + · · · + zi,rαr (s) = ztiα(s), (1.1)

where the α j (s) functions are unknown. The observed data comprise triples (ti , δi , zi ),
for individuals i = 1, . . . , n, where δi is an indicator for non-censoring. See Aalen
(1980, 1989, 1993) and the relevant chapters of the classic monographs Andersen,
Borgan, Gill and Keiding (1993, Ch. VII) and Aalen, Borgan and Gjessing (2008,
Ch.VI) for general discussion of the (1.1)model, for themost usual estimationmethods
and their properties, and for applications to various datasets. We comment below on
various extensions of and further developments for the basic Aalen model (1.1). The
present paper is yet another contribution to this literature, taking some of the regressor
functions parametric and the others nonparametric.

One may think of z j = zi, j as the level of hazard factor no. j for the individual,
and the α j (s) function as the associated hazard factor function, or regressor function.
Often, the first covariate is the constant 1, and the others are scaled such that zero
is the minimum value when the covariate is discrete, or the mean value when the
covariate is continuous, in which case one typically also scales the covariate by the
inverse of the empirical standard deviation. In such cases equation (1.1) models hazard
rate as the common α1(s) plus excess contributions due to hazard factors z2, . . . , zr .
The covariates may also depend upon time as long as they do so in a previsible or
predictable fashion; the covariate values zi (s) at time s should be known just prior to
time s. It suffices that the zi (s) are left-continuous functions of what has been observed
on [0, s], i.e., they must not depend on information becoming available after s.

Importantly, the Aalen additive model is typically estimated nonparametrically,
where there are no further assumptions beyond positivity and continuity of ztiα(s) of
(1.1) for all zi in the support of the distribution of covariates. For the typical application,
nonparametric estimates of the cumulative hazard factor functions

A j (t) =
∫ t

0
α j (s) ds for j = 1, . . . , r (1.2)

are computed and displayed, supplemented with variability estimates. This is used to
suggest conclusions about relative influence over time of the different covariate factors.
The survival curves for given individuals may also be read off from themodelling here,
and if an individual has covariate vector z = (z1, . . . , zr )t , not changing over time,
the survival curve is

S(t | z) = exp{−ztA(t)} = exp{−z1A1(t) − · · · − zr Ar (t)}. (1.3)

There has been considerable further research, extending and finessing aspects of
the basic Aalen model (1.1)–(1.3), see e.g. Martinussen and Scheike (2007, 2002a, b,
2009b, a). McKeague and Sasieni (1994) studies a version where some of the α j (s)
functions are taken constant, the other taken nonparametric; the present paper extends
these ideas and methods further. Stoltenberg (2020) studies the Aalen model in the
presence of a cure fraction. Borgan et al. (2007) extend certain features of the model
to encompass recurrent event data and to reflect between-subject heterogeneity and
missing data. Also of relevance for the present paper, Jullum and Hjort (2017) develop
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general model selection methods for choosing among parametric and nonparametric
candidate models; and Jullum and Hjort (2019) study the possible efficiency gains in
specifying a parametric baseline hazard in the Cox regression model.

In applications, the researcher might have firm prior opinions about the functional
form of the effect of certain covariates, while being less informed about others. This
motivates a framework where some of the hazard factor functions, say the first p,
are specified parametrically, while the remaining q = r − p continues to be left
unspecified, beyond the basic requirement that the (1.1) quantity is nonnegative across
all expected covariate values, for all times s. Writing zi,(1) for the first p components
and zi,(2) for the remaining q of zi , with a similar block division of α(s) into α(1)(s, θ)

and α(2)(s), the model becomes

hi (s) = zti,(1)α(1)(s, θ) + zti,(2)α(2)(s)

=
p∑

j=1

zi, jα j (s, θ) +
p+q∑

j=p+1

zi, jα j (s)
(1.4)

for i = 1, . . . , n. Here θ is the collection of parameters used to describe the first
p hazard factor functions, which would typically take the form α j (s, θ j ) for j =
1, . . . , p.

The covariates in (1.4) are not dependent on time. As discussed in relation to the
Aalen model of (1.1), an extension to time-varying covariates requires only minor
modifications to the theory related to predictability and linear independence of the the
covariates at all time points. To ease the presentation we stick to covariates that are
constant in time.

Our quest is two-fold. We aim first at developing sound estimation methods for the
unknowns of the (1.4) model, along with large-sample theory describing the behaviour
of these estimators. Secondly, accompanying goodness-of-fit measures will be con-
structed, to assess the adequacy of the parametric components. To reach these goals
our paper proceeds as follows.

We start in Sect. 2 by presenting the natural methods and results for the purely
nonparametric and the purely parametric versions of model (1.4), before going on to
our favoured estimation strategies for the cases with both parametric and nonparamet-
ric components in Sect. 3. In Sect. 4 we derive the required large-sample normality
results, for both the parametric and nonparametric parts, enabling statistical inference.
A special case of the class of methods we propose is asymptotically optimal; the
details concerning such statements have independent interest, and are summarised in
Appendix A. Part of the benefit of using parametric rather than nonparametric compo-
nents in the (1.1) model is that it leads to better precision, again for both the parametric
and nonparametric components; this is assessed and illustrated in Appendix B.

Then in Sect. 5 we construct goodness-of-fit monitoring processes, which in partic-
ular lead to classes of chi-squared tests. In Sect. 6 the finite-sample behaviour of our
estimation and inference methods is illustrated through a simulation study. We also
present an empirical application, related to n = 312 primary biliary cirrhosis patients
in a double-blind randomised study, comparing our methods to those associated with
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the fully nonparametric Aalen estimator. These applications illustrate the usefulness
of the our methods, and showcase the gains in efficiency that are achieved by going
partly parametric partly nonparametric, as opposed to fully nonparametric. Our article
ends with a list of remarks, some pointing to further research work, in Sect. 7.

2 The fully nonparametric and fully parametric cases

Here we establish some notation and briefly describe the estimators Ã1, . . . , Ãr in
typical use for the full nonparametric model, in Sects. 2.1–2.2. These will be the
basis for fitting the parametric and nonparametric components in later sections. We
also go through the natural estimation methods for the special case of (1.4) where all
components are specified parametrically, in Sect. 2.3.

We first go through and comment on certain assumptions of convenience, which
will be taken to hold throughout our article.

Assumptions 1 (1) Ergodicity: All averages n−1 ∑n
i=1 φ(zi ) converge to appropriate

limits as n grows. These limitsmaybe interpreted asmeanswith respect to the covariate
distribution. This assumption facilitates the mathematical development and makes it
easier to give precise statements about e.g. limit distributions of estimators. The large-
sample theory is, however, developed conditionally on the observed covariate values,
so all randomness lies in (Ti , δi ) given these. (2) Finite time window: Individuals
are followed over a fixed finite time interval, say [0, τ ]. This is not a restriction in
practice. Most results may be extended to the case of τ = ∞, under appropriate
assumptions on the censoring mechanism. We shall be content to work with the finite
time horizon, with which the martingale limit theory works more smoothly and with
fewer technicalities. (3) Independent censoring and finite variances: The censoring
mechanism involved, leading to data (ti , δi ), are not related to the survival mechanism
generating the hazard rates. Furthermore, the r × r matrix function n−1 ∑n

i=1 I (Ti ≥
s)zi zti tends in probability to a matrix with full rank r , for each s ∈ [0, τ ]. This means
in particular that the censoring distribution does not have a support strictly smaller
than [0, τ ], and also that enough linearly independent covariate vectors zi are present
in the risk set at time s, with increasing n. (4) Smooth parametric components: The
α j (s, θ) of (1.4) are smooth in θ , with continuous first order derivatives α∗

j (s, θ) and
second order derivatives α∗∗

j (s, θ), for θ in a neighbourhood around the true parameter
θ0. ��

2.1 The general integrated weighted least squares estimators

The data consist of triples (ti , δi , zi ) for each of n individuals, where ti is the life-time,
possibly right-censored, δi an indicator for non-censoring, and zi the r -dimensional
covariate vector, as above. Let Ni (t) = I {ti ≤ t, δi = 1} and Yi (t) = I {ti ≥ t} be the
counting process and at risk indicator for individual i , and introduce the martingale
Mi (t) = Ni (t) − ∫ t

0 Yi (s)z
t
iα(s) ds. Then
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n∑
i=1

wi (s)zi dNi (s) =
n∑

i=1

Yi (s)wi (s)zi z
t
i α(s) ds +

n∑
i=1

wi (s)zi dMi (s), (2.1)

the second term here being martingale noise with mean zero. Here we have allowed
certain weight functions wi (s) to be used. They are taken to be pre-visible functions
(their values at time s are known at time s−), and the most often used choice is that
of wi (s) = 1. Equation (2.1) is the motivation behind

d Ã(s) = Gn(s)
−1n−1

n∑
i=1

wi (s)zi dNi (s),

where Gn(s) = n−1
n∑

i=1

Yi (s)wi (s)zi z
t
i , (2.2)

with accompanying cumulatives Ã j (t) = ∫ t
0 d Ã j (s) for j = 1, . . . , r . It is assumed

that at least r of the zi at risk at time s are linearly independent, so that Gn(s) has full
rank.

These estimators have well-studied properties, see Aalen, Borgan and Gjessing
(2008, Ch. VI). In particular, large-sample results are available via the calculus of
counting processes and martingales. We review briefly here results, and introduce
notation which will be needed in the development to follow. Consider

Un(t) = n−1/2
n∑

i=1

∫ t

0
wi (s)zi dMi (s), (2.3)

which is a martingale with variance process Hn(t) = n−1 ∑n
i=1

∫ t
0 Yi (s)wi (s)2

zi zti z
t
iα(s) ds. It follows from the regularity conditions described in Assumptions

1 that there are well-defined limits in probability,

Gn(t) →pr G(t) and Hn(t) →pr H(t),

as n increases, where G and H are full-rank r × r matrix functions. One finds

√
n{d Ã(s) − dA(s)} = Gn(s)

−1 dUn(s) →d G(s)−1 dU (s), (2.4)

whereU is aGaußianmartingalewith variance levelVar dU (s) = dH(s). In particular,√
n{ Ã(t)−A(t)} →d

∫ t
0 G(s)−1 dU (s),whichhas variance

∫ t
0 G(s)−1 dH(s)G(s)−1.

This limiting variance may be estimated from data as
∫ t
0 Gn(s)−1 dĤn(s)Gn(s)−1.

There are a couple of options for estimating dH(s) consistently, including

dĤn(s)=n−1
n∑

i=1

Yi (s)wi (s)
2zi z

t
i z

t
id Ã(s) and dĤ(s)=n−1

n∑
i=1

wi (s)
2zi z

t
i dNi (s).

In our empirical work we have used the second option.
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2.2 Optimal nonparametric estimation

One may show, e.g. exploiting a parallel to the theory of weighted least squares, that
the theoretically optimal weights, minimising Gn(s)−1dHn(s)Gn(s)−1, are

w0
i (s) = 1/{ztiα(s)} for i = 1, . . . , n. (2.5)

The resulting minimum variance corresponds to Fn(s)−1 ds, where

Fn(s) = n−1
n∑

i=1

Yi (s)
zi zti

ztiα(s)
. (2.6)

In practice one needs to estimate these, say with w̃i (s) = 1/{zti α̃(s)}, leading to

Ă(t) =
∫ t

0

{
n−1

n∑
i=1

Yi (s)w̃i (s)zi z
t
i

}−1
n−1

n∑
i=1

w̃i (z)zi dNi (s).

Onemay show that
√
n( Ă−A), with estimated optimalweights, has the same limit dis-

tribution
∫ .

0 F(s)−1 dU (s) as has
√
n( Ã− A) with optimal weights, provided the α̃(s)

estimator satisfies certain uniform consistency conditions, see Huffer and McKeague
(1991). Candidates for α̃(s) include kernel smoothing of the plain Aalen estimators,
which use wi (s) = 1, and local linear likelihood smoothing. The limit distribution
variance for this optimal Ă estimator is

∫ t
0 F(s)−1 ds, which is the minimum over all∫ t

0 G(s) dH(s)G(s)−1. Here F(s) is the limit in probability of Fn(s) of (2.6), assumed
to exist.

While F(s)−1 ds may be somewhat smaller in size than the most often usedG(s)−1

dH(s)G(s)−1, with weights wi (s) = 1, there are additional variability contributions
associated with this estimator, which therefore is not automatically better than the
Aalen ones for finite n. Our default choice, for empirical work, is therefore to use the
‘plain weights’ wi (s) = 1 in (2.2).

2.3 The fully parametric model

Consider now the fully parametric model where α j (s) = α j (s, θ) for j = 1, . . . , r .
We study the maximum likelihood estimator θ̂ , maximising the log-likelihood, which
may be written

�n(θ) =
n∑

i=1

∫ τ

0

[
log{ztiα(s, θ)} dNi (s) − Yi (s)z

t
iα(s, θ) ds

]
.

Here τ is an upper bound for the period of observation, assumed finite, see Assump-
tions 1. Let α∗(s, θ) = ∂α(s, θ)/∂θ be the r × m matrix of partial derivatives
∂α j (s, θ)/∂θk , where m is the length of the parameter vector θ . Assuming the model
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holds, with θ0 the true parameter value, let 
0 = ∫ τ

0 α∗(s, θ0)tF(s)α∗(s, θ0) ds, with
F(s) the limit in probability of Fn(s) of (2.6). We then have the following.

Proposition 2.1 Under standard regularity conditions, including those described in
Assumptions 1, and supposing the model holds for a true parameter θ0, an inner point
of the parameter space,

√
n(θ̂ − θ0) tends to Nm(0,
−1

0 ) in distribution.

Proof The proof follows the lines of Borgan (1984) and Hjort (1986, 1992). We need
the first and second derivatives of ztiα(s, θ), andwrite these respectively as α∗(s, θ)tzi ,
of dimension 1×m, and

∑r
j=1 zi, jα

∗∗
j (s, θ), where α∗∗

j (s, θ) is the m ×m matrix of
second order derivatives of α j (s, θ). The first derivative of �n is

un(θ) =
n∑

i=1

∫ τ

0

{α∗(s, θ)tzi
α(s, θ)tzi

dNi (s) − Yi (s)α
∗(s, θ)tzi ds

}
.

Using the martingales Mi (t) = Ni (t) − ∫ t
0 Yi (s)α(s, θ0)tzi ds we see that

n−1/2un(θ0) = n−1/2
n∑

i=1

∫ τ

0

α∗(s, θ0)tzi
α(s, θ0)tzi

dMi (s),

which is a martingale, evaluated at τ , with variance process

Jn = n−1
n∑

i=1

∫ τ

0

(α∗(s, θ0)tzi
α(s, θ0)tzi

)(α∗(s, θ0)tzi
α(s, θ0)tzi

)t
Yi (s)α(s, θ0)

tzi ds

=
∫ τ

0
α∗(s, θ0)tFn(s)α∗(s, θ0) ds.

It follows that n−1/2un(θ0) tends to a Nm(0,
0) random variable, under model con-
ditions.

We next need to work with the second order derivative in(θ) of �n , to show that
−n−1in(θ) = Jn + opr(1) at the model. We find

in(θ) =
n∑

i=1

∫ τ

0

[∑r
j=1 zi, jα

∗∗
j (s, θ)α(s, θ)tzi − {α∗(s, θ)tzi }2

{α(s, θ)tzi }2 dNi (s)

−Yi (s)
r∑
j=1

zi, jα
∗∗
j (s, θ) ds

]
.
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Using the martingales again, and simplifying, shows that

−n−1in(θ) = n−1
n∑

i=1

∫ τ

0

((α∗)tzi )2

αtzi
Yi ds

+ n−1
n∑

i=1

∫ τ

0

[ ((α∗)tzi )2

(αtzi )2
−

∑r
j=1 zi, jα

∗∗
j

αtzi

]
dMi (s).

At the true value θ0, the first term is equal to
∫ τ

0 (α∗)tFnα∗ ds = Jn , while the second
goes to zero in probability, by an application of Lenglart’s inequality, see e.g. Ander-
sen et al. (1993, p. 86). Some further analysis, similar in nature to material in Hjort
(1992, Sections 2–3), leads in the end to

√
n(θ̂ − θ0) being at most opr(1) away from

J−1
n n−1/2un(θ0), which has the limiting Nm(0,
−1

0 ) distribution. ��

3 Estimation in the parametric and nonparametric model

In this sectionwedescribe estimationmethods for the parametric-nonparametricmodel
(1.4). These involve a Step (a) for estimating the parametric parts, the A(1)(t, θ), with
these also being used in a Step (b) for estimating the nonparametric parts. In particular,
our estimators for these A(2)(t) utilise the parametric structure for A(1)(t, θ), and are
not identical to the direct Aalen estimators Ã(2)(t); the point is to utilise the parametric
knowledge, for increased precision.

3.1 Estimating the parametric part

Our preferred version of Step (a) is as follows. It is desirable to find values of θ which
makes the integrated, weighted quadratic form

∫ τ

0
{α(1)(s, θ) − α(1)(s)}tVn(s){α(1)(s, θ) − α(1)(s)} ds

as small as possible. Here τ is an upper time point, which could be chosen by conve-
nience for the application at hand,while the Vn(s) is a full-rank symmetric p×pmatrix
weight function. This minimisation cannot be directly achieved, since the quadratic
form depends on the unknown functions. Upon multiplying out and omitting the one
term which does not involve the parameters, however, the empirical version

Cn(θ) =
∫ τ

0
α(1)(s, θ)tVn(s)α(1)(s, θ) ds

− 2
∫ τ

0
α(1)(s, θ)tVn(s) d Ã(1)(s)

(3.1)

emerges. Here d Ã(1)(s) contains the first p components of the nonparametric d Ã(s)
of (2.2), and we let θ̂ be the minimiser of the criterion function Cn(θ).
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Note that the Vn(s) may very well be data-dependent. We typically have such in
mind where Vn(s) →pr V (s) for a suitable limit matrix function; see the following
section, where we also exhibit a particular choice of Vn(s) which leads to optimal
performance for large n. This involves the nontrivial estimates 1/{zti α̃(s)}, however,
discussed in connection with (2.5)–(2.6), and are often too unstable for small and
moderate n. Our default choice is the simpler

Vn(s) = n−1
n∑

i=1

Yi (s)zi,(1)z
t
i,(1), (3.2)

the upper left p× p block of n−1 ∑n
i=1 Yi (s)zi z

t
i . It has a well-defined limit in proba-

bility function V (s) by Assumptions 1. For the simplest case of having the parametric
hazard components constant, with α(1, j)(s, θ) = θ j for j = 1, . . . , p, the above
yields

θ̂ =
{∫ τ

0
Vn(s) ds

}−1
∫ τ

0
Vn(s) d Ã(1)(s).

These are the best constants, seen as yielding approximations θ̂ j t to the nonparametric
Ã(1, j)(t) for t ∈ [0, τ ] and j = 1, . . . , p, as also dictated by the choice of the Vn(s)
matrix.

With our default weight function in (3.2), the estimator θ̂ is similar to the estimator
proposed by McKeague & Sasieni (1994, Eq. (2.4), p. 503), but not identical to it. To
obtain their estimator, McKeague and Sasieni solve a system of equations obtained by
appropriately modifying the score function, obtaining an estimating equation linear
in θ (their β). Similar techniques may be used with more general parametric hazard
functions, thus possibly replacing theCn(θ)weworkwith herewith a slightly different
criterion function.

3.2 Backfitting to re-estimate the nonparametric part

We now describe a version of Step (b), after Step (a) has yielded parametric estimates
α j (s, θ̂ ) for j = 1, . . . , p as above. Consider the nonparametric part of equation (2.1),
that is

n∑
i=1

wi (s)zi,(2) dNi (s) =
n∑

i=1

Yi (s)wi (s)zi,(2){zti,(1)α(1)(s, θ) + zti,(2)α(2)(s)} ds

+
n∑

i=1

wi (s)zi,(2) dMi (s).

A more precise definition of the martingales involved, now that work is carried out
inside the (1.4) framework, reads
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Mi (t) = Ni (t) −
∫ t

0
Yi (s){zti,(1)α(1)(s, θ0) + zti,(2)α(2)(s)} ds, (3.3)

with θ0 the true parameter. To utilise the parametric knowledge, so as to reach better
estimation precision for the nonparametric components, this encourages using

n∑
i=1

wi (s)zi,(2){dNi (s) − Yi (s)z
t
i,(1)α(1)(s, θ̂ ) ds}

=
n∑

i=1

Yi (s)wi (s)zi,(2)z
t
i,(2) dα(2)(s) + noise

to put up

d Â(2)(s) = Gn,22(s)
−1n−1

n∑
i=1

wi (s)zi,(2){dNi (s) − Yi (s)z
t
i,(1)α(1)(s, θ̂ ) ds}.

(3.4)

This defines modified estimators Â j (t) for j = p + 1, . . . , p + q. Here Gn,22(s) is
the lower q × q submatrix of Gn(s).

Note that the method outlined here is really a class of procedures, in that different
weight schemesmay be used in (3.4), and also differentweight functions Vn whenmin-
imising the Cn(θ) function to obtain the θ̂ estimator. In (3.4), we may e.g. use vanilla
weights wi (s) = 1, or the more sophisticated w̃i (s) of Sect. 2.2. An asymptotically
optimal scheme is found in the next section.

4 Large-sample behaviour and optimality

Here we demonstrate limiting normality for the estimators of Sect. 3, i.e. θ̂ minimising
Cn(θ) of (3.1) and Â(2)(t) of (3.4), with precise formulae for the limit distribution
variances and covariances. Results are derived under model conditions (1.4), with θ0
denoting the true parameter for the parametric parts α(1), j (s, θ) for j = 1, . . . , p. Let
α∗

(1)(s, θ) be the p × m matrix of first order derivatives α∗
j (s, θ) = ∂α j (s, θ)/∂θ of

the p component functions, where m is the length of the full θ vector.

4.1 Large-sample theory for the parametric part

For studying our estimators we also need the function Q(s), defined by

Q(s) ds = [G(s)−1 dH(s)G(s)−1]11, (4.1)

that is, the upper left p × p block matrix of the full G(s)−1 dH(s)G(s)−1 matrix,
associated with the variance of the first p components of the Aalen estimator, i.e. Ã(1);
see (2.4).
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Proposition 4.1 Suppose regularity conditions spelled out in Assumptions 1 are in
force, and that Vn(s) →pr V (s), uniformly over s ∈ [0, τ ]. Then �n = √

n(θ̂ − θ0),
under the conditions of the parametric model, tends to Nm(0, �−1
�−1), in which

� =
∫ τ

0
α∗

(1)(s, θ0)
tV (s)α∗

(1)(s, θ0) ds,


 =
∫ τ

0
α∗

(1)(s, θ0)
tV (s)Q(s)V (s)α∗

(1)(s, θ0) ds.

Proof Setting the derivative of the criterion function (3.1) equal to zero gives the
estimation equation Sn(θ̂) = 0, where

Sn(θ) =
∫ τ

0
α∗

(1)(s, θ)tVn(s){d Ã(1)(s) − α(1)(s, θ) ds}.

This redefines θ̂ , under appropriate conditions, as an M-type estimator; see Hjort
(1985, Section 4), Hjort (1992, Section 5). Note that

√
nSn(θ0) →d

∫ τ

0
α∗

(1)(s, θ0)
tV (s)[G(s)−1 dU (s)](1) = S,

which at the true θ0 is a zero-mean normal with variance matrix 
. A little more work
gives expressions for the m × m matrix �n(θ), containing minus the derivative of
Sn(θ) with respect to the m parameters, as

�n(θ) =
∫ τ

0
α∗

(1)(s, θ)tVn(s)α
∗
(1)(s, θ) ds + En(θ).

Here the second matrix has components which are linear combinations of smooth and
bounded functions of θ times the p components of d Ã(1)(s)−α(1)(s, θ) ds, integrated
over [0, τ ]. The point is that all terms of En(θ) go to zero in probability, under model
conditions, at θ0, so �n(θ0) →pr �. This leads to �n →d �−1S, proving the claim. ��

Asking for the best performance under model conditions, at least for large n, is
the same as choosing the p × p matrix function V to minimise �−1
�−1. This is
achieved when V (s) is taken proportional to Q(s)−1, assuming Q(s) to have full rank
p× p across the range [0, τ ]. Then � = 
 = 
0, say, with minimum variance matrix
being equal to


−1
0 =

{∫ τ

0
α∗

(1)(s, θ0)
tQ(s)−1α∗

(1)(s, θ0) ds
}−1

. (4.2)

To prove that this is the minimum size matrix, let Z(t) be a Gaußian martingale
with incremental variance Var dZ(s) = Q(s) ds, and consider the random vectors
X = ∫ τ

0 α∗
(1)V dZ and Y = ∫ τ

0 α∗
(1)Q

−1 dZ . Their combined variance matrix is
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 =
(∫ τ

0 (α∗
(1))

tV QVα∗
(1) ds

∫ τ

0 (α∗
(1))

tVα∗
(1) ds∫ τ

0 (α∗
(1))

tVα∗
(1) ds

∫ τ

0 (α∗
(1))

tQ−1α∗
(1) ds

)
.

In usual block notation, 
11 − 
12

−1
22 
21 must then be nonnegative definite. This

is equivalent to the minimisation claim made.
The next question is how one can make 
−1

0 as small as possible. But this is the
same as minimising over Q(s) ds = [G(s)−1 dH(s)G(s)−1]11, which we have seen
takes place for the optimal weights (2.5), and for whichwe have Q(s) = [F(s)−1]11 =
F11(s), say. The asymptotically optimalmethod is accordingly to use as Vn(s) amatrix
function which converges in probability, if possible, to V (s) = F11(s)−1. But this is
achieved via

Vn(s) = F̃11
n (s)−1 = F̃n,11(s) − F̃n,12(s)F̃n,22(s)

−1 F̃n,21(s),

where F̃n is as Fn of (2.6), but with weights zti α̃(s) inserted. We may conclude that
this method gives the optimal performance for large n, with limit variance matrix

{∫ τ

0
(α∗

(1))
t(F11)−1α∗

(1) ds
}−1 =

{∫ τ

0
(α∗

(1))
t(F11 − F12F

−1
22 F21)α

∗
(1) ds

}−1
.

(4.3)

It is in fact not possible to improve on this, with any other estimation method. That
this is indeed so is detailed in Appendix A.

4.2 Large-sample theory for the nonparametric part

To study the behaviour of Â p+1, . . . , Â p+q we need the q × m function

φn(s) = n−1
n∑

i=1

Yi (s)wi (s)zi,(2)z
t
i,(1)α

∗
(1)(s, θ0),

which under the mild general conditions stated previously has a limit in probability
function φ(s).

Proposition 4.2 Assume that regularity conditions of Proposition 4.1 are in force, and
let � = �−1S be the limit variable for �n = √

n(θ̂ − θ0). Then there is process
convergence

√
n{ Â(2)(t) − A(2)(t)} →d

∫ t

0
G22(s)

−1 dU(2)(s) −
∫ t

0
G22(s)

−1φ(s) ds �

(4.4)

in the space D[0, τ ] of right-continuous functions with left hand limits on [0, τ ],
equipped with the Skorokhod topology.
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Proof Some algebra, starting with (3.3) and (3.4), shows that

d Â(2)(s) = Gn,22(s)
−1n−1

n∑
i=1

wi (s)zi,(2)[dMi (s) + Yi (s)z
t
i,(2)α(2)(s) ds

−Yi (s)z
t
i,(1){α(1)(s, θ̂ ) − α(1)(s, θ0)} ds],

which leads to

√
n{d Â(2)(s) − α(2)(s) ds}
.= Gn,22(s)

−1
{
n−1/2

n∑
i=1

wi (s)zi,(2) dMi (s) − φn(s) ds �n

}
.

Here Xn
.= X ′

n means that the difference tends to zero in probability. The claim follows
from general theory of convergence of processes in the D[0, τ ] space. ��

Propositions 4.1 and 4.2 give clear descriptions of the large-sample behaviour of
our parametric and nonparametric estimators, separately. We also need the joint lim-
iting distribution of θ̂ and Â(2)(t), for reaching inference for quantities involving both
parts, like the survival curves S(t | z) with A(t | z) = z1A1(t, θ)+· · ·+ z p Ap(t, θ)+
z p+1Ap+1(t) + · · · + z p+q Ap+q(t). Here we give details for the joint limiting distri-
bution of A(1)(t, θ̂ ) and Â(2)(t). We indeed have

√
n

(
A(1)(t, θ̂ ) − A(1)(t, θ0)

Â(2)(t) − A(2)(t)

)
d→ N

(
0, �(t)

)
, with �(t) =

(
�11(t) �12(t)
�21(t) �22(t)

)
,

(4.5)

with formulae for the variance matrix to follow.
In (4.4), the first term is a Gaußian martingale with variance

∫ t
0 G

−1
22 dH22G

−1
22 ,

while the second term also is normal, with a variance which can be written down
via Proposition 4.1. By combining Propositions 4.1 and 4.2, and applying the delta
method, we reach (4.5). First, �11(t) = A∗(t, θ0)�−1
�−1A∗(t, θ0)t , with A∗(t, θ)

being the p × m matrix with components ∂A j (t, θ)/∂θ , for j = 1, . . . , p. Second,
�22(t) is the variance of (4.4). To this end, for the covariance between the two terms
in (4.4), we have

E
(∫ t

0 G
−1
22 dU(2)

)
St = E

(∫ t

0
G−1

22 dU(2)

) ∫ τ

0
(dU t

(1)G
11 + dU t

(2)G
21)Vα∗

(1)

=
∫ t

0
G−1

22 (dH21G
11 + dH22G

21)Vα∗
(1),

(4.6)
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so that the full variance of the right hand side of (4.4) is

�22(t) =
∫ t

0
G22(s)

−1dH22(s)G22(s)
−1 +

∫ t

0
G22(s)

−1φ(s) ds �−1
�−1

(∫ t

0
G22(s)

−1φ(s) ds

)t

−2
∫ t

0
G22(s)

−1{dH21(s)G
11(s) + dH22(s)G

21(s)}V (s)α∗
(1)(s)�

−1

(∫ t

0
G22(s)

−1φ(s) ds

)t

.

Third, the lower off-diagonal block in the covariance matrix in (4.5) is

�21(t) = E
∫ t

0
G−1

22 dU(2)S
t�−1 A∗(t, θ0)t − E

∫ t

0
φ(s) ds �−1SSt�−1 A∗(t, θ0)t

=
∫ t

0
G−1

22 (dH21G
11 + dH22G

21)Vα∗
(1) �−1 A∗(t, θ0)t

−
∫ t

0
φ(s) ds �−1
�−1 A∗(t, θ0)t,

where we use (4.6), and�12(t) = �21(t)t . It is clear how to estimate these covariance
matrices, for example, when the traditional Aalen estimator weights wi (s) = 1 are
being used.

It is interesting to study the special case where V (s) = F11(s)−1, which by the
above leads to optimal large-sample performance. Then the two terms of the limit
process are in fact independent. This follows from dH(s) = F(s) ds and G = F . For
this situation, therefore, the covariance function for the limit process in (4.4) may be
written

∫ t1∧t2

0
F22(s)

−1 ds + J (t1)

−1
0 J (t2)

t,

where J (t) = ∫ t
0 F−1

22 φ ds and φ is the limit of

φn(s) = n−1
n∑

i=1

Yi (s)zi,(2)
zti,(1)α

∗
(1)(s, θ0)

zti,(1)α(1)(s, θ0) + zti,(2)α(2)(s)
.

5 Assessing goodness of fit

We have investigated the parametric-nonparametric model (1.4), constructed estima-
tors α j (s, θ̂ ) for the parametric components, and derived large-sample properties,
leading to inference methods for all relevant quantities, with better precision than
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for the traditional nonparametric methods. The underlying assumption for these good
results is that the parametric structure actually holds. In this section we construct
monitoring processes and related tests to assess adequacy of the parametric part.

5.1 Goodness of fit processes

For each j wemay considermonitoring processes of the type
√
n

∫ t
0 Kn, j (s){d Ã j (s)−

α j (s, θ̂ ) ds}, where Kn, j is a suitable weight function. More generally, let

Rn(t) = √
n

∫ t

0
Kn(s){d Ã(1)(s) − α(1)(s, θ̂ ) ds}, (5.1)

with a full p × p matrix of weight functions Kn,i j (s). These processes can be plotted
against time to judge the adequacy of the parametric modelling assumptions. The
estimator θ̂ used is as in Sect. 3.1, depending on amatrix weight function Vn , for which
�n = √

n(θ̂ − θ) under model conditions tends to � = �−1S ∼ Nm(0, �−1
�−1),
as defined and derived in Sect. 4.1.

Proposition 5.1 Assume that the Kn,i j functions are previsible and converge uniformly
in probability to Ki j functions over [0, τ ], that regularity conditions associated with
the two propositions of Section 4 are in force, and that the parametric model is true
for the hazard functions α j (s, θ), for j = 1, . . . , p. Then there is process convergence
in the space D([0, τ ]p), equipped with the Skorokhod product topology, and

Rn(t) →d R(t) =
∫ t

0
K [G−1 dU ](1) −

∫ t

0
Kα∗

(1) ds �.

Proof Letting as before α∗
j (s, θ) = ∂α j (s, θ)/∂θ , and using the representation (2.4)

with dUn(s) of (2.3), the essence here is that

√
n{d Ã j (s) − α j (s, θ̂ )} .= [Gn(s)

−1 dUn(s)] j − α∗
j (s, θ)t

√
n(θ̂ − θ) ds

for j = 1, . . . , p, by Taylor analysis. It follows from methods and results of Sect. 4
that there is joint distributional convergence of Gn(s)−1 dUn(s) and

√
n(θ̂ − θ) to

G(s)−1 dU (s) and � = �−1S. Let us write W (t) = ∫ t
0 [G(s)−1 dU (s)](1), so that

dW (s) = G11(s) dU(1)(s) + G12(s) dU(2)(s). We then have

√
n{d Ã(1)(s) − α(1)(s, θ̂ )} →d dW (s) − α∗

(1)(s, θ)�−1
∫ τ

0
α∗

(1)(s, θ0)
tV (s) dW (s).

With the weight functions Kn(s) converging uniformly in probability to the K (s), we
reach Rn →d R via details and methods similar to those used in Hjort (1990, Sections
3–4), for a similar though somewhat different setup. ��

The limiting processes R1, . . . , Rp are jointly Gaußian with zero mean. To find
their covariance functions we utilise the structure found in the proof of the proposition.
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The W process is a normal martingale with independent increments, and Var dW (s)
= Q(s) ds, as before, see (4.1). Then

R(t) =
∫ t

0
K dW − �(t)�, with � = �−1

∫ τ

0
(α∗

(1))
tV dW ,

writing also �(t) for the p × m matrix
∫ t
0 Kα∗

(1) ds. Taking the mean of

R(t1)R(t2)
t =

∫ t1

0
K dW

∫ t1

0
dW tK t + �(t1)��t�(t2)

t

−
∫ t1

0
K dW �t�(t2)

t − �(t1)�
∫ t2

0
dW tK t,

using the zero-mean independent increments property of W , gives

∫ t1∧t2

0
K QK t ds + �(t1)�

−1
�−1�(t2)
t − �(t1)�

−1�(t2)
t − �(t1)�

−1�(t2)
t,

where �(t) is the p × m matrix function
∫ t
0 K QVα∗

(1) ds.
The (5.1) framework involves a full matrix of weight functions and gives p pro-

cesses for simultaneous monitoring. We note the special case of a single p× 1 weight
function Kn = (Kn,1, . . . , Kn,p)

t , where a result can be read off from those above,
by considering only one monitoring process. So, the linear combination of compared
increments

R∗
n(t) = √

n
∫ t

0
Kn(s)

t{d Ã(1)(s) − α(1)(s, θ̂ ) ds}

= √
n

k∑
j=1

∫ t

0
Kn, j (s){d Ã j (s) − α j (s, θ̂ ) ds}

converges in distribution as a process to R∗(t) = ∫ t
0 K t dW − ψ(t)�, where now

ψ(t) = ∫ t
0 K tα∗

(1) ds.
If in particular Kn = (0, . . . , Kn, j , . . . , 0)t , we are led to the separate monitoring

processes

Rn, j (t) = √
n

∫ t

0
Kn, j (s){d Ã j (s) − α j (s, θ̂ ) ds}, for j = 1, . . . , p. (5.2)

This Rn, j (t) tends in distribution to

R j (t) =
∫ t

0
K j (s) dWj (s) − ψ j (t)

t�−1S, with S =
∫ τ

0
(α∗

(1))
tV dW , (5.3)
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whereψ j (t) = ∫ t
0 K j (α

∗
j )
t ds (of sizem×1).With calculations similar to those above,

the covariance function cov{R j (t1), R j (t2)} may be expressed as

∫ t1∧t2

0
K 2

j Q j j ds + ψ j (t1)
t�−1
�−1ψ j (t2)

− ψ j (t1)
t�−1� j (t2) − ψ j (t2)

t�−1� j (t1),

(5.4)

where

� j (t) = E
∫ τ

0
(α∗

(1))
tV dW

∫ t

0
K j dWj =

∫ t

0
K j (s)α

∗
(1)(s, θ0)

tV (s)Q( j)(s) ds,

writing Q( j)(s) for column j of the p × p matrix Q(s). Like ψ j (t), the � j (t) is of
size m × 1.

5.2 Chi-squared tests

Divide the time observation period [0, τ ] into time windows I� = (c�−1, c�] for
� = 1, . . . , k, where c0 = 0 and ck = τ . For each window we may compute the p-
variate increment�Rn(I�) = Rn(c�)−Rn(c�−1). FromProposition 5.1, the collection
of these tends in distribution to that of �R(I�) = R(c�) − R(c�−1), which under the
model hypothesis is zero-mean multinormal and with a covariance structure which
might be calculated from the above results.

We may somewhat grandly test the full simultaneous parametric hypothesis that all
α j (s, θ) components hold, via the p-dimensional �Rn(I j ). Here we outline simpler
but natural strategies connected to studying one α j (s, θ) at the time. For this we use
Rn, j (t) →d R j (t), as per (5.2)–(5.3), for a given choice of weight function Kn, j (s).
We compute increments �Rn, j,� = Rn, j (I�), and these tend jointly to the vector of
increments �R j (I�) = �{R j (c�) − R j (c�−1)}. This is a zero-mean multinormal,
say Nk(0, 
 j ), with 
 j the appropriate covariance matrix flowing from the covari-
ance function (5.4). There are several ways in which we may now test the α j (s, θ)

hypothesis. In particular,

Cn, j = �t
n, j 
̂

−1
j �n, j →d C j = �t

j

−1
j � j ∼ χ2

k , (5.5)

where �n, j is the vector of the �Rn, j , tending in distribution to � j , the vector of the
�R j (I�), and 
̂ j a consistent estimator of the k × k matrix 
 j .

5.3 Other tests

It is in principle easy to construct other test statistics based on themonitoring processes
Rn of (5.1), although their exact or limiting null distributions might be hard to tabulate
or assess. There are ways of approximating such distributions, however, as we now
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illustrate. Consider Rn, j of (5.2), for a suitable Kn, j , and define

‖Rn, j‖ = max
t≤τ

|Rn, j (t)| for j = 1, . . . , p.

These Kolmogorov–Smirnov type tests have well-defined limit distributions, namely
maxt≤τ |R j (t)| with R j (t) as in (5.3), a process defined in terms of W (t) =∫ t
0 [G(s)−1 dU (s)](1). Options for deciding on an upper critical point in the null
distribution of ‖Rn, j‖ include the following: (i) Onemay simulate from the limit distri-
bution, at the estimated versions of K j , Q and α∗

j (s, θ). This can be done with relative
ease by simulatingW processes, via independent normal increments. (ii) Onemay sim-
ulate from the ‖Rn, j‖ distribution, again at its estimated positionwith respect to K j , Q,
and α∗

j , by simulating full N∗
i and Y ∗

i processes from the model where the i th life-time

comes from the distribution with integrated hazard rate zti,(1)A(1)(t, θ̂ )+ zti,(2) Â(2)(t).
This amounts to semiparametric bootstrapping at the estimated model.

Note that the above methods also apply to the simultaneous test statistic∑k
j=1 ‖Rn, j‖, and relatives thereof.

6 Simulations and an application

In this section we compare the fully nonparametric linear hazard regression model,
that is, the Aalen model, with the partly parametric partly nonparametric linear hazard
regressionmodel developed in this paper. First, in Sect. 6.1, this comparison takes place
on simulated data; while Sect. 6.2 contains an analysis of n = 312 Primary biliary
cirrhosis patients that participated in a double-blind randomised study at the Mayo
Clinic in the USA between January 1974 and May 1984. This dataset is contained in
the R package survival (Therneau and Lumley 2013).

6.1 Simulations

We simulated 200 datasets of n = 2000 potentially right-censored survival times, with
the covariates held fixed across the 200 simulations (reflecting that the large-sample
theory of this paper is developed conditionally on the covariates, see Assumptions 1).
The true hazard rate of the i th individual was taken to be hi (t) = θ1θ2tθ2−1zi,1 +
θ3t zi,2 + 0.572 t2−1 + 0.123 t zi,4, with θ1 = 0.123, θ2 = 2, and θ3 = 0.567. The
censoring times were drawn from the uniform distribution on [0, 1], resulting in about
55 percent of the survival times being observed. To each data set we fit the Aalen
linear hazard regression model with four regressors, and also a correctly specified
partly parametric partly nonparametric model, that is, the model with hazard rate

hi (t) = θ1θ2t
θ2−1zi,1 + θ3t zi,2 + α3(t) + α4(t)zi,4,

meaning that α3(t) is the ‘intercept’ function. Figure 1 displays histograms of the
z-values (or Wald statistics)

√
n(θ̂k − θk)/se(θ̂k) for k = 1, 2, 3, and

√
n{ Â j (t) −

A(t)}/se( Â j (t)) for j = 3, 4, the latter evaluated at time t = 0.5. The standard errors
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Fig. 1 Histograms of
√
n(θ̂k −θk )/se(θ̂k ) and

√
n{ Â j (t)− A j (t)}/se( Â j (t)) for k = 1, 2, 3, and j = 3, 4.

The cumulative regressors are evaluated at t = 0.5. The sample size was set to n = 2000, and the histograms
are based on 200 simulations. The green curves indicate the standard normal density (Color figure online)

se(θ̂k) and se( Â j (t)) used to compute these statistics are estimates of the true standard
deviations of the estimators. The histograms indicate the with p = q = 2 and m = 3,
a rather large sample size is needed for the normality to really kick in for all estimands.

6.2 Empirical application

Primary biliary cirrhosis (PBC) is a rare but serious liver disease of unknown origin.
Between January 1974 and May 1984, 312 PBC-patients were included in a double-
blind randomized study at the Mayo Clinic in the USA, comparing D-penicillamine
with placebo. In our analysis, we have chosen to model the hazard rate of the i th
patient as

hi (t) = α1(t)treati + α2(t)albi + α3(t), (6.1)

where treati is an indicator taking the value zero if placebo, and one if D-
penicillamine; and albi is the concentration of serum albumin (in g/dl) of the i th
patient. The covariate albi was centred around its mean, and standardised by its stan-
dard deviation. We estimated the cumulatives A j (t) = ∫ t

0 α j (s) ds, both by using the
Aalen estimator Ã(t) of (2.2); and by parametrising the regression functions α1(t)
and α2(t) as α1(t) = α1(t, θ) = θ1θ2tθ2−1, and α2(t) = α2(t, θ) = θ3t , and using the
estimation methods developed in this paper.

The estimated cumulative regression functions, along with pointwise approximate
95 percent confidence bands, are plotted in Fig. 2. For the parametric cumulative
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Fig. 2 Estimates of the cumulative regression functions in (6.1), fitted to the PBC-data set. The dashed lines
indicate pointwise approximate 95 percent confidence bands

regressors the confidence bands were obtained by an application of the delta method,
and using Proposition 4.1. From the two plots in Fig. 2, it is not easy to see that the con-
fidence bands for the estimators in the partly parametric partly nonparametric model
are more narrow than those of the Aalen model. In Fig. 3, therefore, we have plotted
the estimated pointwise standard deviations for all six estimators of the cumulative
regression functions, clearly showing the gains in efficiency.

In order to make a stab at assessing the goodness of fit of the parametric functions,
Fig. 5 displays the Rn,1(t) and Rn,2(t) functions of (5.2), as developed in Sect. 5.
In particular, the blue line shows

√
n( Â1(t) − θ̂1t θ̂2), while the green line shows√

n( Ã2(t) − θ̂3t). We see that the parametric regressors seem to give a decent fit for
the first eight years in the data, while for the remaining years the Aalen estimators and
the parametric estimates diverge somewhat. One should keep in mind, however, that
with n = 312, the amount of data we have for these later years is rather limited, which
means increasing variance for Ã1(t) and Ã2(t). A formal test for the adequacy of the
parametric hazard functions may be carried out using the apparatus of Sect. 5.2.

Figure 4 displays the estimated survival curves of an individual, corresponding to
the Aalen, and the partly parametric partly nonparametric linear hazard regression
model, respectively, along with pointwise approximate 95 percent confidence bands
(see Sect. B.3). The two survival curves in Fig. 4 follow each other closely, but the
confidence band for the partly parametric partly nonparametric model is always tighter
than that corresponding to the Aalen estimator.
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Fig. 3 Estimated pointwise standard deviations of the estimators Ã j (t) for j = 1, 2, 3 of the Aalen model
(in green), and A1(t, θ̂ ), A2(t, θ̂ ), and Â3(t), of the partly parametric partly non-parametric model (in
black) (Color figure online)
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Fig. 4 The estimated survival curves corresponding to the estimated cumulative regression functions plotted
in Fig. 2, for a non-treated individual with albi equal to its mean. The dashed lines indicate approximate
95 percent confidence bands
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Fig. 5 The Rn, j (t) functions of (5.1), with weight functions Kn(t) = 1. The blue line shows
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n( Ã1(t) −

θ̂1t
θ̂2 ), while the green line shows

√
n( Ã2(t) − θ̂3t) (Color figure online)

7 Concluding remarks

We end our article with a list of concluding remarks, some pointing to further research.
A. Link to GAM. We have investigated parametric-nonparametric models for the

Aalen hazard function model
∑r

j=1 z jα j (s). There are similarities to the generalised
additive regressionmodels, where themean response curve for covariates x1, . . . , xr is
modelled as E (Y | x1, . . . , xr ) = f1(x1)+· · ·+ fr (xr ). The typical GAMmachinery
takes the regression functions f j (x j ) functions to be nonparametric, where there are
several estimation methods; see Hastie and Tibshirani (1990); Wood (2017). Methods
of the present paper may inspire parametric-nonparametric versions of GAM, with
some of the f j (x j ) modelled parametrically.

B.Local powerof goodness-of-fit tests.Themonitoring functions ofSect. 5, i.e. the
Rn(t) and Rn, j (t), lead as explained there to classes of goodness-of-fit tests, including
chi-squared and Kolmogorov–Smirnov type versions. One may also investigate the
local power of such tests, by extending Proposition 5.1 to the situation where the true
α j (s) functions are O(1/

√
n) away from parametric α j (s, θ0). Such results may then

be used further for constructing weight functions Kn(s) with optimal local power
against certain envisaged alternatives.

C. Large-sample behaviour outside model conditions. In Sect. 4 clear limiting
normality results have been derived under model assumptions. These may be extended
to situations where the real underlying hazard function structure takes the general
Aalen form

∑r
j=1 z jα j (s), with the first p of the α j (s) not necessarily being inside

the parametric models, say α j (s, θ j ). This involves certain least false parameters θ0, j .
The benefit of having such more general outside-model results is partly to construct
model robust methods for confidence intervals, etc., and also for building appropriate
model selection strategies.
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D. FIC for model selection. Our parametric-nonparametric model machinery has
been developed for a given set of parametric model components, say α j (s, θ j ) for
components j = 1, . . . , p. It would clearly be useful to develop supplementing model
selection methodology, for situations where the statistician is not able or willing to
decide a priori which components to take parametric, and in that case which paramet-
ric structures to use. Methods of the AIC and BIC variety cannot be used, since there
are no likelihood functions. One may however develop FIC methods, for the Focused
Information Criterion; see Claeskens and Hjort (2008, Ch. 6–7) for a general discus-
sion. FIC methods along the lines developed in Jullum and Hjort (2019), Claeskens
et al. (2019) can be constructed in the present setup. The start assumption is that the
nonparametric Aalen model holds, for certain unknown α j (t) for j = 1, . . . , r . For a
given quantity of interest, say μ = μ(α1(·), . . . , αr (·)), there would be a list of ensu-
ing estimators, say μ̂M for candidate model M . The FIC would then be an estimator
of the mean squared error for these μ̂M . Carrying out this would need large-sample
normality results outside parametric model conditions, as briefly pointed to in point
D above.

E. Alternative estimation strategies. Our estimators for the parametric-
nonparametric model use for Step (a) minimisation of a certain criterion function
Cn(θ) of (3.1), with the resulting θ̂ also being used in Step (b) for the nonparametric
components. Other strategies may also be used for Step (a), including minimising
other criterion functions for making α(1)(s, θ) come close to the underlying α(1)(s).
Special versions of such ideas lead to M-type estimators, for which theory is given in
Hjort (1985, Section 4). Extending the full theory to estimation of both θ and A(2)(t)
takes further efforts, however.

F. A parametric-nonparametric cure model. In recent years, cure models have
gained much attention. See Amico and Van Keilegom (2018) for a review, and the
references therein. These are models for survival times where an unknown fraction of
the population under study is ‘cured’, in the sense that the individuals belonging to
this fraction will never experience the event of interest. The population survival curve
for the (standard) cure model takes the form Spop.(t) = 1− π + π S(t), where S(t) is
a proper survival function (that is, S(t) → 0 as t → ∞), and π is the probability of
being susceptible to the event of interest. Both S(t) and π are typically modelled as
functions of covariates, S(t) = S(t | z) and π = π(x tγ ), where z and x are potentially
different sets of covariates. In Stoltenberg (2020) a cure model with a linear hazard
regression model à la Aalen is introduced, as in 1.3 the (proper) survival function
takes the form S(t | z) = exp{−ztA(t)}, and estimation methods for the A j (t) as well
as the parameters entering π(x tγ ) are developed. Inspired by the development of the
present paper, estimation methods and accompanying large-sample theory could be
developed for the partly parametric partly nonparametric cure model, that is, a model
whose population survival function is

Spop.(t; x, z) = 1 − π(x tγ )

+π(x tγ ) exp
[
−

∫ t

0

{ p∑
j=1

zi, jα j (s, θ) +
p+q∑

j=p+1

zi, jα j (s)
}
ds

]
,
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with π(a) : IR→ [0, 1] some parametric function, for example the logistic one. The
unknowns of this model, that need to be estimated from the data, are the parameter
vectors γ and θ , as well as the nonparametric cumulatives A j (t) = ∫ t

0 α j (s) ds for
j = p + 1, . . . , p + q. Estimators for these may be obtained by combining the
estimators developed in Stoltenberg (2020) with the two-step estimation procedure of
the present paper.
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A Asymptotic optimality

Consider the family of models whose hazard rates are

hi (t, θ, η) = zti,(1)α(1)(t, θ) + zti,(2)α(2)(t, η)

=
p∑

j=1

zi, jα j (t, θ) +
p+q∑
j=1

zi, jα j (t, η),
(A.1)

where α j (t, η) = ∑K
l=1 η j,l IWl , with Wl = [vl−1, vl), for an equidistant partition

0 = v0 < v1 < · · · < vK−1 < vK = τ of the observational window [0, τ ]. We
assume that α j (s, θ j ) for j = 1, . . . , p, so that r ≥ p. If θ ∈IRr say, then (A.1)
is a r + qK dimensional model. This is now a fully parametric model, so we can
use theory from Sect. 2.3. Until we say otherwise, we are going to assume that the
true model is of the form (A.1), with K held fixed. The log-likelihood function is
�n(θ, η) = ∑n

i=1

∫ τ

0 {log hi (s, θ, η) dNi (s) − Yi (s)hi (s, θ, η) ds}. We split the score
function in a θ -part and an η-part. We have

Un = n−1/2
n∑

i=1

∫ τ

0

α∗
(1)(s, θ)tzi,(1)

hi (s, θ, η)
dMi (s)

which is an r × 1 column vector (with r being the dimension of θ ), and where α∗
(1)

is a p × r matrix containing the partial derivatives ∂α j (s, θ j )/∂θ j for j = 1, . . . , p.
We also have the score function Vn = (V t

n,1, . . . , V
t
n,K )t , which is a qK × 1 column
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vector, where

Vn,l = n−1/2
n∑

i=1

∫
Wl

zi,(2)
hi (s, θ, η)

dMi (s) for l = 1, . . . , K ,

are q × 1 column vectors. Let Jn be the variance process of (Un, Vn), and let (θ̂ , η̂) be
the maximum likelihood estimator. Under the conditions of Proposition 2.1, we know
that

√
n(θ̂ − θ0, η̂ − η0,K ) converges in distribution to Nr+qK (0,
−1

K ) as n → ∞,
where 
K is the limit in probability of Jn , and θ0, η0,K denote the true values of
the parameters (under the K ’th model). We need to find the limiting distribution
of θ̂ and the estimator for the cumulative A2(t, η) = ∫ t

0 α2(s, η) ds. Introduce the
(p+q)×(p+qK )matrix function Ht : IRp+qK →IRp+q that is such that Ht (θ

t, ηt)t =
(θ1, . . . , θr , Ap+1(t, η), . . . , Ap+q(t, η))t for each t . (The function Ht also depends
on K , but we suppress this from the notation as it is of little relevance in the following.)
An application of the delta-method now yields

√
n{θ̂ − θ, A2(τ, η̂) − A2(τ, η0,K )} d→ Np+q{0, Hτ


−1
K H t

τ }.

(The full process convergence version of this result is not necessary for what we are
about to show.) The upper left block of Hτ


−1
K H t

τ is the r × r (limiting) variance
matrix of

√
n(θ̂ − θ0). Using the notation


K =
(


K ,11 
K ,12

K ,21 
K ,22

)
and 
−1

K =
(


11
K 
12

K

21

K 
22
K

)
,

the upper left block of Hτ

−1
K H t

τ is


11
K = (
K ,11 − 
K ,12


−1
K ,22
K ,21)

−1.

By doing the matrix algebra, we see that the matrices inside the parentheses are the
r × r matrix


K ,11 =
∫ τ

0
(α∗

(1))
tF11α

∗
(1) ds,

the r × qK matrix


K ,12 =
∫ τ

0
[(α∗

(1))
tF12 IW1 · · · (α∗

(1))
tF12 IWK ] ds,

and
K ,21 = 
t
K ,12, while
K ,22 is the qK ×qK block diagonal matrix whose blocks

are the q × q matrices

(
K ,22)l = F22 IWl , for l = 1, . . . , K .
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Here, F11, F12 = F21 and F22 are the probability limits of Fn,11, Fn,12 = Fn,21 and
Fn,22, respectively, where these latter are the blocks of the matrix Fn defined in (2.6).
We now consider 
K as K → ∞, that is, as the interval lengths shrink to zero. Under
appropriate conditions on the covariates, on the probability limit of n−1 ∑n

i=1 Yi (s),
and on the function s �→ α∗

(1) (e.g. bounded derivatives), we have that the l’th diagonal
block of 
K ,22 is

(
K ,22)l = F22(vl−1)K
−1 + O(K−2), for l = 1, . . . , K ,

and, similarly,


K ,12 = [(α∗
(1))

tF12(v0) · · · (α∗
(1))

tF12(vK−1)]K−1 + O(K−2).

We then get


K ,12

−1
K ,22
K ,21

= K−1
K∑
l=1

(α∗
(1)(vl−1))

tF12(vl−1)F22(vl−1)
−1F21(vl−1)α

∗
(1)(vl−1) + O(K−2),

which is a Riemann sum converging to
∫ τ

0 (α∗
(1))

tF12F
−1
22 F21α∗

(1) ds as K → ∞. In
conclusion, Jn →p 
K as n → ∞ with K fixed, and


−1
K ,11 →

{ ∫ τ

0
(α∗

(1))
t(F11 − F12F

−1
22 F21)α

∗
(1) ds

}−1
,

as K → ∞. The limit on the right, say 
−1
0,11, is the expression of (4.3).

Suppose that there is a consistent estimator for θ0 with smaller variance than 
−1
0,11

under the partly parametric partly nonparametric model in (1.4). Denote its variance
matrix by V , so that V < 
−1

0,11 (meaning that V −
−1
0,11 is a negative definite matrix).

Since 
−1
K ,11 ≤ 
−1

K+1,11 for all K and 
−1
K ,11 → 
−1

0,11 as K → ∞, this means that

there is a K0 such that V < 
−1
K ,11 for all K ≥ K0. But 
−1

K ,11 is the Cramér–Rao
lower bound for estimating θ0 under the K ’th parametric model of the form (A.1), so
V < 
−1

K ,11 cannot happen, and consequently there cannot be a consistent estimator

for θ0 with smaller variance than 
−1
0,11 under the model in (1.4).

B Efficiency and relative improvement calculations

There are general benefits from building and using parametric components mod-
els rather than nonparametric ones, provided the models can be assessed to check
for adequacy, a theme addressed in the following section. In this section we con-
sider questions related to efficiency; how much is gained, in precision, by using the
parametric-nonparametric model (1.4), compared to the nonparametric Aalen meth-
ods?
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B.1 Asymptotic relative efficiencies

We have seen in previous sections that various limit distributions depend crucially
on the limit matrix functions F,G, H of Fn,Gn, Hn , defined in Sect. 2, along with
certain relatives. These functions will now be studied and compared for a certain setup,
to illustrate also aspects of relative efficiency.

Assume that the censoring mechanism works independently of the life-times, with
ρ(s) = P{Ci ≥ s} for its survival function. Then E{Yi (s) | zi } = exp{−zti A(s)}ρ(s).
With Y (s) and Z denoting generic at-risk indicator and covariate vector, distributed
according the covariate distribution in question, we deduce

F(s) = E Y (s)
Z Z t

Z tα(s)
= E exp{−Z tA(s)} Z Z t

Z tα(s)
ρ(s) = F0(s)ρ(s),

G(s) = E Y (s)Z Z t = E exp{−Z tA(s)}Z Z t ρ(s) = G0(s)ρ(s),

dH(s) = E exp{−Z tA(s)}Z Z tZ tα(s)ρ(s) ds = dH0(s)ρ(s),

cf. Assumptions 1. Assume now that the rates α j are constant. Then

F0(s) = E exp(−sZ tα)Z Z t/(Z tα),

with derivatives F ′
0, j,k(s) = −G0, j,k(s), and the next derivative gives dH0, j,k(s). Sup-

pose further that the covariates Z1, . . . , Zr are independent with Laplace transforms
L j (u) = E exp(−uZ j ) = exp{−uψ j (u)}. Then

L ′
j (u) = −E Z j exp(−uZ j ) = −L j (u)ψ ′

j (u),

L ′′
j (u) = E Z2

j exp(−uZ j ) = L j (u){ψ ′
j (u)2 − ψ ′′

j (u)},

which leads to

G0, j,k(s) = E exp(−sZ tα)Z j Zk

=
[ r∏
i=1

exp{−ψi (αi s)}
]
{ψ ′

j (α j s)ψ
′
k(αks) − δ j,kψ

′′
j (α j s)},

where δ j,k equals 1 when j = k, and zero otherwise. These functions may now be
studied and integrated numerically to give F functions, for different scenarios.We shall
be content to illustrate this here for the case where the Z j s have gamma distributions.
Taking Z j to be gamma (c j , γ j ), with Laplace transform γ

c j
j /(γ j + u)c j , one finds

ψ j (u) = c j (γ j + u)−1 and ψ ′′
j (u) = −c j (γ j + u)−2, so that

G0, j,k(s) =
( r∏
i=1

γi

γi + αi s

){ c j
γ j + α j s

ck
γk + αks

+ δ j,k
c j

(γ j + α j s)2

}
.
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With the further specialisation that α j s are equal to a common α, and similarly that
the Z j s come from the same gamma (c, γ ) distribution, some work leads to

G0(s) = g(s)(c−1 Ir + er e
t
r ), where g(s) = c2γ cr

(γ + αs)cr+2 ,

F0(s) = f (s)(c−1 Ir + er e
t
r ), where f (s) = c2γ cr

(cr + 1)α(γ + αs)cr+1 ,

dH0(s) = h(s) ds (c−1 Ir + er e
t
r ), where h(s) = c2γ cr (cr + 2)α

(γ + αs)cr+3 ,

where er = (1, . . . , 1)t of length r and Ir is the identity matrix of size r × r .
Inside this particular setup, with constant hazard rates and independent covariates,

we may now answer various questions related to relative efficiency.
(i) How much is precision increased, for large n, by using the Ă estimator with

estimated optimal weights w̃i (s) instead of the simpler Ã estimator with plain weights
wi (s) = 1 (see Sect. 2)? We find

F−1 = 1

f ρ

(
cIr − c2

1 + cr
er e

t
r

)
and G−1 dH G−1 = h

g2ρ

(
cIr − c2

1 + cr
er e

t
r

)
,

the latter function being by inspection

a.r.e. = cr + 2

cr + 1
= ξr + 2/γ

ξr + 1/γ

times bigger than the first, writing ξ = c/γ for the mean of the Z j s. The variance
matrices for the limiting distributions of A∗ and Ã are the integrals of these functions,
so the asymptotic relative efficiency ratio is equal to the same constant. The variance
reduction may be small, when c or γ (for fixed ξ = c/γ ) is large, but can be as big as
nearly 2, which happens for c small or γ small.

(ii) How much better are the parametric estimators θ̂ j t of A j (t) than their best
nonparametric counterparts, under model conditions of constant rates α j (s) = θ j for
j = 1, . . . , p? The best nonparametric estimators A∗

(1)(t) have variance

Varnonpm =
∫ t

0
(F−1)11 ds =

∫ t

0

1

f ρ
ds

(
cIp − c2

1 + cr
epe

t
p

)
.

The limit variancematrix of
√
n(θ̂ −θ) is the inverse of
0 = ∫ τ

0 Q−1 ds, by Sect. 4.1.
For the best choice of weight functions, Q = (F−1)11 with consequent Q−1 =
(F11)−1, leading to 
0 being

∫ τ

0 f ρ ds times {cIp − c2(1+ cr)−1epep}−1. The limit
variance matrix for the θ̂ j t estimators therefore becomes

Varpm = t2
−1
0 = t2∫ τ

0 f ρ ds

(
cIp − c2

1 + cr
epe

t
p

)
.
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In order to reach more concrete comparisons, we let the censoring distribution be of
the shifted Pareto type ρ(s) = (1+ αs/γ )−k , with density (kα/γ )(1+ αs/γ )−(k+1).
We also let τ = ∞. The distribution is stochastically increasing with decreasing k,
with median equal to (γ /α)(21/k −1). The case of no censoring corresponds to k = 0,
while larger k corresponds to more heavy censoring. One finds

∫ ∞

0
f ρ ds = c2

α2

1

(cr + 1)(cr + k)
and

∫ t

0

1

f ρ
ds

= cr + 1

cr + k + 2

γ 2

c2

{(
1 + α

γ
t
)cr+k+2 − 1

}
.

The asymptotic inefficiency ratio becomes

Varnonpm
Varpm

= 1

(cr + k)(cr + k + 2)

(1 + u)cr+k+2 − 1

u2
, where u = (α/γ )t .

Note that the two matrices are simply proportional to each other, and the ratio is
independent of p.

(iii) How much improvement is there for the semiparametric estimators Â(2) of
Ap+1, . . . , Ap+q , constructed in Sect. 4.2, compared to the nonparametric A∗

(2)? The
latter ones have limit distribution variance matrix

∫ t

0
(F−1)22 ds =

∫ t

0

1

f ρ
ds

(
cIq − c2

1 + cr
eqe

t
q

)
.

This needs to be compared to the (4.5) formula. It involves φ(s), which in this situation
is seen to simply be F21(s), so that

J (t) =
∫ t

0
F−1
22 F21 ds =

∫ t

0

1

f ρ
f ρ ds

(
cIq − c2

1 + cq
eqe

t
q

)
eqe

t
p = t

c

1 + cq
eqe

t
p.

The variance matrix formula (4.5) is found to be equal to

∫ t

0

1

f ρ
ds

(
cIq − c2

1 + cq
eqe

t
q

)
+ t2∫ τ

0 f ρ ds

c3 p

(1 + cq)(1 + cr)
eqe

t
q .

With the censoring mechanism given above, one finds the asymptotic inefficiency
ratio, corresponding to the nonparametric limit variance of the A j estimator divided
by the parametric limit variance, is

1 + c(r − 1)

1 − cr
v(u)

/{1 + c(q − 1)

1 − cq
v(u) + c2κ(c, k)u2

}
,

where again u = (α/γ )t ,

v(u) = (1 + u)cr+k+2 − 1, and κ(c, k) = (cr + k + 2)p(cr + k)

(cq + 1)(cr + 1)
.
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This ratio can now be studied, as a curve in t , for different sets of parameters. In certain
setups the precision of the parametric estimator can be significantly better than the
nonparametric one.

B.2 Efficiency improvements for the plain-weights estimators

In the previous subsectionwe have cared for the particular case of theoretically optimal
estimators, for θ̂ and Â j+1, . . . , Â p+q . These involve the use of certain cumbersome
optimal weights wi (s) = 1/zti α̃(s), an accompanying optimal Vn(s) matrix when
minimising the criterion function Cn(θ) of (3.1), and so on. This has led to relatively
clear and transpararent formulae for relevant relative efficiency ratios.

In practice we would be more interested in similar efficiency ratios for our favoured
default choice Vn(s) = n−1 ∑n

i=1 Yi (s)zi z
t
i , however. Propositions 4.1 and 4.2 may

be used to find limit variance expressions in this case too, involving

n−1
n∑

i=1

Yi (s)zi z
t
i →p E exp{−Z tA(s)}Z Z t ρ(s),

n−1
n∑

i=1

Yi (s)zi z
t
i z

t
iα(s) →p E exp{−Z tA(s)}Z Z t Z tα(s) ρ(s),

and yet other quantities; again expectation is with respect to the ergodic distribution of
covariates, see Assumptions 1. These expressions can be evaluated numerically, along
with other required quantities, for given setups of covariance distributions and A j (t)
functions. The efficiency ratios do not have clear formulae, however, so comparisons
are harder and less transparent compared to those in the previous subsection. We have
carried out some numerical computations, in simple cases, and found ratios broadly
similar to those reached above.

B.3 Improvement potential for a given problem

For a given dataset, and a given focus parameter μ = μ(A1, . . . , Ar ), a statistician
may compute two estimators: the μ̂Aalen = μ( Ã1, . . . , Ãr ) using (2.2) to estimate the
cumulative regression functions, and

μ̂Partly = μ(A1(·, θ̂ ), . . . , Ap(·, θ̂ ), Â p+1, . . . , Â p+q).

Crucially, one may also use variance formulae developed in Sect. 4 to compute their
standard errors, i.e. estimated standard deviations. For example, a focus parameter of
particular interest in survival analysis is the survival function evaluated in some fixed
time point t . For an individual with covariates z0 = (zt0,(1), z

t
0,(2))

t , so that the focus

parameter is μ = exp{−zt0A(t)}, we have √
n(μ̂Partly − μ) →d N(0, μ2zt0�(t)z0),

where �(t) is the matrix appearing in (4.5).
A direct comparison of the standard errors of μ̂Aalen and μ̂Partly for a given focus

parameter allows one to see if there is a clear gain in going from nonparametric to
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parametric for the α j (s) components in question. This is illustrated in Fig. 3, with
proof-of-the-pudding plots of the standard errors for the two estimators of the cumu-
latives A1(t), A2(t), A3(t), and also exemplified by the survival curve plot of Fig. 4
where the confidence band of the partly parametric survival curve is visibly more
narrow than the confidence band corresponding to the Aalen estimator.
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