UNIVERSITY OF OSLO
Department of Informatics

A Client-side

Split ACK Tool for
TCP Slow Start
Investigation

Master Thesis

Rolf Erik G.
Normann

2011-08-01







A Client-side Split ACK Tool for TCP Slow

Start Investigation

Rolf Erik G. Normann

2011-08-01



11



Abstract

The start-up phase in TCP is called Slow Start, and is followed by Congestion
Avoidance. The Slow Start phase is becoming a bottleneck of communication in
the Internet today. There are several proposals to improve TCP’s Slow Start phase
and it has recently gotten much attention because Google proposes to use a larger
starting point (Initial Window, IW).

We present a tool that, by splitting acknowledgements of TCP into multiple pieces
at the beginning of a connection, to trick a host into quickly sending a larger
number of packets than normally intended. We tested the method against different
Operating Systems, commercial companies and the top 600 most visited web sites
in the world. Test results indicate that, while many hosts do not react to our tool,

some do, and they are probably enough to use the tool for measurements.

1l



v



Acknowledgments

I would like to thank my supervisor Dr. Michael Welzl for his guidance, inspiring
attitude and the friendly atmosphere. Without his invaluable feedback, this work

would not have been possible.

I would also thank my brother Fredrik Normann and my friend Vegard Lunde for
proofreading the thesis. I would also thank Chris Carlmar for the support with the

[Ptables modification.

My special thanks goes to my girlfriend Camilla Heslien for emotional and moral
support throughout the whole master period. Without her patience and support,
this thesis would never been finished. And at last, a big thanks to my parents for

believing in me.

Thank you all so much!

Oslo, July 31. 2011
Rolf Erik G. Normann



vi



Contents

1

2

3

Introduction

Background and Related Work

2.1 The Internet Protocol . . . . . ... ... ... .. ........
21.1 TmeToLive . ... ... ... ... ... ........
212 TIPChecksum . .. ... ... ... ... .........

2.2 Transmission Control Protocol . . . . . .. ... ... ......
22.1 TCPconnection. . . . . . . .. ... ...
2.2.2 Acknowledgment of Packets . . . . .. ... .......
223 Congestion . . . . ... e

23 TCPalgorithms . . . . . ... . ... ... .. ... . ......
2.3.1 TCP - Three-Way-Handshake . ... ... ... .....
232 TCP-SlowStart . . . ... ... ... ... .......
2.3.3 TCP - Congestion Avoidance . . . . . .. ... .. ....

2.4 Misbehaving Sender/Receiverin TCP . . . . ... ... ... ..
24.1 TCPSplit ACKinSlow Start. . . . ... ... ......
2.4.2  Simulated Study of TCP ACK Division . . .. ... ...
2.4.3 Appropriate Byte Counting . . . . . . ... ........

2.5 MoreonSlow Start . . . . ...
2.5.1 Client/Receiver . . ... ... ... ... ........
252 Server/Sender . . .. ... ... ...

A Split ACK Tool

3.1 Introduction . . . . . . . . . . . . .

vii

10
11
12
12
13
14
15
16
19
20
22
22
24

31



32 Design . . ... e 31
32.1 KermelMode . .. ... ... .. .. .. ... ... 32
322 UserMode . ... ... ... ... ... ... ... 33
323 DesignConclusion . . .. ... ... ........... 33
3.3 Librariesand Tools . . . . . ... ... ... ... ........ 34
33.1 Superuser . . . ... 34
3.3.2 Seconduser-TheClient . . . .. ... .......... 35
3.3.3 Packet capturing library - Libpcap . . . . . . . ... ... 35
334 IPtables . . . . . . . . . ... 36
335 Wget . ..o 37
34 Implementation . . . . . . ... .. ... o 38
34.1 BasicuseofPcap . .. ... ... ... .. .. ...... 38
3.4.2 Capturing and forwardingof ACKs . . .. ... ..... 39
343 Generationof Split ACKs . . . . ... ... ....... 44
3.4.4 Finalizing Split ACKs . . . . . ... ... ... ..... 46
345 Structure . ... Lo 48
346 Thetestscript. . . . . ... .. ... .. 49
35 Summary . ... 49
Test Results 51
4.1 Introduction . . . . . . . . . ... 51
42 Setup . ... e e 52
4.2.1 Hardware and Software . . . . . . .. .. ... ... ... 52
422 TestParameters . . . . . . ... ... ... ... ..., 53
4.3 Preliminary Tests . . . . . . . . . .. ... .. ... 55
4.3.1 Results - Operating Systems . . . . .. ... ....... 56
4.3.2 Results - Commercial Companies . . . ... ... .. .. 60
44 Split ACKTests . . . . . . . . oo 64
4.4.1 Results - Operating Systems . . . . . ... ... ..... 65
4.4.2 Results - Commercial Companies . . . .. ... .. ... 70
4.5 Top 600 Web Sitesinthe World . . . .. ... ... ....... 73
45.1 DataPackets . . ... ... ... ... 73
4.5.2 Total Number of Packets . . . . .. ... ... ...... 75

viil



4.6 Summary . . ... ... e

Conclusion & Future Directions
5.1 Conclusion . . . . . . . . .

5.2 Future Directions . . . . . . . . . . . . ..

Appendix

A.1 Traceroutes . . . . . . . . . . . . . e
A.2 Source Code - Split ACK Tool . . ... ... ... ........
A3 DataResults. . . . ... ... ... .. ...

1X






Chapter 1

Introduction

The Internet is a collection of different servers, computers and devices. They all
run some kind of an operating system, and most of them support IPv4/IPv6 and
utilize the Transmission Control Protocol (TCP) to communicate. In fact 85-95%
of the packets sent on the Internet are TCP packets [1], and this has not changed
over the course of time, since file sharing (e.g. BitTorrent), HTTP, and video

streaming (e.g. YouTube, Justin.tv) are utilizing TCP to communicate.

The start-up phase in TCP is called the Slow Start phase. The current Slow Start
algorithm was developed by Van Jacobson in 1988 [2], and was described in the
article «Congestion avoidance and control» [3]. The 1988 version of Slow Start
is still used today, but with some improvements and modifications [4]. The clas-
sic Slow Start algorithm starts off with 3 segments and doubles the sending rate
for every Round Trip Time (RTT), giving the connection an exponential growth.
This approach was a good choice when the the maximum bandwidth was around
56 Kb with a dial-up modem. Today the average connection speed has drastically
increased, and a common connection can range from 1 MBit up to 100 MBit. In
fact, 99% of all Norwegians got access broadband of 1000 KBit or more [5]. So
the Slow Start approach today is too slow, when compared to the higher speeds of

the connections.
To illustrate this with an example, we have a 56 Kb/s connection, and a packet

1



size of 1500 bytes (i.e maximum MTU), and a delay of 100 ms. To achieve the
maximum bandwidth of the 56 Kb/s connection, it would only require one RTT.
To achieve the maximum bandwidth for a 10 MBit connection, with the same
delay and packet size, it would take around 6 RTTs before the connection would
reach the maximum bandwidth. Note that in any of the two scenarios, there are
no network congestion, drops or delays.

There are different standards that tell a client how to communicate, but the im-
plementations of the standards are not the same in every Operating System (OS).
The different Linux distributions (e.g. Ubuntu [6]) have a tendency to implement
most of the new standards in the kernel. This gives the end user the opportunity
to choose from the different standards, features and algorithms. But there is a
difference between implementing a feature/algorithm, and turning the feature/al-
gorithm on by default. The distribution does come with predefined algorithms
and features, and it is up to the end user to turn on (or off), and configure the
other features. In the end, they give the end user the opportunity to use the differ-
ent features and the more experimental algorithms. To give an example, we can
look at the Stream Control Transmission Protocol (SCTP) [7]. This protocol is

implemented in the more recent Linux kernels, but is by default turned off [8].

The big commercial companies (e.g. Microsoft, Apple, Google, Oracle) are fol-
lowing the standards, but they may have different implementations of the same
standards. There may be similarities, but its hard for the end-user to see the dif-
ferences in the implementations and configurations. An OS could have a source
code that is restricted (i.e. Windows, OS X), and most OSs do have configurations
that the end-user needs to setup. Even in Linux, where the source code is open
and free, this is still a problem. The source code could be changed, and as a client,
there is no easy way to find out what was changed. The implementation of Slow
Start could also differ from OS to OS. And because it is not an easy task to see
how the different algorithms behave between OSs, we need a tool to probe the

different servers.

In this thesis we implemented a tool that can utilize split Acknowledgments (ACK)
- ACKs which acknowledge less than a whole packet. Such ACKs have been re-
ported to provoke unusual behavior by a server [9]. And the split ACK tool probes

2



a server to see if we achieved any results and/or benefits from this approach. We
wanted to know in this thesis how Slow Start was implemented in the different op-
erating systems, and how the different operating systems reacted to a client side
split ACK approach. The goal was to use the split ACK approach to observe the
difference in the behavior of the servers, and also to see if we could achieve a

faster Slow Start phase by utilizing client side split ACKs.

The implementation of the split ACK tool was targeted for a real world scenario,
and was done only by modifying TCP ACKs on the client side. The results showed
that split ACK approach did increased the traffic flow, and that the split ACK
tool was successful in splitting ACKs, and measuring the server response. The
split ACK tool could therefore be utilized as en efficient method to measure the

response of a split ACK approach in a real world scenario.






Chapter 2

Background and Related Work

In this chapter we will give some background on the Internet Protocol (IP) and
Transmission Control Protocol (TCP). The chapter will also go into some detail
about Appropriate Byte Counting (ABC), congestion avoidance, Slow Start, ac-
knowledgments (ACKs), and split ACKs. This background information is impor-
tant in order to understand the design and implementation of the Split ACK tool

and to understand the final results.

2.1 The Internet Protocol

Internet Protocol (IP) is a connectionless protocol that communicates between two
endpoints on a packet-switched network. The protocol is defined in the Request
for Comments (RFC)791 [10].

For a device to be able to communicate on an IP network, it requires an IP address.
Each connected device is required to have its own unique addresses, whether it be
a intranet or the Internet. This is because the IP address is the identity of the
connected devices, and a router is using this identity to send the correct packets to
the correct device. So in a network where two devices have the same IP address
an IP conflict will occur. A router will not be able to determine where the data

should be sent to and the devices will lose the connection.



The IP work on the best effort principle, and will try to deliver a packet, but give
no guarantees for that the packet will be lost, duplicated, delayed or out of order.

The main task for IP is to provide addresses to identify the route to the destination.

A device will never need to know the path to the receiver, but it only assumes that
the receiver exists and sends the packet to a router until it arrives at the target. If
there is a path to the receiver, the router will deliver the packet, if not, the packet

may be dropped or forwarded to the next router.

Byte
Offset
e CEEE RN KRR RNRNENEN XN SR N S A
01 Version IHté:;t:?er Type of Service (TOS) Total Length
4 Identification LP Fl:l)ag; Fragment Offset
1 1 1 i | 1 L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20
8 Time To Live (TTL) Protocol Header Checksum Bytes
i —— ——— i ————— S ——— ——————— IHL
12 Source Address (Internet
Header
S S ) S S S S S S S ——" — —— - Length)
16 Destination Address
20 IP Option (variable length, optional, not common) J
T T T L T T T ‘ T T 1 T 1 T T T l T T T 1 2 T T T ‘ T T T T T T 3 T
Bil0123456?890123456?890123456?8901
|-¢— Nibble —>+— Byte —>+— Word =i
Version Protocol Fragment Offset IP Flags
Version of IP Protocol. 4and P Protocol ID. Including {(but  Fragment offset from start of
6 are valid. This diagram not limited to): IP datagram. Measured in 8
represents version 4 1ICMP 17 UDP 57 SKIP byte (2 words, 64 bits) X 0x80 reserved (evil bit)
structure only. 2 !I‘_EMP 47 GRE 68 E'GFRP increments. If IP datagram is D 0x40 Do Not Fragment
8TCP B0 ESP  EA OGPF fragmented, fragment size M 0x20 More Fragments
9IGRP 51 AH 115 L2TP
Header Length (Total Length) must be a follow
multiple of 8 bytes. RFC 791
Number of 32-bit words in Total Length
TGP hoader, minimum value Header Checksum Please refer to RFC 791 for
of 5. Multiply by 4 to getbyte ~ Total length of IP datagram, 0 the complete Internet
count. or IP fragment if fragmented. Ehegksum of entire [P Protocol (IP) Specification.
Measured in Bytes. eager

Figure 2.1: Ipv4 Header. This illustration is used by permission of author Matt
Baxter.

The IP header is shown in illustration 2.1. In this thesis we are only going to do
small changes to the IP header. The modifications are going to be done to the TTL
value in the IP header.

Note that the are two different versions of the IP, and the most widespread version
of IP is version 4 (IPv4). The other IP version is the successor, IP version 6 (IPv6).

IPv6 is in most cases utilized in combination with IPv4, and has not yet taken over.

6



Because of the worldwide use of IPv4, we are going to focus on the IPv4 version

of the protocol in this thesis.

2.1.1 Time To Live

The IP header is split up in different header fields that have different properties.
The IP destination field has the IP address to the destination and the source field
holds the clients address. As seen in figure 2.1 on the preceding page the IP
header has a TTL field that is utilized to eliminate loops in a network. The time to
live (TTL) value is a mechanism to eliminate unwanted traffic in a network. TTL
is a counter that keeps track of the number of hops the packet has left to go, and if
the TTL value reaches zero, the packet will get dropped by the next router. These
mechanisms are used to avoid that packets go in an endless loop, and to limit the

queue size in routers.

2.1.2 1P Checksum

In figure 2.1 on the facing page of the IP header and in figure 2.2 on page 9 there
is a field that is responsible for verifying any changes in the header or payload.
In IPv4 it is called the IP Header checksum. A checksum can be defined like
this [11]:

“A checksum or hash sum is a fixed-size datum computed from an
arbitrary block of digital data for the purpose of detecting acciden-
tal errors that may have been introduced during its transmission or

storage.”

Therefore, if any changes were done to the header in the transmission, a new cal-
culation of the checksum would differ from the value stored in the header. Routers
do verify the checksum of incoming packets in the same way, they recalculate the
checksum and compare it with the one stored in the header. If the incoming packet
was modified or corrupted the router would simply drop the packet and wait for a

retransmission.



2.2 Transmission Control Protocol

Transmission Control Protocol (TCP) is layered between the IP and the applica-
tion layer above, and act as the transport layer. This is the same as described in
the OSI reference model, where the main tasks of the transport layer is to handle
the end to end communication and the reliability of a connection. The Trans-
mission Control Protocol is described in the RFC793 [12], and updated by the
RFC1122 [13] and RFC3168 [14]. TCP is one of many different transport layer
protocols, but TCP is by the far most wide spread and implemented protocol in
the Internet today. In fact as early as 1997, 95% of all packets on the Internet were
transmitted using TCP [1].

2.2.1 TCP connection

To put it very simple, a TCP connection is a connection from a device to another
device, over multiple (or single) underlying computers. This gives the illusion of

a direct connection from device A to device B.

A device does not need to know if the connection is a local connection, or if
the connection is routed through multiple servers over the Internet. All a devices
needs to know is the address to the server destination (and the port). To establish a
TCP connection, the first step is to initialize the connection to the specific IP and
port. If the host does not respond the connection will time out. This differs from
e.g email where the email address has to be valid, but the receiver does not need
to be online. With TCP, the host needs to be online, and the address and port need

to be correct.

As mentioned before, the IP is merly in charge of addressing, and because IP
cannot guarantee reliability of segments, the client needs a transport protocol that
can handle reliable delivering. TCP is based on best effort delivery and will try to
provide a reliable and ordered delivery of a stream of bytes. It cannot guarantee
this feature, but it will go very far to try to keep this guaranty. This is why TCP
has algorithms that will go far to keep a reliable connection and to deliver/get the

8



data that the client wants to send/receive.

Byte
offset |9 1 1 1 2 1 3 1
0 Source Port Destination Port *
4 Sequence Number
S ——— ——— — i ——— i ——— — ——————— —— — 20
8 Acknowledgment Number Bytes
‘& ‘& ‘& ‘& ‘& ‘& ‘& ' 1 ‘& ‘& ‘& ‘& ‘& ‘& 1 ‘& ‘& ‘& 1 ‘& ‘& ‘& 1 ‘& ‘& ‘& Oﬁsel
12 Offset Reserved CE J CE FIF?QEF-{ S F Window
16 Checksum Urgent Pointer
20 TCP Options (variable length, optional) 1 v
T T T 1) T T T l T T 1 L 1) T T T l T T T 1) 2 T T T l T T T T T T 3 T
Bit Y0 1 2 3456 789 7312345%789,3123'45¢67889 51
| nibbic —}—Byte —#}— word >
TCP Flags Congestion Notification TCP Options Offset

I[ceEuvaprPRrs F|

Congestion Window

ECN (Explicit Congestion
Notification). See RFC
3168 for full details, valid

0 End of Options List
1 No Operation (NOP, Pad)
2 Maximum segment size

Number of 32-bit words in
TCP header, minimum value
of 5. Multiply by 4 to get

C 0x80 Reduced (CWR) states below. 3 Window Scale byte count.

E 0x40 ECN Echo (ECE) Packet State DSB ECN bits 4 Selective ACK ok

U 0x20 Urgent Syn 00 11 8 Timestamp RFC 793

A 0x10 Ack Syn-Ack 00 o1

P 0x08 Push fekoon oo Checksum Please refer to RFC 793 for
R 0x04 Reset Mo Congestien 01 00 the complete Transmission
S 0x02 Syn Mo Gongestion 10 00 Checksum of entire TCP Control Protocol (TCP)

F 0x01 Fin Congestion 11 oo segment and pseudo Specification.

01
11

Receiver Aesponse 11

Sonier Racpones 11 header (parts of IP header)

Figure 2.2: TCP Header. This
Baxter.

illustration is used by permission of author Matt

TCP is the main protocol for Internet communication today, and without TCP
the Internet would not be the same as we know it today. The reason why TCP
has survived for so long, is the constant improvement of the protocol, and the
mechanisms it features. But TCP still has a few drawbacks that are not updated to

match the speed of the modern Internet.

Note that TCP and IP are commonly known and referred to as TCP/IP [15], but
in this thesis we will refer to TCP and IP as standalone protocols. This is done to
avoid any confusion when we are describing TCP or IP in the design and imple-

mentation part of this thesis.



2.2.2 Acknowledgment of Packets

Reliability is one of the fundamental functions in TCP. The Internet gives no guar-
antee for data transfers, and works only on the best effort principle. So to be able
to detect packet loss, congestion or reordering, we need reliability from the trans-
port layer. TCP uses different mechanisms to guarantee reliability of a connection;

two core functions are sequence numbers and acknowledgment numbers.

Sequence numbers identify each byte in a packet, and identify which stream data
belong to (i.e. multiple connections from a single host). The sequence numbers
are unique to every connection, regardless of any fragmentation, disordering or
packet loss that might happen to a segment. The sequence number is stored in
every TCP segment and it is a continuously growing number based on a random

generated number that only the sender and receiver know.

The second mechanism is the use of acknowledgments (ACKs). Acknowledg-
ments are used to confirm the arrival of incoming packets, and to verify that pack-
ets were not fragmented or disordered. An acknowledgment number is generated
by using the sequence number of the incoming packet and the number of bytes that
were received. The value is then stored in the TCP packet header, where the Ac-
knowledgment number is the next expected sequence number and the and «ACK»
flag is set. The sender would now know that the acknowledgment is for packet
X, i.e all packets up to and including X have arrived, and the client can now send
the next packet. If a sender did not receive an ACK for a packet, a predetermined
timer will expire and a retransmission of the lost packet is triggered. And even if
the server did receive the packet, but the ACK got dropped, the sender still needs
to retransmit the packet to keep the reliability. The use of ACKs is one of the core
functions in TCP, and is used in most of the algorithms like Slow Start, congestion

avoidance, the detecting packet loss, and initializing of a new connection.

Selective Acknowledgment

Relying on a pure cumulative acknowledgment scheme, as in the original TCP

protocol, could lead to a potential catastrophic effect on the TCP throughput. Con-

10



sider a scenario where we would send 15,000 bytes in 10 packets (1500 bytes per
packet). If the first packet got lost and the other 9 did arrive at the host, in a
pure cumulative acknowledgment protocol, the receiver cannot tell the client that
it only received bytes 1500 - 15000, and that the O - 1499 bytes were lost. This
potentially triggers the sender to retransmit all of the 15000 bytes.

Selective Acknowledgment (SACK) [16] is an addition to the TCP protocol as a
strategy to eliminate this problem. SACK allows receivers to acknowledge dis-
continuous blocks of packets that were received correctly, and to alert the sender
to the last sequence number of the last continuous packets received. The sender
uses this information to retransmit the correct missing packets, so that the receiver
gets a complete set of packets. In the previous scenario, where the sender would
potentially retransmits all of the data, just because the first packets got lost, the
SACK strategy would alert the host that only the first packets was lost. With the
SACK option, the sender would see that it was only the first packet that got lost,
and that it would only need to retransmit the first 1500 bytes.

2.2.3 Congestion

Congestion in a network can be compared to a traffic jam on a highway. The same
problem occurs on the Internet, where a link is overloaded with traffic or where,
as a consequence, a router queue is full. A definition of network congestion can
be describe as when a link or node is so overloaded with traffic, that the quality of
service deteriorates. So network congestion can be caused by queueing delay in a

router, packet loss or blocking of a new incoming connection.

TCP will try to control network congestion, via multiple algorithms that can detect
it (e.g. the detection of three identical ACKs). This mechanism would indicate
that the sender that needs to back off, because the receiver may be flooded by
data packets. The TCP congestion algorithms will take necessary steps to avoid
further congestion, and will try to keep up the speed of the connection, without
causing congestion. This will be explained thoroughly in the section of congestion

avoidance.

11



2.3 TCP algorithms

TCP has different algorithms and mechanisms that are a part of the standard of
TCP. Some of these mechanisms and algorithms are Slow Start, congestion avoid-
ance, fast retransmit, fast recovery and — an important element in this thesis —

appropriate byte counting.

2.3.1 TCP - Three-Way-Handshake

When a client wants to establish a connection, it needs to verify that the server
is online and that it is ready to process the connection. The verification and the
initializing of a connection is done by using the three-way-handshake [12]. The
algorithm makes sure that a server is ready to process a incoming connection, and
secures the initializing of the new connection by exchanging sequence numbers
between the client and the server. The procedure of how the algorithm works is

split into three steps:

1. The first step is a TCP synchronize packet where the SYN flag in the TCP
header is set. The Client sets a sequence number X which is randomly gen-
erated. The randomly generated sequence number is for security and veri-
fication between the client and the server. The client sends the SYN packet

to the server to indicate that the client wants to establish a connection.

2. The second step is when the server responds to the client by sending a packet
with a synchronize acknowledgment, where the SYN and ACK flags are
set. The server also generates a random Y sequence-number and sets the

acknowledgment number to X+1.

3. The third and final step is when the client receives the SYN-ACK and re-
sponds with an an acknowledgment packet, where the ACK flag is set.
The client also needs to set the acknowledgment number to Y+1 and the

sequence-number to X+1, thus indicating that the connection is established.

The tree-way handshake is shown in the figure 2.3 on the facing page. After the
third and final step is done, the client can start to send or request data from the

12



Client Server
Synseq::x
c -’—**'\.._5@9"1 -
' .ﬁﬂ.ﬂ..ﬁ
4 acks

Figure 2.3: Three-way-handshake

SErver.

2.3.2 TCP - Slow Start

TCP Slow Start is an algorithm to control congestion in the early stages of a con-
nection. This stage of a TCP connection is called the Slow Start phase. The next
phase is the Congestion Avoidance, where the next step is to control the conges-
tion. Slow Start is defined in RFC5681 [4] together with congestion avoidance.
TCP needs different algorithms for controlling congestion in the early stages of a

connection. This is because the knowledge of the network state is very limited.

Basic Slow Start [17] starts after the connection is established with a successful
three-way-handshake. As the name Slow Start implies, the client starts the con-
nection slow, and increases the congestion window (cwnd) for each acknowledge
segment. In a perfect scenario, where the server has acknowledged every packet it
receives, the cwnd will double for every round trip time (RTT), thus giving cwnd
an exponential growth. As mentioned before, this behavior is only seen where the
segments do not get lost, delayed or retransmitted. Even if the server would use
delayed ACKs, the cwnd would still get an exponential growth, but would take

longer and use more packets to reach the same size of the cwnd.

13



Server Client

Packet ---—-..._*

Ack

cwnd=2

— Packet

Packet '-—--..._*

Ack

Ack

i B8

Figure 2.4: Slow Start packet flow

Figure 2.4 shows how Slow Start looks in the first few RTT and how the the first
packets are sent, and how the client reacts to each acknowledgment that it receives

by increasing the cwnd.

2.3.3 TCP - Congestion Avoidance

Congestion Avoidance is the next algorithm to control congestion. Congestion
Avoidance is less aggressive in increasing the cwnd and roughly increases the
cwnd with one full-size segment per RTT. The are a few congestion avoidance
algorithms (e.g. NewReno, and the non-standard Vegas and Cubic) with different
approaches to increasing the cwnd and handling network congestion. RFC5681 [4]

has three rules for increasing the cwnd during the congestion avoidance:
* MAY increment cwnd by Sender Maximum Segment Size (SMSS) bytes
* SHOULD increment cwnd per equation once per RTT
* MUST NOT increment cwnd by more than SMSS bytes

The RFC [4] also has a second alternative of increasing the cwnd during Conges-

tion Avoidance, and this equation is given in listing 2.1 on the facing page.

14



Listing 2.1: Congestion Avoidance - increase of cwnd

cwnd += SMSS#*SMSS/cwnd

The different algorithms and equations have in common that they are less aggres-

sive than Slow Start in increasing the cwnd.

Slow Start and Congestion avoidance

Slow Start is at the beginning of a connection, and congestion avoidance phase
is after Slow Start, and continues for the rest of the connection, unless a time-out

occurs which would put a TCP sender back in Slow Start.

» Slow Start starts off with a very small cwnd and lets it grow accordingly
to the number of ACKs that the client receive. At this point the cwnd is
less than a parameter called the «Slow Start threshold» (ssthresh). cuwnd <
ssthresh

* If the client experiences no loss or no retransmits, the cwnd is going to
increase rapidly and would grow exponentially, until cwnd is higher or equal

to ssthresh. cund >= ssthresh

 After cwnd hits ssthresh, Congestion Avoidance is taking over and the cwnd
gets a linear growth. The connection continues to use Congestion Avoid-

ance until the connection is terminated, or a time-out occurs.

2.4 Misbehaving Sender/Receiver in TCP

TCP is built on trust, and that both parties in a connection are following the spec-
ification of the different TCP standards. The problem is that not every client on a
network can be trusted to follow the standard for TCP communications. A client
may want to increase the performance compared to the other connected clients,

which can be unfair to the other connected clients

15



B0

70

60

50

40

KBytes

cwnd

30
55 Thresh

20

10

1 2 4 B 16 32 64 128 256 5121024

Acks

Figure 2.5: Slow Start versus Congestion avoidance

2.4.1 TCP Split ACK in Slow Start

TCP Split ACK is a client side modification to TCP. The split ACK modification
can increase the growth of the cwnd in Slow Start and congestion avoidance. Ste-
fan Savage et al. described this in the article, «TCP congestion control with a
misbehaving receiver» [18], where a client would trick TCP to increase the cwnd

faster than intended in the original algorithm.

As we will discuss in section 2.4.3 on page 20, split ACKs to not have an effect on
a modern TCP in Congestion Avoidance. TCP split ACK can, however potentialy
be utilized to improve the Slow Start phase in TCP. This can lead to a faster Slow
Start, so that a client can accelerate the growth of the cwnd and better utilize the
available bandwidth.

To generate Split acknowledgments, a client would need to split an ACK up into
one or more pieces and send them all to the sender in the correct order. Because
the server essentially lets cwnd grow for every ACK it receives, this would trick

the server to increase the cwnd with more than the one segment per ACK.

To understand how split ACK works, we can describe a scenario where a client
would utilize split ACK to increase the growth of cwnd. A client receives two

packets, and would normally respond with two ACKs. With split ACK, the client

16



splits each ACK up in multiple ACKs. Each split ACK has a lower acknowledg-
ment number than the original ACK. The client sends out the split ACKs with the
lowest acknowledgment number first and and the original ACK last. The host will
respond by increasing the cwnd for each incoming ACK. By splitting each ACK
into two, the client would be tricking the server to send eight packs the next time,
instead of the expected four packets. This is because the server increases the cwnd
for each incoming ACK. The results would be even higher if the client would split
the first ACKs into smaller pieces, thus triggering the server to increase the cwnd
by an even larger value. Figure 2.6 illustrates how split ACK could increase the

cwnd over one RTT.

| Server I | Client I

cwnd=2 — PACkEt

Packet [————3

Ack

Ack

Ack

Ack

cwnd=6

Packet

Packet r——
Packet
_'-‘--—_._.)
Packet '--——..__*

Packet

Packet Y

ninl

Figure 2.6: Slow Start with 2x SplitAcks

Benefits of TCP Split ACK in Slow Start

Split ACK is beneficial in scenarios where the Slow Start phase is the bottleneck
and the bandwidth is not. The utilization of split ACK is a method to get more data
faster, and with a shorter Slow Start phase. The client can get the server to adapt
to the desired threshold in the Slow Start phase without doing any modification on

the server side.

E.g in a scenario where we would have a large number of connections to a single

17



server, and each connected client would only need a small amount of data, the uti-
lization of split ACK could increase the performance of the clients and the server.
Note that this is true if the file size is less than (ssthresh x2) — sizeof (IW), (i.e.
MSS 1460 bytes, IW 3 packets, ssthresh 64 Kb), file size less than 123,7 Kb. With
a small file size, the client would be limited by TCP Slow Start phase, and not by
the bandwidth.

If, in the same scenario, all the clients would utilize Split ACK to decrease the
overall connection time, the server would actually be able to handle more connec-
tions. This is because each client would use fewer RTTs to download the file, and

the overall connection time per client would decrease.

100

30 /

80 l

. / /
|
I

60

KBytes

50

40

s cwnd - Slow Start
e o - Split ACK x2
55Thres64 Kb

; )
.S

Figure 2.7: Theoretical increase of cwnd with Slow Start and with SplitAck.
MSS =512 Bytes

To illustrate this theoretical performance increase, figure 2.7 shows the theoretical
speed of Slow Start and Slow Start with split ACK. Theoretically a client would
need fewer RTTs to transfer the same amount of data as the standard Slow Start,

thereby decreasing the download time (and connection time).

18



File Size SS | CA | SS+CS

15 Kb Improves no-op Improves
150 Kb Improves no-op Improves
1.5 Mb | Mostly degrades | OK | Mostly degrades

Table 2.1: Results from the simulated study of TCP ACK divisions [9]

2.4.2 Simulated Study of TCP ACK Division

A more recent study of split ACK (i.e. ACK Division) was done to see if split
ACK was always beneficial in any scenario (i.e. does greed always pay off?).
The study is a part of a PhD thesis [9]. The study simulated a network with
8 computers, where half the computers were senders, and the other half were
receivers. The computers were set up to accept split ACKs by default. They
measured three different files that were sent over a TCP connection. The file sizes
were 15 Kb,150 Kb, and 1.5 Mb.

The results were split up into nine different cases. The three different files split
up in three different scenarios, Slow Start (SS), congestion avoidance (CA), and
Slow Start plus congestion avoidance (SS+CA). Table 2.1 shows the results of the
study.

As we can see from the results, the split ACK approach improved the TCP connec-
tion in the Slow Start for the small files. Split ACK also improved in the SS+CS
phase, for the small files. With the larger file, the results showed that the split

ACK approach triggered congestion and got a decrease in performance.

This was a simulated test to see how split ACK would preform. Our goal in this
thesis is also to find out how split ACKs work in the Slow Start phase of TCP, but
in a real world scenario. Based on the results of the study, the split ACK approach

could be at least sometimes an efficient method to improve the Slow Start phase.

19



2.4.3 Appropriate Byte Counting

Appropriate Byte Counting (ABC) is defined in RFC3465 [19] as an experimen-
tal algorithm. RFC3465 outlines a proposal of how the ABC algorithm could
increase the cwnd in TCP. The proposal states that, by utilizing the ABC algo-
rithm for increasing cwnd in TCP, the ABC algorithm could increase performance
and security in TCP. The older RFC2581 [17] increased the cwnd by counting
the number of arriving of ACKs, and increased the cwnd with one full segment
size (MSS) per ACK in Slow Start. The problem with this approach is a misbehav-
ing receiver. A misbehaving receiver could ACK a single packet with two ACKs
— because of fragmentation, where a packet got split in two parts, or if a client is
utilizing split ACKs. In a scenario where the incoming ACKs only acknowledge
a small amount of data, the sender would increase the cwnd faster than it should,
based on the actual amount of data that was acknowledged. This is because the
RFC2581 rules would allow to increase the cwnd with a full segment even if it the
ACK only acknowledges a small amount of data. This could allow the receiver
to trick the sender into increasing the cwnd too fast, and therefore send out more
data than intended by the original algorithm.

The ABC algorithm aims to solve this by appropriately counting the bytes that are
acknowledged in each ACK. Even if a client generates a large amount of ACKs
per segment, the ABC algorithm will not increase the cwnd by more than the one

segment that was intended.

This part of the algorithm is recommended in the new TCP congestion control
RFC5681 [4], and is utilized when the TCP algorithm is increasing the cwnd in
the Slow Start phase. The RFC5681 states that:

“..we RECOMMEND that TCP implementations increase cwnd, per:
cwnd += min (N, SMSS)

where N is the number of previously unacknowledged bytes acknowl-
edged in the incoming ACK. This adjustment is part of Appropriate
Byte Counting and provides robustness against misbehaving receivers

that may attempt to induce a sender to artificially inflate cwnd using

20



Algorithm \ Current cwnd \ ACKs \ Bytes per ACK \ cwnd inc. H New cwnd ‘
ABC 1000 bytes 2 730 cwnd + (730 * 2) 2460 bytes
Old Slow Start | 1000 bytes 2 730 cwnd + MSS + MSS || 3920 bytes

Table 2.2: Illustrates how the cwnd could potentially grow, MSS = 1460 bytes

a mechanism known as “ACK Division”

As mentioned in the last section, the older conventional way for increasing the
cwnd is to count the number of ACKs that the server received per RTT and
increase the cwnd with a factor X of the number of ACKs. As mentioned in
RFC5681 [4] the factor X can change depending on the algorithm that is in use (i.e

Slow Start or congestion avoidance).

The ABC algorithm changes the way TCP increases the cwnd in Slow Start and
congestion avoidance. The ABC algorithm still uses the same algorithms, but
instead of increasing the cwnd with number of ACKs, it would increase cwnd

based on the number of bytes that were acknowledged.

The RFC states that the ABC algorithm increases the cwnd with the number of
unacknowledged bytes for each incoming acknowledgment, provided that the in-
crease is less than or equal to a threshold L. The RFC states that the threshold L
could be set to 2 * SMSS bytes, but should not be set to L > 2 * SMSS bytes.
So instead of increasing cwnd with 1 * SMSS per ACK, as documented in the
older RFC2581 [17], the ABC algorithm increases the cwnd with all of the unac-
knowledged bytes, as long as the unacknowledged bytes is less than the predefined
threshold L.

In table 2.2 we can see the difference between the ABC approach and old approach
in slow-start. When we get multiple ACKs per segment, the old Slow Start algo-
rithm increases the cwnd with two MSS, whereas Slow Start with ABC counts the
number of bytes acknowledged, and increases the cwnd with one MSS (i.e. 730
bytes * 2).

The ABC algorithm would be more aggressive than the TCP algorithm in RFC2581 [17]

in the Slow Start phase with delayed ACK (where the receiver sends at most one
ACK for every other packet). The difference would be that the ordinary TCP al-

21



gorithm would increase cwnd with 1*cwnd, even if the ACK would acknowledge
two packets. The ABC algorithm would see the amount of bytes that the ACK
acknowledges, and increase the cwnd with this amount. The threshold L prevents

ABC from reaching a too severe rate jump in such a situation.

ABC was designed to counteract the different approaches of split ACK, where the
idea was to exploit how TCP increases the cwnd. With this in mind, the intended
benefits of split ACK would be nearly impossible to achieve, but since these are
standards and not the law of the Internet, this is not the case. The first thing to
remember, is that it takes time to get standards implemented into newer systems,
and even when they are implemented, there is a chance that they are not turned
on by default. It is often up to the end user to actually turn the feature on, and
therefore it is still interesting to see how Split ACK would work in a real world

scenario.

2.5 More on Slow Start

In this section we take a deeper look at other possible solutions to improve the
start-up behavior in TCP. This section is split up the different approaches on the
client/receiver side and the server/sender side. Additionally each side is split up

in to proposals for the application layer, and proposals for the TCP stack.

2.5.1 Client/ Receiver

Modifications to the client side are mostly done in the applications, but there are
solutions to change the behavior of the start-up procedure in the TCP stack (e.g.
split ACK).

Application - Internet Browsers

Internet browsers have implemented functions into the program to improve the

start-up behavior of TCP. Instead of opening a single connection to a web page,

22



the browser opens several TCP connections to a single domain. This includes
several popular web browsers like Internet Explorer 8 [20], Mozilla FireFox and
Google Chrome. Browsers opens up to 6 connections [21] per domain to increase
the start-up performance in TCP and therefore increases the speed of downloading
the web page. The browser can, by utilizing multiple TCP connections, reduce the
limitations of the Slow Start behavior in TCP.

One drawback of multiple connections is that the congestion can be unfair among
the connected clients. This is because the different browsers have different ap-
proaches of how many connections they use, so this could potentially be unfair

among the connected clients.

Application - Persistent Connections (HTTP 1.1)

Persisting connections [22] is a method that can handle multiple HTTP request in
one TCP connection. A client that uses persistent connections can fetch multiple
files in the same TCP connection, without the need to open and close the connec-
tion for each file. A browser / server that utilize a persistent connections can avoid
multiple Slow Start phases for multiple files. With the use of a persistent con-
nection, a server can pipeline requests (i.e. the client can send multiple request
without the need to wait for a response), but the server needs to respond to the

requests in the same order as they arrived.

The benefits of persistent connections are due to the reduction of overhead from
opening and closing TCP connections. With fewer connection openings, the
client (and server) gets fewer Slow Start phases, and can utilize the available
bandwidth with multiple files in a single connection. Routers, clients and servers
save CPU time with the reduction of opening / closing connections. The server/-
client also saves memory by the decrease of TCP control blocks (e.g three-way-
handshake).

Persistent connections is an application approach to improve the Slow Start phase.
But not every application protocol uses persistent connections. The File transfer

protocol (FTP) is an application layer protocol that utilizes TCP to transfer files.

23



FTP does not use a persistent connection, and therefore needs to open and close

each TCP connection after a successful transfer.

2.5.2 Server / Sender

Server side modification is done in the application and in the TCP stack. There

are different approaches to improve Slow Start in both ways.

Application - Server side archives

Compressed archives on the server side are a simple solution to improve (or avoid)
the Slow Start phase for multiple files. With one big file compared to X single
files, we can avoid the Slow Start phase X-1 times. With a compressed archive a

client can easily utilize the available bandwidth and download the file faster.

To give an example, we can use the Linux kernel, linux-2.6.38.4.tar.bz. The com-
pressed kernel archive is 73057 KB (71 MB) in size, but when extracted it is
35777 files and a total size of 503808 KB (492 MB). The total overall file size
of the single files, compared to the archive, is 7 times bigger, and the average file

size of the single files is about 14KB per file.

The first obvious downside is the difference in file size between the archive and the
single files. But even if we ignore the different file sizes, and look at the transfer
time of a single file (492 MB) compared to the transfer time of multiple files with
the same overall file size (492 MB), on nonpersistent connections (e.g. FTP),
there is a difference in speed. On an FTP connection, the single file download
rapidly increases in speed, until the maximum available bandwidth is reached. In
this scenario, the bottleneck would be the bandwidth of the connection. But when
downloading N (35777) single files with the same overall size (492 MB), where
the average file size is 14KB (503808 KB / 35777 files), the bottleneck is not the
bandwidth. The bottleneck of the connection is the three-way-handshake and the
Slow Start phase.

The first bottleneck is to open and close N TCP connections compared to the

24



single opening and closing with the single file. This uses extra CPU time and
memory on the client side, and the server side. The second problem is that each
single file (on average) never leaves the Slow Start phase, and thus the client never

gets to utilize the available bandwidth.

We can see, that something as simple as a compressed archive on an FTP server
gives a great performance improvement for a client, even if the overall file size is

the same as with the single files.

The disadvantage to this approach is that if a single byte in the compressed archive
is damaged, the whole archive is corrupted. Additionally, if a client only needs
a single file in a big archive, it is very time consuming to download the whole

archive just for that

TCP Stack - Jump Start

Another approach to increase the performance in Slow Start is to simply skip it.
Jump Start [23] is an aggressive approach to increase the performance in the Slow
Start phase, where the approach is to guess the start value for congestion avoidance
instead of executing Slow Start. The overall function of the Slow Start phase is
to get a reasonable start value for the congestion avoidance phase, but since Jump
Start skips the Slow Start phase, it has to guess a reasonable start value. Jump
Start starts off directly with the congestion avoidance phase, and depending on
the difference between the guessed value and the available bandwidth, there can
be a performance increase compared to ordinary Slow Start. But it can also lead
to a decrease in performance. All this depends on the initial guessing value of
Jump Start and the current congestion. The guessing value is determined after the
three-way handshake, and the value is determined by the number of data packets
that can be transmitted as the minimum of the receiver’s advertised window and
the amount of data queued locally for the transmission. The Jump Start phase is
a short phase that finishes after the first RTT, where TCP switches to the normal
congestion avoidance phase and continues the connection (if there is more data to

send).

25



The benefits of using Jump start is the increase in performance in some specific
scenarios, where the connection had more than 2 packets and no drops occurred.
In other scenarios, Jump Start has shown to decrease performance when conges-
tion occurs on a link, and the drop rate of packets increased compared to Slow
Start.

Jump Start can be good in a specific scenario where most of the variables are
known, to speed up Slow Start. Jump Start aims to utilize the bandwidth faster
in the initial phase of a connection, but at a higher risk compared to TCPs Slow
Start.

TCP Stack - Quick-Start

Quick-Start [24] is an experimental RFC to improve the Slow Start phase of TCP.
Quick-Start uses custom options in the IP header in the TCP packet. This approach
requires modifications to the server, client and the routers. The Quick-Start option
in the IP header is set by the TCP receiver (the client), and it specifies the desired
sending rate in bytes per second. The idea is to get every router along the path
to accept the desired sending rate, so that the receiver can utilize the available
bandwidth. When all the routers accept (or reduce) the desired sending rate, the
TCP sender (the server) responds with a transport-level Quick-Start response to
confirm the final sending rate. The TCP sender can then immediately send up to

the desired sending rate per window.

In a scenario where a router cannot support the sending rate (e.g. no available
bandwidth) the router reduces the sending rate or refuses Quick-Start all together.
But if a router does not understand or refuses Quick-Start, the connection reverts

back to the default congestion control behavior.

The difference between Quick-Start and Slow Start without Quick-Start is the
router feedback. Slow Start probes the network to see if more and more data can
be sent, but Quick-Start ask every router in the path for the maximum data rate.
This is much faster, and Quick-Start can determine the threshold of the bottleneck
within one RTT.

26



The problem with this approach is the extra header. The extra Quick-Start option
in the IP header requires a firmware upgrade on every deployed router (even small
routers in the common home). This is because if there is only a single router in the
path that does not understand the Quick-Start option, the connection reverts back
to default congestion control, thus making every previous processing step useless

and a waste of time.

Another problem with the extra header is the additional processing time to deter-
mine the Quick-Start value for each new connection. With the use of Quick-Start
the router would use CPU cycles on determining the Quick-Start value instead of
processing data packets. This could result in a lower throughput and a decreased

overall performance.

Quick-Start seems to be an approach that could improve the start-up phase in TCP.
The problem is that Quick-Start is not feasible to implement in the whole Inter-
net, where every router would need a firmware update. Even if new equipment
supports Quick-Start by default, it still would take a long time to actually get an
Internet path where every hop supported the Quick-Start option.

TCP Stack - Limited Slow Start

Limited Slow Start for TCP with Large Congestion Windows [25] is an experi-
mental algorithm that limits the growth of the cwnd before it reaches the ssthresh.
The proposal states that during Slow Start, a large increase in the cwnd can result
in a large number of packets dropped in the network. This will result in a large
number of unnecessary retransmit timeouts for a TCP connection. This could
eventually result in a very small cwnd when TCP reaches the congestion avoid-
ance phase, and it would take the congestion avoidance phase a large number of

RTTs to recover its old cwnd.

Limited Slow Start introduces a new parameter called maxz_ssthresh. During

Slow Start when,

cund <= max_ssthresh

27



~N NN R W=

the cwnd is increased as with the ordinary Slow Start aalogrithm, by one MSS for

every arriving ACK. But when Slow Start reaches
max_ssthresh < cund <= ssthresh

the cwnd is no longer increased by one MSS for every arriving ACK. In this phase
of Slow Start, the cwnd is at most increased by max_ssthresh/2M SS per RTT.
The algorithm is described in listing 2.2.

Listing 2.2: Limited Slow Start algorithem

If (cwnd <= max_ssthresh) {
cwnd += MSS;
telse{
K= (int)(cwnd / (0,5 * max_ssthresh);

cwnd += (int)(MSS/K);
}

During Limited Slow Start the cwnd is increased by 1/K « M SS for each arriving
ACK, compared to the original Slow Start algorithm that increases cwnd with 1
MSS per ACK. RFC3742 recommends that maz_ssthresh is set to 100 MSS.

As an example from the RFC3742 — to reach a cwnd of 83,000 packets it would
take 836 RTTs with the use of Limited Slow Start. With the original Slow Start
algorithm it would take 16 RTTs to reach the same cwnd [25].

TCP Stack - Larger initial congestion window

Other proposals that aim to improve the Slow Start behavior in TCP have a ten-
dency to change the algorithm of Slow Start (or even remove it), where as the
initial congestion window (IW) proposal aims to increase the starting value in
Slow Start. The key difference with the larger initial congestion window proposal
is that this is not a modification to the algorithm, but more of a tweaking of the
deployed Slow Start algorithm. Google has published an argument for increasing
TCPs initial Congestion Window [21] to a higher value than the recommended
values in RFC5681. The initial congestion window (IW) is by default set to 3
segments [26], but the RFC5681 allows the IW to be larger than 3 segments [4].

28




120

100

. /

50 — 00
s 55 Thresh
40
/ cwnd with W =10
20

KBytes

Round Trip Time

Figure 2.8: Classic Slow Start vs Slow Start with an initial congestion window of
10 segments. The Maximum Segment Size (MSS) is set to 512 bytes

The Google proposal aims to improve the Slow Start behavior in TCP, with an
even larger IW, and uses the same exponential growth to hit the ssthresh. So
by increasing the IW in the TCP stack, the server can kick-start the TCP Slow
Start phase, and skip a few RTTs. And by increasing the initial window, Slow
Start can reach the ssthresh with fewer RTTs than the original initial Slow Start
value. This would allow a connection to utilize the maximum bandwidth earlier.
Google proposes that the initial value should be set to 10 segments, and argues the

following benefits for increasing the IW:
* Reduce Latency
* Keep up with the growth in Web page sizes
* Allow short transfers to compete fairly with bulk data traffic
* Allow faster recovery from losses

The reduced latency is the latency for a transfer completing in the Slow Start

without losses on Google web search.

The negative impact could, for instance be an increase of retransmissions for slow
connections, but the results showed that the increase was less than 1%. The worst

case scenario discussed in [21] is with multiple concurrent TCP connections with

29



a large IW. Since web browsers open up to 6 concurrent connections, we get an
effective IW of 80 segments or more. Even in this case, the increased IW does not
cause a degradation relative to the baseline IW. The difference between ordinary
Slow Start and Slow Start with a larger IW is illustrated in figure 2.8 on the previ-
ous page. As we can see, the larger IW is increasing faster than the ordinary Slow
Start, and hits the ssthresh around two RTTs before the classic Slow Start.

The Google proposal was one of the major motivating factors behind this thesis,
as the investigation documented in [21] only focused on web traffic that origi-
nated from the Google server (which was the server that the authors were able to
change). This may not be enough: proposing a larger initial window as a stan-
dard means that every up-to-date host on the planet could eventually change its
behavior, whether it is behind a fast corporate Internet connection or a behind a
slow private one in a rural area. On slow connections, the larger initial window
could cause problems with different applications, e.g. increased delay or loss. As
we have discussed, splitting ACKs can provoke different hosts to send out a larger
number of packets in slow start, hence creating an effect similar to a larger initial
window, at least for one round-trip time. Our tool could therefore be used to mea-
sure the impact of a larger initial window on hosts different from Google’s web
server. Note that the larger initial window is already used in practice by many end

hosts, as Linux has adopted the larger initial window in kernel 2.6.39 [27] [28].

30



Chapter 3

A Split ACK Tool

3.1 Introduction

In this chapter we will explain the design choices we made for the Split Acknowl-
edgment tool (Split ACK Tool), and explain how the the implementation of the
split ACK tool was done.

The chapter is split in three parts, where the first part explains the design choices
of the implementation. The second part of this chapter explains the dependencies
that are required to compile and run the split ACK tool (i.e. libraries, tools, and
configurations). The last part describes the different parts of development and

implementation.

3.2 Design

Our goal in this thesis was to implement and test the split ACK approach from a
client point of view. This would require a modification to the operating system,
either as a kernel modification, or by modifying the data that was already sent
out by the kernel. To be able to generate split ACKs, we had to decide where
to implement the split ACK functionality. The design choice was a question on

31



which layer the Split ACK function should be implemented on. The two choices
to implement split ACK were in the user level, or the kernel level. In the user level
the implementation would need to be run as the root user, but in the kernel level,

it would need to be built into the kernel of the operating system.

3.2.1 Kernel Mode

A kernel implementation would require a custom kernel, where the kernel source
code would be modified to allow split ACKs. The kernel would split the outgo-
ing ACKs, without any interference from the user. With this custom kernel, we
could create a kernel patch, so that other users could implement the split ACK

functionality into their kernels.

The downside with the kernel approach could be that the implementation itself
could be harder to achieve. This is because of the length of the source code for
the Linux kernel. The TCP stack itself in the kernel is somewhat confusing, with
limited commenting or other information. Another problem was that we did not
want to split ACKs on every connection going in or out of the computer, and
we did not want to lock down the split ACK functionality to a specific port or
address. A second problem would be testing the implementation. For each test,
the kernel would require recompiling, and then reinstalling, rebooting and finally
testing. This would be the same for all modifications done to the source code.
This could potentially be very time consuming, and the finished kernel could then
only work on one type of system. As mentioned, the user cannot interfere with the
generation of split ACKs, and this could make it harder to use the split ACKs only
for a specific user and program. Some such isolation would be needed to avoid that
every connection in the operating system generates split ACKs. It might otherwise
be almost impossible to use e.g. an SSH connection to the computer, and would
require hands-on interaction. This alone could increase the development time,

because of the limited access to the testbed.

32



3.2.2 User Mode

A user layer approach would give the user more control with the different argu-
ments and variables, by allowing the user to change the input to fit the specified
task. Each argument could be specified at the command line e.g user id, port and
the number of split ACKs. The user could also change the source code and re-
compile the program with the new features without the need of rebooting. This
would allow the program to act more like a portable tool for testing split ACK.
The split ACK tool would require a few dependencies installed, but the split ACK

tool should be able do the same split ACK as a kernel implementation.

The downside with the user mode approach is that the program will have limited
control of the kernel generated ACKs. The split ACK tool would need to rely
on third party programs to control the kernel ACKs. Without these third party
programs, the split ACK tool would be unable to do the necessary modifications
to the kernel ACKs.

3.2.3 Design Conclusion

With the kernel mode approach, we could easily make a dedicated split ACK
server, where all outgoing connections would be utilizing split ACK in the Slow
Start phase. With the user mode approach, it would be easier to make a tool that
splits the ACKs as the «man in the middle». Running two users (root and a second
user), the root user could modify the ACKs of the second user and generate split
ACKs.

In this thesis, we implemented a Split ACK tool that ran in user mode. The pros
in the kernel approach did not outweigh the cons, like the extra development and
testing time. The user mode approach gave us time to implement more advanced

features (i.e. threads and speed optimization).

33



3.3 Libraries and Tools

The SplitAck tool was developed and tested on Ubuntu Linux 32Bit with kernel
version 2.6.31-18. The split ACK tool requires to run as superuser to be able to
capture the packets. The split ACK tool is portable, but requires a few dependen-
cies to work on a new Linux system. Most of these dependencies are installed
by default in the Linux kernel, except Libpcap. The Libpcap library is available
in the repositories for the Linux distribution, and a simple install command is all
that is needed to get it up and running. The different tool dependencies that are

required to run and compile the split ACK tool are:
* Linux Kernel Version 2.6.31-18 (or higher)

* Superuser

libpcap [29]

IPtables [30]

¢ A second user account

Wget [31] or any other third party program that utilizes TCP

3.3.1 Superuser

The split ACK tool modifies packets that leave the network card, with help of the
pcap liberary. To be able to access this information from the network card, the split
ACK tool has to run as the superuser. The superuser in the Linux environment is
known as the root user. The downside with running a program as root is that the
split ACK tool has access to potentially change anything and everything in the
Operating System (OS). The reason why we need to run the split ACK tool as
root is because of the pcap library. The pcap library needs to be run as root to be
able to access and copy the correct data from the network card. Pcap listens for
incoming and outgoing network traffic, and copyies the data that was specified by
the split ACK tool. To be able to get direct access to the network card, so that the
split ACK tool can listen to all traffic, pcap has to run as root.

34



Security is another good reason for running the split ACK tool as root. If the pcap
library could be utilized on a public server without root access, the library could
capture packets from other users. By restricting the pcap library to only work with
the root user, a user would need the permission to run it on the given server, or the

user is the administrator of the test server / client.

3.3.2 Second user - The Client

The second user is the download user in the split ACK tool, where the superuser
is the hijacker of the TCP connection. The second user acts as the client and
the split ACK tool is «the man middle». The split ACK tool runs on multiple
accounts, to simulate the hijacking and establishing of a TCP connection, but this

will be explained more thoroughly later in this chapter.

3.3.3 Packet capturing library - Libpcap

Libpcap [29] (pcap) is an open source library for Linux, BSD and Windows. The
library was designed for the program language C/C++. Pcap was designed to be
a high level interface to the packet capture system that can be utilized in C/C++.
Pcap has a well written man page and was easy to use in the implementation. In
this thesis the pcap library was used straight out of the box, without any modifi-

cations to the source code or configurations files.

Pcap can capture all packets on the network, and can even capture those packets
that are destined for other hosts. We did not utilize this functionality in the thesis,
and are only capturing packets generated from the same computer as the split
ACK tool. Pcap has the opportunity to capture incoming packets and outgoing
packets, and the split ACK tool only captures the outgoing packets, and counts

the incoming data packets to measure the response from the server.
Some pcap functions that are used in this thesis are:

» pcap_open_live() — is a function to open a packet capture descriptor.

35



* pcap_lookupnet() — looks up the IP and the network mask.

* pcap_setfilter() — sets a filter expression and binds it to the the capture de-

scriptor.
* pcap_next() — returns a packet.

These are only a few of the functions that are utilized in the split ACK tool, but
they are the core functions. The function Pcap_lookupnet () verifies that you
have specified a correct device and that the device is online. The split ACK tool
will exit if the device is not present or if it is disconnected. This was done to
make the split ACK tool more user friendly and to prevent segmentation faults.
Pcap_next () returns a packet that has been filtered out and delivers it as a
char array. The packet is supplied with complete MAC, IP and TCP headers that
later can be modified or removed. The function pcap_setfilter () is a very
strong filter command expression. It will bind the filter to the capture descriptor
and will return the packets that are specified in the filter and ignore everything
else. By utilizing the filter expression, a client can connect with an SSH connec-
tion, or multiple users could use the same system, without interfering with the
packet capturing. In a given scenario the filter expression could be defined as in

listing 3.1.

Listing 3.1: Pcap Filter Expression

char filter_exp[] = "(tcp[tcpflags]&tcp—ack!=0)and(ip[8]<=1)"

In listing 3.1 the filter expression returned only TCP acknowledgment packets
with a TTL value of less than or equal to one. Later in this chapter we will explain

the reasons for choosing the different values.

3.3.4 [IPtables

[Ptables [30] is the default firewall in Linux, and it is turned off by default. IPt-
ables is a command-line based program, and works with a set of rules that the

user specifies. [Ptables works on the application layer, so it does not stop packets

36




from entering the network card, but it does stop outgoing packets from going to
the lower levels of the TCP stack. The split ACK tool modifies the [Ptables rules
on the run, and does not interfere with the running root user. The split ACK tool
also double checks that any given rule was removed after completion of a test. In

a given scenario the IPtables rule could be defined as in listing 3.2.

Listing 3.2: IPTables Rule

iptables —t mangle —A OUTPUT —m owner —uid—owner 2000 —p tcp —dport 80 —tcp—«
flags ALL ACK —j TTL —ttl-set 1

Listing 3.2 shows an add-rule command for outgoing traffic. The rule only applies
for the user with User ID (UID) 2000 and should only affect a TCP connection
on port 80. The action of the rule was to modify the TTL value in the IP header.
The value was set to 1 on the IP header and the packet was then forwarded out
on the link. This modification was critical to the packet, because the first router
would take action and drop the packet. The main goal was to get the packet off
the network card, so that pcap could capture a copy, and return the packet to the
split ACK tool.

3.3.5 Wget

The program Wget [31] was utilized as the default third party TCP program in
the split ACK tool. Wget is a command-line web browser that is installed by
default in most Linux distributions, making it the perfect program for easy tests
with the Split ACK tool. Note that any third party program that utilizes TCP to
communicate could be combined with the split ACK tool. Wget has a simple
command line interface, and is reliable and easy to combine with the split ACK

tool.

37




AN N AW =

3.4 Implementation

The development of the split ACK tool (from now on referred to as the tool) was
done in Ubuntu 2.6.31-18. The source code was written in C with support from
the pcap library. The basics of pcap were explained in section 3.3.3 on page 35
and will be further explained in this section.

The goal of the implementation was to see if we could use the Split Acknowledg-
ments to achieve benefits for a client in the TCP Slow Start phase. Split ACK was
mentioned before in section 2.4 on page 15, but to be able to test this method in
a real world scenario, we needed a tool for collecting data and for probing dif-
ferent hosts. The split ACK tool was developed for a real world scenario, where
the goal of the split ACK tool was to use an active TCP connection and split the
outgoing ACKs. The tool was designed for splitting acks in the Slow Start phase,
and was not intended to be used in Congestion Avoidance. Such use of the split
ACK tool could potentially trigger heavy congestion, and this could severely dam-
age the connection and give the user a very low quality of service. The complete
split ACK procedure is done in multiple steps, and was divided into capturing,

forwarding, blocking and modifying ACKs.

3.4.1 Basic use of Pcap

To understand how the tool works, we need to understand the basics of the pcap li-
brary. The pcap library can only capture packets on the link layer - in other words,
in or outgoing packets on the network card. The first step in the development of
the tool was to actually capture a TCP packet. The listing 3.3 illustrates the code
for a function that is capturing packets.

Listing 3.3: Capture of a TCP packet

#include <pcap.h>
#include <errno.h>

void CapturerPacket () {

char xdev = ethO; /+« The Capture device =/
char x#filter_exp = "tcp port 80"; /+ The filter expression =/

38




10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

char errbuf[PCAP_ERRBUF_SIZE];

pcap_t #xdescr; /+ pcap descriptor =/

const u_char #packet; /+ The captured packet =/

struct pcap_pkthdr hdr; /+ The captured packet header =/
struct bpf_program fp; /+ The compiled filter expression s/
bpf_u_int32 mask; /% The netmask of our device =/
bpf_u_int32 net; /% The IP of our device =/

pcap_lookupnet (dev, &net, &mask, errbuf);

descr = pcap_open_live(dev,BUFSIZE,5,—1,errbuf);
pcap_compile(descr, &fp, filter_exp, 0, net);
pcap_setfilter(descr, &fp);

packet = pcap_next(descr,&hdr);
if (packet != NULL) {
printf(’ "Got a TCP packet on port 80 from device ethO\n'');

}

return 0;

}

The filter expression is given as a string on line 6. Pcap_lookupnet is the

function that looks up the IP address and the network mask. Next pcap_open_live

starts the packet capturing on a device (i.e. ethO, wlan0), and the filter expression
is only allowing pcap to capture TCP packets on port 80. The final step is the
pcap_next, which returns a copy of a packet with full network, IP and TCP
headers. To capture other packets than TCP on port 80, we only need to alter the
filter expression, and pcap_next will return the designated packets (i.e. if there
is something to capture). Listing 3.3 on the preceding page is a code example of
how we can use the pcap library in C, and how we were able to capture specific
packets just by altering the filter expression.

3.4.2 Capturing and forwarding of ACKs

The first basic design step of the tool was to capture outgoing TCP ACKs from
our client, and forward the ACKSs to the host. The first test was done between two
local computers to verify that the forwarded ACKs did arrive. We saw that the
connection was kept alive, but when we forwarded the ACKs, we did not know if

39




it was the forwarded or the original ACKs that kept the connection running.

The first obvious problem with this implementation was that the original ACKs
were not stopped from the client, and the host detected duplicated ACKs. And
our forwarded ACKs were dropped by the host, and ignored. This would not be a
problem if the generated ACKs from the tool arrived first, but because of the extra
delay between the copying and forwarding of the ACKs, this was not the case. As
seen in figure 3.1(a) on the facing page we get a duplicated ACK when the tool
copies and forwards the ACK, and at the same time the original ACK is allowed

to continue.

The duplication problem indicated that the solution was to block the original out-
going ACKs. This would make it easier to test if the forwarded ACKs worked,
because if the host dropped the forwarded ACKs, the connection would die, and
if it did work the connection would continue as normal. The next approach was
to let the tool do the copying and forwarding of the ACKs, and drop the ACKs in
the application layer, thus keeping the original ACKs from arriving at the host.

The problem with this approach was that the original outgoing ACKs got blocked
in the application layer by IPtables, and the tool was designed to copy and forward
ACKs going off the wire on the link layer (i.e not the application layer). This
was because the tool was implemented with the pcap library, and since pcap only
copies packets that either enter or leave the network card, we never got any ACKs
to forward. So with the ACKSs blocked in the application layer, the tool did not
work, and eventually the connection died. We have illustrated this problem in
figure 3.1(b) on the next page. We needed to find a way to block the original
ACKs, but at the same time allow the ACKs to enter the network card.

To overcome this problem, we needed to make sure that that the ACK passed
through the network card, but stopped before it arrived at the host. The solution
was to allow IPtables to modify the TTL value in the IP header of the original
ACK. The procedure was to let [Ptables take the stored TTL value in the IP header
and replace it. The replaced value in the IP header allowed the ACK to pass
through the network card, but to be dropped before arriving at the host. The
replaced value was a low number, so that we could make sure the ACKs would be

40



] [
Packetl

X&
ACK1 —
SplitAck Tool
€ aca HSpII’tAckTooI |
| Connection Time Out I
| Dup ACK1 |

(a) No ACK blocking -> DupACK (b) ACK Blocking -> Connection Timeout

Figure 3.1: Blocking vs Non Blocking of ACKs in IPTables
0

dropped before arriving at the host, but still be allowed to leave the network card.

Since [Ptables modifies the original ACKs, and gives them a lower TTL value, the
tool has an easier task filtering out the correct ACKs. The tool can easily filter
out which of the ACKs to copy, modify and forward, by allowing the tool to filter
for outgoing TCP ACKSs on a designated TCP port, and at the same time, filter for
ACKs with the lowered TTL value.

As explained in subsection 3.3.4 on page 36, the tool is dependent on IPtables
to mark the correct ACKs with a new TTL value, but at the same time, the tool
manages the [Ptables rule. By combining the filter expression in listing 3.1 on
page 36 and the expression on line 6 in listing 3.3 on page 38. It can be seen that
we can capture a TCP ACK with a TTL value with less than 1.

The combined use of the tool and IPTables is illustrated in figure 3.2 where we

have eliminated any duplications or connection timeouts.

To achieve this functionality, the tool has to modify the forwarded ACK. Since the
forwarded ACK is a true copy of the original ACK, it shares the same TTL value.
So without increasing the TTL value in the captured ACK, the duplicated ACK
would be dropped in the same way as the original ACK. Therefore the tool needs
to modify the TTL value, and recalculate the IP header checksum in each captured
ACK. The tool has to reverse what IPtables has done to the original ACKs, and
restore the TTL value in the IP header.

41



01NN kAW =

—_— = =
W= O 0

14
15
16
17
18
19

l Packetl I -3

X -

‘(-'l ACK1 HSpIitAckTooI I
| What we want! |

Figure 3.2: ACK with replaced TTL value

Listing 3.4: IP header modification

#include <netinet/ip.h> /% IP header struct/
#include <netinet/if_ether . .h>
/+ The packet_pointer =/

const u_char =xpcap_packet;

/+ MAX_SPLITACK = 1024 copys of the original ACK is maximum s/
struct ip #ip_header[MAX_SPLITACK];

/+ The captured ACK =/
pcap_packet = pcap_next(descr,&hdr);

/+ The pointer to the IP header in the ACK is pcap_packet + Ethernet header =/
ip_header[COPY_ORIGINAL_ACK] = (struct ip *) (pcap_packet + sizeof(struct «
ether_header));

ip_header[COPY_ORIGINAL_ACK]—>ip_sum 0; /+ Set check sum to 0 =/
ip_header[COPY_ORIGINAL_ACK]—>ip_ttl = 64; /+ TTL value to 64 =/

/% Recalculate check sum =/
ip_header[COPY_ORIGINAL_ACK]—>ip_sum = csum ((unsigned short %) packet[«+
COPY_ORIGINAL_ACK] , (sizeof (struct ip) >> 1);

This is done by accessing the headers in the ACKs, and changing each required
field. In listing 3.4 pcap_next () returns a pointer to a captured ACK. The
tool utilizes this pointer to access the different layers in the captured ACK. The
process of extracting and altering the IP header from the captured ACK pointer

can be divided into four steps:

* Since the pointer of the captured ACK points at the Ethernet header (i.e. the
beginning of the ACK), the tool needs to skip the first layer that contains the
Ethernet header. The struct ip_header as seen in listing 3.4 is an IP

42




header struct. The IP struct, in combination with the pointer to the captured

ACK, is utilized to access the information in the IP header.

* The next step is to save the pointer in ip_header struct. The tool
needs to move the current position of the pointer. The current position of the
pointer is at the start of the Ethernet header, and has to be moved to the start
of the IP header. This is done by adding the pcap ACK pointer and the size
of the Ethernet struct, pcap_packet + Ethernet header. Since
the size of the Ethernet header is known, we can use the function: sizeof (Ethernet

header) to get the correct value.

* The next step is to convert the pointer from a u_char pointer to the
IP pointer struct, (struct ip =*). This allows the tool to access the
ip_header inthe ACK, where the pointer points to the start of the ip_header

struct.

* The final step is to alter the TTL value in the IP header struct. The tool uti-
lizes the IP header struct to extract and change the TTL value in the ACK 1P
header. The tool alters the ip_header []->TTL value, and recalculates
the ip_sum. This allows the ACK to be forwarded by the tool without any

complications or any risk of being dropped in transit.

The figure 3.3 illustrates how the tool can access the different headers and data
fields in a captured TCP packet.

X X +Ethernet X+Ethernet +IP X+ Ethernet +IP + TCP

Etherned Header IP Header ‘ TCPHeader Payload

Figure 3.3: Access to the different headers in a captured TCP packet

Since the tool runs as root, the forwarded ACKs are not affected by the rules set
by IPTables, because of the different UID of the download user and the root user.
This allows the connection to continue without any problems. The tool now has

full control over the TCP stream, and the host continues as normal with sending

43



(e BEN le NV B S S

more data packets.

The forwarding of the ACKs is done with SOCK_RAW sockets. With the raw
sockets the tool does not need to establish a connection to be able to communicate.
The tool only assumes that the there is an already active connection. The tool
needs to alert the kernel that IP and TCP headers were already included in the
packet. Without this option, the kernel would add extra headers and the host would
not accept the ACKs. In listing 3.5 there is an example of how we initialized a

raw socket and how we alerted the kernel with the set sockopt.

Listing 3.5: Alert the kernel with setsockopt

#include <sys/socket.h>

int s, optva 1= 1;

socklen_t optlen = sizeof (optval);

s = socket (PF_INET, SOCK_RAW, IPPROTO_TCP);
if (setsockopt (s, IPPROTO_IP, IP_HDRINCL, &optval, optlen) < 0)
printf("Error: setsockopt() — Cannot set HDRINCL!\n");

The kernel adds the new Ethernet header, but leaves the IP and TCP header un-
touched. With the tool utilizing raw sockets to send the modified ACKs, we could
add, remove or modify values in the different header layers, without the kernel
interfering with the configuration. This became essential with the generation of
Split ACKs.

3.4.3 Generation of Split ACKs

The tool blocks an original ACK and forwards a copy. The next step is to actually
generate the split ACKs and forward them to the host. For every captured ACK,
the tool makes X copies and generates Y new acknowledgment numbers from the
original captured ACK. Table 3.1 on the next page illustrates how a single ACK is
split up into multiple ACKs and how each split ACK gets a unique ACK number.

The number of generated split ACKs depends on the command line argument

that is given to the tool. The tool can generate up to 1024 Split ACKs for every

44




OO0 NN kW~

—_—

—_—
—_—

ACK Number Action

Original ACK 2001 Copied and Dropped
Split ACK 1 1251 Sent as the first ACK
Split ACK 2 1501 Sent as the second ACK
Split ACK 3 1751 Sent as the third ACK
Split ACK 4 2001 Sent as the last ACK

Table 3.1: An example of a ACK, split up in 4 ACKs

captured ACK.

To be able to generate Split ACKs, the tool needs to make a copy of the captured
ACK. A common way to make a copy of a memory block, is by utilizing the
memcpy function in C. The tool uses memcpy to copy the IP header and every-
thing after the IP header, including the TCP header and the payload. The Ethernet
header is by default skipped in the tool, as explained in the last section. Note that
the duplications of the original ACK are done after the IP header modifications are

made. A simple example of using the memcpy function is shown in listing 3.6.

Listing 3.6: Copy a memory block

int i, number_of_splitacks;
int pckLength = sizeof (packet [ORIGINAL_PACKET]) ;

for(i=1; i < num_of_splitacks; i++){
packet[i] = malloc(pckLength); /% Memory allocate the packet buffer =/
memset (packet[1],0, pckLength); /% Zero—out the buffer x/

memcpy (packet[i],packet [ORIGINAL_PACKET] , pckLength); /% Coppy the ACK =/

ip_header[i] = (struct ip %) packet[i]; /# Set the IP header pointer =/

tcp_header[i] = (struct tcphdr =) (packet[i]+ sizeof(struct ip));/# Set the <«
TCP header pointer =/

With the split ACKs copied, the tool needs to modify the TCP header in each split
ACK. Without any modification to the header, the ACKs would only be copies
of the original ACK, and be detected as duplicates. So, to generate true split
ACKs, each split ACK would require a unique acknowledgment number in the
TCP header. This ensures that each Split ACK has a unique TCP header, but at
the same time maintains the IP header from the original ACK. In each split ACK

45




A WO =

S O 0 J N W

12
13

header, the tool changes the acknowledgment number and checksum.

The generation of Split ACK acknowledgment numbers, is shown by the algo-
rithm in listing 3.7 and in table 3.1 on the preceding page. The algorithm keeps
track of the last acknowledgment number and the current acknowledgment num-
ber. To generate new acknowledgment numbers, the tool utilizes the differential
value between the current (current_ack) and previous (prev_ack) ac-
knowledgment number. The tool then divides the differential value by the number
of Split ACKs (number_of_split_acks). The divided value is multiplied
with the current Split ACK index ( i ), and the value is added to the last ac-

knowledgment number (prev_ack + calculated value), thus creating

an unique acknowledgment number for the current Split ACK (tcp_header (j) —>ack_seq).

Listing 3.7: Generation of Split ACKs

#define ORIGINAL_ACK 0

int prev_ack; /% The previous acknowledgment number =/

int current_ack; /= Current acknowledgment number =/

int number_of_ split_acks; /% From 1 to N, where N =< 1024 and 1 is no Split <
ACKs =/

int i, j=0;

for( i = number_of_split_acks ; 1 > ORIGINAL_ACK ; —i ) {
J++;
/+ Index O holds the original ACK with the highest ACK. And index 1 to N, =/

/+ holds the second highest ACK number down to index N with the lowest ACK «
number x/
tcp_header[j]—>ack_seq = prev_ack +(((current_ack— last_ack) / «
number_of_split_acks) * 1 ));
}

prev_ack = current_ack;

3.4.4 Finalizing Split ACKs

The final step in the tool is to send the split ACKs over the raw socket. The split
ACKs now have a unique TCP header (i.e. unique acknowledgment numbers),
and therefore need a recalculated TCP checksum. The calculation of the new
checksum is done in the tool. Each TCP checksum is calculated for all of the
split ACKs and for the forwarded ACKs. Listing 3.8 on the next page follows

46




[o BN B RV O R S

[N S T NS I NS I S T S e T e e e e e
W= OOV A~ W~ OO

24
25
26
27
28
29
30
31

the RFC793 [12] for generating a checksum, and illustrates how we did the TCP
checksum calculation in the tool.

Listing 3.8: TCP checksum calculation

/% The TCP sum calculation =/
unsigned short tcp_csum(ulé len_tcp,ul6 *psuedo_hdr,ul6 #tcp_header) ({
ul6é prot_tcp= IPPROTO_TCP, count,i,temp;

u32 sum =0;

/+ We make 16 bit words out of every two adjacent 8 bit words and
#* calculate the sum of all 16 bit words =/
/+ First we add the pseudo_header =/
count = sizeof(struct pseudo_header);
while (count > 1){
sum += #((ul6 =*)psuedo_hdr)++;
count —= 2;
}

if (count > 0) sum += x(uint8_t *)psuedo_hdr;

/+ Then we add the TCP header with data =/
count = len_tcp;
while (count > 1){
sum += %((ul6 *)tcp_header)++;
count —= 2;}
if (count > 0) sum += *(uint8_t *)psuedo_hdr;

/+We keep only the last 16 bits of the 32 bit calculated sum and add the <
carries =/
while (sum>>16) sum = (sum & OxFFFF)+(sum >> 16);

/+ Take the one's complement of sum =/

sum = ~sum;

/% Return the checksum =/
return ((unsigned short) sum);

}

After the checksum calculation is done, the tool sends the ACK out on the raw
socket. Because we uses raw sockets, the tool always assumes that there is an
already active TCP connection. When the ACK arrives at the destination, the

server is expecting it.

The sending mechanism is shown in listing 3.9 on the following page. The ACKs
are sent off in the order of the smallest acknowledgment number to the current

47




[c<BEN Be) NNV, N SN USRS I

1
2

acknowledgment number, so that the host/server should be triggered by the split

ACK to increase the cwnd.

Listing 3.9: Sending mechanism for Split ACKs

/%« Arg 1 our socket x/

/+Arg 2 the buffer containing headers and data =/
/+Arg 3 total length of our datagram =/

/+«Arg 4 routing flags, normally always 0 =/
/+«Arg 5 socket addr, just like in =/

for(i= splitacks—1; i >= ORGINAL_PACKET; i——)
sendto( s, packet[i], pckLength, 0, (struct sockaddr #*) &sin,sizeof (sin)) < «
0)

3.4.5 Structure

The tool is split up in three threads. Each thread is synchronized to each other
to speed up the process of testing split ACKs. The main thread is the Split ACK
thread, where we capture ACKs and generate split ACKs. This thread was ex-

plained in the previous sections.

The second thread is the counting thread. The counting thread counts each unique
data packet, and all the duplicates. As we increase the number of split ACKs,
the number of incoming packets increases as well (in case of host reacting as we
expect). The counting of the incoming packets is done in the same way as the
capturing of the ACKs, but with a different filter expression. The filter expression
is shown in listing 3.10. The filter expression filters the packets from the correct
host, and from the correct source. Without specifying each filter for each scenario,
we could risk counting traffic that arrives from the wrong host. So we have to
make sure that we only count the incoming data traffic from the correct host, and
filter out the rest of data traffic. This also means that no other application could

use the Internet on the same host while our tool is running.

Listing 3.10: Counting Filter

struct bpf_program fp; /x The compiled filter expression =/
memset (buffer,0,sizeof (buffer));

48




3
4

sprintf(buffer,"tcp port %d and dst host %s and src host %s", port, ip, ip2);
char xfilter_exp = buffer;

The third thread is the wget synchronisation thread. The tool utilizes wget as the
default program (i.e. if nothing else is specified by the command line argument)
to fetch files and html pages. The thread waits for the first and second thread to set
up the filter expressions, and when the other threads are ready to capture / count
ACKs / packets, the wget thread initializes the connection, and starts off the split
ACK procedure.

3.4.6 The test script

After a successful run, the split ACK tool returns the number of data packets re-
ceived, the number of retransmits and the total number of packets. This is returned
to the standard out (stdout). To be able to collect and save this data, we needed
a script that wrapped around the split ACK tool. The SplitAckScript was written
in python; it executes the split ACK tool and saves the stdout result to a data file,
combined with a timestamp. The script allows the tool to be run automatically for

X times, and save each result in the resulting data file.

The command line for using the tool is: sudo SplitAckScript.py X device Y Z
URL, where X is the number of executions, Y is the number of split ACKs, and Z
is the number of ACKs before the tool stops. The device is the network device (e.g.
ethO, wlan0), and the URL is the address of the server we want to test.

3.5 Summary

The implementation was based on the design decision of making the split ACK
implementation at the user level. That allows the split ACK implementation to
be run as a separate tool for splitting ACKs on an already active TCP connection.
With the help of IPtables and the libpcap library, the split ACK tool is able to
copy, duplicate, modify, and forward the split ACKs, thus essentially hijacking

49



the ACKs of a TCP connection, and tricking the server to increase the cwnd. The
key to capture ACKs and to stop the original ACK was to modify the TTL value in
the IP header. Without this modification, an implementation of the split ACK tool
would have been nearly impossible because of the original ACK arriving before
the split ACKs. The TTL value allows the ACK to travel through the network
card, but be dropped at the first router.

In this thesis we have limited the split ACK functionality to the Slow Start phase
of TCP, but the tool is not limited to only work in the Slow Start phase, and can
have a greater use than what we focused on in this thesis. It is not recommended

to split ACKs with a large cwnd because of the risk of congestion.

The source code of the split ACK tool is listed in the Apendix A.3 on page v.

50



Chapter 4

Test Results

4.1 Introduction

The classical Slow Start starts with approximately 3 packets and doubles the cwnd
for each RTT. The problem with this approach is that the initial start value, and
how TCP increases the cwnd is too slow, given the connection speeds of today.
We wanted to see if we could improve the Slow Start algorithm in TCP, so that the

start-up phase was not a potential bottleneck.

As mentioned before in the background and related work chapter 2 and in sec-
tion 2.5, there are multiple proposals and RFCs that aim to improve the start-up
phase of TCP. Most of the proposals are modifications or improvements on the
server side. What we proposed to do, was to improve the slow-start phase with
splitting the outgoing acknowledgments on the client side, so that we could trig-
ger a faster increase of the cwnd. This would allow the host to get more data per

RTT (compared to the classical slow-start) and speed up the start-up phase of TCP.

We decided to do a real world approach by implementing a split ACK tool that
splits the outgoing ACKs, so that we could see if we triggered a response at the
host. The core functionality of the split ACK tool was described in chapter 3.

First, we tested different operating systems (i.e Linux, Windows, Solaris, FreeBSD)

51



to see how a real operating system (OS) would react to the split ACK approach.
We also tested against the big Internet companies (i.e. Google, Microsoft, Ap-
ple, Ubuntu, Oracle) to get a sample from the real world, before we did the final

extensive test against the top 600 most visited web sites in the world.

4.2 Setup

4.2.1 Hardware and Software

The tests were done on a desktop computer, with a wired network card, Marvell
Yukon 88E8056 PCI-E Gigabit Ethernet Controller, running a 100 MBit local

connection to the router / ADSL modem.

The modem was a Thomson TGS585, running software version 8.2.3.10. The Inter-
net connection was ADSL2+, also known as ITU G.992.5 annex B [32], provided
by Powertech [33]. The speed of the connection was 14.4 MBit downstream and
1.45 MBit upstream, giving the connection a 10 to 1 ratio between download and

upload rate.

Most of the software configuration was the same as the implementation software.
The desktop computer was running Ubuntu Linux, with kernel version 2.6.31-18.
The dependent pcap library was running version 4.1.1. We utilized wget 1.12 to
communicate with the web servers, and all the tests were done against the HTTP

protocol.

To be able to collect data and run multiple scenarios in a row, a small python
script was implemented to ease the process of testing the different hosts. The
python script was explained in detail in chapter 4 section 3.4.6 on page 49. The
tool was not dependent on the script, but the script made it easier to run multiple

test and to obtain the final results.

52



4.2.2 Test Parameters

The split ACK tests were performed within the second RTT of the connection
(excluding connection establishment). The tool would stop all split ACKs after it
has reached an expected number of ACKs. The expected number of ACKs were
set to the expected size of IW of 3 ACKs [17]. We set the tool to only split the
3 first ACKs (i.e. the first RTT), but counted all the incoming data packets in
the second RTT (or later). To make sure that the tool would notice retransmitted
packets after a timeout, the tool waited for 3 seconds before it timed out and ended
this process. Figure 4.1 illustrates how the tests were done on a TCP connection.
To estimate the packet size (MSS) from a server, we divided the file size by the

number of unique data packets.

| Server | | Client |
(—I Three-way handshake I—)

—————
——) Packetsx 3 [—

=t (ormore) [™=—3
H

ACKsx 3

Stop after 3 x ACKs

The client only forwards
[ splits the first three
ACKs (The first RTT)

—

===——— X*Packets
H
The client counts all incomin

packets afterwe have
forwarded [ splitthe ACKs

Figure 4.1: How the tests were done for the preliminary tests and the split ACK
tests

If a host had a higher IW than 3 segments, the 4 to N ACKs were dropped and not
forwarded, but the incoming data packets were always counted. We could then
see if a host had a higher IW than the recommended IW of 3 [17], because of the

53



’ Tests \ Type of test Number of ACKs

A | Forward Original ACK 3
B Split ACK in 2 6
C Split ACK in 4 12
D Split ACK in 8 24
E Split ACK in 12 36

Table 4.1: The tests were split up in one baseline test and 4 split ACK tests

| Test | Data Packets | Retransmits | Total | File Size |

A 9 0 9 13 Kb
B 15 0 15 21 Kb
C 27 0-1 27-28 || 38 Kb
D 39 0-2 39-41 || 55 Kb
E 75 1-4 76-79 || 106 Kb

Table 4.2: Prediction of how the server would react to the tests

increased retransmissions. Note that the RFC5681 [4] does allow the IW to be
higher than 3, as explained in chapter 2.

The tests were split up in two parts, with a total number of five different tests,
with a 3 second pause between the tests. Table 4.1 shows how we split the dif-
ferent tests, and table 4.2 shows the predicted reaction to a successful split ACK

approach.

The first test (cf. test A) in the table was the preliminary test. The preliminary test
gave a baseline of the server behavior. If the preliminary results showed us that
the connection had a high number of retransmits and low number of data packets,
it could be an indication that the server was under (or the path to the host) heavy
load (i.e. congestion) or — perhaps more likely that a larger IW was used and our
3 ACKs were not enough. The preliminary test gave us a baseline of the different

behavior between the different servers.

The different split ACK tests were done to see if the increased number of ACKs
could affect the connection, or to verify that the split ACK approach did not
change the state of the connection. This could be in a scenario where a server

did not respond to the split ACK, but generated more retransmits because of the

54



increased number of ACKs.

The highest number of split ACKs per RTT was set to 36 ACKs as a precaution to
the ssthresh (i.e. 64Kb), and for a potential MSS of 1460 bytes. To make sure that
the tests were done in the slow-start phase, we kept the maximum number of split
ACKs to 12 ACKs per ACK, even though it would take around 46 packets to reach
the ssthresh within the first RTT. Note that the tool has a potential to generate up
to 1024 ACKs per ACK, as explained in chapter 4.

The determination of the OSs on the different servers was done with the tool
NMap [34]. It uses HTTP signatures to determine the OS signature and gives
an estimate of what kind of OS the server is running. In the scenarios where we
knew what OS the server was running (e.g. local servers at University of Oslo),
the NMap tool did predict the correct OS, but the prediction result was not always

with 100% confidence for every server (but always >80%).

Section 4.5 on page 73 describes an extensive test of the top 600 sites in the
world [35]. We did not run the full split ACK test on all the servers, but we did run
test A and test C on each site. Each site was tested 10 times, 5 for each type of test,
with a total amount of 6000 tests. The results were saved as the maximum number
of data packets / retransmits, the minimum number of data packets / retransmits,
and the average number of data packets / retransmits, with a total amount of 1800

results.

4.3 Preliminary Tests

To be able to determine any differences between the servers, we first needed pre-
liminary baseline tests. The preliminary tests were done to test a normal con-
nection, and see how the connection acted. We would then count the number of
incoming packets and number of retransmits, and compare the results against the

different servers.

The split ACK baseline test was done with the split ACK tool, so that we could
control the flow of data. The tool only sent a copy of the original ACK (i.e. no

55



’ Test Nr \ Data Packets \ Retransmits \ Total H File Size ‘
|15 ] 8 \ 1 | 9 [ 85Kb |

Table 4.3: Preliminary test versus folk.uio.no - Solaris 10

split ACK) and counted the incoming data packets of the connection. The original
ACK was still dropped, so that we maintained the control over the flow of ACKs
going to the host.

The test was done with the same test parameters as the split ACK tests, where we
only measured the first and second RTT of the connection. Each test was repeated
five times, where we measured the number of data packets, retransmits, and the

file size. The traceroute to the different servers are shown in the Appendix A.1 on

page i.

4.3.1 Results - Operating Systems

In this section we present the preliminary results of the 9 different hosts that we
have tested. We have tested five different operating systems (i.e Windows 2003
SP1 Server, Linux, Solaris, FreeBSD and Windows 7), and four different compa-

nies (i.e Google, Microsoft, Apple and Oracle).

Solaris 10

The first server we tested, was a web server at the University of Oslo (UiO),
folk.uio.no. This particular web server was running Solaris 10 as an OS. Table 4.3

shows the preliminary results for the web server, folk.uio.no.

As we can see from table 4.3, the results did not change from test one through
test five. The baseline results for Solaris 10 were very stable, and a good starting
point before the split ACKs. With a solid baseline results, it is easier to see how

the split ACK approach would affect the server.

56



’ Test Nr \ Data Packets \ Retransmits \ Total H File Size ‘
|15 | 7 \ 4 | 11 | 8,1Kb |

Table 4.4: Preliminary test versus heim.ifi.uio.no - Linux 2.6.9

’ Test Nr \ Data Packets \ Retransmits \ Total H File Size ‘

1-3 7 1 8 7,7 Kb
4-5 7 0 7 7,7 Kb
’ Average \ 7 \ 0,6 \ 7,6 H 7,7 Kb ‘

Table 4.5: Preliminary test versus connexion.at - Windows 2003 SP1

Linux 2.6.9

The next server was another server at UiO, heim.ifi.uio.no. This server is the main
web server for the Department of Informatics (IFI), and at the time of the test, the
server was running Linux with a kernel version 2.6.9. The preliminary results are

shown in table 4.4.

The results from the Linux server showed that it had more retransmits than the
Solaris server, with a smaller file size. The results were consistent, i.e. they were
equal in every test. When we compare the results form the Solaris server and

Linux server, we can deduce that the two servers have a different IW.

Windows Server 2003 SP1

The next server was a web server running Windows Server 2003 SP1. This web
server was not located in Norway (i.e. compared to the Linux and Solaris), but
in Austria. Therefore, there was a higer number of hops from the client to the
server. This could potentially give the connection a greater chance of congestion.
Table 4.5 shows the results, and the average result from the Windows Server 2003
SPI.

The Windows server consistently sent 7 data packets, leading to a consistent file
size of 7,7 Kb. If we compare the Windows server to the Solaris server, the Solaris

server had a 10% higher transfer rate, considering the file sizes and the number

57



’ Test Nr \ Data Packets \ Retransmits \ Total H File Size ‘

1-4 7 0 8 5,7 Kb
5 7 1 8 5,7 Kb
’ Average \ 7 \ 0,2 \ 7,2 H 5,7 Kb ‘

Table 4.6: Preliminary test versus freebsd.org - FreeBSD 7.0

of packets received. But because the Windows server was not located in close

proximity, the longer path to the server could affect the preliminary result.

FreeBSD 7.0

The test was against the FreeBSD web server (freebsd.org). The traceroute was
somewhat unclear about the location, but we estimated that the server was located
somewhere in the United States of America (USA), thus giving the FreeBSD
server the longest path of the OS tests. Table 4.6 shows the result, the OS was
FreeBSD 7.0. At the first glance of the preliminary results the FreeBSD server
was looking similar to the Windows 2003 SP1 server, where the number of data
packets was the same, but the file size dose not match. This is because the average
packet size was actually 22% smaller than with the Windows 2003 SP1 server.
This would indicate that the FreeBSD server, or a server in the path, had a smaller
MSS compared to the path of the Windows 2003 SP1 Server.

Windows 7 SP1

The Windows 7 preliminary result was obtained with a client side OS, with a web
server application. The Windows 7 computer was on a similar ADSL2+ from the
same ISP [33] as the client. The connection had limited bandwidth (i.e 1 MBit),
compared to the other servers we tested. The limited bandwidth should not cause
any negative results, because all the tests were done in the slow-start phase of
TCP. The Windows 7 tests had the shortest path of all the tests. The preliminary

results are shown in table 4.7 on the facing page.

When we compare the results of the Windows versions, we can see that the Server

58



’ Test Nr \ Data Packets \ Retransmits \ Total H File Size ‘
|15 | 6 \ 2 | 8 | 57Kb |

Table 4.7: Preliminary test versus s1010-0002.dsl.start.no - Windows 7 SP1

2003 has fewer retransmits and a larger number of data packets. Another differ-
ence was in the file size, where the Server 2003 had an average file size of 7,7 Kb,

and where Windows 7 had a average file size of 5,7 Kb, almost 35% less in size.

The file size of Windows 7 is equal to the file size of the FreeBSD server, but
Windows 7 did not share the same number of data packets. Our results indicate
that Windows 7 has the smallest IW of the tested OSs.

OS results

The OSs had some differences in amongst them, and it was hard to tell if it was the
configuration or the path to the server that affected the results. The Linux server
and Solaris server were on the same path, and shared the same host at UiO, yet
there was a clear difference between the Linux server and the Solaris server. To
get a clear understanding of the differences between the OSs, we can take a look
at figure 4.2 and figure 4.3 on the following page. Even if the difference was only
one or two packets more or less, the servers started off from different baselines in

the slow-start phase.

Preliminaryresults of Operating Systems

Retransmi its

m DataPackets

Linux Solaris Windows 7 Windows 2003  Free BSD
SP1

Figure 4.2: Difference between the Operating Systems

59



Kb
I

W File Size

Linux Solaris Windows 7 Windows 2003 FreeBSD
sPL

Figure 4.3: Difference between the Operating Systems - File Size

4.3.2 Results - Commercial Companies

The idea behind testing different Commercial Companies (CC) was that they
partly control how the different standards are used today. As mention in chap-
ter 2, Google proposes in an article to increase the IW to 10 packets, as opposed
to the ordinary 3 packets. It would be expected that Google has already increased
the IW on their servers, and that Microsoft have possibly followed in the same

footsteps as Google [36].

For the different CC, it is all about the technology that is best for their business.
That is why certain businesses wish to change the standards (e.g higher IW) of the
Internet. The Internet standards are not the law (i.e. there is no Internet police),
they are guidelines, so in theory a CC could do what ever they want on their
own systems. What we wanted to investigate, was how the different CC reacted
to Split ACKs, compared to the ordinary OSs. Is the Linux version running at
Apple reacting in the same manner as the Linux version running at Oracle, and
are Microsoft running the same configuration as any ordinary Windows 2003 SP1

Server?

One difference between testing OSs and CCs was in network traffic. Higher net-
work traffic could potentially affect the preliminary and the split ACK results. The
CCs had much higher traffic, compared to the OS servers, and might have been
more vulnerable to congestion. This could potentially obscure the the test results.

60



’ Test Nr \ Data Packets \ Retransmits \ Total H File Size ‘
|15 ] 9 \ 4 | 13 || 11Kb |

Table 4.8: Preliminary test versus Apple.com - Linux 2.6.9

Apple - Linux 2.6.9

Apple.com was running Linux with a kernel version 2.6.9 on their web server and
the server was located in the USA. The preliminary results are shown in table 4.8.
The results were similar to the Linux server at UiO, with the same stable result,
but had more incoming data packets and the same number of retransmits. Because
of the increased number of data packets, we measured a higher file size compared
to the UiO Linux server. The results were equal in every tests, thus indicating a
stable server and a stable path.

Microsoft - Windows 2003 SP3

Microsoft.com was running a Windows Server 2003 SP3 at the time of the tests.
We expected the server to run Windows Server 2008, but the NMap tool deter-
mined that the server was running Windows Server 2003 SP3. The traceroute
indicated that this server was also located in the USA. Table 4.9 on the following
page shows the results of the preliminary test versus the Microsoft server. As seen
in the table, the results were very unstable. To make sure that this was not a ran-
dom situation, we tested against the Microsoft server several more times to verify

the results, and in every test (on separate days) we got the same unstable behavior.

The Microsoft server seemed to have an extremely large IW (cf. test 1), as it
yielded a very large file size. The average result showed that the server had about
double the data rate than the other server tests, but in every test the retransmission
rate was the same. It was not possible for us to determine if it was the server
that was under heavy load (i.e congestion), or if it was the path that caused the
unstable data flow. What we could see, was that the Microsoft server had the most

aggressive approach in slow-start of all the tested servers.

61



Test Nr \ Data Packets \ Retransmits \ Total H File Size

1 36 2 38 | 50Kb
2 29 2 31 | 40Kb
3 22 2 24 | 30Kb
4 9 2 11 || 11Kb
5 27 2 29 | 37Kb
| Average | 246 | 2 | 26,2 | 33,6 Kb |

Table 4.9: Preliminary test versus www.Microsoft.com - Windows 2003 SP3

’ Test Nr \ Data Packets \ Retransmits \ Total H File Size ‘

1-2 16 3 19 || 17Kb
3 15 1 19 | 16Kb
4 12 5 17 | 13Kb
5 14 2 16 | 13Kb
| Average | 146 | 34 | 18 [ 152Kb |

Table 4.10: Preliminary test versus Google.com - Open BSD 4.3

Google - OpenBSD 4.3

Google.com was running OpenBSD with kernel version 4.3. The traceroute also
indicated that the Google server was located in the USA. Table 4.10 shows the
results for the Google server. The server had some similarities to the Microsoft
server, in that it had different results from test to test. The first two tests had a
high data throughput and a relatively low number of retransmissions, indicating
that the server was using a larger IW than three packets. To determine the exact

size of the IW was not feasible because of the divergent results.

If we compare the Google server to the Apple server, we can see that Apple had
a more restricted approach in the slow-start phase, but still got about the same
number of retransmits as the Google server. The average file size was about 38%
higher with the Google server, compared to the Apple server, but the Apple server

had a larger packet size.

62



’ Test Nr \ Data Packets \ Retransmits \ Total H File Size ‘

1-4 11 4 15 [ 14Kb
5 11 5 16 | 14Kb
| Average | 11 | 42 | 155 14Kb |

Table 4.11: Preliminary test versus Oracle.com - Linux 2.6.9

Oracle - Linux 2.6.9

The last CC was Oracle.com. The Oracle server was running Linux with kernel
version 2.6.9, same as the UiO Linux server and Apple server. We expected the
results to be similar to the Apple server, since this server was also located in the
USA. Table 4.11 shows the preliminary results for the Oracle server. The average
number of data packets, and the average file size was the largest on the Oracle
server, compared to the other Linux servers. And, as with all the other Linux
servers, the results were very stable, but with a large number of retransmits. The
three different Linux servers actually had the largest number of retransmits, when

we compare it to the other OS and CC servers.

Preliminaryresults of Commercial Companies

Retransmits
m DataPackets

Apple(linux)  Google (Open BSD)  Oracle(Linux)  Microsoft {Windows
20035P3)

Figure 4.4: Difference between the Commercial Companies

CC results

The test of the CC was to see if there is any difference between the servers. We
knew that there would be certain differences, e.g. due to traffic, the different

paths, and other unknown sources, but the preliminary test results showed that the

63



Kb
S

30

25

15 W File Size
m I I I

5

0

Apple(Linux)  Google(OpenBSD)  Oracle (Linux)  Microsoft (Windows
20035P3)

Figure 4.5: Difference between the Commercial Companies - File Size

differences were quite substantial. Figure 4.4 and figure 4.5 show the average dif-
ferences between the servers. Compared to the OS tests, the differences between
the CC were much higher than anticipated. The Microsoft server had three times
the average file size of the Apple server, but half the number of retransmissions.
The three Linux versions did all behave differently, but they all shared the same

number of retransmissions.

4.4 Split ACK Tests

With a baseline for all the servers, we now have the supporting data for doing split
ACK tests against the servers. This would hopefully make it easy to see how split
ACKs would affect the different servers.

The tests were done with the split ACK tool, and we split the first 3 ACKs in to 2,
4, 8 and 12 ACKs per ACK, thus increasing the cwnd for the server, and increasing

the data flow, with a potential risk of increasing the number of retransmits.

The results are presented in graphs (listed as figures), where the first dot in the

graphs are the preliminary results, and the next four dots are the split ACK tests.

The following section is divided in the same manner as the previous section. We
will present the split ACK results for the different OSs first, and then the results
for the different CCs.

64



4.4.1 Results - Operating Systems

In this section we will present the split ACK results of the 5 different OS hosts
that we have tested. These OSs as mentioned before, Windows 2003 SP1, Linux
2.6.9, Solaris 10, FreeBSD 7.0, and Windows 7 SP1.

Solaris 10

The Solaris server had a very stable baseline result, with only a few retransmis-
sions. In figure 4.6 we have the results from the Solaris server. As seen in the
result, split ACKs did increase the flow of data, without increasing the retransmis-
sion rate. The baseline results had on average one retransmission per test, and the

split ACK tests did not increase this value.

Solaris 10 - folk.uio.no

35

30

. A

Number of Packets

15 Ay Data
/ == Av. Re
10

split ACKs

Figure 4.6: Split ACKs - Solaris 10 - folk.uio.no

As we can see from the results, when we split the ACKs in two (i.e. two ACKs
per ACK), the server did not double the sending rate. In fact we had to generate 4
ACKs per ACK to achieve a doubling in the sending rate, compared to the baseline

result.

One thing to note, is that Solaris 10 is not a very common OS, and the test was

done on a UiO server, so the path was fairly short from the private ADSL2+ con-

65



nection (compared to the servers in the USA).

Linux 2.6.9

The Linux server had a stable baseline result, but with a high number of retrans-
missions. In figure 4.7 we have illustrated the results from the Linux server. The
results clearly showed that the split ACK approach had no effect. All the results
stayed the same as the baseline test. One positive effect was that the retransmis-

sion rate did not increase when we deployed the split ACK tool.

Linux 2.6.9 - heim.ifi.uio.no

“»
-
-
-
4

i
==—Av.Data

==V Re

Number of Packets
L= B Y N
[ ]
[ ]
[ |
[ ]

1 2 4 8 12

Split ACKs

Figure 4.7: Split ACKs - Linux 2.6.9 - heim.ifi.uio.no

To see if we could trigger a different response from the server, we tried to split
the ACKs into more than 12 ACKs per ACK, but when we reached 200 ACKSs per
ACK, the server started to send a large amount of retransmissions and the file size
dropped to a few bytes. We therefore concluded that there was no beneficial use

of the split ACK approach against the Linux server.

Windows 2003 SP1

The Windows 2003 server had good baseline behavior with a few variances in the

results, but with a fairly low retransmission rate. The server had a longer path than

66



the UiO servers, but shorter than the servers in the USA. Figure 4.8 illustrates the
results from the Windows 2003 server.

Windows 2003 SP1 - connexion.at

30

25 2

20 / /
15
/ =4=Av.Data
10
/ ==y Re

1 2 4 8 12

Mumber of Packets

Split ACKs

Figure 4.8: Split ACKs - Windows2003 SP1 - connexion.at

The results show that split ACK did work very well on the Windows 2003 server.
The retransmission rate increased by a few packets, but dropped down to the the
baseline on the second split ACK test (test C). If we compare the data packets to
the number of retransmissions, the baseline has an 8.5% retransmission rate per
data packet, where the last split ACK test has an 11% retransmission rate per data
packet. Based on these results, we could see that there was a possible chance that

the the retransmission rate increased when we split the ACKs.

In one RTT we got around 3 times more data than with the traditional slow-start
approach, and only a 2.5% increase in the retransmission rate. This makes the
split ACK approach against the Windows 2003 Server a very beneficial approach

for a client that aims to improve the slow-start phase in TCP.

FreeBSD

The FreeBSD server had the smallest MSS of the servers. In the preliminary
results the file size was smaller than the number of data packets for the FreeBSD

server. In other words, the MSS was smaller than 1024 bytes. The exact average

67



MSS was around 880 bytes per packet in the preliminary results.

Free BSD 7.0 - FreeBSD.org

&
&
3
r
*

=—f—Av.Data

== Av. Re

i Av_Filesize in KB

1 2 4 8 12z

MNumber f KB of Packets
(=] = [~} w =y (%3] [=4] =l oo

Split ACKs

Figure 4.9: Split ACKs - FreeBSD 7.0 - FreeBSD.org

The results of the split ACK tests are shown in figure 4.9, where we have added
the file size. The split ACK approach did not increase the data flow for the server.
The server reacted negatively to the approach, by sending more retransmits. The
number of retransmits increased in the same manner as we increased the number
of split ACKs to the server, and the average file size also went down, but the
number of data packets received did not go down. This would indicate that the

MSS declined, either in the path to the server, or from the FreeBSD server.

Windows 7 SP1 Client

The Windows 7 SP1 client computer was the newest version of the client OS
from Microsoft, so it may be expected that the split ACK approach would not
necessarily work, but we did not know this for sure. As shown in figure 4.10 on the
facing page the response was equal to the Linux server, where the results stayed
the same. The Windows 7 SP1 client had the shortest path of all the test servers, so
there was a lower probability that the path would interfere with the results, and as
we can see from the results, the number of data packets and retransmits was equal
in all the tests. The split ACK approach triggered no response from the Windows

7 SP1 client computer. An alternative would be to test an ordinary Windows 7,

68



Windows 7 SP1 - s1010-0002.dsl.start.no

3 e Ay Data

Number of Packets

2 o 0 o 0 B —E—AvPRe

Split ACKs

Figure 4.10: Split ACKs - Windows 7 SP1 - s1010-0002.dsl.start.no

without the service pack installed.

OS results

The split ACK approach did work in, some cases, giving the client a performance
boost with increased data flow, resulting in a larger file size. The Solaris and
Windows 2003 SP1 servers did both react to the split ACK approach, but not as we
expected. The increased performance was lower than we first anticipated, where
we thought that two split ACKs per ACK would double the cwnd and double the
data flow. The results showed that we would need four ACKs per ACK to achieve
the expected performance. The retransmission rate increased by a small amount
on the Windows 2003 SP1 server and did not increase at all on the Solaris server,
but when we compared the performance gain to the increased retransmission rate,

the increased retransmission rate was negligible.

The Linux server and Windows 7 SP1 client computer had no change in behavior

in the split ACK approach, where the results stayed the same in all the tests.

The FreeBSD server had the worst outcome from the split ACK approach. The
packet size went down, and the retransmission rate went up. The split ACK ap-

proach would actually make the connection slower, and cause higher congestion.

69



It would therefore not be recommend to use the split ACK tool against a FreeBSD

Server.

4.4.2 Results - Commercial Companies

With the OS split ACK result, we knew how the different OS could potentially
react to the split ACK approach. What we did not know was how the CC had
configured their servers. We tested the same CC as we did in the preliminary
results. We tested four different CC, with two Linux 2.6.9 server, one Windows
2003 SP3 Server, and one Open BSD 4.3 server.

Apple and Orcale - Linux 2.6.9

The Apple and Oracle servers where both running Linux 2.6.9. Since in the Linux
OS test, we got no reaction from the split ACK approach, we expected similar
results in the CC tests with the Linux servers. In figure 4.11(a) on the next page
we have the results from the Apple server, and in figure 4.11(b) on the facing page
we have the results from the Oracle server. As we can see from the figures, the
effect was the same as towards the UiO Linux server, where the baseline and split
ACK test were equal. The Apple server did get a small decrease in the average
number of data packets. The retransmission rate did also increase slightly, which
could have been triggered by the split ACK approach.

Apple.com- Linux 2.6.9 Oracle.com - Linux 2.6.9
12

-

O R MW UD N E DO

» = = = === Avy.Data

Numberof Packets

Numberof Packets
I S

—f— v Re

Split ACKs Split ACKs

(a) Split ACKSs - Apple.com (b) Split ACKs - Oracle.com

Figure 4.11: Apple and Oracle - Linux 2.6.9

70



The three Linux servers had different baseline results, but the reaction to the split
ACK approach was very similar. This would suggest that the reaction to split
ACKs was a default behavior in the Linux kernel, and not necessarily a configu-

ration feature.

Microsoft - Windows 2003 SP3

The Microsoft server had very unstable baseline results, but had a stable retrans-
mission rate. The results for the Microsoft server are shown in figure 4.12 on the
next page. The Microsoft server was running an upgraded (latest service pack)
version of the Windows 2003 server. The first split ACK test showed that the data
flow decreased by an average of four packets, and increased again on the second
split ACK test. This result could be due to high traffic on the server, but the last
two tests showed that the data rate dropped with 10 packets below the baseline.

With the increased number of split ACKs the connection actually became more
stable, but with a lower number of data packets and a smaller file size. As we
showed in the last section, the Microsoft preliminary baseline had very divergent
results. The split ACK approach did not increase the performance, as it did with
the Solaris and Windows 2003 SP1 servers, but we measured a more stable con-

nection, and with less divergent results compared to the baseline.

Microsoft.com - Windows 2003 SP3

30

~—

15

=4=—Av.Data
=fi=pv. Re

10

MNumberof Packets

Illll—f‘l"—kﬁ

1 2 4 & 12

Split ACKs

Figure 4.12: Split ACKs - Windows 2003 SP3 - Microsoft.com

71



Google - Open BSD 4.3

The Google server was the last of the CC servers. The baseline result was less
divergent than with the Microsoft server, but not as stable as with the FreeBSD
server. The Google server results are shown in figure 4.13 on the following page.

As we can see, the Google server did not respond with a performance gain to the

split ACK approach.
Google.com - Open BSD 4.3

18

16
i 14 _g—.v‘—li‘h_
2 1
E 10
= e Ay Data
-:: g8
B 5 e Av_Re
5 4 T"&h. B Av_Filesize in KB

2

0 . .

1 2 4 ] 12
Split ACKs

Figure 4.13: Split ACKs - Open BSD 4.3 - Google.com

The variance in the split ACK results were too inconclusive to tell whether the split
ACK approach did affect the server in any way. The baseline test, and the last split
ACK tests had about the same number of data packets, file size and retransmission

rate, but the results were very unstable and hard to predict.

CC results

The CCs were protected against the split ACK approach, and none of the CCs
showed a beneficial reaction to split ACKs. The Linux server did behave exactly
as the Linux server at UiO, without any reaction. The Microsoft server did expe-
rience a performance decrease, but because of the very divergent results, it was

hard to tell if it actually was the split ACK approach that caused it. The lower

72



performance may also have been caused by an unknown source (i.e. traffic, the

path) that affected the outcome of the results on the Microsoft server.

4.5 'Top 600 Web Sites in the World

Based on the results from the previous sections, we wanted to do a final extensive
test against the top 600 most visited web sites in the world (list downloaded from
Alexa.com on 13.07.2011). With this test, we observed how the real world reacts
to the split ACK approach in TCP Slow Start. As mentioned before, we did one
baseline test and one split ACK test (i.e test A and C). The results are presented in
two data sets; the first data set is the number of data packets (relevant to answer:
can a speed-up be attained?), and the second data set is the total number of data
packets and retransmits (relevant to answer: can we provoke host to send more

packets in an RTT for measurement purposes?).

4.5.1 Data Packets

The baseline results are presented in figure 4.14 on the next page. The average
data rate of all the sites was around 8 - 9 packets, and the range 6 - 13 data packets
covered about 83% of all the tested sites. With an IW of 3 - 4 packets, we expected
to receive around 9 - 12 data packets within the first two RTTs, and the expectation

correlated with the results.

The goal of the split ACK approach was to increase the number of data packets
and hence the average data rate for all the sites. The results of the split ACK
approach are presented in figure 4.15. As we can see from the results, the split
ACK approach did not have a significant impact on Slow Start. The split ACK
approach did work, because the results show a small increase of sites in the range
of 10 - 16 data packets — but if the expected split ACK approach had worked
on the majority of the sites, the results would be around double of the baseline
results, and the peak in the figure would have been around 16 - 17 data packets.

Table 4.12 on the next page shows a result with an expected reaction to split ACKs.

73



300

250

200

Numberof Sites

150 = Min Data
W [ax Data
100 Average Data
50 1
a
1-3 4-5 6-7 B8-9 10-11 12-13 14-16 More
Data Packets

Figure 4.14: Data Packets - Baseline results

300

250

200

»
3]
=
w
-
Z 150 i
£ M Min Data
E W Max Data
z

100 Average Data

50 +

o -
1-3 4-5 6-7 B8-9 10-11 12-13 14-16 Mare

Data Packets

Figure 4.15: Data Packets - Split ACK results

The successful split ACK result was nearly twice as large as the baseline result.
But the overall results showed that only a small number of sites reacted to the split
ACK approach.

74



Test Type | Data Packets | Retransmits H Total ‘

Baseline 11 2 13
Split ACK 23 4 27

Table 4.12: Average results from AOL.com

4.5.2 Total Number of Packets

In the previous section we only observed the incoming new data packets, and
ignored the total number of packets (i.e data packets + retransmissions). As we
saw, the split ACK approach did not improve the data rate in Slow Start for the
majority of the sites, and only handful of sites did improve the data rate in TCP

Slow Start. Her, we examine the total number of packets arriving at the client.

250

200

150

M Min Total

Numberof Sites

100 - W Max Total

Average Total

50 +

1-3 4-5 6-7 89 10-11 12-13 14-16 17-18 19-20 More

Data Packets and Retransmits

Figure 4.16: Total Number Packets - Baseline results

The baseline results are presented in figure 4.16. The results were consistent with
the baseline data results, because most of the sites were in the range of 6-13 pack-
ets. The results were more spread out compared to the data results because of

retransmissions.

The results of the split ACK tests are presented in figure 4.17. The graph shows
very clearly that the total number of packets did increase. Based on the results

from the last section, we can say that the increased traffic was caused by an higher

75



160

W Min Total

Numberof Sites

W Max Total

Average Total

1-3 4-5 6-7 89 10-11 12-15 14-16 17-18 19-20 More

Data Packets and Retransmits

Figure 4.17: Total Number Packets - Split ACK results

retransmission rate. From the four final tests, it is reasonable to say that the split
ACK approach was not very beneficial to the Slow Start phase in a real world

scenario.

4.6 Summary

In this chapter we set out to test our tool on different host, to observe the reac-
tion when we split the ACKs. We divided the results in OS tests and CC tests,
where we first did a preliminary test to determine the baseline and to observe the
differences between the OSs and the CCs.

The preliminary tests showed that none of the servers shared the same result. The
Linux servers did share the same behavior, where they had a high retransmission
rate, compared to the number of incoming data packets. This could be linked to the
fact that Linux was potentially using a larger IW [27] [28]. The FreeBSD server
had, as expected, the most conservative approach of all the tests. The FreeBSD
server had the smallest MSS and a low number of incoming data packets. The
Windows 7 client shared the same behavior as the FreeBSD server, with a low

number of incoming data packets. But the difference was that the Windows 7

76



client had a higher MSS per packet, and would therefore yield a larger file size.

In the preliminary CC tests, the Microsoft server had an extremely high data rate.
The Microsoft server peaked at 38 data packets, with only 2 retransmissions. The
tests were very unstable, with divergent results. The average result in the baseline
test was around 24,6 incoming data packets, even with a very unstable data rate,
but the retransmission rate was very stable with only 2 retransmitted packets on
average. The Google server had a higher data rate than the other servers, except
for the Microsoft server, and it peaked at 16 data packets. The Google server
had an unstable retransmission rate, thus lowering the number of incoming data
packets in the other tests. Microsoft and Google had the highest IW of all the
servers. Microsoft had an up to 5 times higher data rate than other hosts (e.g

FreeBSD server) in some tests.

The successful split ACK tests were done to the Solaris server and the Windows
2003 SP1 server. The results were mainly divided in three reactions, where the
first reaction was a successful split ACK, the second reaction was no reaction at

all, and the third reaction was a negative reaction.

As mentioned before, the servers we tested with success with split ACKs were
the Solaris server and the Windows 2003 SP1 server. The Solaris server did get
the best reaction, with the largest increase of data packets, and with very low
retransmissions rate. The performance gain between the baseline result and the
largest split ACK test was about a 300% increase of incoming data packets. The
Windows 2003 SP1 server had a similar behavior, but also had an increase in the
retransmission rate. The retransmission rate only increased with 2.5%, and the

data rate increased with 250% when compared to the average baseline results.

The Linux servers and the Windows 7 SP1 client shared the same behavior, with
no reaction to the split ACK approach. The Windows 7 SP1 client showed no
increase in performance, and the Linux server had no increase in performance
regarding incoming data packets, and also had no increase in the retransmission

rate.

FreeBSD reacted poorly to the split ACK approach. The server got no improve-
ment from the split ACKs, but had a decrease in performance. The FreeBSD

77



server increased the retransmission rate, consistent with the increase of the num-
ber of split ACKs. The Google server and the Microsoft server had very unstable,
and inconclusive results. The overall average performance went down on the Mi-
crosoft server, but the results were more stable (i.e less divergent) in the later split
ACK tests. Google had less divergent results than Microsoft, but the baseline test
and the last split ACK test had equal results (test E). The other split ACK tests (test
B,C,D) either had a negative effect or no effect at all.

The overall results showed what we were expecting, that the different OSs and
CCs, had very different baseline results, and that the reaction to the split ACK
approach were unpredictable, with positive and negative effects. The newer OSs
did not react to the split ACK approach, and this could indicate that the servers
were following the ABC or RFC5681 method for increasing the cwnd.

The final test was to observe how the «real world» reacted to split ACKs. The
tests determined if the top 600 most visited sites in the world supported split ACK
in the slow-start phase. We ignored what type of OS, and where the location of
the server was (i.e path), and focused on testing a large number of sites. The
results were clear; split ACKs did increase the number of packets (traffic), but
did not increase the number of new data packets. Instead, the retransmision rate
increased for a large portion of the sites. There were cases where split ACK had
extreme effects, but in most cases the split ACK approach did not increase the
data rate, and was therefore inefficient for increasing the cwnd in Slow Start. We
knew that split ACK could potentially improve Slow Start in TCP, but only a few
OSs did support the split ACK approach. The split ACK tool could still be used as
a measurement tool, to provoke host to quickly generate a large amount of traffic

in Slow Start.

78



Chapter 5

Conclusion & Future Directions

5.1 Conclusion

The Slow Start phase in TCP is lagging behind the speed of the connections today.
The performance can in some cases be limited by the Slow Start algorithm, and
not necessarily by the bandwidth. Our goal in this thesis was to see if a client
could improve the Slow Start phase in TCP by using split ACKs. To achieve this,
we implemented a tool to split the outgoing ACKs on a host. Our goal was not to
simulate a split ACK scenario in a controlled network, but rather do a real world
test, because in a real world test, we have no other control of the severs, or the

path to the server.

The concept of split ACK did not violate the defined algorithms of the TCP con-
gestion control. As an example, a delayed ACK in TCP can acknowledge more
than one segment per ACK, and in the same manner, split ACKs can use mul-
tiple ACKs to acknowledge a single segment. The difference between the two
approaches is how the sender increases the cwnd in accordance with the received
ACKs.

The latest RFC for TCP Congestion Control, RFC5681, is recommending a sender
to increase the cwnd with the actual number of bytes acknowledged in the ACK

(Quote 2.4.3 on page 20 [4]). This was inspired by the experimental ABC algo-

79



rithm that we described in chapter 2. Unfortunately some of the OSs do not follow
this standard (good for split ACK), and they increase the cwnd by the number of
incoming ACKs as described in RFC2581. This allows the client to send multiple
ACKSs per segment to increase the cwnd faster than intended by the original Slow
Start algorithm. A study that we described in 2.4.2 on page 19, showed that it was
possible to improve the Slow Start phase in a simulated environment with split
ACKs.

The split ACK approach is one approach to improve the Slow Start phase in TCP.
In last part of chapter 2 we presented alternatives that aimed to improve Slow
Start. The use of persistent connections works on the application layer. The idea
is to open a single TCP connection that could transfer multiple files, so that a client
could reduce the number new TCP connections. Most of the TCP stack improve-
ments were achieved on the server side, and only a handful of the algorithms are
utilized today. Google proposes to increase the IW in Slow Start to 10 segments,
so that they could kick-start the Slow Start phase (i.e. exponential growth with a
higher start value). The other TCP stack improvements introduce new algorithms,

but Google aims to improve the classical Slow Start algorithm.

With the same goal as Google, to improve the deployed Slow Start phase, the
split ACK approach aims to also improve the classical Slow Start algorithm, but
from a client point of view. We implemented a portable tool to test split ACKs
on real world scenario. The tool was not implemented as a kernel modification.
This allows the implementation to run on any system that support [Ptables and the

libpcap library.

The tool was written in C, in multiple threads, to maximise the performance and
efficiency of splitting ACKs. The tool controls everything from connection estab-
lishment, to counting the incoming results, and generating split ACKs from the
original ACK. The test of split ACKs was divided into two parts, different oper-
ating systems and commercial companies. In each scenario we had one baseline
test and four split ACK tests. The OS baseline tests were done to observe differ-
ences between the servers in the start up phase of TCP. The OS split ACK tests
were done to identify the different reactions to the split ACK approach. The CC
baseline tests were done to see how the CCs had implemented the standards, and

80



if they were cheating on the default behavior in TCP. We also observed how the
CCs reacted to split ACKs, and if there were any differences between the CC tests
and the OS tests.

The split ACK results were divided into three reactions, where the first reaction
was a successful split ACK, where the split ACK tool increased the performance.
The second reaction was no reaction at all, resulting in an identical results be-
tween the baseline test and the split ACK tests. The third reaction was a negative

reaction, where the split ACK tool decreased the performance of Slow Start.

The successful split ACK tests were done against a Solaris server and a Windows
2003 SP1 server, where the data rate doubled at around 4 split ACKs per ACK,
and with only a small increase in the retransmission rate. The Linux servers and
the Windows 7 SP1 client computer had no reaction to the split ACK approach.
We speculated that the OSs had implemented the new congestion control [4]. With
the new congestion control, the increased number of ACKs would not affect the
server. This was because the server would only increase the cwnd with the number
of bytes the split ACKs acknowledged (e.g 1 ACK with 10 Bytes or 10 ACKs with
1 Byte). The FreeBSD server experienced a decrease in performance, where the

packet size dropped and the retransmission rate increased.

With the results from the OS tests and CC tests, we set out to determine the true
effect of split ACK. We tested the top 600 most visited web sites in the world.
The tests were simplified versions of the OS and CC tests, where we only tested
the baseline and a single split ACK test (i.e Test A and C). The results clearly
showed that the split ACK approach did not improve the data rate of the Slow
Start phase. Most of the servers did not support split ACK, and most of the sites
that reacted to the split ACK approach reacted poorly. The results showed that the
traffic did increase with the split ACK approach, but the data rate of new packets
did not. The increased traffic was therefore caused by retransmissions of old data
packets. There were sites that reacted successfully to the split ACK approach, but
compared to the number of sites that did not react, and to the number of sites that
reacted poorly, we can say that the split ACK approach is not an efficient method
for increasing the performance in TCP Slow Start. In some scenarios, and against

some servers, it was possible to achieve a performance boost, but in the real world,

81



the split ACK approach was not an efficient method for improving the Slow Start
phase in TCP. The tool was successful in splitting ACKs and measuring a server
reaction. The tool could therefore be utilized for measurements, instead of being

a tool to improve the slow start phase.

5.2 Future Directions

In this thesis we utilized the split ACK tool on web servers for testing split ACKs
in TCP Slow Start. Based on the behavior in the split ACK tests, we saw that
some features and behaviors could be improved. The split ACK script should be
able to determine what port a web server is communicating on. This is because
we experienced problems when we tested HTTPS sites, where the default port
was not port 80 (TCP Port 443). The tool was no able to adapt to a port change
from one site to the next. We could set the port manually, but if the script could
determine the default port for communication, the testing procedure would not

need interaction from the user, and require less supervision.

One of the more interesting results, was the successful split ACK against the Win-
dows 2003 SP1 server. It might be interesting to test more windows versions to
observe what the default behavior is. It also seems relevant how the client OS,
Windows XP react to split ACKs, since this is still one of the most common OSs
today. It would also be interesting to observe with which kernel version of Linux
split ACKs did actually work, how they affected the behavior of the OS, and if
it was possible to configure an OS to support split ACKs without alliterating the
source code or the kernel, but by configuring the parameters of the OS (i.e. regedit

and systel).

In this thesis we focused on split ACKs against web servers, but how does it
work against other clients? If we deployed the split ACK tool on a peer-to-peer
network (i.e. Bittorent) how could split ACKs affect the peer-to-peer network, and
could we improve the speed of the transfer? Are the client OSs more receptive for
the split ACK approach, or do they share the same behavior as the server OSs?
These questions deserve further investigation.

82



AN B W=

Appendix A

Appendix

A.1 Traceroutes
All the tests were carried out from 14.07.2011 to 15.07.2011.

Solaris

The first server we tested was the main web server for all students and employ-
ees at the University of Oslo (UiO). The web server is running Solaris 10. The

traceroute to the server is shown in the list below.

Listing A.1: Traceroute Solaris

s22—00001.dsl.no.powertech.net (77.40.134.1) 32.513ms
s02b02.no.powertech.net (195.159.88.82) 29.096ms
oslo—gw.uninett.no (193.156.90.1) 29.377ms
uio—gw8.uio.no (128.39.65.18) 29.053ms
mrom—gw2.uio.no (129.240.25.18) 29.766ms

folk.uio.no (129.240.4.230) 29.379ms reached




~N O NN =

~N NN bW =

—_—

2

Linux 2.6.9

The second server was the main web server for the Informatics Department (IFI)

at UIO. The traceroute to the server is shown in the list below.

Listing A.2: Traceroute Linux 2.6.9

s22—00001.dsl.no.powertech.net (77.40.134.1) 32.656ms
s02b02.no.powertech.net (195.159.88.82) 28.967ms
oslo—gw.uninett.no (193.156.90.1) 28.819ms asymm 5
uio—gw8.uio.no (128.39.65.18) 28.844ms
uio—gw2l.uio.no (129.240.24.254) 29.134ms
ifi—gw2l.uio.no (129.240.24.250) 28.343ms
webserver.ifi.uio.no (129.240.64.5) 29.378ms reached
Windwos 2003 Sp1

The third server was a company hosting web sites, using a windows web server

located in Austria. The traceroute to the server is shown in the list below.

Listing A.3: Traceroute Windows 2003 SP1

s22—00001.dsl.no.powertech.net (77.40.134.1) 32.017ms
s01b01.no.powertech.net (195.159.88.81) 28.887ms
oso—bd—geth3—0—13.telia.net (213.248.97.33) 28.695ms asymm 5
kbn—bb2—link.telia.net (213.155.131.132) 40.698ms asymm 6
hbg—bb2—link.telia.net (213.155.133.24) 47.501ms asymm 7
kol—-b2—link.telia.net (80.91.247.249) 55.239ms

xe—3—1—0.cr—nashira.cgn4.hosteurope.de (213.155.141.46) 54.334ms asymm 9

FreeBSD

The fourth server was the main web site for FreeBSD, running FreeBSD. The

traceroute to the server is shown in the list below.

Listing A.4: Traceroute FreeBSD

s22—00001.dsl.no.powertech.net (77.40.134.1) 31.194ms
s02b02.no.powertech.net (195.159.88.82) 28.373ms

11




0N DN kW

O

11
12
13

N =

0NN N kW~

[ —
N = OO

te0—1-0—5.ccr21l

te0—0—0—3.mpd21.
te0—4—0—0.mpd21.
te0—2—0—5.mpd21.
yahoo.iad0l.atlas.cogentco.com (154.54.10.2)
(216.115.
(216.115.
(216.115.
(216.115.

ae—6.pat?2
ae—7.pat2
as—0.patl
ae—7.patl

gi—1—36.bas—b2.spl.yahoo.com

.dce.yahoo.
.che.yahoo.
.sjc.yahoo.

.pao.yahoo.

.ham01
fra03.

dcalOl
iad02

com

com

com

com

.atlas.

atlas

.atlas.

.atlas.

cogentco.com
.cogentco.com
cogentco.com

cogentco.com

102.176)
100.137)
100.66)

101.128)
(98.

136.16.39)
gi—1—44.bas—b2.spl.yahoo.com (209.131.32.39)

(130.117.2.177)
(130.117.49.237)
(154.54.26.101)
(154.54.41.122)

152.617ms
152.465ms

45.254ns
53.880ms
152.925ms
152.577ms
asymm

asymm

174.372ms

222.413ms

asymm

216.010ms

230.615ms
217.424ns

asymm

11
12

15

Windows 7 SP1

The Windows 7 client computer is owned by a personal friend, who ran a simple

web server. The traceroute to the server is shown in the list below.

Listing A.5: Traceroute Winows 7 SP1

s22—00001.dsl.no.powertech.net (77.40.134.1)
s1010—0002.dsl.no.powertech.net (77.40.196.2)

Microsoft.com

The first commercial server was located in the USA, and it was the Microsoft

server. The traceroute to the server is shown in the list below.

Listing A.6: Traceroute Microsoft.com

s02b02.no.powertech.net (195.159.88.82)

te0—0—0—5.ccr22
te0—0—0—3.ccr21l

te0—1-0—2.ccr22.

te0—2—0—4.ccr22

te0—6—0—6.mpd21.
te0—0—0—0.ccr21l.

microsoft. jfk07
209.240.199.227

28.352ms
.ham01l.atlas.cogentco.com (130.117.2.181) 45.027ms
.ams03.atlas.cogentco.com (130.117.50.41) 54.205ms
1pl0l.atlas.cogentco.com (154.54.37.110) 63.486ms
.bos01l.atlas.cogentco.com (154.54.43.57) 137.888ms asymm 11
jfk02.atlas.cogentco.com (154.54.46.34) 138.442nms
3fk07.atlas.cogentco.com (154.54.27.210) 139.452ms
.atlas.cogentco.com (154.54.11.150) 138.202ms
(209.240.199.227) 137.915ms asymm 13
ge—0—0—0—0.nyc—64cb—la.ntwk.msn.net (207.46.47.18) 139.298ms asymm 12
ge—7—0—0—0.col—64c—1b.ntwk.msn.net (207.46.40.90) 215.174ms asymm 17
ge—0—1—-0—0.wst—64cb—1b.ntwk.msn.net (207.46.43.185) 218.235ms asymm 18

1l




13
14
15
16

0NN AW

—
W — O 0

0NN AW

ge—6—1—0—0.tuk—64cb—1b.ntwk.msn.net (207.46.47.72) 218.402ms asymm 17
ge—7—0—0—0.tuk—64cb—1la.ntwk.msn.net (207.46.47.68) 214.734ms asymm 16

tenl—2.tuk—76c—1b.ntwk.msn.net (207.46.46.15) 215.878ms asymm 17
pol7.tuk—65ns—mcs—Ilb.ntwk.msn.net (207.46.35.146) 219.233ms
Apple.com

The second commercial server was Apple.com. The traceroute to the server is

shown in the list below.

Listing A.7: Traceroute Apple.com

s22—00001.dsl.no.powertech.net (77.40.134.1) 29.815ms
s02b02.no.powertech.net (195.159.88.82) 30.245ms
te0—0—0—5.ccr22.ham01.atlas.cogentco.com (130.117.2.181) 44.959ms
te0—1—0—3.mpd22.fral03.atlas.cogentco.com (130.117.49.225) 54.927ms
te0—2—0—6.mpd22.dcall.atlas.cogentco.com (130.117.51.230) 150.398ms
te0—2—0—5mpd22.1iad02.atlas.cogentco.com (154.54.41.126) 152.027ms

192.205.35.105 (192.205.35.105) 153.392ms
crl.wswdc.ip.att.net (12.122.135.158) 169.910ms asymm 17
cr2.rlgnc.ip.att.net (12.122.3.169) 169.189ms asymm 16
crl.rlgnc.ip.att.net (12.122.30.89) 169.914ms asymm 15
cr82.chlnc.ip.att.net (12.123.138.22) 175.654ms asymm 14
12.123.138.153 (12.123.138.153) 168.936ms
12.248.48.10 (12.248.48.10) 170.256ms asymm 14
Oracle.com

The third commercial web server was Oracle. The traceroute to the server is

shown in the list below.

Listing A.8: Traceroute Oracle.com

s22—00001.dsl.no.powertech.net (77.40.134.1) 31.590ms
s02b02.no.powertech.net (195.159.88.82) 29.076ms
te0—0—0—5.ccr22.ham01.atlas.cogentco.com (130.117.2.181) 45.388ms
te0—1—-0—3.mpd22.ams03.atlas.cogentco.com (130.117.50.37) 54.116ms
te0—0—0—2.ccr22.1pl0l.atlas.cogentco.com (154.54.37.102) 63.259ms
te0—0—0—4.ccr22.ymg02.atlas.cogentco.com (130.117.0.253) 133.236ms
te0—0—0—7.ccr22.yyz02.atlas.cogentco.com (154.54.25.33) 141.132ms
te0—4—0—2.ccr22.ord01l.atlas.cogentco.com (154.54.27.253) 154.183ms asymm 9

v




10
11
12
13
14

AN N B W=

te0—0—0—3.ccr22.mciOl.atlas.cogentco.com (154.54.30.101) 166.070ms asymm

192.205.36.181 (192.205.36.181)
cr2.dlstx.ip.att.net (12.122.138.110)
gar7.dlstx.ip.att.net (12.122.100.113)
12.94.97.22 (12.94.97.22)
adcg7—swi—8—xe—0—1—0.oracle.com (141.146.0.137)

176.398ms asymm 13
178.813ms asymm 16
291.615ms
176.787ms
183.021ms

10

Google.com

The fourth commercial web server was Google.com. The traceroute to the server

is shown in the list below.

Listing A.9: Traceroute Google.com

s22—00001.dsl.no.powertech.net (77.40.134.1)
s02b02.no.powertech.net (195.159.88.82)
s01b01.no.powertech.net (195.159.50.41)
oso—bd—geth3—0—13.telia.net (213.248.97.33)
s—pbbl—link.telia.net (80.91.251.68)
s—b3—link.telia.net (80.91.253.226)

32.728ms
29.705ms
29.142ms asymm 3
28.703ms
35.183ms
37.734ms

A.2 Source Code - Split ACK Tool

The source code for the Split ACK tool can be found at:
http://folk.uio.no/renorman/SplitACK

A.3 Data Results

The data results from all the tests can be found at:

http://folk.uio.no/renorman/SplitACK/Results/



http://folk.uio.no/renorman/SplitACK
http://folk.uio.no/renorman/SplitACK/Results/

vi



Bibliography

[1] L. Eggert, J. Heidemann, and J. Touch. Effects of ensemble-tcp. ACM
SIGCOMM Computer Communication Review, 30(1):15-29, 2000.

[2] W. Stevens. TCP Slow Start, Congestion Avoidance, Fast Retransmit, and
Fast Recovery Algorithms. RFC 2001 (Proposed Standard), January 1997.
Obsoleted by RFC 2581.

[3] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM Com-
puter Communication Review, volume 18, pages 314-329. ACM, 1988.

[4] M. Allman, V. Paxson, and E. Blanton. TCP Congestion Control. RFC 5681
(Draft Standard), September 2009.

[S] Definisjon av bredband - norge. http://img.nrk.no/nyheter/
norge/1.7380901, 2011.

[6] Homepage | ubuntu. http://www.ubuntu.com, April 2011.

[7] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream Control Transmission
Protocol. RFC 2960 (Proposed Standard), October 2000. Obsoleted by RFC
4960, updated by RFC 3309.

[8] Lksctp. http://lksctp.sourceforge.net/, June 2011.

[9] Andrés Arcia. Modifications du mécanisme d’acquittement du protocole
TCP: évaluation et application aux résaux filaires et sans fils. PhD thesis,

Telecom Bretagne, Rennes, France, December 2009.

Vil


http://img.nrk.no/nyheter/norge/1.7380901
http://img.nrk.no/nyheter/norge/1.7380901
http://www.ubuntu.com
http://lksctp.sourceforge.net/

[10] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981. Updated
by RFC 1349.

[11] Checksum - wikipedia, the free encyclopedia. https://secure.

wikimedia.org/wikipedia/en/wiki/Checksum, 2011.

[12] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September
1981. Updated by RFCs 1122, 3168, 6093.

[13] R. Braden. Requirements for Internet Hosts - Communication Layers. RFC
1122 (Standard), October 1989. Updated by RFCs 1349, 4379, 5884, 6093.

[14] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit Conges-
tion Notification (ECN) to IP. RFC 3168 (Proposed Standard), September
2001. Updated by RFCs 4301, 6040.

[15] T.J. Socolofsky and C.J. Kale. TCP/IP tutorial. RFC 1180 (Informational),
January 1991.

[16] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective Acknowl-
edgment Options. RFC 2018 (Proposed Standard), October 1996.

[17] M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581
(Proposed Standard), April 1999. Obsoleted by RFC 5681, updated by RFC
3390.

[18] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP congestion
control with a misbehaving receiver. ACM SIGCOMM Computer Communi-
cation Review, 29(5):71-78, 1999.

[19] M. Allman. TCP Congestion Control with Appropriate Byte Counting
(ABC). RFC 3465 (Experimental), February 2003.

[20] Ajax - connectivity enhancements in internet explorer 8. http:
//msdn.microsoft.com/en-us/library/cc304129(VS.85),
April 2011.

viil


https://secure.wikimedia.org/wikipedia/en/wiki/Checksum
https://secure.wikimedia.org/wikipedia/en/wiki/Checksum
http://msdn.microsoft.com/en-us/library/cc304129(VS.85)
http://msdn.microsoft.com/en-us/library/cc304129(VS.85)

[21]

[22]

[28]

[29]

[30]

[31]

N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain,
and N. Sutin. An argument for increasing TCP’s initial congestion window.
ACM SIGCOMM Computer Communication Review, 40(3):26-33, 2010.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol — HTTP/1.1. RFC 2616 (Draft
Standard), June 1999. Updated by RFCs 2817, 5785.

D. Liu, M. Allman, S. Jin, and L. Wang. Congestion control without a startup
phase. In Proc. PFLDnet. Citeseer, 2007.

S. Floyd, M. Allman, A. Jain, and P. Sarolahti. Quick-Start for TCP and IP.
RFC 4782 (Experimental), January 2007.

S. Floyd. Limited Slow-Start for TCP with Large Congestion Windows.
RFC 3742 (Experimental), March 2004.

M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s Initial Window.
RFC 3390 (Proposed Standard), October 2002.

Tcp: Increase the initial congestion window to 10 pack-
ets. http://kernelnewbies.org/Linux_2_6_39%#
head-c2acd2f0463943210471a42bf6f5b469a6999%e7b, June
2011.

Increasing the tcp initial congestion window. http://lwn.net/
Articles/427104/, June 2011.

Tcpdump/libpcap public repository. http://www.tcpdump.org/, Au-
gust 2010.

Netfilter/iptables project homepage. http://www.netfilter.org/,
June 2010.

Gnu wget. http://www.gnu.org/software/wget/, November
2010.

1X


http://kernelnewbies.org/Linux_2_6_39#head-c2acd2f0463943210471a42bf6f5b469a6999e7b
http://kernelnewbies.org/Linux_2_6_39#head-c2acd2f0463943210471a42bf6f5b469a6999e7b
http://lwn.net/Articles/427104/
http://lwn.net/Articles/427104/
http://www.tcpdump.org/
http://www.netfilter.org/
http://www.gnu.org/software/wget/

[32] G.992.5 : Asymmetric digital subscriber line (adsl) transceivers extended
bandwidth adsl2 (adsl2plus). http://www.itu.int/rec/T-REC-G.
992.5-200901-I/en, 2011.

[33] Powertech information systems as. http://www.powertech.no/,
2011.

[34] Nmap - free security scanner for network exploration & security audits.
http://nmap.org/, April 2011.

[35] Alexa the web information company. http://s3.amazonaws.com/

alexa-static/top—-1lm.csv.zip, June 2011.

[36] Google and microsoft cheat on slow-start. should
you? http://blog.benstrong.com/2010/11/

google—and-microsoft—-cheat-on-slow.html, 2011.


http://www.itu.int/rec/T-REC-G.992.5-200901-I/en
http://www.itu.int/rec/T-REC-G.992.5-200901-I/en
http://www.powertech.no/
http://nmap.org/
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://blog.benstrong.com/2010/11/google-and-microsoft-cheat-on-slow.html
http://blog.benstrong.com/2010/11/google-and-microsoft-cheat-on-slow.html

	Introduction
	Background and Related Work
	The Internet Protocol
	Time To Live
	IP Checksum

	Transmission Control Protocol
	TCP connection
	Acknowledgment of Packets
	Congestion

	TCP algorithms
	TCP - Three-Way-Handshake
	TCP - Slow Start
	TCP - Congestion Avoidance

	Misbehaving Sender/Receiver in TCP
	TCP Split ACK in Slow Start
	Simulated Study of TCP ACK Division
	Appropriate Byte Counting

	More on Slow Start 
	Client / Receiver
	Server / Sender


	A Split ACK Tool
	Introduction
	Design
	Kernel Mode
	User Mode
	Design Conclusion

	Libraries and Tools
	Superuser
	Second user - The Client
	Packet capturing library - Libpcap
	IPtables
	Wget

	Implementation
	Basic use of Pcap
	Capturing and forwarding of ACKs
	Generation of Split ACKs
	Finalizing Split ACKs
	Structure
	The test script

	Summary

	Test Results 
	Introduction
	Setup
	Hardware and Software
	Test Parameters

	Preliminary Tests
	Results - Operating Systems
	Results - Commercial Companies

	Split ACK Tests
	Results - Operating Systems
	Results - Commercial Companies

	Top 600 Web Sites in the World
	Data Packets
	Total Number of Packets

	Summary

	Conclusion & Future Directions
	Conclusion
	Future Directions

	Appendix
	Traceroutes
	Source Code - Split ACK Tool
	Data Results


