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Background
In clinical research, molecular measurements such as gene expression data play an 
important role in the diagnosis and prediction of a disease outcome, such as time-to-
event endpoint. In general, the number of molecular predictors is larger than the sam-
ple size (“p > n problem”) and typically only a small number of genes is associated with 
the outcome while the rest is noise. Thus, important objectives in statistical modeling 
are good prediction performance and variable selection to obtain a subset of prognostic 
predictors.

Abstract 

Background:  Important objectives in cancer research are the prediction of a patient’s 
risk based on molecular measurements such as gene expression data and the iden-
tification of new prognostic biomarkers (e.g. genes). In clinical practice, this is often 
challenging because patient cohorts are typically small and can be heterogeneous. In 
classical subgroup analysis, a separate prediction model is fitted using only the data 
of one specific cohort. However, this can lead to a loss of power when the sample size 
is small. Simple pooling of all cohorts, on the other hand, can lead to biased results, 
especially when the cohorts are heterogeneous.

Results:  We propose a new Bayesian approach suitable for continuous molecular 
measurements and survival outcome that identifies the important predictors and 
provides a separate risk prediction model for each cohort. It allows sharing information 
between cohorts to increase power by assuming a graph linking predictors within and 
across different cohorts. The graph helps to identify pathways of functionally related 
genes and genes that are simultaneously prognostic in different cohorts.

Conclusions:  Results demonstrate that our proposed approach is superior to the 
standard approaches in terms of prediction performance and increased power in vari-
able selection when the sample size is small.
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In the Bayesian framework, different types of variable selection priors have been pro-
posed also with application to the Bayesian Cox model. One common choice is the use 
of shrinkage priors such as the Bayesian lasso as an analog to the frequentist penalized 
likelihood approach [20, 26, 41]. A popular alternative are “spike-and-slab” priors that 
use latent indicators for variable selection and a mixture distribution for the regression 
coefficients [14, 35]. In general, the regression coefficients are modeled independently. 
However, with applications to molecular data, it can be reasonable to consider struc-
tural information between covariates, since the effect on a clinical outcome is typically 
not caused by single genes acting in isolation, but rather by changes in a regulatory or 
functional pathway of interacting genes. Several authors have dealt with this problem by 
using a Markov random field (MRF) prior to incorporate structural information on the 
relationships among the covariates into variable selection [21, 28, 33, 34]. Alternatively, 
Chakraborty and Lozano [5] propose a Graph Laplacian prior for modeling the depend-
ence structure between the regression coefficients through their precision matrix.

When the data are heterogeneous and consists of known subpopulations with possi-
bly different dependence structures, estimating one joint graphical model would hide 
the underlying heterogeneity while estimating separate models for each subpopulation 
would neglect common structure. For this situation, Danaher et al. [8] use an extension 
of the frequentist graphical lasso with either a group or fused lasso type penalty for joint 
structure learning. Saegusa and Shojaie [30] propose a weighted Laplacian shrinkage 
penalty where the weights represent the degree of similarity between subpopulations. 
Bayesian approaches for sharing common structure in the joint inference of multiple 
graphical models have also been developed [24, 27, 40]. Peterson et al. [27] use an MRF 
prior for the graph structures with pairwise similarities between different graphs. How-
ever, all these methods have in common that they focus on structure learning only and 
do not take into account the relationship between (structured) covariates and a clinical 
outcome as in the context of regression modeling.

We consider the situation that molecular measurements and a survival outcome are 
available for various, possibly heterogeneous patient subgroups or cohorts such as in a 
multicenter study. In the following, we use the term “subgroup” for different pre-known 
patient cohorts or data sets. In classical subgroup analysis, only the data of the sub-
group of interest is used to build a risk prediction model for this specific subgroup. This 
may lead to a loss of power or unstable results with high variance especially in small 
subgroups. Thus, it is tempting to simply pool all data to increase the sample size. This 
approach, however, can result in biased estimates when the subgroups are heterogene-
ous regarding their effects and subgroup-specific effects may get lost. We aim at sharing 
information between subgroups to increase power when this is supported by the data. 
Our approach provides a separate risk prediction model for each subgroup that allows 
the identification of common as well as subgroup-specific effects and has improved pre-
diction accuracy and variable selection power compared to the two standard approaches.

Some frequentist approaches tackle this problem by suggesting a penalized Cox regres-
sion model with a weighted version of the partial likelihood that includes patients of all 
subgroups but assigns them (individual) weights. Weyer and Binder [37] propose the use 
of fixed weights. This idea is extended by Richter et al. [29] using model-based optimiza-
tion for tuning of the weights to obtain the best combination of fixed weights regarding 
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prediction accuracy. [23] estimate individual weights from the data such that they represent 
the probability of belonging to a specific subgroup.

In this paper, we use a Bayesian approach and borrow information across subgroups 
through graph-structured selection priors instead of weights in the likelihood. We pro-
pose an extension of the Bayesian Cox model with “spike-and-slab” prior for variable selec-
tion by Treppmann et al. [35] in the sense that we incorporate graph information between 
covariates into variable selection via an MRF prior instead of modeling the regression coef-
ficients independently. The graph is not known a priori and inferred simultaneously with 
the important predictors. Its structure can be partitioned into subgraphs linking covariates 
within or across different subgroups. Thus, representing conditional dependencies between 
genes (i.e. pathways) and similarities between subgroups by genes being simultaneously 
prognostic in different subgroups.

Methods
First, the general methods are described that are required for our proposed Bayesian model 
introduced later in this section.

The Bayesian Cox proportional hazards model

Assume the observed data of patient m consist of the tuple (t̃m, δm) and the covariate vector 
xm = (xm1, . . . , xmp)

′ ∈ R
p , m = 1, . . . , n . x ∈ R

n×p is the matrix of (genomic) covariates. 
t̃m = min(Tm,Cm) denotes the observed time of patient m, with Tm the event time and Cm 
the censoring time. δm = �(Tm ≤ Cm) indicates whether a patient experienced an event 
( δm = 1 ) or was right-censored ( δm = 0).

The Cox proportional hazards model [7] models the hazard rate h(t|xm) of an individual 
m at time t. It consists of two terms, the non-parametric baseline hazard rate h0(t) and a 
parametric form of the covariate effect:

where β = (β1, . . . ,βp)
′ is the unknown parameter vector that represents the strength of 

influence of the covariates on the hazard rate.
Under the Cox model, the joint survival probability of n patients given x is

where t̃ is the vector of the individual observed times for all patients and T̃  the vector of 
corresponding random variables. One of the most popular choices for the cumulative 
baseline hazard function H0(t) is a gamma process prior

where H∗(t) is an increasing function with H∗(0) = 0 . H∗ can be considered as an initial 
guess of H0 and a0 > 0 describes the weight that is given to H∗(t) [20]. Lee et al. [20] 
propose a Weibull distribution H∗(t) = ηtκ with fixed hyperparameters η and κ . Follow-
ing Zucknick et al. [41], we obtain estimates of η and κ from the training data by fitting a 

h(t|xm) = h0(t) · exp(β
′
xm) = h0(t) · exp

(
p∑

i=1

βixmi

)
,

P(T̃ > t̃|x,β ,H0) = exp
(
−

n∑

m=1

exp(β ′
xm)H0(t̃m)

)
,

H0 ∼ GP(a0H
∗, a0),
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parametric Weibull model without covariates to the survival data. We choose a0 = 2 in 
accordance with the authors.

In practice the presence of ties is very common, leading to the grouped data likelihood 
described in Ibrahim et  al. [17, chapter  3.2.2]. A finite partition of the time axis is con-
structed with 0 = c0 < c1 < . . . < cJ and cJ > t̃m for all m = 1, . . . , n . The observed time 
t̃m of patient m falls in one of the J disjoint intervals Ig = (cg−1, cg ] , g = 1, . . . , J . Assume 
the observed data D = {(x,Rg ,Dg ) : g = 1, . . . , J } are grouped within Ig , where Rg and Dg 
are the risk and failure sets corresponding to interval g. Let hg = H0(cg )−H0(cg−1) be the 
increment in the cumulative baseline hazard in interval Ig , g = 1, . . . , J . From the gamma 
process prior of H0 follows that the hg ’s have independent gamma distributions

The conditional probability that the observed time of patient m falls in interval Ig is given 
by

with h = (h1, . . . , hJ )
′ . The resulting grouped data likelihood is defined as

 [17, chapter 3.2.2].

Stochastic search variable selection

The stochastic search variable selection (SSVS) procedure by George and McCulloch [14] 
uses latent indicators for variable selection and models the regression coefficients as a mix-
ture of two normal distributions with different variances

This prior allows the βi ’s to shrink towards zero. Due to the shape of the two-component 
mixture distribution, it is called spike-and-slab prior. The latent variable γi indicates the 
inclusion ( γi = 1 ) or exclusion ( γi = 0 ) of the i-th variable and specifies the variance of 
the normal distribution. τi (> 0) is set small so that βi is likely to be close to zero if γi = 0 . 
ci (> 1) is chosen sufficiently large to inflate the coefficients of selected variables and to 
make their posterior mean values likely to be non-zero. In general, the variances of the 
regression coefficients are assumed to be constant: τi ≡ τ and ci ≡ c for all i = 1, . . . , p.

The standard prior for γ = (γ1, . . . , γp)
′ is a product of independent Bernoulli 

distributions

hg ∼ G(α0,g − α0,g−1, a0) , with α0,g = a0H
∗(cg ) .

P(T̃m ∈ Ig |h) = exp
(
− exp(β ′

xm)

g−1∑

j=1

hj

)
·
[
1− exp

(
− hg exp(β

′
xm)

)]
,

L(D|β ,h)

∝

J�

g=1


exp

�
− hg

�

k∈Rg−Dg

exp(β ′
xk)

� �

l∈Dg

�
1− exp

�
− hg exp(β

′
xl)

��



βi|γi ∼ (1− γi) ·N (0, τ 2i )+ γi ·N (0, c2i τ
2
i ) , i = 1, . . . , p .

p(γ ) =

p∏

i=1

πγi
γ · (1− πγ )

1−γi ,
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with prior inclusion probability πγ = P(γi = 1) . Typically, these prior inclusion prob-
abilities are chosen to be the same for all variables and often with πγ set to a fixed value.

Graphical models

A graphical model is a statistical model that is associated with a graph summarizing the 
dependence structure in the data. The nodes of a graph represent the random variables 
of interest and the edges of a graph describe conditional dependencies among the varia-
bles. Structure learning implies the estimation of an unknown graph. Recent applications 
are mainly driven by biological problems that involve the reconstruction of gene regula-
tory networks and the identification of pathways of functionally related genes from their 
expression levels. A graph is called undirected, when its edges are unordered pairs of nodes 
instead of ordered pairs with edges pointing from one node to the other (directed graph). 
When the variables are continuous measurements and assumed to be multivariate normal a 
common choice are Gaussian models [11].

We assume that the vector of random variables Xm = (Xm1, . . . ,Xmp)
′ for patient m, 

m = 1, . . . , n follows a multivariate normal distribution with mean vector 0 and covari-
ance matrix � . The inverse of the covariance matrix is referred to as precision matrix 
�−1 = � = (ωij)i,j=1,...,p , with � symmetric and positive definite. Let X ∈ R

n×p be the data 
matrix consisting of n independent patients and S = 1

nX
′
X the sample covariance matrix.

In graphical models, a graph G̃ is used to represent conditional dependence relationships 
among random variables X . Let G̃ = (V ,E) be an undirected graph, where V = {1, . . . , p} 
is a set of nodes (e.g. genes) and E ⊂ V × V  is a set of edges (e.g. relations between genes) 
with edge (i, j) ∈ E ⇔ (j, i) ∈ E . G̃ can be indexed by a set of p(p− 1)/2 binary variables 
G = (gij)i<j ∈ {0, 1}p×p with gij = 1 or 0 when edge (i, j) belongs to E or not. The symmet-
ric matrix G is termed adjacency matrix representation of the graph. The graph structure 
implies constraints on the precision matrix � such that gij = 0 ⇔ (i, j) /∈ E ⇔ ωij = 0 , 
meaning that variables i and j are conditionally independent given all remaining variables 
[11, 36].

We use the approach for structure learning by Wang [36] that is based on continuous 
spike-and-slab priors for the elements of the precision matrix and latent indicators for the 
graph structure. The approach induces sparsity and is efficient due to a block Gibbs sampler 
and no approximation of the normalizing constant. The corresponding hierarchical model 
is defined as

where C(G, ν0, ν1, �) and C(θ) are the normalizing constants, and θ = {ν0, ν1, �,πG} is 
the set of all parameters with ν0 > 0 small, ν1 > 0 large, � > 0 and πG ∈ (0, 1) . �{�∈M+} 
restricts the prior to the space of symmetric-positive definite matrices. A small value for 
ν0 ( gij = 0 ) means that ωij is small enough to bet set to zero. A large value for ν1 ( gij = 1 ) 
allows ωij to be substantially different from zero. The binary latent variables 
G = (gij)i<j ∈ {0, 1}p(p−1)/2 serve as edge inclusion indicators. Wang [36] proposes the 

p(�|G, θ) = C(G, ν0, ν1, �)
−1

∏

i<j

N (ωij|0, ν
2
gij
)
∏

i

Exp(ωii|
�

2
)�{�∈M+}

p(G|θ) = C(θ)−1C(G, ν0, ν1, �)
∏

i<j

(
π
gij
G (1− πG)

1−gij
)
,
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following fixed hyperparameters πG = 2
p−1

 , ν0 ≥ 0.01 , ν1 ≤ 10 and � = 1 as resulting in 

good convergence and mixing.

The proposed Bayesian subgroup model

We assume the entire data consists of S predefined subgroups of patients (different cohorts 
or data sets), where for each patient the subgroup affiliation is known and unique. This 
information, which specific subgroup a patient belongs to, is available in the data.

Likelihood

Let X s ∈ R
ns×p be the gene expression (covariate) matrix for subgroup s, s = 1, . . . , S , 

consisting of ns independent and identically distributed observations. For patient m in 
subgroup s the vector of random variables X s,m = (Xs,m1, . . . ,Xs,mp)

′ is assumed to fol-
low a multivariate normal distribution with mean vector 0 and unknown precision matrix 
�ss = �−1

s  , m = 1, . . . , ns.
We consider the outcome Y s = (Ys,1, . . . ,Ys,ns)

′ with Ys,m = (T̃s,m, δs,m) as well as the 
predictors X s , to be random variables. Thus, the likelihood for subgroup s is the joint distri-
bution p(Y s,X s) = p(Y s|X s) · p(X s) . The conditional distribution p(Y s|X s) corresponds 
to the grouped data likelihood of the Bayesian Cox proportional hazards model at the 
beginning of this section [20] for subgroup s

where Ds = {(xs,Rs,g ,Ds,g ) : g = 1, . . . , Js} are the observed data in subgroup s, with 
Rs,g the risk and Ds,g the failure sets corresponding to interval Is,g = (cs,g−1, cs,g ] , 
g = 1, . . . , Js . The increment in the cumulative baseline hazard for subgroup s in interval 
Is,g is termed hs,g = H0(cs,g )−H0(cs,g−1) . βs is the p-dimensional vector of regression 
coefficients for subgroup s.

The marginal distribution of X s is multivariate normal with Ss = X
′
sX s

The joint likelihood across all subgroups is the product of the subgroup likelihoods

L(Ds|βs,hs)

∝

Js�

g=1


exp

�
− hs,g

�

k∈Rs,g−Ds,g

exp(β ′
sxs,k)

� �

l∈Ds,g

�
1− exp

�
− hs,g exp(β

′
sxs,l)

��

,

p(X s|�ss) ∝

ns∏

m=1

|�ss|
1/2 exp

(
−

1

2
X
′
s,m�ssX s,m

)

= |�ss|
ns/2 exp

(
−

1

2

ns∑

m=1

X
′
s,m�ssX s,m

︸ ︷︷ ︸
=tr(Ss�ss)

)
.

S∏

s=1

L(Ds|βs,hs) · p(X s|�ss).
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Prior specifications

Prior on the parameters hs and βs of the Cox model

The prior for the increment in the cumulative baseline hazard in subgroup s follows 
independent gamma distributions

with a Weibull distribution H∗(cs,g ) = ηsc
κs
s,g , g = 1, . . . , Js , s = 1, . . . , S [20]. We choose 

the hyperparameters a0 , ηs and κs to be fixed and in accordance with Lee et al. [20] and 
Zucknick et al. [41]. We set a0 = 2 and estimate the hyperparameters ηs and κs from the 
(training) data by fitting a parametric Weibull model without covariates to the survival 
data of subgroup s.

We perform variable selection using the SSVS approach by George and McCulloch 
[14] described earlier in this section. The prior of the regression coefficients βs,i in 
subgroup s conditional on the latent indicator γs,i is defined as a mixture of two nor-
mal distributions with small ( τ 2 ) and large ( c2τ 2 ) variance

The latent indicator variable γs,i indicates the inclusion ( γs,i = 1 ) or exclusion ( γs,i = 0 ) of 
variable i in the model for subgroup s. We assume equal variances for all regression coef-
ficients. We set the hyperparameters to the fixed values τ = 0.0375 and c = 20 following 
Treppmann et  al. [35]. This choice corresponds to a standard deviation of c · τ = 0.75 
and a 95% probability interval of [−1.47, 1.47] for p(βs,i|γs,i = 1).

Prior on γ linking variable and graph selection

The standard prior for the binary variable selection indicators γs,i is a product of inde-
pendent Bernoulli distributions as utilized by Treppmann et al. [35]. However, this does 
not consider information from other subgroups and relationships between covariates. 
For this situation, we propose a Markov random field (MRF) prior for the latent variable 
selection indicators that incorporates information on the relationships among the covar-
iates as described by an undirected graph. This prior assumes that neighboring covari-
ates in the graph are more likely to have a common effect and encourages their joint 
inclusion. The MRF prior for γ given G is defined as

where γ = (γ1,1, . . . , γ1,p, . . . , γS,1, . . . , γS,p)
′ is a pS-dimensional vector of variable inclu-

sion indicators, G is a symmetric (pS × pS) adjacency matrix representation of the graph, 
and a, b are scalar hyperparameters.

The hyperparameter a influences the overall variable inclusion probability and con-
trols the sparsity of the model, with smaller values resulting in sparser models. With-
out loss of generality a < 0 . The hyperparameter b > 0 determines the prior belief in the 
strength of relatedness between pairs of neighboring variables in the graph and controls 

hs,g ∼ G(a0(H
∗(cs,g )−H∗(cs,g−1)), a0),

βs,i|γs,i ∼ (1− γs,i) ·N (0, τ 2)+ γs,i ·N (0, c2τ 2) , i = 1, . . . , p.

p(γ |G) =
exp(a1′pSγ + bγ ′

Gγ )
∑

γ∈{0,1}pS exp(a1
′
pSγ + bγ ′Gγ )

∝ exp(a1′pSγ + bγ ′
Gγ ),
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the probability of their joint inclusion. Higher values of b encourage the selection of vari-
ables with neighbors already selected into the model. The idea becomes more evident by 
looking at the conditional probability

An MRF prior for variable selection has also been used by other authors [21, 28, 33, 34]. 
However, unlike us, they do not address the problem of borrowing information across 
subgroups by linking covariates in a graph.

We propose a joint graph with possible edges between all pairs of covariates within 
each subgroup and edges between the same covariates in different subgroups. The ele-
ments grs,ij in the adjacency matrix of the graph G represent the presence ( grs,ij = 1 ) 
or absence ( grs,ij = 0 ) of an edge between nodes (genes) i and j in subgroups r and s. 
They can be viewed as latent binary indicator variables for edge inclusion. The adjacency 
matrix in the present model is defined as

Gss = (gss,ij)i<j is the matrix of latent edge inclusion indicators within subgroup s

and Grs = (grs,ii)r<s is the matrix of latent edge inclusion indicators between subgroups 
r and s

with r, s = 1, . . . , S , r < s , i, j = 1, . . . , p , i < j.
Thus, within each subgroup s we assume a standard undirected graph with possible 

edges between all pairs of genes representing conditional dependencies as in a func-
tional or regulatory pathway. Between different subgroups we only allow for relations 
between the same gene in different subgroups (different genes in different subgroups are 
assumed to be unconnected). This allows sharing information between subgroups and 
prognostic genes shared by different subgroups have a higher inclusion probability. To 
visualize this idea, Fig. 1 shows an example network consisting of two subgroups, each 
with five predictors.

p(γs,i|γ−(s,i),G) =
exp

(
aγs,i + 2bγs,i · (

∑
j �=i γs,jgss,ij +

∑
r �=s γr,igrs,ii)

)

1+ exp
(
a+ 2b · (

∑
j �=i γs,jgss,ij +

∑
r �=s γr,igrs,ii)

) .

G =




G11 G12 . . . G1S

G12 G22 . . . G2S

...
...

. . .
...

G1S G2S . . . GSS


.

Gss =




0 gss,12 . . . gss,1(p−1) gss,1p

gss,12 0
. . . gss,2p

...
. . .

. . .
. . .

...

gss,1(p−1)
. . . 0 gss,(p−1)p

gss,1p gss,2p . . . gss,(p−1)p 0




,

Grs = diag(grs,11, . . . , grs,pp),
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Graph selection prior on � and G

We infer the unknown graph and precision matrix using the structure learning approach 
for Gaussian graphical models by Wang [36]. The precision matrix of subgroup s corre-
sponding to subgraph Gss is denoted by �ss = (ωss,ij)i<j.

The corresponding prior is defined by

with fixed hyperparameters ν0 > 0 small, ν1 > 0 large and � > 0.
We assume the binary edge inclusion indicators within subgroup s ( gss,ij ) as well as 

between subgroups r and s ( grs,ii ) to be independent Bernoulli a priori

with fixed prior probability of edge inclusion πG ∈ (0, 1).

Posterior inference

The joint posterior distribution for the set of all parameters θ = {h,β , γ ,G,�} is propor-
tional to the product of the joint likelihood and the prior distributions of the parameters 
in all subgroups

Markov Chain Monte Carlo sampling

Markov Chain Monte Carlo (MCMC) simulations are required to obtain a posterior 
sample of the parameters. The different parameters are updated iteratively according 

p(�ss|Gss, ν0, ν1, �) ∝
∏

i<j

N (ωss,ij|0, ν
2
gss,ij

)
∏

i

Exp(ωss,ii|
�

2
)�{�s∈M+},

p(G|πG) ∝
∏

s

∏

i<j

[
π
gss,ij
G (1− πG)

1−gss,ij
]
·
∏

r<s

∏

i

[
π
grs,ii
G (1− πG)

1−grs,ii
]
,

p(h,β , γ ,G,�|D,X)

∝

S∏

s=1

[
L(Ds|βs,hs) · p(X s|�ss)

]

·

S∏

s=1

[
p(�ss|Gss) · p(G) · p(γ |G) ·

p∏

i=1

p(βs,i|γs,i) ·

Js∏

g=1

p(hs,g |βs)

]
.

Fig. 1  Example graph. Illustration of the proposed graph for S = 2 subgroups, each with p = 5 genomic 
predictors (nodes). Possible edges between two nodes are marked by dashed lines
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to their conditional posterior distributions using a Gibbs sampler. A brief outline of 
the MCMC sampling scheme is given in the following. More details are provided in the 
Appendix. 

1	 For subgroup s = 1, . . . , S update �ss with the block Gibbs sampler proposed by 
Wang [36].

2	 Update all elements in G iteratively with Gibbs sampler from the conditional distri-
butions  p(gss,ij = 1|G−ss,ij ,ωss,ij , γ )  as well as

	 p(grs,ii = 1|G−rs,ii, γ ) , where G−rs,ii ( G−ss,ij ) denotes all elements in G except for grs,ii 
( gss,ij).

3	 Update all elements in γ iteratively with Gibbs sampler from the conditional distribu-
tions p(γs,i = 1|γ−s,i,G,βs,i) , where γ−s,i denotes all elements in γ except for γs,i.

4	 Update βs,i from the conditional distribution p(βs,i|βs,−i, γ s,hs,Ds) , s = 1, . . . , S , 
i = 1, . . . , p , using a random walk Metropolis-Hastings algorithm with adaptive 
jumping rule as proposed by Lee et al. [20]. βs,−i includes all elements in βs except 
for βs,i.

5	 The conditional distribution p(hs,g |hs,−g ,βs, γ s,Ds) for the update of hs,g can be well 
approximated by the gamma distribution 

 where ds,g is the number of events in interval g for subgroup s and hs,−g denotes the 
vector hs without the g-th element, g = 1, . . . , Js , s = 1, . . . , S [17, chapter 3.2.2].

Starting with an arbitrary set of initial values for the parameters, the MCMC algorithm 
runs with a reasonably large number of iterations to obtain a representative sample from 
the posterior distribution. All subsequent results are based on single MCMC chains, 
each with 20 000 iterations in total and a burn-in period of 10 000 iterations. As starting 
values we choose an empty model with:

We assessed convergence of each MCMC chain by looking at autocorrelations, trace 
plots and running mean plots of the regression coefficients. In addition, we ran several 
independent MCMC chains with different starting values to ensure that the chains and 
burn-in period were long enough to reach (approximate) convergence.

Posterior estimation and variable selection

We report the results of the Cox models in terms of marginal and conditional poste-
rior means and standard deviations of the estimated regression coefficients, as well as 
posterior selection probabilities. After removal of the burn-in samples, the remaining 
MCMC samples serve as draws from the posterior distribution to calculate the empirical 

hs,g |hs,−g ,βs, γ s,Ds

approx.
∼ G(a0(H

∗(cs,g )−H∗(cs,g−1))+ds,g , a0+
∑

k∈Rs,g−Ds,g

exp(βs′xs,k)),

G
(0) = 0pS×pS

�(0)
s = Ip×p and�

(0)
ss = (�(0)

s )−1for s = 1, . . . , S

γ (0)
s = (0, . . . , 0)′for s = 1, . . . , S

β
(0)
s,i ∼ U [−0.02, 0.02] for i = 1, . . . , p, s = 1, . . . , S

h(0)s,g ∼ G(1, 1) for s = 1, . . . , S, g = 1, . . . , Js
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estimates. These estimates are then averaged across all training sets for each variable 
separately.

The strategy for variable selection follows Treppmann et al. [35]. First, the mean model 
size m∗ is computed as the average number of included variables across all MCMC itera-
tions after the burn-in. Then the m∗ variables with the highest posterior selection prob-
ability are considered as the most important variables and selected in the final model.

We visually assess the inferred graph by the marginal posterior probabilities of 
the pairwise edge inclusion indicators. High probabilities suggest that an edge exists 
between two covariates (nodes). We consider the presence of an edge as a continuous 
parameter rather than choosing a cutoff for binary decision.

Prediction

We use training data for model fitting and posterior estimation and test data to assess 
model performance. We evaluate the prediction performance of the Cox models by the 
integrated Brier score.

The expected Brier score can be interpreted as a mean square error of prediction. It 
measures the inaccuracy by comparing the estimated survival probability Ŝ(t|xm) of a 
patient m, m = 1, .., n , with the observed survival status �(t̃m > t)

and the squared residuals are weighted using inverse probability of censoring weights

to adjust for the bias caused by the presence of censoring in the data. Ĉ(t) is the Kaplan-
Meier estimator of the censoring times [3, 31].

The predictive performance of competing survival models can be compared by plot-
ting the Brier score over time (prediction error curves). Alternatively, prediction error 
curves can be summarized in one value with the integrated Brier score as a measure of 
inaccuracy over a time interval rather than at single time points [15]

Median probability model and Bayesian model averaging

For the calculation of the prediction error, we account for the uncertainty in model 
selection by two different approaches: the Median Probability Model (MPM) [1] and an 
approximation to Bayesian Model Averaging (BMA) [16]. After removal of the burn-
in samples, we compute the Brier score over the “best” selected models. According to 
the BMA approach we choose the top 100 models with the largest log-likelihood val-
ues to obtain the marginal posterior means of the regression coefficients, which in 
turn are required for the risk score. Our choice of the number of top models for BMA 

B̂S(t) =
1

n

n∑

m=1

ŵm(t) ·
(
�(t̃m > t)− Ŝ(t|xm)

)2

ŵm(t) =
�(t̃m ≤ t)δm

Ĉ(t̃m)
+

�(t̃m > t)

Ĉ(t)

IBS(t∗) =
1

t∗

∫ t∗

0
BS(t)dt, t∗ > 0.
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approximation is based on visual assessment of the MCMC frequencies of the different 
top-selected models. However, the number of models could be optimized. For the MPM 
approach we select all covariates with a mean posterior selection probability larger than 
0.5. For these variables we calculate the marginal posterior means of the regression coef-
ficients and the corresponding risk score.

Simulation study
In the following, we compare the performance of our proposed model, referred to as 
CoxBVS-SL (for Cox model with Bayesian Variable Selection and Structure Learning, as 
an extension of the model by Treppmann et al. [35]), to a standard subgroup model and 
a combined model. The combined model pools data from all subgroups and treats them 
as one homogeneous cohort, whereas the subgroup model only uses information in the 
subgroup of interest and ignores the other subgroups. Both standard approaches follow 
the Bayesian Cox model proposed by Treppmann et al. [35] with stochastic search vari-
able selection and independent Bernoulli priors for the variable inclusion indicators γ.

The priors for variable selection and structure learning are specified as follows. We set 
the hyperparameter of the Bernoulli distribution to πγ = 0.02 , matching the prior prob-
ability of variable inclusion in the MRF prior of the CoxBVS-SL model. Based on a sensi-
tivity analysis, we choose the hyperparameters of the MRF prior as a = −4 and b = 1 . 
When the graph G contains no edges or b = 0 then the prior variable inclusion probabil-
ity is exp(a)

(1+exp(a)) ≈ 0.018 . This probability increases when b > 0 is combined with a non-
empty graph.

For the sensitivity analysis of a and b we considered in total 36 combinations of 
the following hyperparameter values: a ∈ {−4,−3.75,−3.5, . . . ,−2.25,−2} and 
b ∈ {0.25, 0.5, 0.75, 1} and simulated the data according to scenario I with n = p = 100 . 
Visual assessment of the results showed that they were relatively robust without major 
differences between the parameter combinations (Additional file 1: Fig. S1). Therefore, 
we selected the combination of values for a and b based on a compromise between vari-
able selection accuracy (trade-off between large probability of true positive and small 
probability of false positive selections) and prediction performance.

The remaining hyperparameters for G and �ss are chosen as ν0 = 0.1, ν1 = 10 , � = 1 
and πG = 2/(p− 1) , in accordance with Wang [36] and Peterson et al. [28]. Wang [36] 
extensively studied the impact of different parameter combinations on the structure 
learning results, reporting that the results were relatively insensitive to the choice of 
� = 1 . He recommended a range for the parameters ν0 and ν1 as providing good conver-
gence and mixing. Based on his recommendation, we performed a sensitivity analysis 
in previous simulations to confirm that the parameter range is also appropriate for our 
experiments. All tested parameter combinations provided reasonable variable selection 
results with only small differences, which led us to choose one of the best performing 
combinations in terms of variable selection accuracy.

In the following simulations, we examine varying numbers of genomic covariates p 
and sample sizes n, with a focus on small sample sizes relative to the number of variables 
which is characteristic for gene expression data. We standardize the genomic covariates 
before model fitting and evaluation to have zero mean and unit variance. Parameters of 
the training data (mean and standard deviation of each variable) are used to scale the 
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training and test data. For the standard subgroup model and the proposed model we 
standardize each subgroup separately, whereas for the combined model we pool training 
data of all subgroups.

For Bayesian inference, typically one training data set is used for posterior estimation 
and an independent test data set for model evaluation. However, results have shown 
some variation due to the data draw. Therefore, in the following, simulation of training 
and test data is repeated ten times for each simulation scenario.

In a second simulation set up we use two different hyperparameters b for the sub-
graphs Gss , s = 1, 2 and G12 in the MRF prior of the CoxBVS-SL model and compare the 
prediction performance with the Sub-struct model. In the latter G12 is an empty graph 
and only information of Gss is included in the MRF prior. We use the same training and 
test data as before but only consider simulation scenarios with p = 100.

Data simulation

Training and test data, each consisting of n samples and p genomic covariates, are simu-
lated from the same distribution as described in the following. We consider two sub-
groups that differ only in their relationship between genomic covariates and survival 
endpoint ( βs , s = 1, 2 ), and in the parameters for the simulation of survival data. We 
generate gene expression data from the same multivariate normal distribution with 
mean vector 0 and precision matrix � . The precision matrix is defined such that the vari-
ance of each gene is 1 and partial correlations exist only between the first nine prognos-
tic genes. Within the three blocks of prognostic genes determined by the same effect 
(gene 1 to 3, gene 4 to 6, and gene 7 to 9) we assume pairwise partial correlations of 0.5. 
All remaining genes are assumed to be uncorrelated.

We simulate survival data from a Weibull distribution according to Bender et  al. 
[2], with scale ηs and shape κs parameters estimated from two gene expression cancer 
cohorts [4, 10] to obtain realistic survival times. Therefore, we compute survival prob-
abilities at 3 and 5 years using the Kaplan-Meier estimator, separately for both cohorts. 
The corresponding probabilities are 57% and 75% for 3-years survival, and 42% and 62% 
for 5-years survival, respectively. Event times for subgroup s are simulated from

with true effects βs ∈ R
p , s = 1, 2 . We randomly draw non-informative censoring 

times Cs from a Weibull distribution with the same Weibull parameters as for the event 
times, resulting in approximately 50% censoring rates in both subgroups. The indi-
vidual observed event indicators and times until an event or censoring are defined as 
δs = �(Ts ≤ Cs) and T̃s = min(Ts,Cs) , s = 1, 2.

We choose the true effects of the genomic covariates on survival outcome as stated in 
Table 1. Genes 1, 2, 3 and 7, 8, 9 are subgroup-specific, while genes 4, 5 and 6 have the 
same effect in both subgroups. All remaining genes represent noise and have no effect in 
both subgroups.

Ts ∼

(
−

log(U)

ηs exp(xsβs)

)1/κs

, U ∼ U [0, 1],
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Simulation results I

We consider three low-dimensional settings with p = 20 genes and n = 50, 75, 100 sam-
ples in each subgroup, as well as five high-dimensional settings with p = 100 and sam-
ple sizes n = 50, 75, 100, 150 . We also tested p = 100 and n = 125 , but as expected, the 
results always lay between the results for n = 100 and n = 150 . For this reason, they are 
not shown here. We compare our proposed model (CoxBVS-SL) to the standard sub-
group model (Subgroup) and the standard combined or pooled model (Pooled) regarding 
variable selection accuracy and prediction performance.

Posterior selection probabilities for each gene are computed based on all iterations 
after the burn-in and averaged across all training data sets. The resulting mean poste-
rior selection probabilities of the first nine genes in subgroup 1 are depicted in Fig.  2 
(and in Additional file 1: Fig. S2, for subgroup 2). Across all simulation scenarios, the 
CoxBVS-SL model has more power for the selection of prognostic genes compared to 
the two standard approaches, and at the same time, does not erroneously select noise 
genes (false positives) as the Pooled model. As expected, with larger n, power and accu-
racy in variable selection increase for both, the CoxBVS-SL and the Subgroup model. 
The Pooled model only correctly identifies the joint effects of genes 4, 5 and 6 but fails to 
detect subgroup-specific effects.

Posterior estimates of the regression coefficients β̂j of the first nine genes in subgroup 
1 are shown in Fig. 3 for conditional posterior means (conditional on γ = 1 ) and in Addi-
tional file 1: Fig. S3 for marginal posterior means (independent of γ ), both along with 
standard deviations. The corresponding results for subgroup 2 are depicted in Addi-
tional file 1: Figs. S4 and S5. For n < 100 the conditional posterior means of the prognos-
tic genes are less shrunk than the marginal posterior means. Results of the CoxBVS-SL 
model and the Subgroup model are very similar, whereas the Pooled model averages 
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Fig. 2  Mean posterior probabilities of variable selection in simulation I. Mean posterior selection probabilities 
of the first nine genes in subgroup 1 (averaged across the ten training sets). The colors represent the different 
models and the plot symbol indicates whether a gene is selected on average or not
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effects across subgroups leading to biased subgroup-specific effects and more false posi-
tives. Surprisingly, the joint effects of genes 4, 5 and 6 are also more precisely estimated 
(less shrunk) by CoxBVS-SL and Subgroup compared to Pooled.

We assess prediction performance by the integrated Brier score (IBS), computed based 
on the Median Probability Model (MPM, Fig. 4 for subgroup 1 and Additional file 1: Fig. 
S7, for subgroup 2) and the Bayesian Model Averaging (BMA, Additional file 1: Fig. S6, 
for subgroup 1 and Additional file 1: Fig. S8, for subgroup 2). The Pooled model has the 
worst prediction accuracy. In the case of MPM, CoxBVS-SL performs clearly better than 
Subgroup, for BMA both models are competitive.

Inference of the graph showed relatively high accuracy for learning the conditional 
dependence structure among genes within subgroups and for detecting joint effects 
across different subgroups. The block correlation structure between the prognostic 
genes within each subgroup is correctly estimated by the precision matrix and the sub-
graph Gss , s = 1, 2 in the CoxBVS-SL model (see Additional file  1: Fig. S9). Inference 
of the subgraph G12 linking both subgroups improves with increasing sample size. The 
corresponding marginal posterior edge inclusion probabilities of the prognostic genes 
with joint effects (genes 4, 5 and 6) are larger than for the remaining genes, which 

p=20, n=50 p=20, n=75 p=20, n=100

p=100, n=50 p=100, n=75 p=100, n=100 p=100, n=150

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
9

−1.0

−0.5

0.0

0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

C
on

di
tio

na
l p

os
te

rio
r m

ea
n 

+/
− 

S
D

 o
f  

β

Gene selected?
no

yes

Model
CoxBVS−SL

Pooled

Subgroup

Fig. 3  Posterior effect estimates in simulation I. Conditional posterior means (conditional on γ = 1 ) and 
standard deviations (SD) of the regression coefficients of the first nine genes in subgroup 1 (averaged across 
the ten training sets)

Table 1  Effects in simulation I

 True effects in both subgroups for the simulation of survival outcome

Gene

1 2 3 4 5 6 7 8 9 10 . . . p

β1 1 1 1 −1 −1 −1 0 0 0 0 . . . 0

β2 0 0 0 −1 −1 −1 1 1 1 0 . . . 0
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becomes more evident for increasing n (see Additional file  1: Fig. S10). Findings sup-
port the assumption that incorporating network information into variable selection may 
increase power to detect associations with the survival outcome and improve prediction 
accuracy.

Simulation results II

Next, we study the effect of two different hyperparameters b in the MRF prior of the 
CoxBVS-SL model with respect to variable selection and prediction performance. The 
new hyperparameter b1 = 1 corresponds to the subgraphs Gss , s = 1, 2 within each sub-
group and b2 = 1, 1.5, 2, 2.5, 3 to the subgraph G12 linking both subgroups. By choosing 
a larger value for b2 , we give G12 more weight in the MRF prior and thus, increase the 
prior variable inclusion probability for genes being simultaneously selected in both sub-
groups and having a link in G12.

We compare the results of CoxBVS-SL with varying b2 to the results of the Sub-struct 
model where b2 = 0 and only information of Gss , s = 1, 2 is included in the MRF prior. In 
this comparison we investigate how much information is added by G12 over Gss . For the 
other hyperparameters we use the same values as in the previous simulations. We apply 
all models to the same training and test data sets as before but only consider simulation 
scenarios with p = 100 and n = 50, 75, 100, 125, 150.

Figure 5 shows the mean posterior selection probabilities of the first nine genes in sub-
group 1 (subgroup 2 is presented in Additional file 1: Fig. S11). The results of Sub-struct 
are similar to CoxBVS-SL with b2 = 1 . Increasing values of b2 lead to larger posterior 
variable inclusion probabilities, however, not only for the prognostic genes (see genes 7, 
8 and 9 in subgroup 1). This means more power for the correct identification of prognos-
tic genes when n ≤ p , but on the other hand, a tendency towards more false positives.

Posterior estimates of the regression coefficients β̂j are very similar for all models. 
Figure 6 shows the conditional posterior means (conditional on γ = 1 ) and Additional 
file  1: Fig. S12 the marginal posterior means (independent of γ ) along with standard 
deviations of the first nine genes in subgroup 1. The corresponding results of subgroup 2 
are depicted in Additional file 1: Figs. S13 and S14.

We assess prediction performance in terms of the integrated Brier score (IBS), com-
puted based on the Median Probability Model (Fig. 7) and the Bayesian Model Averaging 
(Additional file 1: Fig. S15). Larger values of b2 tend to lead to a slightly better prediction 
performance of CoxBVS-SL compared to Sub-struct when n < p . When the sample size 
is large, the prediction accuracy of all models is similarly good.

Additional file 1: Fig. S16 compares the results of the subgraph G12 for varying b2 in 
CoxBVS-SL. For larger values of b2 the marginal posterior edge inclusion probabilities 
of the prognostic genes with joint effects (genes 4, 5 and 6) increase, as expected, since 
they are given a higher weight in the prior. However, when b2 = 3 we also notice a minor 
increase of the marginal posterior edge inclusion probabilities of the other six prognos-
tic genes with subgroup-specific effects.
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Case study based on Glioblastoma protein expression data
In this section we compare CoxBVS-SL with varying b2 to both standard models, 
Pooled and Subgroup. We use the Glioblastoma protein expression data from Peter-
son et al. [28], comprising 212 samples with survival data (159 events) and p = 187 
proteins. For reasons of computation time, we use only p = 20 proteins and standard-
ize the protein expression data as described in the previous section. In contrast to the 

Table 2  Effects in simulation II

Simulated effects in both subgroups. Groups of proteins with the same effect are defined by different phosphorylation sites 
(or isoforms) of the same protein so that they can learn from each other

Protein β1 β2

Akt 2 0

Akt_pS473 2 0

Akt_pT308 2 0

EGFR 0 2

EGFR_pY1068 0 2

EGFR_pY1173 0 2

AMPK_alpha −1.5 1.5

Annexin.1 1.5 −1.5

GSK3.alpha.beta −2 −2

GSK3.alpha.beta_pS21_S9 −2 −2

GSK3_pS9 −2 −2

X14.3.3_beta 0 0

X14.3.3_epsilon 0 0

X14.3.3_zeta 0 0

X4E.BP1 0 0

X4E.BP1_pS65 0 0

X4E.BP1_pT37T46 0 0

X4E.BP1_pT70 0 0

X53BP1 0 0

A.Raf_pS299 0 0

p=20 p=100

50 75 100 150 50 75 100 150

0.05

0.10
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n

IB
S

Model: CoxBVS−SL Pooled Subgroup

Fig. 4  Prediction performance in simulation I. Integrated Brier Scores (IBS) across all ten test sets for 
subroup 1 (IBS based on the Median Probability Model). The black triangle within each boxplot represents the 
mean value
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previous simulations, we do not draw the expression data from a multivariate nor-
mal distribution, but instead use real protein expression data with realistic correla-
tion structure between all covariates, following the concept of plasmode simulations 
as described by Franklin et  al. [12]. We still simulate the relationship between pro-
teins and survival outcome by choosing artificial effects and simulating the survival 
data from a Weibull distribution. We randomly divide the complete data set into two 
equally large subsets to obtain two subgroups.
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For the survival endpoint we simulate the event times Ts and censoring times Cs , 
respectively, in subgroup s from a Weibull distribution with scale and shape parameters 
estimated by the Kaplan-Meier estimator of the true event and censoring times, respec-
tively, in the specific subgroup. The individual observed event indicators and survival 
times until an event or censoring are defined as δs = �(Ts ≤ Cs) and ts = min(Ts,Cs) , 
resulting in approximately 42% censoring rates in both subgroups. The effects in sub-
group s = 1 and s = 2 that we assume for the simulation of survival data are depicted in 
Table 2.

We repeatedly randomly split the complete data into training (with proportion 0.8) 
and test sets, stratified by subgroup and event indicator. In total, we generate ten train-
ing data sets for model fitting and ten test data sets for evaluation of the prediction 
performance.

We choose the hyperparameters in accordance with the case study in Peterson et al. 
[28] as follows. For the two standard models a prior probability of variable inclusion of 
0.2 is assumed. In the CoxBVS-SL model we set the hyperparameters of the precision 
matrix and graph to ν0 = 0.6, ν1 = 360, � = 1 and πG = 2/(p− 1) . The hyperparam-
eters of the MRF prior are a = −1.75, b = 0.5 and as in the previous section, we tried 
out two different values for b: b1 = 0.5 and b2 = 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3 , or 
b1 = 1, 1.5, 2, 2.5, 3 and b2 = 0.5.

Results of the case study

When either b1 or b2 increases the mean posterior selection probabilities of all pro-
teins increase too (Fig.  8). The Subgroup and CoxBVS-SL model with b1 = b2 = 0.5 
perform similarly. They correctly identify the subgroup-specific effects of the first six 
proteins and do not falsely select any noise proteins. Interestingly, the effects of pro-
teins AMPK and Annexin (ID 7 and 8), going in opposite directions for both sub-
groups, as well as the joint effects of proteins GSK3 are not all identified. There are 
a few false negatives. The Pooled model, in contrast, shows a clear bias for the sub-
group-specific and opposite effects. The effects are averaged across both subgroups, 
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Fig. 7  Prediction performance in simulation II. Integrated Brier Scores (IBS) across all ten test sets for subroup 
1 (left) and 2 (right) (based on the Median Probability Model). The black triangle within each boxplot 
represents the mean value
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which also becomes evident when looking at the posterior estimates of the regression 
coefficients, for the conditional posterior means in Fig. 9 and for the marginal poste-
rior means in Additional file 1: Fig. S17. The results of the Subgroup and CoxBVS-SL 
model are similar. In particular, the posterior means of the noise proteins with null 
effect are close to 0, also for large values of b1 or b2.

When we compare all models with regard to prediction accuracy in Fig.  10 and 
Additional file  1: Fig. S18, we again see competitive performance for the Subgroup 
and CoxBVS-SL model whereas Pooled is clearly worse. We can observe a tendency 
towards slightly improved prediction accuracy for increasing values of b2.

Finally, we assess the impact of increasing values of b2 on the subgraph G12 linking 
both subgroups. The corresponding marginal posterior edge selection probabilities 
are depicted in Additional file  1: Fig. S19. When b2 becomes larger first, the poste-
rior edge selection probabilities of proteins 8, 10 and 11 with opposite or joint effects 
in both subgroups increase, followed by the first six proteins with subgroup-specific 
effects and protein 9 with joint effect. The posterior edge selection probabilities of the 
noise proteins in both subgroups remain at the prior mean and only start to increase 
slightly when b2 ≥ 2.5 . Proteins 7 and 9 have much smaller posterior edge selection 
probabilities than the other proteins with opposite or joint effects, which fits to previ-
ous findings.
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When b1 becomes larger, the marginal posterior edge selection probabilities in the 
subgraphs G11 and G22 show no visible changes. In G12 they increase for some proteins 
however, to a much lesser extent than for larger b2.
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Discussion
We consider the situation of different, possibly heterogeneous patients subgroups (pre-
known cohorts or data sets) with survival endpoint and continuous molecular measure-
ments such as gene expression data. When building a separate risk prediction model 
for each subgroup, it is important to consider heterogeneity but at the same time it 
can be reasonable to allow sharing information across subgroups to increase power, in 
particular when the sample sizes are small. For this situation we propose a hierarchi-
cal Cox model with stochastic search variable selection prior. To achieve higher power 
in variable selection and better prediction performance, we use an MRF prior instead 
of the standard Bernoulli prior for the latent variable selection indicators γ . The MRF 
prior leads to higher selection probabilities for genes that are related in an undirected 
graph. We use this graph to link genes across different subgroups and thereby borrow 
information between subgroups. Genes that are simultaneously prognostic in different 
subgroups have a higher probability of being selected into the respective subgroup Cox 
models. As a side aspect, the graph in the MRF prior also allows us to estimate a net-
work between genes within each subgroup providing indications of functionally related 
genes and pathways. Here, genes that are conditionally dependent have a higher selec-
tion probability.

In the simulations and the case study we compared our proposed CoxBVS-SL model 
to the standard approach with independent Bernoulli prior for γ represented by the Sub-
group and Pooled model. Simulations showed that the Pooled model performed worst in 
terms of variable selection and prediction accuracy. It averaged the effects across both 
subgroups and thus, led to biased estimates. CoxBVS-SL had more power in variable 
selection and slightly better prediction performance than Subgroup when the sample 
size was small. For n > p both models were competitive. However, in the case study the 
CoxBVS-SL and Subgroup model performed similarly well (Pooled was again clearly 
worse). The reason for this may be that the sample sizes in both subgroups were rela-
tively large, in particular n > p.

In the MRF prior of our proposed CoxBVS-SL model we specify one unique hyperpa-
rameter b for both, the connection levels of covariates within and between subgroups. 
Since this assumption may be inadequate, we considered further simulations where we 
studied the effect of increasing values of b2 , representing the weight that is given to the 
subgraph G12 in the MRF prior of CoxBVS-SL, and compared the results to the Sub-
struct model where b2 = 0 . When b2 was small, CoxBVS-SL and Sub-struct performed 
very similarly. Thus, the subgraph linking both subgroups had only a small influence on 
the results compared to the conditional dependencies among covariates within each sub-
group (subgraphs G11 and G22 ). For larger values of b2 prediction performance slightly 
improved and power in variable selection increased but on the other hand, there was a 
tendency towards false positive variables. By using different hyperparameters b1 and b2 , 
we can vary the strength of connection between pairs of covariates within and between 
subgroups. However, we still assume that all pairs of subgroups are equally-likely linked 
a priori. In our situation this assumption is justified since we have no prior knowledge 
of the amount of shared, similar effects between subgroups. If prior information on the 
heterogeneity structure between subgroups (similar effects) is available, it can be incor-
porated into the MRF prior or the graph prior.
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The problem of different connection levels of covariates within and between subgroups 
can in a similar way be approached by the hyperparameter πG in the graph prior, instead 
of the hyperparameter b in the MRF prior. In previous simulations (data not shown) we 
increased the weight for G12 by choosing a larger value for the prior probability of edge 
inclusion πG for the corresponding edge inclusion indicators g12,ii , i = 1, . . . , p . This led 
to larger posterior edge selection probabilities, however, for all genes and not only the 
ones with joint effects. The variable selection results did not change remarkably. We 
could observe a small increase in power for all genes which again implied a tendency 
towards false positives.

Due to computation time, we have included only up to 200 variables so far and the 
analysis of many thousands of genes is not (yet) feasible. An advantage of the CoxBVS-
SL model is that it does not require prior knowledge of the graph among the covariates 
within and between subgroups. It accounts for uncertainty over both variable and graph 
selection. In situations where pathway information is available and the graph structure 
is known, it is possible to incorporate this structural information in the MRF prior via a 
fixed graph.

We assume that subgroups are pre-specified with the subgroup affiliation of each 
patient being unique and fixed. However, in  situations with unknown subgroups the 
latent subgroup structure would first need to be determined using methods such as clus-
tering. A wide variety of approaches have been proposed for the clustering of molecular 
data such as gene expression profiles [9, 13, 18, 25, 39] with extensions to sparse cluster-
ing [32, 38] and integrative clustering of multiple omics data types [6, 19].

Conclusions
To our knowledge, we propose the first completely Bayesian approach to combine dif-
ferent, possibly heterogeneous subgroups/cohorts in Cox regression with variable selec-
tion. We offer a solution for sharing information across the subgroups to increase power 
in variable selection and improve prediction performance.

We were able to demonstrate the superiority of our proposed CoxBVS-SL model over 
the two standard approaches. The standard Pooled model always performed worst, 
whereas the CoxBVS-SL model outperformed the standard Subgroup model when n ≤ p 
and otherwise was competitive. This suggests that incorporating network information 
into variable selection can increase power to identify the prognostic covariates and 
improve prediction performance. We showed that a proper choice of the hyperparam-
eter b (and a) in the MRF prior is crucial for the results of the graph and the Cox model.

Our proposed model does not require prior knowledge of the dependency structure 
between covariates within subgroups and the heterogeneity structure between subgroups 
(i.e., of the amount of shared, similar effects). In the absence of any prior structural infor-
mation, we assume that all pairs of covariates within and between subgroups are equally-
likely linked a priori, and we allow inference of the corresponding unknown graphical 
structures. In situations where prior structural information is available, for example path-
way information or degree of heterogeneity between subgroups, this information can be 
incorporated into our model. We presented a way to assign different connection levels to 
covariates within and between subgroups by using different hyperparameters b in the MRF 
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prior. Alternatively, one could use fixed edges in the graph or varying prior edge selection 
probabilities.

The discovery of graphical structure is an additional benefit of our proposed model. 
However, our focus is on prediction performance, unbiased effect estimation and variable 
selection in the Cox model. Our proposed CoxBVS-SL model showed improved results 
in the situation of small sample sizes which is an important problem, not only in clinical 
applications.

Appendix
Details of the MCMC algorithm

In the following, steps 1 to 4 of the MCMC sampling scheme in the Methods section are 
explained in more detail.

Step 1: Update of �ss

The block Gibbs sampler proposed by Wang [36] is used to update �ss for subgroups 
s = 1, . . . , S . The conditional distribution of �ss is

Consider the following partitions

and analogously

 where V s is a (p× p) symmetric matrix with zeros on the diagonal. For the 
block update of �ss focus on the last column (and row) of �ss : (ω̃12, ω̃22) with 
ω̃12 = (ωss,1p,ωss,2p, . . . ,ωss,(p−1)p)

′ , ω̃22 = ωss,pp.
The conditional distribution of the last column of �ss is

Consider the following transformations

p(�ss|Gss,X s)

∝ p(X s|�ss) · p(�ss|Gss)
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Then the conditional distribution is

(∗1) ∝ G(v|ns2 + 1, s̃22+�

2 ),
(∗2) ∝ N (u| − Cs̃12,C).
Permuting any column in �ss to be updated to the last one leads to a block Gibbs 

sampler for the update of �ss.

Step 2: Update of G

Update all elements in G iteratively with Gibbs sampler from their conditional dis-
tributions. All elements grs,ij are assumed independent Bernoulli a priori with 
p(grs,ij = 1) = πG and p(grs,ij = 0) = 1− πG.

Update grs,ii , r, s = 1, . . . , S , r < s , i = 1, . . . , p (edges between the same gene in dif-
ferent subgroups) from the conditional distribution

where G−rs,ii denotes all elements in G except for grs,ii . Accept grs,ii = 1 with probability

where

This means, update grs,ii as follows: grs,ii =
{
1, if u < wa

wa+wb
, u ∼ U [0, 1]

0, else .

Update gss,ij , s = 1, . . . , S , i, j = 1, . . . , p , i < j (edges between different genes in the 
same subgroup) from the conditional distribution

where G−ss,ij denotes all elements in G except for g−ss,ij . Accept gss,ij = 1 with probability

p(u, v|X s,Gss, �̃11) ∝ vns/2 exp
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where

Step 3: Update of γ

Update γs,i , s = 1, . . . , S , i = 1, . . . , p , with Gibbs sampler from the conditional 
distribution

where γ−s,i denotes all elements in γ except for γs,i . Accept γs,i = 1 with probability

where

Step 4: Update of β

A random walk Metropolis-Hastings algorithm with adaptive jumping rule as proposed 
by Lee et al. [20] is used to update βs,i for s = 1, . . . , S and i = 1, . . . , p . The full condi-
tional posterior distribution of βs,i is

where βs,−i denotes the vector βs without the i-th element.
�βs = diag(σ 2

βs,1
, . . . , σ 2

βs,p
) with σ 2

βs,i
= (1− γs,i) · τ
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2τ 2.
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	(iii)	 Accept the proposal β(prop)
s,i  if min{rs,i, 1} > u with u ∼ U [0, 1].

The mean and variance of the proposal distribution can be approximated based on the 
first and second derivative of the log conditional posterior distribution with respect to 
β
(t−1)
s,i .
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