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ABSTRACT: Large PV plants are increasingly common in locations with colder climates where snow can lead to 
significant PV power loss. For these locations, estimates of snow loss is necessary for accurate PV yield modeling. 
Robust estimation of snow loss is, however, challenging. Snow-induced loss is expected to vary with climate, weather, 
and PV plant design. In this work, we estimate snow loss from historical data for a set of PV plants in Norway. To extend 
the snow loss dataset, 12 years of weather data and a modified adaption of the Marion snow loss model are used to 
simulate snow loss for the analyzed PV plants over time. For the historical data, we observe variations in annual losses 
for the same system of more than 10 percentage points. For some of the systems, we find losses in a range from 0 to 100 
% for the same month. As expected, systems with colder climates have higher loss than systems in warmer climates, and 
systems with higher tilt has lower loss than systems with lower tilt. With snow loss modeling we get improved 
understanding of typical and extreme values, and the potential inter-annual variation in monthly and annual snow loss.  
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1 INTRODUCTION 
 
 As cost reductions have made photovoltaics (PV) a 
favorable choice also in colder climates, deployment 
rates in regions with snow falls are rapidly increasing [1–
3]. Snow on PV modules may lead to significant power 
loss. For certain locations snow fall can result in zero 
electricity production in the winter season and more than 
30 % annual loss [4]. Consequently, it is an important 
loss mechanism to consider in PV system models to get 
accurate assessments of the expected energy generation 
from PV plants in snow-affected locations. Snow-induced 
PV power loss is expected to vary from year to year, 
between different system configurations and between 
different locations. To get accurate snow losses for a 
specific system, a model taking into account the different 
influential parameters is therefore necessary. Recent 
research has demonstrated that for snow-affected 
locations the uncertainty in yield estimations [5–8] and 
forecasting [9] can be reduced if snow loss models are 
included. Despite this, snow loss models are often not 
implemented in PV simulation software. The System 
Advisor Model (SAM) has implemented the model 
suggested by Marion et al. [5,6], but in other software, 
snow is either not considered [10] or estimated by 
constant soiling values [11] with little guidance on how 
these constant values should be obtained. 
 Accurate snow loss modeling is, however, 
challenging, because the parameters influencing the snow 
cover and resulting PV system loss are manifold. The 
influential parameters range from weather conditions 
(precipitation, temperature, irradiance, wind, etc.), to 
installation and technology specific configurations (tilt, 
module technology/orientation, objects obstructing snow 
sliding etc.) [1,12] and type of snow [4]. Multiple snow 
loss models have been suggested [4], but validation is 
typically lacking [6]. To include all the parameters 
influencing snow cover and resulting loss in a physical 
model is challenging, and most suggested models for PV 
snow loss are based on empirical correlations [4]. 
 In our previous work [13], we show that the snow 
loss model suggested by Marion et al. [3], where 
empirical correlations are used to model natural snow 

clearing, performs better than models where snow loss is 
directly estimated based on empirical correlations 
between power loss and system and weather data. Ryberg 
et al. [6] and van Noord et al. [14] also find acceptable 
correlation between estimated and modeled snow loss 
using the Marion model.  
 To estimate the snow coverage on PV modules, the 
Marion model aims to predict: 1) presence of snow cover 
on PV modules, 2) when snow is cleared off the modules, 
and 3) the snow clearing rate. The separation of these 
three processes in the model, enables improvement of the 
model by developing the modeling of each process by 
either using additional physical modeling or collecting 
more empirical data.  In the model, the snow clearing rate 
is estimated with an empirical snow clearing coefficient. 
Many different parameters related to system design and 
weather/snow conditions are assumed to impact how fast 
the snow is cleared [13]. Frameless modules [15], empty 
space below modules [12] will promote sliding, for 
instance. With more data from different system 
configurations in different climates, we would get 
improved understanding of which parameters that impact 
the snow clearing rate the most, and consequently also 
get better values for the snow clearing coefficient and its 
potential variation.  
 In our evaluation of the model [13], we estimate the 
snow clearing coefficient from the snow loss data for the 
analyzed system, and we observe that for thin snow 
covers, the natural snow clearing rate is faster than the 
clearing rate of thicker covers [13]. By introducing 
separate snow clearing coefficients for thin and thick 
snow covers, reduced error in modeled snow loss is 
achieved. This also seems to make the model more 
general: when using snow depth dependent snow clearing 
coefficients we get better results when we model losses 
for systems with similar technical configurations with the 
same coefficients compared to when we use one single 
coefficient  [16]. For transferability, it is important that 
we can use the same empirical coefficients for systems 
with similar technical configurations. 
 In addition to the challenge of accurate snow loss 
modeling, there is a lack of established guidelines on how 
to take snow losses into account when used in e.g. PV 
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yield modeling or PV system dimensioning. Input data 
for the snow loss estimation, temporal resolution of the 
loss parameter, inter-annual variations and the impact of 
climate change need to be discussed. As pointed out by 
Marion et al. [5], typical meteorological year (TMY) 
values are not sufficient to use as input in snow loss 
modeling for PV yield assessments. Because snow is not 
one of the parameters considered in the derivation of 
TMY, TMY data does not necessarily represent a typical 
snow year. Using a long time series of meteorological 
data, enabling quantification of typical values and the 
inter-annual variability is suggested instead [5]. It is, 
however, important to use recent data. Because of climate 
change, historical snow data might not be representative 
for future snow conditions. In Norway, it is estimated that 
climate change will lead to reductions in snow depth and 
length of snow season, and an increase in snowline 
elevation [17]. Temporal resolution of the snow loss 
parameter is to our knowledge not much discussed in the 
literature. In the simulation tool PVsyst, monthly constant 
snow losses are used for PV simulations [11]. While this 
can be sufficient in assessments of total yield, this will 
not sufficiently describe the potential inter- and intraday 
variation. This variation can be relevant in system 
dimensioning, in particular for hybrid/battery systems.  
 In this work, we estimate the snow loss for a set of 
PV plants in Norway. Two different system designs are 
evaluated: commercial systems with modules installed 
with low tilt angles on flat roofs, and residential systems 
on tilted roofs. The aim of this analysis is to describe the 
variations in both monthly and annual snow losses, with 
respect to both time, location and system configuration, 
and to discuss how this could be included in e.g. PV yield 
modeling. The losses are estimated using both historical 
data and simulations based on longer time series of 
weather data and a modified adaption of the Marion snow 
loss model. 
 
 
2 METHODOLOGY 
 
2.1 PV system data 
 Seven PV installations in Norway with a total 
installed capacity of 1.6 MWp are analyzed. The 
evaluated dataset is the same as the dataset used to 
validate the modified snow loss model in [16], but some 
of the data series are extended in time. Two different 
system types are evaluated: residential systems on tilted 
roofs, and commercial large-scale systems on flat roofed 
buildings. The commercial systems have modules 
installed with low tilt and east/west orientation. This 
configuration is not optimal for total annual production in 
Norway, but is commonly used on flat roofed buildings 
to increase the packing density and reduce the seasonality 
of the production profile. The modules are installed in 
portrait orientation at the residential systems, and 
landscape orientation at the commercial system. All the 
PV modules are crystalline silicon. Apart from some 
variations in exact orientation, and tilt for the residential 

systems, the installations of the same type are assumed 
technically identical. Tilt and length of analysis period 
for the systems are given in Table I.  
 
Table I: Module tilt and length of analysis period for 
analyzed systems 
System ID Tilt Analysis period 
Residential systems 
R1 26 Jan 2019 – June 2021 
R2 40 Jan 2018 – June 2021 
R3 24 Jan 2019 – June 2021 
Commercial systems 
C1 10 Jan 2015 – June 2021 
C2 10 Jan 2017 – June 2021 
C3 10 Jan 2018 – June 2021 
C4 10 Jan 2018 – June 2021 

 
 The measured energy of the PV systems is collected 
from the inverters. For the commercial systems, the 
effective in plane irradiance and the module temperature 
is measured by reference cells. The residential systems 
have no on-site sensors. For all the locations, snow depth 
and snow fall data are collected from seNorge.no [18] 
and temperature and global horizontal irradiation (GHI) 
data are collected from nearby weather stations [19].  
 As illustrated in Figure 1, the analyzed systems are 
situated in three different geographic regions in Norway 
(East, West and Central), and in three different Köppen-
Geiger (KG) [20] climate zones (Humid continental 
climate (Dfb), subarctic climate (Dfc) and oceanic 
climate (Cfb)). This gives variation in snow and weather 
conditions between the locations. Figure 2 shows 16 
years of snow depth data for the four different 
combinations of geographic region and climate zone.  
 

 
Figure 1: Location on the map for the analyzed systems. 
The locations are labeled with geographic region and 
climate zone is given by the marker color. 
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2.2 Estimation of snow loss from historical PV data  
 To estimate historical snow losses from PV 
monitoring data, it is necessary to get an accurate 
estimate of what the energy production could have been 
if there was no snow. This requires an accurate model 
that considers all other losses of the PV system, and an 
efficient method to separate snow losses from other 
losses. To correctly estimate snow losses, it is especially 
important to take into account other wintertime losses 
such as losses caused by low irradiance, and high angles 
of incidence. These types of losses are typical for high 
latitude locations in the wintertime [21], and can 
introduce increased uncertainty in PV system modeling if 
not properly accounted for. 
 To estimate expected PV module power output for 
the commercial systems, the effective irradiance 
measured by the reference cells and the measured module 
temperature are used as input to a single diode model in 
pvlib python [22] to model PV module power output, 
using the procedure described in [13]. For the residential 
systems, detailed module data and onsite measurements 
are not available. Effective irradiance and module 
temperature are modeled in pvlib from measurements of 
GHI and ambient temperature from nearby weather 
stations. The GHI measurement is decomposed using the 
Erbs model [23] to estimate diffuse irradiance, and the 
Disc [24] model for direct irradiance. When modeling the 
in plane irradiance for the systems, the Hay and Davies’ 
1980 model [25] is used to determine the in plane diffuse 
irradiance from the sky. From the modeled in plane 
global irradiance, the effective irradiance is calculated by 
adding reflection losses using an incident angle modifier 
based on the physical model described in [26]. The 
module temperature is modeled using the PVsyst 
temperature model [27]. The expected power output from 
the modules is modeled using PVWatts [28]. 
 The described PV module power output models do 
not take into account all the relevant losses (all other 
losses than snow-induced losses) of the systems. From 
the energy performance index (EPI) of the system, the 
ratio between measured and modeled energy, we observe 
that the calculated value is below 1. Additionally, the EPI 
has a systematic seasonal component suggesting higher 
losses in the winter months, also in periods without snow. 
We assume that the significant losses not accounted for in 
the model, can be estimated with a constant and a 
seasonal component. To accurately find the seasonal 
components for the analyzed systems, seasonal trend 
decomposition is performed on the daily EPI, after 
filtering out time periods with snow on the ground (which 
introduces a non-systematic seasonal component).  

Seasonal trend decomposition is suggested by [29] as a 
method to find and correct the seasonal component in PV 
performance metrics. The deviation between 1 and the 
median of the seasonally corrected EPI is used as an 
estimate of the constant system losses. These two 
components are then used to correct the modeled PV 
module output to find the expected system output. By this 
way aiming to take all other significant losses into 
account, the snow loss is then estimated to be the 
difference in expected system output and measured 
system output in periods where the snow data suggests 
snow on the ground. 
 An additional uncertainty in this methodology is that 
snow cover on the irradiance sensors can lead to 
underestimation of snow losses. To reduce this 
uncertainty, the reference cell measurements from the 
commercial systems were controlled and corrected by the 
external GHI data. Pyranometers is expected to have 
lower risk for full snow cover than reference cells, 
because of the shape and elevation of the sensor, and 
better ventilation and maintenance.  
 
2.3 Modeling snow loss with the modified Marion model 
 In the Marion snow loss model [5] the presence of a 
new snow cover is assumed to happen after snow fall. 
The model further assumes that natural snow clearance 
will happen during melting. Melting is predicted to 
happen during the following conditions:  
 

Tamb > GPOA/m. (1) 
 

Tamb is the ambient temperature, GPOA is the in plane 
irradiance and m is an empirically defined value of -80 
W/(m2 °C). During melting, the snow will be cleared by 
sliding or direct melting on the modules [4]. To estimate 
the reduction in snow coverage in the melting period, 
measured in fractions of the system height, the tilt of the 
modules and an empirical snow clearing coefficient (sc) 
is used:  
 

Snow slide amount = sc * sin (tilt). (2) 
 

 Based on these assumptions, the snow coverage on 
the modules is estimated, and the corresponding power 
loss calculated. If a module substring is partially covered 
by snow, the power output is assumed to be zero. This 
way, it is taken into account whether the modules are 
installed in portrait or landscape orientation. The pvlib 
python [22] implementation of the Marion model is used 
in this work to model the relative snow loss. To estimate 
the absolute energy loss, the modeled relative snow loss 

 
Figure 2: Sixteen years of snow depth data for the four combinations of geographic region and KG climate zone in the 
analyzed dataset. 
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is multiplied with the modeled energy output of the 
system, modeled using the procedure described in 
Section 2.2. 
 In the development of the snow loss model, Marion et 
al. found sc to be 0.20 [5] for roof mounted systems. This 
value is the default sc in the implementation of the model 
in pvlib python [22] and the PV modeling software SAM 
[6]. The snow clearing coefficient is, as previously 
discussed, expected to depend on different system and 
module designs [13], because technical aspects can either 
promote or obstruct natural snow clearing [1]. In our  
evaluation of the model, we found that snow clearing is 
slower for the systems we have analyzed [13,16] 
compared to the validation systems the Marion model is 
based on. A possible explanation for the difference is 
higher roof interference for the systems that we have 
evaluated. In our evaluation of the model we also find 
that the rate of snow clearing is influenced by the 
thickness of the snow cover [13]. We therefore add a 
small modification to the Marion snow loss model by 
introducing a snow depth dependent sc. Because the 
dataset in this work is the same as in [16], we use the 
snow depth dependent snow clearing coefficients from 
[16] that gave the best modeling results. As also 
described in [16], we use snow depth data from the 
ground to separate between thin and thick snow covers 
for the commercial system where there is little sliding. 
For the residential systems where there is more sliding 
and where snow depth data from the ground are less 
representative, we use cumulative snow fall data as an 
indicator for snow cover thickness. 
 
2.4. Simulation of snow losses for longer time series 
 To simulate losses for the  analyzed systems over 
time, to get improved understanding of typical losses, we 
use long time series of weather and snow data to model 
snow losses, as proposed by [5]. GHI and ambient 
temperature data for all the locations from the time period 
2005-2016 and the ERA5 database is collected from 
PVGIS [30]. The expected module power output for all 
the systems is modeled as described for the residential 
systems in section 2.2. System loss of 7 % is added using 
the PVWatts system loss function with default loss values 
for mismatch, wiring, LID, connections and name plate 
rating [28]. Snow losses are then modeled using the same 
procedure as described in 2.3.  
 
 
3 RESULTS 
 
3.1 Snow loss estimated from historical PV data 
 Figure 3 shows the annual historical snow loss for the 
analyzed systems (both system configurations) estimated 
from historical PV data. The loss is given relative to the 
mean expected annual yield. The mean value is chosen to 
avoid variations in the loss caused by variation in the 
total annual irradiation. We observe large variations in 
snow losses from year to year, and between different 
systems. 
 As expected, we observe that weather, system design 
and climate on snow losses seem to impact the snow 

losses. The inter-annual variation in snow losses for the 
systems, as well as the variation in losses between 
systems located in the same climate zone, but in different 
locations (C1 and C3), can be explained by typical 
variations in weather between different locations and 
different years. C3, R1 and R2 are located in the same 
area, but R2 has lower loss than R1 every year, and C3 
typically has higher loss than both. This could be 
explained by the impact of tilt on the snow clearing, as 
snow clearing is inversely proportional with tilt. C1 and 
C2 have the same technical configuration and 
experiences the same weather as they are co-located, and 
their estimated losses are very similar. C4 located in 
oceanic climate typically has lower losses than the 
identical systems (C1-C3) located in humid continental 
climate. R3, located in a subarctic climate, typically has 
higher losses than R1, which has almost the same tilt but 
is located in a humid continental climate. 

 
Figure 3: Annual snow loss for the analyzed systems, 
estimated from PV data. The losses are given relative to 
mean expected annual yield for the analysis period. The 
systems in humid continental climate is plotted in blue, 
green represents oceanic climate and orange represents 
subarctic climate. 
 
 Figure 4 shows the monthly losses for all the full 
years in the analysis period. Large variations in the 
monthly loss value are observed for several of the 
months. For most of the datasets the loss is typically 
increasing during late autumn, reaching its highest peak 
in midwinter, before it decreases in the spring. The snow 
data do, however, not follow the same trend. Typically, 
the locations have the most snow in the late winter 
months, but this also corresponds with higher 
temperatures. 
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3.2 Simulated snow loss  
 Based on the results presented in Figure 3 and Figure 
4, it is not always clear what would be the best estimate 
for typical annual and monthly snow losses for the 
analyzed systems. Especially for the locations with large 
snow losses, there can be large variations for the same 
month between different years. With potentially large 
variations from year to year, estimating typical snow loss 
for short time series might give an output that is not 
necessarily representative for the system configurations 
and the location. Based on this, selecting a representative 
snow loss value for e.g. a PVSyst simulation seems 
challenging, as long time series for different system 
designs and locations would be needed. 
 Figure 5 and Figure 6 show the correlation between 
snow loss estimated from PV data and modeled snow loss 
using the modified Marion snow loss model for 
respectively annual and monthly losses. Both on the 
monthly and annual time scales we observe a linear 
relationship between modeled losses and losses estimated 
from historical PV data, indicating that the model can be 
used to predict the losses on both time scales. Some 
uncertainty in the prediction can, however, be expected. 
As seen in the figures, there are some deviations between 
modeled loss and loss estimated from PV data. 
 In Figure 7 and Figure 8 the simulated monthly and 
annual snow losses for the analyzed systems using 12 
years of irradiation and temperature data from PVGIS is 
presented. With the longer time series, we get a better 
understanding of what is typical losses, and what the 
potential variation and the extreme values could be. With 
the longer time series, we now see for all of the systems 
that the losses are highest during mid-winter. Some of the 
systems get higher monthly median losses than what we 
observed in Figure 4. This suggests that the years in the 
analysis period used to estimate losses from historical 
data are not necessarily years that represent the long-term 
trend. 
 Using longer time series and modeling could also 
enable estimation of snow losses for locations where PV 
data is lacking. Additionally, future snow losses could be 

estimated using output data from climate models giving 
data for the future. To avoid the impact of extreme 
values, we propose to utilize the median value of the 
modeled losses as an estimate of the monthly/annual 
snow losses in yield simulations. 

 
Figure 5: Annual modeled absolute loss compared to 
loss values estimated from historical PV data. 

 
Figure 6: Monthly modeled absolute loss compared to 
loss values estimated from historical PV data. 

 

 
 
Figure 4: Monthly snow loss for the analyzed systems in the analysis period (given in the subfigure title), estimated from  
historical PV data. The estimated losses for each month is plotted using a boxplot to show the interannual variation. The 
box extends from the first to the third quartile values of the monthly loss data, with a line on the median. The whiskers 
extend to maximum 1.5 multiplied the interquartile range. Outliers are given as circles. 
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 Using simulations to estimate PV systems snow loss 
could in addition to the loss value and estimation on 
interannual variability, also give realistic production 
profiles on daily and hourly timescale, which is useful in 
system size optimization and when building synthetic 
data series or adding synthetic performance loss for 
testing of e.g. fault detection algorithms [29]. The 
uncertainty in the modeling on high time resolutions is 
likely too high for e.g. monitoring purposes where the 
modeled PV output should match measured data, but to 
describe how snow losses vary within a day and from day 
to day, the modeling is useful. 

 
Figure 8: Simulated annual snow loss for the analyzed 
systems, based on 12 years of PVGIS data and the 
modified Marion snow loss model. The losses are given 
relative to mean expected annual yield for the analysis 
period. 
 
 
4 CONCLUSIONS 
 
 In this work, we estimate annual and monthly snow 
loss for a set of PV plants in Norway. In both annual and 
monthly losses, we observe large interannual variations, 
and we see that systems in colder climates typically have 
higher losses than systems in warmer climates. We also 

observe that higher tilt gives reduced losses, confirming 
previous studies. A modified adaption of the Marion 
snow loss model where snow depth is considered in the 
snow clearing modeling is used with 12 years of weather 
data to simulate losses for a longer time series, to get 
improved understanding on the potential interannual 
variation in snow losses. We find that snow loss 
modeling is a useful tool for estimating monthly or 
annual snow losses for use in yield modeling when long 
time series of snow loss data for a given type of system in 
a given location is not available.  
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