UNIVERSITY OF OSLO
Department of Informatics

A Stewart
Platform Based
Replicating Rapid
Prototyping
System with
Biologically
Inspired
Path-Optimization

Master Thesis (60
pts)

Lars Skaret

May 2, 2011

Abstract

The idea of self-replication in robotics can be traced back to John Von Neumann
in 1966. While total self-replication is still be many years away, research regard-
ing this topic is underway at Bath University in England under the RepRap
project name. This thesis aims at elaborating on the work done at Bath Uni-
versity and looks at the possibility of taking the idea one step further. To
do this, a suitable robotic manipulator has been chosen for study, the Stewart
platform. Design and simulation has been implemented and studied. Designing
the platform resulted, among other things, in many interesting challenges, a
printed prototype of a Stewart platform/arm and an interesting experimental
design that will make a larger workspace possible. While many design solu-
tions have been suggested, the design needs to be further studied, physically
implemented and tested to prove it to be an alternative to the RepRap. The
manipulator should have both CNC milling and 3D printing capabilities. The
simulator has applications that make studying the movements of the platform
according to a predefined G-code path possible. While making the end-effector
follow a path, the simulator will also deny the 6 legs of the Stewart platform
to move too fast or extend to long. Creating the simulator created a better
understanding of the Stewart platform’s mathematical characteristics.

Another aim of this thesis is to shorten the length of the tool path using
biologically inspired path-optimization. A genetic algorithm and an ant colony
optimization algorithm have been implemented to improve the tool path, and
the results have been studied. A single G-code file was tested and the algorithms
both managed to decrease the total length by about 6.5% of the total length,
or 67% of inactive length, or 180 mm, or 7.5 seconds with a tool speed of 24
mm/s. The algorithms performed quite well, but should be tested on longer tool
paths to investigate whether the optimization method might save a considerable
amount of machining time.

Acknowledgements

This thesis has allowed me to explore the very interesting topic of robotics. For
this, T wish to thank the Robotics and Intelligent Systems (ROBIN) research
group. They have enabled me to study some of the most interesting fields I have
experienced in my academic endeavors.

I wish to thank my two supervisors, Mats Hgvin and Kyrre Glette for guid-
ance, but also for allowing me the freedom to influence the choice of topic to
a large degree. Head engineer at ROBIN, Yngve Hafting, deserves thanks for
helping me with the practical challenges in creating printable designs and using
3D printer software.

I also wish to thank my two closest peers at the University, Magnus Lange
and Akbar Faghihi Moghaddam (Shahab) for insightful discussions and useful
tips. Last but not least, deserving the biggest appreciation is my Anne-Catherin
for her patience during my late nights at the lab.

Contents

1 Introduction 9
1.1 Self-Replication 9
1.2 Goalsof the thesis 10
1.3 Outline 10

2 Background 11
2.1 Rapid Prototyping 11
2.2 3Doprinting 11
2.3 CNCmilling. o 13
2.4 The RepRap project o 14

2.4.1 The Present and Future of RepRap 14
2.4.2 The Mendel RepRap 16
2.4.3 RepRap Limitations 16
2.5 Robotic Manipulator 17
2.5.1 Serial Manipulator 18
2.5.2 Parallel Manipulator 18
2.5.3 Kinematics 19
2.5.4 Dynamics 20
2.5.5 Discussion 20
2.6 The Stewart Platform 20
2.6.1 Design L 21
2.6.2 Recent research 21
2.7 Research relating Rapid Prototyping, CNC milling and Biologi-
cally Inspired Computing 21
2.8 CADand CAM e 22
2.9 G-code 22
2.10 Path Optimization, 22
2.11 Genetic algorithm introduction 23
2.11.1 How it works - general, 23
2.12 Introduction to the Ant Colony Optimiazation algorithm 25
3 Tools 27
3.1 Python 27
3.1.1 Numpy and Matplotlib 27
3.2 Solid Works and Solid CAM 27
3.3 Stepper motorso 27
3.3.1 Alternatives 28
3.4 Arduino 29

4 Design
4.1 Actuator
4.2 CAD Design of the Stewart platform
4.3 First design
4.3.1 Motor housingo
432 Nuthousing.
4.3.3 The universal joints
4.3.4 The platform L.
4.4 Prototypedesigno
4.5 Experimental design oL oo
4.5.1 Discussion on version 3
4.6 Comparison with the RepRap
4.7 Concluding discussion
5 Simulator
5.1 Uses for the simulator
5.2 Mathematics for the Stewart platform
5.2.1 Homogenous Transformation
5.3 Parsing G-code oL
54 Results.
5.4.1 Simple move simulation
5.4.2 G-code simulation
5.4.3 Comment
5.5 Concluding discussion
6 Biologically Inspired Path-Optimization
6.1 Research method,
6.2 Parsing G-code o L
6.3 Testdata
6.4 Genetic Algorithm oL L
6.4.1 How it works - specific
6.4.2 Results for the Genetic Algorithm
6.4.3 Discussion on GA test results
6.5 Ant Colony Optimization
6.5.1 Applying ACO tothe TSP
6.5.2 Results for the Ant System
6.5.3 Discussion on ACO test results
6.6 Concuding discussion on Tool path-optimization
6.6.1 Comparing genetic algorithm and ant colony system . . .
6.6.2 General discussion
7 Conclusion and proposals for further work
7.1 Conclusion
7.2 Further Work oo
References
A Code attachment
A.1 Simulation software Lo L
A.2 Biologically Inspired Path-optimization

31
31
33
33
35
35
36
38
40
41
43
43
47

49
49
50
51
52
o4
%)
95
o7
59

61
61
63
63
65
65
68
71
74
74
75
78
81
81
82

85
85
86
89

List of Figures

2.1
2.2
2.3
24
2.5
2.6

2.7
2.8
2.9

2.10

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10
4.11
4.12
4.13

4.14

4.15
4.16

4.17
4.18
4.19

Tustration of a 3D printer.
Mustration of a Milling Machine
A traditional commercial milling machine[49]
The Tricept 9000 Lo
The latest generation RepRap, the Mendel[45]
A pictute of the Hydra combined CNC milling machine and 3D

printer [52]
A serial manipulator with six revolute joints.
A 3 legged parallel manipulator.
A cost matrix of a undirected complete graph with four nodes

(cities). . . . o o
Flowchart of general evolutionary algorithm..

A stepper motor
The Arduino Mega L L

An illustration of the rapid prototyping system
A CAD model of the actuator
A CAD model of the actuator, whole and cut in half
CAD model of the first design of the entire Stewart platform
CAD model of the motorhousing
The nut housing (top part of the arm) for the Stewart platform,
first designs
Limitation of tilt in the Stewart platform
A picture of a universial joint [48]
The universal joints L
Alternatives for the universal joint
A CAD model of the platform
The prototype of an arm printed on a commercial 3D printer
The parts of the prototype of an arm printed on a commercial
3D oprintero
Exploded view of the motorhousing and of the platform connector
for the prototype design L.
CAD models of the nut housing for the prototype version

A layer of deposited material in the professional 3D printing soft-
ware, Catalyst EX. L
Experimental design, version 1
Experimental design, version 2
Experimental design, version 3

4.20
4.21

4.22

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11

6.12

6.13

6.14

6.15

Closeupof version 3
Crash in threaded rods for experimental design 3. 1000 mm
threaded rods.
No crash with experimental design 3. Showing a large tilt in the
moving platform.o oo

These are the dimensions for the base platform
These are the dimensions for the top platform
The path created for testing simple move
The simulation of the simple move
The path extracted from G-code, seen from above
The path extracted from G-code, seen from the side
The part of the path used for simulation
Simulation of the G-code with a fast speed of 30 mm/s and slow

speed of 15 mm/s. L Lo

A plaque reading CNC taken from [20]
3 cities and the paths between them
PMX 1. . e

Correcting the edges. oL
Inversion mutationo oo
Correcting the edges after mutation
The Mean best vs the Average number of evaluations for the GA
The best individual for each generation using parameter setting
4 in table 6.1 and 150 generations (genetic algorithm)
The best individual for each generation using parameter setting
5 in table 6.1 and 50 genereations (genetic algorithm)
The Mean best vs the Average number of evaluations for the Ant
System.
The best individual for each generation using parameter setting
1in table 6.3(ant system) L.
The best individual for each generation using parameter setting
1 in table 6.3 and 500 generations(ant system)
The best individual for each generation using parameter setting
1 in table 6.3 and 50 ants(ant system)

46

47

50
51
%)
26
o7
o8
58

99

63
64
67
67
67
68
68
68
71

72

73

78

80

80

List of Tables

2.1

5.1

6.1
6.2

6.3
6.4

Specifiactions for the Mendel RepRap [57] 16
Interpreted G-code [54] 53
Parameter settings for the different tests. 69
Test results for different parameter settings for the genetic algo-

rithm. 70
Parameter settings for the different tests 76
Test results for different parameter settings for the ant colony

optimization algorithm o000 "

Abbreviations

CNC - Computer Numerically Controlled
RepRap - replicating rapid prototyper
CAD - Computer Aided Design

CAM - Computer aided Manufacturing
DOF - degrees of freedom

PM - parallel manipulator

SM - serial manipulator

R - rotational joint

P - prismatic joint

U - universal joint

TSP - Traveling Salesman Problem
FDM - Fused Deposition Modeling
LOM - Laminated Object Manufacturing
SLS - Selective Laser Sintering

STL - Stereolithography

PKM - Parallel Kinematics Machine
FFF - Fused Filament Fabrication
PNG - Portable Network Graphics
FPS - Frames per second

SUS - Stochastic Universal Sampling
PMX - Partially Mapped Crossover

ACO - Ant Colony Optimization

Chapter 1

Introduction

3D printing and CNC milling have been around for a long time and have to
some extent even reached the consumer market.[61, 38] In the industry, 3D
printing and sometimes CNC milling are used to create prototypes in a quick and
cost effective manner. For the hobbyist (or amateur), the use is more directed
towards creating almost anything, including prototypes, a building set for an
RC airplane, parts for a robot, a box-container or simply a spoon. This thesis
focuses on the hobby aspect of 3D printing and CNC milling that translates
into some keywords that are vital to be maintained: affordability, simplicity,
open-source and size. These are in addition to those common to 3D printing
and CNC milling such as accuracy, rigidity (especially for CNC milling), speed
and time.

This thesis has one foot planted in the theoretical world of path-optimization,
kinematics and simulation. And the other foot planted in the practical world
of design, motors and electronics. Both of these aspects have been explored as
they are both essential for the development of a robot manipulator.

1.1 Self-Replication

The idea of self-replication of non-biological entities was first introduced by John
von Neumann in the late 40s with a thought experiment and later published in
the 1960s.[7] The concept of self-replication for biological entities is as old as life
and it is what life is based on as all living creatures replicate themselves. One
well developed project based on self-replication of non-biological entities is the
RepRap project.

With self-replication there are, as I see it, two ways to go, simplicity or
complexity. The complex viewpoint results in a large machine, or even an
autonomous factory, capable of producing almost anything. This is an area
that is very costly and thus hard to research. The simple aspect is to start
with a simple machine and try to make it create parts of itself. This is what
the people at Bath University have done with their RepRap project. RepRap
is short for Replicating Rapid Prototyper and is basically a small 3D printer
that is quite affordable. As the machine is so mechanically simple, the challenge
is to make it able to do more things without sacrificing its simplicity. For a
highly complex machine the challenge would have been the opposite, to make

it simpler without sacrificing functionality.

1.2 Goals of the thesis

With the RepRap project as a stepping stone, this thesis will mainly investigate
the possibilities of increasing functionality without sacrificing simplicity. To
do this, a type robotic manipulator has to be chosen and studied. Thus, the
entry point of this thesis is the hobby world of 3D printing and CNC milling,
exemplified with the RepRap project. To study the robotic manipulator, three
goals have been created:

1. Create and compare a new design with the RepRap 3D printer developed
at Bath University, England. The new design should be an improvement
in certain fields as discussed in chapter 2.4.3.

2. Create a simulator to explore the robot manipulator and allow further
experiments.

3. Look at the tool path-optimization (minimizing the length of the tool
path) problem and implement biologically inspired algorithms to solve it.

The tool path-optimization problem has been included for two reasons. It
is relevant to 3D printing and CNC milling, shortening the tool path will also
shorten operation time. Secondly, it is an interesting research topic that has
received attention lately. See chapter 2.7 for a discussion. The three goals
suggest different approaches to the world of the robotic manipulator. It is
believed that this will give a better insight as several aspects gets highlighted.

1.3 Outline

As mentioned, the thesis is more or less divided in three; however the three topics
overlap each other in many areas and are connected. After the introduction, the
thesis continues with a chapter on the background of the different topics. Also,
based on a discussion, the Stewart platform is chosen as the robotic manipulator
to study. The next chapter, Tools, deal with the different tools used in the three
main chapters, Design, Simulator and Biologically Inspired Path-Optimization.
The Design chapter presents different designs created with CAD software and
discusses many aspects relating the realization of the designs and how the design
compare to the RepRap. The next chapter, Simulation, moves a bit away from
the practical world and investigates some mathematical theories behind the
Stewart platform. Also, to implement the simulator, G-code is studied and a
G-code parser is created. The tool path length is tried to be shortened in the
chapter on biologically inspired path-optimization. The movements where the
tool is inactive are studied and two algorithms are implemented and tested with
a G-code file. The results from the tests are discussed and the applicability
of the algorithm and type of path-optimization is assessed. The final chapter
concludes the three main chapters and tries to use the experience from them to
decide whether the Stewart platform as presented can be an alternative to the
RepRap. Further work is also discussed in the last chapter.

10

Chapter 2

Background

Much of the background theory is presented in this chapter. Also, some discus-
sion regarding central aspects of this thesis is made. First, rapid prototyping,
3D printing and CNC milling are introduced. Then, the RepRap project is de-
scribed and discussed. After that the types of robotic manipulator is explored
and the one to be studied in this thesis is chosen. The chosen manipulator
is further presented, exploring the relating research. The areas of CAD and
CAM, G-code and path-optimization are then introduced. Finally, the genetic
algorithm and the ant colony optimization are introduced.

2.1 Rapid Prototyping

Rapid prototyping is a way to create an inexpensive prototype directly and
fast. Descriptions of the components are created on a computer and then di-
rectly manufactured.[6] Also, instead of creating the whole design, simplifica-
tions and/or miniatures of the final prototype can be created. This is often very
useful in the designing stages of different engineering tasks.

Two of the methods used for rapid prototyping are 3D printing and milling
with CNC milling machine. There are several different types of each, from the
simplest hobby version to multi million commercial ones. A more advanced
type of rapid prototyping is used to work with hard metals and to enhance the
accuracy and quality. This technology is very expensive and outside the scope
of this thesis. Other deposition based manufacturing methods than 3D print-
ing (or fused filament fabrication) include Stereolithography, Fused Deposition
Modeling (FDM), Laminated Object Manufacturing (LOM) and Selective Laser
Sintering (SLS).[27] The different technologies used for depositing the material
is outside the scope of this thesis, and have not been studied in detail.

2.2 3D printing

As mentioned, there are many different types of 3D printers. To keep inside
the scope of the this text, mainly a simplified description of the 3D printing
technology used at Bath University for their RepRap project will described
(FFF - Fused Filament Fabrication). This technology uses an extruder that
melts a material and then extrudes the material onto a board. The material

11

is often a type of polymer, for example ABS (the “Lego-brick polymer”) or
nylon.[6] The board and/or the extruder can move in the xyz-planes to build 3-
dimensional objects. Every layer is held together because of the characteristics
the material has when it is hot. It is called 3D printing because it is quite
similar to the more regular 2D printing that is used for printing on paper.

Hole

The extruder P

The part

e

X

Figure 2.1: Ilustration of a 3D printer

Figure 2.1 shows a simple illustration of what the extruder part and the
board of the 3D printer could look like. The extruder is fed some kind of
polymer through the hole on the top. There are different ways to do this. The
polymer is then melted inside the extruder and fed out through the nozzle. The
extruder and/or the board moves in the xyz-axes as shown on the figure. Not
shown, are the rest of the manipulator, the mechanics around the manipulator
(a fixture for example) and inside the extruder. These make it possible for
the extruder and/or platform to move and the material to be fed through the
extruder. The nozzle sits just above the last layer for each successive layer.
The extruded polymer sticks to the last layer and solidify. In this way, the part
is created layer by layer. Thinner layers equal the possibility of more details,
but the mechanism that moves the extruder and/or the board has to be more
accurate to do so.

To give a simplified explanation from start to end: First a 3D design of what
is going to be printed is created in CAD-software (Computer Aided Design)
and usually saved as an STL file. Then, programs that are designed for a
specific 3D printer (for example Catalyst EX) process the file and send it to a
microcontroller that is a part of the 3D printer. The microcontroller directly
controls the motors and other mechanics of the 3D printer and the part is
created according to the method described above. The reason for giving such
a simplified explanation is that there is no standardized implementation of this
procedure. Furthermore, there are many details and challenges in design and
usage that is not discussed here.

12

2.3 CNC milling

CNC miilling (computed numerically controlled milling [42]) is computer aided
milling. It is traditionally less used for rapid prototyping than 3D printing and
more as a manufacturing method. There are many variations of the CNC milling
machine, but it is often a big box, where an object is put inside on a platform.
A milling tool that is used to remove material from the object is located inside
the machine. The tool spins a milling cutter that is somewhat similar to what is
used in drills or dremel tools. The milling tool and/or the platform can typically
move in the xyz-plane (similar to the 3D printer) in order to mill material away.
Figure 2.2 is an illustration of the platform, part and milling tool. The platform
and tool is attached to the machine by some mechanism in order to move. This
is just a short overview of the CNC milling machines and there are many details
and challenges in design and use that are not discussed here.

Milling tool

Platf
\ Part atform
Milling cutter /
y
z

X

Figure 2.2: Tllustration of a Milling Machine

Another type of milling machine is a robot arm that has the milling tool
attached at its wrist. This technology has long been rated too inaccurate to
be of any use in professional environments, but recent developments have given
this type of milling a possible professional future.[2, 68] The robot arms usually
has 6 degrees of freedom where the three last ones is called the wrist.[31] There
are many different types of milling machines and all of them can not be covered
here. The last on to be mentioned is the Tricepts by PKMtricept (PKM -
Parallel Kinematics Machine)[50]. This is a combination of a parallel and serial
manipulator and one of their models, the Tricept 9000, can be seen in figure
2.4.

The process from idea to finished part is quite similar to 3D printing. CAD-
software is used to design the part and saved as a specific file type that suits the
post processing software. This is typically some sort of CAM-software (Com-
puter Aided Machining). The CAM-software creates a file that is either fed
directly into the CNC milling machine or processed for a specific machine and
then sent to the machine. There are many different implementations and no
standard procedure.

13

Figure 2.3: A traditional commercial milling machine[49]

2.4 The RepRap project

As mentioned, this thesis is inspired by the RepRap, a project that started at
Bath University by Adrian Bowyer. It consists of a self designed 3D printer that
is designed in such a way that it is possible for the 3D printer to print many
of its own parts. RepRap is short for replicating rapid prototyper. The project
is based on the ideas of self-assembly and self-replication in biology. Living
creatures produce themselves, given enough resources. The RepRap project
is currently only studying self-replication. The interesting thing about self-
replication is that it makes it possible for an entity to multiply exceptionally
given the resources. This is unlike any other current manufacturing process,
where a production growth in an exponential like manner is not possible over
time. [6]

Behind the idea of a machine that can create all of its parts, there are some
interesting characteristics. Since the machine can produce itself, only with the
cost of the raw materials and assembly, typical rapid prototyping machines can
become profitable for production and not only used for prototyping or other
hobby related tasks. Also, the cost of the first machine is not as important as
subsequent machines will (ideally) be quite cheap to produce.[6] This also makes
it impossible for someone to sell the machine on a commercial basis. Another
way to look at the RepRap is:

...a desktop manufacturing system that would enable the indi-
vidual to manufacture many of the artifacts in everyday life [69]

2.4.1 The Present and Future of RepRap

The ideal goal for the whole project is to create what von Neuman describes as
universal constructor.[51] Adrian Bowyer estimated that about 2500 RepRaps
or RepRap deviates exists around the world (July 2009) compared to 4 at the

14

Figure 2.5: The latest generation RepRap, the Mendel[45]

start of 2008.[25] The use of open source design and code is central parts of the
RepRap project. This allows for a large community of “RepRappers” that not
only build the machine but also tries to improve it. The RepRap project has its
own Wiki webpage where the RepRappers can describe their solutions or ideas
on everything relating to the RepRap project. A vision for the project is to
have hundreds of millions of RepRaps.[25] In other words, for many people to
have a RepRap in their home to create different things they need or want.
One of the latest additions to the RepRap project is the possibility for elec-
trical conductors to be directly built into the parts that the 3D printer cre-
ates. This makes the need for printed circuits marginal and thus the RepRap
can create larger percentage of itself.[51] The RepRap is developing along two

15

Model Mendel
Technology FFF (Fused Filament Fabrication)/
Thermoplastic extrusion

Size 500 mm (W) x 400 mm (D) x 360 mm (H)

Weight 7.0 kg

Build Envelope 200 mm (W) x 200 mm (D) x 140 mm (H)

Materials PLA, HDPE, ABS and more. Uses 3 mm filament

Speed 15.0 cm? per hour solid

Accuracy Diameter of nozzle 0.5 mm, 2 mm min. feature size,
0.1 mm positioning accuracy, layer thickness 0.3 mm

Volume of printed

parts to replicate 1110 em?

Table 2.1: Specifiactions for the Mendel RepRap [57]

lanes, Bath University and the independent RepRap community. As everything
about the RepRap is made public, everyone (theoretically) can create their own
RepRap machine at home and print their own things, but also help develop the
machine.[44] This is somewhat related to artificial selection. A machine can
make another machine that is of better design.|[6]

As stated above, the RepRap still has to be assembled by hand, and it seems
like there are no plans to make the machine able to assemble itself. Rather, the
next (and current) steps in the project is designing a servo movement system
for the machine and designing its material deposition (extruder) heads to for
example be able to extrude solder.[51]

2.4.2 The Mendel RepRap

The Mendel is the latest of the two official RepRap designs created at Bath
University (anno spring 2011). Figure 2.5 shows the Mendel manipulator. It
is essentially made up of two serial manipulators, the one for the extruder and
the one for the base. The one for the base moves the base back and forth along
the y-axis. The serial manipulator for the extruder consists of two actuators.
The first moves in the z-axis (up and down). The second holds the extruder, is
moved by the first and moves in the x-axis (left and right). Specifications can
be seen in table 2.1

2.4.3 RepRap Limitations

The RepRap is a very fascinating idea and also an affordable 3D printer that
actually works. However it consists of many small parts and is quite tricky
to put together. Thus a simplification of the design without sacrificing the
amount it is capable to replicate would be a welcome step in the right direction.
Some hobbyists have discussed whether a RepRap inspired design is capable
of handling milling, something that would also be an interesting additional
application for the machine. Both for creating PCBs and finishing printed
parts.[53][52]

The machines that have been tested for this is often quite large compared to
the RepRap Mendel and do not seem to embrace the idea of self-replication. An

16

Figure 2.6: A pictute of the Hydra combined CNC milling machine and 3D
printer [52]

example is shown in figure 2.6. Although there may be more limitations with
the RepRap, the two mentioned issues are the ones that will be studied in this
thesis.

2.5 Robotic Manipulator

One of the fundamental steps of this thesis is to decide on what kind of manipula-
tor to study. What follows is a brief study of the different kinds of manipulators
that are common. After that, arguments for the different kinds of manipulators
to be used in this thesis are discussed, finishing with a choice of manipulator.
There are several characteristics a manipulator can have. These include: [58,
p.4-12]

e Configuration: complete specification of the location of every point on the
manipulator

e Degrees of freedom (DOF): there are three for positioning (x, y and z co-
ordinates) and three for orientation (pitch, roll and yaw). If a manipulator
has six degrees of freedom it can reach a point with arbitrary orientation
(albeit, often with some practical constraints). Manipulators can have
more than six degrees of freedom.

e Workspace: the total volume swept out by the end-effector as the ma-
nipulator executes all possible motions. Some positions in the workspace
reduce (serial manipulator) or increase (parallel manipulator) the degrees
of freedom.

e Power source: hydraulically, pneumatically or electrically.

e Accuracy: the accuracy of the position and orientation of the end-effector,
will affect the resulting parts the manipulator creates.

17

Figure 2.7: A serial manipulator with six revolute joints. There are many
different possible designs for a parallel manipulator.[47]

e Repeatability: how well the manipulator is capable of doing the same task
multiple times with the same accuracy

e Rigidity: withstand external forces. For example due to milling

e Joint type: revolute (R), prismatic (P), universal (U) or spherical (S). The
first two can be actuated, the last two can not.

e Geometry: what type of joints the manipulator has and in what order.
The geometry of the robot can be divided into two areas, the serial, kine-
matically open loop ones and the parallel, kinematically closed loop ones.

2.5.1 Serial Manipulator

The serial manipulator or robot arm is the most popular and well researched
one. An illustration of a robot arm can be seen in figure 2.7. The joints con-
nect links that starts at the base and ends at the end position. Typically, the
manipulator has three joints and up to three joints are added as a wrist. They
are categorized according to the first three joints. The most common ones are
Articulate Manipulator (RRR), Spherical Manipulator (RRP), SCARA Manip-
ulator (RRP), Cylindrical Manipulator (RPP) and the Cartesian Manipulator
(PPP).[58, p 12-18] Their differences concerns (among other things) the size and
form of the workspace, the rigidity and the practical design of the robot. The
RepRap is a kind of Cartesian Manipulator, yielding a cubical workspace. Serial
Manipulators can be compared to a human arm and has both its advantages and
disadvantages.[14] Advantages are a sweeping workspace and dexterous maneu-
verability like the human arm. Disadvantages are limited load carrying capacity
and precision positioning.[14]

2.5.2 Parallel Manipulator

Parallel manipulators are not as common and are usually treated in more ad-
vanced texts.[58, p 8] The kinematics and dynamics are more difficult to derive,

18

Figure 2.8: A 3 legged parallel manipulator. There are many different possible
designs for a parallel manipulator [46]

but quite a lot of research has been done in since the late 1980s, especially
on the Stewart platform.[14] Compared to the serial manipulator, the parallel
manipulator exhibits a greater structural rigidity, which allows it to be more
accurate.[58, p 19] On the other hand, the workspace size is often smaller than
for serial manipulators.[12, p 243] One of the more common parallel manipu-
lators is the Stewart platform. It was first publicized by D. Stewart in 1965
(however V. E. Gough built an operational version in 1954) and consists of two
platforms that are connected with six legs.[14] One of the platforms acts as base
and is fixed, while the other acts as end-effector and moves. The six legs are
identical in their structure, consisting of 3 joints. The two joints connecting
them to the platforms are spherical or universal, while the joint in the middle is
a prismatic joint. Only the prismatic joint is actuated, the others are passive.
The Stewart platform has six DOF. Removing three legs results in a tripod,
this has 3 DOF and can not rotate the moving platform. An illustration of a
tripod type of parallel manipulator is shown in figure 2.8. In the industry, some
parallel manipulators have been developed for CNC milling, but these are not
as simple as the Stewart platform alone. They sometimes have a serial wrist
that makes it easier to access different areas of the milled part. Also, they are
often of huge size and the base is at the top, attached to some kind of fixture.
An example is shown in figure 2.4 at page 15.

2.5.3 Kinematics

The forward kinematics of a manipulator describes the position and orientation
of the end-effector given the values of the actuated joint variables (angle or
distance). This is performed mathematically with the use of matrixes and ho-
mogenous transformations. The opposite, inverse kinematics, is used to find the
joint variables given the position and orientation of the end-effector.[58, p 73]
For the serial manipulator, the forward kinematics has proven to be quite easy
to derive, while the inverse kinematics is rather hard to derive. The opposite is
true for the parallel manipulator.[12, p 243]

19

2.5.4 Dynamics

The dynamics is used to perform an in depth analysis of manipulator move-
ment and includes a study of the forces and torques. For example, the friction
in joints can be included in a dynamic model. The dynamics for parallel ma-
nipulators are very advanced, while for serial manipulators they are somewhat
more simple.[14] However, dynamics are outside the scope of this thesis and will
not be considered.

2.5.5 Discussion

One of the basic ideas behind this thesis is to improve the RepRap concept’s
capabilities to be alternatively equipped with a milling tool to perform milling
and an extruder to print in 3D. To do this, the tool can be changed allowing the
manipulator to both print and mill the same part. For this to be possible the
manipulator must have some additional characteristics as opposed to be able
to do only one of the things. An important issue is that milling requires much
more structure rigidity than 3D printing.

To be able to perform 3D printing a manipulator should have 3 DOF. In or-
der to mill the manipulator should have at least 3 DOF, preferably more. The
workspace should be as large as possible. Electrical power source is preferable
as pneumatic is too inaccurate and hydraulic require much maintenance, lot of
peripheral equipment and is very noisy. Accuracy and repeatability is impor-
tant both for 3D printing and milling, and rigidity is as mentioned especially
important for milling.

Considering the greater structural rigidity of the parallel manipulator, it is
more suitable for milling than a serial manipulator. On the other hand, the
workspace is smaller, limiting the size of parts created. For both 3D printing
and CNC milling the end-effector location and orientation is always known. This
calls for the use of inverse kinematics that is simple for the Stewart platform.

An important aspect is that the robot should be an alternative to the
RepRap. This means that the design limitations given by the RepRap concept
should be paramount in the design process. The most important limitations are
that the design can not be too advanced or too expensive as the robot is to be
available to as many as possible. And that the robot should consist of as many
as possible parts that it can create itself.

Taking these arguments into account and considering the interesting recent
research in the field, the Stewart platform was deemed the most suitable plat-
form for hobby oriented 3D printing and milling and thus chosen for this thesis.

2.6 The Stewart Platform

Bhaskar Dasgupta and T.S Mruthyunjaya have studied the research develop-
ment of the Stewart platform per 1998.[14] They report that an increasing
amount of research on the platform has been done in the 80s and 90s. The
main focus of their article is the research areas and challenges of the Stew-
art platform, but by doing so they also give a characterization of the Stewart
platform. Parallel manipulators like the Stewart platform are believed to have
greater rigidity and positioning capability than serial manipulators. The kine-
matics (relation between length of legs and the position of the end-effector) is

20

opposite in difficulty to the serial manipulator. Inverse kinematics is simple
(deciding the length of the legs given the position and orientation of the end-
effector), while forward kinematics is complex and difficult. A similar duality
is reported when singularities are discussed. The Stewart platform experience
singularities as configurations where the machine gains one degree of freedom,
but looses its controllability. The issue of singularities, which is tough to deal
with, is not further investigated in this thesis. Another difficult domain in the
Stewart platform research is analyzing and determining the workspace. The
authors present some interesting research on this difficult topic. This thesis will
however only suggest that the workspace of a parallel manipulator is smaller
than the workspace of a serial manipulator of roughly the same size.

2.6.1 Design

Dasgupta and Mruthyunjaya present the generalized design of the Stewart plat-
form as two platforms connected with six extensible legs. The legs are connected
with spherical joints at both ends or spherical at one and universal at the other.
The designs presented later in this thesis consist of universal joints at both ends.
This is not entirely uncommon as the designs in these videos shows. [63] [62]

The shape of the platforms is quite arbitrary. The authors present among
other designs, a design where both base and top are triangles where legs meet
in pairs at the edges (3-3) and one where the base has six distinct connection
points for the joints (6-3). The design presented later in this thesis use a 6-6
type of design, where in position zero, the two platforms are hexagons rotated
180 degrees in relation to each other.

2.6.2 Recent research

Much of the post 1998 research that was found dealt with the forward kinematics
of the Stewart platform. The issue with this problem is that it is complex and
time consuming to calculate. Several researchers have presented good solutions
to the problem,[67, 41, 35, 23, 15] and some even suggesting forward kinematics
applications to be used in real-time.[32, 29|

Ilian A. Bonev and Jeha Ryu have studied a new method to find a set of all
attainable orientations of the platform about a fixed point.[5] Yunjiang Lou et al
have studied the dynamic based trajectory planning for a Stewart platform.[36]
Other studies of the dynamics has been performed as well. Denis Garagic and
Krishnaswamy Srinivasan have studied friction compensation for the Stewart
platform.[21] Shih-Ming Wang and Korner F. Ehmann et al have studied error
and accuracy models and analysis of the Stewart platform.[66] Others have
studied robots that are similar to the Stewart platform.[70, 24]

2.7 Research relating Rapid Prototyping, CNC

milling and Biologically Inspired Computing
Some papers have discussed the use of Biologically Inspired Computing in re-
lation to rapid prototyping, CNC milling or similar applications. Li Xueguang

et al have established the Traveling Salesman Problem on the path-optimization
problem and have applied the backtracking and genetic algorithm on the problem.[33]

21

Similarly, Ajay Joneja et al have in [27] studied tool path-optimization for the
rapid prototyping process with a genetic algorithm. Pang King Wah et al have
developed an enhanced genetic algorithm to solve the problem.[65] Z. Car et
al have also used the genetic algorithm to optimize machining parameters in a
turning process.[8] Similar research has been done for CNC rough machining by
Agathocles A. Krimpenis et al.[30]

2.8 CAD and CAM

Mechanical CAD-software (Computer Aided Design) is a type of software where
a 3D design of a physical object is created by the user. CAD-software also has
many options to for example test and assemble the created objects. All or most
of the characteristics of the object can be specified depending on the software.

Computer-aided manufacturing (CAM) is a set of techniques used in com-
puter control for manufacturing.[13, p. 102] More concretely; it is the process of
interpreting the design file from CAD software in order to create a file written in
G-code or other similar control language. The file can be interpreted to control
CNC milling machines and 3D printers. The G-code file sometimes needs to be
post-processed in order to fit the specific manufacturing machine. With larger
systems the post-processing can be integrated in the CAD and CAM software.

2.9 G-code

G-code is a very common language for CNC-programming, but it might also
refer to a part of the CNC-programming, namely preparatory commands.[54,
p47-48] In this thesis, G-code refer to the programming language and for ex-
ample includes miscellaneous commands. The preparatory commands are used
to prepare the control system to a certain state of operation. Following the
preparatory commands (Gxx) are specific instructions for that type of com-
mand. An example is GO1, which means Linear Interpolation and is followed
by the position and orientation the end-effector is going to move to.

The miscellaneous functions (Mxx) is used to command the tool,[54, p 52-
53] it might for example start a milling tool in the clockwise direction (M03)
or stop the program (MO00). Miscellaneous functions are divided into machine
related functions and program related functions. Machine related functions con-
trols various physical operations of the CNC machine while the program related
functions control the execution of a CNC program (such as calling and ending
a subprogram). For preparatory and miscellaneous commands implemented in
this thesis see chapter 5.3, table 5.1.

2.10 Path Optimization

In this thesis, the path-optimization problem has been defined as the Travelling
Salesman Problem (TSP) as described in further detail in chapter ??. The parts
of the path to be optimized are the ones where the tool is inactive. The TSP is
the problem of finding the fastest round trip between n cities, where each city
is visited only once.[3, p. 100-101 and103] In more formal terms, the goal is to
find a Hamiltonian tour of minimal length on a fully connected graph.[18] There

22

0 32 15 5

32 0 63 21
15 63 0 1
5 21 1 0

Figure 2.9: A cost matrix of a undirected complete graph with four nodes
(cities).

are (n-1)! possible tours, therefore using the brute force algorithm for a graph
with more than 8-9 cities is infeasible.[3]

The TSP is a hard or NP-hard problem depending on how the problem is
presented. Currently, there exists no polynomial algorithm that solves the TSP
and it is unlikely that such an algorithm ever will be found. The algorithms that
solves the TSP are super polynomial (grows faster than any polynomial).[3] To
solve the TSP, a cost matrix is used that presents the distances between all the
cities. The algorithm searches this cost matrix to find the best solution. An
example of a cost matrix is given in figure 2.9.

A thorough investigation of the research done in tool path-optimization with
traditional algorithms has not been done for this research. Limited investigation
suggests that the research has focused on making the CNC milling create better
surface results on the parts that is milled. Two examples of this kind of research
can be found in [39] and [4]. An article on optimizing the tool path length for
turning CNC milling can be found in [65]. For studies of the problem done with
biologically inspired algorithms, see chapter 2.7.

2.11 Genetic algorithm introduction

The genetic algorithm is one of the first types of evolutionary algorithms and
was introduced by Holland in 1975.[19, p 2] It is inspired by the evolution of
living organisms as seen in nature and by Charles Darwin’s theory of evolution.
The two cornerstones of evolutionary computing are competition based progress
(the survival of the fittest) and combination of genes during reproduction. The
combination of genes can include mutation.[19, p 2-4] The advantage of emulat-
ing this behavior on a computer is that the form and size of individuals is decided
by the programmer. Likewise is the way genes combine during reconstruction,
what individuals survive for another generation and so on. Evolutionary com-
puting has proved to be suitable to solve several problems. Examples of real
world applications are the timetabling of universities and design of a satellite
dish holder boom. The boom proved to be 20 000% better than the traditional
shape.[19, p 10]

2.11.1 How it works - general

Evolutionary algorithms are generate and test algorithms. A population of in-
dividuals with certain values for their genes is generated and their fitness is
decided. From this population new individuals are created through recombina-
tion, mutation, both or simply survival of an individual from the old population.

23

Parent selection
Parents

Initialisation »

Crossover

Population

Mutation

A

A 4

Termination Offspring
Survivor selection

Figure 2.10: Flowchart of general evolutionary algorithm. This is heavily in-
spired by the flowchart at page 17 in [19]

Which of these that happens is randomly chosen according to some probability
parameters. A new generation is chosen among the offspring and the current
generation. Thus a cycle of generations is performed. Nine steps can be iden-
tified as seen in figure 2.10. The steps are now listed and described [19, p
16-24]

1. Initialization: The initial individuals of a population are often created
randomly. This is because it saves computing power as evolutionary
algorithms most often quickly moves from bad solutions to quite good
solutions.[19, p 30] The first individuals are evaluated according to a fit-
ness function and their fitness decided.

2. Population: Holds the individuals that live in the current generation. The
number of individuals in a population has to be decided.

3. Parent selection: The parents are selected according to a parent selection
mechanism with stochastic elements. The stochastic element is there to,
among other things, avoid the algorithm getting stuck in a local optima.

4. Parents: The parents are the individuals that are chosen to have their
genes transferred to the next generation. An individual in a population
may be represented several times as a parent. Depending on a pseudo ran-
dom mechanism, every parent is chosen to recombine with one (or more)
of the other parents, with a possible mutation of the resulting offspring.
Another option is that the original parent is mutated. A final alternative
is that the parent survives for the next generation.

5. Recombination: Usually two parents split their genes and form new in-
dividuals called offspring. The exact method of crossover depends on
the representation of the individuals. The recombination can also have
stochastic elements that decide how many genes come from each parent.
One of the interesting freedoms with evolutionary algorithms is that there
is no restriction to the number of parents.

24

6. Mutation: Mutation is the random alteration of genes in a single individ-
ual. As with crossover this depends on the representation of the individ-
uals.

7. Offspring: These are the indivdiuals that are created from the parents.
The number of offspring has to be decided. Also, the offspring must have
their fitness evaluated.

8. Survivor selection: Among the current generation and the offspring, who
are the ones to survive for the next generation? This can be done in
different ways, among which are: to only choose the offspring, the offspring
and the best individual in the current generation or simply the fittest
individuals.

9. Termination: The termination criteria decide when the algorithm is fin-
ished. This can for example be after a certain fitness has been reached.
To be sure the algorithm terminates it is often smart to have a maximum
number of generations as a safety.

As can be seen there are several steps where randomness plays a role. This
often makes it hard to analyze the algorithm and the results it creates without
experimental testing. However, the randomness is one of the strengths of the
evolutionary algorithms as it makes it possible to avoid local optima.

2.12 Introduction to the Ant Colony Optimiaza-
tion algorithm

The background information presented here relies on [18]. Ant Colony Optimiza-
tion (ACO) is a rather new form of optimization algorithm, being introduced in
the early nineties. It models the foraging behavior of some ant species, in partic-
ular the pheromone deposition. ACOs have been successfully implemented on
several types of optimizations problems, and specifically the Travelling Salesman
Problem.

The ants of some species deposit a substance called pheromone as they move
from the nest to a food source. Since the pheromone evaporates, places where
the ants use more gets more and more popular. As ants are almost blind they ori-
entate themselves with the help of the concentration of pheromone deposits.[18]
This was proven by Deneubourgh and Goss with the double bridge experiment.
[16, 22] However, in ACOs the ants are artificial; allowing the developers to give
them features actual ants lack.

25

Chapter 3

Tools

In this chapter the tools used in this thesis is presented. Also, the type of motors
and electronics that is suitable for the robot is suggested.

3.1 Python

Python is a programming language that is free, portable, powerful and remark-
ably easy and fun to use according to Mark Lutz.[37] He also stresses the lan-
guage’s software quality, high developer productivity and program portability.[37,
p 3-4] Another important aspect is the 3rd party libraries, two of which are the
free Numpy and Matplotlib. The 3rd party libraries make Python a very flexible
language and covers topics from web programming to advanced mathematics.

3.1.1 Numpy and Matplotlib

Together with Scipy these libraries almost rivals Matlab in mathematical compu-
tation. More importantly, Numpy and Matplotlib make drawing in 3D possible.
This makes it possible to create a 3D simulation of the Stewart platform.

3.2 Solid Works and Solid CAM

In this thesis SolidWorks has been used as CAD software and SolidCAM has
been used as CAM software.[56, 55] SolidWorks has been extensively used to
design and test the design of the Stewart platform while SolidCAM has only
been used to verify that G-code can have a varied syntax.

There exist many different CAD and CAM software producers. [34] Solid-
Works and SolidCAM was chosen simply because the University of Oslo has
licenses for the software, I had earlier experience with it and a free student
edition is available.

3.3 Stepper motors

The motor that is suggested to be used for further study of this project is a two
phase hybrid stepper motor as can be seen in figure 3.1. It has high reliability,

27

Figure 3.1: A stepper motor

low cost and is easy to control.[59] The motor consists of a stator made of soft
iron equipped with windings/coils and a permanent magnet rotor. The rotor
has two sets of teeth that are out of alignment with each other by a tooth width.
The number of teeth decides the accuracy of the motor. A driver is needed for
the stepper motor between the microcontroller and the motor in order to use it.

In a two phase stepper motor, there are 4 windings. Two and two windings
are positioned opposite to each other, and each pair is positioned 90 degrees to
each other. The two opposite windings is applied a voltage at the same time
so that a rotor tooth is magnetically attracted to each of these. After the rotor
has moved the other two windings are applied a voltage to attract the teeth
closest to them. This continues as one pair is applied a voltage while the other
pair of windings is applied zero voltage.[9, p. 632-637] There are 3 typical step
modes, full step, half step and microstep. When both windings are always on
with alternating opposing currents, full step mode is used. Half step mode is
when the motor alternates between energizing two windings and one winding.
Half step gives a higher resolution for the motor. Microstepping allows for an
even higher resolution by controlling the current in the motor windings. The
resolution is limited by the mechanics of the motor[59]

The stepper motor usually has no feedback as the mechanical construction
means that when the motor turns x steps it is possible to determine the position
by counting the steps. However, steps might be skipped if the motor is under
heavy load. This is very unlikely to be a problem in the current setting. The
stepper motor is regarded as being accurate enough for the RepRap.

3.3.1 Alternatives

The main alternative for the stepper motor is the DC servomotor. As with
stepper motors, the servomotor varies in size, complexity and price. The DC
servomotor consists of a closed loop where a tachometer or other device provides
feedback for the position of the motor. The inner workings of a DC motor are
not explained here, but a thorough investigation of the DC motor can be found
in [9].

A short comparison made by W. Voss [64, p 70-71] shows that the stepper

28

"MADE
IN ITALY

= AT
m

"
b+
e
2
3
-
g
g
=
H

ARDUINO
~—POWER ~ANALOGIN S
o Nm

<0 ¥
<o <

Figure 3.2: The Arduino Mega

motor is a better choice for low speed applications with higher torque. As the
speed increases, the stepper motor looses its torque and at one point a servo
motor should be used instead. A deeper analysis of which motor to use for the
Stewart platform has not been done in this thesis. It is believed that both can
be used, but the servomotor needs a more advanced control system (for example
a PID regulator), therefore the stepper motor is suggested to be the preferred
choice.

3.4 Arduino

Another useful tool that can be used in the future is the Arduino electronics
prototyping platform.[1] It is open-source, has a large community and is contin-
uously improved with new shields and other electronics that can be connected
to it. The Arduino Mega has the possibility of controlling all the six motors
with only one board. The Arduino Mega can be seen in figure 3.2

29

Chapter 4
Design

One of the most interesting aspects of this project is the physical implementation
of the robot as this is where the research proves its usability. If the robot can’t
be built with the desired restrictions (see chapter 2.4 and 2.5 and especially
2.5.5), then there is little use in studying the rest of the system.

As stated in the introduction, one of the goals for this thesis is to make a
suggestion for a different design than the current RepRap design that preferably
would simplify the mechanical construction and allow a more diverse use by
including CNC milling. The Stewart platform has been chosen because of its
rigidity, however the actuators can be advanced and expensive or inaccurate.
One of the reasons why the design is presented in such a detail is to keep with
the idea of RepRap and make the design open-source. The designs and the ideas
behind them will be discussed. After that, a comparison with the RepRap is
done. Finally a concluding discussion sums up the experiences gathered from
designing a Stewart platform.

Figure 4.1 shows a simple illustration of how the system is planned to func-
tion. A milling tool or an extruder is attached to the moving platform. The tool
will work inside the Stewart platform, as shown on the figure. An interesting
aspect is to first use an extruder to extrude a part in plastic, and then use a
milling tool to create a smooth finish and to create cavities. Milling tool and
extruder technologies have not been studied in this thesis.

4.1 Actuator

The idea behind the actuator was presented to me by Mats Hgvin, an associate
professor at the Robin research group at the University of Oslo. The actuator
consist of a motor, in this case a stepper motor, a threaded rod and a nut with
a nut housing as can be seen in figures 4.2 and 4.3. The nut is screwed on
the threaded rod and the rod is connected to the motor shaft with the help
of a plastic holder (and glue or epoxy). The motor is in a housing that is
connected with a universal joint to the base-platform of the Stewart platform.
Similarly, the nut is in a housing that denies it to spin freely. Because the
housing is connected to the top-platform with a universal joint, the nut and the
nut housing will not spin with the threaded rod when the motor is actuated.
Thusly, the threaded rod will force the nut housing up and down and make the

31

Tool

Part

Figure 4.1: An illustration of the rapid prototyping system. A tool is attatched
to the top platform and moved in order to mill or print. In this example a
milling tool is attatched to the moving platform. A mechanism that can be
used to keep the tool is not shown (and have not been studied in this thesis)

leg move in a prismatic manner.

Stepper motors come in many different sizes and qualities. A typical afford-
able stepper motor [60] has a step-size of 1.8 degress. This equals 200 steps
for one revolution. A typical threaded rod will have a thread pitch of 1 mm.
The result of this will be that one revolution will cause the actuator to move 1
mm. As one step on the stepper motor is 0.005 of one revolution the very high
accuracy of 0.005 mm can be obtained. The referenced stepper motor has an
accuracy of +-5% (0.00025 mm) and a RPM at 5 V of about 60. Hobbyists eas-
ily made the motor run at approximately 180 RPM and have even made it run
as fast as 600 RPM. [60] This is done by exceeding the recommended maximum
voltage, something that is not that dangerous using a current limiter (usually in
the motor driver). Taking this into consideration, a safe low would be around
120 RPM, which yields only 2 mm/sec. The problem with slow speed can be
overcome with the use of a higher thread pitch on the threaded rod. This will
result in less accuracy, but since the accuracy of 1 mm pitch size is so high,
this does not seem like a problem. 4 mm thread pitch will result in 8 mm/sec
and an accuracy of 0.02 mm. Another possibility is to get a faster motor and
thus sacrificing affordability or take the risk of running the motor at a higher
voltage than prescribed. An issue with the accuracy that has to be taken into
consideration is that there are six legs. Will they increase the error or mitigate
it? More important is inaccuracies created in the nut and the universal joints.
This has not been given focus in this thesis, see [66] for a discussion of errors
caused by joints.

The conclusion on the actuator is that it is in fact very accurate, affordable
and, in the current setting, slow. There is a tradeoff between the three that can
be adjusted with the choice of design. Since it has not been possible to test the
actuator a definite suggestion on the parameters can not be given. However,
strong indications show that by using a motor that is a bit faster than the
referenced one (for example 360 RPM) and using a thread pitch of 4 mm, the

32

Figure 4.2: A CAD model of the actuator

actuator will have a top speed of 2.4 cm/sec and an accuracy of 0.02 mm.

4.2 CAD Design of the Stewart platform

The design of the Stewart platform that is discussed here is the physical appear-
ance of the different parts. It has been largely based on the actuator mechanism.
Three types of design are proposed, one that was created as an initial design,
one that was designed for a prototype print on a commercial 3D printer and
three experimental type designs.

4.3 First design

The first design mainly deals with how the different housings (motor and nut)
and the universal joints is going to look like. The arms consist in many ways
of two parts, the bottom part that is connected to the base platform and holds
the motor, and the top part that is connected to the top platform and hold the
nut. The two parts are connected by the threaded rod. The threaded rod is
connected to the motor with a simple mechanism that use glue or epoxy to hold
them together.

Another factor is the idea that this design should be able to print and/or
mill the part itself (can’t be too complex). This is rather hard to decide before
a working prototype has been created and tested. This area of study also relies

33

L wzrmal
jairt
Mut

Figure 4.3: A CAD model of the actuator, whole and cut in half

34

Figure 4.4: CAD model of the first design of the entire Stewart platform

much on practical experience in 3D printing and CNC milling, but is somewhat
further investigated in chapter 4.4. The part has to be durable and have a
long lifetime (an exact amount of hours is not specified at this point, but the
idea is that a part should be thicker rather than thinner). At this stage in the
development of the design the amount of material needed (cost) has not been
given much focus. The entire first design of the Stewart platform can be seen
in figure 4.4.

4.3.1 Motor housing

The motor is kept in place by a housing that completely surrounds the motor
except the top part that is covered by a lid with a hole for the motor shaft. The
lid also has holes for screws. A hole in the housing has been made for the motor
wires. The design of the housing can be seen in figure 4.5. The housing is also
part of the universal joint at one end. The universal joint is described in more
detail later.

The presented design of the motor housing is not very clever, it needs a lot
of material and has no lasting solution for taking the lid on and off easily. If
the motor breaks down, the whole housing has to be replaced. A leaner design
that also includes a lid that is fastened with bolts (instead of screws) is quite
possible but is rather hard to implement without making the parts to complex.

4.3.2 Nut housing

To keep the nut in place a suitable room has to be made for it in the top arm.
Also, a lid has to hold the nut in place. The lid and housing can be kept together
with bolts. The length of the housing is paramount in the decision on how large
the workspace is going to be. This is because as the threaded rod goes into the
housing (the actuator moves downward) the housing in fact needs to be able to
house the threaded rod. If not, the threaded rod will only crash with the top
universal joint. This causes the nut housing to be quite large and thus use a
large amount of material.

35

R P R
eeasat, Bty

b

b 4
L]
B 4

o

AP
T
RIS
SeTe
et

o
’0 (I

‘4_'-'-.-;"
[

o S

SECTION A=A
STALE TR

Figure 4.5: CAD model of the motorhousing

Two designs of the nut housing can be seen in figures 4.6a and 4.6b. One has
a square shape and would probably be easier to print, but use more material
than the circular shaped alternative. As can be seen, both have a connection
point to the universal joint. A problem with the square alternative is that it
does not have the possibility to use nuts and bolts with the lid in order to make
the nut inside the nut housing easily replaceable. Also, as can be seen on the
figure of the circular nut-housing, the connection mechanism with the universal
joint might be a bit fragile.

An evident limitation with this design is the possible usable length of the
threaded rods. This limits the workspace both in size and possible tilt and
rotation. An example is given in figure 4.7. Of course the nut housing can be
made much larger to allow a larger workspace, but this will come at the cost of
much more material used. For alternatives for the nut housing see experimental
design in chapter 4.5.

4.3.3 The universal joints

The universal joints are able to give the two arms (or sides of the universal joint)
an almost arbitrary orientation towards each other. There are several ways to
implement a universal joint. The presented here is similar to the one in figure
4.8. The idea of a universal joint is that a middle piece is connected to both
parts by an offset of 90 degrees. Both parts have a rotational connection with
the middle part. Figure 4.9a shows how the nut-hosing is connected to the top
platform. Notice the middle piece. This probably will suffer a lot of stress when
the platform moves and a more durable design might be needed. This could for
example be metal reinforcements glued or otherwise fastened inside the holes.
It also has an offset. This might cause errors with the inverse kinematics (see
chapter 5.2) as this has not been accounted for there. Alternatives as universal
joints can be seen in figure 4.10. Further analysis is needed before it is decided
what sort of universal joint is preferable. Another type of joint that acts in a

36

(a) The nut housings (b) The lids

Figure 4.6: The nut housing (top part of the arm) for the Stewart platform,
first designs

Figure 4.7: Limitation of tilt in the Stewart platform

37

Figure 4.8: A picture of a universial joint [48]

Universol

Uriversal alaid
= o S

jint

(a) The top universal joint (b) The base universal joint

Figure 4.9: The universal joints

similar manner is the spherical joint. This consist of a ball like part for the arm
end and a container that house the ball.

A figure of the joint between the motor-housing and the base platform is
shown in figure 4.9b. This joint is very similar to the top one. It is possible to
see that there exists a trade off between the amount of material used (cost) and
the lifetime of a given part. Stress tests can be performed in order to determine
the best size and modifications of the universal joints. Unfortunately material
engineering has not been included in the scope of this thesis.

4.3.4 The platform

The design of the platform is shown in figure 4.11. The size of the platform
can be changed. However, the size of the motor, motor-housing, threaded rod
and nut-housing have to be considered and possibly altered as well. At this
stage in the development of the design, both the top and base platform has the
exact same design. When an extruder or milling tool is to be attached to the
top platform a different kind of top platform that can hold the tool must be
created.

38

dnivereal joirl

Figure 4.10: Alternatives for the universal joint

Figure 4.11: A CAD model of the platform

39

»
4

Figure 4.12: The prototype of an arm printed on a commercial 3D printer

Also in the platforms are parts of the universal joints. The size of these is
quite arbitrary as the platforms have a lot of space to hold them. As discussed
earlier, stress tests can reveal the ideal size and design of these parts.

4.4 Prototype design

The prototype design is a design for the arms that is based on the initial design
and modified to be made up of as little material as possible and actually be
printable on a commercial 3D printer (the Dimension SST 768 [10]). Since one
of the central aspects of this thesis is self-replication, a printable design is of
utmost importance. The design could furthermore be used for initial testing of
platform control. One of the hardest issues in order to accomplish this is to
design the parts in such a way that little or no support material is needed by
the commercial 3D printer. Another problem is the size and location of holes
and how the mechanical accuracy of the 3D printer works. This is due to the
fact that if the hole is positioned too close to and edge, the area in between will
not be properly printed. When the parts get small and have several holes in
them for connecting with other parts, this must be given extra consideration or
the part may not print right. A picture of the printed parts of one of the arms
is shown in figures 4.12 and 4.13.

The main part of the motor housing was divided in half and all the walls have
had their thickness reduced. The lid remains essentially the same. The three
parts can be glued together with the engine inside to form a single part. Care
has been taken to allow the parts to be printed with little or no support and
that the lips that connect the three parts together are wide enough to be glued
together and still fit neatly. The three parts of the motor housing can be seen
in figure 4.14a. The nut housing has been made quite useless be reducing the
amount of threaded rod it can house. This is to save material, as the current
prototype is only for examining how the parts will print and possibly future
(initial) testing. The top part has been divided into 4 parts to avoid unwanted
support material and make the printing possible. This gives a total of 5 parts as
can be seen in figure 4.15. Similar alteration has been done with the platform
part of the universal joints as can be seen in figure 4.14b. Potential prototype
platforms are wooden boards that can be cut to size.

Figure 4.16 shows layer detail of a single layer in the 3D printing software
(Catalyst EX) for the 3D printer. Notice around the hole that it is not com-
pletely covered. Some space might be accepted, but if it becomes too large,
the part can become unusable. A good conclusion to the challenges of creating
a printable design is that it seems much easier than it actually is and a lot of

40

Figure 4.13: The parts of the prototype of an arm printed on a commercial 3D
printer

issues have to be attended to at the same time. Especially if there are large
holes involved. The possibility of a finish milling can really give some relief in
the design challenges, especially considering holes.

4.5 Experimental design

The problem with the large nut-housing has been tried to be mitigated by
designing the top universal joint in a different way. The idea is to allow for a
small nut-housing and a larger workspace (longer threaded rods) at the same
time. The trade off, however, might be that the rod can in some configurations
crash with the universal joint, the top platform or a different threaded rod.
Other issues are to model the offsets created by the design and controlling the
manipulator. Three experimental designs are presented here, together with their
shortcomings and advantages. The designs have been through simple testing as
SolidWorks assemblies, where movements, size of workspace and collisions have
been looked at. This testing is not thorough and has been done in order to
remove the least possible designs. The design presented last seems to be the
most promising one. The designs are presented with 400 mm long threaded rods
in comparison to the 200 mm long threaded rods used in the initial design.
Version 1 can be seen in figure 4.17. A serious problem with this design is
that at one side the universal joint is parallel with the threaded rod. This will
not work very well when the motor spins the threaded rod, and can not be used.
Version 2 can be seen in figure 4.18. The problem with version one is removed as
both rotational parts are 90 degrees to the threaded rod rotational axis. As can
be seen at the top universal joint, both the center part and the connection point
to the arm both have large offsets. This makes the top joints of the manipulator
behave in a quite unpredictable way, and a different type of inverse kinematic
analysis has to be made. When tested as assemblies in SolidWorks both of these

41

& 4L

a) Exploded view of the motor- (b) Exploded view of the platform connector
housmg

Figure 4.14: Exploded view of the motorhousing and of the platform connector
for the prototype design

L &

) Normal view (b) Exploded view

Figure 4.15: CAD models of the nut housing for the prototype version

42

Figure 4.16: A layer of deposited material in the professional 3D printing soft-
ware, Catalyst EX.

designs proved to collide often and were very uncontrollable.

The most promising experimental design is Version 3. Figures 4.19 and 4.20
show how this design is very similar to the original with only an offset in the nut
housing. A simple study of the movements as a SolidWorks assembly reveals
that this design has stable movements and should be investigated further.

4.5.1 Discussion on version 3

In theory, the experimental design allow for an infinite size of the workspace as
the threaded rods can be of infinite length. However, there are many practical
issues that have to be dealt with. The longer threaded rods make collisions
between them quite possible, especially when the top platform is in a low po-
sition. This can be seen in figure 4.21 where 1000 mm long threaded rods are
used. On the other hand, longer threaded rods and an offset in the top joints
allow for a larger workspace, not only in the vertical direction, but also in the
horizontal direction. Also, larger tilt angles are possible as shown in figure 4.22.
Another issue is that too long threaded rods might cause them to flex, causing
inaccuracies. What is needed to make version 3 work is to make the neces-
sary adjustments to the inverse kinematics (see chapter 5.2 for typical inverse
kinematics for the Stewart platform), find an ideal length of the threaded rods
and implement a collision control system that includes the part of the threaded
rods that is above the top platform. This is possible and would allow a great
advantage in the Stewart platform design.

4.6 Comparison with the RepRap
Although a finished and working design is not practically implemented or tested

in this thesis, the design has reached a state that allows it to be compared to
the RepRap. The Mendel RepRap was presented in chapter 2.4.

43

Figure 4.17: Experimental design, version 1

Figure 4.18: Experimental design, version 2

44

Figure 4.19: Experimental design, version 3

Figure 4.20: Close up of version 3

45

Figure 4.21: Crash in threaded rods for experimental design 3. 1000 mm
threaded rods.

The Mendel RepRap consist of many parts, as figure 2.5 shows. As seen
in the discussion about prototype design, the Stewart platform is also likely to
need a rather large number of parts. However, this number might very well be
substantially smaller than for the Mendel. The parts are also designed to be
easy to assemble. The Mendel has several intricate parts that are not so easy
to assemble. To what degree the Stewart platform would be easier to assemble
is hard to tell before a working version has been created.

The mechanical design of the Mendel RepRap allows it to obtain a higher ve-
locity than the presented Stewart platform. The manual for the Mendel reports
a 3000 mm/min velocity [40] and a printing speed of 15 cm**3 per hour. [57]
This is faster than the suggested 24 mm/sec (1440 mm/min) discussed above
for the Stewart platform. Slower speed equals longer production time. However,
max speed is not used when printing or milling, which means that the speed
issue with the Stewart platform might not pose a serious problem.

The wiki-webpage for the Mendel also presents position accuracy for the
Mendel of 0.1 mm, a nozzle diameter of 0.5 mm and a 2 mm minimum fea-
ture size.[57] With 24 mm/sec the Stewart platform has potentially 0.02 mm
position accuracy. This is potential because of possible inaccuracies in joints
and nuts that have not been investigated. It is questionable whether the 0.02
mm accuracy is needed for 3D printing and testing will reveal how accurate
the Stewart platform really is. A better accuracy might be more important for
CNC Milling. As mentioned in chapter 2.4.3 the RepRaps lack the stiffness to
perform milling.

For a discussion on Stewart platform workspace see.[14] This might be in-
creased when the experimental design is used. Anyway, the workspace for the
Stewart platform is obviously smaller relative to its size than the Mendel. On

46

Figure 4.22: No crash with experimental design 3. Showing a large tilt in the
moving platform. 1000 mm threaded rods.

the other hand, the Mendel has only 3 DOF while the Stewart platform has 6.
Even though the orientation of the tool has clear limitations, this will allow the
milling tool to perform a wider range of operations.

According to Sells, who has worked on the Mendel at Bath University,
the Mendel can print between 48 % and 67 % of its own parts (excluding
fasteners).[43] To calculate this number for the Stewart platform is impossi-
ble at this stage in the development, but comparing the designs it is easy to see
that the Mendel has more nuts and threaded rods than the Stewart platform.
On the other hand, the Stewart platform has 6 motors, while the Mendel has 4.
Put together, this suggests a larger printable percentage for the Stewart plat-
form. This is just a suggestion though, as nothing is sure before practical tests
have been done.

4.7 Concluding discussion

Several design suggestions for the Stewart platform has been presented. An
initial and somewhat standard design has been created and used for creating a
prototype design and 3 experimental designs. Issues regarding mechanics and
workspace have been discussed. The mechanics of the actuators allow a good
accuracy, but inhibits speed. The orientation within the workspace is limited.
The experimental designs tried to both increase the possible workspace and
the orientation within the workspace. Assembly testing within a CAD-software
environment suggests that the third experimental design might accomplish this
in an implementable manner.

47

A simple prototype of a single arm was printed on a commercial 3D printer
in order to suggest that the Stewart platform in the future will be capable to
create the plastic parts it is made of. As self-replication is one of the central
aspects in this thesis, a printable design is very important. The succesful print of
the parts (figures 4.12 and 4.13) proved that this is very likely to be true. The
next step in this regard could be to expand on the current prototype design
to become more applicable as parts for a Stewart platform, in other words
to increase the length of the nut housing, to put together and test an entire
Stewart platform according to the prototype design or to use the experience
from creating a prototype design to perform the same analysis and changes to
the third experimental design.

The comparison with the RepRap Mendel suggests that the Stewart platform
can in fact be an alternative to the current RepRap design. It is important
to stress the can aspect of this possibility. Much more practical development
and testing have to be performed before the can turns into a is. The above
discussion has also showed that true 3D milling with a Stewart platform can
be very difficult because even though it has 6 DOF, not all orientations are
mechanically reachable. However, 2.5 D milling seems very possible and also
to allow the milling tool some tilt. A solution to this problem has been done
by PKMTricept [50] as can be seen in figure 2.4. Here, instead of a Stewart
platform (or a hezapod), a tripod is used for 3 DOF positioning. The platform
hangs from a structure and at the movable platform a small and rigid serial
manipulator (robot arm) is positioned. Depending on the model, this has 2 - 3
DOF and allows a quite arbitrary orientation of the milling tool. This solution
is a professional and industrial one and could not be easily implemented within
the RepRap concept. Maybe if the manipulator is attached to the underside of
a desk, a solution can be reached. However, these are just speculations.

This chapter shows more than anything that there are many areas to explore
with the Stewart platform and research possibilities are abundant and varied.
The CAD software was very useful for testing the motion of the Stewart platform
in assembly mode where the different parts can be connected together with the
help of mates and the actual movements of the manipulator can be studied.

One aspect that has not been studied is how the actual milling tool and
extruder is to be attached to the moving platform. This is a practical problem
that relies much on the kind of milling tool and extruder and should not be
hard to overcome. A solution could be to have some kind of holder on the
moving platform, allowing the milling tool and the extruder to be changed
according to what procedure the robot is going to perform next. Another aspect
that remanins untouched is the issue of rigidity. Practical testing or advanced
dynamical testing is needed to verify whether the presented designs are rigid
enough to mill.

48

Chapter 5

Simulator

A simulator was developed for the Stewart platform in order to be able to analyze
the movements and actions of the platform and to further study it in the future.
The simulator was written using the python language (see chapter 3.1) and
developed with inverse kinematics that describes the position and orientation
of the platforms and legs when the position and orientation of the end-effector
is known. As mentioned earlier this is quite simple for a parallel manipulator,
while the other way around, deciding where the end-effector is given the length
of the legs, is mathematically complex. When working with 3D printing and
CNC milling, the location and orientation of the end-effector is always given,
thus this does not pose a serious problem.

5.1 Uses for the simulator

There are several possible uses for a simulator. However, the current simula-
tor needs some improvements to allow all the listed functions to be possible.
Circular interpolation is for example important to have implemented.

e Testing code to make sure no collision happens.

Testing code to make sure no legs are to move beyond their limitations

Make sure the tool path is correct

e Examine how many degrees a motor has spun
e Examine the length of the tool path

e Examine execution time

e Examine the size of the workspace

The functions that have been implemented are to make sure no collision
happens, make sure no legs move beyond their limitations and make sure the
tool path is correct. To examine the workspace is reportedly a complex matter
and this problem has not been studied. The rest of the functions that have not
been implemented are discussed in chapter 5.4.2.

49

\

Fd4—

B6 Bl

Xy

Figure 5.1: These are the dimensions for the base platform

5.2 Mathematics for the Stewart platform

The inverse kinematics used to relate the different parts of the Stewart platform
is given here. As described earlier, the inverse kinematics uses the position and
orientation of the end-effector and finds the position and orientation of the
rest of the robot parts (two platforms and six legs). What is essentially done
is to create three coordinate systems and assign them to each part, one for
the base platform, one for the top platform and one for the end-effector. The
positions of the six legs on each platform are then decided. This depends on
how one wants the platforms to look like and can be quite arbitrary. By using
homogenous transformation between the coordinate systems, the top platform
and end-effector coordinate system can be described from the base coordinate
system. In this way all the important points of the manipulator is known and
it is possible to draw lines between these points in order draw the manipulator.
The following inverse kinematics and platform dimensions are heavily inspired
by [35].

2 4 £ (4 +a)
Bi=| & |By=| i(b+d) |Bs= b (5.1)
0 0 0
: V3
(5 +d) v .
By = - Bs=| -i(b+d) |Be=| -4 (5.2)
0 0 0
*fa (50 —F(5+e
T = S |Ta=| 5(a+e) |Tz3= 5 (5.3)
0 0 0

Fe+—

Te | a | T,
Xy

Figure 5.2: These are the dimensions for the top platform

3 (a 3 3
P (o) %(%—C) T
T, = -5 Is=| —5(a+c) |T6=| -5 (5.4)
0 0 0

The dimensions for the base platform are described in figure 5.1. The exact
locations in relation to the base coordinate system are described in the equations
(5.1) and (5.2). Similarly for the top platform in relation to the top coordinate
system can be seen in figure 5.2 and equations (5.3) and (5.4). Legs 1-6 will be
connected to the points B1-B6 and T1-T6. This mathematical representation is
not identical to the designs that were presented in chapter 4.3.3 when regard-
ing the universal joints, but is rather for a more general Stewart platform. A
more design-specific simulator should be created when a certain design has been
chosen, built and tested.

5.2.1 Homogenous Transformation

Homogenous transformation relates two coordinate systems using matrices. The
normally used Euler angles is not used here as they cause the Jacobean matrix
(if ever implemented for this system) to become singular even when not in a
singular position for a Stewart platform.[35] Rather, to get from the moving
platforms coordinate system to the base platform coordinate system, rotations,
first about the x axis with « degrees, then about the y axis with 8 degrees, and
finally about the z axis with v degrees, are performed. The x and y axes are
orientated as described in figure 5.2 and the z axis is normal to both of them.
In other words, they are all normal to eachother. The resulting homogenous
transformation matrix is described in equation (5.5). In the equation, ¢ stands
for cosine, and s for sine, while x, y and z is the location of the moving platform.
For further details, see [35] and [23].

51

c(B)e(v) + s(a)s(B)s(y) —c(B)s(y) + s(a)s(B)e(y) cla)s(B) =
c(@)s(B) c(a@)e(v) —s(a)
—s(B)c(7) +08(04)C(ﬁ)8(7) s(B)s(v) + (S) a)e(B)e(y) 0(04)00(5) i

(5.5)

Since the end-effector and the top platform are going to be normal to each

other, it is quite easy to derive the homogeneous transformation between them.
The matrix can be seen in equation (5.6).

100 0
01 0 0
0 0 1 ¢toollength (5.6)
0 0 0 1

5.3 Parsing G-code

A G-code parser (interpreter) was created in order to allow the simulator to
be controlled by the common machine controlling language, G-code. The inter-
preter creates lists of the command given and position and orientation for each
frame in the resulting simulation video. G-code is commonly used for CNC
milling machines, but also used by the RepRap system. It has several com-
mands, and not all were implemented for this simulator. Those that were, are
listed in table 5.1

52

€q

Command

Name

Short description

GO0 Rapid Positioning Fast movement
GO1 Linear Interpolation Slow movement
G04 Dwell Pause
G21 Programming in millimeters The numbers for positioning etc are in millimeters
G28 Return to home position Return end-effector to position zero
G43 Tool length compensation negative Adds a negative length to the postion of the tool
G44 Tool length compensation positive Adds a positive length to the position of the tool
G49 Tool length compensation cancel Cancels the offset and use the standard position
G90 Absolute programming The numbers for positioning and

orientation are with refernce to position zero
MO0 Compulsary stop The machine will stop
MO02 End of program End of the entire program
MO03 Spindle on (clockwise) Turn on milling tool in the clockwise direction
MO04 Spindle on (counterclockwise) Turn on milling tool in the counterclockwise direction
MO05 Spindle stop Turn off milling tool

Table 5.1: Interpreted G-code [54]

Notable omissions are programming in inches, local coordinate system, in-
cremental programming and circular interpolation. Also, subroutines have not
been implemented. A complete G-code parser that would incorporate all the
different variations of G-code is very time consuming and hard to create. How-
ever the most important commands for this simulator is the rapid and linear
positioning (location and orientation) to be able to locate the end-effector, and
from that draw the entire Stewart platform. In G-code X, Y and Z sets the
position, A, B and C the orientation, H is positioned in front of tool length
offsets and P, X and U is used in front of the value for dwell time.

The syntax or format of different G-code files has been found to be quite
different. There is for example a difference in the use of lined numbers. The
parser made for this thesis reads only G-code with numbered lines according to
the “Nx standard” (for example N10, N20, N30 etc). This is how the syntax
of G-code has been presented in a classic CNC machining book.[54] Because
of these variations in syntax, some G-code files can not be read at all by the
parser.

5.4 Results

The simulator has been tested in order to verify it capabilities. In order to be
able to perform most of the functions listed in chapter 5.1, the simulator should
be capable of

e Determining the current command

e Determining the specified speed

e Determining the calculated absolute speed of the end-effector
e Determining whether the tool is on or off.

e Determining how much the tool offset is specified to. This is necessary for
milling where the bits might have different sizes.

e Determining the position of the tip of the end-effector
e Determining the orientation of the end-effector
e Determining the absolute speed for each of the six legs
e Create a moving image of the Stewart platform

e Show the end-effector path

The size of the platform in the simulation have been specified to be the same
as the ones presented in chapter 7.1 about the design. The value for a and b is
400 mm and ¢ and d are 250 mm. The tip of the end-effector is located 150 mm
away from the top platform. The maximum speed of the platform is discussed
in chapter 4.1. For the simulator the speed is sat to 30 mm/s for fast movements
(when the tool is turned off) and 15 mm/s for slow movements (when the tool
is turned on). The speed for slow movements can not in a milling application
be decided like this, but have to be adjusted according to the material to be
milled, spindle speed, the type of bit used by the milling tool and so on. The

54

— Milled path

50

600

Figure 5.3: The path created for testing simple move

G-code can specify the desired milling speed with the feedrate (for example G95
- feedrate per revolution [54]), which is based on an analysis the CAM software
have performed.

Two sets of data has been has been tested. The first set is just positions
created in the software to make sure the platform moves as intended. The
second set is the milling of a plaque reading “CNC” taken from a website with
the owners consent. [20] The second set is used to verify that the simulator works
reasonably well with G-code produced for milling. As discussed in chapter 5.3,
not all the different types of G-code syntax can be read by the parser, and
therefore (among other things) only one file of G-code has been tested. It is
believed that this is sufficient to test the simulator as the contents of the files are
essentially the same (the same at a very basic level: operate a tool). However,
the file tested does not have advanced commands such as for example sub-
routines. The G-code parser does not handle such commands. More knowledge
is needed about G-code techniques, ideas and parsing to implement all of the
possible commands given by a G-code file.

5.4.1 Simple move simulation

The path for the simple move test can be seen in figure 5.3. The test was
successful as can be seen in figure 5.4.

5.4.2 G-code simulation

The path created from the G-code can be seen in figures 5.6 and 5.5. Creating a
simulation of the entire path would take a long time (the G-code file has about

95

Command: Fast move
Sat speed: 30 mm/s
Absolute speed: 30 mm/s
Orientation: [0, 0, 0]

Tool: Off
Tool offset: 0 mm Leg 1, speed: 3.92567183041 mm/s
Position: Leg 2, speed: 24.7724147645 mm/s
X:15.0 Leg 3, speed: 3.92567183041 mm/s
Y: 0.0 Leg 4, speed: 3.92567183041 mm/s
Z:100.0 Leg 5, speed: 24.7724147645 mm/s
Leg 6, speed: 3.92567183041 mm/s
0

Figure 5.4: The simulation of the simple move

56

— Milled surface

Figure 5.5: The path extracted from G-code, seen from above

4000 lines of code), therefore only a small portion of the path was used, see
figure 5.7. A frame from the resulting animation can be seen in figure 5.8. The
same figure also shows that all the listed functions minus drawing the path have
been implemented. The drawing of an end-effector path has been programmed
to be shown in a separate image.

The simulator is already capable of doing some of the uses listed in chapter
5.4. The simulator makes sure no movement of the end-effector makes the legs
move faster than the desired speed and that the legs do not exceed a maximum
and minimum length. Also, execution time is roughly equal to the length of the
resulting animation file. Some simple additions can make the simulator calculate
an exact execution time. Other things that are quite easy to implement are
calculating the length of the tool path and how many degrees each motor has
spun. To make sure the tool path is correct a visual inspection by the tool path
can be done. However for a more in-depth and maybe even an automatic check,
the size and shape of the milling tool have to be included and possibly a 3D
surface of the resulting path created. Shape is also a keyword when making sure
no collisions happens. One has to know the exact shape of the Stewart platform
in order to accomplish a true collision control system. The current simulator can
be improved to detect collision but would not cover every collision possibility
since it does not include the shape of the Stewart platform.

5.4.3 Comment

The resolution of the end-effector path, the frames per second (FPS) of the
movie and the speed of the end-effector are related. This is because the movie
is created by animating *.png images. The default value for the FPS in the used
software is 10 frames per second. In this way, each image represents 0.1 second
of movie. Each move command in the G-code is fitted within the frames per
second and speed. For example if a move command moves the end-effector 20
mm and the desired and max speed is 10 mm/s the move command have to be
divided into 20 equal sized parts. Then each image represents a movement of 1

o7

— Milled surface

— |
. _——
e ———— o 15 20 25 30

Figure 5.6: The path extracted from G-code, seen from the side

— Milled surface

8
16 0

Figure 5.7: The part of the path used for simulation

58

Command: Fast move

Sat speed: 30 mm/s

Absolute speed: 29.3810502464 mm/s

Orientation: [Decimal('0'), Decimal('0'), Decimal('0")]

Tool: Off
Tool offset: 0 mm Leg 1, speed: 17.3803628496 mm/s
Position: Leg 2, speed: 14.8254417044 mm/s
X:7.95888888889 Leg 3, speed: -11.7036264028 mm/s
Y: 12.3477777778 Leg 4, speed: 17.3803628496 mm/s
Z:100.0 Leg 5, speed: 14.8254417044 mm/s
Leg 6, speed: -11.7036264028 mm/s
00 15

Figure 5.8: Simulation of the G-code with a fast speed of 30 mm/s and slow
speed of 15 mm/s.

mm (which is a tenth of the maximum speed per second) and fits well with the
fact that each frame is to be a tenth of a second. On the other hand if the move
command only induces a movement of 0.1 mm, this will cause the simulated
platform to move a tenth of the desired speed. Therefore, this movement is
ignored for the next command that makes the end-effector move 1 mm or more.
To sum up, a high speed needs a high FPS to keep the smallest move commands
in the G-code. However, when these distances are very small (less then a tenth
of a millimeter for example) this can for simulation be ignored. This is of
course unless certain high detail simulation is wanted. Also worth noting, high
resolution will cause the parsing and animating to take a very long time if the
G-code file is long. What slows the program down is the saving of *.png images
and making the move commands shorter.

5.5 Concluding discussion

A simulator has been created that is able to handle several simple G-code com-
mands and create an animation that shows the Stewart platform together with

59

details of position, orientation, speed, tool offset, tool state (on/off) and current
command. There are still several commands that have not been implemented.
Whether the simulator needs to be able to handle all the commands in the G-
code syntax depends on the application the simulator is used for. Another issue
is that there exist no standard G-code. A command might mean different things
when written for different applications. The simulator is capable of being used
as an analyzing tool to discover collisions, to make sure the tool path and the
length of the legs is correct and to examine speeds and time of operation. The
two first have to be done manually, by studying the animation and a figure of
the tool path. Other capabilities such as calculating the length of the tool path
and calculating the number of degrees the motors have spun is not implemented,
but can quite easily be so. A more sophisticated and accurate collision analysis
and time calculation is possible. Workspace analysis is also possible, but has
not been studied in this thesis due to its complexity. The study and creation of
a simulator has successfully deepened my understanding not only of the Stewart
platform, but also of the G-code language.

60

Chapter 6

Biologically Inspired
Path-Optimization

The goal for this chapter is to present two possible solutions to improve the
path of the end-effector, make a short comparison and discuss the applicability
of the algorithms and the current approach to path-optimization (shortening the
paths where the tool is inactive). The two algorithms presented are the genetic
algorithm and the ant colony optimization algorithm. One of the reasons for
doing this study is that some papers have looked at the possibility to do the
similar things with positive results (see chapter 2.7 for details). Another, more
obvious reason is that by optimizing the tool path, machining time can be
reduced. The idea is to find shorter paths between the active paths, in other
words, to find shorter inactive paths. I hope to take the research a step further
by including actual G-code used for CNC-milling in the equation. This quickly
makes things much more complicated as G-code does not have a standard and
there are many practical problems that can occur. As discussed later, some
of these practical problems have to some extent been ignored because they are
outside the scope of this thesis.

6.1 Research method

Eiben and Smith discuss how to work with evolutionary algorithms and how to
measure their performance.[19, p241-258] Working with evolutionary algorithms
(and ant colony optimization) most often takes an experimental approach. The
use of randomness in the algorithms demands this as it will not behave the same
every time. An experimental approach is when the algorithm is implemented
and run with specified parameters on a set of test data and results are recorded
and analyzed. This is repeated for different parameters or perhaps different test
data and the different results are compared with each other in order to get an
impression of the algorithm’s performance.

The first distinction they make is between design (one-off) models and repet-
itive problems. The path-optimization problem is a kind of hybrid. It is a
repetitive problem in that it will be done several times. For repetitive problems
all runs of the algorithm need to present a solution that is good enough. This
is the opposite for design problems, where one really good solution is needed.

61

However, since the amount of time in this situation is not as important as for a
typical repetitive problem, the algorithm can have an adequate speed or be run
several times in order to locate a near optimal solution. If the solution is not
good enough, the user can decide to use the original path or run the algorithm
again. This do not mean that the algorithm can behave like a design algorithm,
but has some flexibility when it comes to producing good enough results excep-
tionally fast versus producing optimal results. The input data is different from
run to run so the algorithm has to handle a wide variety of different problem
instances.

This study is on an application oriented situation and deals more with the
problems of making the algorithm workable than pure academic research. Also,
the focus has not been on proving that the genetic algorithm or ant colony
optimization is better than existing solutions, but rather to show that the two
algorithms in fact can be used on ezxactly this kind of path-optimization. An-
other focus is to see how the different parameters affect the solution. As only
one test data set has been used, different parameters might be more suited to
other problem instances.

There are several ways to measure the performance of an algorithm. Eiben
and Smith suggests that success rate, effectiveness (solution quality), efficiency
(speed) and progress curves are the most essential ones.[19] In practical appli-
cation, as this is, success rate is the percentage of times the algorithm presents
a sufficient solution. With the problem at hand, a sufficient solution is hard to
determine, especially since the problem is not tested thoroughly in the litera-
ture. For example there has not been a testing of thousands of different CNC
milling and 3D printing paths that concludes an optimization should at least
reduce the path length to 50% of the original length. Another problem is that
different paths have different qualities. Some might be written more or less by
hand, while other might be created by professional and expensive CAM soft-
ware. Other again might be created by open source beta software. For these
reasons, no success percentage is used but rather the actual percentage of the
original length is monitored.

Another measure is the mean best fitness (MBF). This is the best fitness over
a number of runs with the same parameters, same test set and same algorithm.
This measures how stable the algorithm is in a static environment. Two other
measures are also included, best ever fitness and worst ever fitness. Worst ever
fitness is the fitness over a number of runs that is best for a specific run but
worst compared to the best of the other runs. Best ever fitness is the best fitness
over a number of runs.

Dealing with algorithm efficiency, the average number of evaluations to a
solution (AES) is used. When analyzing AES it is important to keep in mind
that the results can be misleading. For example some evaluations use a longer
time than others and the algorithm might use local search or other hidden labor.
For the presented problem an evaluation is to calculate the length of the tour.
The AES for the algorithms implemented for this thesis is not very misleading.
For the ACO the number of evaluations is equal to the number of ants times
the number of generations for a run. If the number of generations is the ending
criteria, the AES is given. This is not true for the genetic algorithm where an
individual might survive the crossover and mutations and do not need to be
evaluated again.

Progress curves shows the best solution for each generation and can be used

62

Figure 6.1: A plaque reading CNC taken from [20]

to determine how many generations is needed to give a good result. Progress
curve is for one run only

6.2 Parsing G-code

The G-code parser works in a similar fashion to the one presented for the sim-
ulator in chapter 5.3. The parser finds where different active parts starts and
ends. The distances between different active paths and between the paths and
position zero are calculated and put into a distance matrix.

6.3 Test data

The test data is for CNC milling. Note that several things have been left out. For
example tool change and paths of circular interpolation. This is (among other
things) because the G-code parser was created from scratch, and to allow time
for testing etc, it was not created to include every common G-code command.
For an overview of G-code parsing see chapter 5.3. The data set was found
on a hobby website and used with the owner’s permission (it is the same G-
code as used in the design chapter).[20] The test data from the hobby-site is
the milling of a plaque reading CNC, see figure 6.1. As described in chapter
5.3, G-code files from SolidCAM and other G-code files were found to have a
different syntax and could not be tested. The downside of using only one file as
test data is that the testing will not reveal whether the results are applicable
to different instances. However, to study how applicable the algorithms are for
different instances, detailed knowledge of the different types of typical paths
used for CNC milling and 3D printing is needed. This has not been of focus in
this thesis. The upside of studying only one file of test data is that the data
can be tested and studied more thorough.

A similarity exists with the paths of 3D printing and CNC milling. Both
have parts where the tool is used and parts where the tool is passive. This study
focus on the parts where the tool is passive (inactive paths). When ignoring the
possibilities of collision, the movement between the ends of the parts where the
tool is active is still not quite arbitrary. For example starting to print at the top
level of a part will have catastrophic results. Similarly, milling behind to-be-
milled areas will not work. These problems (collision and the order of the paths

63

END

END

SB-EC

Figure 6.2: 3 cities and the paths between them

where the tool is active) have not been included in the algorithms. They are,
however, discussed and dealt with in a final discussion for the chapter. Using this
simplification, what is left is essentially the Traveling Salesman Problem (TSP)
with an alteration. The TSP is a NP-hard optimization problem introduced in
chapter 7.2. The goal of the TSP is to find the shortest round trip between
N number of cities where every city is to be visited only once. The cities are
connected with edges that describe the cost to move between them. In this
application the cities are represented by a path where the tool is constantly
active. The edges are the distance between these active paths, in other words
paths where the tool is inactive. As mentioned, all the active paths are connected
to the other active paths, ignoring practical problems. The alteration is that
there are actually four ways of moving from one active path to another, start to
start, start to end, end to end and end to start. All these distances are different
and also decide what end of the path is available to connect to the next path.
An example with 3 paths is given in figure 6.2. Here, the paths A, B and C have
had their connecting routes shown. If the tool were to move along path SA-EB,
the next moves available are only SB-SC and SB-EC. If SB-EC is chosen, the
remaining move is given, SC-EA.

Because the cost matrix for this problem instance has 3 dimensions (from-
city, to-city and what edge between the two cities) as opposite to the typical
2 dimensions, the cost matrix (the area to be searched) becomes larger and
solving the problem becomes tougher. The graph is currently undirected, which
means that travelling from i to j along path n is the same as travelling from j
to i along path n. If collision control is implemented, the graph might become
directed, something that will increase the search space even further.

64

6.4 Genetic Algorithm

For a general description of the genetic algorithm, see chapter 2.11. What
follows is a mapping from some of the standard operators used in the genetic
algorithm to this problem instance. The operators have been found in the book
[19].

6.4.1 How it works - specific

Here, the details for the genetic algorithm used in this thesis are presented.
Genetic algorithms are the most commonly known and most researched evolu-
tionary algorithm.[19, p 37] The algorithm is created for each application with
different operators. The operators to define are:

e Representation of individuals

Initialization operator

Parent selection operator

e Crossover (recombination) operator

Mutation operator

e Survivor selection mechanism

Termination operator

Representation

The representation defines much of how the other operators are going to look like
and is therefore chosen first. For the travelling salesman problem, permutation
representation is the most common choice. The permutation can for example be
a number where each digit represents a city or a list where each item represents
a city. For the path-optimization problem presented here, the parsing of G-code
affect what kind of representation can be used. As described in chapter 5.3, the
parsing creates a list of paths, describing the start position, end position and
the type of movement. Each active path is given a number and the distance
between them is stored in a cost matrix. Notice that between each path there
are 4 possible distances, so the cost matrix will have 3 dimensions. Since there
are four possible ways to move between two active paths and the selected option
affect which way to move from the next active path, the path chosen between two
cities have to be included in the representation. Therefore the representation of
an individual consists of a list of lists with two elements. FEach list inside the list
is made up of a number representing an active path/city and a second number
representing the edge used between the current and the next path/city. For the
edges, 0 represents a move from start of current to start of next, 1 represents a
move from start to end, 2 represents from end to start and 3 represents from end
of the current path to the end of the next path. An example of an individual
with the genes 1, 2 and 3: [[2, 1], [3, 0], [1, 3]]. Here the edge is from the start
of path two to the end of path 3, from the start of path 3 to the start of path
1 and from the end of path 1 to the end of path 2.

65

Initalisation

The initialization creates a number of random permutations that is equal to the
population size. Each individual is then given random edges between the active
paths (or genes or cities).

Parent selection

pi =q(l—q)’ (6.1)

a; = Z Psel(i) (62)
1

The population is first ranked according to their fitness and the equation
(6.1).[17] A larger value for the parameter ¢, equals larger selection pressure.
The equation gives each individual a probability of being chosen as a parent. In
this algorithm the number of individuals (i) is equal to the number of parents
(A). The number of offspring is equal to the number of parents. After each
individual has had their probability calculated they are ranked from one (least
fit) to pu and given a value [al, a2, ..., au] according to equation (6.2).[19, p 62]

Algorithm 1 begin
set current-member=i=1
Pick a random value r uniformly from [0,1/y]
while (current_member < p) do
while (r<ali]) do
set mating_pool[current_member] = parents|i]
set r=r+1/u
set current-member = current-member+1
end while
set i = i+1
end while
end
Psueudocode fot the stochastic universal sampling (SUS) algorithm. Taken
from [19, p 60-63]

Parents are then selected according to the stochastic universal sampling
(SUS) method.[19, p 60-63] This is similar to spinning a roulette wheel one time
with a number of equally spaced arms that is equal to the number of parents
that are to be chosen. The pseudocode for SUS is presented in algorithm 1.

Crossover

There are mainly four crossover methods that are suitable for permutations,
Partially Mapped Crossover (PMX), Edge Crossover, Order Crossover and Cycle
Crossover.[19, p 52-56] Of these, Eiben and Smith reports that PMX is the most
widely used for adjacency-type problems such as the TSP. A slightly modified
PMX has therefore been chosen as crossover operator. The modification has
been done because there are four possible edges between two genes and the
edge used by the current gene is dependent on the edges used by the gene

66

1-0[2-2 7-018-219-3

—» [[B2@43[51el] [[|

[5-3[8-1]6-1]9-1[3-11-014-2[2-2]7-2]

Figure 6.3: PMX 1: copy a segment from one of the parents to the offspring.
(19, p 53]

1-0[2-2 7-0[8-2]9-3

—» [1.00 [3-2[4-3[5>-1]e-1]9-1] [|

5-3[8-1 4-2[2-2]7-2

Figure 6.4: PMX 2: add the same segment from the second parent. 6 and 3 are
already added and are ignored. 9 is opposite to 4 in the first parent. Add 9 in
the position 4 is in the second parent. 1 is opposite to 6 in the first parent. 6
in the second parent is inside the grey area, opposite to 6 is 3, 3 is also in gray
area in the second parent. Opposite to 3 is 5, add 1 in the position 5 is in the
second parent.[19, p 53]

before and the next gene. For illustration, see figures 6.3, 6.4 and 6.5. The issue
with the four possible edges between two genes is solved as described in figure
6.6.

Mutation

Similarly to the crossover operation, Eiben and Smith present 4 common op-
erators for mutating permutations, swap mutation, insert mutation, scramble
mutation and inversion mutation.[19, p 45-47] A modified inversion mutation is
chosen as mutation operator for this implementation. Similarly to the crossover
operator, the modification is due to the four possible edges between two genes.
Inversion mutation chooses a subset of the permutation and inverse the direc-
tion of this subset. This can be seen in figure 6.7 and the modification is seen
in figure 6.8.

Survivior selection

The survivor selection mechanism can be very crucial in deciding whether the
algorithm will explore the search space to a satisfactory extent. If only the
fittest individuals are chosen for the next generation the algorithm can quickly
end in a local optimum. The survivor selection for this implementation of the
genetic algorithm is age-based replacement with elitism.[19, p 65-66] Age based
replacement do not consider fitness when deciding which individuals that is to

1-0]2-2 7-018-219-3

—p [1-0[8-1[3-2]4-3]5-1[6-1[9-1[2-2]7-2]

5-3[8-1 4-2[2-217-2

Figure 6.5: PMX 3: Add remaining parts of the other parent. Switch positions
of the parent and repeat to make another offspring.[19, p 53] The edges have to
be adjusted, see figure 6.6

67

[1-0[8-2[3-2{4-3]5-1|6-1[9-0]2-27-3 |

Figure 6.6: Correcting the edges. Starting with gene number two, look at the
gene before, decide to use 0/1 (start - start/end) or 2/3 (end - start/end). Look
at the next gene, this decides what number that is to be used. Continue for each
gene until the last. The last use the gene before and the first gene to decided
the edge.

—> 7-0[8-29-3

Figure 6.7: Inversion mutation, based on [19, p 47]. The direction of the paths
have to be adjusted, see figure 6.8

survive for the next generation, but says that each individual is to live for the
same number of generations. Since the number of individuals in a population
and the number of offspring created is the same, all individuals are replaced by
the offspring. Elitism is to allow the fittest individual to survive and replace it
with the least fit individual in the offspring. What this translates to, is that each
individual in a population only lives for one generation except if they survive
the crossover and mutation, or is the fittest individual.

Termination

As described in the chapter about methods for testing evolutionary algorithms,
it is hard to know in advance how much to expect the algorithm will improve
the inactive path length. Therefore the termination operator has been chosen
to be a number of generations.

6.4.2 Results for the Genetic Algorithm

The test data used has already been discussed in chapter 7?7 and can be seen
in figure 5.5 at page 57. The methods for testing have also been described
in chapter 6.1. This genetic algorithm has 5 different parameters. Population
size and number of generations that decides how many individuals that are in
a population and how many generations the algorithm is going to run. The
parameters p. and p,, decides how often parents are going to be subject to
crossover and mutation respectively. The last parameter, q, is used to rank the
individuals according to equation (6.1). Larger q equals larger selection pressure.
Different values for the parameters have been tested and are presented in tables
6.1 and 6.2. Progress curves for some parameter settings can be seen in figure
6.10 and 6.11. The total original length of the active and inactive paths is 2778.7

1-0[2-2 7-0[8-2]9-3

Figure 6.8: Correcting the edges. Starting with gene number two, look at the
gene before, decide to use 0/1 (start - start/end) or 2/3 (end - start/end). Look
at the next gene, this decides what number that is to be used. Continue for each
gene until the last. The last use the gene before and the first gene to decided
the edge.

68

mm. Of these is the tool active for 2508.9 mm and inactive for 269.8 mm. As
can be seen, the inactive path is only 9-7% of the total lenght, something that
really limits the path-length that can be saved.

Parameter setting 1 2 3 4 5 6 7 8 9 10 | 11
Population size 100 | 100 | 100 | 100 | 100 | 100 | 25 | 25 | 500 | 60 | 60
Generations 50 50 50 50 50 50 | 50 | 50 50 | 45 | 45
DPm 01]01]01]06|00]00|10]107] 10 1|10] 1.0
Pe 06 |06 |06 |01]10|1002]02]02]03]|0.3
q 0505|0505]05|05|05]051]051]05]| 0.5
Runs 10 | 100 | 200 | 10 10 | 50 | 10 | 100 | 10 | 10 | 100

Table 6.1: Parameter settings for the different tests. Test results can be seen in

table 6.2.

69

Parameter setting 1 2 3 4 5 6 7 8 9 10 11
Best ever 123.7 | 104.1 | 102.1 | 106.0 | 100.8 | 100.3 | 100.4 | 101.0 | 97.4 | 105.5 | 98.3
Percentage of original inactive path | 46.1 386 | 37.8 | 393 | 374 | 372 37.2 37.6 36.1 39.1 36.4
Total new length percentage

of total original length 94.7 | 94.0 | 94.0 | 941 | 939 | 939 | 93.9 | 93.9 93.8 94.1 | 93.8
Worst ever run 196.9 | 213.3 | 211.3 | 213.3 | 180.8 | 173.2 | 159.2 | 199.1 | 167.8 | 148.3 | 195.0
Mean best 155.3 | 157.1 | 148.6 | 156.2 | 135.2 | 134.3 | 135.9 | 147.4 | 127.2 | 123.8 | 140.7
Average number of evaluations 3313 | 3302 | 3297 | 3295 | 5101 | 5101 | 1327 | 1327 | 25501 | 2761 | 2761

Table 6.2: Test results for different parameter settings for the genetic algorithm. The values of the parameters can be seen in table 6.1.

The orignal length of the inactive path is 269.8 mm. Total original length with active and inactive paths is 2778.7 mm.

70

200

150f (]

Mean best
=
o
o

50

0 1000 2000 3000 4000 5000
Average number of evaluations

Figure 6.9: The Mean best vs the Average number of evaluations for the GA.
Some of the test results presented here is not included in table 6.1 and 6.2

6.4.3 Discussion on GA test results

The goal of this discussion is to highlight different aspects of the genetic algo-
rithm in the given context. Another goal is to discuss the applicability of genetic
algorithm to the given problem. Because there has not been implemented any
traditional form of optimization algorithm in this thesis to compare with, this
have to be done in relation to how the genetic algorithm would perform within
acceptable limits and how an increase in complexity (collision control for ex-
ample) would affect the algorithm. The number of parameter settings has been
limited to 11 to be able to have some sort of overview. However, this means
that when comparing two types of settings, more than one parameter might be
different. This is important to keep in mind when reading the discussion.

General

When taking the setting into consideration, the speed of the algorithm is not
the most important characteristic. A speed of about 30 seconds is acceptable,
while several minutes would be too slow. The time has in this testing been
omitted and an average number of evaluations has instead been used. Still,
while not measuring the time in detail, an approximate time could be observed.
During testing, no single run took close to 30 seconds. According to the results
a larger number of evaluations do not necessarily mean a much better mean
best as can be seen in figure 6.9. On the other hand, none of the mean best are
very convincing when compared to the best ever. This means that, in order to
locate a very good solution, several runs are needed. After all, to be used in the
3D printing or CNC milling process, a very good solution is necessary.

Since this is just a single sample of the endless varieties of how G-code can
describe active and inactive parts it is hard to generalize the parameters used
with any success. An idea that can be used in conjunction to using several runs
to find the best solution is to use different parameters for the different runs. In
this way, the algorithm might prove to be applicable to many different kinds of

71

200

— Best in this generation
1901 P R

180

170

Cost of tour
=
o
o

150

140

130

i i i i i i L
1200 20 40 60 80 100 120 140 160

Generations

Figure 6.10: The best individual for each generation using parameter setting 4
in table 6.1 and 150 generations (genetic algorithm)

paths.

When considering the issue of the order of active parts (for example starting
to print at the top level), the problem can be solved by analyzing the data
correctly. In this way, edges in the search space can be removed in order to
deny certain movements. Also, direction of the edges can be applied. The issue
of collision control could prove much harder to solve however. Solutions for
these problems do exist and they do not affect the algorithm specifically, but
the preparation of data for the algorithm. This thesis will not look any deeper
into the problems of collision control and the order of the active parts.

Number of runs

From the results of the first three parameter settings it can be seen that with
more runs (10 and 20 times more, setting 1, 2 and 3), the best result improves,
while the mean best result do not change that much. The first part is expected
as more runs give a higher chance of getting a better result. The fact that the
mean best is best with 200 runs is quite interesting. With different parameters
(settings 5, 6, 7 and 8) the best results do not change much with 10 times the
number of runs. While setting 10 and 11 show that an increase in the number
of runs can result in an improved best result and an increase in the average
best distance. As the results points to both sides, it is difficult to analyze the
impact of the number of runs. However, it is fairly logical that with more runs,
a higher chance of achieving a better best solution is gained at the cost of time.
The numbers also shows that algorithm produces fairly similar results when ran
several times. This suggests that there is little variance.

Mutation and Crossover rate

When looking at table 6.1 and 6.2 it is hard to make out any favorable combi-
nation of mutation and crossover rate. The mutation rate has been kept high
in most of the settings while crossover rate has been kept quite low. This seems

72

270

— Best in this generation
260 :

250

240

Cost of tour
N
w
o

220

210

200

i i i i
1900 10 20 30 40 50

Generations

Figure 6.11: The best individual for each generation using parameter setting 5
in table 6.1 and 50 genereations (genetic algorithm)

to give good results, however the opposite is also possible (see setting number
5 and 6).

Population size and number of generations

The number of generations was set to be the ending criteria as it is impossible
to say, from file to file, how much improvement can be expected. An additional
ending criterion could be to monitor of fitness of the best individual change
from generation to generation. If there is little or no improvement over a num-
ber of generations, the algorithm could terminate. According to the test results
there exists no clear distinction between performance, generations and popula-
tion size. For example, setting number 9 shows promising results for a large
population size, while setting 10 and 11 seems to produce similar results with
smaller population and fewer generations. What is certain is that population
size and number of generations affect the average number of evaluations and the
time the algorithm uses. This is also true for the crossover and mutation rate.

Progress Curves

Figure 6.10 and 6.11 shows progress curves for parameter setting 4 (with an
increased number of generations) and 5 respectively. Since the genetic algorithm
implemented here has elitism as part of the survival scheme, the current best
individual in the algorithm will always be the same or better than the best
individual in the last generation. For both graphs the best solution becomes
stable quite early. This suggests that the number of generations can be kept at
about 30-50 without sacrificing the solution quality.

73

6.5 Ant Colony Optimization

For an introduction to the ant colony optimization, see chapter 2.12. What
follows is a mapping of the problem to the current problem instance. The
article by Dorigo et al has been used for inspiration. [18]

6.5.1 Applying ACO to the TSP

As described earlier the tool path problem has in this thesis been considered as a
TSP. The different parts of cuts or printing (active paths/cities) are considered
as cities. Thus the cuts (cities) have four distances between each other (inactive
paths).

The way ant colony optimization works is to allow artificial ants to traverse
the graph, which is the cities and the distances between them, and when an ant
is in a city it chooses the next edge based on uniform randomness. However,
how likely an edge is to be chosen depends on the length of the edge and the
amount of pheromone on the edge. After an iteration (generation) of ants, the
pheromone values are updated. The edges that have been traversed will have
more pheromone than those that were not. Thus, the edges traversed have a
slightly higher chance of being chosen the next time.

To determine when to terminate the algorithm a specific number of itera-
tions is often used. This can be used together with a length criterion to stop
the algorithm when the current best solution is good enough. This, however,
requires knowledge about the specific problem instance. Since the algorithm is
initialized with all the edges having the same amount of pheromone, the initial
runs are more random.

There are several ways of implementing the ant colony optimization algo-
rithm. In this thesis, the Ant System has been implemented. It is one of the first
implementations of the ant colony optimization algorithms presented by Dorigo
in 1991.[18] More successful implementations have later been implemented. The
details of the Ant System algorithm are now presented.

Pheromone Update

The pheromone is updated at the end of each generation according to equation
6.3.[18, p 5]

Tijn < (1 — p) s Tijn + Z AT{;-,,L (63)
k=1

The pheromone concentration between paths/cities i and j, along edge n (0,
1, 2 or 3 - start-start, start-end, end-start, end-end) is given by 7;;,. In this
equation, p is the evaporation rate, m is the number of ants and Arfjn is the
amount of pheromone deposited on the edge by ant k according to equation
6.4.[18, p 5]
| Q/Lg if ant & used edge (i,7) in its tour,
ATijn = { 0 otherwise (6-4)

Q is a parameter decided by the user and Ly is the length of ant k’s tour.

74

Ants’ decision rule

When an ant decides what edge to use, it does so according to the length of
the edges and the relative pheromone concentration on them. However, this has
a random element and the chance of choosing an edge is decided according to
equation 6.5.[18, p 5]

B
T N .
& i e if ¢;; € N(sP),
> eN(sP) Titn Miin
0

Ciln (6'5)

otherwise

Here, pfjn is the probability of ant k using the edge n from i to j, when the
partial solution s? has been made. N(sP) is the set of feasible edges that have
not been used by ant k and do not take ant k to a path/city it has been before,
7Nijn is the pheromone concentration of the edge n from i to j and 7;;, is given
by equation 6.6.[18, p 5] The length of the edge is represented by d;;,. The
importance of pheromone concentration versus the length of the edge is decided
with the parameters o and f.

Nign = 5— (6.6)

ijn

6.5.2 Results for the Ant System

While ACO is not strictly an evolutionary algorithm, it shares many of the char-
acteristics and will be tested the same way as the genetic algorithm. The ACO
algorithms was implemented as described above and tested with the presented
test data. Table 6.4 shows the test results for different parameter settings and
their results, the details of the settings can be found in table 6.3. The results
consist of the best result, the best result as a percentage of the original path,
the mean best fitness, worst result and the average number of evaluations to a
solution. In this Ant System algorithm there are 6 parameters. This together
with the stochastic nature of ACO algorithms makes it hard to determine what
the ideal parameters are and how the parameters affect the final result. The
testing presented here do not try to map the entire effect the parameters have
on the performance of the algorithm, but rather to present some results with
some different parameters and discuss them to get a better impression of how
the algorithm work. Progress curves are presented for some of the tests, this
can be seen in figures 6.13, 6.14 and 6.15.

(0]

Parameter setting | 1 2 3 4 5 6 7
Ants 10 | 10 10 10 | 10 10 10
Generations 50 | 50 50 50 | 50 50 50
« 1.0 1.0 | 1.0 | 0.5 | 1.0 | 1.0 | 1.0
154 1.0 10| 10| 1.0 |01 | 1.0 | 1.0
Q 1.0 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0
p 07107107 |07 |07] 02|09
Runs 10 | 100 | 200 | 10 | 10 10 10

8 9 10 11 | 12 13 14
Ants 10 | 50 50 5 10 10 10
Generations 50 | 50 15 | 500 | 10 30 30
« 1.0 1.0 | 1.0 | 1.0 | 1.0 | 0.3 | 1.0
I} 1.0 1.0 | 1.0 | 1.0 | 1.0 | 0.45 | 1.0
Q 0510 |10 | 10 | 1.0] 064 | 1.0
p 071071107 |07 05| 07 |07
Runs 10 | 10 10 10 | 10 10 50

Table 6.3: Parameter settings for the different tests. Test results can be seen in
table 6.4.

76

L.

Parameter setting 1 2 3 4 5 6 7
Best ever 99.7 | 88.9 | 88.9 | 99.0 | 115.0 | 100.4 | 99.4

Percentage of original inactive path | 37.0 | 33.0 | 33.0 | 36.7 | 42.6 | 37.2 36.8
Total new length percentage

of total original length 93.9 | 935 | 935 | 93.9 | 944 | 93.9 | 939
Worst ever run 119.0 | 139.0 | 132.2 | 122.5 | 192.7 | 112.6 | 122.8
Mean best 107.7 | 110.7 | 109.8 | 109.8 | 152.9 | 108.5 | 111.4
Average number of evaluations 500 500 500 500 500 500 500
8 9 10 11 12 13 14
Best ever 99.2 | 99.1 | 99.8 | 100.5 | 109.1 | 100.2 | 99.1

Percentage of original inactive path | 36.8 | 36.7 | 37.0 | 37.2 | 404 | 37.1 | 36.7
Total new length percentage

of total original length 939 | 939 | 939 | 939 | 94.2 | 939 | 939
Worst ever run 126.0 | 107.8 | 112.1 | 135.1 | 151.6 | 116.7 | 132.3
Mean best 111.7 | 101.5 | 105.5 | 120.1 | 136.4 | 107.2 | 110.3
Average number of evaluations 500 2500 750 500 300 360 360

Table 6.4: Test results for different parameter settings for the ant colony optimization algorithm. The values of the parameter can be
seen in table 6.3. The orignal length of the inactive path is 269.8 mm. Total original length with active and inactive paths is 2778.7 mm.

160

1401

120f

100f ® 4

801

Mean best

601

401

201

0 500 1000 1500 2000 2500
Average number of evaluations

Figure 6.12: The Mean best vs the Average number of evaluations for the Ant
System. Some of the results presented here is not included in table 6.3 and 6.4.

6.5.3 Discussion on ACO test results

Similarly to the discussion on the test results for the genetic algorithm, the
goal of this discussion is to highlight different aspects of the Ant System ACO
algorithm and discuss its applicability in the current context. The number of
parameter settings has been limited to 14 to not drown in data. However, this
means that not all aspects of changing parameters are highlighted. Another
important aspect is that the algorithm is stochastic and can yield different
results at different times. A large deviation of the test results is highly unlikely
because the algorithm is run several times. A comparison with the genetic
algorithm will be performed after Ant System has been discussed.

General

As noted earlier the speed of the algorithm is not the most important criterion.
The end results should be as good as possible, preferably the global best. It
seems that a global best is accomplished with parameter setting 2 and 3. How-
ever, these take a long time and require 50000 and 100000 evaluations. Longer
runs or a larger population of ants do not seem to make any difference as figure
6.14 and 6.12 shows.

Similar to the genetic algorithm, the algorithm itself will not be affected
by implementing collision control or by making sure the active paths are in the
right order as this has to do with the data processing before the algorithm starts
to work on the data.

Number of Runs

The test results for parameter setting 1, 2, 3, 13 and 14 in table 6.4 shows how
the algorithm handles many runs. When increased 10 and 20 times, the best
results improves considerably, about 10% better than the best result for 10 runs
and 5% less percentage of the original length. For parameter setting 13 and 14

78

this is not as evident as the best result is hardly improved when the number
of runs is increased 5 times. While it is expected that the best ever results
improves with more runs, the mean best and the worst ever run is expected to
be worse. It is interesting to see that for both settings the mean best result do
not increase significantly and from 100 to 200 (setting 2 to setting 3), the mean
best actually decreases. For setting 1 the mean best is about 8 mm more than
the best ever result for 10 runs and abut 20 mm more for setting 2 and 3 (100
and 200 runs). For setting 13 and 14, the difference is 7 mm for 10 runs and
about 11 mm for 50 runs. The worst ever run increases with about 15 mm to 20
mm from setting 1 to 2 and 3 and from 13 to 14. Yet again, the worst ever run
was better for setting 3 than for 2. These results indicate that the Ant System
algorithm will have a quite stable performance over time.

Alpha and beta

Parameter settings 4 and 5 show the effect of decreasing the importance of
pheromone concentration and the length of the edge respectively. Parameter
setting 12 shows how the algorithm is affected when « and 8 has been given
random values together with Q. For all the other parameter settings, the two has
been equally important. From the test results it is quite evident that a dramatic
skew in the relation between the pheromone concentration and path length in
the favor of pheromone concentration will deteriorate the results. This can be
seen in the results for parameter setting 5 where pheromone concentration is 10
times more important that the length of the edge. The mean best result and
the worst ever run will increase dramatically in length together with an increase
of length for the best ever result. Similar results might be expected when the
length is 10 times more important than pheromone concentration. In setting 4,
the length of the edge is twice as important as the pheromone concentration.
Setting 13 is used as a more random setting and is not so easy to compare to the
other settings as it has two more parameters changed (the number of generations
is decreased together with and Q). It shows a decrease in performance.

Rho

Rho (p) is the evaporation rate of the pheromone concentration. When the
evaporation rate is close to 0, the algorithm will not remember the choices
that ants have made so well and the algorithm will become more random. The
generation before the current will have a much larger impact than the former
generations. On the other hand, close to 1, the ants will quickly be more affected
by the previous generations. The test results for setting 6 and 7 show that an
increase and a drastic decrease in p from the standard (in these tests) 0.7 do
not affect the end result significantly.

Q

The larger Q is, the more the length of an ant’s tour affects the pheromone
update of a used edge compared to the number of ants that have traversed
the edge and the evaporation rate. Parameter setting 8 halves the value for Q
without changing the results much.

79

200

190

Cost of tour
= = = I =
B wu o ~ [}
o o o o o

o
w
o

120

11GO 10 20 30 40 50

Generations

Figure 6.13: The best individual for each generation using parameter setting 1
in table 6.3(ant system)

200 T T T T

180 : H 1

Cost of tour
-
o
o
T
i

=

IS

=)
T

1201

L h I
IOGO 100 200 300 400 500

Generations

Figure 6.14: The best individual for each generation using parameter setting 1
in table 6.3 and 500 generations(ant system)

80

180 T
170 al
160

150

Cost of tour
— =
w B
o o

T T

o

N

=3
T

-

=

o
T

=

o

S
T

i i i i
900 10 20 30 40 50

Generations

Figure 6.15: The best individual for each generation using parameter setting 1
in table 6.3 and 50 ants(ant system)

Ants and number of generations

The number of ants and the number of generations affect the number of eval-
uations as each ant is evaluated for each generation. Parameter setting 9 uses
5 times the number of ants without acquiring a better best solution than the
standard parameter settings 2 and 3. However, the worst ever run and the
mean best both becomes about 10 mm shorter. The same tendency is created
by maintaining the number of ants and reducing the number of generations by
35, to 15 (setting 10). Parameter setting 11, 5 ants and 100 generations, gives
a worse mean best and worst ever run than settings 1, 2 and 3.

Progress Curves

Two progress curves with parameter setting 1 are presented in figure 6.13 and
6.14. Figure 6.13 is more detailed, with 50 generations and figure 6.14 has 500
generations. Figure 6.14 shows that it is quite pointless to use more than 200
generations of ants. 50 to 100 generations seems like a more ideal number of
generations for this parameter setting. Figure 6.13 shows that 50 generations
might lead to less optimal results, so about 100 generations seems to be the
most promising number. Increasing the number of ants to 50 (figure 6.15) will
decrease the number of generations required for a good result, but will not do
much to increase the efficiency of the algorithm.

6.6 Concuding discussion on Tool path-optimization

6.6.1 Comparing genetic algorithm and ant colony system

The test results clearly show that the ant system is a superior algorithm to
the genetic algorithm for the TSP. The best result for the Ant System uses
less evaluations, finds a shorter best solution, worst solution and mean solution.
However, it is important to note that the number of evaluations, do not directly

81

correspond to the amount of time the algorithm use. In fact, the genetic algo-
rithm was faster per evaluation than the Ant System algorithm under testing.
Furthermore, the algorithms used are not the best in their categories and there-
fore should not be regarded as an absolute result. Having said this, the fact
that the ant system found the shortest routes among the two, and it has been
reported used in the industry in similar applications,[18, p 7] suggest that it is
the preferred solution.

6.6.2 General discussion

The main point of this chapter is not to perform an in depth comparison of the
two algorithms, but to show to what degree they are applicable to the prob-
lem instance. This has been briefly discussed for the two different algorithms,
focusing on the required improvement needed to be used as a real application.
The conclusion is that the algorithms and especially the ant system (or one
of the other, better, versions) can be used for this instance. However, when
adding the active path length and comparing the lengths to the original length
the path do not become much shorter. The best result gives a saving of 6.5%
of the original length, or a distance of 180 mm. With a speed of 24 mm/s this
results in only an improvement in machining time of 7.5 seconds. This seems
like a very low number and would suggest that the algorithm is unecessary.
However, it is important to consider that the test data is an inscription of a
design, which is a quite short path compared to the typical CNC milling path
and 3D milling path. Even when considering this, the fact that the time saved
in the test was so short it puts the algorithm in a defensive position, it needs
to prove its applicability. It is important to stress that there is nothing wrong
with the algorithm in itself, the issue is that it might not be worth applying it
considering the results it can possibly give.

The two simplifications presented in the individual discussions need further
investigation. The first, the order of the active parts, can be solved by inves-
tigating the data from the G-code before the path-optimization algorithm is
activated. As path analysis and similar subjects has not been investigated in
this thesis, it is not possible to confirm, but this can be most likely be solved
quite easily. However, the length of the inactive path will most likely not be
reduced as much as the results presented here shows. For example, for 3D print-
ing, it is possibile that the length reduction might be very small as the order
of the inactive paths is often very strict. The results might be better when
dealing with CNC milling, as the order of the paths seems to be freer. For
example by looking at the path in figure 5.5 and 5.6, it is possible to see that
an improvement in path length is possible without violating the correct order
of active paths. It is important to note that this analysis is done with limited
knowledge of milling and 3D-prinitng paths and these should be studied further
to verify what has been presented here.

The second improvement needed is collision avoidance. This is also a quite
unexplored field in this thesis. Similarly to the order of the inactive paths,
collision avoidance has to do with the data created from the G-code, and do
not directly interfere with the path-optimization algorithm. Even with limited
insight into the world of collision avoidance, it is possible to quite surely say that
this might very well be more advanced and complex than deciding the possible
appropriate orders of the active paths. Depending on the number of possible

82

inactive paths, it might prove too time consuming to analyze all the paths in
order to deny collisions and calculate the lengths. However, it might be so that
not all the possible inactive paths will be explored in the path-optimization
algorithm. To exploit this, the length of collision free inactive paths might be
calculated while running the path-optimization algorithm. A study of how many
of the possible inactive paths explored by the algorithms can show whether this
exploitation is possible. It seems that the inclusion of collision avoidance can
be one of the central problems of further development.

An issue, which has been mentioned, is that when these simplifications are
improved, the path found by the algorithm might very well not be shortened as
much as the current test results suggests. This is also affected by the type of
path to be improved (different G-code files, different types of tool path) and it
is very hard to determine the total effect the algorithms has before testing on
many different paths.

To conclude, the current problem do not so much lie with the algorithms
as the preparation of data for the algorithm and the possible length that can
be saved by analyzing the inactive paths. In this way, it is possible to say
that the ant system algorithm and to some degree, the genetic algorithm, is
applicable to the problem instance. However, the issue of preparing the data
properly might prove to be too time consuming, making the algorithms efficiency
futile. Further investigation of data preparation can reveal this. Another aspect
is that the improvements might render the algorithm less efficient by denying
much improvement in the inactive path length. There are still some hurdles
that need to be jumped.

83

Chapter 7

Conclusion and proposals
for further work

7.1 Conclusion

Working with this thesis has been an immense learning experience. The areas
to study that are related to robotic manipulators are many and varied. This
meant that not all the areas could be explored as much as desired. I have gained
insight into the design issues for a Stewart platform, studied G-code and the
mathematics behind the platform to create a simulator. These studies allowed
me to analyze the properties of tool paths and discover how to improve the
length of them. Other topics have also been to some extent studied, such as the
travelling salesman problem and biologically inspired computing. The different
approaches of design, simulation and path-optimization really allowed me to
understand the problems and the Stewart platform better. The thesis allowed
more than anything to get to know the Stewart platform in detail.

What follows is a short conclusion of the three aspects of this thesis. These
are the design, the simulation and the path-optimization using biologically in-
spired computing. Then the experience from the three parts is put together
to evaluate the possibility of using the Stewart platform as a rapid prototyper
alternative to the current RepRap design (Mendel) that can both perform 3D
printing and CNC milling. There are several aspects to this project, for example
the issues regarding implementing the system to test it in a practical manner.
Another aspect is studying areas of research that are related to the system, such
as workspace analysis.

Design The design chapter explored how a rapid prototyper with 3D print-
ing and CNC milling capabilities could be physically implemented as a Stewart
platform, looked at issues such as workspace limitations and the design of an
actuator and compared the design with the RepRap Mendel. Further studies
and practical testing is needed to verify whether the presented design will con-
tain the presented characteristics. The design that shows the most interesting
capabilities is the third experimental design. A figure of this design can be
seen at page 45 (figure 4.19). Goal number 1 as presented in chapter 1.2 has
thus been achieved. No future problems were found too large or complex to be

85

solved, and thus further study and testing of the design is encouraged.

Simulator The simulator has capabilities to perform simple analysis of how
the Stewart platform behaves according to a G-code file. The path can also be
studied to be verified. Due to the fact that there is no standard G-code syntax
and in order to make a working version of the manipulator, not all types of
G-code files and commands were implemented. Further development in these
fields, especially the amount of commands handled, is needed. To do this, the
style of the G-code needs to be decided. The creation of the simulator enabled
me to better understand the Stewart platform, CNC-milling and 3D printing.
In this way, goal number 2 as presented in chapter 1.2 has been achieved.

Biologically inspired path-optimization Both the genetic algorithm and
the ACO algorithm managed to improve the inactive parts of the tool path to less
than half the length of the original inactive path lengths. The ACO algorithm
gave consistently better results. Since there were made two very important
simplifications, these have to be studied before the algorithm actually can be
applied on the problem instance. The two simplifications lies in how the data
is treated before entering the algorithm, therefore the current challenge is not
in the algorithm, but in the preparation of data. Improving the simplifications
can also make the algorithms less efficient by denying shorter paths. Maybe the
most important aspect of this study is that the best result only decreases the
machining time with 7.5 seconds when the fast speed is set to 24 mm/s. The
tool path-optimization problem has thusly been investigated and algorithms
have been implemented to solve it as described as goal 3 in chapter 1.2.

The Stewart Platofrm as a Rapid Prototyper The overlying goal was
to investigate whether a robotic manipulator could be an alternative to the
Mendel RepRap with improved functionality. At the present stage, the study of
the Stewart platform can not dismiss its use as a rapid prototyper and RepRap
alternative. The final conclusion is that there are several positive indications
that the Stewart platform can be a very good alternative to the RepRap. But
there are some problems (for example speed) that might deny such a possibility.
The problems have to be solved and the positive indications tested further in
order to confirm the possibility to use the Stewart platform as a rapid proto-

typer.

7.2 Further Work

Further work is suggestions for research topics that became evident during the
work with this thesis. Since the area of study has been so wide, many different
topics can be studied and therefore the number of topics presented here do not
include everything that came up while working on this master thesis.

Avoid singularities and workspace Singularities for the Stewart platform
are positions and orientations where the manipulator gains one degree of freedom
and becomes uncontrollable. A complete description and characterization of the
singularities would be to parameterize the entire singularity hyper-surface(s)

86

in the task-space (6D in the case of the Stewart platform).[14] Then, all the
singularities can be analytically identified. This is however extremely difficult
and Bhaskar Dasgupta and T.S. Mruthyunjaya had in 1998 not seen any work
on work on this topic.

They had however found some practical work on the issue. Bhattacharya
et al. [14] have looked at paths in vicinity of a singularity and Dasgupta and
Mruthyunjaya themselves have studied singularity avoidance between two po-
sitions. Later researches have also been performed, such as Qimi Jiang and
Clment M. Gosselin’s study from 2009.[26] Singularity avoidance is important
for controlling the Stewart platform to avoid uncontrollable situations. Further
study of the theoretical and analytical solutions is needed. Another issue is to
implement current solutions of singularity avoidance on the system presented in
this thesis. Singularities are tightly connected with the workspace as singular
positions are positions that limit the workspace. Studying the workspace of a
Stewart platform is also a possible research topic.

Controlling the Stewart Platform In addition to avoiding singularities,
avoiding collisions is important. There are two aspects of collision avoidance.
The typical one is to avoid colliding with objects in the vicinity of the manip-
ulator (such as the part that the machine is milling on). And the second on
is to avoid colliding with the manipulators own parts as discussed in chapter
4.5.1. As collision avoidance is outside the scope of this thesis, it’s details has
not been studied. Studies relating to collision control of the Stewart platform
include [11], while for a study of a more general collision control of robotics, see
for example [28], [58, ch. 5] or [12, ch. 7]. Implementing this theory on the pre-
sented Stewart platform can be interesting. Taking this a step further would be
to study the extra complexity in avoiding collisions due to experimental design
number 3. Also needed for controlling the manipulator is a G-code parser that
understand most of or all the G-code commands.

Path-optimization This has already been somewhat discussed in the final
conclusion. Collision avoidance, singularity avoidance and correct order of path
need to be treated in order for the path-optimization algorithms to be applicable.
Other aspects that can be studied are the possibility of dividing active paths in
order to shorten the total path length even further. Furthermore, testing the al-
gorithms on more G-code files should be done to find out whether a considerable
amount of time can be saved by using this type of path-optimization. In order
to do this conscientiously, a study and identification of different types of G-code
paths should be performed. Even more important is to study several G-code
files to investigate the lengths of the inactive paths. This should be done to find
out whether applicating path-optimization on the inactive paths would in any
case save a considerable amount of machining time. Another topic that was not
found in the literature is to compare the biologically inspired path-optimization
algorithms with non-biological alternatives. Yet an even more interesting option
could be to combine the studies done with traditional algorithms and biologi-
cally inspired algorithms.

Building, testing and simulation One of the long term goals initiated by
this thesis is to create an alternative to the RepRap. In order to do this, the

87

Stewart platform needs to be built and tested. An interesting test would be
to find out how many percentage of itself the manipulator can create. Another
is to test the rigidity of the platform. Many of the issues that have been dis-
cussed above have to be implemented before this can be done, such as avoiding
collisions and singularities and creating a control system that includes more
G-commands. As the control system is closely related to the simulator, this
also gives a chance to improve the simulator. Furthermore, the simulator can
be improved in other ways, such as including the shape of the platform parts.
Another two issues are testing the different parts for durability and finding out
whether the experimental design is realizable.

88

Bibliography

1]
2]

[10]

[11]

Arduino homepage. http://www.arduino.cc/(2011-04-28).

Charles Bates. Move over machine tools here come robots. http://www.
americanmachinist.com/304/Issue/Article/False/13386/(2010-03-
26), 02 2006.

K.A. Berman and J.L. Paul. Algorithms: sequential, parallel, and dis-
tributed. Thomson/Course Technology, 2005.

E. Bohez, S.S. Makhanov, and K. Sonthipermpoon. Adaptive nonlinear
tool path optimization for five-axis machining. International Journal of
Production Research, 38(17):4329-4343, 2000.

ILA. Bonev and J. Ryu. A new approach to orientation workspace analysis of
6-DOF parallel manipulators. Mechanism and Machine Theory, 36(1):15—
28, 2001.

Adrian Bowyer. A self-copying manufacturing process. http://wuw.
reprap.org/pub/Main/WebHome/one-page.pdf(2010-03-24).

A. W. (editor) Burks and John von Neumann. Theory of Self-Reproducing
Automata. University of Illinois Press, Urbana, Illinois, USA, 1966.

Von Neumann’s work on self-reproducing automata, completed and edited
after his death by Arthur Burks. Also includes transcripts of von Nuemann’s
1949 University of Illinois lectures on the “Theory and Organization of
Complicated Automata”.

Z. Car, B. Barisic, and M. Ikonic. GA based CNC turning center exploita-
tion process parameters optimization. Metalurgija, 48(1):47-50, 2009.

J.N. Chiasson. Modeling and high performance control of electric machines.
IEEE Press series on power engineering. John Wiley, 2005.

Commercial 3d printer used: Dimension 768 se-
ries. http://www.dimensionprinting.com/3d-printers/
printing-productspecs768series.aspx(2011-04-30).

J. Cortes and T. Simeon. Probabilistic motion planning for parallel mech-
anisms. In Robotics and Automation, 2003. Proceedings. ICRA’03. IEEE
International Conference on, volume 3, pages 4354-4359. IEEE, 2003.

89

[12]

[13]

[14]

[15]

J.J. Craig. Introduction to robotics: mechanics and control. Addison-Wesley
series in electrical and computer engineering: control engineering. Pearson-
/Prentice Hall, 2005.

J. Daintith and Oxford University Press. Ozford dictionary of computing.
Oxford paperback reference. Oxford University Press, 2004.

B. Dasgupta and TS Mruthyunjaya. The Stewart platform manipulator: a
review. Mechanism and Machine Theory, 35(1):15-40, 2000.

M. Dehghani, M. Ahmadi, A. Khayatian, M. Eghtesad, and M. Farid.
Neural network solution for forward kinematics problem of HEXA parallel
robot. In American Control Conference, 2008, pages 4214-4219. IEEE,
2008.

J.L. Deneubourg, S. Aron, S. Goss, and J.M. Pasteels. The self-organizing
exploratory pattern of the argentine ant. Journal of Insect Behavior,
3(2):159-168, 1990.

Document including rank formula on page 17. http://www.aero.caltech.
edu/~tamer/GATutorial.pdf(2011-04-28).

M. Dorigo, M. Birattari, and T. Stutzle. Ant colony optimization. Com-
putational Intelligence Magazine, IEEE, 1(4):28-39, 2006.

A E. Eiben and J.E. Smith. Introduction to evolutionary computing. Nat-
ural computing series. Springer, 2003.

G-code used for testing. http://www.cuttingedgecnc.com/g-codes.
htm(2011-04-28).

D. Garagic and K. Srinivasan. Contouring control of stewart platform based
machine tools. In American Control Conference, 2004. Proceedings of the
2004, volume 4, pages 3831-3838. IEEE, 2002.

S. Goss, S. Aron, J.L. Deneubourg, and J.M. Pasteels. Self-organized short-
cuts in the Argentine ant. Naturwissenschaften, 76(12):579-581, 1989.

K. Harib and K. Srinivasan. Kinematic and dynamic analysis of Stewart
platform-based machine tool structures. Robotica, 21(05):541-554, 2003.

M. Honegger, A. Codourey, and E. Burdet. Adaptive control of the
hexaglide, a 6 dof parallel manipulator. In Robotics and Automation, 1997.
Proceedings., 1997 IEEE International Conference on, volume 1, pages
543-548. IEEE, 1997.

Interview: Reprap. http://www.openbusiness.cc/2009/07/24/
reprap-2/(2010-03-26), 07 2009.

Q. Jiang and C.M. Gosselin. Determination of the maximal singularity-
free orientation workspace for the Gough-Stewart platform. Mechanism
and Machine Theory, 44(6):1281-1293, 2009.

A. Joneja, KW Pang, K.G. Murty, DCC Lam, and MF Yuen. A Genetic
Algorithm for Path planning in rapid prototyping. In Proceedings of the
ASME DETC-DFM Conference.

90

[28]

[29]

[30]

O. Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. The international journal of robotics research, 5(1):90, 1986.

A.V. Korobeinikov and V.E. Turlapov. Modeling and evaluation of the
Stewart platforms. , 9(3):279-286, 2006.

A. Krimpenis, PIK Liakopoulos, KC Giannakoglou, and GC Vosniakos.
Multi-objective design of optimal sculptured surface rough machining
through Pareto and Nash techniques. CD-proceedings EUROGEN, 2005.

Kuka robot- component milling to cad specifications - youtube. http:
//www.youtube. com/watch?v=0Zg7wRf 6XEE(2010-04-29).

T.Y. Lee and J.K. Shim. Algebraic elimination-based real-time forward
kinematics of the 6-6 Stewart platform with planar base and platform. In
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEFE Interna-
tional Conference on, volume 2, pages 1301-1306. IEEE, 2001.

X. Li, S. Zhang, L. Song, L. Miao, and D. Liu. Research on application of
NC program optimization based on TSP. In Mechatronics and Automation,
2009. ICMA 2009. International Conference on, pages 1493-1498. IEEE,
2009.

List of cad and cam software producers. http://en.wikipedia.org/wiki/
List_of _CAD_companies(2011-04-28).

K. Liu, J.M. Fitzgerald, and F.L. Lewis. Kinematic analysis of a Stew-
art platform manipulator. Industrial Electronics, IEEE Transactions on,
40(2):282-293, 1993.

Y. Lou, F. Feng, and M.Y. Wang. Trajectory planning and control of
parallel manipulators. In Control and Automation, 2009. ICCA 2009. IEEE
International Conference on, pages 1013-1018. IEEE, 2009.

M. Lutz. Programming Python. O’Reilly Series. O’Reilly Media, 2011.

Makerbot industries. robots that make things. http://www.makerbot.
com/(2011-04-29).

S. S. Makhanov, D. Batanov, E. Bohez, K. Sonthipaumpoon, W. Ano-
taipaiboon, and M. Tabucanon. On the tool-path optimization of a milling
robot. Computers and Industrial Engineering, 43(3):455 — 472, 2002.

Manual page for mendel in the reprap wiki. http://reprap.org/wiki/
Mendel_User_Manual:_Host_Software(2011-04-28).

P. Nanua, K.J. Waldron, and V. Murthy. Direct kinematic solution of
a Stewart platform. Robotics and Automation, IEEE Transactions on,
6(4):438-444, 1990.

Numerical control - wikipedia.
http://en.wikipedia.org/wiki/Numerical_control(2010-04-28).

G.E. O'DONNELL and G. BENNETT. Open Design and the Reprap
Project. 2010.

91

[44]

[45]

[46]

[47]

[48]

[49]

[53]

[54]

[55]
[56]
[57]

[59]
[60]

[61]
[62]

Vik Olliver. Construction of rapid prototyping testbeds using
meccano. http://staff.bath.ac.uk/ensab/replicator/Downloads/
MeccanoFDMfinal.pdf(2010-03-24), 04 2005.

Picture and information about mendel - reprap. http://www.reprap.org/
wiki/Mendel(2010-04-27).

Picture of a parallel manipulator. http://www.parallemic.org/
Material//Tsai.gif(2011-04-28).

Picture of a serial manipulator. http://www.emeraldinsight.com/fig/
0490350503015 . png(2011-04-28).

Picture of an universal joint. http://www.adf-safetytools.com/image/
16_cardan. jpg(2011-04-28).

Picture of cnc-milling machine.
http://image.made-in-china.com/2£0j00jeKQN1UgAabB/
CNC-Milling-Machine-Machining-Center-VBZ-1000-. jpg(2010-04-
27).

Pkm tricept homepage. http://www.pkmtricept.com/(2011-04-28).

Reprap - the replicating rapid prototyper project.
www.bath.ac.uk/idmrc/themes/projects/amps/
AMPS-Project-RepRap.pdf(2010-03-24).

Reprap inspired design for milling. http://cpwebste.blogspot.com/
2010/05/hydra-mmm-prototype-finished.html(2011-04-28).

Reprap inspired design for milling. http://www.3dreplicators.com/
cgi-bin/cblog/index.php?/categories/6-Tommelise(2011-04-28).

P. Smid. CNC programming handbook: a comprehensive guide to practical
CNC programming. EngineeringPro collection. Industrial Press, 2003.

Solidcam. http://www.solidcam.com(2011-04-28).
Solidworks - homepage. http://www.solidworks. com/(2010-04-29).

Specifications for the mendel reprap. http://reprap.org/wiki/
Mendel(2011-04-28).

M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and con-
trol. John Wiley & Sons, 2006.

Stepper motor system basics (rev. 5/2010), 2010.

Typical stepper motor. http://www.sparkfun.com/products/9238(2011-
04-28).

Up! a personal 3d printer. http://pp3dp.com/1(2011-04-29).

Video of stewart platform. http://www.youtube.com/watch?v=
wwKucXHtoOw&feature=related(2011-04-28).

92

[63]

[64]

[65]

[66]

Video of stewart platform 2. http://www.youtube.com/watch?v=
WVQ1SSXAcOs&NR=1&feature=fvwp(2011-04-28).

W. Voss. A Comprehensible Guide to Servo Motor Sizing. Copperhill Media
Corporation, 2007.

P.K. Wah, K.G. Murty, A. Joneja, and L.C. Chiu. Tool path optimization
in layered manufacturing. lie Transactions, 34(4):335-347, 2002.

S.M. Wang and K.F. Ehmann. Error model and accuracy analysis of a six-
DOF Stewart platform. Journal of manufacturing science and engineering,

124:286, 2002.

Y. Wang. A direct numerical solution to forward kinematics of general
Stewart—Gough platforms. Robotica, 25(01):121-128, 2007.

Patrick Waurzyniak. Shop-floor productivity. Manufacturing Engineer-
ing, 135(1), 7 2005. http://www.sme.org/cgi-bin/find-articles.pl?
&MEO5ART38&ME&200507 10&&SME&#article(2010-04-28).

Eldho Wilson. Replicating rapid prototyper (reprap). http:
//dspace.sngce.ac.in/bitstream/123456789/1511/1/ELDHOY,
20WILSON . pdf (2010-03-24).

L. Yi. Computer-aided geometric machining of a 3D free surface using a 3-
UPU spatial parallel machine tool. The International Journal of Advanced
Manufacturing Technology, 26(9):1018-1025, 2005.

93

11

13

15

17

19

21

23

25

27

29

31

33

35

37

Appendix A

Code attachment

A.1 Simulation software

As described in chapter 5. The code has three classes: Simulator, Inverse Kine-
matic and PostProcessor. The last one is really a G-code parser.

from decimal import x

import mpl_toolkits.mplot3d.axes3d as p3
import matplotlib.pyplot as plt

import numpy as np

#from pylab import x#this is the top module of scipy
import math as ma

import images2swf as mo

import os

from PIL import Image

class Simulator (object):
220
The simulator can create a picture of a path or create an

animation file
20

def __init__(self, max = 500, min = 50):

20

Constructor

EA A

self.commandlist = []
self .max = max

self .min = min

For simple generation of a path for the endpoint.
def loadsimple(self):

self.commandlist = self.generatesimplepath ()
’?’The simple path generator ’’’
def generatesimplepath (self, max = Decimal(’37)):

#Position

x = [Decimal(’07)]
y = [Decimal(’0")]

z = [Decimal(71007)]

95

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

7

79

81

83

85

87

89

91

93

#Orientation

pitch = [0]

roll = [0]

yaw = [0]

command = [’Start’]
plat = [[0,0,250]]

for element in range(99):
if element < 20:
x.append (x[element] 4 max)
y.append (y[element])
z.append (z[element])
plat .append ([plat [—1][0]+max, plat [—1][1], plat
[—1][2]))
pitch.append (pitch [element])
roll .append(roll [element])
yvaw . append (yaw [element |)
command . append (' Fast move)
elif element < 40:
x.append (x[element |)
y.append (y[element]| + max)#element+maz)
z.append (z[element])
plat.append ([plat [—1][0], plat [—1][1]+max, plat
[—1][2]])
pitch.append(pitch [element])
roll .append(roll [element])
yaw . append (yaw [element |)
command . append (' Fast move’)
elif element < 60:
x.append (x[element] — max)
y.append (y[element] — max)
z.append (z[element] + max)
plat .append ([plat [—1][0] —max, plat[—1][1] —max, plat
[~ 1] (2] +max])
pitch.append(pitch [element])
roll .append(roll [element])
yaw . append (yaw [element |)
command . append (' Fast move”)
else:
x.append (x[element |)
y.append (y[element]| + max)
z.append (z[element]— max)
plat.append ([plat [—1][0], plat [—1][1]+max, plat
[~ 1][2] —max])
pitch.append (pitch [element])
roll .append(roll [element])
yvaw . append (yaw [element |)
command . append (' Fast move”)

return [x,y,z,pitch,roll ,yaw,command, plat |

9

Load a path from the ”"post—processor”/g—code parser
P A

def loadpath(self, max=0.15):
pp = PostProcessor ()#have to include name of file
self.commandlist = pp.createcommandlist ()

39

Finds the absolute speed between two coordinates
700

def getabsolutespeed (self, co, nco, time):
return Decimal (str (ma.sqrt ((nco[0] —co[0])*%2 + (nco[l] — co
[1]) *%2 +

96

95 (nco[2] — co[2])*%2)))/Decimal(str (time))
97 Draws a path
99 def drawpath(self):
fig = plt.figure(figsize = (5,5))
101 ax = fig.gca(projection="3d")
for i in range(len(self.commandlist[0])):
103 self.commandlist [0][i] = float (self.commandlist [0][i])
self.commandlist [1][i] = float (self.commandlist[1][i])
105 self.commandlist [2][i] = float (self.commandlist[2][1i])
107 ax.plot (self.commandlist [0], self.commandlist[1l], self.
commandlist [2] ,
label="Milled path’)
109 ax.legend ()
111 plt .show ()
113
115 220
the coordinates lies in commandlist
117 time: the time between two coordinates
Creates an animation from a list of commands
119 P
def animation(self, time = 0.1):
121 files = []
xrange = range(—450,300,1)
123 zrange = range (0,300,1)
mill = *Off’
125 ik = InverseKinematic ()
frames = 99
127 for i in range(frames):#range(len(self.z)):
fig = plt.figure(figsize = (8,10))
129 ax = fig.add_subplot(2,1,1, projection="3d")
cm = [self.commandlist [0][i],self.commandlist [1][i],
131 self.commandlist [2][i], self.commandlist [3][i],
self.commandlist [4][i],self.commandlist [5][i],
133 self.commandlist [6][i],self.commandlist [7][i]]
plat = ik.getplatimageco(cm|[0:6])
135 base = ik.getbaseimageco ()
legs = ik .getimagelegs (base, plat)
137 for j in range(len(plat)):
for k in range(len(plat[j])):
139 plat [j][k] = float (plat[j][k])
for j in range(len(base)):
141 for k in range(len(base[j])):
base[j][k] = float (base[j][k])
143 for j in range(len(legs)):
for k in range(len(legs[j])):
145 for 1 in range(len(legs[j][k])):
legs [J1[k][1] = float (legs[§][k][1])
147 co = [self.commandlist [0][i],self.commandlist[1][i],
self.commandlist [2][i]]
ori = [self.commandlist [3][i], self.commandlist[4][i],
self.commandlist [5][1]]
149 if (i < range(len(self.commandlist[0]))):
nco = [self.commandlist [0][i+1],self.commandlist
(1] +1],
151 self.commandlist [2][1i+1]]
speed = ik.getlegvelocity (co, nco, time, self.max,

97

153

155

157

159

161

163

165

167

169

171

173

175

177

179

181

183

185

187

189

191

193

195

197

199

self.min)

aspeed = self.getabsolutespeed (co,nco,time)

if self.commandlist [6][i] = ’Spindle on (clockwise)’
or

self.commandlist [6][i] = ’Spindle on (counterclockwise
)
mill = ’On’

elif self.commandlist [6][i] == ”Milling off”:
mill = >Off”’

vel=0

if self.commandlist [6][i] = ’Fast move’:
vel = 30

elif self.commandlist [6][i] = ’Slow move’:
vel = 15

ax.set_xlabel (’X")
ax.set_ylabel (’Y")
ax.set_zlabel (’Z7)
ax.plot(plat[0],plat[1],plat[2], color = ’blue’)
ax.plot (base[0] ,base[1l],base[2], color = ’blue’)

if type(self.commandlist[6][i]) = ’list ’:
if self.command[6][1][0] = ’Tool height offset ’:
ik . toffs = self.command [6][i][1]

ax.plot ([float (self.commandlist [0][i]), float(self.
commandlist [7][1][0])],
[float (self.commandlist [1][i]), float(
self.commandlist [7][i][1])],
[float (self.commandlist [2][1i])
float (self.commandlist [7][i]]
= ’blue’)
for j in range(len(legs[0])):
ax.plot (legs [0][j],legs [1][j],legs [2][j], color =
blue)
ax.auto_scale_xyz (xrange , xrange , zrange)

é})], color

)

ax = fig.add_subplot(2,1,2)

ax.text (0.1, 12, ’Command: ’ + str(self.
commandlist [6][1]))

ax.text (0.1, 11,’Sat speed: ’ + str(vel) + > mm/s

ax.text (0.1, 10, ’Absolute speed: ' + str(aspeed) + ’
mm/s)

ax.text (0.1, 9, ’Orientation: ’ 4 str(ori))

ax.text (0.1, 8, ’Tool: ~’ + mill)

ax.text (0.1, 7, "Tool offset: ' + str(ik.toffs) + ’ mm’
)

ax.text (0.1, 6, ’Position: 7)

ax.text (0.1, 5, ’'X: 7 + str(float(co[0])))

ax.text (0.1, 4, ’Y: 7’ + str(float(co[1])))

ax.text (0.1, 3, ’Z: + str(float(co[2])))

ax.text (5, 7, 'Leg 1, speed: ' + str(speed[0]) +’ mm/s’

ax.text (5, 6, 'Leg 2, speed: ' + str(speed[1l]) +’ mm/s’
ax.text (5, 5, 'Leg 3, speed: ' + str(speed[2])+ ’ mm/s’

ax.text (5, 4, 'Leg 4, speed: ' + str(speed[3]) 4+’ mm/s

98

201

203

205

207

209

211

213

215

217

219

221

223

225

227

229

231

233

235

237

239

241

243

245

247

249

251

253

255

)

ax.text (5, 3, 'Leg 5, speed: ’ + str(speed[4]) +’ mm/s

ax.text (5, 2, 'Leg 6, speed: ’ + str(speed[5])+ ’ mm/s
plt.xticks(range(0,16,15))
plt.yticks (range(0,16,15))

fname = ’_tmp%03d.png ' %i
fig.savefig (fname)
files .append (Image.open (fname))
plt.close(’all’)
print i

mo. writeSwf(’test.swf’, files)#can add duration of each
image (1/fps) to decide

#fps: default is 0.1

path = os.getcwd ()

for i in range(frames) :#range(len(self.z)):
fname = ’_tmp%03d.png %i
fdel = path + fname
os.remove (fdel)

print ’Done!’

class InverseKinematic(object):

L]

A toolbox for inverse kinematics

P

def __init__(self, tlength=150, a=400,c=250,b=400,d=250):

]

self.a a
self.c = ¢
self.b =b
self.d = d

self.toffs = 0
self.tlength = tlength

Returns the coordinates see from base

L]

def getcoord(self, co, partzero):

L]

useco = co

useco [2] = useco [2]

al = self.ht(useco)

a2 = self.ht(partzero)

m = np.dot(a2,al)#end—effector end seen from base

platcenter = co

platcenter [2] = platcenter [2] 4+ self.tlength + self.toffs

a3 = self.ht(platcenter)

cfromb = np.dot(a2,a3)#center of platform seen from base

return [m[0][3], m[1]]
I3

3], m[2][3]], [cfromb[0][3],cfromb
[1][3], cfromb [2 1]

Returns the center of the platform (given by local coordinates)

]

def

seen from base.

getplatcenterfrombaseco (self , co, m):
al = self.ht(co)

nil = Decimal (0)

one = Decimal (1)

a2 = [[one, nil, nil, nil],

99

257

259

261

263

265

267

269

271

273

275

277

279

281

283

285

287

289

291

293

295

297

299

301

303

305

307

309

311

313

315

317

[nil, one, nil, nil],
[nil, nil, one, Decimal(str(self.tlength))],
[nil, nil, nil, one]]

trans = np.dot(al,a2)

return [trans [0][3], trans[1][3], trans[2][3]]

39

From the tool tip to the top platform
def htbaseplat(self, co):
al = self.ht(co)
nil = Decimal (0)
one = Decimal (1)
a2 = [[one, nil, nil, nil],
[nil, one, nil, nil],
[nil , nil, one, Decimal(str(self.tlength))],
[nil, nil, nil, one]]

return np.dot(al,a2)

#the location of the tool—tip with offset
def gettooltipwoffco (self, co):
al = self.ht(co)
nil = Decimal (0)
one = Decimal (1)
a2 = [[one, nil, nil, nil],
[nil, one, nil, nil],
[nil, nil, one, Decimal(str(—self.toffs))],
[nil, nil, nil, one]]
trans = np.dot(al,a2)
return [trans [0][3], trans[1][3], trans[2][3]]

Iy
Gets the length the legs have to move given two coordinates.

Intended to be wused

for programming the Arduino
EA A

def getardlegdiff(self, co, nco, partzero, max, min):

#bs , coor = self.getcoord(co, partzero)
nowlegs = self.getleglengths (co)
bs,ncoor = self.getcoord(co, partzero, max, min)

nextlegs = self.getleglengths (ncoor)
difference = []
absdiff = []
for i in range(len(nowlegs)):
if nowlegs[i] == False or nextlegs[i] == False:
return False, False
for i in range(len(nowlegs)):
difference .append(nextlegs[i] — nowlegs|[i])
absdiff.append(ma.sqrt(difference [i]*%2))
maxdiffleg = 0
for i in range(1l, len(nowlegs)):
if absdiff[i] > absdiff [maxdiffleg]:
maxdiffleg = i
return difference , maxdiffleg

39

Finds the welocity for the legs

[

def getlegvelocity (self, co, nco, time, max, min):
#self.setcoordinates (co)
#next = InverseKinematic(nco[0],nco[1],nco[2],0,0,0)

100

319

321

323

325

327

329

331

333

335

337

339

341

343

345

347

349

351

353

355

357

359

361

363

365

367

leglengthsnow = self.getleglengths(co, max, min)#a list
with six entries ,
#each entry has one wvalue

leglengthsnext = self.getleglengths (nco, max, min)
speeds = []
for i in range(6): #siz legs

difference = leglengthsnext[i] — leglengthsnow [i]

speeds.append (difference /time)
return speeds

]

Checks the welocity for the legs

]

def checkvelocity (self, co, nco, maxdist, max, min):
#self.setcoordinates (co)
#next = InverseKinematic(nco[0],nco[1],nco[2],0,0,0)
leglengthsnow = self.getleglengths (co, max, min)#a list
with siz entries,
#each entry has one wvalue

leglengthsnext = self.getleglengths (nco, max, min)
for i in range(len(leglengthsnow)):
if leglengthsnow [i] = False or leglengthsnext[i] =
False:
return False
error = []
for i in range(6):
difference = ma.sqrt ((leglengthsnext[i] — leglengthsnow

[1]) #+2)
if difference > maxdist:
error .append (i+1)

if len(error) > 0:
print ’uiuiuiuiui too fast!!’
return error

else:
return [0]

#return speeds

39

This and getplatimageco has the first location added to the
back
Returns the position of the base (/platform) seen from the base
In each sublist there
are the z,y and z coordinates for the six legs.
def getbaseimageco(self):
Bx = [Decimal (str (ma.sqrt (3)/4*xself.b)),Decimal (str(—ma.
sqrt (3) /4*xself .b)),
Decimal (str(—ma.sqrt (3) /2*(self .b/2+self.d))),
Decimal (str(—ma.sqrt (3) /2x(self.b/24+self.d))),Decimal
(str(—ma.sqrt (3)/4«self.b)),
Decimal (str (ma.sqrt (3) /4xself.b)),Decimal(str (ma.sqrt
(3)/4xself.b))]
By = [Decimal (str(self.d/2)),Decimal(str ((self.b+self.d)/2)
) ,Decimal (str(self.b/2)),
Decimal (str(—self.b/2)),Decimal(str(—(self.bt+self.d)
/2)),Decimal (str(—self.d/2)),
Decimal (str(self.d/2))]
Bz = [0,0,0,0,0,0,0]
return [Bx,By,Bz]

101

369

371

373

375

377

379

381

383

385

387

389

391

393

395

397

399

401

403

405

407

409

411

413

415

417

419

421

423

Get

39

def

39

the coordinstes for the platform to be wused by drawn

getplatimageco (self , co):
platco = self.getplatjointco ()
ht = self.htbaseplat(co)

imgeo = [[],[],[]]

#for each corner of the platform

for element in platco:
transpo = np.dot(ht,element)
imgco [0]. append (transpo [0][0]) #z
imgco [1].append (transpo [1][0]) #y
imgco [2]. append (transpo [2][0]) #z

imgco [0]. append (imgco [0][0])

imgco [1].append (imgco [1][0])

imgco [2]. append (imgco [2][0])

return imgco

Gives the locations of the attachment points from and for the
center of the base (/platform)

39

def

def

getbasejointco (self):

Bl = [[ma.sqrt (3)/4xself.b] , [self.d/2],[0]]

B2 = [[-ma.sqrt (3)/4xself.b],[(self.b+self.d)/2],[0]]
B3 = [[-ma.sqrt(3) /2x(self.b/2+self.d)],[self. b/2],[1]
B4 = [[-ma.sqrt (3)/2%(self.b/24+self.d)],[—self.b/2],[0]]
B5 = [[-ma.sqrt (3)/4*xself .b],[—(self.btself.d)/2],[0]]
B6 = [[ma.sqrt (3)/4xself.b],[—self.d/2],[0]]

return [B1,B2,B3,B4,B5,B6]

getlocplatjointco (self):

Tl = np.array ([[ma.sqrt (3)/2xself.a/2],[self.a/2],[0]])

T2 = np.array ([[ma.sqrt (3)/2«(self.a/2—self.c)],[(self.at+
self.c) /2] ,[0]])

T3 = np.array ([[—ma.sqrt (3) /2x(self.a/2+self.c)],[self.c
/2], 101])

T4 = np.array ([[—ma.sqrt (3) /2x(self.a/2+self.c)],[—self.c
/21, 101])

T5 = np.array ([[ma.sqrt (3) /2x(self.a/2—self.c)],[—(self.at+
self.c)/2],[0]])

T6 = np.array ([[ma.sqrt (3)/2xself.a/2],[—self.a/2],[0]])

return np.array ([T1,T2,T3,T4,T5,T6])

#Local coordinates of the corners

def

39

getplatjointco (self):
T1 = [[Decimal(str (ma.sqrt (3)/2xself.a/2))],[Decimal(str(
self.a/2))],[0],[1]]

T2 = [[Decimal(str(ma sqrt (3) /2*(self.a/2—self.c)))],
[Decimal (str ((self.a+self.c)/2))],[0],[1]]

T3 = [[Decimal(str(—ma.sqrt (3)/2x(self. a/2—i—self.(:)))]7
[Decimal (str(self.c/2))],[0],[1]]

T4 = [[Decimal(str(—ma.sqrt (3)/2x(self.a/2+self.c)))],
[Decimal (str(—self.c/2))],[0],[1]]

T5 = [[Decimal(str (ma.sqrt (3)/2x(self.a/2—self.c)))],
[Decimal (str(—(self.at+self.c)/2))],[0],[1]]

T6 = [[Decimal](str(ma sqrt (3) /2xself.a/2))],[Decimal (str(—

self.a/2))],[0],[1]]
return [T1,T2,T3,T4,T5,T6]

Coordinates for legs wused in drawing tmages

39

102

425

427

429

431

433

435

437

439

441

443

445

447

449

451

453

455

457

459

461

463

465

467

469

471

473

475

417

479

def getimagelegs (self, base=0,plat=0):
if base ==0 or plat ==0:

base = self.getbaseimageco ()
plat = self.getplatimageco ()
imagelegs = [[],[],[]]

for i in range(6):
imagelegs [0]. append ([base [0][i],plat [0][i]])
imagelegs [1].append ([base[1][i],plat [1][i]])
imagelegs [2].append ([base [2][i],plat [2][i]])
return imagelegs

The length of the leg

]

def getleglengths (self ,co, max, min):

base = self.getbasejointco ()
plat = self.getplatjointco ()
leglengths = []

for i in range(len(base)):
leglengths .append(self.calcleglengths(plat[i], base[i],
co, max, min))

return leglengths

L]

Finds the length of the legs

L]

def calcleglengths(self, vectop, vecbase, co, max, min):
homog = self.ht([co[0],co[1l],co[2],0,0,0])
for i in range(len(vectop)):

vectop [i] = Decimal(str(vectop[i][0]))
if i < len(vecbase):
vecbase [i] = Decimal(str(vecbase[i][0]))

mid = np.dot (homog, vectop)
#dott = [[mid[0]],[mid[1]], [mid[2]]]
t=[[],[],[]]
for i in range(3):
t[i] = mid[i] — vecbase[i]
length = ma.sqrt (t[0]**2+4+t [1]*%x24+t [2]%%2)
if length > max or length < min:
print ’The length of the leg is too small or too large!
Aborting .’
return False
else:
return length

#Homogenous transformation from platform to base
def ht(self, co):

x = co[0]

y = co[l]

z = co[2]

a = co[3]|#alpha, beta, gamma

b = co[4]

g = co[5]

nil = Decimal (0)

return [[Decimal(str (ma.cos(b)x*ma.cos(g)+ma.sin (a)*ma.sin (b

)*ma.sin(g))),
Decimal (str(—ma. cos(b)+*ma. sin (g)+ma. sin (a)*ma. sin (

b) «ma. cos (g)))
Decimal (str (ma. cos(a)*ma.sin(b))), Decimal(str(x))

[Decim7al(str (ma.cos(a)+ma.sin(g))), Decimal(str (ma.
cos (a)*ma.cos(g))),

103

481

483

485

487

489

491

493

495

497

499

501

503

505

507

509

511

513

515

517

519

521

523

525

527

529

531

533

Decimal (str(—ma.sin(a))), Decimal(str(y))],
[Decimal (str(—ma. sin (b)+ma. cos (g)+ma. sin (a)*ma. cos (
b)s*ma.sin(g))),

Decimal (str (ma.sin (b)*ma.sin(g) + ma.sin(a)=*ma.cos

(b)*ma. cos (g))) ,
Decimal (str (ma.cos(a)*ma.cos(b))), Decimal(str(z)

)]s

[nil , nil , nil ,Decimal (1)]]

Notes :

ONLY MILLING MODE HAS BEEN IMPLEMENTED NOT 38D PRINTING MODE
Output format t1s what? A list with positions and orientations
of the endpoint with current speed.

ABC: orientation , defaults to degrees

L]

class PostProcessor(object):
220

or G-code parser
#type could be ’sim’ ’‘ard’ or ’dis’ (distance calculation
def __init__(self, partzero = [0,0,100, 0, 0, 0], gcode="M:/
gcode . txt
type = ’sim’, time =0.1, max = 500, min = 50):
self.partzero = partzero#location of "part zero” the top
and middle of the
#part that is being milled
go = True
try:
self.gcode = open(gcode, 'r’)#Filename
except:
print ’Could not find file , exiting’
go = False
if go = True:
self.type = type
self.speed =1
self.absolute = True
self.run = True
self. max = max
self. min = min
self.skipline = False
self.ik = InverseKinematic ()
self.lastposition = [0,0,0,0,0,0]
self.time = time #time in seconds between two entries
in the
#commandlist for simulation time depends on fps in the
#software that transforms pictures into a mowvie
if type =— ’sim’:
start ,platstart = self.ik.getcoord ([0,0,0,0,0,0],
self.partzero)
self.commandlist = [[start [0]] ,[start [1]],[start
(2]],[0],[0],[0],
[’Start '] ,[platstart]]
#List to be returned to
simulator
#self.createcommandlist ()
d=20
elif type = ’ard’:
self.commandlist = []
elif type = ’dis’:
self.commandlist = []

104

self . fastdist = 0.0
535 self.slowdist = 0.0
self . milldist = 0.0
537 self . nonmilldist = 0.0
self.mill = False
539 #self.createcommandlist ()
541 Checks with the user whether he/she wants to continue
543 def checkcontinue(self):
answer = False
545 while answer =— False:
¢ = raw_input(’>);
547 if ¢c = "y’ or ¢ = ’Y’:
answer = True
549 elif ¢ = ’'n’ or ¢ = ’'N’:
self .run = False
551 answer = True
20
553 Creates a commandlist from the imported G-code file.
A number of commands are not tmplemented
555 220
def createcommandlist(self):
557 commands = self.gcode.readlines ()
movelist = [False, False, False, False, False, False]
559 movenow = False
561 for i in range(len (commands)):
if len(self.commandlist [0]) > 200:
563 break
self.skipline = False
565 commandline = commands[i]
if self.run = True and (commands[i][0] = ’N’ or
commands[i][0] = ’'n’):
567 for j in range(len (commands[i])):
one = commands[i][j]
569 try:
one = int (one)
571 except: pass
573 if self.skipline = False and type(one) = str
and one != 7.7 \
and one != 'N’:
575 if one = 'G’ or one — ’g’:
self.gcommand (commands[i], j, 1)
577 elif one = M’ or one =— 'm’:
self .mcommand(commands|[i],j, 1)
579 elif one = ’X’:
movelist [0] , movenow = self.xyzabc(
commands[i], j, 1)
581 elif one =— ’Y’:
movelist [1], movenow = self.xyzabc(
commands[i], j, 1)
583 elif one =— ’7Z’:
movelist [2] , movenow = self.xyzabc(
commands|[i], j, 1)
585 elif one =— ’A’:
movelist [3] , movenow = self.xyzabc(
commands|[i], j, 1)
587 elif one =— ’B’:
movelist [4] , movenow = self.xyzabc(
commands[i], j, i)

105

589

591

593

595

597

599

601

603

605

607

609

611

613

615

617

619

621

623

625

627

629

631

633

elif one — ’'C’:

movelist [5], movenow = self.xyzabc(
commands[i], j, 1)
elif one — ’'F’:
print ’>Warning, command ’, one, ’ in
line 7, i+l,

’could not be implemented.’

if len (commands[i])—1 = j and movenow =—
True:
movenow = False
now = [self.commandlist[0][—1], self.
commandlist [1][—1],\

self.commandlist [2][—1], self.
commandlist [3][—1],\

self.commandlist[4][—1],self.
commandlist [5][—1]]
platnow = self.commandlist[7][—1]
for k in range(len(movelist)):
if movelist [k] = False:
movelist [k] = self.lastposition
[Kk]
if self.type = ’sim’:

self.addmovement (now, platnow , |
Decimal (str (movelist [0])),
Decimal (str (movelist [1])),Decimal(
str(movelist [2])),
Decimal (str (movelist [3])) ,Decimal(
str(movelist [4])),
Decimal (str (movelist [5]))], self.
speed, self.time)
elif self.type = ’ard’:
self .addardmove (now, platnow , |
Decimal (str (movelist [0])),
Decimal (str (movelist [1])) ,Decimal(
str(movelist [2])),
Decimal (str (movelist [3])) ,Decimal(
str(movelist [4])),
Decimal (str (movelist [5]))], self.
speed)
elif self.type = ’dis’:
self.adddistance(self.lastposition ,
movelist)
self.lastposition = movelist
movelist = [False, False, False, False,
False, False]

return self.commandlist

9

Finds out what type of G-command

39

def gcommand(self , commandline, j, i):

infolist = self.getonetwothree (commandline,j, i)
if infolist [1] != False and infolist [2] != False:
two = infolist [1]
three = infolist [2]
if two = ’0:
self.gzero(commandline, j, i, three)
elif two =— ’2:

self.gtwo(commandline, j, i, three)

106

635

637

639

641

643

645

647

649

651

653

655

657

659

661

663

665

667

669

671

673

675

677

679

681

683

elif two = ’47:
self.gfour (commandline, j, i, three)

elif two =— ’97:
if three == 0’ :#absolute programming
self.absolute = True
else:
print ’Warning, command G’ , two, three, ’

could not be implemented.’

else:
print ’>Warning, command G’ , two, three, ’ could
not be implemented.’
else:
print 'Warning, command G in line ’ |, i+1, ’ could not

be implemented.’

]

Finds what type of GOx command

L]

def gzero(self, commandline, j, i, three):

if three = ’0:
self .speed = ’'fast’
elif three =— ’1:
self.speed = ’'slow’
elif three =— ’'2’ or three =— '3’ :#Circular interpolation

interpolation
print ’'Circular interpolation not implemented. Line 7,
i+1, ’ will be skipped.’

self.skipline = True
elif three — 4’ :#dwell
try:
if commandline[j+4] = ’P’ or commandline[j+4] = ~’
U’ or commandline[j+4] = ’X’:
dwelltime = 0
dwellstring = ’’

for k in range(j+4, len(commandline)):
if commandline [k] = * ’:
break
else:
dwellstring = dwellstring + (
commandline [k])
dwelltime = int(dwellstring)
if self.type = ’'sim’:
self.addlast ()
for mm in range(int(dwelltime)*10):
self.commandlist [6].append ([’Dwell for

some time ', dwelltime])
elif self.type =— ’ard’:
self.commandlist.append ([3, dwelltime])
except:
print >Warning, could not implement dwell in line °’
, 1+17 >
#print ’Could not implement dwell in line ’, 1, ’

Continue? [y/n]’
#self.checkcontinue ()
else:
print ’Warning, could not implement GO’ , three, ’.’
print ’Command, GO’ , three, ’ could not be implemented
, continue? [y/n]’
self.checkcontinue ()

107

685 Finds type of G2z command

39

687 def gtwo(self, commandline, j, i, three):
if three == 0’ :#programming in inches
689 print ’Inches as metric unit not implemented. Terminate
? [y/n]

print ’If no, the program will use the values as
millimeters.’

691 print ’(High risk of crash etc.)’

self.checkcontinue ()

693 elif three == 1’ :#programming in millimeters
if self.type = ’sim’:
695 self.addlast ()

self.commandlist [6]. append (’Programming in
millimeters)

697 elif self.type = ’ard’:

self.commandlist.append (0)

699 elif three == '8’ :#return to home position
now = [self.commandlist|[—1][0],
701 self.commandlist|[—1][1],
self.commandlist [—1][2]]
703 if self.type = ’sim’:
self.addmovement (now,[0,0,0], ’fast’, self.time)
705 elif self.type =— ’ard’:
self.addardmovement (now,[0,0,0], ’fast’)
707 else:
print ’>Warning, command G2’, three, ’ could not be
implemented .’
709 #print 'Command, G2’ , three, ’ could not be

implemented, continue? [y/n]’

#self.checkcontinue ()

711
713 Finds type of G4z command
715 def gfour(self, commandline, j, i, three):
hcheck = False
717 try:
hcheck = commandline [j +4]
719 except : pass
if hcheck != False:
721 if three = ’3’:#Tool height offset compensation
negative
if hcheck = ’'H’:#try
723 offsetstring = '’
for k in range(j+4, len(commandline)):
725 if commandline [k] = * ’:
break
727 else:
offsetstring = offsetstring + (
commandline [k])
729 offset = —float (offsetstring)
self.ik.settooloffset (offset)
731 if self.type = ’sim’:
self.addlast ()
733 self.commandlist [6].append ([>Tool height
offset’ , offset])
elif self.type =— ’ard’:
735 self.commandlist.append ([2, offset])
elif three = 4’ :#Tool height offset compensation
positive
737 if commandline[j+4] = "H’ :#try

108

739

741

743

745

747

749

751

753

755

757

759

761

763

765

767

769

771

773

775

it

779

781

783

785

787

789

[}

offsetstring =
for k in range(j+4, len(commandline)):
if commandline [k] = = ’:
break
else:
offsetstring = offsetstring + (
commandline [k])
offset = float (offsetstring)
self.ik.settooloffset (offset)
if self.type =— ’sim’:
self.addlast ()
self.commandlist [6].append ([’Tool height
offset’ , offset])
elif self.type Tard ’:
self.commandlist.append ([2, offset])

elif three == ’9’:#Tool length offset compensation
cancel
self.ik.settooloffset (0)
if self.type =— ’sim’:

self.addlast ()
self.commandlist [6].append ([’Tool height offset

©, 0]
elif self.type = ’ard’:
self.commandlist.append ([2, 0])
else:
print >Warning, command G4’, three, ’could not be
implemented .’
else:
print 'Warning, command G4’, three, ’could not be

implemented. No value given’

Adds the positon of the last command, used for non—moving

commands
200

def addlast(self):
for i in range(len(self.commandlist)):
if 1 != 6:
self.commandlist[i].append(self.commandlist[i][—1])

Decide type of Mzx command

]

def mcommand(self , commandline, j, i):

infolist = self.getonetwothree(commandline,j, i)
if infolist [1] != False and infolist [2] != False:
two = infolist [1]
three = infolist [2]
if two = ’0:
if self.type = ’sim’:
if three = 0’ :#compulsory stop

self.addlast ()
self.commandlist [6].append(’Stopping
machine! ”)
self .run =False
elif three =— ’'1’:#optional stop
self.addlast ()
self.commandlist [6]. append (’Push button to
stop machine!)
elif three = ’'2’:#end of program
self.addlast ()
self.commandlist [6]. append (’End program ’)
self .run = False
elif three = ’3’:#spindle on (clockwise)

109

791

793

795

797

799

801

803

805

807

809

811

813

815

817

819

821

823

825

827

829

831

833

835

837

839

841

843

self.addlast ()
self.commandlist [6].append(’Spindle on (
clockwise) ”)
elif three = ’4’ :#spindle on (counterclockwise

)
self.addlast ()
self.commandlist [6].append(’Spindle on (
counterclockwise))
elif three == ’'5’:#spindle stop
self.addlast ()
self.commandlist [6].append(’Stop spindle’)

else:
print ’Warning, command, M’ , two, three,
> could not be implemented’

elif self.type = ’ard’:

if three = 0’ :#compulsory stop
self.commandlist.append (1)

elif three = ’'1’:#optional stop
self.commandlist.append(2)

elif three = ’2’:#end of program
self.commandlist.append(3)

elif three = ’3’:#spindle on (clockwise)
self.commandlist.append (4)

elif three = ’4’:#spindle on (counterclockwise

)

self.commandlist.append(5)

elif three = ’'5’:#spindle stop
self.commandlist.append (6)

else:
print ’>Warning, command, M’ |, two, three, \
> could not be implemented’

elif self.type = ’dis’:
if three =— ’3’ or three — ’4’:
self.mill = True
elif three — ’5’:
self.mill = False
else:
print ’Waring, command, M’ , two, three, ’ could

not be implemented.’
#print ’Command, M’ , two, three,
implemented, continue? [y/n]’
#self.checkcontinue ()

7 could mnot be

39

Tries to find the numbers after a command
LA

def getonetwothree(self , commandline, j, i):

one = commandline[j]
two = False
three = False
try:
two = commandline [j+1]
except:
print ’Warning, command ’, one, ’ in line ’ , i+41, ’
could not be implemented.’
if two != False:
try:
three = commandline [j+2]
except:
print ’Warning, command ’, one, two, ’ in line ’ |
i+1,

> could not be implemented.’

110

845

847

849

851

853

855

857

859

861

863

865

867

869

871

873

875

877

879

881

883

885

887

889

891

893

895

897

899

901

903

return [one, two, three]

L]

Tries to find z, y, z, a, b and c¢ at the current line for move

commands
200

def xyzabc(self , commandline, j, 1i):

movenow = False
if commandline[j] = 'X’:

searchlist = [’Y’, °Z’, 'A’, 'B’, 'C’]
elif commandline[j] = ’Y’:

searchlist = [’X’, 'Z’, "A’, 'B’, ’C’]
elif commandline[j] = Z’:

searchlist = [’Y’, 'X’, "A’, 'B’, ’C’]
elif commandline[j] = ’A’:

searchlist = [’'Y’, 'Z’, 'X’, 'B’, 'C’]
elif commandline[j] = ’'B’:

searchlist = [’Y’, ’Z’, 'A’, 'X’, 'C’]
elif commandline[j] = ’C’:

searchlist = [’Y’, °Z’, 'A’, 'B’, 'X’]
movestring = 7’

for k in range(j+1, len(commandline)):
if commandline [k] = ’ ’ or commandline [k] = ’\n’:
movenow = True
for m in range(k+1, len(commandline)):
if commandline [m] in searchlist:

movenow = False
break
break
else:
movestring = movestring + commandline [k]
move = float (movestring)

return move, movenow

Add movement to be used to communicate with the Arduino
200

def addardmove(self , now, platnow, next, speed):

v =1
if speed == ’fast’:
v =2
elif speed = ’slow ’:
v=1
difference , max = self.ik.getardlegdiff(now, next, self.

partzero, self.max,
self.min)
if difference = False:
self .run = False
else:
self.commandlist.append ([1, difference , max, v])

]

Add items to the commandlist list given speed and start and end
positions

Fast: 30 mm/s (subject to change)

Slow: 15 mm/s (subject to change)

10 ’Hz’ gives 10 pictures per second

start: the starting point of the movement

end: the ending point of the movement

Fast: each picture can move 0.30 mm

Slow: each picture can move 0.15 mm

L]

def addmovement(self , start, platstart, end, speed, sec=0.1):

111

905

907

909

911

913

915

917

919

921

923

925

927

929

931

933

935

937

939

941

943

945

947

949

951

v = 15

if speed = ’fast’:
v = 30

elif speed = ’slow ’:
v =15

pointend , platend = self.ik.getcoord(end, self.partzero)

#Find the legnth between the centrepoint of the platform at
end and at start
length = Decimal(str (ma.sqrt ((platend [0] — platstart [0]) *%2 +
(platend [1] —
platstart [1]) «x2 + (platend [2] —
platstart [2]) *%2)))
less = vxsec
if float(length) < less:
print ’Too short between commands, will use next, the
length: 7,
float (length)
else:
listentries = int (ma.ceil (length/Decimal(str (vksec))))
’?’the sec at the end says how many
seconds between each command/list entry/frame
what it does: finds absolute length between start and
end and divides it
with the mazimum length for the sat speed and time
between
two entries. This equals the number of entries is
needed between
start and end with the given speed and time between two
entries .
Analysis is for the endpoint. 7
declist = Decimal(listentries) #To use decimal to
perform mathematical operations
#print (end[0]— start [0]) /0.3
xsteppo = Decimal (str (pointend[0] —start [0]))/declist
ysteppo = Decimal(str (pointend[1l]—start[1]))/declist
zsteppo = Decimal(str (pointend[2] —start [2]))/declist

astep = Decimal (str (end[3] —start [3]))/declist
bstep = Decimal (str(end[4] —start [4]))/declist
cstep = Decimal (str (end[5] —start [5]))/declist
xsteppl = Decimal(str(platend[0] —platstart [0]))/declist
ysteppl = Decimal (str (platend[1] —platstart [1]))/declist
zsteppl = Decimal(str (platend[2] —platstart[2]))/declist
pos = start
platpos = platstart
addangle = [start [3],start [4],start [5]]
for i in range(listentries):
pos = [pos[0]+xsteppo, pos[l]+ysteppo, pos[2]+
zsteppo |
addangle = [addangle[0]+astep, addangle[1]+ bstep ,
addangle [2]+ cstep]
platpos = [platpos[0]+ xsteppl, platpos[l]+ysteppl,
platpos[2]+ zsteppl]
platnpos = [platpos[0]+xsteppl, platpos[l]+ ysteppl,

platpos[2]+ zsteppl]
addplatpos = self.checklegspeed(platpos, platnpos,
sec*v)

112

953

955

957

959

961

963

965

967

969

971

973

975

977

979

981

983

985

987

989

991

993

995

997

999

1001

1003

1005

1007

if len (addplatpos) > 3:
divided = len (addplatpos)/3
addpos =]
addangle = []
newsteps = [xsteppo/divided, ysteppo/divided,
zsteppo/divided]
newanglesteps = [astep/divided, bstep/divided,
cstep/divided]
for j in range(divided):
addpos.append (newsteps [0]*(j+1))
addpos.append (newsteps [1]*(j+1))
addpos.append (newsteps [2]*(j+1))
addangle . append (newanglesteps [0]*(j+1))
addangle.append (newanglesteps [1]*(j+1))
addangle.append (newanglesteps [2]*(j+1))
else:
addpos = pos

for j in range(0,len(addpos) ,3):
self.commandlist [0]. append (addpos[j])
self.commandlist [1].append (addpos|[j+1])
self.commandlist [2].append (addpos[]j+2])
self.commandlist [3]. append(addangle[]j])#if no
ortentation s given
self.commandlist [4].append (addangle[j+1])
self.commandlist [5]. append (addangle [j+2])
self.commandlist [7].append ([addplatpos[j],
addplatpos[j+1],
addplatpos[j+2]])

if speed == ’fast’:
self.commandlist [6].append(’Fast move’)
elif speed = ’slow’:

self.commandlist [6].append(’Slow move’)

]

Recursion :
Checks the speed of the legs, if the speed for one of
the legs is too fast, the positions are broken
up in two etc. This function/method is for simulation.
def checklegspeed (self, pos, nextpos, maxdist):
if self.run = True:
for i in range(len(pos)):
pos[i] = Decimal(pos[i])
nextpos|[i] = Decimal(nextpos|[i])
#0 success, 1—6 leg that failed
speedcheck = self.ik.checkvelocity (pos, nextpos,
maxdist, self.max,
self. min)
returnpos = []
if speedcheck = False:
self . run = False
#return False
elif 0 not in speedcheck:
print ”Speed for leg(s) ” , speedcheck ,
” is too fast. Movement is slowed down.”
#add a point in between
midpos = [0,0,0]
for i in range(len(nextpos)):
(

midpos[i] = Decimal(str (nextpos[i]—pos[i]))/2+
pos [i]
one = self.checklegspeed (pos,midpos, maxdist)

113

for i in range(len(one)):

1009 returnpos .append(one[i])
one = self.checklegspeed (midpos, nextpos,maxdist)
1011 for i in range(len(one)):
returnpos.append (one[i])
1013 return returnpos
else:
1015 returnpos = pos

return returnpos
1017 else:

return False

1019
#Used for testing:

1021| pp = PostProcessor (gcode=’c:/gcode.txt’)

#com = pp.createcommandlist ()
1023| sim = Simulator ()
#sim . commandlist = com

1025| sim . loadsimple ()
sim . animation ()

Simulator.py

114

A.2 Biologically Inspired Path-optimization

This code is the implementation of what has been discussed in chapter 6. It has
5 classes: GCodeReader, TestGA, GeneticAlgorithm, TestAnt and AntSystem.

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

46

48

50

52

54

#packeges wused

import math as ma

import numpy as np

from decimal import x

import random

import matplotlib.pyplot as plt

class GcodeReader(object):
Parse G-code and the data to be wused by the optimization
algorithms. Can also find lengths of paths where the tool
is inactive (fast)’’’
def __init__(self, gcode="M:/gcode2.txt’):

39

Constructor
700

go = True
try:

self.gcode = open(gcode, ’'r’)#Filename
except:
print ’'Could not find file , exiting’
return False
go = False
if go = True:
self.slowdistance = 0
self .speed = False
self.run = True
self.skipline = False
self.lastposition = [0,0,0]
self.commandlist = []
self.fastdist =
self.slowdist =
self.milldist =
self . nonmilldist = 0.0

o oo
o oo

self.lastmovetype = False
self.mill = False
self.tooloffset = 0
self.firstelement = True

]

Start to read the code, similar to ”Post processor”/G-code
parser
200

def readgcode(self):

commands = self.gcode.readlines ()
self . movelist = [False, False, False]
movenow = False

for i in range(len (commands)):
skipline = False

commandline = commands|1i]
self . movelist = [False, False, False]
if self.run = True and (commands[i][0] = 'N’ or
commands[i][0] = ’'n’):
for j in range(len (commands[i])):
one = commands[i][j]
if skipline = False and type(one) = str and
one != 7.’ and one != ’'N’:

115

56

58

60

62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

92

94

96

98

100

if one =— 'G’ or one — ’g’:

infolist = self.getonetwothree(
commandline,j, i)

if infolist[1] != False and infolist [2]
!= False:
two = infolist [1]
three = infolist [2]
if two = ’0:

if three =— ’0’ or three —

self .speed = 2

elif three — ’'17:
self.speed = 1
elif three = ’2’ or three — '
37
#circular interpolation mnot
implemented
skipline = True

self.speed = False
print ’Circular
interpolation not

implemented , 7,
’skipping line ’, i+l
elif two = ’1’ and three =— '’
self.speed =1
elif two = ’2’ and three — '’
self.speed = False
skipline = True
elif two = ’3’ and three — ’ ’
self .speed = False
skipline = True
elif two = ’2’ and three = ’8’:
self.movelist = [0,0,0]
self.speed = 2
self . movenow = True
elif two = 4’ :#tool offset 43—
44+ 49 0
hcheck = False
try:
hcheck = commandline [j+4]

except : pass

if hcheck = ’'H’:
offsetstring =
for k in range(j+4, len(
commandline)) :
if commandline [k] =
break
else:
offsetstring =
offsetstring +

)

)

(commandline [k])
if three = 3’ :#Tool
height offset
#compensation negative
self.tooloffset = —
float (offsetstring)
elif three = ’4°:#7Tool
height offset
#compensation positive

116

102

104

106

108

110

112

114

116

118

120

122

124

126

128

130

132

134

136

138

140

142

144

146

148

150

el

self.tooloffset = float
(offsetstring)
if three =— 9’ :#Tool
length offset
#compensation cancel

self.tooloffset = 0
else:
print ’>Warning, command
G4’ , three,
’could not be
implemented .’
else:
print ’Warning, command G4’
, three,
’could not be implemented.
No value given’
elif one = M’ or one =— ’'m’:
infolist = self.getonetwothree(

commandline ,j, i)

if infolist [1]

!I= False and infolist [2]

= False:
two = infolist [1]
three = infolist [2]
if two = ’0":
if three = ’3’ or three =— ’4°
self. mill = True
elif three =— ’'5’:
self . mill = False
elif one = ’'X’ or one = ’'x’:
movenow = self.findvalue (commands[i], j
) 7><’)
elif one = 'Y’ or one = ’y’:
movenow = self.findvalue (commands|[i], j
k) 7Y’)
elif one = ’'Z’ or one = ’z’:
movenow = self.findvalue (commands[i], j
) 7Z’)
if movenow =— True:

if self.speed

= False:

self.addmovement ()

movenow —

print self.slowdistance

]

Finds the z,

]

y and z value

def findvalue (self,
if axis = ’X’:
self . movelist [0]

line , j, axis):

Decimal (str

False

in a line of code

(self.getvalue(line, j)))

elif axis = ’Y’:
self . movelist [1] = Decimal(str(self.getvalue(line, j)))
elif axis = ’Z":
self.movelist [2] = Decimal(str(self.getvalue(line, j) +
self.tooloffset))
movenow = True
for i in range(j+1, len(line)):
if line[i] = ’X’ or line[i] = 'Y’ or line[i] = 'Z’:

movenow = False
return movenow

117

152

154

156

158

160

162

164

166

168

170

172

174

176

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

add movement information to self.commandlist
100

def addmovement (self):
for i in range(len(self.movelist)):

if self.movelist[i] = False:
if self.firstelement =— True:
self . movelist[i] = 0
else:
self . movelist [i] = self.commandlist [—1][1][i]
if self.firstelement =— True:
lastpos = [0,0,0]
self . firstelement = False
else:
lastpos = self.commandlist|[—1][1]
distance = Decimal(str (ma.sqrt ((self.movelist[0]— lastpos
[0]) #*2+

(self.movelist[1] — lastpos [1])**x2+4
(self.movelist[2] — lastpos[2])*%2)))

if self.speed =— 1:
self.slowdistance = self.slowdistance + distance
if self.lastmovetype = self.speed:#same type of movement
self.commandlist|[—1][1] = self.movelist [:]
self.commandlist [—1][2] = self.commandlist[—1][2] +
distance#increase distance
else:
self.commandlist.append ([lastpos [:], self.movelist [:],
distance , self .speed])
self.lastmovetype = self.speed

77’ Finds a number after a letter 7’

def getvalue(self, line, j):
value = 7’
for i in range(j+1
if line[i] =
break
else:
value = value + line[i]
debug = float (value)
print debug
return float (value)

)
)

l7e.n(line)):

7 Tries to find the numbers after a command’’’

def getonetwothree(self , commandline, j, i):

one = commandline []]
two = False
three = False
try:
two = commandline [j+1]
except:
print ’>Warning, command ’, one, ’ in line ’ | i+4+1, ’
could not be implemented.’
if two != False:
try:
three = commandline [j+2]
except:
print ’Warning, command ’, one, two, ’ in line ’
i+1,

>’ could not be implemented.’

return [one, two, three]

"’’Returns a list of all the slow movements’’’

def getslowdata(self):

118

)

208

210

212

214

216

218

220

222

224

226

228

230

232

234

236

238

240

242

244

246

248

250

252

254

slowlist = []
slowlist .append ([[0,0,0],[0,0,0]])
for i in range(len(self.commandlist)):
if self.commandlist[i][3] = 1:
slowlist .append(self.commandlist [i][0:2])
return slowlist

#creates a list of distances (two between each entry) and
returns it
def preparefortsp (self, data):
distancematrix = [[0 for x in data] for x in data]
for i in range(len(data)):
for j in range(i+1, len(data)):
#from start of i to start of j
disl = ma.sqrt ((data[i][0][0] —data[j][0][0]) *x2+(
data[1][0][1] —
data[j][0][1]) **2+(data[i][0][2] —data[]
110](2]) *+2)
dis2 = ma.sqrt ((data[i][1][0] —data[j][0][0]) **x2+4(
data[1][1][1] - \
data[j][0][1]) **2+(data[i]|[1][2] —data]]
110][2]) **2)
dis3 = ma.sqrt ((data[i][0][0] —data[j][1][0]) **x2+4(
data [1][0][1] — \
data[j][1][1]) **2+(data[i][0][2] — data[]
[11][2]) *+2)
dis4 = ma.sqrt ((data[i][1][0] —data[j][1][0]) **2+(
data[i][1][1] = 1\

data[j][1][1]) **2+(data[i][1][2] —data[]
111](2]) *+2)
distancematrix [i][j] = [disl,dis2,dis3 ,dis4]
distancematrix [j][i] = [disl,dis2,dis3,dis4]

return distancematrix
Returns the fast distance
def getfastdistance(self, data):

]

distance = 0
for i in range(1l,len(data)):

dis = ma.sqrt ((data[i —1][1][0] — data[i —1][0][0]) **24(
data[i —1][1][1] —
data[i—1][0][1])**2 +(data[i—1][1][2] —
data[i —1][0][2]) *%2)

distance = distance + dis
dis = ma.sqrt ((data[—1][1][0] — data[0][0][0]) **2+(data
[—1][1][1] =\

data [0][0][1]) **2 +(data|—1][1][2] — data
[0][0][2]) *x2)

distance = distance + dis
print ’Initial distance: ’, distance

return distance

35

777 Used for testing the genetic algorithm

class TestGA(object):

def __init__(self, runs, file = ’c:/gcode.txt’, populationsize
= 100,
generations = 50, pc = 0.6, pm = 0.1, ranktype =
1, g =0.5):
originallength = 0
evals = 0
best = False
worst = False
sumruns = 0
ga = GeneticAlgorithm (file , populationsize , generations, pc

119

256

258

260

262

264

266

268

270

272

274

276

278

280

282

284

286

288

290

292

294

296

298

300

302

304

306

308

310

312

; pm, ranktype, q)
originallength = ga.getstuff ()
for i in range(runs):
runbest = ga.master ()
if best = False:
best = runbest [:]
else:
if runbest[0] < best [0]:
best = runbest [:]
if worst = False:
worst = runbest [:]
else:
if runbest[0] > worst [0]:
worst = runbest [:]
evals = evals + ga.evaluations
sumruns = sumruns + runbest [0]
meanbest = float (sumruns)/runs
percentage = float (best[0])/float (originallength)=100
eva = evals/runs
print ’'Best ever: ’, best[0]
print ’'Best run ever: ', best[1:]
print ’'Original length’, originallength
print ’Best ever percentage of original length’, percentage
print 'Worst ever: ’, worst [0]
print ’Mean best fitness over ’, runs, ’ runs: ', meanbest

print ’Average number of evaluations: ’, eva

]

Path—optimization as TSP solved by the genetic algorithm
PMX crossover

Inversion mutation

SUSampling

ranking selection

generational replacement scheme with elitism

No of Generetions termination criterion

]

class GeneticAlgorithm (object):

def __init__(self, file = ’c:/gcode’, populationsize = 100,
generations = 50,
pc = 0.6, pm = 0.1, ranktype = 1, q = 0.5):
self.q = q
self. file = file
self.evaluations = 0 #number of evaluations

self .ranktype = ranktype #I= ezponetial, 0 = linear
self .pc = pc
self .pm = pm
if populationsize % 2 != 0:
print ’This algorithm do not accept an odd number of’,
> individuals in the population.’
print ’Change to ', populationsize + 1,’ [y] or quit [q
7
populationsize = populationsize + 1
#self.offspringsize = offspringsize
self.gener = generations
self.popsize = populationsize
self.population = []

’77Get the data from the G-code reader’’’
def getstuff(self):

self.gcr=0

try:

120

314

316

318

320

322

324

326

328

330

332

334

336

338

340

342

344

346

348

350

352

354

356

358

360

362

364

366

368

370

self.gcr = GcecodeReader(self. file)

except:
pass
if self.ger != False:

self.gcr.readgcode ()

self.data = self.gcr.getslowdata ()

#self.ger.printfastdistance (self.data)

self.findslowlength ()

self .amount = len(self.data)#size of individual

self.individual = [[x] for x in range(self.amount)]

#distance matriz

self.dismat = self.gcr.preparefortsp(self.data)
return self.ger.getfastdistance (self.data)

777 Get simple data for initial testing '’
def getsimpledata(self):
self.dismat = [[0 for x in range(5)]for x in range(5)]
self.amount = len(self.dismat)
for i in range(1l,self.amount):
disl = random.randint (0,100)
dis2 = random.randint (0,100)
self .dismat [0][i] = [disl,h disl,hdis2,dis2]
self .dismat[1][0] = [disl,h disl,hdis2,dis2]
for i in range(1l, len(self.dismat)):
for j in range(i,len(self.dismat)):
if i!=j:
distance = [random.randint(0,100) ,random.
randint (0,100) ,
random . randint (0,100) ,random.
randint (0,100)]

self.dismat[i][j] = distance
self.dismat[j][i] = distance
self.individual = [[x] for x in range(self.amount)]

77 "Main function , controls the other functions '’

def master(self):
self . population = []

self.evaluations = 0
self.createinitial ()
itbesttour = []

for i in range(self.gener):
#if best individual = superbra: break

offspring = []
rankedind = self.rankindividuals ()
matingpool = self.selectparent (rankedind)
for j in range(0,self.popsize ,2):
childl =[]
child2 =[]
parentl =[]
parent2 =[]
#Select parents
parentl = matingpool.pop(random.randint (0, self.
popsize—1—j))
parent2 = matingpool.pop (random.randint (0, self.
popsize —2—j))
useparl = []
usepar2 = |[]
for gf in range(l, len(parentl)):
genel = []
gene2 = []
for gg in range(2):

try:

121

372

374

376

378

380

382

384

386

388

390

392

394

396

398

400

402

404

406

408

410

412

414

416

418

420

422

424

genel .append (parentl [gf][gg])
gene2.append (parent2[gf][gg])
except:
print ’what now’
useparl .append(genel)
usepar2.append (gene2)
#Is there a crossover?
p = random. uniform (0,1)
if p < self.pc:
childl ,child2 = self.crossover (useparl ,usepar2)
#Is there a mutation of the offspring?
p = random. uniform (0,1)
if p < self.pm:
childl = self.mutate(childl [:])
child2 = self.mutate(child2 [:])
#Add the children with their tour length to the
offspring—mpool
#childl . insert (0, self.evaluateindividual(
child1))
#child2 . insert (0, self.evaluateindividual(
child2))
offspring .append(childl [:])
offspring .append(child2 [:])
else:
#if no crossover, is there a mutation of the
parents?

p = random. uniform (0,1)

if p < self.pm:
mutl = self.mutate(useparl)
mut2 = self.mutate(usepar2)

#Add the mutated parents with their length
to the offspring—pool

#mutl.insert (0, self.evaluateindividual (
mutl))

#mut2. insert (0, self.evaluateindividual (
mut2))

offspring .append (mutl[:])

offspring .append (mut2[:])

else:

#The parents survived for another
generation!

offspring .append(parentl [:])

offspring .append(parent2 [:])

for o in range(self.popsize):
if type(offspring[o][0])== list:
jepp=|]
for gf in range(len(offspringlo])):
genel = []

for gg in range(2):
try:
genel .append (offspring[o][gf][gg])

except:
print ’what now’
jepp .append (genel)
tepp = self.checkedges(jepp)
cost = self.evaluateindividual (tepp)
ny = [cost]
for p in tepp:
ny.append (p)

122

426

428

430

432

434

436

438

440

442

444

446

448

450

452

454

456

458

460

462

464

466

468

470

472

474

476

478

480

482

484

L]

def

def

offspring [o] = ny
#Sort the offspring
offspring.sort ()
offspring[—1] = self.population [0][:]#elitism
itbesttour .append(offspring [—1][0])
#when generational , all offspring replace the parents
self . population = []
self.population = offspring [:]
#Uncomment to allow plotting.
72ax = plt.subplot(1,1,1)
z = range (0, self.gener)
#r = range(self.ants)
#azx. plot (xz, listmeantour, label = "Mean”)
az.plot(z, itbesttour, label = "Best in this generation”)
plt.ylabel ("Cost of tour’)
plt.grid(True)
#plt.zlabel ("Ant’)
plt.zlabel ("Generations ’)
az.legend (loc=1, ncol=3, shadow=True)
plt.show() 7
cost = self.evaluateindividual(self.population[0][1:])
print self.population [0][0]#shortest trip
#print nr_eval #number of evaluations of tour
return self.population [0]

Create initial population randomly’’’
createinitial (self):
for i in range(self.popsize):
ind = random.sample ([[x] for x in range(self.amount)],
self .amount)
individual = self.addrandomedges(ind)
individual .insert (0, self.evaluateindividual(individual

self.population.append(individual)
self.population.sort ()
addrandomedges (self , individual):
for j in range(len(individual)):
if j = 0:
p = random.random ()
if p<= 0.25:
individual [j].append(0)
elif 0.25 < p <= 0.5:
individual [j].append (1)
elif 0.5 < p<= 0.75:
individual [j].append(2)
else:
individual [j].append (3)

else:
entry = individual [j —1][1]
if j = (len(individual)—1):#last element
into = individual [0][1]
if entry = 0 or entry = 2:
if into = 0 or into = 1:
individual [j].append (3)
else:
individual [j].append (2)
else:
if into = 0 or into = 1:
individual [j].append (1)
else:
individual [j].append (0)
else:

123

486

488

490

492

494

496

498

500

502

504

506

508

510

512

514

516

518

520

522

524

526

528

530

532

534

536

538

540

542

544

p = random.random ()
if entry = 0 or entry = 2:#enters in 0
if p<= 0.5:
individual [j].append(2)
else:
individual [j].append(3)
elif entry = 1 or entry = 3:#enters in 1
if p<= 0.5:
individual [j].append(0)
else:
individual [j].append (1)
individual = self.checkedges(individual)
return individual

#Ranks the individuals

def rankindividuals(self):
#Total p (percentage)
totp = 0
#Sort the population based on fitness
self.population.sort ()
rankedindividuals = []

#Linear. For more details, see page 60—61 of Introduction

to
#Evolutionary Computing (Eiben and Smith 2007).
if self.ranktype =— 0:

self.population.reverse ()#least fit first
#parameterization value 1.0 < s <= 2.0:
s = 1.5
i=0
for individual in self.population:
#Selection probability
#reversed
psel = (2—s)/self.popsize + 2xix(s—1)/(self.popsize
*(self.popsize —1))
i4+=1
#Should be 1 when finished
totp += psel

if (i<0):
print ’Error’
parent = [individual[0],individual [1], psel, totp]

rankedindividuals.append (parent)
#Ezponential. For details, see (Michalewicz, 1994) or
#http ://www. aero. caltech.edu/ " tamer/GATutorial. pdf
elif self.ranktype = 1:
totp=1
q = self.q #0.5
for i in range(self.popsize):
pexp = qx(1—q)**(i) #not reversed population
parent = [self.population[i][0]]
for j in range(1l, len(self.population[i])):
parent .append(self.population[i][]])
parent .append (pexp)
parent .append (totp)
rankedindividuals .append (parent)
totp —= pexp
rankedindividuals.reverse ()
else:
print ’error, wrong input for type of ranking’
return rankedindividuals

77 Evaluates an individual , finds length of path’’’

124

546

548

550

552

554

556

558

560

562

564

566

568

570

572

574

576

578

580

582

584

586

588

590

592

594

596

598

600

602

604

def evaluateindividual (self, individual):
#The total number of evaluations
self.evaluations += 1
fitness = 0
#Look through all the gene, add the cost moving between
them
for i in range(len(individual)):
if i != (len(individual)—1):#not last element
try:
distance = self.dismat[individual [i][0]]]
individual [i 4+1][0]][individual [i][1]]
except:
print ’Something is wrong with this individual’

else: #last element, move to first
distance = self.dismat[individual [i][0]][individual
[0][0]][individual [i][1]]

fitness = fitness + distance
return fitness

77’ Select a parent based on ranking — SUS’’’
def selectparent(self, rankedind):
#current_-member: the position in the mating_-pool
#i: the individual in the ranked_par list
currentmember = i = 0
p = random. uniform (0,1.0/len(rankedind))
#The pool of parents
matingpool = []
while (currentmember < len (rankedind)):
while (p <= rankedind[i][—1]):
dork = rankedind [i][0: —2]
matingpool.append (dork [:])
p=p+ (1.0/self.popsize)
currentmember = currentmember + 1
i=1i+4+1
return matingpool

39 39

Inversion mutation
def mutate(self, par):
parent = par [:]
#The number of genes to have their order inverted
length = random.randint (2,len (parent)—2)
#The first gene to have its order inverted
position = random.randint (0, len(parent)—length)
child = parent [:]
reversedbit = parent [position:(position+length)][:]
reversedbit.reverse ()
for i in range(len(reversedbit)):

child [i+position] = reversedbit [i]
#Fix the two broken links
#child = self.addedges(child, position)
#child = self.addedges(child, position+length—1)
#child = self.checkedges(child [:])
#child = self.control(child, True)
return child

777 Check an individual for faults 7’
def control(self, individual, mut):
unused = self.individual [:]

wronglist = []
for i in range(len(individual)):

125

606

608

610

612

614

616

618

620

622

624

626

628

630

632

634

636

638

640

642

644

646

648

650

652

654

656

658

660

662

try:
unused .remove ([individual [1][0]])
except:
print 'Wrong with individual’
wronglist .append (i)
for i in wronglist:
individual [i] = [unused.pop() ,0]
self.addedges(individual , 1)
individual = self.checkedges(individual)
return individual
77°PMX crossover by wusing two parents ’’’
def crossover (self , parl, par2):
parentl = parl [:]
parent2 = par2[:]
#The number of genes from parent 1 to be added to the child
length = random.randint (1,len(self.individual)—2)
#The position of the first gene from parent 1

try:
position = random.randint (0, len(parentl)—length)
except:
print ’randerror’
childl = [False]xlen(parentl)
child2 = [False]*xlen(parentl)
map = [[],[]]

#1 = position
#Add genes from parent 1 to child 1 and genes from parent 2

to child 2

for i in range(position ,(position+length)):
child1[i] = parentl[i]
child2[i] = parent2][i]

map [0]. append (parentl[i])
map |[1].append(parent2[i])

pos = position
#Add genes from parent 2 to child 1 and from parent 1 to
child 2
for i in range(len(parentl)):
if childl[i] == False:
exist = False
for gene in childl [position:positiontlength]:
if gene[0] = parent2[i][0]:
exist = True
if exist = False:
child1[i] = parent2[i]
else:
child1[i] = self.findgene(childl, map, parent2]
i, 1
exist = False
for gene in child2[position:position+length]:
if gene[0] = parentl[i][0]:
exist = True
if exist = False:
child2[i] = parentl[i]
else:
child2[i] = self.findgene(child2, map, parentl |
i, 2)

return childl , child2

777 Check edges for correctness and fiz them!’’’
def checkedges(self , individual):

126

664

666

668

670

672

674

676

678

680

682

684

686

688

690

692

694

696

698

700

702

704

706

708

710

712

714

716

for i in range(1l,len(individual)):

if i = 0:

before = individual [—1][1]
else:

before = individual [i —1][1]
if i = (len(individual)—1):

next = individual [0][1]
else:

next = individual [i+1][1]

if before = 0 or before = 2: #enters at front, 0 and
1 can not be wused
if next = 0 or next = 1: #next use front, have to
use 3
individual [i][1] = 3
else: #have to use 2
individual [1][1] = 2
else: #enters at back, 2 and 3 cannot be wused
if next =— 0 or next =— 1: #next use front, have to
use 1—go in back
individual [i][1] =1
else :#have 0
individual [i][1] =0

return individual

’77’Add edges to an individual 7’
def addedges(self, child, edge):
if edge >= (len(child)—1):#end of individual
nextedge= child [0][1]

else:
try:
nextedge = child [edge+1][1]
except:
print ’wut?’
if edge — 0:
beforeedge = child [—1][1]
else:
beforeedge = child [edge —1][1]
if nextedge = 0 or nextedge == 1:#can not use 0 or 2
if beforeedge — 0 or beforeedge =— 2:#can not use 0 or
1
child [edge][1] = 3
elif beforeedge = 1 or beforeedge = 3:#can not use 2
or &
child [edge][1] =1
elif nextedge = 2 or nextedge = 3:#can not use 1 or 3
if beforeedge = 0 or beforeedge = 2:#can not use 0 or
1
child [edge][1] = 2
elif beforeedge = 1 or beforeedge = 3:#can not use 2
or &
child [edge][1] =0

return child

7?7 Used for PMX crossover, finds the right gene’’’
def findgene (self, child, map, gene, chnr):

index = 0
for i in range(len (map|[chnr—1])):
if map[chnr —1][i][0] = gene[0]:
index = i
if chnr = 1:
ok = True

127

718

720

722

724

726

728

730

732

734

736

738

740

742

744

746

748

750

752

754

756

758

760

762

764

766

768

770

772

774

for i in range(len(child)):

if type(child[i]) = list:
if child[i][0] = map[1][index][0]:
ok = False
if ok = True:
return map[1][index]
else:
return self.findgene (child, map, map[1][index],
chnr)
elif chnr = 2:
ok = True
for i in range(len(child)):
if type(child[i]) = list:
if child[i][0] == map[0][index][0]:
ok = False
if ok = True:
return map[0][index]
else:
return self.findgene (child , map, map[0][index],
chnr)

777 Used for testing AntSystem 7’
class TestAnt(object):
def __init__(self, runs, file = 'm:/25D.txt’, ants = 10, alpha
= 1.0, beta = 1.0,
Q= 1.0, rho = 0.7, generations = 50):
originallength = 0
best = False
worst = False
sumruns = 0
acs = AntSystem(file , ants, alpha, beta, Q, rho,
generations)
originallength = acs.getstuff ()
for i in range(runs):
acs .addpheromone ()
runbest = acs.start ()
if best = False:
best = runbest [:]
else:
if runbest[0] < best [0]:
best = runbest [:]
if worst = False:
worst = runbest [:]
else:
if runbest[0] > worst [0]:
worst = runbest [:]
evals = acs.evaluations
sumruns = sumruns + runbest [0]
meanbest = float (sumruns)/runs
percentage = float (best[0])/float (originallength)=100
print 'Best ever: ’, best[0]
print 'Path: ’, best[1:]
print ’Original length’, originallength
print ’'Best ever percentage of original length’, percentage
print *Worst ever: ', worst [0]

))

print ’Mean best fitness over ’, runs, ' runs: , meanbest

print ’Average number of evaluations: ’, evals

777 Solve the TSP problem with Ant System 77
class AntSystem(object):
def __init__(self, file = 'm:/gcode2.txt’, ants = 10, alpha =
1.0, beta = 1.0,

128

776

778

780

782

784

786

788

790

792

794

796

798

800

802

804

806

808

810

812

814

816

818

820

822

824

826

828

830

832

Q= 1.0, rho = 0.7, generations = 50):
self.Q = Q#constant:delta—tau=Q/length
self.rho = rho#evaporation rate
self.ants = ants
self.alpha = alpha
self.beta = beta
self.file = file
self.generations = generations
self.evaluations = ants * generations

77 7Get data from Gcode reader’’’
def getstuff(self):
self.gcr=False

try:
self.ger = GcecodeReader(self. file)
#self.ger = True
except:
print 'Could not retrieve data’
if self.gcr != False:

self.gcr.readgcode ()

self.data = self.gcr.getslowdata ()

#self.ger.printfastdistance (self.data)

self .amount = len (self.data)#size of individual

self.individual = [[x] for x in range(self.amount)]

#distance matriz

self.dismat = self.gcr.preparefortsp(self.data)
return self.ger.getfastdistance (self.data)

777 Get simple data for testing ’’’
def getsimpledata(self):
self.dismat = [[0 for x in range(5)]for x in range(5)]
self .amount = len (self.dismat)#length of individual
for i in range(1l,self.amount):
disl = random.randint (0,100)
dis2 = random.randint (0,100)
self .dismat [0][1] = [disl,h disl, dis2,dis2]
self . dismat[i][0] = [disl 6 disl, dis2, dis2]
for i in range(1l, len(self.dismat)):
for j in range(i,len(self.dismat)):
ifiol= -
distance = [random.randint(0,100) ,random.
randint (0,100) ,
random . randint (0,100) ,random.
randint (0,100)]
self.dismat[i][j] = distance [:]
self.dismat[j][i] = distance [:]

’?’Runs the algorithm , runs for a number of generations and
finds the total
best run.’’’
def start(self):
#Average
listmeantour = []
#Best for one run (iteration best tour)

itbesttour = []

#Total shortest tour (best so far)

sfbesttour = [0]

#Add initial pheromone concentration if mnonexistent.

if type(self.dismat [0][1][0]) != list:
self.addpheromone ()

termination = 0

129

834

836

838

840

842

844

846

848

850

852

854

856

858

860

862

864

866

868

870

872

874

876

878

880

882

884

886

888

self .numbind = len (self.dismat [0])#the number of genes
generations = 0
#Run algorithm
while termination = 0:
generations 4= 1
routelist = [|] #list containing the route of all the
ants of this generation
meantour = 0
besttour = 0
for ant in range(0,self.ants):
length = 0
startgene = random.randint (0, self.numbind—1)

tabulist =[startgene] #the cuts the ant has visited

unvisited = range (0, self.numbind) #the cuts the
ant has not yet wvisited

try:
unvisited .remove(startgene)

except:
print ’Could not remove ’ ,startgene ,’ from

unvisited individuals.’
#Add the rest of the cuts
for i in range(0, self.numbind—1):

next ,edge = self.choosenext(tabulist , unvisited

tabulist[—1] = [tabulist[—1],edge]

length = length 4+ self.dismat[tabulist [—1][0]]]

next] [edge][0]
tabulist .append(next)
try:

unvisited .remove(next)
except:

print ’Something is wrong with the program’
#Add length from last to first city, completing the

tour

self.addlastedge (tabulist)

length += self.dismat[tabulist [—1][0]][tabulist
[0][0]][tabulist [—1][1]][0]

tabulist .append(length)

meantour += length

if length < besttour or besttour = 0:
besttour = length

if length < sfbesttour [0] or sfbesttour [0] = O:
sfbesttour = [length, tabulist [:]]

sfbesttour [1].pop ()#??
routelist .append(tabulist)

#Update

meantour = meantour/self.ants
listmeantour .append (meantour)
itbesttour .append(besttour)
self.updatepheromonevalues(routelist)

#the termination condition is:

if generations == self.generations:
#Uncomment to allow plotting.
#ax = plt.subplot(1,1,1)
#r = range (0, generations)
#r = range(self.ants)
#azx. plot (xz, listmeantour, label = "Mean”)
#azx. plot (z, itbesttour , label = ”"Best”)

#ax.plot(z, routelist[:][—1])

130

890

892

894

896

898

900

902

904

906

908

910

912

914

916

918

920

922

924

926

928

930

932

934

936

938

940

#plt.ylabel (7Cost of tour’)
#plt. grid(True)
#plt.zlabel ("Ant’)
#plt.zlabel (" Generations ’)
#azx.legend (loc=1, ncol=3, shadow=True)
#plt . show ()
#print ’'The best tour traversed:’ , sfbesttour
#final_city_order = final_-run(self.dismat, self.
alpha, self.beta)
#print 'The last run gives a tour of:’
final_city_order
#print '(Obviously the large number is the length)’
termination = 1
return sfbesttour
Add the last edge of the trip, this is predetermined ’’’
def addlastedge(self, tabulist):
#enters last in front, can use 20r3

if tabulist[—2][1] = 0 or tabulist[—2][1] = 2:
if tabulist [0][1] = 0 or tabulist [0][1] = 1: #have to
enter in back: 3
tabulist[—1] = [tabulist[—1],3]
elif tabulist [0][1] == 2 or tabulist [0][1] == 3:#have
to enter in front: 2
tabulist [—1] = [tabulist[—1],2]
#enters last in back, can use 0 orl
elif tabulist[—2][1] = 1 or tabulist[—2][1] = 3:
if tabulist [0][1] = 0 or tabulist [0][1] = 1: #have to
enter in back: 1
tabulist [—1] = [tabulist[—1],1]
elif tabulist [0][1] = 2 or tabulist [0][1] = 3:#have
to enter in front: 0
tabulist[—1] = [tabulist[—1],0]

25

’?’Updates the pheromone for all the edges
def updatepheromonevalues(self, antpermutations):
#the sums of tau
sums = [[[0,0,0,0] for x in range(self.numbind)] for x in
range (self .numbind)]
#First add together the taus in the the sums list
for perm in antpermutations:
length = perm.pop ()
for i in range(len (perm)—1):
sums [perm [i | [0]][perm [i+1][0]][perm[i][1]] 4= self.
Q/length
#Then calculate the new pheromone values
for i in range(len(sums)):

for j in range(len(sums[i])):
if type(self.dismat[i][]j]) = list:
for k in range(len(sums[i][j])):
self.dismat[i]|[j][k][1] = (1—self.rho)x*self
“dismat [i]]7](k][1]
+ sums [1](j][]

7??Choose the next cut for an ant.’’’

def choosenext(self , tabulist , unvisited):

sum = 0.0

done = 0

current = tabulist[—1]
probabilitylist = []
next = 0

while done =— 0:

131

942 #calculate probabilities based on pheromone and draw
next cut!
sum = self.findsumeq4 (unvisited , current)
944 #this is to depend on pheromone values in the self.
dismat
#and the length of the edge
946 pj = 0.0 #probability of choosing edge j
#for 1 in wunvisited:#pj+= because has
948 for j in unvisited:#self.dismat[current]
for k in self.dismat[current][j]:
950 try:
if k[0] = 0:
952 pj += k[1]*xself.alpha * (1.0/0.01)x*x
self . beta/sum
else:
954 pj += k[1]xxself. alpha % (1.0/k[0])*x
self.beta/sum
except:
956 print ’gd’
probabilitylist .append(pj)
958 p = random. uniform (0,1)
i=0
960 #find the next city
962 while done =— 0:
if i = 0:
964 if p <= probabilitylist[i]:
next = [unvisited [i],0]
966 done =1
elif p <= probabilitylist[i+1]:
968 next = [unvisited[i],1]
done =1
970 elif p <= probabilitylist[i+2]:
next = [unvisited[i],2]
972 done =1
elif p <= probabilitylist [i+3]:
974 next = [unvisited[i],3]
done =1
976 elif i = 1:
if p <= probabilitylist [i+3]:
978 next = [unvisited[i],0]
done = 1
980 elif p <= probabilitylist [i+4]:
next = [unvisited [i],1]
982 done =1
elif p <= probabilitylist [i+5]:
984 next = [unvisited[i],2]
done =1
986 elif p <= probabilitylist[i+6]:
next = [unvisited[i],3]
988 done =1
elif probabilitylist [i*4—1] < p <= probabilitylist |
ix4]:
990 next = [unvisited[i],0]
done =1
992 elif probabilitylist [i*4] < p <= probabilitylist [i
x4+1]:
next = [unvisited[i],1]
994 done =1
elif probabilitylist [i*4+1] < p <= probabilitylist |
ixd+2]:
996 next = [unvisited[i],2]

132

998

1000

1002

1004

1006

1008

1010

1012

1014

1016

1018

1020

1022

1024

1026

1028

1030

1032

1034

1036

1038

1040

1042

1044

1046

1048

1050

done =1
elif probabilitylist [i*442] < p <= probabilitylist|

ixd+3]:
next = [unvisited[i],3]
done =
i4+=1
if len(unvisited) <= (self.numbind—2):
if type(tabulist[—2]) = list:
#enters in front, have to wuse 2o0r3
if tabulist[—2][1] = 0 or tabulist[—2][1] =
2:
if next[l] = O0:
next [1] = 2
elif next[l] = 1:
next [1] = 3
#enters in back, have to wuse Oorl
elif tabulist[—2][1] = 1 or tabulist[—-2][1] =
if next[1] = 2:
next [1] = 0
elif next[l] = 3:
next [1] =1

if type(next) = int:
print ’problem’
return next[0],next [1]

777 Find the sum of equation used to determine the probability
of choosing an edge’’’
def findsumeq4 (self , unvisited, current):
sum = 0.0
#find the sum (equation 4, page 32 Dorigo 2006 Ant Colony
Optimization)
for i in unvisited:
for j in range(len(self.dismat|[current]|[i])):

if current != i or type(self.dismat[current][i]) =
list :
try:
if self.dismat[current][i][j][0] = O:
eta = (1.0/0.01)
else:
eta = (1.0/self.dismat[current][i][]
110])
except:
print 'Error in findsumeq4 method’
try:
tau = self.dismat|[current][i][]j][1]
except:
print > —...~
sum = sum + tauxxself.alphaxetaxxself.beta

if sum = 0:
print ’stop!’
return sum

7?7’Add pheromone concentration of 1 to all edges, wused during
initialisation .’’’
def addpheromone(self):
for i in range(len(self.dismat)):
for j in range(len(self.dismat[i])):
if type(self.dismat[i][]j]) = list:
for k in range(len(self.dismat[i][]j])):

133

1052

1054

1056

1058

1060

1062

1064

1066

if type(self.dismat[i][]j][k]) = list:
self .dismat[i][j][k] = [self.dismat[i]]
e illkl[o], 1]
.self.dismat[i}[j][k} = [self.dismat [i]]
J1lk], 1]

#Used for testing

#ga = GeneticAlgorithm (’c:\ gcode. tzt ’)

#ga. getstuff()

#ga . getsimpledata ()

#ga . master ()

#ga.mutate ([0,1,2,8,4,5,6])

#acs = AntColonySystem ()

#acs. getstuff()

#acs. start ()

#TestAnt (100, ’C:\ gcode.tzt’, ants=10, alpha = 1.0, beta = 1.0, Q =
1.0, rho = 0.7,

#generations = 50)

TestGA (1, ’C:\gcode.txt’,pc=0.6,pm=0.1 , populationsize = 200,
generations = 500, q = 0.5)

Biological.py

134

