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4 SUMMARY 

Background 

Patients with severe mental disorders (SMDs), including schizophrenia, bipolar disorder and 

major depressive disorder, have 15-20 years shorter life expectancy than the general population, 

largely due to comorbid cardiovascular disease (CVD). While the CVD risk has decreased in 

the general population during the past decade, it is unknown whether CVD risk levels have 

changed in patients with SMDs. Further, lifestyle factors and adverse effects of medication are 

important contributors to the CVD comorbidity; still, the mechanisms underlying the high CVD 

risk in SMDs are poorly understood. Recently, evidence has merged indicating that loneliness 

and a genetic susceptibility to CVD may play a role in the comorbidity, although this remains 

to be further elucidated. 

Aims and methods 

The overall aim of the thesis was to increase the understanding of the high CVD risk in SMDs. 

In study I we investigated whether CVD risk levels have changed during the past decade by 

comparing two well-characterized patient samples from the same catchment area in Norway, 

including patients with schizophrenia and bipolar disorder, recruited from 2002 to 2005 (2005 

sample) with patients recruited from 2006 to 2017 (2017 sample). The CVD risk levels in the 

2005 sample were previously published and used for comparison with the 2017 sample. The 

2017 sample was also compared with healthy controls and the general population from the same 

area and time period. Patients and healthy controls were part of the Thematically Organized 

Psychosis (TOP) study. Further, to improve the understanding of mechanisms underlying the 

CVD comorbidity, we examined whether the genetic architectures of loneliness, SMDs and 

CVD phenotypes are overlapping in study II. In addition, we investigated shared genetic 

architecture between bipolar disorder and CVD phenotypes in study III. In both study II and III 

we analysed large international genome-wide association studies (GWASs) of the phenotypes 

of interest using bivariate causal mixture model (MiXeR), which estimates the overall amount 

of shared genetic variants, and conditional/conjunctional false discovery rate (cond/conjFDR), 

which identifies overlap in specific loci.  

Results 
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In study I, we found significantly higher levels of CVD risk factors in patients with 

schizophrenia and bipolar disorder in the 2017 sample compared to healthy controls and the 

general population. There was no significant difference in CVD risk levels in schizophrenia 

between the 2005 and 2017 samples, except from a slightly higher level of glucose in the 2017 

sample. Patients with bipolar disorder in the 2017 sample demonstrated small to moderate 

reductions in total cholesterol, low-density lipoprotein cholesterol, blood pressure and obesity 

compared to the 2005 sample. In study II, we discovered that loneliness shares considerable 

genetic architecture with SMDs and body mass index using MiXeR. We also detected specific 

shared genetic loci at conjFDR<0.05, including 149 loci jointly associated with loneliness and 

SMDs (major depression, n=68 loci; schizophrenia, n=54 loci and bipolar disorder, n=28 loci), 

and 55 distinct loci jointly associated with loneliness and CVD phenotypes. The majority of the 

shared loci possessed consistent allelic effect directions, in line with positive genetic 

correlations. Functional analysis of the shared loci implicated genes involved in brain functions, 

metabolic mechanisms, immune system and chromatin. In study III, we discovered polygenic 

overlap between bipolar disorder and CVD phenotypes using MiXeR. At conjFDR<0.05, we 

identified 129 distinct loci shared between bipolar disorder and CVD phenotypes, mainly body 

mass index and blood pressure. There was a pattern of mixed effect directions among the shared 

loci (ca. 50% with consistent direction of allelic effect), in line with the insignificant genetic 

correlations. Functional analysis of the overlapping loci revealed genes associated with 

neurodevelopment, lipid metabolism, chromatin and intracellular mechanisms. 

 

Interpretation and implications  

The thesis provides new insights into the CVD comorbidity in SMDs. The results of study I 

suggests that CVD risk levels have remained high in patients with schizophrenia and bipolar 

disorder during the past decade, with only modest reductions in CVD risk factors in bipolar 

disorder. These findings indicate that most patients with schizophrenia and bipolar disorder 

have not benefited from advances in medicine and health promotion efforts, underscoring the 

need for improved prevention strategies. Study II indicates substantial genetic overlap between 

loneliness, SMDs and CVD phenotypes. The findings have important clinical implications 

indicating that a genetic susceptibility for loneliness may also confer increased risk of SMDs 

and CVD. The increased genetic risk of loneliness in SMDs may explain some of their increased 

CVD morbidity, although this requires further investigations. Moreover, the discovery of 

shared loci between bipolar disorder and CVD phenotypes with mixed effect directions (study 
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III) indicates variation in genetic susceptibility to CVD across bipolar disorder subgroups. 

Overall, the current findings underline the need for improving prevention strategies, including 

more targeted lifestyle interventions and personalized pharmacological treatment, to decrease 

CVD risk in SMDs. Moreover, the findings from the thesis underscore the importance of an 

integrated approach to individuals with SMDs focusing on the metabolic monitoring and 

improved social contact. Future research is needed to further elucidate the genetic and 

environmental factors underlying CVD comorbidity and SMDs. This can provide clinically 

relevant discoveries for the improvement of risk prediction tools and ultimately enable earlier 

interventions.  
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Sammendrag (norsk) 

Bakgrunn 

Pasienter med alvorlige psykiske lidelser, inkludert schizofreni, bipolar lidelse og alvorlig 

depressiv lidelse, har 15-20 år kortere forventet levetid enn den generelle befolkningen, særlig 

på grunn av hjerte- og karsykdom. Risikoen for hjerte- og karsykdom har avtatt i den generelle 

befolkningen i løpet av det siste tiåret, men det er ukjent om en tilsvarende positiv utvikling har 

funnet sted hos personer med alvorlige psykiske lidelser. Usunn livsstil og bivirkninger av 

medisiner bidrar til hjerte- og karsykdom, men forståelsen av årsakene til den høyere risikoen 

ved alvorlig psykisk lidelse er mangelfull. Nyere studier tyder på at også genetisk sårbarhet for 

hjerte- og karsykdom og ensomhet kan være av betydning, men dette gjenstår å undersøkes.   

 

Mål og metoder  

Målet med denne avhandlingen er å øke forståelsen av den høye risikoen for hjerte- og 

karsykdom hos personer med alvorlige psykiske lidelser. I studie I undersøkte vi om nivået på 

risikofaktorer for hjerte- og karsykdom har endret seg det siste tiåret ved å sammenligne to 

pasientgrupper fra samme geografiske område i Norge, inkludert pasienter med schizofreni og 

bipolar lidelse, rekruttert fra 2002 til 2005 (2005-utvalget) med pasienter rekruttert fra 2006 til 

2017 (2017-utvalget). Risikofaktorer for hjerte- og karsykdom i 2005-utvalget er publisert 

tidligere og ble brukt for sammenligning med 2017-utvalget. Utvalget fra 2017 ble også 

sammenlignet med friske kontroller og den generelle befolkningen fra samme område og 

tidsperiode. Pasienter og friske kontroller var del av ‘Thematically Organized Psychosis’ 

(TOP)-studien. For å øke forståelsen av mekanismer som bidrar til den høye risikoen for hjerte- 

og karsykdom, undersøkte vi om ensomhet, alvorlige psykiske lidelser og hjerte- og karsykdom 

har felles genetisk grunnlag i studie II. I tillegg undersøkte vi om bipolar lidelse og hjerte- og 

karsykdom deler genetisk grunnlag i studie III. I både studie II og III analyserte vi helgenom-

assosiasjonsstudier med ‘bivariate causal mixture model’ (MiXeR), som estimerer det totale 

antallet felles genvarianter og ‘conditional/conjunctional false discovery rate’ (cond/conjFDR), 

som identifiserer spesifikke felles genetiske loci. 

 

Resultater 

I studie I fant vi høyere nivåer av risikofaktorer for hjerte- og karsykdom hos pasienter med 

schizofreni og bipolar lidelse i 2017-utvalget sammenlignet med friske kontroller og 
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befolkningen generelt. Det var ingen forskjell i risikofaktorer for hjerte- og karsykdom hos 

personer med schizofreni mellom 2005 og 2017-utvalgene, bortsett fra et litt høyere nivå av 

glukose i 2017-utvalget. Pasienter med bipolar lidelse i 2017-utvalget viste lavere nivåer av 

total kolesterol, lav-densitet-lipoproteiner, blodtrykk og fedme sammenlignet med 2005-

utvalget; forskjellene var små til moderate. I studie II fant vi at ensomhet i stor grad deler 

genetisk grunnlag med alvorlige psykiske lidelser og kroppsmasseindeks ved bruk av MiXeR. 

Vi fant også spesifikke felles genetiske loci ved conjFDR <0.05, inkludert 149 loci assosiert 

med både ensomhet og alvorlige psykiske lidelser (alvorlig depresjon, n=68 loci; schizofreni, 

n=54 loci og bipolar lidelse, n=28 loci), og 55 loci assosiert med både ensomhet og 

risikofaktorer for hjerte- og karsykdom. De fleste overlappende loci hadde samme 

effektretning, i samsvar med positive genetiske korrelasjoner. Funksjonsanalyser knyttet de 

overlappende loci til gener involvert i hjernefunksjoner, metabolske mekanismer, 

immunforsvar og kromatin. I studie III fant vi betydelig genetisk overlapp mellom bipolar 

lidelse og risikofaktorer for hjerte- og karsykdom og koronar hjertesykdom ved bruk av MiXeR. 

Ved conjFDR <0.05, identifiserte vi 129 genetiske loci som var assosiert med både bipolar 

lidelse og hjerte- og karsykdom. Effektretningen til de overlappende loci var blandet (ca. 50% 

med samme effektretning i bipolar lidelse og hjerte- og karsykdom), i tråd med ikke-

signifikante genetisk korrelasjoner. Funksjonsanalyser koblet de overlappende loci til gener 

knyttet til hjerneutvikling, lipidmetabolisme, kromatin og intracellulære mekanismer.  

 

Tolkning og implikasjoner  

Funnene i denne avhandlingen gir ny kunnskap om hjerte- og karsykdom hos personer med 

alvorlige psykiske lidelser. Resultatene i studie I tyder på at risikoen for hjerte- og karsykdom 

har holdt seg stabilt høy hos pasienter med schizofreni og bipolar lidelse i løpet av det siste 

tiåret, selv om risikonivået var noe lavere ved bipolar lidelse i 2017-utvalget sammenlignet med 

2005-utvalget. Funnene indikerer at de fleste personer med schizofreni og bipolar lidelse ikke 

har dratt nytte av nylige fremskritt innen medisin og helsefremmende tiltak som reduserer 

risikoen for hjerte- og karsykdom. Studie II tyder på betydelig genetisk overlapp mellom 

ensomhet, alvorlige psykiske lidelser og risikofaktorer for hjerte- og karsykdom. Resultatene 

indikerer at genetisk sårbarhet for ensomhet også innebærer økt genetisk risiko for alvorlige 

psykiske lidelser og hjerte- og karsykdom. Genetisk sårbarhet for ensomhet hos personer med 

alvorlige psykiske lidelser kan bidra til å forklare deler av deres høye risiko for hjerte- og 

karsykdom, men dette må undersøkes videre. Studie III avdekket genvarianter felles for bipolar 
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lidelse og hjerte- og karsykdom med blandede effektretninger, noe som indikerer variasjon i 

genetisk risiko for hjerte- og karsykdom på tvers av undergrupper av bipolar lidelse. Samlet sett 

understreker resultatene behovet for mer effektiv forebygging av hjerte- og karsykdom ved 

alvorlige psykiske lidelser, inkludert mer målrettede livsstilsintervensjoner og persontilpasset 

legemiddelbehandling. Funnene fra avhandlingen belyser også viktigheten av en integrert 

tilnærming til personer med alvorlige psykiske lidelser med fokus på metabolske målinger og 

hjelp til å oppnå god sosial kontakt. Mer forskning er nødvendig for å avdekke genetiske og 

miljømessige faktorer som bidrar til hjerte- og karsykdom ved alvorlige psykiske lidelser. Slik 

forskning kan gi kliniske relevante funn som legger til rette for bedre risikoprediksjon og 

tidligere intervensjon.  
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5 INTRODUCTION 
5.1 History of defining mental illness  

The distinction between the mind and body dates back to ancient Greek philosophers. Plato 

separated the psyche (soul), that he believed to be immortal, from the mortal soma (body) (1). 

Thus, he believed that the psyche could exist independently of the soma. Aristotle connected 

the psyche and soma closer together by asserting that the body is the soul’s “instrument” and 

that the psyche and soma are mutually dependent (1). In the 17th century, Descartes returned to 

the division between the mind and body arguing that their natures are completely different and 

that each can exist by itself (2). This mechanistic understanding become known as the Cartesian 

dualism, which has influenced Western thinking and conceptions of the mind and body (2). 

While modern medicine and psychology reject the dualism in that the mind and body are 

inextricably linked and influence each other, the Cartesian dualism has had great impact on 

these disciplines (3). The division of human illness into mental and physical diseases can be 

seen as a continuation of the dichotomy. Moreover, the stigma of mental illness and separation 

of mental and somatic care departments reflect the traditional distinction between the mind and 

the body. The disintegration of mental and somatic health care has prevailed despite increasing 

evidence of comorbidity between mental illness and somatic disease (4). Observations of this 

comorbidity emerged before the introduction of modern psychotropic agents (5, 6). In 1897, Sir 

Henry Maudsley wrote that “Diabetes is a disease which often shows itself in families in which 

insanity prevails” (5). These observations raised the question of whether disturbances in glucose 

metabolism are intrinsic to certain mental disorders, particularly schizophrenia. Central 

researchers and psychiatrists in the 19th century, including Emil Kraepelin and Eugen Bleuler, 

discussed whether alteration in energy metabolism was part of the disease mechanisms in 

schizophrenia (7, 8), thereby challenging the sharp mind-body split. The aetiology of the 

comorbidity has remained a puzzle since, and it has proven difficult to disentangle the effects 

of pharmacological medication from the disease itself (9, 10). 

Kraepelin and Bleuler are, however, first and foremost known for their contribution to 

psychiatric nosology. In the late 19th century, Kraepelin introduced a classification of mental 

disorders that formed the basis for current diagnostic classifications (11, 12). He distinguished 

between two main groups of mental disorders, including “dementia praecox” and “manic 

depressive disorder” (12). The term dementia praecox, meaning “early dementia”, was initially 

used to refer to a deteriorating psychotic illness with early debut, while manic depressive 
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disorder referred to an affective illness with symptom-free intervals and better prognosis (12). 

Kraepelin’s concept of manic-depressive disorder was broad and incorporated all types of 

affective disorder, including what is today known as bipolar disorder and major depressive 

disorder (13). In 1908, Bleuler introduced the term “schizophrenia” derived from the Greek 

words skhizein and phren, meaning splitting and mind respectively (14). He asserted that 

“schizophrenia” should replace the term “dementia praecox” because the latter was considered 

misleading as the onset and course of the illness vary, and do not necessarily end in 

deterioration, a perspective that received support from later research (15). Bleuer used the term 

schizophrenia to describe a disorder involving “splitting” or disintegration of psychological 

functions, which may give rise to disturbed thought associations, ambivalence, flattened affect 

and autism. These four symptoms are today known as Bleulers “four As” and bear resemblance 

to negative symptoms of schizophrenia described in current diagnostic manuals (16). Positive 

symptoms, including delusions and hallucinations, were considered secondary symptoms by 

Bleuler, yet were classified as primary or “first-rank symptoms” by others in the mid-20th 

century (17). In the same period, Kraepelin’s  broad category of manic depressive disorder were 

divided into unipolar depression defined by depressive episodes only, and bipolar disorder 

defined by altering episodes of mania or hypomania and depression (18). 

This classification of schizophrenia and affective disorders as distinct disorders is 

maintained in today’s diagnostic systems (19-22). However, increasing evidence suggests 

clinical, biological and genetic overlap between the disorders (23-25), bringing into question 

the traditional dichotomy. This evidence may suggest that the disorders should not be perceived 

as distinct categorical entities, but rather as disorders along a continuum (26). Thus, a 

dimensional approach has been proposed, where patients are characterized based on their most 

prominent symptoms (26). Nevertheless, Kraepelin’s categorizations formed the basis for 

modern diagnostic criteria for schizophrenia and affective disorders, which have brought 

reproducibility to psychiatric research and improved reliability of diagnoses (23). However, the 

validity of the diagnostic categories remains under debate. 

 

5.2 Severe mental disorders 

Schizophrenia, bipolar disorder and major depressive disorder are considered severe mental 

disorders (SMDs) due to their chronicity/long duration, comorbidity and substantial disability 

(27). Thus, the term ‘SMDs’ is used in this thesis when referring to the three disorders. SMDs 

are among the most costly diseases worldwide; they are leading causes of years lived with 
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disability and pose a major financial burden on health care systems (28, 29). SMDs are 

associated with considerable suffering and reduced quality of life for those affected and their 

families (30, 31). Approximately 30% of individuals with SMDs experience no or limited 

benefit from pharmacotherapy, and discontinuation of treatment due to adverse side-effects is 

relatively common (32, 33). In addition, all-cause mortality is increased and the life expectancy 

is decreased by 15-20 years in people with SMDs compared to the general population (4, 34-

37). The relative risk for suicide is increased by 12-20 times (38-40), but mortality from natural 

causes, particularly cardiovascular disease (CVD), is the main contributor to reduced life span 

in SMDs (34, 37). Comorbid CVD is associated with poorer quality of life and more severe 

illness course (41), highlighting the need for better prevention and management of CVD in 

SMDs. Increased understanding of the mechanisms underlying CVD comorbidity is crucial for 

the development of more effecting prevention strategies and treatments. 

5.2.1 Diagnostic criteria 

Today, mental disorders are classified using the World Health Organization’s International 

Classification of Diseases (ICD) and the Diagnostic and Statistical Manual of Mental Disorders 

(DSM). DSM is developed by the American Psychiatric Association (APA) and is widely used 

by clinicians in the United States, while ICD is mainly used by clinicians in the rest of the world 

(42). Both diagnostic systems are used for research purposes, especially DSM. ICD and DSM 

have been published in several updated versions with the latest version of ICD-11 in 2019 (22) 

and the latest version of DSM-5 in 2013 (20). There is considerable convergence between the 

two systems’ criteria of schizophrenia, bipolar disorder and major depressive disorder, listing 

nearly identical symptoms and exclusion criteria (symptoms cannot be attributed to a substance 

or medical condition). Still, some differences exist in the way affective disorders are divided, 

the terms used to describe the disorders and specific criteria. 

DSM-IV (19) was used for diagnostic classification in the TOP study which formed the 

basis of paper I. DSM-IV was also used in the genomewide association studies (GWASs) that 

formed the basis of paper II and III. Therefore, the diagnostic definitions in DSM-IV are 

outlined below. In addition, as some of the patients in the GWASs used for paper II and III were 

diagnosed with ICD-9/10 (21, 43), the most important differences between the diagnostic 

criteria of DSM and ICD are described. Since only a few patients were diagnosed with ICD-9 

and there are minor changes in the diagnostic criteria of SMDs from ICD-9 to ICD-10, I focus 

on specifying relevant differences between ICD-10 and DSM-IV.   
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Schizophrenia and other psychotic disorders 

Schizophrenia and other psychotic disorders (SCZ) include schizophrenia, schizoaffective 

disorder, schizophreniform disorder, psychotic disorder not otherwise specified (NOS), 

delusional disorder and brief psychotic disorder in DSM-IV (19).  

The DSM-IV criteria of a schizophrenia diagnosis are categorized in five main groups, 

including delusions (e.g., paranoid, grandiose), hallucinations (e.g., auditive, visual), 

disorganized speech (e.g., frequent derailment or incoherence), grossly disorganized or 

catatonic behaviour, and negative symptoms (i.e., affective flattening, alogia/poverty of speech, 

or avolition/diminished motivation to initiate or perform purposeful actions) (19). Together, 

these symptoms constitute criterion A for schizophrenia. Delusions refer to false beliefs that 

are firmly maintained despite evidence to the contrary and despite what almost everyone else 

believes (19). A hallucination refers to a sensory perception without external stimulation of the 

relevant sensory organ (19). Negative symptoms involve the absence or reduction of normal 

mental functions, such as emotional expression, speech and motivation (19). Patients 

experiencing two or more of the symptoms in the five main groups (listed above) for at least 

one month, with signs of the disorder for minimum 6 months and negative impact on 

functioning (i.e., social, occupational or personal), meet the criteria for schizophrenia. The 

symptoms and functional loss are not due to a substance or medical condition; this exclusion 

criterion applies to schizophrenia and all the other diagnoses described here. When the 

symptoms last for less than 6 months, the diagnosis is schizophreniform disorder. Patients 

experiencing the symptoms for less than one month are diagnosed with brief psychotic disorder. 

Delusional disorder should be considered in the case of non-bizzare delusions (i.e., involving 

situations that can occur in real life, such as being followed) of at least one month's duration 

with little impact on functioning, and criterion A has never been met. However, tactile or 

olfactory hallucinations may be present in delusional disorder if they are related to the 

delusional theme (19). 

Patients who experience a combination of the psychotic symptoms listed above and 

affective symptoms (classified as either major depressive episode, manic episode or mixed 

episode), may be given a diagnosis of schizoaffective disorder (19). Here, during the same 

period of illness, delusions or hallucinations persist at least 2 weeks in the absence of prominent 

affective symptoms. The affective symptoms must be present for a substantial portion of the 

total duration of the active and residual periods of the illness. If the disturbance includes a manic 
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or a mixed episode, the diagnosis is schizoaffective disorder bipolar type (19). Note that this 

diagnosis was included as a subtype of bipolar disorder in the GWAS of bipolar disorder used 

for study II and III. Psychotic disorder NOS is applied to describe psychotic syndromes that do 

not meet the criteria of any of the specific psychotic disorders, or to psychotic symptomology 

where there is inadequate or contradictory information on which to base a specific diagnosis 

(19).  

There is general agreement between the DSM-IV and ICD-10 criteria of schizophrenia 

and related disorders (19, 44). However, the duration criteria differ: while DSM-IV requires 

continuous disturbance for at least 6 months, ICD-10 requires at least 1 month with symptoms. 

Another difference pertains to the DSM-IV’s emphasis on functional impairment, while ICD-

10 highlights the importance of first-rank symptoms (thought broadcast, thought insertion, 

thought withdrawal, auditory hallucinations and delusional perception). Further, the DSM-IV 

diagnosis of schizophreniform disorder does not appear in ICD-10, but largely corresponds to 

schizophrenia lasting for less than 6 months in ICD-10. 

Bipolar spectrum disorders 

The DSM-IV classifies bipolar disorders (BD) as a group of affective disorders which are 

characterized by depressive, manic or hypomanic episodes (19). These disorders include BD 

type I, BD type II, cyclothymic disorder and BD NOS.  

BD type I is characterized by the occurrences of at least one manic or mixed episode 

(i.e., the co-occurrence of manic and depressive symptoms). A manic episode is defined by the 

presence of persistently elevated and/or irritable mood, along with three or more of the 

following symptoms (four if the mood is only irritable): inflated self-esteem, decreased need 

for sleep, increased talking, racing thoughts, distractibility, increase in goal-directed activity or 

psychomotor agitation, and excessive involvement in pleasurable activities with a high risk of 

negative consequences. BD type II is characterized by at least one hypomanic episode and at 

least one depressive episode. A hypomanic episode includes the same symptoms as those of 

mania, but the duration and severity of the symptoms differ. DSM-IV sets four days as a 

minimum duration of the elevated and or/irritable mood as part of a hypomanic episode, while 

a manic episode lasts for at least one week or shorter if hospitalized and is associated with 

marked impairment, indicating that a manic episode is more severe. A further distinction 

between manic and hypomanic episode is that psychotic symptoms can be present during a 

manic episode (19).   
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A major depressive episode is mainly characterized by depressed mood and/or loss of 

interest and pleasure. In addition to these core symptoms, at least three (four if only depressed 

mood or loss of interest is present) of the following symptoms must be present; significant 

weight change or appetite disturbance, sleep disturbance (insomnia or hypersomnia), fatigue, 

psychomotor agitation or retardation, feeling of worthlessness or excessive guilt, diminished 

ability to concentrate/indecisiveness, and recurrent thoughts of death, recurrent suicidal 

ideation without a specific plan, or a suicide attempt or specific plan for committing suicide. 

The symptoms are experienced most of the day, nearly daily, for at least two weeks. The 

symptoms must be severe enough to cause significant functional impairment (19). Psychotic 

symptoms may occur in a depressive episode (19).   

 Cyclothymic disorder involves several periods of hypomanic symptoms and periods of 

depressive symptoms that are not sufficient to meet the full criteria for a major depressive episode, 

over a period of at least 2 years. Disorders with bipolar features that do not meet criteria for any 

of the above BD subtypes are classified as BD NOS. This category may cover people who have 

symptoms of mania or hypomania that are too few in number or too short in duration to meet criteria 

of a manic or hypomanic episode (19).   

The diagnostic criteria of BD in ICD-10 bear close resemblance to those in DSM-IV 

(19, 44). However, ICD-10 requires two discrete affective episodes, one of which must be 

manic or hypomanic, for a BD diagnosis. In DSM-IV, one manic or mixed episode suffice for 

a diagnosis of BD I. Further, both diagnostic systems distinguish between BD type I and BD 

type II, but BD type II is sorted under “other bipolar disorders” in ICD-10 (44).  

 

Major depressive disorder 

Major depressive disorder (MDD) is characterized by the presence of at least one major 

depressive episode with or without psychotic symptoms (delusions or hallucinations) in DSM-

IV (19). The ICD-10 system does not use the term ‘MDD’, but uses the term ‘Recurrent 

depressive disorder’ and divides depressive episodes into mild, moderate and severe types (44). 

A moderate or severe depressive episode in ICD-10 corresponds mostly to a major depressive 

episode in DSM-IV. The symptoms of a depressive episode are virtually identical with only 

one symptom (loss of confidence or self-esteem) included in ICD-10 but not in DSM-IV. In 

addition, DSM-IV, but not ICD-10, specifies that the symptoms should not be explained by 

bereavement.  
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 For paper II, we used a GWAS of “major depression” (MD), which includes participants 

meeting diagnostic criteria of MDD (DSM-IV, ICD-10) and participants with self-reported 

MDD diagnosis, symptoms or treatment for depression (45). Thus, the term MD is used in this 

thesis when discussing the results of paper II, the MD GWAS and other studies using this MD 

GWS sample.  

 

5.2.2 Epidemiology  

Below, central findings in epidemiological studies of SMDs are presented, with focus on 

lifetime risk, prevalence and yearly incidence. The lifetime prevalence refers to the proportion 

of a population that has had the disorder up to the age at assessment (46). The lifetime risk is 

the estimated proportion of a population that is expected to develop the disorder during the 

lifespan (46). The lifetime prevalence differs from lifetime risk in that the latter does not only 

refers to the proportion that has so far experienced the disorder at the time of the study, but 

also includes the proportion of the population that is expected to develop the disorder at some 

time in the future (based on projection from a model) (47). Lifetime risk further differs from 

lifetime prevalence as it attempts to include the entire lifetime of a birth cohort (both past and 

future), and includes those deceased at the time of the study (46). The incidence is a measure 

of the number of new cases of a disorder within a specific time period, with annual incidence 

referring to new cases by a year (46).  

Schizophrenia occurs worldwide, and it has long been assumed to have a uniform 

distribution with a 1% lifetime risk across regional boundaries and sex (39). This assumption 

of uniform risk was challenged by meta-analyses from McGrath and colleagues that 

demonstrated variation across studies that could not be merely explained by differences in 

diagnostic definitions or methods, but rather indicated true variation in occurrence (48, 49). The 

median lifetime risk of schizophrenia is ~0.7% in the meta-analyses (48, 49). The lifetime 

prevalence of schizophrenia is estimated to be 0.4-1% (48, 50). When including other psychotic 

disorders (such as brief psychotic disorder, delusional disorder and psychotic disorder NOS), 

the lifetime estimates are 2-3 times higher (39). The yearly incidence is roughly 15 in men and 

10 in women per 100 000 persons (48). Both the incidence and prevalence of schizophrenia 

vary across nations and are higher in urban areas compared to rural settings and among 

immigrants compared to native-born individuals (48, 51). Age of onset of schizophrenia is 

usually between late adolescence and early adulthood, with earlier debut in men than in women 

(39, 51). Later illness onset in women may indicate a protective effect of estrogen (51).  
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The estimated lifetime prevalence of BD is commonly reported to be ~1-2% in the 

world’s population (38, 50). In a large international study, the lifetime prevalence of BD type I 

was 0.6%, BD type II 0.4%, and subthreshold BD (comparable with BD NOS) 1.4%, yielding 

a total lifetime prevalence estimate of 2.4% worldwide (38). However, the estimates vary across 

countries (38), and it is assumed that the lifetime prevalence of BD type II is greater, with 

estimates approaching 3-4% in prospective studies of adolescents (52). The lifetime risk for BD 

is somewhat higher than the lifetime prevalence (47). Further, BD type I has an annual 

incidence of 5-30 per 100 000 (53, 54), whereas the incidence of other BD subtypes is more 

uncertain (53). BD type I affects men and women equally, while BD type II is more common 

in women (55). Similar to SCZ, BD type I appears to be more prevalent in urban than in rural 

environments (53). BD typically debuts in adolescence or early adulthood (38, 53). 

The lifetime prevalence of MDD also varies considerably across nations and is roughly 

15-18 % (40, 47). The lifetime risk for MDD (23-30%) is higher than the lifetime prevalence, 

which may reflect the fact that many MDD cases debut in the middle years of life and may 

therefore not be captured at the time of lifetime prevalence assessment (47). The annual 

incidence of MDD is estimated to be 3 per 100, yet with significant variation between countries 

(56). MDD is more common in women than in men (40, 47). There is no consensus as to 

whether MDD is more frequent in urban areas, although recent findings do point to a 

preponderance of MDD in urban compared to rural regions (57). Age of illness onset ranges 

from mid adolescence to mid-40s, with an average age of onset in mid-20s (40). 

In summary, the lifetime prevalence and risk of SCZ and BD are relatively low, while 

MDD is more prevalent. The estimates vary across nations for reasons unknown, but the 

findings may reflect true cross-national variation (as suggested for schizophrenia) (48) as well 

as differences in diagnostic tools and methods, awareness and stigma of mental illness (38-40, 

46-56). Further analyses are needed to shed light on factors underlying the variation and 

possible differences in exposure to risk factors.  

The prevalence of SMDs appears to have remained fairly stable over time (46, 48, 58, 

59). For instance, a study from the US found no significant change in the prevalence of SMDs 

from 1990 to 2003 (59). Similarly, global epidemiological data indicates that the prevalence of 

SCZ was largely consistent from 1990 to 2016 (58). Nevertheless, as the population grow and 

age, the absolute number of people affected by such disorders will increase (58). Some studies, 

however, point to an increase in MDD. For instance, a Finnish study found greater prevalence 

of MDD in women, but not in men, over the 2000 to 2011 period (60). However, a Norwegian 
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study provided no evidence of change in MDD occurrence from 1990 to 2001 (61). Still, self-

reported depressive symptoms increased from 1998 to 2012 in Norway in young women (16-

24 years) (62). It remains unknown whether this self-reported change reflects a rise in mental 

illness, such as MDD. Further, some data may suggest that BD type II is increasing, although 

it is unclear whether this observation represents a real change in the prevalence or a higher 

number of individuals receiving the correct diagnosis (63). There is a shortage of well-

conducted studies of prevalence estimates further back in time. 

 

5.2.3 Comorbid diseases and shared characteristics   

The boundaries between SMDs are considered partially arbitrary (23, 26) as there is 

considerable clinical overlap between SCZ, BD and MDD. All three disorders are characterized 

by psychiatric and somatic comorbidity as well as cognitive impairments and loneliness. The 

overlap across SMDs warrants the investigation of all three disorders and their co-occurring 

conditions.  

 

Clinical overlap and psychiatric comorbidity  

SCZ, BD and MDD share clinical features. Psychotic symptoms, such as hallucinations and 

delusions, are prominent in SCZ (64), but also in a substantial proportion of individuals with 

BD and MDD. About 60 % of patients with BD (65) and 16-50% of patients with MDD 

experience psychotic symptoms (66, 67). Moreover, affective symptoms are the defining 

features of BD and MDD, but they are also common in SCZ (68). Depressive symptoms are 

reported in up to 80% and manic symptoms are reported in 20% of patients with SCZ (68). 

However, distinguishing between negative and depressive symptoms in SCZ is a challenge. For 

instance, affect flattening and lack of motivation may represent negative symptoms, but can 

also suggest depressive symptoms. Thus, the prevalence of depressive symptoms in SCZ may 

be overestimated and underestimated in some cases, and the difficulty in distinguishing between 

negative symptoms and depressive symptoms may contribute to the reported variation in 

frequency of depression in SCZ (20-80%) (69, 70). Furthermore, patients with SMDs frequently 

have other comorbid psychiatric disorders, particularly anxiety and substance use disorders 

(mostly alcohol, cannabis and stimulant use disorder) (71-73). SMDs are also associated with 

elevated risk of personality disorders (74, 75) and higher levels of the personality trait 

neuroticism (i.e., a tendency to experience negative emotions and shifting moods) and lower 
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levels of extraversion (i.e., tendency to be sociable and active and experience positive emotions) 

(76, 77).  

 

Somatic comorbidity  

Patients with SMDs have a 2-3 fold increased mortality rate compared to the general population 

(35, 36, 78, 79). Suicide contributes to the increased relative risk of mortality; however, most 

of the excess mortality is explained by physical illness, accounting for ca. 70% of all deaths in 

SMDs (35, 36, 79). CVD is the most common somatic comorbidity and cause of death, followed 

by respiratory diseases, infectious diseases and cancer (35, 36, 79). Still, the findings regarding 

cancer rates in people with SMDs are somewhat inconsistent, with some studies reporting lower 

or similar levels of cancer in patients compared to controls (80, 81), although risk factors for 

cancer (e.g., smoking and obesity) tend to be higher in this patient population (82). The 

conflicting results may be related to various factors that can reduce the estimates of diagnosed 

cancer in SMDs, such as limited access to screening and dying at an earlier age from CVD 

before being diagnosed with cancer (4). Further information about the CVD comorbidity is 

presented in a separate section below (5.3).   

 

Cognitive impairments across SMDs 

Cognitive impairment is a core feature of SCZ and is present across a wider range of 

neurocognitive functions, including working memory, executive functioning, processing speed 

and verbal and visual memory (83). These cognitive deficits are important predictors of 

occupational and social functioning (84). In addition, social cognitive difficulties are common, 

including reduced ability to understand intentions and emotions of others (85), also contributing 

to difficulties functioning in society (86). Patients with BD and MDD appear to have 

substantial, albeit on average less severe neurocognitive (83) and social cognitive difficulties 

than SCZ (85), and related functional impairments (87). Although cognitive deficits are 

prominent in SCZ, they are not included in current diagnostic criteria for SCZ (19-22), largely 

because cognitive impairment does not seem to sufficiently distinguish SCZ from related 

disorders, i.e. other SMDs that are also associated with cognitive difficulties (88). Thus, despite 

an ongoing debate, cognitive impairment may not constitute a useful diagnostic criterion per se 

(86, 89). Subjective cognitive difficulties (i.e., perceived reduced concentration, distractibility 

or difficulty making decisions) are included in the diagnostic criteria of affective episodes (see 

separate section about diagnostic criteria above). 
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Loneliness and social isolation across SMDs 

People with SMDs experience difficulties in preserving meaningful relationships (90), have 

limited social network and restricted access to social support (90-92). Given these social 

deficiencies, people with SMDs may be particularly vulnerable to loneliness (93), defined as 

the subjective experience of a discrepancy between the desired and achieved level of social 

relationships (94). Loneliness differs from objective aspects of the social environment, such as 

living alone, marital status, number of friends and family, and frequency of interactions (95-

99). Still, loneliness correlates with these objective measures, indicating that objective and 

subjective social isolation are related; however, the association is modest, suggesting that 

quantitative and qualitative aspects of social relationships are distinct (95-99). It is important 

to note that loneliness in itself is not necessarily a problem. Rather, loneliness is an universal 

human emotion that that most people experience at some time point during a life span (100). 

Loneliness signals that the social need is not being met and motivates to connect or reconnect 

with others (100). Thus, feelings of loneliness usually motivate individuals to seek social 

contact, thereby diminishing loneliness (100). However, in some individuals, loneliness is a 

frequent and enduring feeling, which is a cause for concern (100-102). Notably, people with 

SMDs score higher on measures of frequency of loneliness compared to the general population 

and expect to continue feeling lonely in the future, but rarely receive help for these experiences 

(90, 103-107). Thus, patients with SMDs are at risk for experiencing loneliness over a longer 

time. Longitudinal research with repeated measures of loneliness in SMDs is scarce. 

Nevertheless, a large national Australian study indicates that the majority (80%) of individuals 

with SMDs report feeling lonely during the past 12 months (90, 108, 109) (Figure 1) and rank 

loneliness as being a major challenge anticipated over the next 12 months (104, 107). The 

estimated annual rate of loneliness is approximately 2.3 times higher in adults with SMDs 

compared to the general population (90, 108). However, loneliness estimates in SMDs and the 

general population vary across studies, which may be related to differences in loneliness 

measurements, time frame and sample composition (90, 103, 105-108, 110-113). Despite 

heterogeneity in methodology, studies consistently indicate that loneliness is significantly 

associated with SMDs (90, 103, 105-108, 110-113). Moreover, nearly 50% of people with 

SMDs report a need for more friends (104, 107). There is a shortage of studies comparing the 

level of loneliness across SMDs, but recent findings suggest that loneliness is particularly 

prevalent in MDD (108). Loneliness is related to poorer quality of life, functioning and recovery 
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in SMDs (114-116). Loneliness is also associated with higher levels of symptoms, especially 

depressive symptoms, but also anxiety and psychotic symptoms (93, 113, 117-119), 

highlighting the clinical relevance of loneliness.  

  

In the last 12 months, have you felt lonely? 

Figure 1. Distribution of responses (%) to a loneliness measure across different severe 

mental disorders. Individuals were classified as “lonely” if they gave a response of 2, 3 or 

4 to the loneliness question, yielding a total of ca. 80% identified as feeling lonely. Original 

figure from Badcock et al. 2015 (108); figure adapted by Badcock & Morgan 2016 (109) 

(https://atlasofscience.org/loneliness-matters-for-people-with-psychotic-disorders/) 
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5.2.4 Etiology and disease mechanisms 

Despite decades of research, the etiology of SMDs remains poorly understood. A multifactorial 

model is thought to best fit the current knowledge, in which a complex interplay between 

genetic and environmental factors interferes with brain development, especially synaptic 

formation and connectivity (39, 120, 121). These brain changes can lead to aberrant information 

processing and influence behaviour, thereby increasing the risk of SMDs (39, 120, 121). The 

risk factors are organized in a biopsychosocial model described below. First, a description of 

the human genome is provided as a basis for understanding the complex etiology of SMDs and 

study II and III.  

 

Genetic risk factors  

The human genome contains 3.2 billion base pairs across 23 pairs of chromosomes. The first 

sequencing of the human genome was published in 2001 (122), and around 21 000 protein-

coding genes have been detected, each with its own position on the chromosome (i.e., locus) 

(123, 124). People are ca. 99.5% identical in their genetic makeup; that is what makes us human 

(125, 126). Thus, only ~0.5% of the genome differs across individuals, yet this variance plays 

an important role in making each individual unique and accounts for individual differences in 

human traits and disease susceptibility (127). The most common type of genetic variation (or 

allele) is single nucleotide polymorphism (SNP): variation in a single base pair with a frequency 

of >1% in a certain population (128). Most complex traits and diseases are polygenic, i.e., 

influenced by several SNPs, each with a small effect (129) (130). Given the relatively small 

number of genes and high number of human traits and diseases, some genes must influence 

several phenotypes, i.e., exhibit pleiotropy (130). Identifying the degree to which complex 

human phenotypes share a genetic basis is important to understand the etiology of phenotypic 

associations, which can form the basis for disease classification and progress in prevention and 

treatment (130, 131). 

Twin and family studies have revealed that SCZ, BD and MDD are influenced by 

genetic factors with heritability estimates of 0.6-0.8 for SCZ and BD (132), while the 

heritability of MDD is approximately 0.3-0.4 (133). There is considerable genetic overlap 

between SCZ and BD with a genetic correlation (rg) of 0.6-0.7, and moderate genetic 

correlation between SCZ and MDD (rg=0.4) and BD and MDD (rg=0.5) (25). Genome-wide 

association studies (GWASs) have offered new insights into the aetiology of these disorders 

(134, 135). GWASs search the genome for genetic variations (typically SNPs) associated with 
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a given phenotype (e.g., SCZ) by comparing the genotype frequency in cases (patients) and 

controls. GWASs have revealed that the genetic architecture of SMDs is highly polygenic, 

influenced by numerous common genetic variants that each have a small effect (136-138). 

Recent large GWASs have identified several individual loci associated with SMDs (136-138), 

but the identified risk loci explain only a small fraction of the total heritability (136-138). Thus, 

a substantial proportion of the heritability remains to be discovered, referred to as the “missing 

heritability” (139). Further, some of the genetic variants are specific to each SMD, while a 

considerable proportion of the variants are shared between the disorders, especially between 

SCZ and BD (140-142). The identified risk loci are implicated in neurodevelopment, neuronal 

excitability and synaptic function (136-138), consistent with leading hypotheses of 

pathophysiological mechanisms (see below) (120). In addition, the risk loci have been linked 

to immune-related genes (136-138), providing support for the proposed link between the 

immune system and SMDs (see below) (143).  

 

Environmental factors  

Current models of the aetiology of SMDs propose that early life stressors and other 

environmental factors experienced by genetically vulnerable individuals interfere with 

development of the nervous system, thus increasing the risk of SMDs (39, 120, 121). In line 

with this hypothesis, SMDs are commonly preceded by early life events that are likely to 

interfere with brain development. In particular, prenatal insults (e.g., maternal stress, maternal 

infections and nutritional deficiency), birth complications, childhood trauma (e.g., abuse or 

neglect) and socioeconomic disadvantage at critical stages of development are related to 

increased risk of SMDs (39, 40, 120, 121). In addition, evidence points to substance use, 

especially of cannabis, in adolescence as a risk factor for SMDs (39, 40, 120, 121). 

Further, while loneliness may be a consequence of living with a SMD, recent evidence 

suggests that loneliness also can occur prior to illness onset and raise the likelihood of SMDs 

(105, 118, 144, 145). For instance, loneliness predicts depressive symptoms and an increased 

tendency to experience paranoid beliefs (100, 144, 145). In addition, loneliness is found to be 

prevalent in the prodromal period preceding psychosis, among individuals with high risk of 

psychosis (146, 147) and in the first episode of psychosis (148). Limited social support, which 

is an important source of loneliness (149), is also associated with first episode of psychosis (91, 

148, 150). To explain the mechanisms whereby loneliness can contribute to adverse health 

effects, Hawkley and Cacioppo (100) proposed a model where loneliness increases the 
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motivation to connect with others, but also elicits a hypervigilance for social threats (e.g., 

rejection), which can harm social interactions. This hypervigilance may introduce negative 

cognitive biases, including a tendency to except negative social events, interpret the social 

environment more negatively and remember more unpleasant social interactions (100) (151). 

These cognitive biases can create self-fulfilling prophecies in which lonely individuals engage 

in behaviours that cause more negative interactions, thereby confirming their initial beliefs and 

providing a sense of little personal control (100, 151). This viscous cycle can exacerbate the 

feeling of loneliness and, thus, put individuals at risk for continuing feeling lonely (100, 151). 

Hawkley and Cacioppo propose that this self-reinforcing loneliness loop is accompanied by 

feelings of stress, pessimism and reduced self-esteem and associated with neurobiological 

changes (e.g., elevated cortisol) and behaviour (e.g.. social withdrawal) that contribute to the 

development of mental disorders (151). Accumulating research suggests associations between 

loneliness and negative cognitive biases, behavioural (e.g., withdrawal) and emotional 

characteristics (e.g., stress, lower self-esteem), cortisol dysregulation as well as symptoms of 

mental disorders (e.g., depressive symptoms, anxiety and paranoia) (100, 118, 144, 145, 151). 

However, the causality and the etiology of these associations remain largely unknown. It is 

uncertain whether loneliness in itself causes these behavioural, psychological and physiological 

changes or vice versa. Longitudinal studies indicate that loneliness predicts depressive 

symptoms and paranoia (100, 152, 153) and onset of MDD after adjustment for 

sociodemographic factors (105, 154). Nevertheless, the relationship between loneliness and 

SMDs can be bidirectional (152) and influenced by common antecedents. 

The co-occurrence of SMDs and loneliness may be due to environmental factors, such 

as limited social network and support, childhood trauma, socioeconomic challenges (e.g., 

unemployment) and stigma (93, 104, 106, 107, 155). In addition, the high prevalence of 

loneliness in SMDs may be related to genetic influence. The estimated heritability of loneliness 

is 40-50% (156), and recent work indicates that some of the same genetic factors influencing 

loneliness may also affect the risk for SMDs, particularly MDD (157, 158). A large GWAS 

(n=452 302) identified a positive genetic correlation between loneliness and MDD (rg=0.61) 

(157), similar to another study (158). This GWAS also observed significant genetic correlation 

between loneliness and SCZ (rg=0.17), but not with BD (157). However, the absent genetic 

association with BD does not necessarily imply lack of genetic overlap since a significant 

genetic correlation relies on consistent effect direction of the shared genetic variants (159). The 

lack of genetic correlation may reflect mixed effect directions of the overlapping variants (159), 
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which requires further investigation with appropriate methods (see section 5.4). Further studies 

are needed to elucidate the role of loneliness in the development of SMDs and the mechanisms 

underlying this relationship. 

 

Pathophysiological mechanisms  

The pathophysiology of SMDs remains unclear and several theories has been proposed to 

explain possible underlying mechanisms (39, 120, 121). Together, the theories point to a 

complex multifactorial origin involving disruption of different neurobiological systems and 

mechanisms (39, 120, 121). In particular, early life adversity can lead to enduring effects on 

brain and stress regulatory systems, including the hypothalamic pituitary adrenal (HPA) axis, 

that render the individual more vulnerable to stress experienced later in life (160). The HPA 

axis is a neuroendocrine system responsible for a cascade of hormonal events that begins in the 

brain and ends with release of glucocorticoids, such as cortisol, in response to stress. Increased 

cortisol mobilizes glucose for energy and decreases inflammation, thereby preparing for 

effective management of stress (161). The stress-induced cortisol secretion is adaptive in the 

short-term, while excessive or prolonged cortisol secretion can lead to HPA axis dysregulation 

and adverse health effects (161). Dysregulation of the HPA axis are reported in SMDs and 

assumed to play a key role in the etiology of these disorders (160, 162, 163). Moreover, elevated 

baseline levels of cortisol are observed in individuals with SMDs (160, 162) and predict 

transition to psychosis in people at high clinical risk of psychosis in some studies (160, 164). 

In addition to effects on the neuroendocrine system, early life stress can contribute to other 

pathophysiological processes associated with SMDs (165, 166). In particular, SMDs are 

associated with alternations in several neurotransmitter pathways that influence the balance 

between inhibitory and excitatory states in multiple neural systems (120, 135). Evidence 

suggests dysregulation of the neurotransmitters dopamine, glutamate and GABA in the 

striatum, midbrain, hippocampus and prefrontal cortex, which may contribute to psychotic 

symptoms (120, 135). Dysregulation of multiple neurotransmitters (dopamine, serotonin, 

noradrenaline, GABA, glutamate) and brain networks (e.g., prefrontal-limbic networks) are 

also implicated in the pathophysiology of affective symptoms (167, 168). Moreover, 

neuroimaging studies demonstrate that SMDs are associated with structural brain changes, 

including ventricular enlargement, reduced cortical thickness, decreased grey matter volume in 

several brain regions (e.g., frontotemporal regions) and white matter integrity deficits (135, 

167-170). Altered brain function and structure are assumed to reflect aberrant 
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neurodevelopment and progress after exposure to antipsychotics and other illness-related 

factors (135, 167-170). Furthermore, inflammation has been implicated in the pathogenesis of 

SMDs (171). Studies have found abnormal levels of inflammatory markers in SMD patients 

(171), and epidemiological studies suggest that infections and auto-immune disease increase 

the risk of SMDs (172, 173).  

  

5.2.5 Treatment  

The limited understanding of the etiology and pathophysiology of SMDs has impeded 

development of effective treatment programs. Thus, treatment of SMDs remains a major 

challenge and full recovery is restricted to a subset of patients (174, 175). However, many 

patients benefit to some degree from interventions that are aimed at reducing symptoms and 

improving functioning and quality of life. Evidence-based guidelines recommend a 

combination of medication and psychological treatment (176-179). The primary 

pharmacological treatment of SCZ involves antipsychotics which target psychotic symptoms 

like delusions and hallucinations (180), and can prevent relapses and hospitalizations (181). 

However, antipsychotics have limited effect on negative symptoms (182) and cognitive 

impairments (183), which are strongly related to functioning (184). Antipsychotics are often 

used in conjunction with mood stabilizers or antidepressants, given the frequent co-occurrence 

of affective symptoms in SCZ (185). Mood stabilizers and antipsychotics are commonly used 

in the treatment of BD (186). Antidepressants may be used as adjunctive treatment for 

depressive episodes in BD, although their effects are supported by limited evidence (186). 

Further, the primary medication for MDD is antidepressants, which is sometimes combined 

with antipsychotics or mood stabilizers (178). While the combination of different psychotropic 

drugs may be important for adequate symptom control and improved functioning, the 

polypharmacy has raised concern owing to its adverse effects on physical illness development, 

particularly CVD (187). 

Medication should be supplemented with psychological interventions in the treatment 

of SMDs. In particular, psychotherapy in the form of cognitive behavioural therapy (CBT) is 

recommended for SCZ (176), and CBT, interpersonal therapy, psychoeducation or another 

evidence-based therapy are recommended for BD and MDD (177, 178). Further, cognitive 

training has emerged as an evidence-based intervention for cognitive impairments in SCZ 

(188). The effectiveness of cognitive training on daily functioning is enhanced when provided 

together with psychosocial rehabilitation that promote employment, learning strategies and 
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adaptive living skills (189). Additional psychosocial interventions are considered important, 

including social skills training, family psychoeducation, and supported socialization (peer 

support groups) (190-192). Despite evidence of their positive effects on symptoms and 

functioning, these psychosocial interventions are inaccessible to large proportion of individuals 

with SMDs (190-192). Further, while many psychosocial approaches are aimed at increasing 

social network and social participation, there is a paucity of interventions that specially target 

the subjective feeling of loneliness (192, 193), which is further elaborated in the discussion of 

the findings in the current thesis. Finally, electroconvulsive therapy may be a treatment option 

for severe depression that has not responded to other treatments (178). 

 

5.3 Cardiovascular disease comorbidity  

Patients with SMDs have 15-20 years shorter life span compared to the general population, 

largely due to CVD (4, 34-37). The most common types of CVDs are coronary artery disease 

(CAD) and cerebrovascular disease, which involves reduced blood supply to the heart and 

brain, respectively (4). People with SMDs have on average 2-3 fold higher risk of CVD 

morbidity and mortality than the general population (4, 34-37). Moreover, patients with SCZ 

have a 3-fold greater risk of sudden cardiac death than the general population (194), and 

myocardial infarction accounts for over half of the cases (195). Studies indicate nearly twice as 

high risk of sudden cardiac death in BD and MDD compared to the general population (196, 

197). The enhanced CVD risk in SMDs is largely attributed to raised levels of modifiable risk 

factors for CVD, including smoking, obesity, hypertension, type 2 diabetes (T2D), dyslipidemia 

as well as metabolic syndrome (MetS) (4, 82, 198, 199). MetS is a combination of metabolic 

abnormalities applied by clinicians to identify high-risk individuals for CVD at an early stage, 

enabling prevention of disease development (elaborated under the method section of study I) 

(200). Possible factors contributing to the raised level of CVD risk in SMDs are discussed after 

a presentation of temporal trends in CVD based on evidence that existed prior to this thesis. 

 

5.3.1 Cardiovascular disease mortality and morbidity in the past decades  

There has been a steady increase in life expectancy of the general population during the past 

decades (201). In the same time period, there has been several public health campaigns for 

health promotion and disease prevention (202), tobacco legislation has become stricter (203) 

and advances in medicine have been made (204-206). In particular, there has been improvement 

in hypertension treatment and control, increased use of statins to lower cholesterol, along with 
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development and timely use of thrombolysis (to dissolve blood clots in blood vessels) and stents 

(to widen blocked coronary arteries) to prevent infarction (204-206). These strategies appear to 

have contributed to improved public health. In the general population of Norway and other 

Western countries, the CVD mortality has decreased since the 1980s (206, 207). Similarly, the 

level of CVD related morbidity has reduced substantially over the last decades despite an 

increase in overweight and the prevalence of T2D in the general population (206, 208-210). 

Several studies suggest that the progress in life expectancy does not extend to patients with 

SMDs, and the mortality gap between patients and the general population has widened during 

the last decades (79, 211, 212). However, some data suggest that the longevity of patients with 

SMDs has improved over the past 20-30 years; however, this improvement is mainly due to a 

reduction in deaths from suicide and accidents, while CVD mortality show increasing trends 

(213). A recent Norwegian study replicated the findings of excess mortality in patients with 

SCZ compared to the general population, with CVD and cancer being the main causes of death 

(214). Altogether, current evidence suggests that CVD remains the leading cause of premature 

death in SMDs. However, at the time of planning the current PhD project, it was still unknown 

to what degree the level of CVD risk factors in patients with SMDs has remained high after 

several health promotion efforts the last decades. Recent findings suggest that the risk level is 

still higher in these patients compared to the general population. For instance, one study from 

England reported twice as high levels of CVD risk factors, including T2D, hyperlipidaemia and 

obesity, in patients with SCZ and BD compared to healthy controls (215). However, studies 

examining changes in CVD risk levels among patients during the past decade were lacking prior 

to this thesis. 

 

5.3.2 Possible contributing factors  

The etiology of CVD comorbidity in SMDs is poorly understood, but it is likely to involve an 

interplay of multiple genetic and environmental factors (4, 10). More specifically, the comorbid 

CVD appears to be associated with lifestyle factors, side-effects of pharmacological 

medication, inadequate somatic health care, loneliness and stressful experiences, which interact 

with genetic factors (4, 10, 216). These possible contributors to the CVD comorbidity are 

elaborated below.   

 

Lifestyle factors 
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Unhealthy lifestyle factors, including tobacco smoking, excessive alcohol use, unhealthy diet 

and physical inactivity are all major contributors to CVD and are more prevalent in patients 

with SMDs compared to the general population (4, 10). In particular, studies suggest that 60-

80 % of patients with SCZ smoke compared to 10-35 % in the general population (217, 218). 

The prevalence of smoking in BD and MDD is reportedly lower than in SCZ, yet still 2-3 times 

higher than in the general population (219-221). Similarly, smoking heavily (over 20 cigarettes 

a day) is more common in individuals with SMDs, and they are less likely to quit smoking (218, 

219). Alcohol intake at hazardous levels and use of illegal drugs (especially cannabis, stimulant 

drugs and sedatives) in patients with SMDs (71-73), are also likely to exacerbate the risk of 

CVD (222). Furthermore, higher intake of saturated fat and salt and lower intake of fiber, 

vegetables and fruit are reported in patients with SMDS compared to the general population 

(217). Unhealthy diets are often accompanied by limited physical activity (10, 217).  

Poor economy, largely as a result of unemployment, may contribute to unhealthy eating 

patterns and a sedentary lifestyle by restricting access to healthy food and training facilities (10, 

223). In addition, depressive and negative symptoms, such as lack of initiative and motivation 

for activities, may limit the engagement in exercise and healthy dietary habits (10, 223). 

Furthermore, activities are often restricted during hospital admissions, and admissions of long 

duration can result in considerable reduced physical activity (10). Moreover, certain 

medications (e.g., antipsychotics and antidepressants) may increase appetite/food intake and 

lower physical activity (187). Additionally, disturbances of the reward system (mesolimbic 

pathways) and stress regulation (e.g., HPA axis) may increase the inclination to consume 

unhealthy/excessive food and use of substances to alleviate negative affective states (i.e., “self-

medicate”) (10, 224). In addition, personality variables associated with SMDs, including high 

levels of neuroticism (76, 77), can contribute to unhealthy lifestyle patterns (225). Yet another 

possible factor related to unhealthy lifestyle factors is loneliness (226), which is elaborated 

below. 

 

Adverse effects of pharmacological treatment 

In the 1950s, chlorpromazine was discovered as one of the first generation antipsychotics 

(FGAs), which provided better control of psychotic symptoms (especially positive symptoms) 

and agitation than other drugs used previously. The introduction of FGAs revolutionized 

psychiatric care by contributing to discharge from hospitals and allowed patients with SMDs to 

be treated in the community (227). However, FGAs have extrapyramidal side-effects, such as 
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tremor, muscle stiffness and tardive dyskinesia (involuntary, repetitive movements), which may 

cause considerable suffering and challenge the adherence to medication (228). Due to the 

burden of side-effects of FGAs, second generation antipsychotics (SGAs) was introduced in the 

1990s. SGAs have a lower propensity to cause extrapyramidal symptoms (229). Some studies 

also indicate that SGAs are more effective at reducing negative, cognitive and depressive 

symptoms and prevent relapse than FGAs, while others find no clear beneficial effects of SGAs 

beyond lower risk of extrapyramidal side-effects (229, 230).  

Despite the widespread use of SGAs, concerns have been raised regarding their potential 

harmful effects on the cardiovascular system (187). Many SGAs, especially clozapine and 

olanzapine, increase the risk of cardiometabolic side-effects, such as weight gain, dyslipidemia 

and diabetes (187, 231). SGAs have also been linked to raised blood pressure, but to a lesser 

extent than the above mentioned metabolic side effects (187, 231). Other psychotropic drugs 

commonly used in the treatment of SMDs are also related to elevated risk of cardiometabolic 

disturbances. Some antidepressants (including paroxetine and mirtazapine) and mood 

stabilizers (including lithium and valproate) are associated with weight gain, yet less so than 

clozapine and olanzapine (187). Most antidepressants and mood stabilizers have not been 

associated with dyslipidemia, although weight gain is a risk factor for lipid abnormalities (187). 

Evidence regarding the effect of antidepressants on diabetes is inconclusive, while certain mood 

stabilizers, especially valproate, have been associated with elevated risk of insulin resistance 

(187, 232). Some antidepressants are associated with increased blood pressure, while mood 

stabilizers do generally not seem to affect blood pressure (187, 232). Furthermore, 

antipsychotics and some antidepressant are associated with greater risk of life-threatening 

ventricular arrhythmia (especially torsades de pointes) and sudden cardiac death (187, 233).  

In general, antipsychotics, and to a more restricted degree antidepressants and mood 

stabilizers, are associated with increased risk of cardiometabolic disturbances and arrhythmia 

(187, 233). These adverse effects appear to increase with higher dosages, polypharmacy and 

treatment of vulnerable individuals (e.g., young, old and genetically susceptible people) (187). 

Nevertheless, several large studies have reported that all-cause mortality is higher in patients 

not using antipsychotics (234, 235). Better somatic health care, reduced stress and lower suicide 

risk in patients receiving antipsychotics may possibly contribute to this finding of reduced 

mortality (234). However, the role of antipsychotics and the mechanisms through which they 

influence mortality continues to be debated (10). Likewise, the reasons for cardiometabolic 

side-effects of some antidepressant and mood stabilizers remain unclear (231). 
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Possible shared genetic and pathophysiological mechanisms 

The biological mechanisms underlying the comorbidity between SMDs and CVD are complex 

and poorly understood. Emerging evidence indicates potential shared genetic and 

pathophysiologic factors influencing SMDs and CVD. Thus, it has been proposed that common 

genetic factors may predispose to both SMDs and CVD. In line with this hypothesis, genetic 

variants that increase the risk of T2D are found to also confer increased risk of SCZ (236-238). 

Recent studies have also revealed overlapping genetic loci between SCZ and other CVD risk 

factors, including body mass index (BMI), lipids, waist-to-hip ratio and blood pressure (131, 

239). These findings point to shared genetic factors that may play a role in the CVD 

comorbidity in SCZ (10). Thus, some of the raised CVD risk may be inherent to the mental 

illness, which can help explain the early observations of increased diabetes risk in these patients 

in the pre-antipsychotic era (5, 6, 240). In addition, a vulnerability to metabolic disturbances is 

consistent with findings in unmedicated first-episode SCZ patients suggesting raised levels of 

insulin resistance, T2D, dyslipidemia, hypertension and obesity, compared to healthy controls 

(241-243). However, there are some discrepant findings, including indications of low BMI as 

a risk factor for SCZ (244, 245) and higher prevalence of both underweight and overweight in 

SCZ compared to the general population (246). The link between SCZ and low BMI was 

recently supported by genetic studies reporting a negative genetic correlation between SCZ and 

BMI (159, 247). Although the estimated genetic correlation is low (rg< -0.1), the negative value 

may suggest that SCZ is genetically predisposed to lower BMI (247). Further, some studies 

report comparable levels of T2D and hyperglycemia in young unmedicated patients with SCZ 

and population samples (248). Nevertheless, several studies suggest increased risk of T2D in 

first-degree relatives of patients with SCZ (249-251), indicating a familial, possible genetic, 

link between T2D and SCZ. The conflicting findings regarding T2D risk may reflect the 

heterogeneity of SCZ, demonstrated at phenotypic, genetic and molecular levels (252). In 

support of this, recent molecular studies indicate abnormalities in glucose metabolism and 

insulin signaling pathways in subgroups of unmedicated patients with SCZ, suggesting an 

underlying metabolic vulnerability in some patients (252). Nevertheless, further investigation 

is necessary to elucidate the genetic relationship between SCZ and CVD risk factors. 

Although there are few studies of drug-naïve first episode patients with BD and MDD, 

some recent findings do suggest that cardiometabolic disturbances extend to these diagnostic 

groups prior to pharmacological treatment (253-255). Likewise, family studies suggest higher 
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prevalence of T2D, hyperlipidemia and hypertension among first-degree relatives of people 

with MDD and BD (250, 256), which raises the possibility of a genetic susceptibility to CVD 

in these affective disorders. Moreover, evidence indicates some overlap in genetic risk factors 

that increase the liability to MDD and CVD (137, 257). For instance, Wray et al. discovered 

positive genetic correlations between MD and BMI and CAD (137). Although the genetic 

correlations were modest (rg=0.09-0.12), the results indicate that some of the genetic variants 

that predispose to MD overlap with those influencing CVD risk (137). Further, a systematic 

review of GWASs implicated potential overlapping genes associated with affective disorders 

(MDD and BD) and CVD risk factors (T2D, obesity, raised blood pressure and lipid levels) and 

CAD (258). These findings may suggest shared genetic mechanisms between MDD, BD and 

CVD; however, limited replication of some of the candidate genes demonstrates the need for 

future studies (258).  

There is little research that focuses specifically on the putative genetic relationship 

between BD and CVD prior to this thesis. Two recent studies reported no significant genetic 

correlation between BD and CVD risk factors, using linkage disequilibrium score regression 

(LDSR) (159, 259). Importantly, this does not preclude genetic overlap between BD and CVD-

related morbidity because a significant genetic correlation estimated with LDSR requires 

consistent effect directions of the shared variants between the phenotypes (159). As illustrated 

in Figure 2, the genetic relationship between two phenotypes can be characterized by a positive 

correlation, a negative correlation or genetic overlap without correlation (135). Two phenotypes 

that are not genetically correlated may still share several genetic variants if they possess a 

balanced mixture of agonistic and antagonistic allelic effect directions (Figure 2) (135). 

Increasing evidence suggests a pattern of mixed direction of effects among shared genetic 

variants between pairs of complex phenotypes (131, 140, 260). BD is a heterogeneous disorder 

with a complex genetic basis (138), and considerable individual variation in CVD risk factors 

is observed (82, 261), possibly indicating clinical subgroups with different vulnerability to 

CVD (elaborated under discussion of main findings). Thus, the absence of an overall genetic 

correlation between BD and CVD risk factors may be due to mixed effect directions of shared 

variants. Indeed, a recent study (published prior to study III of the current PhD project), revealed 

multiple shared loci between BD and BMI with a mixture of directional effects (262). The 

findings indicate that some genetic variants are associated with higher risk of both BD and 

obesity, while other variants are associated with higher risk of BD and lower risk of obesity, 

and vice versa.  
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The mixed effect directions ‘cancel each other out’, resulting in a non-significant genetic 

correlation between BD and BMI (262). However, whether BD shares genetic loci with other 

CVD risk factors or CAD remains unknown.  

  

Figure 2. A comparison of genetic overlap and genetic correlation. The genetic relationship 

between two phenotypes can be characterized as a positive correlation, a negative correlation or 

an overlap without correlation. a) A positive correlation requires a majority of shared variants 

with agonistic allelic effects (arrows with the same directions). b) An inverse correlation requires 

a majority of shared variants with antagonistic allelic effects (arrows with opposite directions). c, 

d) Absent genetic correlation can indicate either no genetic overlap (c) or shared variants with a 

balanced mixture of agonistic and antagonistic effects (d). Genetic overlap exists when the same 

variant is associated with both phenotypes (dashed rectangles). The effect directions are only 

shown for shared variants. Figure reprinted from Smeland et al. 2020 (135). 
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Furthermore, findings suggest that there may be overlapping pathophysiology between 

SMDs and CVD. Dysregulation of the HPA axis have been implicated in both SMDs (160, 162) 

and CVD-related morbidity (263). Increased cortisol levels are reported in patients with SMDs 

(160, 162) and associated with CVD risk factors, including obesity, hypertension and 

dyslipidemia (264). Prolonged secretion of glucocorticoids can desensitize glucocorticoid 

receptors and disrupt the negative feedback mechanism responsible for terminating the HPA 

axis response to stress (265, 266). Such changes can sustain the HPA axis activation and 

interfere with regulation of inflammation, although the precise mechanisms involved need to 

be further elucidated (265, 266). Thus, HPA axis dysregulation can increase inflammation, 

thereby contributing to atherosclerosis (i.e., build-up of plaque and narrowing of arteries), 

which plays an important role in the development of CAD and other CVDs (263). Inflammation 

is also implicated in the pathogenesis of SMDs (171, 267) and may thus be a relevant 

mechanism linking SMDs to CVD (268). In addition, dysfunction of the autonomic nervous 

system is observed in patients with SMDs and is associated with elevated risk of CVD (269-

271). For instance, individuals with MDD have higher levels of circulating catecholamines, 

indicating sympathetic activation, causing increased heart rate and blood pressure (270-272). 

Continued hyperactivity of the sympathetic system increases the risk of CVD (273). Patients 

with SMDs have also shown reduced heart rate variability, which is indicative of autonomic 

dysfunction (269, 270), and predicts increased risk of CVD (272). Furthermore, 

neurotransmitters (e.g., dopamine, serotonin and histamine) that are proposed to play a central 

role in the pathogenesis of SMDs (10, 120), also influence glucose and lipid metabolism as well 

as food intake and obesity (274, 275). Therefore, neurotransmitter imbalance may be another 

potential mechanism associated with the CVD comorbidity in SMDs (10, 258). Still, many 

aspects of the pathophysiology of the CVD comorbidity remain unclear. 

 

Inadequate somatic health care  

Even though patients with SMDs are at increased risk of CVD and other somatic diseases that 

require clinical attention, they are less likely to receive adequate physical health care than the 

general population (276, 277). Screening, assessment and treatment of CVD related morbidity 

in patients with SMDs fall below agreed standards and are well below that received by the 

general population (276, 277). For instance, regular monitoring of glucose, lipid levels and 

blood pressure is seldom, and patients with SMDs are less likely to receive adequate treatment 

of T2D, dyslipidaemia and hypertension (276-278). These health care disparities are likely the 



   
 

39 

 

result of several factors, such as patients’ reluctance to seek somatic health care due to 

symptoms (e.g., affective or motivational symptoms, suspicion), problems communicating 

physical needs, poorer compliance with treatment and socioeconomic disadvantages (276). In 

addition, reduced pain sensitivity is reported in SCZ, despite suffering from painful acute 

medical conditions, such as myocardial infarction, which may result in severe conditions going 

undiagnosed (279). Apart from patient-related factors, poor collaboration between mental 

health and primary care providers appears to play an important role, causing confusion about 

who is responsible for the assessment of the physical health (e.g., the psychiatrist or the primary 

care physician) (276). Another contributing factor to inadequate somatic care may be a tendency 

to focus little on the physical health of patients in mental health clinics (276). Accordingly, 

there is an increased risk of serious somatic conditions remaining undetected and inadequately 

treated in SMD patients (276-278). 

   

Loneliness 

More recently, loneliness has emerged as a likely factor contributing to CVD in SMDs (103, 

216). A number of studies indicate that loneliness is associated with increased risk for 

premature death and CVD morbidity, even after controlling for factors such as health-related 

behavior, age, gender, marital status and depressive symptoms (102, 280-283). A meta-analysis 

of longitudinal studies estimated that the influence of deficient social relationships on mortality 

is comparable with well-established risk factors such as smoking, and exceeds the risk 

associated with obesity and hypertension (281). Another meta-analytic review of longitudinal 

research suggests that loneliness is associated with ~30% increased risk of CAD (283). 

Moreover, loneliness predicts a number of CVD risk factors, including hypertension, obesity 

and MetS in population studies (284, 285) and studies of patients with SMDs (103, 216). Taken 

together with evidence of loneliness being a common issue in SMDs (90, 103-107), loneliness 

appears to represent an important mechanism that can contribute to increased CVD risk in 

SMDs. However, while current evidence suggests an association between loneliness and CVD 

comorbidity, the directionality of this association is unclear, and a bidirectional relationship is 

possible. For instance, stigma and reduced self-esteem associated with obesity can contribute 

to social withdrawal and increased loneliness (216). Further, it has been proposed that 

loneliness and social relationships influence CVD risk and mortality via multiple pathways, 

including indirectly by influencing health behaviour and psychological mechanisms, and 

through direct effects on physiological systems (e.g., neuroendocrine, immune and autonomic 



   
 

40 

 

nerve system) (100, 286). In particular, feeling lonely is associated with lifestyle factors 

(physical inactivity, unhealthy nutrition, smoking) and poorer treatment adherence and 

cooperation (226, 287). Loneliness is also accompanied by greater levels of perceived stress, 

depressive symptoms and diminished capacity for self-regulation (i.e., ability to regulate 

thoughts, feelings and behavior) (100, 288), rendering lonely individuals more vulnerable to 

stress (100). Finally, loneliness is associated with physiological changes, including activation 

of the HPA axis and the sympathetic nervous system along with increased inflammation (100, 

286). Together, these processes can increase the risk of developing CVD in lonely individuals.  

Loneliness may also be linked to CVD comorbidity in SMDs through a shared genetic 

basis with CVD and SMDs. Positive genetic correlations between loneliness and SMDs are 

reported, as described above (157, 158). In addition, a recent GWAS found a positive genetic 

correlation between loneliness and BMI, obesity and CAD (157). Although preliminary, these 

findings may suggest genetic contributions to the co-occurrence of loneliness, SMDs and CVD, 

which deserves further investigation.  

 

Stressful life events 

The CVD comorbidity is also likely related to stressful life events, including childhood trauma, 

that are frequently reported by individuals with SMDs (289). Several studies have shown that 

traumatic events are associated with cardiometabolic disturbances in the general population and 

among individuals with post-traumatic stress disorder (290, 291). More recently, studies 

focusing on SMD patients also suggest that childhood trauma is related to CVD comorbidity 

(292, 293). Furthermore, patients with SMDs are more likely to occupy lower socioeconomic 

positions (e.g., lower income level, educational attainment and employment status) than healthy 

controls (294, 295), which is associated with stressful conditions, including economic strain, 

insecure employment and discrimination (296). Additional stress comes from the symptoms of 

the SMDs. For instance, symptoms such as paranoia and hallucinations may be inherently 

stressful (297). The enduring exposure to stress, combined with limited availability of resources 

to alleviate stress (e.g., limited social support and coping strategies), can contribute to the 

elevated CVD risk in SMDs. Similar to loneliness, stress is proposed to increase the risk of 

CVD through indirect (e.g., lifestyle, sleep) and direct pathways involving dysregulation of the 

HPA axis, immune system and autonomic nervous system (298). 

 

A conceptual framework 
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The overarching theoretical framework for understanding the comorbidity between SMDs and 

CVD used in the current PhD project is illustrated in Figure 3. This framework posits that 

genetic predisposition, together with environmental risk factors, such as stressors and trauma, 

can lead to brain dysfunctions influencing the development of SMDs and CVD, possibly 

through loneliness and lifestyle. There may also be a direct pathway from brain dysfunction to 

development of SMDs. The relationship between SMDs, CVD, and loneliness and lifestyle can 

be bidirectional (as indicated by the arrows). In addition, side-effects of medication and 

inadequate somatic health contribute to the cardiometabolic disturbances. In this model, we 

further postulate pleiotropy, i.e., that there may be some genetic variants jointly influencing 

cardiometabolic disturbances and brain functions that affect the risk of developing SMDs as 

well as behavioral and psychological risk factors (e.g., loneliness and lifestyle). This conceptual  

 

 

 

 

 

 

 

  

Figure 3. Conceptual framework. Genetic susceptibility and interplay with environmental risk 

factors, such as stress/trauma, can lead to brain dysfunctions influencing the development of 

SMDs and CVD, possibly through loneliness and lifestyle. SMDs may also develop directly from 

brain dysfunctions. Bidirectional relationships between the variables are possible, and there may 

be a direct link between SMDs and CVD (as indicated by the arrows). Other pathways (e.g. genes 

affecting cardiometabolic disturbances) are also possible. In addition, side-effects of medication 

and inadequate somatic health contribute to the CVD comorbidity. 
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framework builds on the idea that the genotype can modify the environmental risk for disease 

development. Thus, rather than simply influencing disease risk directly, genetic variants may 

influence risk indirectly through behavioral and psychological characteristics that put 

individuals at a higher environmental risk for disease development. This concept is based on 

findings of a genetic variant associated with smoking more and difficulties with smoking 

cessation (299). Individuals who carry this genetic variant display substantially higher risk of 

developing CVD and lung cancer (299). These results underscore the complex interplay 

between genetics and environmental factors and illustrate that genetic variants influencing the 

tendency to seek or avoid environmental risk (e.g., smoking), also influence the risk for 

developing disease. This provides an example of active gene-environment correlations in which 

individuals influence aspects of their environment in part based on their genetic propensities 

(300).  

This perspective can be extended to include loneliness. While loneliness is not an 

environmental factor per se, it is a complex phenotype associated with psychological and 

behavioral aspects (100, 151) that may be related to a heightened environmental risk (e.g., poor 

social relationships, social isolation, lifestyle) (95, 100, 149, 226) for SMDs and CVD. As 

described above, recent findings implicate genetic variants influencing the propensity to 

loneliness and positive genetic correlations between loneliness and SMDs, BMI and CAD (157, 

158). These observations warrant further investigation.  

5.4 Novel statistical tools to assess genetic overlap 

Most studies of genetic overlap between two phenotypes focus on estimating genetic 

correlations (25, 135, 157-159). While measures of genetic correlation can be useful to elucidate 

the overall degree of genetic overlap (301), they fail to capture polygenic overlap if the shared 

variants possess a balanced mixture of agonistic and antagonistic effect directions (135). 

Accordingly, to obtain a comprehensive understanding of the genetic relationship between 

traits, measures of genetic correlation should be complemented with tools that allow for the 

discovery of shared variants regardless of their effect directions (135). Two novel statistical 

tools, including bivariate causal mixture model (MiXeR) (302) and conditional/conjunctional 

false discovery rate (cond/conjFDR) (303), can discover shared variants irrespective of effect 

direction. MiXeR estimates the total number of shared genetic variants, thereby enabling the 

identification of shared genetic architecture beyond genetic correlation (302). MiXeR has 



   
 

43 

 

revealed substantial genetic overlap between SMDs and brain-related phenotypes (e.g., 

attention-deficit/hyperactivity disorder (ADHD), education) despite low or absent genetic 

correlation (135, 302) (Figure 4).  

The cond/conjFDR approach can detect individual overlapping loci (303). The condFDR 

method builds on Bayesian statistics and increases the power to identify loci associated with a 

primary phenotype (e.g., BD) by leveraging associations with a conditional phenotype (e.g., 

BMI). ConjFDR is an extension of condFDR and can detect loci jointly associated with two 

phenotypes (303). The first step in the cond/conjFDR procedure is to construct conditional 

quantile–quantile (Q–Q) plots. The conditional Q-Q plots visualize overlap in SNPs 

associations (i.e., cross-trait enrichment) as successive leftward shifts from the null distribution 

(diagonal line in Figure 5) (262, 303). Figure 5a presents conditional Q-Q plot demonstrating 

genetic enrichment in BD conditional on associations with BMI, suggesting polygenic overlap. 

The reverse conditional Q-Q plot also display enrichment in BMI conditional on associations 

with BD (Figure 5b). The plots come from a recent study using cond/conjFDR uncovering 

several shared loci between BD and BMI with a mixture of directional effects (described above) 

(262). The results illustrate the utility of the cond/conjFDR approach to discover polygenic 

Figure 4. Venn diagrams of shared and unique variants. Venn diagrams showing polygenic 

overlap (blue) between a) schizophrenia (green) and attention-deficit/hyperactivity disorder (ADHD) 

(yellow), and b) educational attainment (yellow). The numbers indicate the estimated quantity of 

genetic variants (in thousands) per component, explaining 90% of SNP heritability in each 

phenotype, followed by the standard error. The size of the circles reflects the degree of polygenicity. 

r
g
 denotes the genetic correlation. Figures reprinted from Smeland et al. 2020 (135). 
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overlap despite no significant genetic correlation. Together, MiXeR and cond/conjFDR provide 

novel avenues to investigate the genetic relationship between SMDs, loneliness and CVD. 

5.5 Knowledge gaps  

In summary, patients with SMD have a high risk of CVD, contributing to substantially reduced 

life expectancy. While the CVD risk has decreased in the general population during the last 

decade, it is unknown whether patients with SMDs have experienced a reduction in CVD risk 

factors. Thus, it is unknown whether recent health promotion efforts and preventive strategies 

have benefitted patients with SMDs in terms of CVD risk. Furthermore, the factors contributing 

to the CVD comorbidity remain poorly understood, yet lifestyle factors and side-effects of 

medication are likely contributors. Current evidence has also established a link between 

loneliness and increased CVD risk, and loneliness is highly prevalent in SMDs. Still, the 

mechanisms underlying the co-occurrence of loneliness and CVD in SMDs are unknown. 

Preliminary findings indicate that genetic susceptibility to both loneliness and CVD may 

contribute to the comorbidity. However, whether loneliness shares genetic underpinnings with 

Figure 5. Conditional Q–Q plot displaying the a) nominal −log10p values of the single SNP 

association statistics versus their empirical distribution in bipolar disorder (BIP) below the standard 

GWAS threshold of p < 5×10−8 as a function of significance of association with body mass index 

(BMI) at the level of p ≤ 0.1, p ≤ 0.01, p ≤ 0.001, respectively. b) The reverse conditional Q-Q plots 

display the nominal −log10p values of the single SNP association statistics versus their empirical 

distribution in BMI below the standard GWAS threshold of p < 5×10−8 as a function of significance 

of association with BIP at the level of p ≤ 0.1, p ≤ 0.01, p ≤ 0.001, respectively. The blue line indicates 

all SNPs. The dashed line indicates the null hypothesis. Figure reprinted from Bahrami et al. 2020 

(262). 
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SMDs and CVD remains to be clarified. The genetic relationship between these phenotypes is 

likely complex and a genetic vulnerability to loneliness may differ across diagnostic groups, as 

suggested by different levels of genetic correlations. Moreover, little research has focused on 

the putative genetic relationships between BD and CVD. Although BD demonstrates no genetic 

correlation with CVD risk factors or CAD, genetic overlap between BD and CVD is possible. 

Genetic correlation (LDSR) can obscure genetic overlap if the shared variants have mixed 

directional effects (135, 159). In addition, measures of genetic correlation do not specify the 

individual genetic variants that may be involved (135, 159). These limitations of LDSR 

highlight the need for combining the genetic correlation measure with tools that allow for the 

discovery of genetic overlap and shared variants regardless of their effect directions, such as 

MiXeR (302) and cond/conjFDR (303). 
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6 AIMS 

The main aim of the thesis was to increase knowledge about the CVD risk levels and possible 

underlying mechanisms in SMDs. Therefore, we investigated 1) CVD risk levels in two patient 

samples with SCZ and BD and healthy controls and the general population, 2) whether 

loneliness shares genetic variants with SMDs and CVD phenotypes, and 3) overlapping genetic 

variants between BD and CVD phenotypes.  

 

The specific study aims were: 

Study I: To investigate the level of CVD risk factors in patients with SCZ and BD recruited 

from 2002-2005 with patients recruited from 2006-2017. In addition, we compared the CVD 

risk levels in the most recent patient sample with healthy controls and the general population 

from the same time period (2006-2017). 

Study II: To investigate shared genetic architecture (i.e., estimate the total number of shared 

variants) and identify specific loci shared between loneliness, SMDs and CVD phenotypes. 

Study III: To investigate shared genetic architecture and identify specific loci shared between 

BD and CVD phenotypes.  

 

While study I focused on examining potential temporal changes in CVD risk levels in SMDs, 

study II and III aimed at elucidating underlying mechanisms of the comorbidity. MiXeR (302).  

and cond/conjFDR (303) were used to assess potential genetic underpinnings of the observed 

association between SMDs, CVD and loneliness. While long-term longitudinal studies may be 

superior for identifying mechanisms underlying the association between the phenotypes, 

performing a longitudinal study was not feasible within the time frame of the PhD project. As 

an alternative, we analyzed large GWASs with MiXeR and cond/conjFDR. These tools can 

provide novel information about the genetic architecture of SMDs, CVD and loneliness, and 

their relationships. Investigating overlap in genetic variants can help reveal shared pathobiology 

and have implications for the understanding of CVD comorbidity, which can form the basis for 

improved prevention and treatment to reduce CVD risk in SMDs. 
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7  METHODS 

7.1 Study design and ethics 

Study I is based on data from the TOP study and Statistics Norway. The TOP study includes 

data from patients with SCZ and BD recruited from the major hospitals in the Oslo area; patients 

recruited from 2002-2005 (2005 sample) was compared with patients recruited from 2006-2017 

(2017 sample). In addition, we used data from two reference groups: (1) healthy controls 

randomly recruited from the same catchment area and similar time period as the 2017 sample 

and (2) two larger samples from the Oslo general population obtained by Statistics Norway 

(224, 304-306) from similar time periods as the 2005 and 2017 samples. Study II and III are 

based on international GWASs. Written informed consent was obtained from all participants in 

the TOP study and the GWASs. The TOP study is conducted in accordance with the Helsinki 

Declaration and approved by the Regional Committee for Medical Research Ethic and the 

Norwegian Data Inspectorate. All GWASs were approved by the relevant ethics committees, 

and Regional Committees for Medical Research Ethics has evaluated the research protocol of 

the GWASs used and found that no additional institutional review board approval was 

necessary because no individual data were used. 

 

7.2 Thematically organized psychosis research (TOP) 

study 

Participants 

The TOP study is an ongoing study of SMDs that have included participants since 2002.  

Participants are referred by their clinician (medical doctor or psychologist) and come from 

mental health clinics of the major hospitals in Oslo, currently covering a catchment area of 88% 

of the city's total population. These hospitals are located in different parts of the city, and are 

representative of the Oslo’s variation in sociodemographic characteristics. To be eligible to the 

TOP study, the participants had to meet the inclusion criteria of a DSM-IV diagnosis of 

schizophrenia or other psychotic disorder (schizoaffective disorder, schizophreniform disorder, 

psychosis NOS or delusional disorder), BD type I, BD type II, BD NOS, age between 18-65 

years and ability to give written informed consent. Participants were excluded in case of 

pronounced cognitive deficit (IQ below 70), severe somatic illness, brain damage, and not 

speaking a Scandinavian language. Healthy controls were randomly selected from statistical 
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records from the same catchment area and age range as patients. Since the beginning of the 

TOP study until May 2017, a total of 1281 patients with a diagnosis of SCZ (n=785) or BD 

(n=496), whom we also had CVD risk data from, were included. The first sample from 2002-

2005 (2005 sample, n=161 SCZ and 109 BD) is described by Birkenæs et al. (307, 308). The 

characteristics of the sample recruited during the last decade (2017 sample) are presented in 

Table 1 in paper I (309). The 2017 sample comprised of 1011 patients, including 624 with SCZ 

and 387 with BD. The SCZ group consisted of patients with schizophrenia (n=474), 

schizophreniform (n=47), and schizoaffective disorder (n=103). The BD group consisted of 

patients with BD type I (n=245), BD type II (n=114), and BD NOS (n=28). The 2017 patient 

sample was compared with 922 healthy controls that were also recruited from 2006-2017. To 

compare the 2005 sample with the 2017 sample, we reanalysed data from Birkenæs et al. (307, 

308) with some minor changes due to the updated dataset. Patients in the 2017 sample were 

younger than patients in the 2005 sample, with a mean (SD) age of 31.68 (10.49) versus 35.50 

(11.07) years (F(1, 1279)=27.59, d=0.35, p < 0.001). The 2017 sample had a shorter duration 

of pharmacological treatment compared to patients in the 2005 sample (SCZ: F(1, 696)=10.66, 

p=0.001; BD: F(1, 434)=9.33, p=0.002). The duration of illness was also shorter among patients 

with BD in the 2017 sample than in in the 2005 sample (F(1, 484)=5.85, p=0.016). The clinical 

and demographic differences between the patient samples were small (all Cohen's d < 0.2 and 

phi < 0.1) (310).  

 

Measurements 

Clinical assessments 

Consistent clinical assessment tools were applied during the whole recruitment period. A 

comprehensive diagnostic assessment was performed using the Structural Clinical Interview 

for DSM-IV Axis I Disorders (SCID-I) (311), by trained clinical psychologists and medical 

doctors. Further information was retrieved, including demographic factors, self-reported diet, 

physical activity (hours per week), psychiatric history, medical history, and current use of 

psychotropic medication, tobacco, alcohol, and illicit drugs, from interviews and medical 

records. Psychotic symptoms were assessed using the Positive and Negative Syndrome Scale 

(PANSS) (312). Depressive symptoms were measured with the Inventory of Depressive 

Symptoms  (IDS-C) (313). General symptoms and functioning were rated using the Global 

Assessment of Functioning Scale (GAF), split version (symptoms, GAF-S; function, GAF-F) 

(314, 315). The inter-rater reliability of the symptom assessments is good to high, with an 



   
 

49 

 

Intraclass Coefficient (ICC) of 0.82 for PANSS ratings, 0.86 for GAF-S and 0.85 for GAF-F 

(316, 317). The inter-rater reliability of diagnosis is high, with overall agreement for diagnostic 

categories of 82 % with overall Cohen’s kappa κ=0.77 (95% CI: 0.60 - 0.94) (95% CI: 0.60 - 

0.94) (318). 

 

Physical assessments and CVD risk factors  

Physical examination was performed by a physician using the same protocol for both samples. 

BMI (weight in kg/height in m2) was calculated from weighing the participants on calibrated 

digital weights wearing light clothing and no shoes. Waist circumference was measured 

midway between lowest rib and the iliac crest. Blood pressure was measured in sitting position 

after resting. Blood samples were collected after an overnight fasting of at least 8 hours and 

analyzed for fasting plasma glucose (FPG), total cholesterol (TC), low-density lipoprotein 

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TGs). 

Blood samples were analyzed at the Department of Medical Biochemistry, Oslo University 

Hospital, on several routine instruments with standard tools (Integra 800, Abbot Architect, 

i2000, Cobas 8000 e602 and Cobas 8000 e801) from Roche Diagnostics, Basel, Switzerland 

(www.roche.com/about/business/diagnostics.html).  

 

Metabolic Syndrome (MetS) 

Different definitions of MetS exist (319). In study I, MetS was diagnosed based on the 

definition developed by the National Cholesterol Education Program, Adult Treatment Panel 

III in 2003 (320). Three or more of the following five criteria must be met for establishing a 

diagnosis of MetS. Cut off values for the individual variables are: 

(1) FPG ≥ 5.6 mmol/L (100 mg/dL) or taking hypoglycemic medication, 

(2) TGs ≥ 1.7 mmol/L (150 mg/dL), 

(3) HDL-C < 1.0 mmol/L (40 mg/dL) (men) and < 1.3 mmol/L (50 mg/dL) (women),  

(4) systolic blood pressure ≥ 130 mm Hg and/or diastolic blood pressure ≥ 85 mm Hg or taking 

antihypertensive medication, and  

(5) central obesity with waist circumference > 102 cm (40 in) (men) and > 88 cm (35 in) 

(women).  

 

This definition is one of the most widely used due to its clinical usefulness (321, 322). Waist 

circumference was available for a limited number of patients in the 2005 sample in study I. 

http://www.roche.com/about/business/diagnostics.html
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Therefore, we used a modified version of the MetS criteria (308) based on BMI≥30 as an 

alternative measure of central obesity when comparing the 2005 sample with the 2017 sample. 

7.3 Statistics Norway sample 

Statistics Norway (SSB, https://www.ssb.no/statbank/) is the national statistical institute of 

Norway responsible for providing official statistics. SSB has collected self-reported data on 

overweight and obesity (BMI ≥ 25) in the general population of Oslo in 2002 and 2005 

(n=1285), and in 2008, 2012, 2015 and 2017 (n=3035) (224). Statistics Norway has also 

obtained data on self-reported daily smokers in Oslo in 2002-2005 (n=540) and in several 

intervals from 2006 to 2017 (n=4587) (Norhealth - an online database from the Norwegian 

Institute of Public Health: http://www.norgeshelsa.no/norgeshelsa/ (304)). Smoking data were 

merged into bins to get a sufficiently large sample to break down on county level, age groups 

and sex. SSB data from 2002-2005 was compared with the 2005 sample, and data from 2006-

2017 was compared with the 2017 sample. The SSB sample was age-matched to the TOP 

sample. 

7.4 Genomewide association study (GWAS) samples 

For study II and III, we obtained GWAS results in the form of summary statistics (p-values and 

effect sizes). The GWASs analysed are described below. For further details about the inclusion 

criteria, genotyping and phenotype characteristics, see Supplementary Methods in paper II and 

III and the original GWAS publications (136-138, 157, 323-331). 

GWAS samples in study II 

Data on SCZ, BD and MD were retrieved from Psychiatric Genomics Consortium (PGC) (136-

138). The SCZ dataset contained 49 non-overlapping case-control samples (34 241 cases with 

schizophrenia or schizoaffective disorder and 45 604 controls) and 3 family-based association 

studies (1235 parent affected-offspring trios) (136). The BD dataset consisted of 20 352 cases 

and 31 358 controls from 32 samples (138). Among the cases, 14 879 individuals were 

diagnosed with BD type I (BD1), 3421 with BD type II (BD2), 977 with schizoaffective 

disorder, bipolar type (SAB), and the remaining BD NOS (138). The MD dataset involved 

135 458 cases and 344 901 controls (137). The term ‘MD’ is used instead of the diagnostic term 

‘MDD’ as many (~56%) of the MD cases were identified by self-report, while the rest met 

https://www.ssb.no/statbank/
http://www.norgeshelsa.no/norgeshelsa/
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diagnosis criteria for a lifetime diagnosis of MDD (137). The GWAS of MD found strong 

support for the comparability of the MD cohorts that used different assessments methods (e.g., 

self-report vs. diagnostic interview), including high genetic correlation between the cohorts 

(137). A diagnosis of MDD (137), SCZ (136) or BD (138) was established according to 

international consensus criteria (DSM-IV, ICD-9, or ICD-10) assessed with semi-structured 

interviews by trained interviewers, clinician-administered checklists, or medical record review. 

Controls in most cohorts were screened for the absence of lifetime psychiatric disorders and 

randomly selected from the population. The TOP sample is part of the GWAS samples of SCZ 

and BD.  

Loneliness data (n=452 302) were retrieved from the UK Biobank study based on self-

reported responses to questions about (1) perceived loneliness, (2) the ability to confide in 

someone close, and (3) living alone and frequency of social interactions with family and friends 

(see Table 1 below) (157). Notably, GWAS data on perceived loneliness was used as a primary 

variable, while the remaining GWAS data sets (ability to confide, living alone and frequency 

of social interactions) were used to boost power for gene discovery. The three GWAS data sets 

were combined using a meta-analytical approach, multi-trait GWAS (MTAG) (332), which 

aims to increase the power to detect genetic loci associated with a primary variable by 

borrowing statistical power from additional variables. Using this approach, a “composite 

loneliness score” was computed by Day et al. (157). We used this composite score in our 

statistical analyses in study II (see below).  

The UK Biobank recruited people from the general population consisting mainly of 

healthy individuals. Thus, only a minor fraction of participants has a psychiatric diagnosis, 

including 2483 with SCZ, 2123 with BD and 8276 with MDD (UK Biobank data field 41270). 

Although the number of participants with self-reported depression is higher (333), this did not 

significantly influence the finding of loneliness loci. A sensitivity analysis was performed by 

repeating the loneliness GWAS excluding individuals with self-reported depression (n=26 801, 

defined in response to an interview question ascertaining doctor diagnosed disorder), which did 

not lead to in any appreciable change in the findings of Day et al. (157). Anxiety disorders did 

not influence the results either as most individuals with self-reported anxiety disorder were 

removed when excluding people with self-reported depression, given the high comorbidity 

between these disorders (333). Therefore, the results are unlikely to be biased by psychiatric 

diagnoses that are far less prevalent than self-reported depression in the UK Biobank 

(Supplementary Table A-B in paper II). Thus, similar to Day et al., we did not exclude 
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participants with self-reported depression or other psychiatric diagnoses from the loneliness 

GWAS data. However, it is important to note that the UK biobank cohort (n=29 740) was 

excluded from the MD GWAS (137) to avoid sample overlap with the loneliness sample (157). 

Further, we used data from GWASs on CVD risk factors, including BMI (n=339 224) 

(323), T2D (n=159 208) (327), TC (n=188 578) (325), HDL-C (n=188 578) (325), systolic 

blood pressure (SBP) (n=200 000) (324), diastolic blood pressure (DBP) (n=200 000) (324), 

along with CAD (n=185 000) (326). In addition, we used GWAS data on smoking (n > 200 000) 

for supplementary analysis (328). For MiXeR analysis, we used a larger BMI GWAS (n=795 

640) (329) than for cond/conjFDR because MiXeR corrects for overlapping samples.  

GWAS samples in study III 

To investigate genetic overlap between BD and CVD phenotypes in study 3, we used the same 

GWASs of BD (138), T2D (327), and lipids (TC, HDL-C, LDL-C) (325) as in study 2. We 

applied larger GWAS samples for SBP/DBP (n=757 601) (331), CAD (n=332 477) (330) and 

BMI (n=795 640) (329) including UK Biobank data in study 3 because sample overlap was not 

Table 1. Measure of loneliness and isolation in the UK Biobank 

Items Response options Categorization 
1) Do you often feel lonely? Yes 

No 

Do not know 

Prefer not to answer 

“Cases” (people who are likely to feel lonely), 

were identified as those who answered “yes”. 

“Controls” (those who do not or are unlikely to 

feel lonely), were identified as people who 
answered “no”.  

2) How often are you able to

confide in someone close to 

you? 

Almost daily 

2-4 times every week 

About once every week 

About once a months 

Once every few months 

Never or almost never 

Do not know 

Prefer not to answer 

“Cases” were defined as those who answered 

“never or almost never”. “Controls” were defined 

as those who answered “almost daily to once 

every few months”. 

3) a. How often do you visit 

friends or family or have them 

visit you? Instructions also 

stated participants to include 
meetings with friends or 

family outside of home.  

3) b. Including yourself, how 

many people are living 

together in your household? 

Almost daily 

2-4 times a week 

About once a week 

About once a month 
Once every few months 

Never or almost never 

No friends/family 

outside household 

Do not know 

Prefer not to answer 

X number of people you 

live with 

Live alone 

Do not know 

Prefer not to answer 

“Cases” were defined as those who lived alone 

and who indicated that they either never visited or 

had no friends or family outside their household. 

“Controls” were defined as those who either did 
not live alone, or had friends/family who visited 

at least once a week. 

Items forming a validated composite measure of loneliness in the UK Biobank (Day et al. 2018) (157) 
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an issue (i.e., no UK Biobank participants in the BD sample). We repeated the previously 

published cond/conjFDR analysis of genetic overlap between BD and BMI (262) to obtain a 

comprehensive overview of the genetic relationship between BD and CVD phenotypes. The 

GWAS samples used for study II and III were predominantly of European ancestry. 

7.5 Statistical analyses 

7.5.1 Statistical analyses for study I 

Statistical analyses were performed using the statistical package SPSS, version 25 for 

Windows (IBM Corp, 2017) (334). All tests were carried out two-sided with the significance 

level set to 0.05. The distribution of data was investigated through histograms, skewness and 

kurtosis indicators. Variables that were not normally distributed were log transformed. To 

investigate sociodemographic and clinical differences between groups, we used a chi-square 

test for categorical variables, and univariate analysis of variance (ANOVA) for continuous 

variables. Univariate analysis of covariance (ANCOVA) and logistic regression were used to 

adjust for age as a potential confounder when comparing the CVD risks between groups 

(diagnostic groups, patients vs. controls). CVD risk levels in SCZ vs. BD were further 

investigated correcting for functioning level (GAF-F), symptom level (PANSS) and use of 

antipsychotics with adverse metabolic side effects as the diagnostic groups differed 

significantly in these variables. The prevalence of smoking and overweight/obesity between 

patients and the general population (SSB) were compared using chi-square test. The CVD 

risk factors in the 2005 sample and 2017 sample were compared with ANCOVA and logistic 

regression to adjust for differences in age, duration of illness and duration of pharmacological 

treatment (possible confounders). Additional analyses were performed to investigate CVD 

risk factors in subgroups, stratified by sex and age groups. Bonferroni correction was used to 

adjust for multiple testing when stratifying, dividing the p-value of 0.05 by the number of 

stratified groups. Effect sizes (Cohen's d, odds ratio and Phi) were reported and interpreted in 

line with guidelines (310, 335). Fasting blood samples were available from a subset of 

controls (n=222), which were compared with the fasting patients when considering levels of 

glucose and TGs (of which fasting status is of great importance).  

7.5.2 Statistical analyses for study II and III 

Imputation and quality control 
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Certain sets of nearby alleles at different loci occur together more often than expected. This 

tendency of some alleles to co-occur non-randomly due to proximity creates an association 

between them called linkage disequilibrium (LD) (336). Knowledge about the LD patterns can 

be used to select tag SNPs, i.e., SNPs used to represent a group of SNPs in high LD. Thus, tag 

SNPs can be applied to infer the nongenotyped SNPs through imputation (336). This procedure 

makes is possible to study variation across the whole genome without genotyping every SNP, 

increasing the power and cost-effectiveness of GWASs (336). The LD patterns that inform 

imputation is available in large reference samples that are densely genotyped (336), including 

samples from the 1000 Genomes Project (337, 338) and the Haplotype Reference Consortium 

(339). The GWASs used in study II and III applied such references panels genotyped at millions 

of sites (337-340) and used standard imputation tools (e.g., IMPUTE2 (341) and SHAPEIT 

(342)). Each GWAS data set has undergone stringent quality control (removing SNPs with high 

missingness and low imputation quality). Details of the specific quality control procedures and 

methods are available in the original GWAS publications (136-138, 157, 323-331). 

Conditional Q-Q plots 

To visualize the putative overlap in SNPs associations (i.e., cross-trait enrichment), we 

constructed conditional Q-Q plots. Enrichment exists when the proportion of SNPs associated 

with a phenotype (e.g., loneliness) increases as a function of the strength of the association with 

a secondary phenotype (e.g., SCZ) (303). Under the null hypothesis, the nominal p values will 

form a straight line when plotted against the empirical distribution. The conditional Q-Q plots 

visualize this cross-trait enrichment as successive leftward shifts from the null line (131, 303). 

Figure 6 below presents conditional Q-Q plots demonstrating genetic enrichment in loneliness 

conditional on associations with SMDs, suggesting polygenic overlap. Further information 

about this method is available in Supplementary Methods of paper II and III and a method 

review (303). 
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Figure 6. Polygenic overlap between loneliness and MD, SCZ and BD. Conditional Q-Q plots of nominal 

versus empirical −log10p values (corrected for inflation) in loneliness below the standard GWAS threshold of 

p < 5 × 10−8 as a function of significance of association with MD, SCZ and BD at the level of p < 0.1, p < 

0.01, p < 0.001, respectively. The blue lines indicate all SNPs. The dashed lines indicate the null hypothesis. 

(These conditional Q-Q plots represent Supplementary Figure 1 in paper II.) 
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MiXeR 

We applied the statistical tool MiXeR to estimate the total number of shared and unique trait-

influencing variants (i.e., variants with ‘pure genetic effects’ not induced by LD) using GWAS 

summary statistics (302). This tool quantifies polygenic overlap irrespective of genetic 

correlation between phenotypes. The MiXeR results are presented as Venn diagrams of shared 

and unique variants (302). We assessed the model fit, i.e., the ability of the MiXeR model to 

predict the actual GWAS data, by inspecting a) modelled vs. actual conditional Q-Q plots, b) 

negative log-likelihood plots and c) calculating Akaike information criterion (AIC) (302). The 

conditional Q-Q plots illustrates optimal model fit by the model-based curves closely following 

the actual Q-Q curves. Support for the MiXeR model is a clearly defined minimum on the 

negative log-likelihood curve, as quantified by AIC criteria. A positive value of AIC provides 

support for the MiXeR model of polygenic overlap and suggests that the GWAS summary data 

has enough power to distinguish the estimated polygenic overlap, as shown in the MiXeR Venn 

diagrams, from the constrained models with minimal (𝜋12
𝑚𝑖𝑛) and maximum (𝜋12

𝑚𝑎𝑥) polygenic 

overlap (302). MiXeR is described further in the Supplementary Methods of paper II and III 

and by Frei et al. (302). We applied MiXeR for phenotypes that demonstrated most significant 

genetic overlap in conditional Q–Q plots (i.e., loneliness and SMDs and BMI in study II; BD 

and SBP, DBP, BMI and CAD in study III).  

 

Conditional and conjunctional false discovery rate 

The condFDR approach was used to identify specific genetic variants associated with SMDs, 

loneliness and CVD phenotypes (303). The method builds on an empirical Bayesian statistical 

framework and controls for the proportion of discoveries that are falsely rejected across all tests 

(131, 303, 343). CondFDR combines GWAS summary data from a trait of interest with data 

from a conditional trait, thereby increasing the power to discover significant SNPs that did not 

reach genome-wide significance in traditional GWASs. The condFDR approach re-ranks the 

test-statistics of a primary phenotype (e.g., loneliness) based on a conditional variable, i.e., the 

strength of the association with a secondary phenotype (e.g. SCZ) (131, 303). Next, we 

identified loci jointly associated with two phenotypes (e.g., both loneliness and SCZ) using the 

conjFDR approach. ConjFDR is defined as the maximum of two condFDR values, providing a 

conservative estimate of the FDR for a SNP association with both phenotypes (131, 303). In 

line with previous publications (262, 344-346), we used the standard thresholds condFDR<0.01 

and conjFDR<0.05. In study III, we extended conjFDR to investigate overlap between three 
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sets of phenotypes, including loneliness, BMI and each SMD (trio conjFDR). Analyses were 

performed after excluding the major histocompatibility complex (MHC) and 8p23.1 regions 

because their intricate LD patterns may bias estimation (303). Furthermore, p-values were 

corrected for inflation using a genomic inflation control procedure (131). For details, see 

Supplementary Methods in paper II and III and method reviews (135, 303, 347). 

 

Genomic loci definition 

We defined the independent genomic loci according to FUMA, an online tool for functional 

mapping of genetic variants (http://fuma.ctglab.nl/)(348). Independent significant SNPs were 

defined as SNPs with condFDR<0.01 or conjFDR<0.05 and independent from each other at LD 

r2<0.6. A subset of these SNPs that are in approximate linage equilibrium with each other 

at r2< 0.1 are defined as lead SNPs. Distinct genomic loci were identified by merging any 

physically overlapping lead SNPs (LD blocks <250 kb apart), and a SNP with the lowest p-

value was selected as a lead SNP of the merged locus. The borders of the genomic loci were 

defined by identifying all SNPs in LD (r2≧0.6) with one of the independent significant SNPs 

in the locus (348). The region with all these candidate SNPs is considered to be a distinct 

genomic locus. 

 

Effect directions and genetic correlations  

We evaluated the directional effects of the shared lead SNPs between the phenotypes by 

comparing their z-scores and odds ratios from the original publications (136-138, 157, 323-

331). Genetic correlations were estimated using cross-trait LDSR, which quantifies the 

correlation coefficient of additive genetic effects for two phenotypes (e.g., SCZ and loneliness) 

using GWAS summary statistics (349). 

 

Functional annotation 

We used FUMA (348) to functionally annotate candidate SNPs in the genomic loci  

with a condFDR/conjFDR value<0.10 and an LD r2≧0.6 with one of the independent significant 

SNPs. SNPs were annotated using three different tools, including Combined Annotation 

Dependent Depletion (CADD) (350), which predicts the deleteriousness of SNPs on protein 

structure/function; RegulomeDB (351), which predicts regulatory functions; and chromatin 

states that indicate the transcription/regulation effects at the SNP locus (277, 352). We also 

identified previously reported GWAS associations in the GWAS catalog (353) overlapping with 

http://fuma.ctglab.nl/
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the identified loci. In addition, FUMA was used to map lead and candidate SNPs to genes and 

evaluate whether the genes were overrepresented in gene-sets associated with certain biological 

processes (348). In study III we also investigated whether the mapped genes were 

overrepresented in particular biological pathways using ConsensusPathDB (354). Analyses 

were corrected for multiple comparisons. For details, see Supplementary Methods of paper II 

and III. 
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8 SUMMARY OF RESULTS 
 

Study I 

The aim of the study was to compare CVD risk levels in patients with SCZ and BD recruited 

from 2002-2005 (2005 sample, n=270) with patients included in the time period 2006-2017 

(2017 sample, n=1011) from the same geographical area in Oslo. We adjusted for differences 

in age, duration of illness and psychopharmacological treatment between samples using 

ANCOVA and logistic regression. The 2017 sample was also compared with healthy controls 

(n=922) and the general population (range=1285–4587, Statistics Norway) from the same area 

and time period. We found that patients with SCZ and BD in the 2017 sample have significantly 

higher levels of CVD risk factors compared to healthy controls and the general population. The 

analyses demonstrated no significant difference in CVD risk levels in SCZ between the 2005 

and 2017 sample except for a small increase in FPG. Patients with BD in the 2017 sample had 

small to moderate reductions in the levels of TC, LDL-C, BP, hypertension and obesity, 

compared to the 2005 sample. There was no significant difference in self-reported diet and 

physical activity between the 2005 and 2016 samples. In conclusion, the results suggest no 

reduction in CVD risk in patients with SCZ and modest improvement in BD during the past 

decade despite several national health promotion efforts and increased clinical awareness.  

 

Study II 

The purpose of the study was to investigate overlapping genetic architecture and identify 

specific genetic loci shared between loneliness, SMDs and CVD phenotypes. We used the 

MiXeR and cond/conjFDR methods to analyse summary statistics from large GWASs of SCZ 

(n=82 315), BD (n=51 710), MD (n=450 619), loneliness (n=452 302) and CVD phenotypes 

(n=159 208 –795 640). We discovered substantial genetic overlap between loneliness, SMDs 

and BMI using MiXeR. Based on conjFDR <0.05, we identified 149 loci jointly associated with 

loneliness and SMDs (MD n=67, SCZ n=54 and BD n=28), and 55 distinct loci associated with 

both loneliness and CVD phenotypes, mainly BMI. Of the identified shared loci, 153 are novel 

loneliness loci. We also revealed genetic loci jointly associated with loneliness, SMDs and 

BMI. Most of the shared variants had consistent effect directions, in line with the estimated 

positive genetic correlations. Functional analyses indicated that the overlapping loci are linked 

to brain-expressed genes and involved in neuronal, metabolic and chromatin processes and the 

immune system. In conclusion, the study provides new insights into the shared genetic 
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architecture of loneliness, SMDs and CVD risk, indicating that common genetic variants may 

contribute to the observed clinical associations.  

  

Study III 

The aim of the study was to examine shared genetic architecture and detect specific genetic loci 

jointly associated with BD and CVD phenotypes, including CVD risk factors and CAD. We 

analysed recent large GWASs of BD (n=51 710) and CVD phenotypes (n=159 208–795 640) 

using MiXeR and cond/conjFDR. MiXeR indicated considerable polygenic overlap, estimating 

that most (82%) of the genetic variants underlying BD also influence BMI, while a smaller yet 

relevant fraction was estimated to also influence SBP/DBP (20-22%) and CAD (11%). Further, 

using conjFDR<0.05, we detected 129 shared loci between BD and CVD phenotypes, mostly 

BMI (n=69) (262), SBP (n=53) and DBP (n=53). Of the shared loci, 22 are novel BD loci. 

There was a pattern of mixed effect directions of the shared loci between BD and CVD 

phenotypes, in line with insignificant genetic correlations. Functional analyses implicated that 

the shared loci are linked to genes expressed in the brain and involved in neurodevelopment, 

lipid metabolism, chromatin and intracellular processes. In summary, the study discovered 

substantial genetic overlap between BD and CVD phenotypes, revealing common genetic 

mechanisms. The mixture of directional effects of the shared loci underlines the importance of 

environmental factors for the CVD comorbidity and suggests variation in genetic propensity to 

CVD across subsets of patients, possibly contributing to the observed variation in CVD risk 

among individuals with BD.  
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9 DISCUSSION 

9.1 Main findings 
By analysing large samples with a variety of methods, we elucidated the comorbidity between 

CVD and SMDs in three studies. First, we found significantly higher levels of CVD risk factors 

and limited improvement in CVD risk levels during the past decade in patients with SMDs 

compared to the general population and healthy controls. Second, we discovered polygenic 

overlap between loneliness, SMDs and CVD phenotypes. The analyses demonstrated that 

loneliness shares multiple genetic loci with SMDs and CVD phenotypes with mostly consistent 

allelic effect directions, in line with the estimated positive genetic correlations. Third, we 

identified several overlapping genetic loci with mixed effect directions in BD and CVD 

phenotypes, in agreement with the non-significant genetic correlations. Below, these findings 

are discussed in light of previous studies, methodical strengths and limitations, followed by a 

discussion of clinical implications and future directions.  

 

9.2 Discussion of results 
 

9.2.1 Limited improvement in CVD risk in SCZ and BD during the past 

decade  

Study I suggests that the CVD risk levels have remained high in patients with SCZ and BD 

during the past decade, after correcting for age, duration of illness and pharmacological 

treatment. This is the first examination of temporal trends in CVD risk levels in SMDs from the 

same catchment area and, therefore, prior studies for direct comparison are lacking. Still, the 

current results agree with recent reports of raised levels of CVD risk factors, including FPG, 

BMI, wait circumference, dyslipidemia, hypertension and smoking in SMDs (215, 355-361). 

We also identified a higher prevalence of MetS, overweight, obesity and T2D in patients than 

in healthy controls and the general population, although the level of these risk factors were 

somewhat lower compared those reported in other studies (360, 362, 363). This variation in 

estimates across studies can be related to differences in sample composition, such as younger 

patients and shorter duration of illness and medication in the current study. Our findings are 

consistent with other studies of patients with lower age and shorter illness and treatment 

duration (364-367).  
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Subsequent studies confirm that the elevated CVD risk in individuals with SMDs is 

stable (368, 369). A national registry study of nearly 6 million individuals residing in Denmark 

from 2000 through 2016 found higher risk of most somatic diseases, including CVD, among 

individuals with SMDs compared to the general population (369). In the same cohort study, the 

life expectancy of people with SCZ remained unchanged while the life expectancy of 

individuals with affective disorders (grouped together, including BD and MDD) was slightly 

increased during the past decades (370, 371). Notably, the mortality owing to CVD and other 

somatic diseases increased in both diagnostic groups, while the mortality related to suicide and 

accidents (external causes) decreased over the 20 year-period (370, 371). Thus, a decrease in 

external causes of death - not a decline in CVD mortality - was responsible for the modest 

improvements in life expectancy in BD and MDD. Similarly, recent studies indicate that the 

level of CVD risk factors has remained high in MDD (372, 373). Altogether, the evidence 

suggests that patients with SMDs still lag behind the general population in cardiovascular health 

and life expectancy. 

The current finding of limited reduction in CVD risk factors in SMDs differs from the 

development observed in the general population of Norway with decreased CVD risk and 

healthier lifestyle, including reduced daily smoking, increased physical activity and positive 

dietary changes (e.g., less sugar and more fruits and vegetables) (305, 374-376). Still, there is 

considerable room for improvement, and social inequalities in CVD risk and mortality are 

evident (377), as reflected by a greater decline in CVD risk and mortality in those with higher 

education (378). Possible explanations for the overall decrease in CVD risk in the general public 

include stricter tobacco legislation, such as a smoke-free policy in public buildings 

implemented in 2004, followed by multiple health campaigns, and smoking cessation programs 

(202, 203). More recently, food labels have been launched to facilitate healthier food choices 

(379, 380). For instance, the ‘Keyhole’ symbol was introduced in 2009 to help select food 

alternatives with less salt, sugar and saturated fat and more dietary fiber (380). However, the 

Keyhole label has not existed long enough to be considered an important factor behind the 

decline in CVD in the general population.  

The public health initiatives described above seem to have been ineffective in SMDs, as 

suggested by high CVD risk levels and no improvement in lifestyle factors in our patient sample 

during the past decade. It is a public health concern that the level of CVD risk factors has 

remained fairly unchanged in people with SMDs in Norway, a high-income country with one 

of the top-ranked health care systems in the world (381). The limited CVD improvement in 
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these patients can partly be due to barriers for maintaining lifestyle changes in SMDs, such as 

reduced motivation and other affective or negative symptoms, substance use, impaired 

cognitive functioning, adverse side-effects of medication (i.e., drowsiness and fatigue) and 

socioeconomic issues (i.e., financial challenges and unemployment) (382, 383). In addition, 

loneliness and limited social support are possible contributing factors to the continuing high 

CVD risk levels in SMDs (103, 216). These challenges experienced particularly by individuals 

with SMDs, are difficult to change through public health initiatives. 

Health care disparities can also help explain the sparse reductions in CVD risk in SMDs. 

Medical advances have emerged during past decades, such as improvements in hypertension 

treatment and control and increased use of statins in the general population (204, 205), probably 

contributing to the decline in hypertension and dyslipidemia (378). Studies of SMDs suggest 

inadequate treatment of hypertension, dyslipidemia and other metabolic disturbances (278). 

Many individuals with SMDs appear to be reluctant to seek somatic care (e.g., due to symptoms 

of the SMDs and stigma), experience difficulties communicating physical concerns and have 

poorer compliance with treatment (276, 277). In addition, stigma is widespread in SMDs and 

may act as an obstacle to access somatic care (384). Thus, medical conditions often remain 

undetected and undertreated in individuals with SMDs (278). Patients with SCZ may face 

greater barriers to somatic care and the benefits from health campaigns than patients with BD, 

possibly due to poorer motivation (385), cognitive function (83) and higher rate of antipsychotic 

medication with adverse side-effects (215). Such differences may, at least partly, explain why 

only the BD group demonstrated modest improvements in CVD risk in our sample. 

Further, the limited CVD risk reductions may be related to a genetic propensity to CVD, 

as indicated by metabolic disturbances in drug-naïve patients and first-degree relatives (243, 

250, 254, 255). However, recent GWASs do not provide clear evidence for a genetic 

susceptibility to CVD in SCZ and BD on a group level. Although overlapping loci between 

SCZ and CVD risk factors are discovered, their allelic effect directions are mixed (131, 239). 

Findings that occurred during the work with this thesis, implicate overlapping loci between 

SCZ and BMI with mostly opposite effect directions, in line with the estimated negative genetic 

correlation (262). BD was recently found to exhibit a more complex genetic relationship with 

BMI, as illustrated by shared genetic variants with a mixture of effect directions (262). Our 

results in study III corroborates these previous findings, suggesting common genetic variants 

with bidirectional effects in BD and multiple CVD phenotypes (elaborated below). Taken 

together, the GWAS results suggest that SCZ and BD are not associated with increased genetic 
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risk of CVD on average, and underscore the importance of environmental factors (e.g., lifestyle, 

psychotropic drugs) in explaining the CVD comorbidity. However, there may be subgroups of 

patients with a genetic liability to CVD, which are more prone to metabolic side-effects of 

medication and less likely to benefit from current prevention programs (386, 387). These 

unanswered questions deserver further research and are discussed in more detail under section 

9.4. 

In the last two decades, the mental health care sector has become increasingly aware of 

the CVD comorbidity, as reflected in updated clinical guidelines (179, 388) and improved 

education (389). In 2004, guidelines that emphasize the importance of cardiometabolic 

monitoring were introduced (390, 391). In particular, the guidelines stress the risk of 

cardiometabolic side-effects of SGAs and underscore the importance of baseline screening and 

regular metabolic monitoring in order to reduce the risk of developing diabetes, obesity and 

other CVD-related morbidity in SMDs (390, 391). The guidelines recommend that psychiatrists 

and other mental health care personnel assume a central role in the physical health monitoring, 

provide nutritional and physical activity counseling and refer to somatic health care 

professionals when required (390, 391). Norway followed up with similar guidelines and 

instigated educational activities to improve monitoring of CVD risk factors in SMDs (179). 

However, evidence suggests that the guidelines are difficult to implement in clinical practice 

(392), partly due to limited time or resources, little authoritative support, clinician’s concerns 

over the quality of the guidelines and lack of ownership (393-395). In addition, severe 

psychiatric symptoms may attract greater clinical attention than metabolic screening (276). Our 

finding of limited improvement in CVD risk in SMDs during the past decade may reflect the 

gap between clinical practice and guidelines, indicating that CVD prevention in the health care 

system remains insufficient for SMDs, especially SCZ. The barriers to follow the guidelines 

represent important hinders to optimize health care to SMDs. The division of mental health 

clinics and somatic departments is another obstacle to provide better physical health care. 

Primary care and mental health care personnel have expressed confusion about who is 

responsible for the metabolic monitoring and treatment of metabolic conditions in patients with 

SMDs (393, 396). Thus, there is an urgent need for better collaboration and clarification of 

responsibilities between health care services.  

In study I, the modest reductions in CVD risk were mainly observed in female patients 

with BD. Research has increasingly focused on sex differences in side-effects of psychotropic 

medication, (397, 398), indicating a greater propensity to cardiometabolic-side effects in 
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women (399). Clinicians may have begun to take these sex differences more into account in the 

medical treatment of BD. We found a trend (p=0.08) towards reduced use of the medications 

associated with most severe metabolic side-effects, including clozapine and olanzapine, only in 

female patients with BD during the last decade. However, this finding is preliminary and further 

studies are needed to determine if there truly are changes in drug prescription practice. 

We discovered a higher level of CVD risk factors in patients with SCZ than in patients 

with BD. There was no difference in smoking between the two diagnostic groups, but the SCZ 

group reported lower physical activity levels and a less healthy dietary pattern than the BD 

group (details are provided in the Supplementary Material of paper I). These differences in 

lifestyle factors were small, yet may have influenced the variations in CVD risk factors between 

SCZ and BD. Other factors that may have contributed to the finding of higher CVD risk levels 

in SCZ include more frequent use of antipsychotic medication with adverse-side effects, higher 

symptom level and lower functioning level. After adjusting for these three clinical variables, 

several differences in CVD risk factors disappeared, whereas some risk factors (i.e., LDL-C, 

BP, obesity and waist circumference) were still greater in the SCZ group. Some recent studies 

also indicate higher CVD risk levels in SCZ compared to BD (400-402), while other studies 

provide inconsistent results, with similar level of MetS and higher rates of smoking and central 

obesity in SCZ (361), but lower lipid levels (357, 361). The inconsistent results highlight the 

need for further studies to determine whether CVD risk varies across diagnostic groups and, if 

so, why that is. We did not find statistically significant differences in CVD risk across BD 

subtypes, possibly related to underpowered subsamples.  

Lastly, the current study found that the relative CVD risk increase is greater in younger 

patients with SCZ and BD (below 50 years) than in older patients, when compared to the general 

population. The same pattern is observed in other studies (403), and mortality from CVD occurs 

at an earlier age in individuals with SMDs compared to the general population (404, 405). 

Taken together, these results underscore the importance of earlier detection and prevention to 

reduce the burden of CVD comorbidity.  

 

9.2.2 Polygenic overlap between loneliness, SMDs and CVD risk 

In study II, we demonstrated substantial genetic overlap between loneliness, SMDs and CVD 

phenotypes. Using MiXeR, we found that a considerable proportion of the genetic architecture 

of loneliness also underlies SMDs and BMI. Still, larger GWASs are necessary to obtain more 

reliable MiXeR estimates for genetic overlap between loneliness and MD and BMI. Applying 
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conjFDR, we identified multiple loci shared with mostly consistent effect directions in 

loneliness and MD (96%) and SCZ (74%). These results are in line with the positive genetic 

correlations estimated in the current and other studies (157, 158, 406, 407). Further, many of 

the loci shared between BD and loneliness had mixed effect directions, with some genetic 

variants associated with increased risk of both BD and loneliness (62%), while the rest of the 

variants demonstrated opposite effect directions in BD and loneliness. The mixture of 

directional effects complies with the non-significant genetic correlation between BD and 

loneliness found in the present study and previous studies (157, 408). Further, we demonstrated 

polygenic overlap between loneliness and CVD risk factors, especially BMI, and CAD. The 

shared loci possessed mostly concordant effect directions (~70%), consistent with the positive 

genetic correlations (157, 408, 409). Altogether, the current findings corroborate and expand 

on prior evidence (157, 158, 406-409) by uncovering shared genetic architecture and specific 

loci between loneliness, SMDs and CVD risk.  

The current results provide new insights into the genetic relationship between loneliness 

and SMDs and may suggest that the clinical association is partly explained by a common 

genetic basis. Thus, a genetic susceptibility to loneliness may also confer increased risk of 

SMDs, especially MD. Possible pathways linking loneliness to SMDs are illustrated in Figure 

7. A genetic susceptibility to loneliness can involve a propensity to experience emotional pain 

Figure 7. Possible pathways linking loneliness to SMDs and CVD. Environmental factors and 

shared genetic variants can affect the propensity to experience loneliness and develop SMDs and 
CVD through psychological, behavioural and physiological pathways. Bidirectional 

relationships are possible (as indicated by the arrows).  
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or distress in response to social isolation (410). The experience of loneliness elicits a 

hypervigilance for social threats, which may introduce negative cognitive biases (410). In 

particular, evidence indicates that lonely people attend more to negative social events, and 

anticipate and perceive social situations as more threatening (e.g., worry that others will ignore 

or reject them) than people who do not report feeling lonely (101, 151). In addition, lonely 

individuals have a tendency to adopt negative views of themselves (e.g., lower self-esteem) and 

blame themselves for failure and social exclusion (101, 411). These characteristics of loneliness 

resemble those of MD and, thus, the genetic overlap between loneliness and MD may reflect a 

genetic predisposition to negative cognitive biases. The cognitive biases may harm social 

interactions by influencing behaviour (e.g., exhibit less interest and trust), which may 

discourage others from seeking contact and, thus, exacerbate the isolation and elicit depressive 

symptoms (100, 410). In addition, loneliness is associated with difficulties regulating emotions 

(288), including diminished ability to down-regulate negative emotions, similar to what is seen 

in MD (412). Accordingly, the finding of polygenic overlap between loneliness and MD may 

indicate a genetic predisposition to cognitive biases, emotional dysregulation and maladaptive 

behavior patterns (Figure 7).  

Further, we observed genetic overlap between loneliness and SCZ. As mentioned 

above, loneliness is associated with a heightened sensitivity to social threats, which can 

increase the feeling of insecurity (410). We may speculate that negative social expectations 

can increase the risk of paranoid thinking and, thereby, the propensity to develop a psychotic 

disorders. Accordingly, a genetic overlap between SCZ and loneliness may indicate shared 

genetic variants influencing the tendency to perceive the social world as unsafe, contributing 

to social isolation, thereby increasing the risk for both loneliness and psychotic disorders. 

Increasing evidence suggests a positive association between loneliness and psychotic 

symptoms, especially positive psychotic experiences involving paranoia (118, 119). 

Loneliness and negative symptoms are also correlated according to a recent meta-analysis 

(119). It is possible that some negative symptoms, such as amotivation and social withdrawal, 

may lead to social impairments and thereby contribute to loneliness (108, 119). However, 

other negative symptoms, such as lack of social interest, may involve a reduced need for 

social contact and thus be less associated with loneliness. Future investigations should assess 

the relationship between loneliness and different types of negative symptoms.  

The genetic overlap between loneliness and BD may reflect some of the same processes 

as those proposed to underlie the genetic link between loneliness and MD and SCZ. BD is 
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associated with affective fluctuations, usually with more time spend in depression than in manic 

or hypomanic episodes (53, 413). Thus, it may be that depressive episodes as part of BD drive 

some of the observed genetic overlap between BD and loneliness. This hypothesis is consistent 

with recent findings suggesting that the genetic variants responsible for the overlap between 

loneliness and BD are largely involved in MD as well (409). We also speculate that individuals 

with BD who experience psychotic symptoms such as paranoia are more prone to social 

withdrawal and loneliness. In addition, uncritical social behaviour in a manic episode can 

impair social interactions and possibly contribute to loneliness. However, individuals who are 

more socially active in manic/hypomanic episodes may also feel less lonely. Importantly, 

research on loneliness across manic/hypomanic episodes in BD is scare and have so far 

provided inconsistent results (115). There is a need for investigation of loneliness across 

affective episodes and long-term clinical course to help identify underlying mechanisms. There 

may be heterogeneity in loneliness across BD subgroups, which would be consistent with the 

current finding of shared loci with mixed effect direction in BD and loneliness.   

Using conjFDR, we discovered that loneliness shares a higher number of genetic loci 

with MD than with SCZ and BD. The finding of greatest genetic overlap with MD is consistent 

with clinical findings of a higher level of loneliness in MDD compared to SCZ and BD (108), 

although further studies comparing loneliness across different SMDs are necessary. More 

genetic overlap with MD than with SCZ and BD is also in agreement with reports of more 

robust associations between loneliness and depressive symptoms than between loneliness and 

psychotic, manic and hypomanic symptoms (93, 105, 118, 152, 414). Moreover, loneliness 

involves cognitive-affective features that seem particularly prominent in MD, as described 

above. Thus, some of the genetic overlap between loneliness and MD may be due to loneliness 

being an aspect of the phenomenology of MD. Nevertheless, there are conceptual and empirical 

distinctions between the loneliness and MD (100, 410, 414): while loneliness is a negative 

feeling arising when social relationships are perceived to be inadequate, depression is a 

diagnosis involving a more general dysphoric state. Factor analyses indicate that loneliness and 

depressive symptoms are related, yet separable (410). In addition, longitudinal data indicates 

that loneliness predicts increased depressive symptomatology above and beyond initial 

depressive symptoms (152, 414), indicating that the two constructs are associated, yet distinct. 

Further support for the distinction between loneliness and depression comes from a loneliness 

GWAS (157) demonstrating that the loneliness loci remained significant after excluding people 

with self-reported depression from the data set.  
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Further, by using conjFDR we discovered several shared loci between loneliness and 

CVD phenotypes. The majority of the shared SNPs had the same effect directions, in line with 

positive genetic correlations identified between loneliness and CVD risk factors and CAD. 

These findings corroborate previous genetic (157, 408) and clinical evidence of associations 

(102, 282, 283). Moreover, a recent study investigated the genetic association between 

loneliness and CAD using polygenic risk scores (PGRS), which estimates the overall genetic 

propensity to develop a given disease or trait, summarizing the effects of multiple risk alleles 

based on GWAS data (407). The study indicated that a genetic liability to loneliness was 

associated with increased risk for CAD. In particular, the analyses revealed that patients with a 

PGRS in the highest decile for loneliness have 50% greater risk of CAD compared to patients 

with scores in the lowest decile (407). Taken together, these results imply that a genetic 

susceptibility to loneliness is related to increased CVD risk (157, 407, 408). Multiple potential 

mechanisms may contribute to the link between loneliness and CVD risk (100), as illustrated 

in Figure 7. In particular, loneliness has been linked to activation of the HPA axis, increased 

sympathetic nervous system activation and inflammation (100, 286), which are implicated in 

the development of CVD (263). Loneliness may also have indirect effects on CVD through 

lifestyle, psychological coping and mental illness (100, 283). Our findings point to shared 

genetic architecture between loneliness and CVD phenotypes as one possible explanation for 

increased CVD risk associated with loneliness. It is unknown whether the genetic overlap 

reflects shared genetic variants influencing physiological factors directly e.g., HPA axis 

activation, inflammation) and/or indirectly through mechanisms such as lifestyle behavior, 

psychological coping and mental illness.  

In the current study, we observed a positive genetic correlation between loneliness and 

tobacco smoking (cigarettes smoked per day) (rg=0.25), similar to previous findings (157, 408). 

However, no significant shared loci between loneliness and smoking were identified using 

conjFDR. The lack of significant overlapping loci is probably related to smoking GWAS power 

and heterogeneity or imprecision in phenotypic assessment (e.g., average or maximum number 

of cigarettes smoked per day) (415). Larger GWAS samples are likely to detect significant 

overlapping loci. The finding of a significant genetic correlation between loneliness and 

smoking indicates that some of the genetic variants predisposing to feeling lonely can also 

influence the inclination to smoke. Taken together with smoking GWAS findings (299, 415, 

416), the current results illustrate the concept of genetic influence on environmental risk (e.g., 

smoking) for CVD.  
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We also used conjFDR to investigate loci jointly associated with loneliness, SMDs and 

BMI (three phenotypes), as loneliness demonstrated most genetic overlap between these 

phenotypes in conditional Q-Q plots. The analysis identified ten loci shared between both 

loneliness, BMI and MD (n=4), SCZ (n=5), and BD (n=1), with a majority of consistent effect 

directions. Whether this genetic overlap extends to other CVD risk factors, is unknown. Thus, 

future research is necessary to investigate whether the genetic overlap between loneliness and 

SMDs contributes to CVD comorbidity.   

Gene-set analyses of the shared loci between loneliness and SMDs implicated genes 

involved in chromatin processes and brain functions, including synapses and dendrites.  

The gene-set analyses of loneliness loci shared with SMDs and BMI also indicated genes related 

to metabolic mechanisms and immune system, which have been implicated in the 

pathophysiology of SMDs and CVD morbidity (252, 268). Gene-mapping of shared variants 

between loneliness and SMDs and CVD risk factors, indicated genes expressed in the brain. 

Thus, these results indicate the importance of brain-expressed genes in the shared genetic basis 

of SMDs, loneliness and CVD. These findings are consistent with brain dysfunction implicated 

in the pathophysiology of SMDs, and GWAS findings indicating neuronal genes involved in 

SMDs (136-138), loneliness (157, 408) and obesity (329). Thus, it seems likely that shared 

genetic variants, along with environmental factors, contribute to brain dysfunction that 

influences different mental (e.g., cognitive bias, emotional regulation) and behavioral (e.g., 

lifestyle, social withdrawal) tendencies that contribute to the development of both loneliness, 

SMDs and CVD. Other pathways are also possible; for example, shared genetic variants can 

influence metabolic mechanisms which increase the risk of overweight, which can impair self-

esteem and contribute to development of loneliness and SMDs. Notably, the proposed pathways 

should be considered preliminary. Experimental investigations are necessary to determine the 

true causal variants underlying the shared genetic associations and clarify how the identified 

variants influence brain, metabolic and immune system development and function (for further 

information, see ‘Future directions’).  

  

9.2.3 Bidirectional genetic overlap between BD and CVD risk 

In study III, we discovered polygenic overlap between BD and CVD phenotypes. MiXeR 

estimated that most of the genetic variants underlying BD influences BMI (~82%), while a 

smaller, yet relevant proportion also underlies the genetic basis of SBP/DBP (~20%). We also 

observed genetic overlap between BD and CAD, but the degree of overlap is uncertain and a 
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larger CAD GWAS is necessary to yield more reliable MiXeR estimates (see further 

information under ‘Methodological considerations’). The finding of greater genetic overlap 

between BD and BMI using MiXeR can possibly be related to BMI being more polygenic than 

blood pressure and CAD, as shown in the Venn diagrams (Figure 1 in paper III). Further, using 

the cond/conjFDR approach we increased the discovery of genetic loci and identified 129 loci 

shared between BD and CVD phenotypes. Twenty two of these loci are novel to BD. The shared 

loci demonstrated a pattern of mixed effect directions. Genetic variants with inconsistent effect 

directions “cancel each other out” (135), yielding non-significant genetic correlations between 

BD and CVD risk factors and CAD. Absent genetic correlations between BD and CVD risk 

factors are also reported previously (159, 259). Our findings comply with mixed effect 

directions of shared loci between SCZ and CVD risk factors (e.g., lipids, SBP) (131), except 

for the overlapping loci between SCZ and BMI that mainly possess opposite effect directions 

(262). 

The current results indicate that BD on average is neither associated with increased nor 

decreased genetic risk of CVD. Although there was a slight preponderance of discordant effect 

directions of the shared loci between BD and CVD risk factors, the majority of the shared loci 

between BD and CAD possessed consistent effect directions (7/10). However, the low number 

of SNPs identified here explains only a small proportion of the overall risk of CVD. 

Accordingly, the present findings indicate that common genetic variants do not explain the 

increased CVD risk in BD. However, there may be other genetic factors that are not captured 

by current GWASs, including rare variants, which contribute to the elevated CVD risk. 

Furthermore, central drivers of the CVD comorbidity in BD likely involve environmental 

factors, such as unhealthy dietary patterns, physical inactivity, smoking and adverse side-effects 

of psychotropic agents (187, 417). In addition, loneliness can play a role (103, 216).  

The mixture of effect directions of the shared loci can reflect variation in genetic 

propensity to CVD across BD subgroups. BD is a heterogeneous illness involving different 

subtypes, illness courses and severity (38) that may be differentially related to CVD 

comorbidity. Although the average level of CVD risk is higher in BD compared to the general 

population, the CVD comorbidity seems to be restricted to BD subgroups, as indicated by 

prevalence estimates for overweight (~50-75%), dyslipidemia (~25-40%), T2D (~5-20%) and 

hypertension (~35-60%) in BD (82, 261, 308). Our findings in study I also indicate that the 

elevated CVD risk is restricted to subsets of patients with BD (see for instance numbers for 

overweight (~50%), dyslipidemia (~25%), and hypertension (~30%)). These estimates can 
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indicate subgroups of patients with different susceptibility to CVD. For instance, patients with 

more depressive symptoms may constitute such a subgroup, as several studies suggest that 

increased depressive symptoms, rather than mania, are associated with higher level of obesity, 

dyslipidemia, blood pressure and T2D (418-424). Still, a study found that a history of manic or 

hypomanic episode was the main predictor of CVD (425). However, this study consisted of 

only 129 patients (425), and several studies emphasize the link between depressive symptoms 

and greater CVD risk in BD (418-424). Nevertheless, the relationship is complex, as depression 

can take different forms, with atypical or melancholic features, involving decreased appetite 

and weight loss and increased appetite and weight gain, respectively (19). Thus, some patients 

lose weight, while other patients gain weight during a depressive episode, while most patients 

experience weight loss during a manic episode (426). The mixture of effect directions of the 

shared variants between BD and BMI (262) are in line with the clinical variation in weight 

changes across affective episodes of BD. Furthermore, recent findings indicate a genetic 

susceptibility to weight gain in MD (262). BD type II is genetically correlated with MD (138) 

and, thus, this subtype of BD may also involve increased genetic susceptibility to weight gain. 

By contrast, BD type I demonstrates more genetic overlap with SCZ (138), which is found to 

be associated with reduced genetic risk of weight gain (262). Thus, BD type I may involve a 

decreased genetic risk of weight gain. Identifying potential subgroups with different genetic 

risk to CVD can increase the understanding of CVD comorbidity in BD and help improve risk 

prediction and prevention. We did not investigate these potential variations in CVD 

comorbidity across BD subtypes as this requires larger GWAS samples of clinical subtypes. 

Functional analyses of the loci shared between BD and CVD implicated biological 

processes and pathways associated with neurodevelopment, lipid metabolism, hormones, 

chromatin and intracellular processes. Gene-mapping of the shared variants indicated genes 

expressed in the brain. These findings are in line with brain dysfunction implicated in the 

pathophysiology of BD (120) and more recently linked to shared genetic variants between BD 

and BMI (258, 262). Moreover, lipid biology may be involved in the pathogenesis of BD, as 

proposed for SCZ (346), consistent with observations of white-matter abnormalities and myelin 

dysfunction in these disorders (427, 428). Furthermore, functional analyses of the shared loci 

between BD and SBP suggested genes involved in stress-related pathways, including cortisol 

synthesis and secretion. Similarly, recent findings indicate overlapping genetic variants 

between BD and CVD risk factors that are associated with processes involved in HPA axis 

regulation, including corticotrophin-releasing hormone (258, 262). Shared genetic variants 
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associated with the HPA axis appear plausible given evidence of HPA axis dysregulation in BD 

(163), obesity and hypertension (264). 

Taken together, the current findings indicate that brain-related mechanisms may play a 

role in CVD comorbidity in BD. The results can be interpreted within the conceptual framework 

proposed earlier: It is possible that shared genetic variants, together with environmental factors, 

influence brain function that affects mental processes (e.g., affective symptoms) and behavior 

(e.g., lifestyle) and, thereby, the development of BD and comorbid CVD. In addition, there may 

be shared variants between BD and CVD morbidity that influence metabolic processes (258, 

262) which affect CVD risk and brain function, contributing to development of BD. However, 

separate pathways underlying BD and CVD are also likely given the mixed effect directions of 

the shared loci. It is important to note that the pathways proposed here should be considered 

preliminary, and further studies are needed to detect the causal variants underlying the shared 

associations, and to determine how the genetic variants influence BD and CVD morbidity (see 

below). 

 

9.2 Methodological considerations  

9.2.4 Samples, assessment methods and study design 

 

TOP study 

Strengths of study I include the large and well-characterized sample of SCZ and BD recruited 

from in- and outpatient clinics in Oslo. All participants underwent comprehensive clinical 

assessments performed by trained physicians/psychologists. The diagnostic evaluations have 

good agreement, and the inter-rater reliability of symptom scores underscores the quality of the 

assessments (429, 430). The assessment methods have remained consistent throughout the 

study period, and the 2005 and 2017 samples were recruited from the same catchment area, 

yielding samples that are suitable for comparison.  

Furthermore, the TOP sample is considered fairly representative of the target 

population. The Norway health care system is publicly funded and based on catchment areas, 

which reduces the likelihood of sociodemographic differences influencing the recruitment. 

Nevertheless, the most severely affected patients may not be included because they cannot give 

informed consent or are unable to undergo a thorough assessment that requires attention and 

effort over several hours. However, the patients were considered for inclusion after an acute 

phase of psychosis or affective symptoms had settled and they had entered a more stable phase. 
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Patients at the opposite end with high functioning may decline participation because they are 

occupied with employment or other obligations. Thus, the TOP sample may not include the 

patients with the highest and lowest functional levels. In addition, the TOP sample mainly 

consists of Caucasian participants and further investigations of non-Caucasian and multi-

ethnic samples are warranted.  

 Further strengths of study I include over 900 healthy controls recruited by random 

selection from statistical records within the same period and catchment area as patients. It has, 

however, been argued that the controls may be particularly healthy, possibly involving a subset 

of the population that is more health conscious than nonparticipants. By comparing results that 

we obtained from the general population (Statistics Norway), smoking and overweight/obesity 

appeared to be less prevalent in the healthy TOP controls. Thus, the CVD risk levels in the 

control group may represent an underestimation of the risk levels in the population at large. 

Nevertheless, the patients demonstrated significantly higher levels of smoking and 

overweight/obesity compared to both the general population and healthy controls. 

The cross-sectional design of study I prevents us from drawing causal inferences, and 

we cannot rule out that the observed associations are influenced by confounding factors not 

taken into account. However, the patient sample is thoroughly investigated, both in terms of 

demographic, psychological, behavioural and somatic characteristics, which allowed us to 

adjust for some of the most likely confounders. In particular, we adjusted for difference in age 

and duration of illness and psychopharmacological treatment when comparing the 2005 and 

2017 samples. In addition, we controlled for other covariates, including functional level, 

symptom levels and use of antipsychotics with adverse metabolic side effects, when comparing 

CVD risk factors across diagnostic groups. Furthermore, we found that substances 

abuse/dependence was more prevalent in patients with SCZ in the 2017 sample than in the 2005 

sample (supplementary material in paper I), but this difference did not influence the results. We 

did not, however, have data on loneliness in the TOP sample, and we were thus prevented from 

assessing the prevalence of loneliness in these patients with SCZ and BD and how loneliness is 

related to their CVD risk. We had data on some variables associated with loneliness, including 

whether the patients were married/cohabiting, which did not differ between the 2005 and 2017 

samples. Another limitation is that we used crude self-reported measures of lifestyle (e.g., self-

reported number of hours of physical activity per week; self-reported diet). Although 

investigating loneliness and lifestyle behaviour was not the aim of study I, data on loneliness 
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and more precise lifestyle measures would have been useful to elucidate factors associated with 

CVD risk.  

Furthermore, it is a limitation that the study periods of the 2005 and 2017 samples are 

close, which may reduce the chance of detecting significant differences between the samples. 

Therefore, we performed supplementary analyses comparing the 2005 sample with a sample 

from 2014-2017, which mainly supported our original findings (details are provided in the 

supplementary material of paper I). Some of the reductions in BD, however, disappeared (LDL-

C, hypertension, overweight and obesity), while the SCZ sample from 2014-2017 demonstrated 

a small reduction in low HDL-C. These results need to be replicated in larger samples to decide 

whether the CVD risk level has started to decrease in SCZ.  

A strength of study I is the presence of data from all or the vast majority of patients (ca. 

90-95%). Missingness at this level in large samples does not appear to significantly distort 

estimates, provided that the data is missing at random (431), which is likely to be the case in 

the TOP sample. Therefore, we did not impute data in patients. However, the availability of 

certain CVD data, including blood pressure, fasting blood samples and information on daily 

smoking, were restricted to a subset of healthy controls. Importantly, missing data in the 

controls was mainly due to a change in the study protocol. Thus, missing information was not 

due to participants or investigators systematically avoiding assessment owing to characteristics 

of the participants (431).  

Finally, a limitation is that the BD 2017 sample may not have been large enough to 

detect statistically significant differences in CVD risk across subtypes of BD. 

 

GWASs  

In contrast to the cross-sectional design of study I, analyzing GWAS data provides an 

opportunity to elucidate aspects of disease etiology and genetic risk factors underlying the 

association between SMDs, loneliness and CVD. Furthermore, the currently analyzed GWASs 

were large and have undergone stringent quality control (136-138, 157, 323-331). Nevertheless, 

the methods used to assess the phenotypes have advantages and disadvantages. For instance, 

loneliness was assessed with the question “Do you often feel lonely?” (157). This item bears 

resemblance to a question recently recommended to use at a minimum to measure loneliness in 

large-scales studies (“How often do you feel lonely?”) (432), although the UK Biobank measure 

does not provide the opportunity to rank the frequency of loneliness. Indirect measures of 

loneliness are also recommended due to the stigma associated with loneliness that can make 
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some people hesitant to disclose that they feel lonely (95, 432). While the UK Biobank did not 

use any of the proposed indirect items (e.g., “How often do you feel that you lack 

companionship?”) (95, 432), participants were asked about their ability to confide in someone 

close (157). Studies suggest that lonely individuals perceive themselves as less able to confide 

and have fewer people to confide in than non-lonely individuals (433, 434), providing support 

for this item as an indirect probe of loneliness. Further, to increase power, the loneliness GWAS 

included data on frequency of contact with family and friends and living alone (157). This 

information concerns objective rather than subjective social isolation. However, lonely 

individuals tend to have less frequent contact with friends and close relatives (98, 99) and are 

more likely to live alone than people who are not lonely (97). The loneliness GWAS also gives 

support for an association between subjective and objective aspects of social isolation on a 

genetic level: The genetic loci associated with perceived loneliness overlapped with those 

detected in the broader analysis (including perceived loneliness, ability to confide, frequency 

of contact and living alone) (157). Still, loneliness and objective isolation are distinct, and the 

loneliness assessment in the UK Biobank is limited by not using the best-validated loneliness 

items (95, 432). 

The currently analyzed SMDs GWASs are based on different ascertainment methods. 

The MD GWAS included both samples with a formal diagnosis of MDD and samples with self-

reported depression (137). These subsamples may involve clinically and/or genetically 

heterogeneous groups. However, the methods applied by these MD cohorts were thoroughly 

reviewed, and the comparability of the cohorts were supported (e.g., high genetic correlation 

between the MD samples) (137). Furthermore, a variety of methods was used to establish a 

diagnosis of SCZ and BD (see method description above) (136, 138), yet consistent diagnostic 

criteria were applied and quality control was performed to assess the diagnostic procedures. 

Still, genetic heterogeneity were observed among BD GWAS cohorts (138), and variation in 

polygenic effects were discovered between BD subtypes (i.e., BD type I vs. type II) (138). This 

genetic heterogeneity across BD cohorts and subtypes is consistent with our findings of mixed 

effect directions of shared variants between BD and loneliness, and between BD and CVD 

phenotypes. The complex genetic architecture and the clinical heterogeneity may contribute to 

the inconsistency in GWAS findings for BD (138). Still, the heterogeneity poses a challenge 

for GWASs and highlights the need for careful and consistent clinical assessment of patients 

and controls (138). In addition, there is a need for larger GWAS samples in which different 

clinical subtypes are more evenly represented. The BD GWAS (138) is mainly comprised of 



   
 

77 

 

BD type I (73%), whereas BD type II (17%) and SAB (5%) constitute a smaller proportion of 

the sample.  

The GWASs of CVD phenotypes also include some variation in assessment methods 

that may be more or less precise. For instance, a BMI GWAS was based on measured or self-

reported weight and height (323). In addition, the CAD GWAS (330) (used for study III) 

identified cases defined by self-report, hospital records or death registries. Moreover, the CAD 

phenotype was broad (including myocardial infarction, chronic ischemic heart disease, angina 

and revascularization procedure) (330). Heterogeneity may exist within this broadly defined 

CAD phenotype. However, there was strong concordance between GWAS signals for the broad 

and stricter definitions of CAD (330). 

The GWAS samples of SMDs and CVD phenotypes are considered representative, 

while the GWAS sample of loneliness from the UK Biobank does not appear to be 

representative of the general population due to evidence of a “healthy volunteer bias” (333, 

435). Lower levels of both mental illness and risk factors for somatic disease are reported in the 

UK Biobank than in the general population (333, 435). Thus, the UK Biobank is not suitable 

for deriving at prevalence and incidence rates (435). Nevertheless, the GWAS findings from 

the UK Biobank can be generalizable. Likewise, the current findings of genetic overlap between 

loneliness, SMDs and CVD phenotypes probably have external validity, although larger and 

more ethnically diverse samples are necessary to ensure that the genetic discoveries are broadly 

applicable. The GWAS data used in this PhD project are primarily retrieved from populations 

of European descent. This is a standard approach to limit the confounding effects of population 

stratification, defined as the presence of systematic differences in allele frequencies between 

subpopulations due to different ancestry (436). If not properly accounted for, population 

stratification can cause false positive associations or failure to detect true associations between 

the genotype and phenotype (436). Although analysing GWAS samples of mainly European 

ancestry limits this confounding effect, some degree of population stratification may still occur 

(e.g., not 100% homogeneous ancestral samples). Accordingly, the GWASs used in the current 

PhD project controlled for population stratification, and we used a genomic inflation control 

procedure to correct for spurious enrichments (e.g., inflated p-values) due to population 

stratification (131).  

As noted earlier, loneliness involves cognitive-affective features that may be difficult to 

separate from symptoms of MD. Thus, the genetic overlap between loneliness and MD may in 

part be due to loneliness being an aspect of the phenomenology of MD. Nevertheless, there are 
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distinctions between loneliness and MD (100, 410, 414) and the loneliness GWAS indicated 

that the loneliness risk loci remain significant after removing depressed individuals from the 

analysis (157). Furthermore, both loneliness and MD are associated with personality traits, 

especially neuroticism (437, 438). Individuals with higher levels of neuroticism are more likely 

to report feeling lonely and have a higher risk for MDD (437, 438). Similarly, neuroticism is 

genetically correlated with loneliness and MD (157, 408). Thus, some of the genetic overlap 

discovered between loneliness and MD may possibly be driven by shared genetic effects with 

neuroticism. We did not correct for personality variation, but a recent study did (409). This 

study confirmed that loneliness and MD share a genetic basis and indicated that the genetic 

factors responsible for this overlap also influence neuroticism (409). However, the genetic 

overlap between loneliness and MD remained significant after correction for neuroticism (409). 

Thus, the genetic association between loneliness and MD cannot be fully explained by 

neuroticism.  

 

9.2.5 Statistical methods and analytical tools 

The statistical tests used in study I are commonly used, while the statistical tools used in study 

II and II are more novel and are therefore granted more attention below. 

 

Statistical tests for investigating group differences  

In study I, we used ANCOVA and logistic regression to analyze potential difference in CVD 

risk factors between groups (e.g., 2005 sample vs. 2017 sample; patients vs. controls) and to 

adjust for potential confounding factors. One of the advantages of these parametric statistical 

tests is that they have more power than non-parametric tests (439, 440). Thus, ANCOVA and 

logistic regression are more likely to detect statistically significant differences if those 

differences truly exist compared to non-parametric statics. However, parametric tests build on 

a set of assumptions about the data that restricts their use. In particular, ANCOVA assumes 

normality of the distribution and homogeneity of the variance across groups (441). The 

distribution of some CVD variables in the TOP sample was skewed, and therefore log 

transformation was performed in order to bring the data closer to a normal distribution. Logistic 

regression does not make assumptions about the distribution of the values, but is similar to 

ANCOVA in that this method is sensitive to high correlations between the covariates 

(multicollinearity), which can lead to unreliable estimates (441).  
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We performed multiple tests, which can increase the risk of type 1 error (i.e., false 

positives). To limit the likelihood of type 1 error, we used Bonferroni correction when 

stratifying by sex and age groups. Some might argue that Bonferroni correction should have 

been applied to a greater degree across tests, but since the Bonferroni method can be overly 

conservative (442), we used this method to control for multiple testing when considered 

appropriate.   

 

Statistical tools for assessing genetic overlap 

In study II and III we applied the cond/conjFDR approach and MiXeR to examine genetic 

overlap. Cond/conjFDR boosts power to detect significant SNPs by leveraging the combined 

power from two GWASs (303). MiXeR complements cond/conjFDR by quantifying the total 

number of shared and unique trait-influencing variants and provides an easily interpretable 

illustration of shared and unique genetic architecture in Venn diagrams (302). Both 

cond/conjFDR and MiXeR have the advantage of allowing for discovery of genetic variants 

irrespective of effect directions and genetic correlation between the phenotypes (135, 302, 303). 

Using these tools, we discovered polygenic overlap and several shared loci between BD and 

loneliness (study II) and between BD and CVD phenotypes (study III), despite non-significant 

genetic correlations. These results in particular highlight the utility of cond/conjFDR and 

MiXeR to uncover polygenic overlap in the absence of genetic correlations.  

 Standard GWASs control for multiple testing given the high number of variants tested 

and uses a genome-wide significance threshold of p < 5 × 10-8 to avoid false positive results. 

This approach controls for any single false positive result, but may be too strict and can result 

in failure to detect true associations (443). Cond/conjFDR provides an alternative approach by 

controlling for the expected proportion of false discoveries among the discoveries instead of 

guarding against any false positive result. The benefit of this method is increased power while 

still adjusting for false positives (303). Multiple testing is not an issue when applying MiXeR 

as this tools estimates the total number of genetic variants influencing phenotypes (i.e. it does 

not test each individual SNP) (302).   

 The cond/conjFDR approach and MiXeR have some limitations. As mentioned 

previously, some sets of nearby genetic variants tend to co-occur, i.e., they are in high LD with 

each other (336). Therefore, the finding of an association between a given SNP and a phenotype 

(e.g., SCZ) may be the result of this SNPs being in high LD with the true causal variant. 

Although we excluded intricate LD regions (MHC and 8p23.1) and selected a subset of SNPs 
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that are independent from each other (at r2 < 0.1, i.e., lead SNPs), complex correlations among 

SNPs can bias the FDR estimates. Accordingly, the cond/conjFDR approach cannot detect the 

causal variants underlying the shared genomic associations (303). This implicates that the 

overlapping loci could result from both shared and separate causal variants, or mediated 

pleiotropy (130, 303). The latter refers to a scenario where a variant influences one trait (e.g., 

loneliness) through another trait (e.g., MD). Similar to the condFDR framework, the MiXeR 

model cannot pinpoint the causal genetic variants. However, the MiXeR bypasses the difficulty 

of detecting the exact localization of causal variants by aiming at estimating their overall 

amount (302). The actual number of variants estimated to influence the phenotypes of interest 

(here: SMDs, loneliness and CVD) is potentially higher as the MiXeR model clump together 

variants in high LD with each other (302).  

Furthermore, the cond/conjFDR estimates are influenced by the GWAS power of the 

phenotypes. In particular, cross-trait enrichment will be more difficult to identify if one or both 

of the analysed GWASs are inadequately powered (303). Differences in GWAS power can 

contribute to the finding of greater genetic overlap between loneliness and MD than between 

loneliness and BD and SCZ using cond/conjFDR in study II. Similarly, the use of a larger 

GWASs of BMI and SBP/DBP in study III can contribute to the finding of a higher number of 

shared loci between BD and these CVD risk factors compared to the other CVD phenotypes.  

The MiXeR model requires even larger GWAS power than the cond/conjFDR approach 

because MiXeR aims to estimate the total amount of genetic overlap (302). In study II, we 

observed uncertainty of the MiXeR estimates for loneliness, MD and BMI, suggesting that 

larger GWASs are needed to obtain more reliable MiXeR estimates. Study III also indicated 

some caution in interpreting the MiXeR estimates of polygenic overlap between BD and CAD. 

This may also indicate that a larger CAD GWAS is required to obtain better model fit. It can 

also be difficult to reliably estimate the amount of genetic overlap between BD and CAD 

because CAD have lower polygenicity than the CVD risk factors investigated, as illustrated by 

the Venn diagrams (Figure 1 in study III). Phenotypes with low polygenicity involve a smaller 

number of variants that can be shared with another trait compared to traits with higher 

polygenicity. In addition, due to the intricate biology of low polygenic phenotypes, their genetic 

effects are distributed in a complex way and the MiXeR model is too simplistic to capture this 

complexity (Oleksandr Frei, personal communication, 24.06.20).  

We applied FUMA (348), an online platform for functional mapping of genetic variants. 

The shared SNPs were mapped to genes, and biological resources and repositories were used 
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to provide insight into potential biological mechanisms of the prioritized genes. However, the 

identified genes are not necessarily the genes by which the causal variants exert their phenotypic 

effect. Thus, the proposed biological functions and pathways associated with the shared variants 

are preliminary. Nevertheless, the FUMA findings can help generate hypotheses that are 

testable in experiments (348).  

 

9.3 Clinical implications 
Study I demonstrated that the level of CVD risk factors has remained high in SCZ and BD 

during the past decade. The findings implicate that most patients with SMDs have not benefitted 

from recent health promotion and disease prevention efforts. The results underscore the need 

for more effective prevention and targeted interventions. Routine screening and monitoring of 

cardiometabolic status should be better implemented, and more focus on life-style factors 

should be a part of the treatment of SMDs. More integrated care through closer collaboration 

between primary care physicians and psychiatrists and psychologists is warranted.  

Study II revealed that both SMDs and CVD risk factors share considerable genetic 

architecture with loneliness, indicating that the clinical association may in part have genetic 

underpinnings. Thus, a genetic susceptibility to loneliness may also increase the risk of SMDs 

and CVD, and vice versa. Together with the clinical and epidemiological data discussed above, 

the current findings underscore that loneliness is a psychosocial factor of importance for SMDs 

and CVD. At present, interventions that effectively reduce loneliness in people with SMDs are 

limited (93, 444). Still, there is a wide range of psychosocial interventions aiming to increase 

social contact and support in SMDs, including group therapies, social skills training, online 

social interventions, peer support groups and Assertive Community Treatment (93, 445). 

However, these approaches have generally proven ineffective in reducing loneliness in SMDs 

(193, 444). Evidence-based interventions that specifically target the subjective feeling of 

loneliness are lacking, though promising developments have emerged (93, 193, 444). The most 

promising approaches involve attempts to change social thinking and appraisal. These 

interventions address cognitive biases and attributions styles (e.g., blaming oneself for social 

exclusion) in an effort to change the way individuals think about themselves and their social 

relationships (193, 444). Such interventions are consistent with the loneliness model proposed 

by Hawkley and Cacioppo (100) described in the introduction. However, targeting an 

individual’s cognitions without considering the wider social context in which the individual 

lives, may have limited effect (193). Thus, the cognitive approaches to loneliness should be 
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considered within a broader societal context, including improving opportunities for social 

interactions and inclusion, education and employment (193, 444). In addition, effectively 

reducing loneliness in people with SMDs should address their specific barriers to social 

participation and meaningful relationships, such as symptoms, social anxiety, social skills and 

stigma (444-446). Our results underline the importance of an integrated approach to patients 

with SMDs by focusing on formation and maintenance of meaningful social bonds. The 

findings are also relevant for the social distancing measures implemented during the current 

covid-19 pandemic. The social distancing is important to reduce the spread of corona virus, but 

may increase feelings of loneliness, perhaps especially among those with SMDs (447, 448). 

Our results indicate that people with SMDs may have a genetic propensity for loneliness, which 

can make them particularly vulnerable to negative effects of the isolation enforced in several 

countries (447, 448). Reducing loneliness has the potential to provide a broader benefit on 

psychosocial functioning, quality of life and recovery in individuals with SMDs (193, 444). In 

addition, limiting loneliness in SMDs may improve cardiovascular health, but these proposed 

benefits of reducing loneliness remain to be tested.  

Further, the discovery of overlapping genetic variants with mixed effect directions in 

BD and CVD risk factors in study III have important clinical implications. The findings may 

suggest variation in genetic propensity to CVD across subgroups of patients with BD, possibly 

underlying the observed variation in CVD between individuals with BD (82, 261, 308). 

Furthermore, the CVD comorbidity is likely to be associated with environmental risk factors, 

including physical activity, nutrition, smoking and medication, in CVD comorbidity (187, 417). 

The environmental risk factors and genetic susceptibility interact and influence the 

development of comorbid CVD. Moreover, genetic mechanisms may influence the likelihood 

of exposing oneself to environmental risk factors, such as smoking (299, 415, 416). A new 

GWAS identified a positive genetic correlation between smoking initiation and BD, and 

revealed that a considerable proportion of the genetic architecture of BD is associated with 

smoking (449). Recent data also suggest a positive genetic correlation between smoking and 

SCZ, MD and CVD risk (416). This evidence indicates that there may be some genetic variants 

influencing the tendency to seek or avoid environmental risk (e.g., smoking) that also influence 

the risk for SMDs and CVD. 

Taken together, the current results underscore the need for more targeted lifestyle 

interventions to prevent comorbid CVD. In particular, there is a need for more personalized 

lifestyle interventions focusing on the barriers for maintaining a healthy lifestyle, such as 
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motivational challenges and other psychiatric symptoms, medication side-effects and 

socioeconomic issues (10). In addition, better risk prediction tools allowing for earlier detection 

and prevention of CVD comorbidity are necessary. Current PGRSs for SMDs have poor 

sensitivity and specificity (136-138, 449), which limits clinical utility of these scores for risk 

prediction. PGRS for CAD and T2D appears to have more predictive power and have shown 

potential clinical utility (450, 451). Larger GWAS samples are necessary to improve risk 

prediction and stratification for SMDs and CVD morbidity. In addition, improved prevention 

requires more tailored pharmacological treatment according to individual risk.  

 

9.4 Future directions 

 

Further research 

Despite decades of research, the underlying pathobiology of SMDs has proven difficult to 

uncover, which has hampered the development of effective treatment with less metabolic side-

effects. Similarly, the mechanisms underlying the CVD comorbidity are elusive, although the 

results presented in this thesis have provided new insights that can inform future investigations. 

More research is needed to elucidate the mechanisms responsible for the CVD comorbidity in 

SMDs to improve prevention and treatment. In particular, larger GWAS samples are necessary 

to uncover more of the polygenic architecture of SMDs and CVD-related morbidity. Similarly, 

larger well-characterized samples are needed to investigate potential differences in genetic 

propensity to CVD across clinical subgroups (e.g., BD type I vs. BD type II). Future studies are 

also necessary to clarify whether a shared genetic basis between loneliness and SMDs explains 

part of the CVD comorbidity. Methods such as Mendelian randomization analyses can be used 

to assess possible causal relationships (452). Furthermore, increasing GWAS samples sizes will 

increase the pool of risk alleles from which to estimate PGRS, which can improve risk 

prediction and stratification. These developments combined with novel statistical tools to 

analyse the GWAS data can yield clinically relevant discoveries and facilitate precision 

medicine (i.e., more targeted and tailored interventions) (135). Genetic risk factors should be 

combined with other factors (e.g., lifestyle, loneliness, medications) to further improve risk 

prediction tools, which may inform clinical trials to select individuals that are more likely to 

develop CVD and respond to novel therapies. Furthermore, experimental studies are necessary 

to identify the specific causal variants underlying the identified shared genetic associations and 

their biological functions. Causal variants can be identified using fine-mapping approaches that 
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limit the ‘noise’ from correlated variants, and the functions of the causal variants can be 

investigated via experiments involving cell-based systems, model organisms (e.g., rodents) and 

computational modeling (for further details see Tam et al. (453)). Functional characterization 

of the causal variants may shed light on central pathophysiological mechanisms, which can help 

identify potential targets for prevention and treatment (e.g., psychotropic agents with less 

adverse side-effects). Overall, further research should aim at providing greater knowledge to 

optimize prevention and treatment of CVD comorbidity in SMDs tailored to individual disease 

risk. There is a need for a better understanding of how to efficiently reduce CVD risk through 

lifestyle changes, development of medications with less cardiometabolic side-effects, loneliness 

interventions and greater health care utilization and provision for individuals with SMDs. 
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10 CONCLUSION 
This thesis has provided new insights into CVD comorbidity in SMDs. The level of CVD risk 

factors has remained high in patients with SMDs during the past decade, although patients with 

BD showed modest reductions in CVD risk levels. The limited improvement in CVD risk 

suggests that most patients with SMDs have not benefitted from recent medical advances and 

health promotion efforts. Further, the thesis found polygenic overlap between loneliness, SMDs 

and CVD risk factors, thus providing novel insights into their shared genetic architecture. The 

results suggests that a genetic susceptibility to loneliness may also contribute to increased risk 

of SMDs and CVD, which may underlie some of the clinical association between loneliness 

and these disorders. The findings further indicate that SMDs differ in their relationships with 

loneliness, with a larger fraction of the genetic architecture underlying MD also influencing 

loneliness, when compared to BD and SCZ. In addition, we discovered extensive genetic 

overlap between BD and CVD phenotypes, implicating shared genetic molecular mechanisms. 

However, the shared loci possessed bidirectional effects, which highlights the importance of 

environmental causes of the raised CVD risk in BD. In addition, the mixed effect directions 

may suggest variation in genetic vulnerability to CVD across subgroups of BD, possibly 

underlying some of the heterogeneity of CVD comorbidity in BD. Overall, the findings 

underscore the need for further research to dissect the relationship between SMDs and CVD 

through a multidisciplinary approach focusing on genetic and environmental risk factors. Such 

an integrated approach can provide meaningful clinical discoveries and pave the way for 

improved prediction tools, earlier detection and prevention.   
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Errata 

Study II 

Reference # 52 (and the corresponding reference # 6 in Supplementary Method) “Davis KAS, 

et al. Mental health in UK Biobank: development, implementation and results from an online 

questionnaire completed by 157 366 participants. BJPsych Open. 2018;4:83–90. doi: 

10.1192/bjo.2018.12.” should be the updated version “Davis KAS, Coleman JRI, Adams M, 

Allen N, Breen G, Cullen B, et al. Mental health in UK Biobank - development, implementation 

and results from an online questionnaire completed by 157 366 participants: a reanalysis. 

BJPsych Open. 2020;6(2):e18-e.» Importantly, the numbers cited in study II from the 

original reference are correct. Davis et al. 2020 performed a re-analysis that only resulted in 

a decreased alcohol use disorder prevalence and, thus, a decrease in total psychiatric disorder 

prevalence in the UK Biobank. This supports the use of the UK Biobank as a population 

sample consisting of mainly healthy individuals.  
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Cardiovascular risk remains high in
schizophrenia with modest improvements in
bipolar disorder during past decade
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Mørch RH, Lunding SH, Vedal TSJ, Dieset I, Melle I, Lagerberg TV,
Andreassen OA. Cardiovascular risk remains high in schizophrenia
with modest improvements in bipolar disorder during past decade

Objective: While CVD risk has decreased in the general population
during the last decade, the situation in patients with schizophrenia
(SCZ) and bipolar disorder (BD) is unknown.
Methods: We compared CVD risk factors in patients with SCZ and BD
recruited from 2002–2005 (2005 sample, N = 270) with patients
recruited from 2006–2017 (2017 sample, N = 1011) from the same
catchment area in Norway. The 2017 sample was also compared with
healthy controls (N = 922) and the general population (N
range = 1285–4587, Statistics Norway) from the same area and period.
Results: Patients with SCZ and BD in the 2017 sample had significantly
higher level of most CVD risk factors compared to healthy controls and
the general population. There was no significant difference in the
prevalence of CVD risk factors in SCZ between the 2005 and 2017
samples except a small increase in glucose in the 2017 sample. There
were small-to-moderate reductions in hypertension, obesity, total
cholesterol, low-density lipoprotein, systolic and diastolic blood
pressure in the BD 2017 sample compared to the 2005 sample.
Conclusion: Despite major advances in health promotion during the
past decade, there has been no reduction in the level of CVD risk
factors in patients with SCZ and modest improvement in BD.
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Significant outcomes

• We found no improvement in CVD risk in patients with SCZ while patients with BD had small-to-
moderate reductions in several risk factors during the past decade.

• The striking increase in CVD risk factors in patients with SCZ and BD compared to the general pop-
ulation is a major clinical problem in psychiatry.

Limitations

• The study periods of the 2005 and 2017 samples are close, which may reduce the chance of detecting
differences between the samples.

• Fasting blood samples and information on daily smoking were retrieved from a subset of healthy
controls, although a sufficiently large number for comparison with patients.

Introduction

Severe mental disorders (SMD) such as schizophre-
nia and bipolar disorder are associated with substan-
tially decreased life expectancy compared to the

general population (1, 2). About 60% of the excess
mortality among patients with SMD is caused by
somatic diseases, especially cardiovascular disease
(CVD) (3, 4). The remaining 40% is due to accidents
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and suicides (5). The risk of dying from CVD is esti-
mated to be 2–3 fold greater in these patients com-
pared with the general population (2, 6), and several
studies have reported at least 2 times higher preva-
lence of the metabolic syndrome (MetS) (7, 8). MetS
is widely applied by clinicians to identify high-risk
individuals for CVD at an early stage, enabling
prevention of disease development (9).

There has been a steady increase in life expec-
tancy in the general population the last decades
(10). During the same time period, there has been
several public health campaigns for health promo-
tion and disease prevention (11) and tobacco legis-
lation has become stricter (12). These strategies
appear to have been effective in improving public
health (13). In the Norwegian population, the risk
of dying from CVD has more than halved the past
20 years (14). Similarly, the level of CVD related
morbidity has decreased substantially over the last
decades despite an increase in overweight and the
prevalence of type 2 diabetes (13, 15). Similar trends
are observed in other Western countries (16, 17).

Several epidemiological studies suggest that there
has been no progress in life expectancy among
patients with SMD and that the mortality gap
between patients and the general population has
increased during the last decades (18, 19). A recent
study from Finland, however, reported that the
longevity of patients with schizophrenia has
improved during the past 30 years, largely due to
decrease in suicidal death, while CVD morality has
increased in these patients (20). A recent Norwegian
study confirm the increased mortality in patients
with schizophrenia compared to the general popu-
lation, with CVD and cancer being the most com-
mon causes of death (21). Still, it is unknown to
what degree the elevated level of CVD risk factors
in patients with schizophrenia and bipolar disorder
has sustained after several health promotion efforts.

Preliminary findings suggest that the risk level is
still higher in these patients compared to the gen-
eral population. A recent study from England
found doubled levels of CVD risk factors, includ-
ing type 2 diabetes, hyperlipidemia and obesity, in
patients with schizophrenia and bipolar disorder
compared to individuals without psychiatric disor-
ders (22). However, this and other studies did not
investigate change in CVD risk among patients
over time. Thus, there is a need for clinical studies
focusing on the development of CVD risk in repre-
sentative patient samples.

Birkenæs et al. (2006) reported a doubled rate of
CVD risk factors, including hypertension, obesity,
dyslipidemia, type 2 diabetes, and smoking in a
representative sample of Norwegian SMD patients
compared to the general population (23, 24). The

same level of CVD risk factors were found in indi-
viduals with schizophrenia and bipolar disorder
(24). These findings are largely confirmed by inter-
national studies (7, 8, 25). In the present study, the
primary aim was to determine whether the level of
CVD risk factors has remained high in patients
with schizophrenia and bipolar disorder during the
past decade. To examine temporal trends, we com-
pared risk levels among patients included in 2002–
2005 (23, 24) with patients included in 2006–2017
from the same catchment area. To examine differ-
ences from the rest of the population, we compared
the CVD risk level in patients with healthy controls
and the general population.

Material and methods

Overall design

The study includes data from two patient samples
of schizophrenia or other psychotic disorders
(SCZ) and bipolar disorders (BD) recruited from
the major hospitals in the Oslo area; the first sam-
ple was recruited in 2002–2005 (2005 sample) and
the second in 2006–2017 (2017 sample). In addi-
tion, we used data from two reference groups: (i)
healthy controls randomly recruited from the same
catchment area and similar time period as the 2017
sample and (ii) two larger samples from the Oslo
general population obtained by Statistics Norway
(26, 27) from similar time periods as the 2005 and
2017 samples.

Participants in the thematically organized psychosis (TOP) study

The present study was part of the Thematically
Organized Psychosis (TOP) study, an ongoing
study in Oslo, Norway. Participants are recruited
from psychiatric inpatient and outpatient units at
the major hospitals in the Oslo area. These Oslo
hospitals collectively cover a catchment area of
88% of Oslo’s total population, are located in dif-
ferent parts of the city and are representative of
the city’s variation in sociodemographic character-
istics. Eligible participants were those who met the
inclusion criteria of a DSM-IV diagnosis of
schizophrenia, other psychotic disorder or bipolar
disorder I, bipolar disorder II or bipolar disorder
not otherwise specified (NOS), age between 18–
65 years and ability to give written informed
consent. Exclusion criteria were presence of a pro-
nounced cognitive deficit (IQ below 70), severe
somatic illness, brain damage, and not speaking a
Scandinavian language. Healthy controls were ran-
domly selected from statistical records from the
same catchment area and age range as patients.
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The TOP study is conducted in accordance with
the Helsinki Declaration and approved by the
Regional Committee for Medical Research Ethic
and the Norwegian Data Inspectorate. All partici-
pants have signed informed consent.

From the start of the TOP study in October
2002 through May 2017, a total of 1281 patients
from whom we had CVD risk data and with a diag-
nosis of bipolar disorders (N = 496), schizophrenia
or other psychotic disorder (N = 785) were
included. The characteristics of the first sample
from 2002–2005 (2005 sample, N = 161 SCZ and
109 BD) are published previously (23, 24). The
characteristics of the patients included during the
last decade (2017 sample) are presented here:
N = 1011 patients, 387 with BD and 624 with
SCZ. The BD group included patients with BD I
(N = 245), BD II (N = 114), and BD NOS
(N = 28). The SCZ group consisted of patients
with schizophrenia (N = 474), schizophreniform
(N = 47), and schizoaffective disorder (N = 103).
In addition, 922 healthy controls were recruited
from 2006 to 2017 to compare with the 2017 sam-
ple of patients.

Demographic and clinical characteristic of
patients in the 2017 sample are summarized in
Table 1 (more details in supplementary material).
Psychotropic drug use of the 2017 sample is pre-
sented in Table S1. For the comparisons between
the 2005 and 2017 sample, we reanalyzed data from
Birkenæs et al. (23, 24). with some minor changes
due to the updated dataset. Patients from the 2017
sample were younger than patients from the 2005
sample, with a mean (SD) age of 31.68 (10.49) vs.
35.50 (11.07) years (F(1, 1279) = 27.59, d = 0.35,
P < 0.001). The duration of pharmacological treat-
ment was significantly shorter among patients in
the 2017 sample compared to patients in the 2005
sample (SCZ: F(1, 696) = 10.66, P = 0.001; BD:
F(1, 434) = 9.33, P = 0.002). Among patients with
BD, duration of illness was shorter in the 2017 sam-
ple (F(1, 484) = 5.85, P = 0.016). All effect sizes
were small (Cohen’s d < 0.2 and phi / < 0.1) (28).
For more details, see supplementary material.

Clinical assessments

The clinical assessment tools were the same dur-
ing the whole recruitment period. A comprehen-
sive diagnostic interview was conducted with
Structural Clinical Interview for Diagnostic and
Statistical Manual of Mental Disorders, fourth
edition (DSM-IV), Axis 1 (29). Additional infor-
mation was collected through interviews and
treatment records to determine demographic fac-
tors, self-reported diet, physical activity (hours

per week), psychiatric history, medical history,
and current use of psychotropic medication,
tobacco, alcohol, and illicit drugs. Psychotic
symptoms were rated using the Positive and
Negative Syndrome Scale (PANSS) (30). Depres-
sive symptoms were assessed with the Inventory
of Depressive Symptoms (IDS-C) (31). General
symptoms and functioning were measured by the
Global Assessment of Functioning Scale (GAF),
split version (symptoms, GAF-S; function,
GAF-F) (32, 33).

The inter-rater reliability of the symptom assess-
ments in the TOP study is good, with an Intraclass
Coefficient (ICC) of 0.82 for PANSS symptoms,
0.86 for GAF-S and 0.85 for GAF-F (34, 35).
The inter-rater reliability is also satisfactory for
diagnosis, with overall agreement for diagnostic
categories of 82% and overall j = 0.77 (95% CI:
0.60–0.94) (36).

Physical assessments and CVD risk factors

All participants underwent a physical examination
performed by a physician, with the same protocol
for both samples. Body mass index (BMI: weight
in kg/height in m2) was calculated from weighing
the participants on calibrated digital weights wear-
ing light clothing and no shoes. Waist circumfer-
ence was measured midway between lowest rib and
the iliac crest. Blood pressure (BP) was recorded in
sitting position after resting.

Blood samples were drawn after an overnight
fast of at least 8 h and analyzed for fasting plasma
glucose (FPG), total cholesterol (TC), high density
lipoprotein cholesterol (HDL-C), low density
lipoprotein cholesterol (LDL-C), and triglycerides
(TGs).

Fasting venous blood samples were analyzed at
the Department of Medical Biochemistry, Oslo
University Hospital, on several routine instru-
ments: Integra 800, Abbot Architect, i2000, Cobas
8000 e602 and Cobas 8000 e801 (Roche Diagnos-
tics, Basel, Switzerland: www.roche.com/about/
business/diagnostics.html) using standard methods
controlled by internal and external quality control
samples. Until 2012, LDL was calculated by the
Friedewald formula, thereafter analyzed by an
enzymatic colorimetric method.

Statistics Norway sample

Statistics Norway (SSB, https://www.ssb.no/statba
nk/) has obtained self-reported data on overweight
and obesity (BMI ≥ 25) in the general population
of Oslo in 2002 and 2005 (N = 1285), and in 2008,
2012, 2015 and 2017 (37) (N = 3035). Statistics

3

Cardiovascular risk in severe mental disorders

http://www.roche.com/about/business/diagnostics.html
http://www.roche.com/about/business/diagnostics.html
https://www.ssb.no/statbank/
https://www.ssb.no/statbank/


Norway has also collected data on self-reported
daily smokers in Oslo in 2002–2005 (N = 540) and
in several intervals from 2006 to 2017 (N = 4587)
(Norhealth – an online database from the Norwe-
gian Institute of Public Health: http://www.norge
shelsa.no/norgeshelsa/ (26)). Smoking data were
merged into bins to get a sufficiently large sample
to break down on county level, age groups and
sex. We used SSB data from 2002–2005 to compare
with the 2005 sample, and data from 2006–2017 to
compare with the 2017 sample. To match the age
span in the TOP Study, we used SSB data on over-
weight/obesity from individuals aged 18–65 years
and data on smoking from individuals aged 16–
74 years (the most similar age group available).

Metabolic syndrome

Currently, several different definitions of MetS are
being used in the literature (38). In this study, MetS
was diagnosed according to the definition proposed
by the National Cholesterol Education Program,
Adult Treatment Panel III in 2003 (39) (supplemen-
tary material). This definition is widely used due to
its clinical utility (9, 40). Waist circumference was
available only for a limited number of patients in
the 2005 sample. Consequently, we used a modified
version of the MetS criteria (Birkenes et al., 2007
(24)), based on BMI ≥ 30 as an alternative measure
of central obesity, when comparing the two samples.

Statistical analysis

Data was analyzed using statistical package SPSS,
version 25 for Windows (IBM Corp, 2017) (41).

All statistical tests were carried out two-sided with
the significance level set to 0.05. The distribution
of data was investigated through histograms and
skewness indices. Variables that were not normally
distributed were log transformed before being
entered into statistical analyses. In the compar-
isons of sociodemographic and clinical variables
between groups, we used a chi-square test for cate-
gorical variables, and univariate analysis of vari-
ance (ANOVA) for continuous variables.
Univariate analysis of covariance (ANCOVA) and
logistic regression were used to adjust for age as a
potential confounder when comparing the CVD
risks between groups (diagnostic groups, patients
vs. controls). Age was considered a confounder in
accordance with the analyses of the 2005 sample
(23, 24). In supplementary analyses of SCZ vs. BD
we adjusted for functioning level (GAF-F), symp-
tom level (PANSS) and use of antipsychotics with
adverse metabolic side effects as the diagnostic
groups differed significantly in these variables. A
chi-square test was used to compare the prevalence
of smoking and overweight/obesity between
patients and the general population with data from
SSB as we had access to percentage and total num-
bers, not raw data.

Further, in the comparison of CVD risk factors
between the 2005 and 2017 sample, we used
ANCOVA and logistic regression to adjust for dif-
ferences in age, duration of illness and duration of
pharmacological treatment (possible confounders).
We also examined the CVD risk in subgroups,
stratified by sex and age groups (18–35 years, 36–
50 years, 51–65 years), in line with the analyses of
the 2005 sample (23, 24). Bonferroni correction

Table 1. Demographic and clinical characteristics of 2017 sample

Characteristics

All patients Male Female

Schizophrenia
(N = 624)

Bipolar disorder
(N = 387)

Schizophrenia
(N = 369)

Bipolar disorder
(N = 152)

Schizophrenia
(N = 255)

Bipolar disorder
(N = 235)

Male, % (N) 59.2 (369) 39.3 (152)***
Caucasian, % (N) 80.6 (502) 89.9 (347)*** 77.2 (285) 89.4 (135)** 85.5 (218) 90.2 (212)
Outpatients, % (N) 74.7 (461) 92.4 (352)*** 69.8 (257) 93.3 (139)*** 81.9 (204) 91.8 (213)*
Employed/student, % (N) 19.8 (123) 42.6 (164)*** 19.8 (73) 43.7 (66)*** 19.8 (50) 41.9 (98)***
Married or cohabiting, % (N) 14.8 (92) 34.8 (133)*** 12.5 (46) 30.2 (45)*** 18.1 (46) 37.8 (88)**
Substance abuse†, % (N) 26.0 (162) 23.5 (91) 36.9 (114) 31.6 (48/152) 18.9 (48) 18.3 (43)
Age, mean (SD) 30.6 (9.6) 33.5 (11.6)*** 29.6 (8.4) 34.0 (12.2)*** 32.0 (10.9) 33.1 (11.2)
Education, mean (SD) 12.8 (2.6) 14.3 (3.0)*** 12.5 (2.7) 14.2 (3.1)*** 13.2 (2.8) 14.3 (3.0)***
Treatment duration, mean (SD) 4.5 (6.5) 5.7 (6.7)* 4.0 (5.7) 4.4 (5.7) 5.3 (7.4) 6.4 (7.2)
Illness duration, mean (SD) 7.0 (7.5) 11.5 (9.8)*** 6.6 (7.1) 10.3 (9.6)*** 7.5 (8.1) 12.2 (9.9)***
GAF symptom, mean (SD) 42.5 (11.5) 56.9 (11.6)*** 41.9 (11.3) 57.0 (11.8)*** 43.5 (12.0) 56.9 (11.5)***
GAF function, mean (SD) 43.1 (11.1) 54.4 (12.9)*** 42.3 (10.4) 54.1 (13.5)*** 44.1 (12.0) 54.7 (12.6)***
IDS-C, total mean (SD) 18.2 (12.4) 17.2 (11.8) 17.3 (11..3) 14.8 (11.0)* 19.3 (13.6) 18.8 (12.1)
PANSS, total mean (SD) 64.1 (16.7) 45.7 (10.3)*** 65.9 (16.2) 46.4 (11.1)*** 61.6 (17.0) 45.2 (9.7)***

Categorical variables were compared using the Chi-square test, and continuous variables were compared using ANOVA. GAF, Global Assessment of Functioning; IDS, Inventory
of Depressive Symptomatology, PANSS, Positive and Negative Syndrome Scale. P value *< 0.05. **<0.01. ***<0.001.
†Substance abuse includes both abuse and dependence of substances.
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was used to control for multiple test when stratify-
ing, dividing the P-value of 0.05 by the number of
stratified groups. A P < 0.025 (0.05/2) was consid-
ered statistically significant when stratifying by
sex, and a P < 0.008 (0.05/6) was regarded signifi-
cant when stratifying by sex and age groups (two
sexes 9 three age groups).

We reported the effect size, Cohen’s d, from
ANCOVA, using Cohen’s guidelines of 0.2, 0.5,
and 0.8 as small, medium and large, respectively.
The computed effect size from logistic regressions
was odds ratio where values of 1.5, 2.5 and 4.3
were considered small, medium and large, respec-
tively. The effect size / was obtained from Chi-
square test, where values of 0.1, 0.3 and 0.5 are con-
sidered small, medium and large, respectively (Cohen,
1988 (28)).

As fasting vs. non-fasting status is mainly of
importance for glucose and TGs, fasting levels of
glucose and TGs in patients were compared with
the restricted number of fasting controls that were
available (N = 222).

Results

CVD risk factors of the 2017 sample

Table 2 shows CVD risk factors in patient with
SCZ and BD in the 2017 sample. In general, the
level of CVD risk factors was significantly higher

in patients with SCZ than in patients with BD.
More specifically, age-adjusted BMI, waist circum-
ference, TGs, FPG, BP and TC were higher (all
P’s < 0.01), and obesity, central obesity, hyperten-
sion, low-HDL and MetS were more prevalent
among the patients with SCZ (all P’s < 0.05).
HDL-C was lower in patients with SCZ than in
patients with BD (P < 0.001).

After adjustments for additional covariates,
including functioning level (GAF-F), symptom
level (PANSS) and use of antipsychotics with
adverse metabolic side effects, the differences in
CVD risk factors between diagnostic groups disap-
peared except for obesity, waist circumference,
LDL-C and diastolic BP that remained signifi-
cantly higher in the SCZ group (P < 0.05).

Comparison of CVD risk factors between 2005 and 2017 samples

Table 2 also presents the results of the comparison
of CVD risk factors in the 2005 sample with the
2017 sample, adjusting for age, duration of illness
and duration of psychopharmacological treatment.
Among patients with SCZ, there was no significant
difference in the level of CVD risk factors except
from FPG being slightly higher in the 2017 sample
(P = 0.042). Among patients with BD, there were
significant lower levels of TC, LDL-C, systolic, and
diastolic BP in the 2017 sample compared to the
2005 sample (all P’s < 0.01). The rate of obesity

Table 2. Cardiovascular risk factors of 2005 sample vs. 2017

Variable

Schizophrenia Bipolar disorder

2005 sample (N = 161) 2017 sample (N = 624) Effect size 2005 sample (N = 109) 2017 sample (N = 387) Effect size

Daily smoking 53.5 (83/155) 47.2 (282/597) 1.359 45.9 (50/109) 42.5 (161/379) 1.16
Obesity† 21.5 (32/149) 23.8 (132/555) 0.809 23.6 (25/106) 12.9 (46/357) 2.131*
Overweight† 59.7 (89/149) 54.8 (304/555) 1.083 57.5 (61/106) 51.5 (184/357) 1.118
Hypertension 47.1 (66/140) 37.7 (215/571) 1.392 50.9 (54/106) 30.6 (110/359) 1.916**
Low-HDL-C 37.5 (57/152) 31.6 (165/522) 1.311 22.1 (23/104) 24.8 (88/355) 1.032
MetS‡ 36.6 (52/142) 23.9 (120/503) 1.108 29.8 (31/104) 14.5 (50/346) 1.831
Type 2 diabetes 1.9 (3/161) 1.6 (10/624) 1.197 4.6 (5/109) 2.3 (9/387) 1.849
BMI† 26.1 (25.3, 27.0) 26.6 (26.1, 27.0) �0.044 26.2 (25.3, 27.1) 25.7 (25.1, 26.1) 0.204
Waist, cm 93.1 (87.7, 98.5) 92.9 (91.5, 94.2) 0.065 94.4 (87.1, 101.8) 88.9 (87.4, 90.4) 0.326
Systolic BP, mm HG 121.5 (119.0, 124.0) 120.2 (119.0, 121.5) 0.087 126.8 (123.7, 129.9) 118.0 (116.2, 119.8) 0.608**
Diastolic BP, mm HG 79.4 (77.6, 81.2) 77.4 (76.4, 78.3) 0.186 81.8 (79.5, 84.1) 75.7 (74.4, 77.0) 0.636**
Cholesterol, mmol/L 5.3 (5.1, 5.4) 5.1 (5.0, 5.2) 0.214 5.4 (5.2, 5.6) 5.0 (4.8, 5.0) 0.526**
HDL-C, mmol/L 1.3 (1.2, 1.3) 1.3 (1.3, 1.4) 0.092 1.5 (1.4, 1.5) 1.4 (1.4, 1.5) 0.041**
LDL-C, mmol/L 3.2 (3.1, 3.4) 3.2 (3.1, 3.3) 0.093 3.3 (3.1, 3.5) 3.0 (2.9, 3.1) 0.421**
Glucose, mmol/L 5.1 (4.9, 5.2) 5.2 (5.1, 5.3) �0.131* 5.3 (5.1, 5.5) 5.1 (5.0, 5.2) 0.227
Triglycerides, mmol/L 1.8 (1.6, 2.0) 1.6 (1.4, 1.7) 0.172 1.5 (1.3, 1.7) 1.3 (1.2, 1.4) 0.202

Mean (95% CI) levels and percentages (N) of cardiovascular risk factors for the two patient samples. Effect sizes are reported in Cohen’s d for continuous variables and odds ratio
for categorical variables. All values except from percentages (N) are adjusted for age, duration of treatment and duration of illness with ANCOVA and logistic regression. BMI,
body mass index; BP, blood pressure; HDL-C, high density lipoprotein cholesterol; LDL-C, low high density lipoprotein cholesterol; MetS, Metabolic syndrome. *P value < 0.05.
**<0.01.
†Weight in kg/height in m2.
‡In the comparison of MetS between samples, BMI ≥ 30 was used an alternative measure of central obesity due to waist measurements for a limited number of patients in
2005 sample.
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and hypertension was also lower among patients
with BD in the 2017 sample than in the 2005 sam-
ple (P = 0.011 and P = 0.007, respectively)
(Fig. 1a). There was no significant difference
between the samples in MetS, overweight, central
obesity, low-HDL-C or type 2 diabetes. The effect
sizes were small except from medium effect sizes
for BP and TC in the BD group (d = 0.53 for TC;
d = 0.61 for systolic BP, and d = 0.64 for diastolic
BP).

We made the same comparisons between the
two samples with stratification by age and sex to
investigate whether the above-mentioned changes
were restricted to certain age groups or sexes
(Tables S2 and S3). After Bonferroni correction,
the stratification analyses show that most of the
changes were restricted to female BD patients,
including reduced levels of obesity, hypertension,
systolic and diastolic BP, and TGs levels in female
patients with BD aged 18–50 years. Reduction in
diastolic BP and HDL-C were evident in male
patients with BD. Within the SCZ subgroups,
there were no statistical significant differences
between the 2005 and 2017 sample. There was a
nominal significant decrease in daily smoking and
increase in FPG among 18–35-year-old male
patients (P = 0.040 and P = 0.041, respectively)
with SCZ.

CVD risk factors in the 2017 sample compared with healthy
controls

Table 3 and Fig. 1a shows CVD risk factors in
patients compared to healthy controls. The CVD
risk level was generally significantly higher in
patients compared to controls. The level of age-
adjusted BMI, waist circumference and TGs were
significantly higher and HDL-C was significantly
lower in both diagnostic groups than in controls
(P < 0.001–0.029). Among patients with SCZ, TC
and LDL-C levels were also higher compared to
controls (P < 0.001). The prevalence of daily
smoking, overweight, central obesity, low-HDL,
MetS and type 2 diabetes were increased in
both diagnostic groups compared to controls
(P < 0.001–0.005). In addition, the prevalence of
obesity and hypertension was higher in patients
with SCZ (P < 0.001, P = 0.015, respectively).
Effect sizes (odds ratio) were highest for type 2 dia-
betes, MetS and daily smoking.

Stratification analyses show that the level of
CVD risk factors was higher in both male and
female patients compared to healthy controls, aged
18–50 years (Table S4). Comparisons with controls
aged 51–65 years were not possible because of lim-
ited number of of controls in this age group. Most

differences between SCZ and controls remained sig-
nificant after Bonferroni correction, while several
differences between the BD and control subgroups
were not significant after Bonferroni correction
(more details in supplementary material).

CVD risk factors in the 2017 sample compared with the general
population samples

For comparison we included data from two gen-
eral population samples of Oslo that were matched
on geographical area with our patient sample.

Statistics Norway sample: Analyses show a con-
siderably higher prevalence of daily smokers
among patients in the 2017 sample compared with
the Statistics Norway sample (v2 (1, 5562) =
551.35, / = 0.32, P < 0.05) (Fig. 1b). The graph
also illustrates a significant decline in the preva-
lence of daily smokers in the Statistics Norway
sample during the past decade (v2 (1,
5127) = 38.69, / = 0.09, P < 0.05). The reduction
was statically significant for both sexes (P < 0.05).
In contrast, there was no reduction in daily smok-
ing among patients.

Figure 1b also illustrates that overweight and
obesity were more frequent in patients of the 2017
sample than in the Statistics Norway sample (v2 (1,
3977) = 146.17, / = 0.20, P < 0.05). Although not
significant the level of overweight and obesity has
non-significantly decreased in the Statistics Nor-
way sample (from 36.5% to 35.5%) and in patients
with SCZ (from 59.7% to 54.8%) from the 2005 to
the 2017 sample, while it has significantly
decreased in patients with BD (from 57.5% to
51.5%). Despite these minor changes, the preva-
lence of overweight and obesity has remained con-
siderably higher in both diagnostic groups in the
2017 sample compared to the Statistics Norway
sample (Fig. 1b).

Discussion

The main finding of the present study was signifi-
cantly higher levels of CVD risk factors in patients
with SMD compared to the general population.
While there was no significant improvement in CVD
risk factors in SCZ during the past decade, there
were small to moderate improvements in BD, includ-
ing lower levels of TC, LDL-C, BP, hypertension
and obesity. Taken together, the current findings
suggest a limited improvement in CVD risk in
patients with SMD during the last 10 years.

To the best of our knowledge, this is the first
investigation of changes in CVD risk factors in
patients with SCZ and BD from the same catch-
ment area during the past decade. Although there
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are no previous studies for direct comparison, the
findings are in line with recent cross-sectional stud-
ies showing elevated levels of CVD risk factors,
including waist circumference, BMI, lipids and
FPG (42–46), although some variation in severity
exists (47, 48). Similarly to other studies, we found
increased prevalence of MetS, overweight, obesity,
type 2 diabetes, low-HDL, hypertension and daily
smoking in patients compared to healthy controls
and the general population (22, 48–50). The fre-
quency of MetS, overweight, obesity and type 2
diabetes were, however, somewhat lower in the
present sample (49, 51, 52), possibly due to differ-
ences in sample characteristics such as lower age
and shorter duration of illness and medication.
Our results are in line with other studies of
younger patients with shorter illness and treatment
duration (53–56).

In the present study, we were able to statistically
control for age, illness duration and pharmacologi-
cal treatment duration in the comparison of the
2005 and 2017 samples. Moreover, the samples
were from the same catchment area, and recruited
and examined with the same procedures. This
allowed us to investigate the time-dependent differ-
ences in CVD risk in SMD patients. The compar-
ison of the two samples showed no improvement
in CVD risk factors in the SCZ group and some
reductions in the BD group. These findings of lim-
ited improvements in CVD risk factors suggest
that public health efforts (11), and awareness in the
health care system (57, 58) to reduce CVD risk
have had no appreciable effect in patients with
SCZ and modest effects in patients with BD. Fur-
ther, due to the novel data collected in the Norwe-
gian health surveys with random sampling from
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Fig. 1. (a) Level (%) of CVD risk factors in 2005 sample vs. 2017 sample and healthy controls. For all P-value levels, 2005 sample
and 2017 sample are compared within each diagnostic group, and patient samples are compared with healthy controls. The level of
all risk factors were significantly higher in both patients with SCZ and BD than in controls, except from hypertension and obesity
that were not more frequent in the BD 2017 sample compared to controls. Results are from logistic regression with adjustments for
age, duration of illness and duration of pharmacological treatment. *P value < 0.05 comparing patients and healthy controls. #P
value < 0.05 comparing patient 2005 sample and 2017 sample. HDL-C, high density lipoprotein cholesterol; MetS, Metabolic syn-
drome. (b) Daily smoking, overweight and obesity (%) in the Statistics Norway sample and 2005 sample and 2017 sample. Daily
smoking and overweight/obesity are significantly more prevalent in patients compared to the Statistics Norway sample, as indicated
by *P value of <0.05. Smoking has declined in the Statistics Norway sample from 2005 to 2017, and obesity has declined in BD
patients, as indicated by #P value < 0.05.
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2005 to 2017 (Statistics Norway), we were able to
compare our patient results with risk levels in the
general population collected during the same time
period and from the same geographical area as the
patients.

Our finding of limited improvement in CVD risk
in SMD patients differs from the changes seen in
the general population with reduced CVD risk and
healthier life-style with increase in physical activ-
ity, better diet and reduction in daily smoking (27,
59, 60). Possible reasons for the improvement in
the general population are tobacco control poli-
cies, including ban on smoking inside public places
(2004), cessation programs and several health cam-
paigns since 2003 (11, 12). Additionally, food
labels was introduced in 2009 to help consumers
make healthier food choices (61). These public
health efforts appear to have been ineffective in
SMD, as indicated by high level of CVD risk and
no significant improvement in life-style factors in
our sample of patients with SMD (details in sup-
plementary material). It is of public health concern
that patients with SMD in Norway, a country with
one of the highest ranked health care systems in
the world (62), show little change in CVD risk fac-
tors. The question is why patients with SMD, and
SCZ in particular, show limited improvement. One
explanation may be that there are several inherent

obstacles to life-style change in SMD, including
low motivation, symptom load, reduced cognitive
functioning, financial challenges, and sedentary
side effects of medication (i.e. drowsiness and fati-
gue) (63–65). These challenges are difficult to influ-
ence through public health efforts.

Moreover, treatments with antihypertensiva and
statins have increased in the general population
during the past decades (66, 67), possibly con-
tributing to the reductions in hypertension and
dyslipidemia (15). Evidence suggests undertreat-
ment of hypertension, dyslipidemia and other
metabolic conditions in SMD (68). Patients with
SMD report difficulties getting access to primary
care, problems communicating physical needs and
poorer compliance with treatment (69). Accord-
ingly, there is an increased risk of serious condi-
tions remaining undetected and inadequately
treated in SMD patients compared to the general
population (68). Patients with SCZ may be even
more limited in their ability to access somatic care
and benefit from health campaigns than patients
with BD, possibly due to poorer motivation (70)
and cognitive function (71) and more frequent use
of antipsychotics with adverse side effects (22).
These differences may contribute to explaining
why the improvement that we found was restricted
to the BD group. The sparse reductions in CVD

Table 3. Cardiovascular risk factors in 2017 sample vs. healthy controls

CVD variable Healthy controls (N = 922)

Schizophrenia (N = 624) Bipolar disorder (N = 387)

Statistic Effect size Statistic Effect size

Daily smoking 15.3 (61/399) v2 = 115.7 4.914*** v2 = 74.5 4.172***
Obesity (BMI≥30)† 10.9 (20/183) v2 = 21.8 2.753*** v2 = 9.2 1.203
Overweight (BMI≥25)† 39.9 (73/183) v2 = 33.7 2.099*** v2 = 27.2 1.671**
Central obesity‡ 17.1 (123/719) v2 = 109.7 3.106*** v2 = 63.7 2.041***
Hypertension§ 28.9 (44/152) v2 = 14.8 1.634* v2 = 19.1 1.106
Low-HDL¶ 14.6 (127/870) v2 = 55.8 2.744*** v2 = 18.4 1.921***
MetS 5.0 (10/201) v2 = 68.6 6.469*** v2 = 18.9 2.966**
Type 2 diabetes 0.1 (1/922) v2 = 13.8 16.971** v2 = 19.4 20.915**
BMI† 24.5 (23.8, 25.2) F = 21.3 0.363*** F = 5.0 0.191*
Waist, cm 85.8 (84.8, 86.8) F = 81.9 0.449*** F = 9.0 0.218**
Systolic BP, mm HG 118.6 (116.2, 120.9) F = 2.0 0.110 F = 0.6 0.099
Diastolic BP, mm HG 76.4 (74.7, 78.0) F = 1.0 0.012 F = 2.9 0.194
Cholesterol, mmol/L 4.9 (4.8, 4.9) F = 24.6 0.136*** F = 3.9 0.058
HDL-C, mmol/L 1.5 (1.5, 1.6) F = 87.3 �0.511*** F = 11.5 �0.215**
LDL-C, mmol/L 2.9 (2.8, 2.9) F = 51.4 0.300*** F = 0.4 0.028
Glucose, mmol/L 5.1 (5.0, 5.2) F = 1.5 0.118 F = 1.1 �0.050
Triglycerides, mmol/L 1.0 (0.9, 1.2) F = 55.2 0.622*** F = 18.5 0.375***

Percentages (N) and mean (95% CI) values of metabolic risk variables for healthy controls. Logistic regression was used to adjust for age differences between controls and
patients when comparing categorical CVD variables. ANCOVA was used to adjust for age differences when comparing continuous CVD variables. Reported effects sizes are
Cohen’s d computed from ANCOVA, and odds ratio from logistic regression. BMI, body mass index; HDL-C, high density lipoprotein cholesterol, LDL-C, low high density lipopro-
tein cholesterol; BP, blood pressure; MetS, Metabolic syndrome. *P value < 0.05. **<0.01. *** <0.001.
†Weight in kg/height in m2.
‡Waist > 102 cm (males), < 88 cm (females).
§Systolic blood pressure ≥130 mm HG and/or diastolic blood pressure ≥85 mm HG or taking antihypertensive.
¶Low-HDL < 1.0 mmol/L (males), <1.3 mmol/L (females).
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risk can also be due to a genetic vulnerability to
CVD in SMD patients (72). Drug na€ıve patients
and first degree relatives show increased risk of
metabolic disturbances (73). These results may
point to a shared genetic risk for psychotic disor-
ders and CVD, as indicated by reports of overlap-
ping genes between CVD risk factors and SMD
(74).

During the last 10–20 years, there has been
increased focus on the comorbid CVD risk and
side effects of medications in the health care sector,
with revised guidelines (57, 58) and better educa-
tion and training (69). In 2004, guidelines that
stress the importance of metabolic monitoring in
patients with SMD were published (75, 76). Ameri-
can Diabetes Association et al. recommended reg-
ular monitoring of weight, waist circumference,
glucose, lipids and BP, and nutritional and physi-
cal activity counseling (75). In Norway, similar rec-
ommendations were presented and educational
activities aimed at improving monitoring of CVD
health in SMD, were initiated (58). The level of
CVD risk in our patient sample could indicate that
these changes in guidelines and education have
been insufficient for SMD patients, especially for
SCZ. This may partly be due to difficulties in
implementing the guidelines (77), including limited
time or resources, low organizational support,
severity of psychiatric illness, and clinician’s con-
cerns over the quality of the guidelines (78–80).
These barriers to apply the guidelines should be
taken into account in the development of more
effective implementations strategies. Moreover,
studies indicate uncertainty among primary care
and mental health providers over who is responsi-
ble for the metabolic monitoring and treatment of
metabolic abnormalities in patients with SMD (78,
81). Thus, the responsibilities of primary and
secondary care need to be clarified, preferably
through better collaboration between health
services.

The reductions in CVD risk that we found in the
BD group were mainly restricted to female
patients. There has been an increasing number of
studies focusing on sex inequalities in metabolic
side effects of psychotropic drugs (82, 83), with
women being more prone to antipsychotic-induced
weight gain and metabolic disturbances (84). Clini-
cians might be more cautious during psychophar-
macological treatment of women. In line with this
hypothesis, we found a lower level in the use of
clozapine and olanzapine only among female
patients with BD, but this was on the border of
statistical significance (P = 0.08).

We found higher levels of several CVD risk fac-
tors in SCZ compared to BD. Consistent with this

finding, self-reported physical activity levels were
lower and self-reported diet was less healthy in
SCZ than BD (details in supplementary material).
Although the differences in these life-style factors
were small, they may contribute to the observed
differences in CVD risk between the two diagnostic
groups. In addition, more frequent use of antipsy-
chotics with metabolic side effects, higher symptom
level and lower level of functioning in the SCZ
group may play a role. Recent findings suggest that
higher levels of unhealthy lipids are associated with
more severe symptoms and poorer functioning in
SCZ (85). Consistent with this, after adjusting for
symptom level, functioning level and use of
antipsychotics with adverse metabolic side effects,
several differences in CVD risk factors between the
diagnostic groups disappeared, while obesity,
waist, LDL-C and diastolic BP remained signifi-
cantly higher in the SCZ group. Some recent stud-
ies also suggest greater risk levels among patients
with SCZ compared to BD (86–88). Other studies
report mixed findings, including similar rates of
MetS and greater prevalence of smoking and cen-
tral adiposity in SCZ, but lower levels of TC and
LDL-C (50). One study reported slightly higher
prevalence of lipid abnormalities in patients with
BD than SCZ (44). Accordingly, more studies are
needed to investigate whether there is a clear differ-
ence in CVD risk between the two diagnostic
groups.

Strengths of the current study are the large rep-
resentative sample of patients with SCZ and BD
recruited from the same catchment area and
assessed with the same methods. We also had
access to daily smoking data and BMI from a large
sample of the general population (Statistics Nor-
way) from the same geographical area and time
period as patients. It is a limitation that the time
periods of the two compared patient samples are
close, which may reduce the chance of detecting
differences between the samples. Therefore, we did
subanalyses comparing the 2005 sample with a
sample from 2014–2017, which generally con-
firmed our original findings (supplementary mate-
rial). However, there was a significant reduction in
low HDL-C in the SCZ group from 2014–2017.
This may indicate that there are improvements in
the SCZ group in more recent years. However, due
to smaller sample size, these results need to be
replicated, and future studies should address if the
CVD risk levels have started to decrease in SCZ.

Another limitation is the lack of waist circumfer-
ence from the 2005 sample, which left us with BMI
as the measure of obesity when comparing sam-
ples. However, BMI is commonly employed as a
measure of obesity and found to predict CVD risk
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(89). In the assessment of CVD risk in the 2017
sample we used both BMI and waist circumfer-
ence. A third limitation was that fasting blood
samples and information on daily smoking were
retrieved only from a subset of healthy controls,
although a sufficiently large number for compari-
son. Finally, methods for glucose and lipid analy-
ses have changed somewhat during the years;
however, without noticeable implications for esti-
mated levels.

Despite major advances in cardiovascular health
promotion and disease prevention during the past
decade, both in the general population and the
mental health care system, the level of CVD risk
factors remained high in patients with SCZ and
BD, with some improvements in the BD group.
Our finding of limited improvements in CVD risk
in patients highlights the need for more targeted
interventions and improved prevention strategies.
Moreover, better screening and monitoring of
metabolic status should be implemented. Closer
collaboration between mental health and primary
care providers may contribute to improve monitor-
ing practices. Strengthening accreditation is sug-
gested to promote the collaboration between
primary and secondary health services (90). In
addition, more focus on life-style factors, including
physical activity and nutrition, should be better
integrated in the treatment of individuals with
SMD.
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Demographic and clinical characteristic of the 2017 sample  

There were more men in the SCZ group (59.2 %) than in the BD group (39.3 %, p < 0.001). 

Patients with SCZ were somewhat younger than patients with BD, with a mean (SD) age of 

30.6 (9.6) years versus 33.5 (11.6) years (p < 0.001, partial eta squared = 0.018), respectively. 

The mean age (SD) of patients, 31.7 (10.5) years, was significantly lower compared to the 

mean age (SD) of the healthy controls, 33.6 (9.2) years (p < 0.001, partial eta squared = 

0.010). Self-reported physical activity level (hours per week) were significantly lower in 

patients with SCZ (M = 3.19, SD = 3.26) than in patient with BD (M = 4.30, SD = 5.32) (F (1, 

918) = 9.86, p < 0.001, partial eta squared = 0.016). Self-reported diet of patients with BD 

was more healthy compared to the diet of SCZ patients (χ2 (1, 930) = 5.52, p = 0.019, phi = 

0.077). Individuals with BD were more often Caucasian of Norwegian origin, had higher 

education and were more likely to be outpatients, full- or part time employed, and living in a 

stable relationship. In addition, scores on Global Assessment of Functioning (GAF) were 

higher, and scores on Positive and Negative Syndrome Scale (PANSS) were lower among 

patients with BD compared to SCZ. Patients with BD had a longer duration of 

pharmacological treatment and duration of illness than the SCZ group.  

 

Comparison of demographic and clinical characteristics of the 2005 sample and 2017 

sample 

Patients from the 2017 sample were more likely to be part- or full time employed than 

patients from the 2005 sample (SCZ: χ2 (1, 784) = 4.60, p = 0.032, BD: χ2 (1, 494) = 4.60, p = 

0.032).  Patients with BD in 2017 sample had less education (F (1, 473) = 4.32, p = 0.038) 

and lower GAF-scores (GAF-F: F (1, 488) = 5.83, p = 0.016; GAF-S: F (1, 489) = 5.69, p = 

0.017) compared to BD in the 2005 sample. Among patients with SCZ, substances 

abuse/dependence was more prevalent in the 2017 sample than in the 2005 sample (χ2 (1, 785) 
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= 4.39, p = 0.036). All effect sizes were small (Cohen's d < 0.2 and phi < 0.1). There were no 

significant differences between the 2005 and 2017 sample in the level of depressive 

symptoms (IDS), PANSS scores, gender, ethnicity, hospitalization, self-reported physical 

activity level and diet or the proportion of patients with BD type 1 versus BD type 2. 

Metabolic syndrome (MetS) 

For establishing the diagnosis of MetS, at least 3 out of 5 criteria must be present. Cut off 

values for the individual variables are: 

(1) FPG ≥ 5.6 mmol/L (100 mg/dL) or taking hypoglycemic medication, 

(2) TGs ≥ 1.7 mmol/L (150 mg/dL), 

(3) HDL-C < 1.0 mmol/L (40 mg/dL) (men) and < 1.3 mmol/L (50 mg/dL) (women),  

(4) systolic blood pressure ≥ 130 mm Hg and/or diastolic blood pressure ≥ 85 mm Hg or 

taking antihypertensive medication, and  

(5) central obesity with waist circumference > 102 cm (40 in) (men) and > 88 cm (35 in) 

(women).  
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Supplementary table 1.  Psychotropic Drug Use of Sample  2017, % (N) 
 All patients          Male Female 

 

Characteristics 

Schizophrenia 

(N=624) 

Bipolar disorder 

(N=387) 

Schizophrenia 

(N=369) 

Bipolar disorder 

(N=152) 

Schizophrenia 

(N=255) 

Bipolar disorder 

(N=235) 

Minimum 1 antipsychotic 87.3 (545) 53.7 (208)*** 87.5 (323) 55.3 (84)*** 87.1 (222) 52.8 (124)*** 

   7.2 (17)*** 

42.1 (99)*** 

19.1 (45)*** 

34.9 (82)*** 

11.1 (26)* 

36.6 (86) 

10.6 (25) 

Minimum 2 antipsychotic 26.4 (165)   6.7 (26)*** 27.6 (102)   5.9 (9)*** 24.7 (63) 

Weight-inducing antipsychoticsa 62.8 (392) 43.7 (169)*** 63.4 (234) 46.1 (70)** 62.0 (158) 

Lithium   2.1 (13) 18.1 (70)***   1.6 (6) 16.4 (25) ***   2.7 (7) 

Minimum 1 antiepileptic 12.8 (80) 35.4 (137)***   9.8 (36) 36.2 (55)*** 17.3 (44) 

Weight-inducing antiepilepticsb   4.5 (28) 14.2 (55)***   4.1 (15) 19.1 (29)***   5.1 (13) 

Minimum 1 antidepressant 27.7 (173) 32.3 (125) 24.7 (91) 25.7 (39) 32.2 (82) 

Weight-inducing antidepressantsc 11.5 (72) 10.6 (41) 10.3 (38) 10.4 (16) 13.3 (34) 

Percentages (N) of patients using medication. 
aClozapine, olanzapine, risperidone and quetiapine 
bValproate and carbamazepine 
c Paroxetine, mirtazapine, mianserine and venlafaxine 

*p value < 0.05. ** < 0.01. *** < 0.001. 
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Supplementary table 2. Cardiovascular risk factors of SCZ 2005 sample versus 2017 

 Women  Men 

Variables 2005 sample 2017 sample 2005 sample 2017 sample 

All ages N = 67 N = 255 N = 94 N = 369 

Daily smoking 50.8 (33/65) 46.4 (116/250) 55.6 (50/90) 47.8 (166/347) 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

20.0 (12/60) 

48.3 (29/60) 

20.7 (48/232) 

48.7 (113/232) 

22.5 (20/89) 

67.4 (60/89) 

26.0 (84/323) 

59.1 (191/323) 

Hypertension 

Low HDL C 

36.8 (21/57) 

38.1 (24/63) 

24.7 (59/239) 

31.7 (69/218) 

54.2 (45/83) 

37.1 (33/89) 

47.0 (156/332) 

31.6 (96/304) 

Metabolic syndrome 29.3 (17/58) 21.5 (45/209) 41.7 (35/84) 25.5 (75/294) 

Type 2 diabetes    3.0 (2/67)   2.8 (7/254)   1.1 (1/94)    0.8 (3/369) 

BMIa   25.4 (5.1) 26.0 (6.0) 26.6 (4.5) 27.0 (5.1) 

Systolic BP, mm HG 116.5 (14.5) 114.4 (15.1) 125.2 (13.6) 124.1 (12.6) 

Diastolic BP, mm HG 76.6 (10.4) 74.7 (11.6)   81.1 (11.3) 79.3 (9.6) 

Cholesterol, mmol/L   5.2 (1.1)   5.1 (1.1)     5.3 (1.1)   5.1 (1.1) 

HDL-C, mmol/L   1.4 (0.3)   1.5 (0.4)     1.1 (0.4)   1.2 (0.4) 

LDL-C, mmol/L   3.1 (0.8)   3.1 (1.0)     3.3 (0.9)   3.3 (0.9) 

Glucose, mmol/L   5.1 (1.1)   5.1 (0.8)     5.1 (0.8)   5.3 (1.0) 

Triglycerides, mmol/L   1.4 (1.1)   1.2 (0.8)     2.0 (1.5)   1.8 (1.3) 

18-35 y N = 41 N = 174 N = 60 N = 289 

Daily smoking 53.7 (22/41) 42.9 (73/170) 63.8 (37/58) 40.6 (136/269) 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

16.2 (6/37) 

37.8 (14/37) 

19.0 (30/158) 

45.6 (78/158) 

20.7 (12/58) 

60.3 (35/58) 

23.6 (60/254) 

53.9 (137/254) 

Hypertension 

Low HDL C 

27.0 (10/37) 

34.2 (13/38) 

17.8 (29/163) 

30.7 (47/153) 

51.7 (30/58) 

39.3 (22/56) 

44.7 (115/257) 

28.6 (69/241) 

MetS 17.1 (6/35) 16.9 (25/138) 35.2 (19/54) 19.9 (46/231) 

Type 2 diabetes   2.4 (1/41)   1.7 (3/174)   1.7 (1/60)   0.3 (1/289) 

BMIa   24.3 (5.0) 25.4 (5.9) 25.8 (4.3) 26.4 (5.0) 

Systolic BP, mm HG 113.7 (13.1) 112.6 (13.6) 123.0 (11.4) 123.8 (12.0) 

Diastolic BP, mm HG 74.6 (8.4) 73.1 (11.3) 79.2 (9.8) 78.3 (9.7) 

Cholesterol, mmol/L   4.9 (1.0)   4.8 (0.9)    5.1 (1.1)   5.0 (1.0) 

HDL-C, mmol/L   1.4 (0.4)   1.5 (0.4)    1.2 (0.4)   1.2 0.3() 

LDL-C, mmol/L   2.9  (0.8)   2.9 (0.9)    3.2 (0.8)   3.2 (0.9) 

Glucose, mmol/L   4.9 (1.1)   5.0 (0.5)    5.0 (0.9)   5.3 (1.0) 

Triglycerides, mmol/L   1.2 (0.7)   1.1 (0.7)    1.8 (1.2)   1.7 (1.2) 

36-50 y N = 20 N = 62 N = 30 N = 72 

Daily smoking 47.4 (9/19) 52.5 (32/61) 37.9 (11/29) 38.6 (27/70) 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

33.3 (6/18) 

72.2 (13/18) 

21.1 (12/57) 

54.4 (31/57) 

28.6 (8/28) 

78.6 (22/28) 

38.7 (24/62) 

80.6 (50/62) 

Hypertension 

Low HDL C 

58.8 (10/17) 

47.4 (9/19) 

36.2 (21/58) 

36.2 (17/47) 

56.5 (13/23) 

34.5 (10/29) 

55.2 (37/67) 

44.8 (26/58) 

MetS 50.0 (9/18) 26.1 (12/46) 53.8 (14/26) 48.3 (28/58) 

Type 2 diabetes   5.0 (1/20)   4.8 (3/62)       0 (0/30)   2.8 (2/72) 

BMIa   28.6 (4.9) 26.4 (5.7) 28.8 (4.7) 29.4 (4.9) 

Systolic BP, mm HG 122.3 (16.2) 118.4 (16.8) 131.7 (18.4) 125.3 (15.1) 

Diastolic BP, mm HG 82.1 (13.2) 77.7 (10.8) 86.0 (14.7) 83.2 (8.6) 

Cholesterol, mmol/L   5.6 (1.0)   5.6 (1.2)   5.9 (1.1)   5.5 (1.3) 

HDL-C, mmol/L   1.4 (0.3)   1.5 (0.5)   1.2 (0.3)   1.2 (0.6) 

LDL-C, mmol/L   3.3 (0.8)   3.5 (1.2)   3.9 (0.9)   3.5 (1.2) 

Glucose, mmol/L   5.4 (1.0)   5.3 (1.2)   5.3 (0.8)   5.4 (1.3) 

Triglycerides, mmol/L   1.9 (1.4)  1.3 (0.8)   2.3 (1.8)   2.1 (1.5) 

51-65 y N = 6 N = 19 N = 4 N = 8 

Daily smoking 40.0 (2/5) 57.9 (11/19) 66.7 (2/3) 37.5 (3(8) 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

     0 (0/5) 

40.0 (2/5) 

35.3 (6/17) 

58.8 (10/17) 

   0 (0/3) 

100 (3/3) 

     0 (0/7) 

57.1(4/7) 

Hypertension 

Low HDL C 

33.3 (1/3) 

33.3 (2/6) 

50.0 (9/18) 

27.8 (5/18) 

100 (2/2) 

25.0 (1/4) 

50.0 (4/8) 

20.0 (1/5) 

MetS 40.0 (2/5) 41.2 (7/17) 50.0 (2/4) 20.0 (1/5) 

Type 2 diabetes      0 (0/6)    5.3 (1/19)      0 (0/4)       0 (0/8) 

BMIa   24.9 (4.6) 29.1 (6.1) 28.0 (1.5) 24.4 (3.4) 

Systolic BP, mm HGb 126.6 (.) 120.0 (19.8) 141.9 (14.1) 126.4 (11.5) 

Diastolic BP, mm HGb 70.0 (.) 79.6 (14.1) 99.3 (3.5) 82.1 (12.5) 

Cholesterol, mmol/L    5.7 (0.8)    5.6 (0.7)   5.8 (0.2)   6.2 (0.8) 

HDL-C, mmol/L    1.4 (0.2)    1.5 (0.4)   1.0 (0.3)   1.5 (0.5) 

LDL-C, mmol/L    3.3 (0.5)    3.5 (0.7)   3.4 (1.2)   4.3 (1.0) 

Glucose, mmol/L     5.6 (1.4)    5.7 (1.0)   4.9 (0.2)   5.0 (0.7) 

Triglycerides, mmol/L    2.2 (1.6)    1.6 (1.1)   3.1 (0.4)   0.7 (2.1) 

CVD risk levels in SCZ 2005 sample and 2017 sample. For categorical risk factors, percentages (%) are from chi-square 

test and p-values are from logistic regression with adjustment for differences in age, duration of treatment and duration 

of illness. Mean (SD) values of continuous variables have been adjusted for the same covariates with ANCOVA.  
a Weight in kg/height in m2. 
b Statistical significant difference and SD are not computed as  data is available from only one female patient aged 51-

65 years. 

*p < 0.025. **p < 0.008. Abbreviations: BMI = body mass index, BP = blood pressure, HDL-C = high density 

lipoprotein cholesterol, LDL-C = low density lipoprotein cholesterol, MetS = Metabolic syndrome 
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Supplementary table 3. Cardiovascular risk factors of BD 2005 sample versus 2017 

Women Men 

Variables 2005 sample 2017 sample 2005 sample 2017 sample 

All ages N = 65 N = 235 N = 44 N = 152 

Daily smoking 38.5 (25/65) 43.1 (100/232) 56.8 (25/44) 41.5 (61/147)* 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

28.6 (18/63) 

50.8 (32/63) 

11.9 (26/218)** 

45.4 (99/218) 

16.3 (7/43) 

67.4 (29/43) 

14.4(20/139) 

61.2 (85/139) 

Hypertension

Low HDL C 

43.5 (27/62) 

21.7 (13/40) 

15.1 (33/218)** 

25.9 (56/216) 

61.4 (27/44) 

22.7 (10/44) 

54.6 (77/141) 

23.0 (32/139) 

MetS 25.0 (15/60) 12.7 (27/212) 36.4 (16/44) 26.7 (36/135) 

Type 2 diabetes    7.7 (5/65)   3.0 (7/235)  0 (0/44)   1.3 (2/152) 

BMIa   26.2 (5.8) 25.2 (4.9) 26.1 (3.6) 26.3 (3.5) 

Systolic BP, mm HG 123.2 (18.1) 112.7 (12.9)** 131.2 (19.0) 125.9 (17.2) 

Diastolic BP, mm HG 79.6 (9.7) 72.2 (10.4)** 84.8 (11.6) 81.4 (13.8)** 

Cholesterol, mmol/L   5.2 (1.1)   4.9 (1.0)   5.6 (1.3)   5.0 (1.0) 

HDL-C, mmol/L   1.7 (0.5)   1.6 (0.4)   1.2 (0.3)   1.2 (0.3)* 

LDL-C, mmol/L   3.0 (1.1)   2.9 (0.9)   3.7 (1.1)   3.1 (0.8) 

Glucose, mmol/L   5.3 (1.7)   5.1 (1.0)   5.3 (0.7)   5.2 (0.8) 

Triglycerides, mmol/L   1.4 (1.7)   1.1 (0.6)   1.7 (0.9)   1.5 (0.9) 

18-35 y N = 34 N = 150 N = 19 N = 96 

Daily smoking 41.2 (14/34) 38.1 (56/147) 68.4 (13/19) 41.8 (38/91) 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

26.5 (9/34) 

47.1 (16/34) 

11.3 (16/142) 

39.4 (56/142) 

10.5 (2/19) 

57.9 (11/19) 

   9.0 (8/89) 

52.8 (47/89) 

Hypertension

Low HDL C 

30.3 (10/33) 

20.0 (6/30) 

   9.2 (13/141)** 

27.0 (38/141) 

47.4 (9/19) 

31.6 (6/19) 

53.3 (48/90) 

21.6 (19/88) 

MetS 19.4 (6/31) 10.9 (15/138) 21.1 (4/19) 14.0 (12/86) 

Type 2 diabetes 11.8 (4/34)   2.0 (3/150)    0 (0/19)      0 (0/96) 

BMIa   25.5 (5.9) 24.8 (5.1) 26.1 (3.5) 25.3 (3.2) 

Systolic BP, mm HG 117.5 (13.1) 110.1 (9.9)** 127.6 (13.6) 122.6 (15.8) 

Diastolic BP, mm HG 77.2 (8.7) 70.1 (9.3)** 79.2 (8.7) 79.5 (14.3) 

Cholesterol, mmol/L   4.9 (0.8)   4.6 (0.8)   5.2 (1.5)   4.8 (0.9) 

HDL-C, mmol/L   1.2 (0.2)   1.3 (0.3)   1.1 (0.3)   1.2 (0.3) 

LDL-C, mmol/L   2.7 (0.7)    2.7 (0.7)   3.3 (1.2)   3.0 (0.7) 

Glucose, mmol/L   5.3 (2.0)    5.0 (1.2)   5.2 (0.8)   5.1 (0.6) 

Triglycerides, mmol/L   1.2 (1.0)    1.1 (0.5)**   1.7 (1.0)   1.4 (0.9) 

36-50 y N = 19 N = 67 N = 17 N = 34 

Daily smoking 36.8 (7/19) 52.2 (35/67) 58.8 (10/17) 38.2 (13/34) 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

33.3 (6/18) 

50.0 (9/18) 

10.2 (6/59) 

52.5 (31/59) 

18.8 (3/16) 

81.3 (13/16) 

18.8 (6/32) 

75.0 (24/32) 

Hypertension

Low HDL C 

44.4 (8/18) 

26.3 (5/19) 

22.0 (13/59) 

27.1 (16/59) 

64.7 (11/17) 

17.6 (3/17) 

51.6 (16/31) 

33.3 (10/30) 

MetS 16.7 (3/18) 17.2 (10/58) 47.1 (8/17) 30.0 (9/30) 

Type 2 diabetes  0 (0/19)   6.0 (4/67)  0 (0/17)       0 (0/34) 

BMIa   25.6 (5.1) 25.6 (4.0) 25.7 (3.5) 27.0 (3.6) 

Systolic BP, mm HG 126.0 (16.8) 114.8 (13.1)** 133.7 (22.4) 126.1 (14.9) 

Diastolic BP, mm HG 79.8 (7.8) 75.8 (12.0) 88.9 (12.8) 80.8 (11.4) 

Cholesterol, mmol/L   5.7 (1.3)   5.1 (1.0)   6.0 (1.2)   5.5 (1.1) 

HDL-C, mmol/L   1.8 (0.5)   1.5 (0.4)   1.2 (0.2)   1.3 (0.3) 

LDL-C, mmol/L   3.4 (1.4)   3.1 (0.9)   4.1 (1.1)   3.4 (0.8) 

Glucose, mmol/L   4.8 (0.4)   5.0 (0.7)   5.4 (0.4)   5.0 (0.3) 

Triglycerides, mmol/L   1.1 (0.4)   1.2 (0.8)**  1.7 (1.2)   1.7 (0.9) 

51-65 y N = 12 N = 18 N = 8 N = 22 

Daily smoking 40.0 (2/5) 57.9 (11/19) 25.0 (2/8) 45.5 (10/22) 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

27.3 (3/11) 

63.6 (7/11) 

23.5 (4/17) 

70.6 (12/17) 

25.0 (2/8) 

62.5 (5/8) 

33.3 (6/18) 

77.8 (14/18) 

Hypertension

Low HDL C 

81.8 (9/11) 

18.2 (2/11) 

38.9 (7/18) 

12.5 (2/16) 

87.5 (7/8) 

12.5 (1/8) 

65.0 (13/20) 

40.0 (8/20) 

MetS 54.5 (6/11)   6.3 (1/16) 50.0 (4/8) 47.4 (9/19) 

Type 2 diabetes   8.3 (1/12)      0 (0/18)   0 (0/8)   9.1 (2/22) 

BMIa   29.0 (6.6) 28.0 (6.4) 26.8 (4.3) 28.2 (3.5) 

Systolic BP, mm HG 144.2 (21.2) 122.7 (23.5) 147.1 (18.7) 134.5 (19.9) 

Diastolic BP, mm HG 90.4 (10.6) 74.8 (9.6)** 91.5 (10.2) 84.7 (10.8) 

Cholesterol, mmol/L   6.2 (1.0)   6.3 (1.1)   5.9 (1.1)   5.1 (1.0) 

HDL-C, mmol/L   1.5 (0.5)   1.9 (0.4)   1.4 (0.4)   1.2 (0.3) 

LDL-C, mmol/L   3.8 (0.8)   3.9 (1.1)   3.8  (0.9)   3.1 (0.8) 

Glucose, mmol/L   6.1 (1.5)   5.4 (0.5)   5.8 (0.8)   5.8 (1.4) 

Triglycerides, mmol/L   2.8 (3.4)   1.0 (0.4)   1.7 (0.9)   1.8 (0.9) 

CVD risk levels in BD 2005 sample and 2017 sample. For categorical risk factors, percentages (N) are from 

chi-square test and p-values are from logistic regression with adjustment for differences in age, duration of 

treatment and duration of illness. Mean (SD) values of continuous variables have been adjusted for the same 

covariates with ANCOVA.  
a Weight in kg/height in m2. 

* p < 0.025. ** p < 0.008. Abbreviations: BMI = body mass index, BP = blood pressure, HDL-C = high density 

lipoprotein cholesterol, LDL-C = low density lipoprotein cholesterol,  MetS = Metabolic syndrome 
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Supplementary table 4. Cardiovascular risk factors of healthy controls vs. 2017 sample 

             Women         Men  

Variables Healthy controls SCZ BD Healthy controls SCZ BD 

All ages N = 423 N = 255 N = 235 N = 499   N = 369 N = 152 

Daily smoking 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

Central obesity  

Hypertension 

Low HDL C 

MetS 

Type 2 diabetes  

BMIa   

Waist, cm 

Systolic BP, mm HG 

Diastolic BP, mm HG 

Cholesterol, mmol/L 

HDL-C, mmol/L 

LDL-C, mmol/L 

Glucose, mmol/L 

Triglycerides, mmol/L 

12.4 (24/194) 

  9.5 (8/84) 

40.5 (34/84) 

22.4 (70/313) 

14.5 (10/69) 

15.9 (63/397) 

  2.4 (2/84) 

  0.2 (1/423) 

24.2 (3.7) 

80.6 (12.4) 

113.7 (12.6) 

73.8 (9.0) 

  4.9 (0.9) 

  1.7 (0.4) 

  2.7 (0.8) 

  4.9 (0.4) 

  0.8 (0.4) 

46.4 (116/250)** 

20.7 (48/232)** 

48.7 (113/232) 

44.9 (93/207)** 

24.7 (59/239)** 

31.7 (69/218)** 

21.5 (45/209)** 

  2.8 (7/254)* 

26.1 (6.0)** 

87.9 (15.5)** 

114.9 (15.6) 

74.6 (11.8) 

   5.1 (1.0)* 

   1.5 (0.4)** 

   3.1 (1.0)** 

   5.1(0.8) 

   1.2 (0.8)** 

43.1 100/232)** 

11.9 (26/218) 

45.4 (99/218) 

34.8 (72/207)** 

15.1 (33/218) 

25.9 (56/216)** 

12.7 (27/212) 

  3.0 (7/235)* 

25.3 (5.1) 

 85.2 (13.7)** 

112.5 (12.7) 

71.9 (10.5) 

  4.9 (1.0) 

  1.6 (0.4)** 

  2.9 (0.8) 

  5.0 (1.0) 

  1.1 (0.4)** 

18.0 (37/205) 

12.1 (12/99) 

39.4 (39/99) 

13.1 (53/406) 

41.0 (34/83) 

13.5 (64/473) 

  6.8 (8/117) 

  0 (0/499) 

24.8 (4.0) 

89.8 (11.4) 

122.3 (10.5) 

78.6 (8.0) 

  4.9 (1.0) 

  1.4 (0.4) 

  4.0 (0.9) 

  5.2 (0.4) 

  1.2 (0.9) 

47.8 (166/347)** 

26.0 (84/323)** 

59.1 (191/323)** 

29.8 (93/213)** 

47.0 (156/332)* 

31.6 (96/304)** 

25.5 (75/294)** 

   0.8 (3/369) 

27.0 (5.2)** 

96.4 (15.2)** 

124.4 (12.8) 

79.3 (9.6) 

  5.2 (1.1)** 

  1.2 (0.4)** 

  3.4 (1.0)** 

  5.3 (1.0) 

  1.7 (1.3)** 

41.5 (61/147)** 

14.4(20/139) 

61.2 (85/139)** 

24.1 (33/137)* 

54.6 (77/141) 

23.0 (32/139)** 

26.7 (36/135)* 

  1.3 (2/152) 

26.2 (3.6) 

94.1 (10.8)** 

125.3 (16.4) 

80.4 (13.5) 

  4.9 (1.0) 

  1.2 (0.3)** 

  3.1 (0.8) 

   5.2 (0.4) 

   1.5 (1.0)** 

18-35 y N = 266 N = 174 N = 150 N = 309    N= 289  N = 96 

Daily smoking 12.7 (15/118) 

  8.0 (4/50) 

34.0 (17/50) 

17.9 (37/207) 

11.9 (5/42) 

18.4 (46/250) 

  1.7 (1/60) 

     0 (0/266) 

23.5 (3.8) 

78.7 (13.1) 

113.1 (7.8) 

72.7 (7.4) 

  4.7 (0.9) 

  1.7 (0.5) 

  2.5 (0.7) 

  4.9 (0.4) 

  0.9 (0.4) 

42.9 (73/170)** 

19.0 (30/158) 

45.6 (78/158) 

37.9 (53/140)** 

17.8 (29/163)** 

30.7 (47/153)** 

16.9 (25/138) 

  1.7 (3/174) 

25.7 (6.0)** 

85.9 (15.0) 

113.0 (13.6) 

73.2 (11.1) 

  4.8 (0.9) 

  1.5 (0.4)** 

  2.9 (0.9)** 

  4.9 (0.5) 

  1.2 (0.7)** 

38.1 (56/147)** 

11.3 (16/142) 

39.4 (56/142) 

29.6 (40/135)** 

  9.2 (13/141) 

27.0 (38/141) 

10.9 (15/138) 

  2.0 (3/150) 

24.9 (5.2) 

83.8 (13.4)** 

110.5 (9.7) 

70.2 (9.3) 

  4.6 (0.8) 

  1.6 (0.4)** 

  2.7 (0.7) 

  5.0  (1.1) 

  1.1 (0.6)** 

17.4 (20/115) 

10.3 (6/58) 

37.9 (22/58) 

10.4 (28/269) 

36.2 (17/47) 

11.0 (32/292) 

  5.2 (4/77) 

     0 (0/309) 

24.4 (4.2) 

88.1 (14.5) 

121.5 (10.3) 

78.8 (8.5) 

  4.7 (1.0) 

  1.4 (0.3) 

  2.8 (0.9) 

  5.1 (0.4) 

  1.1 (0.9) 

40.6 (136/269)** 

23.6 (60/254) 

53.9 (137/254)** 

24.9 (60/241)** 

44.7 (115/257)** 

28.6 (69/241)** 

19.9 (46/231)** 

  0.3 (1/289) 

26.5 (5.1)** 

94.2 (11.0)** 

124.1 (12.4) 

78.1(9.7) 

  5.0 (1.0)** 

  1.2 (0.4)** 

  3.2 (0.9)** 

  5.2 (0.9) 

  1.7 (1.2)** 

41.8 (38/91)** 

   9.0 (8/89) 

52.8 (47/89) 

16.5 (14(85) 

53.3 (48/90) 

21.6 (19/88) 

14.0 (12/86) 

     0 (0/96) 

25.7 (3.5) 

92.1 (0.8)** 

122.8 (15.7 

79.7 (14.8) 

  4.9 (0.9) 

  1.2 (0.3)** 

  3.0 (0.8) 

  5.1 (0.6) 

  1.4 (0.9) 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

Central obesity 

Hypertension 

Low HDL C 

MetS 

Type 2 diabetes 

BMIa   

Waist, cm 

Systolic BP, mm HG 

Diastolic BP, mm HG 

Cholesterol, mmol/L 

HDL-C, mmol/L 

LDL-C, mmol/L 

Glucose, mmol/L 

Triglycerides, mmol/L 

36-50 y N = 130 N = 62 N = 67  N = 174   N = 72  N=34  

Daily smoking 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

Central obesity 

Hypertension 

Low HDL C 

MetS 

Type 2 diabetes 

BMIa   

Waist, cm 

Systolic BP, mm HG 

Diastolic BP, mm HG 

Cholesterol, mmol/L 

HDL-C, mmol/L 

LDL-C, mmol/L 

Glucose, mmol/L 

Triglycerides, mmol/L 

  8.3 (5/60) 

12.9 (4/31) 

51.6 (15/31) 

30.5 (29/95) 

12.5 (3/24) 

13.2 (16/121) 

  4.2 (1/24) 

  0.8 (1/130) 

25.5 (3.5) 

83.5 (9.7) 

112.2 (9.8) 

73.6 (8.0) 

  5.1 (0.9) 

  1.7 (0.4) 

  3.0 (0.8) 

  5.1 (0.9) 

  0.7 (0.2) 

52.5 (32/61)** 

21.1 (12/57) 

54.4 (31/57) 

52.9 (27/51)** 

36.2 (21/58)* 

36.2 (17/47)** 

26.1 (12/46)* 

  4.8 (3/62) 

26.3 (5.5) 

90.3 (15.2)** 

119.0 (18.7) 

77.1 (12.3) 

  5.5 (1.2) 

  1.6 (0.5)** 

  3.4 (1.2)** 

  5.3 (1.2) 

  1.3 (0.7)** 

52.2 (35/67)** 

10.2 (6/59) 

52.5 (31/59) 

40.7 (22/54) 

22.0 (13/59) 

27.1 (16/59) 

17.2 (10/58) 

6.0 (4/67) 

25.6 (4.4) 

86.5 (13.4) 

113.5 (13.7) 

74.8 (12.4) 

  5.1 (1.0) 

  1.6 (0.4) 

  3.4 (1.3) 

  5.0 (0.8) 

  1.2 (0.8)** 

20.8 (16/77) 

12.8 (5/39) 

38.5 (15/39) 

17.6 (23/131) 

44.1 (15/34) 

16.9 (28/166) 

  7.7 (3/39) 

     0 (0/174) 

25.6 (3.6) 

93.5 (11.7) 

123.4 (10.6) 

79.2 (7.5) 

  5.3 (1.0) 

  1.3 (0.3) 

  3.3 (0.8) 

  5.4 (1.3) 

  1.2 (0.9) 

38.6 (27/70) 

38.7 (24/62)** 

80.6 (50/62)** 

50.8 (32/63)** 

55.2 (37/67) 

44.8 (26/58)** 

48.3 (28/58)** 

  2.8 (2/72) 

29.0 (5.0)** 

104.8 (15.0)** 

125.0 (14.6) 

82.9 (8.2) 

  5.6 (1.2) 

  1.2 (0.6)** 

  3.5 (1.1) 

38.2 (13/34) 

18.8 (6/32) 

75.0 (24/32)** 

28.1 (9/32) 

51.6 (16/31) 

33.3 (10/30) 

30.0 (9/30) 

      0 (0/34) 

26.8 (3.6) 

97.9 (9.9) 

126.6 (14.3) 

80.6 (10.7) 

   5.4 (1.1) 

   1.2 (0.3) 

   3.4 8(0.8) 

   5.1 (0.4) 

   1.7 (1.2) ** 
  5.3 (0.5) 

  2.0 (1.5)** 

51-65 yb N = 27 N = 19 N = 18 N = 16   N = 8   N = 22 

Daily smoking 

Obesity (BMI≥30)a 

Overweight (BMI≥25)a 

Central obesity 

Hypertension 

Low HDL C 

MetS 

Type 2 diabetes 

BMIa   

Waist, cm 

Systolic BP, mm HG 

Diastolic BP, mm HG 

Cholesterol, mmol/L 

HDL-C, mmol/L 

LDL-C, mmol/L 

Glucose, mmol/Lc 

Triglycerides, mmol/Lc 

25.0 (4/16) 

      0 (0/3) 

33.3 (1/3) 

36.4 (4/11) 

66.7 (2/3) 

  3.8 (1/26) 

     0 (0/17) 

     0 (0/27) 

24.7 (3.2) 

90.2 (12.5) 

147.4 (42.5) 

92.2 (15.0) 

  6.0 (1.1) 

  1.8 (0.4) 

  3.5 (1.1) 

    .    (.) 

    .    (.) 

57.9 (11/19) 

35.3 (6/17) 

58.8 (10/17) 

81.3 (13/16) 

50.0 (9/18) 

27.8 (5/18) 

41.2 (7/17) 

  5.3 (1/19) 

28.4 (6.1) 

99.2 (14.7) 

118.0 (19.0) 

80.0 (13.3) 

 5.6 (0.7) 

  1.6 (0.4) 

  3.4 (0.7) 

  5.6 (1.2) 

  1.5 (1.0) 

57.9 (11/19) 

23.5 (4/17) 

70.6 (12/17) 

55.6 (10/18) 

38.9 (7/18) 

12.5 (2/16) 

  6.3 (1/16) 

     0 (0/18) 

28.1 (6.0) 

95.2 (14.2) 

124.3 (21.5) 

75.4 (9.2) 

  6.2 (1.2) 

  1.8 (0.5) 

  3.5 (0.8) 

  5.3 (0.5) 

  1.2 (0.6) 

  7.7 (1/13) 

50.0 (1/2) 

100 (2/2) 

33.3 (2/6) 

100 (2/2) 

26.7 (4/15) 

100 (1/1) 

     0 (0/16) 

24.6 (3.5) 

93.2 (11.4) 

135.1 (7.1) 

84.5 (12.5) 

  6.3 (0.9) 

  1.4 (0.4) 

  3.8 (1.0) 

  4.2 (.) 

  1.3 (.) 

  37.5 (3(8) 

     0 (0/7) 

  57.1(4/7) 

  12.5 (1/8) 

  50.0 (4/8) 

  20.0 (1/5) 

  20.0 (1/5) 

       0 (0/8) 

  30.6 (2.4) 

  94.5 (6.5) 

  127.8 (11.5) 

  84.5 (12.5) 

    6.3 (0.8) 

    1.4 (0.5) 

    4.3 (0.7) 

    5.5 (0.7) 

    2.2 (0.4) 

  45.5 (10/22) 

  33.3 (6/18) 

  77.8 (14/18) 

  50.0 (10/20) 

  65.0 (13/20) 

  14.3 (3/21) 

  40.0 (8/20) 

    9.1 (2/22) 

  28.2 (3.5) 

103.2 (9.8) 

135.0 (19.5) 

84.9 (10.6) 

   5.1 (0.9) 

   1.2 (0.3) 

   3.1 (0.8) 

   5.8 (1.4) 

   1.8 (0.9) 

 

 

 

 

 

 

 

CVD risk levels in healthy controls and 2017 sample. For categorical risk factors, percentages (N) are from chi-square test and p-values are from logistic 

regression with adjustment for age. Mean (SD) values of continuous variables are adjusted for age with ANCOVA.  
a Weight in kg/height in m2.  
b Due to small sample size of controls between 51-65 years, metabolic risk factors in this age group are not statistically compared with SCZ and BD. 
c Missing/only one fasting blood samples from healthy controls 

*p < 0.025. **p < 0.008.. Abbreviations: BMI = body mass index, BP = blood pressure, HDL-C = high density lipoprotein cholesterol, LDL-C = low density 

lipoprotein cholesterol,  MetS = Metabolic syndrome 
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Stratified analysis of healthy controls and BD 2017 sample, Bonferroni corrected  

Several differences in CVD risk factors between controls and BD 2017 sample did not reach 

significance level after Bonferroni correction. After stratifying by sex with accompanying 

Bonferroni correction, the significant difference in MetS and BMI between controls and BD 

2017 sample disappeared (p > 0.025). When stratifying by both sex and age groups, 

significant differences disappeared in overweight, central obesity, low HDL, MetS and TGs in 

males aged 18-35 years, low HDL, MetS, HDL-C and FG in males aged 36-50 years, and 

daily smoking, LDL and FG in males aged 51-65 years (p > 0.008). Within the female group, 

significant difference in MetS and low HDL C disappeared in the age group 36-50 individuals 

after Bonferroni correction (p > 0.008).  
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CVD risk factors in the 2014-2017 sample compared with the 2005 sample, controls and 

the general population 

As the difference in time between the two samples was short and the duration of the samples 

was different, we did supplementary analysis comparing the 2005 sample with a sample of 

similar duration from 2014-2017. The results were mainly in line with the original findings, 

except from fewer significant reductions in the BD group. Specifically, the reductions in 

LDL-C, hypertension, overweight and obesity did not reach statically significance, while 

daily smoking was significantly reduced to 28.4 % (odds ratio = 2.29, p = 0.013) in patients 

with BD from 2014-2017. Among patients with SCZ, there was a significant reduction in low 

HDL-C (odds ratio = 2.414, p = 0.006) in the 2014-2017 sample. No significant difference 

was found in self-reported physical activity and diet between samples (p > 0.05). Moreover, 

the CVD risk level was higher in patients from 2014-2017 compared to controls and the 

general population from the same time period. Several of the differences between patients 

with BD and controls, however, did not reach statistical significance, which is probably 

related to reduced statistical power. For more details, see Supplementary table 5 and 6. 
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Supplementary table 5.  Cardiovascular Risk Factors of 2005 sample versus 2014-2017 sample 
Schizophrenia  Bipolar disorder 

Variable 

2005 sample 

(N=161) 

2014-2017 sample 

(N=109) 

Effect 

size 

2005 sample 

 (N=109) 

2014-2017 sample 

 (N=96) 

Effect 

size 

Daily smoking 

Obesitya

Overweighta

Hypertension 

Low-HDL-C 

MetSb

Type 2 diabetes 

53.5 (83/155) 

21.5 (32/149) 

59.7 (89/149) 

47.1 (66/140) 

37.5 (57/152) 

36.6 (52/142) 

  1.9 (3/161)  

  46.7 (49/105) 

  27.1 (26/96) 

  55.2 (53/96) 

  41.8 (41/98) 

  19.4 (19/98) 

  24.4 (21/86) 

  1.8 (2/109) 

 1.362 

 0.689 

 1.116 

 1.018 

 2.414** 

 1.511 

 1.117 

45.9 (50/109) 

23.6 (25/106) 

57.5 (61/106) 

50.9 (54/106) 

22.1 (23/104) 

29.8 (31/104) 

 4.6 (5/109) 

  28.4 (27/95) 

  14.4 (13/90) 

  53.5 (48/90) 

  38.5 (35/91) 

  21.1 (19/90) 

  16.3 (14/86) 

  2.1 (2/96) 

 2.290* 

 1.972 

 1.972 

 1.294 

 1.586 

 1.873 

 2.006 

BMIa    26.1 (25.3, 27.0)    26.7 (25.6, 27.8) -0.124    26.2 (25.3, 27.1)    25.9 (24.8, 27.0)  0.074 

Waist, cm   93.1 (87.7, 98.5)   92.1 (88.7,  95.5)  0.067   94.4 (87.1, 101.8)    86.8 (83.5, 90.0)  0.452 

Systolic BP, mm HG 121.5 (119.0, 124.0)   119.5 (116.1, 122.8)  0.127 126.8 (123.7, 129.9) 116.6 (112.5, 120.7)  0.542* 

Diastolic BP, mm HG 79.4 (77.6, 81.2)  78.5 (75.7, 81.2)  0.071   81.8 (79.5,84.1)   77.3 (74.4, 80.3)  0.342* 

Cholesterol, mmol/L   5.3 (5.1, 5.4)   5.2 (4.9, 5.4)  0.094  5.4 (5.2, 5.6)  4.8 (4.6, 5.1)  0.531** 

HDL-C, mmol/L   1.3 (1.2, 1.3)    1.4 (1.3, 1.5) -0.181  1.5 (1.4, 1.5)  1.5 (1.4, 1.6) -0.075 

LDL-C, mmol/L   3.2 (3.1, 3.4)    3.3 (3.1, 3.5) -0.111  3.3 (3.1, 3.5)  3.0 (2.8, 3.2)  0.313 

Glucose, mmol/L 

Triglycerides, mmol/L 

  5.1 (4.9, 5.2) 

  1.8 (1.6, 2.0) 

   5.3 (5.1, 5.5) 

   1.5 (1.3, 1.8) 

-0.271 

 0.091 

 5.3 (5.1, 5.5) 

   1.5 (1.3,  1.7) 

 5.1 (4.8, 5.3) 

 1.2 (1.0, 1.5) 

 0.245 

 0.234 

Mean (95% CI) levels and percentages (N) of cardiovascular risk factors for the two patient samples. Effect sizes are reported in 

Cohen’s d for continuous variables and odds ratio for categorical variables. All values except from percentages (N) are adjusted for 

age, duration of treatment and duration of illness with ANCOVA and logistic regression.  
aWeight in kg/height in m2. 
bIn the comparison of MetS between samples, BMI ≥ 30 was used an alternative measure of central obesity due to waist 

measurements for a limited number of patients in 2005 sample.  

*p value < 0.05. ** < 0.01.

Abbreviations: BMI = body mass index, BP = blood pressure, HDL-C = high density lipoprotein cholesterol, LDL-C = low high 

density lipoprotein cholesterol, MetS = Metabolic syndrome 
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Supplementary table 6. Cardiovascular Risk Factors in 2014-2017 sample versus controls 

CVD variable 

Healthy controls 

   (N=227) 

Schizophrenia 

(N=109) 

Bipolar disorder 

(N=96) 

Statistic Effect size Statistic Effect size 

Obesity (BMI≥30)a  10.9 (20/183)   χ2 = 12.523  3.259***  χ2 = 2.978    1.467 

Overweight (BMI≥25)a 

Central obesityb

 39.9 (73/183) 

 17.2 (39/227) 

  χ2 = 9.035 

  χ2 = 20.990 

 2.042** 

 2.953*** 

 χ2 = 21.482 

 χ2 = 12.458 

   2.088** 

   1.761 

Hypertensionc  28.9 (43/149)   χ2 = 8.183  1.965*  χ2 = 8.991  1.702 

Low-HDLd  16.6 (36/217)   χ2 = 3.571  1.309  χ2 = 3.625  1.402 

MetS    8.0 (8/100) χ2 = 11.821  3.411**  χ2 = 7.090  1.606 

BMIa  24.7 (24.1, 25.4)   F = 11.169  0.398**   F = 5.814  0.291* 

Waist, cm    85.6 (83.8, 87.5)    F = 14.787  0.439***   F = 2.531  0.193 

Systolic BP, mm HG 118.5 (116.3, 120.8)   F =  0.000  0.002   F = 1.869 -0.173 

Diastolic BP, mm HG    76.9 (75.1, 78.8) F = 0.090  0.037   F = 0.001 -0.005 

Cholesterol, mmol/L   4.7 (4.6, 4.9) F = 9.937  0.371**   F = 0.053  0.027 

HDL-C, mmol/L   1.5 (1.4, 1.5) F = 6.221 -0.292*   F = 0.023 -0.017 

LDL-C, mmol/L   2.9 (2.8, 3.0) F = 11.365  0.401**   F = 0.411  0.077 

Glucose, mmol/L

Triglycerides, mmol/L 

  5.1 (4.9, 5.2) 

   1.0 (0.9, 1.2) 

  F = 5.646 

  F = 21.257 

 0.307* 

 0.669*** 

  F = 0.699 

  F = 4.678 

    0.094 

    0.311* 

Percentages (N) and mean (95% CI) values of metabolic risk variables for healthy controls. Logistic regression 

was used to adjust for age differences between controls and patients when comparing categorical CVD 

variables. ANCOVA was used to adjust for age differences when comparing continuous CVD variables. 

Reported effects sizes are Cohen’s d computed from ANCOVA, and odds ratio from logistic regression. 

Statistical significant difference in the prevalence of smokers and diabetes are not computed as these data are 

available from only a limited number of controls from 2014-2017 and none of these were registered as smokers 

or having diabetes.
aWeight in kg/height in m2. 
bWaist > 102 cm (males), < 88 cm (females). 
cSystolic blood pressure ≥ 130 mm HG and/or diastolic blood pressure ≥ 85 mm HG or taking 

antihypertensive. 
dLow-HDL < 1.0 mmol/L (males), < 1.3 mmol/L (females). 

*p value < 0.05. ** < 0.01. *** <.001.

Abbreviations: BMI = body mass index, HDL-C = high density lipoprotein cholesterol, LDL-C = low high 

density lipoprotein cholesterol, BP = blood pressure, MetS = Metabolic syndrome 



12 

CVD risk factors in the 2014-2017 sample compared with the Statistics Norway sample 

Statistics Norway has obtained self-reported data on BMI (N = 1387) and daily smoking (N = 

675) in the general population of Oslo between 2014 and 2017. Analyses show a considerably 

higher prevalence of daily smokers  and overweight/obesity among both patients with SCZ 

and BD from 2014 to 2017 compared with the Statistics Norway sample from the same period 

(SCZ: smoking: χ2 (1, 781) = 95.63 phi = 0.35, p < 0.001; overweight/obesity: χ2 (1, 1483) = 

15.54, phi = 0.19, p < 0.001; BD: smoking: χ2 (1, 771) = 25.99, phi = 0.18, p < 0.001; 

overweight/obesity: χ2 (1, 1477) = 12.04, phi = 0.09, p < 0.001). There is also a decline in the 

prevalence of daily smokers in the Statistics Norway sample from 2014-2017 compared to the 

Statistics Norway 2005 sample (χ2 (1, 1215) = 37.59, phi = 0.18, p < 0.001).  





Study II 
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Polygenic overlap and shared genetic loci between
loneliness, severe mental disorders, and
cardiovascular disease risk factors suggest shared
molecular mechanisms
Linn Rødevand 1, Shahram Bahrami1, Oleksandr Frei1,2, Aihua Lin1, Osman Gani1, Alexey Shadrin 1,
Olav B. Smeland 1, Kevin S. O’ Connell 1, Torbjørn Elvsåshagen 1,3, Adriano Winterton 1, Daniel S. Quintana 1,4,5,
Guy F. L. Hindley1,6, Maren C. F. Werner1, Srdjan Djurovic 7,8, Anders M. Dale9,10,11,12, Trine V. Lagerberg1,
Nils Eiel Steen 1 and Ole A. Andreassen1

Abstract
Clinical and epidemiological evidence suggest that loneliness is associated with severe mental disorders (SMDs) and
increases the risk of cardiovascular disease (CVD). However, the mechanisms underlying the relationship between
loneliness, SMDs, and CVD risk factors remain unknown. Here we explored overlapping genetic architecture and
genetic loci shared between SMDs, loneliness, and CVD risk factors. We analyzed large independent genome-wide
association study data on schizophrenia (SCZ), bipolar disorder (BD), major depression (MD), loneliness and CVD risk
factors using bivariate causal mixture mode (MiXeR), which estimates the total amount of shared variants, and
conditional false discovery rate to evaluate overlap in specific loci. We observed substantial genetic overlap between
SMDs, loneliness and CVD risk factors, beyond genetic correlation. We identified 149 loci jointly associated with
loneliness and SMDs (MD n= 67, SCZ n= 54, and BD n= 28), and 55 distinct loci jointly associated with loneliness and
CVD risk factors. A total of 153 novel loneliness loci were found. Most of the shared loci possessed concordant effect
directions, suggesting that genetic risk for loneliness may increase the risk of both SMDs and CVD. Functional analyses
of the shared loci implicated biological processes related to the brain, metabolic processes, chromatin and immune
system. Altogether, the study revealed polygenic overlap between loneliness, SMDs and CVD risk factors, providing
new insights into their shared genetic architecture and common genetic mechanisms.

Introduction
Patients with severe mental disorders (SMDs), including

schizophrenia (SCZ), bipolar disorder (BD), and major
depressive disorder (MDD), have 15–20 years reduced life

span compared to the general population1. A major cause
of the increased mortality is a high cardiovascular disease
(CVD) risk2,3, and some of this CVD risk seems to be
related to an unhealthy lifestyle, medication side-effects,
and genetic susceptibility to CVD4–6. More recently, evi-
dence has emerged implicating loneliness as a factor that
may contribute to CVD comorbidity7,8. Loneliness is
defined as a subjective discrepancy between the desired
and achieved level of social relationships9. Loneliness is a
considerable concern in Western societies, reportedly
affecting more than a fifth of adults in the United States
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and the United Kingdom10. Feeling lonely has increasingly
been recognized as an important health issue, as people
who feel alone have increased risk for premature death
and CVD morbidity, even after controlling for factors
such as health-related behavior, age, gender, marital sta-
tus, and depressive symptoms11–15. The influence of
deficient social relationships on mortality is shown to be
comparable with well-established risk factors such as
smoking and exceeds the risk associated with obesity and
hypertension12. Notably, during the coronavirus pan-
demic, social isolation is increasing across the globe,
and the expected mental and physical health effects
are large16–18.
Loneliness is a particular challenge for people with

SMDs19. The annual rate of loneliness is ~2.3 times higher
in SMDs than in the general population20,21, and lone-
liness is related to poorer quality of life, functioning and
recovery22–24. Despite the high prevalence and adverse
effects of loneliness in SMDs with vulnerability to CVD,
little is known about the mechanisms underlying this
association. Furthermore, development of interventions
that reduce loneliness and comorbid CVD in SMDs is
precluded by this limited understanding. Several factors
might contribute to the co-occurrence of loneliness and
CVD risk in SMDs, including unhealthy lifestyle, stigma,
and stress activation7,25–27. Moreover, the phenotypic
overlap raises an intriguing question: to what extent does
a shared genetic architecture between SMDs, loneliness,
and CVD risk factors drive the observed association?
SMDs are complex disorders, with heritability estimates

of 0.6–0.8 for SCZ and BD28, and ~0.4 for MDD29.
Despite their different clinical characteristics, there is a
substantial genetic overlap between the disorders30,31.
Recent genome-wide association studies (GWASs) have
identified several genetic variants associated with the
disorders32–34. GWASs have also reported loci associated
with CVD risk factors, including body mass index
(BMI)35,36, type 2 diabetes mellitus (T2D)37, total cho-
lesterol (TC)38, high-density lipoprotein (HDL) choles-
terol38, systolic blood pressure (SBP)39, diastolic blood
pressure (DBP)39, along with coronary artery disease
(CAD)40. While loneliness is influenced by social network,
support, and poverty41,42, its estimated heritability is
0.4–0.543. Specific genetic determinants of loneliness were
also recently identified44, and loneliness showed genetic
correlation with MDD, SCZ, and body size44. However,
the genetic correlations with SCZ and body size were low
(rg= 0.17) and insignificant with BD. A limitation with
measures of genetic correlation is that the method
requires consistent effect directions among the shared
variants45. Thus, insignificant or low genetic correlations
do not necessary imply no genetic overlap, but may rather
be due to a mixture of positive and negative effect
directions of the overlapping variants. Therefore, to

obtain a comprehensive understanding of the genetic
relationship between loneliness, SMDs and CVD risk,
measures of genetic correlations should be complemented
by tools that allow for the discovery of shared variants
regardless of their effect directions46.
In the current study, we aimed to identify the shared

genetic architecture of loneliness, SMDs and CVD risk
factors beyond genetic correlations by applying the
recently developed bivariate causal mixture model
(MiXeR), which evaluates overlap at the architecture level,
estimating the total number of shared and trait-specific
genetic variants47. The results are presented with Venn
diagrams visualizing the estimated shared and unique
polygenic variants47. Further, we applied the conditional
false discovery rate (condFDR) approach, which can
uncover overlapping genetic variants irrespective of
direction of effects. This method builds on an empirical
Bayesian statistical framework, and increases the power to
detect shared loci by leveraging the combined power of
several large independent GWASs48–50. We have used this
approach to identify the shared genetic underpinnings of
several complex human traits and disorders in recent
years5,6,51. This method fits well to disentangle any com-
plex genetic relationship with loneliness, SMDs and CVD
risk factors.
Here we investigated the genetic relationship between

SMDs, loneliness, and CVD risk by analyzing summary
data from recent large-scale GWASs using MiXeR47 and
condFDR50. We hypothesize that genetic determinants
contributing to SMDs and comorbid CVD, overlap with
the genetic risk for loneliness, with different levels of
overlap across SCZ, BD, and MDD given their different
clinical characteristics. Investigating overlap in genetic
variants can elucidate important shared pathobiology and
have implications for the understanding of CVD comor-
bidity in SMDs.

Methods
Participant samples
We obtained GWAS summary data on SCZ (n=

82,315), BD (n= 51,710), and major depression (MD)
(n= 450,619) from Psychiatric Genomics Consortium32–34.
We use MD instead of the diagnostic term “major
depressive disorder”, since many of the MD cases were
identified by self-report33. Data on loneliness (n= 452,302)
were obtained from the UK Biobank study based on self-
reported responses to three questions regarding perceived
loneliness, frequency of social contact, and the ability to
confide in someone close44. The vast majority of partici-
pants in the UK Biobank are healthy individuals. A small
fraction of participants has a psychiatric diagnosis, includ-
ing 2483 with SCZ, 2123 with BD and 8276 with MD (UK
Biobank data field 41270, Supplementary Methods and
Supplementary Table 1). While the number of participants
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with self-reported depression is higher (Supplementary
Table 2)52, Day et al.44 performed a sensitivity analysis by
repeating the loneliness GWAS excluding individuals with
self-reported depression (N= 26,801), which did not result
in any appreciable change in results44. Consequently, it
seems unlikely that psychiatric diagnoses that are far less
prevalent than self-reported depression in the UK Biobank
(see Supplementary Tables 1, 2), have confounded the
results significantly. Therefore, similar to Day et al.44 we
did not exclude participants with self-reported depression
or other psychiatric diagnoses from the loneliness GWAS
data set. Further, we used GWAS data on the CVD risk
factors BMI, TC, SBP, DBL, HDL-C, and T2D, (n=
159,208–795,640 depending on CVD risk factor)35–39. We
also included CAD (n= 185,000) as this is a major CVD40,
and smoking for supplementary analysis53. For cond/
conjFDR analyses, overlapping cohorts between GWAS
samples were excluded. For details, see Supplementary
Methods and original publications32–40,44,53. All GWASs
investigated in the current study were approved by local
ethics committees, and all participants provided informed
consent32–40,44,53. The Regional Committee for Medical
Research Ethics—South-East Norway has evaluated the
current protocol and found that no additional institutional
review board approval was necessary because no individual
data were used.

Statistical analysis
For further information about the statistical approaches

described below, see Supplementary Methods. We
explored pleotropic enrichment by constructing condi-
tional quantile–quantile (Q–Q) plots. Enrichment is
visualized in conditional Q–Q plots as successive leftward
deflections from the null distribution48,49,54.
We used the statistical tool, MiXeR, which quantifies

polygenic overlap irrespective of genetic correlation using
GWAS summary statistics47. This method estimates the
total number of shared and trait-specific causal variants
(i.e., variants with nonzero additive genetic effects on a
trait). We applied MiXeR for phenotypes that demon-
strated most significant genetic overlap in conditional
Q–Q plots (i.e., loneliness and SMDs and BMI). To
evaluate model fit, i.e., the ability of the MiXeR model to
predict the actual GWAS data, we constructed modeled
vs. actual conditional Q–Q plots, log-likelihood plot,
and Akaike information criterion (AIC). For further
information about MiXeR, see Supplementary Methods
and Frei et al.47.
To improve the discovery of specific genetic variants

shared between phenotypes, we applied the condFDR
statistical framework48,49. This approach is an extension
of the standard FDR method, and re-ranks the test sta-
tistics of a primary phenotypes (e.g., SCZ) based on the
strength of the association with a secondary phenotype

(e.g., loneliness)48,49,54. After repeating the condFDR
analysis for both phenotypes, we identified shared genetic
loci at conjunctional FDR (conjFDR) <0.0548,54. The
conjFDR is defined as the maximum of two condFDR
values, which provides a conservative estimate of the FDR
for association with both phenotypes48,54. Unlike MiXeR,
conjFDR identifies the localization of specific shared
variants48,54. Thus, MiXeR and conjFDR are com-
plementary methods that offer information about genetic
overlap on different levels (i.e., total amount of overlap
and specific shared variants, respectively). These methods
do not build on one another; rather, conjFDR is an
extension of condFDR. Thus, we applied conjFDR for
phenotypes that demonstrate polygenic overlap based on
condFDR analysis, and applied condFDR for phenotypes
that showed polygenic overlap in conditional Q–Q plots.

Genomic loci definition and effect direction
We defined independent genomic loci using FUMA

(http://fuma.ctglab.nl/ and Supplementary Methods)55.
Further, we evaluated the directional effects of the loci
shared between loneliness and SMDs and CVD risk
factors by comparing their z-scores or odds ratios. Effect
direction could not be computed for blood pressure
because effect scores were not available from the original
GWAS39. Genetic correlations were estimated using
MiXeR and LD score regression47,56.

Functional annotation
We used FUMA55 to functionally annotate candidate

SNPs within the genomic loci with a condFDR or conjFDR
value of <0.10 and an LD r2≧ 0.6 with one of the inde-
pendent significant SNPs. We further annotated SNPs
using three tools: Combined Annotation Dependent
Depletion57, which predicts the deleteriousness of SNPs on
protein structure/function; RegulomeDB58, which predicts
regulatory functions; and chromatin states that indicates
the transcription/regulation effects of chromatin states at
the SNP locus59,60. We also used FUMA55 to map lead and
candidate SNPs to genes and investigate whether these
genes were overrepresented in gene-sets associated with
particular biological functions (Supplementary Methods).

Results
Genetic overlap between SMDs and loneliness
In conditional Q–Q plots, we observed SNP enrichment

for loneliness as a function of the significance of SNP
associations with MD, SCZ, and BD (Supplementary Fig.
1). This indicates polygenic overlap between the pheno-
types. The reverse conditional Q–Q plots also demon-
strate consistent enrichment in MD, SCZ, and BD given
associations with loneliness (Supplementary Fig. 2).
We performed MiXeR analysis with loneliness and the

three SMDS after observing their polygenic overlap in
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Q–Q plots. Using MiXeR we found further evidence of
polygenic overlap between loneliness and SMDs (Fig. 1;
Supplementary Figs. 3,5). The Venn diagram for lone-
liness and MD demonstrates substantial polygenic over-
lap, sharing 6.7K out of 19.6K causal variants (Fig. 1A).
Further, loneliness and SCZ also show polygenic overlap,
sharing 6.8K out of 12.6K causal variants (Fig. 1B). In
addition, loneliness and BD exhibit polygenic overlap,
sharing 3.6K out of 12.7K causal variants (Fig. 1C). The
MiXeR estimates adequately model the GWAS data
(Supplementary Figs. 3–5; Supplementary Results), while
the results of loneliness vs. MD analysis are more
uncertain. Negative AIC values indicate that the MiXeR
model cannot be adequately differentiated from a scenario
of maximum possible overlap and a scenario of minimum
overlap (Supplementary Table 3). A larger MD GWAS is
needed to obtain more certain MiXeR estimates.
MiXeR estimates of genetic correlation (Fig. 1A–C)

were consistent with those of LD score regression
(Table 1). Loneliness exhibited a significant positive
genetic correlation with MD and weaker, yet significant,
correlation with SCZ, but not with BD (Table 1).
Further, using condFDR analysis, we discovered several

SNPs significantly associated with loneliness conditional

on their association with MD, SCZ and BD (Supplemen-
tary Tables 4–6), and vice versa (Supplementary Table 7)
at condFDR <0.01.

Genetic overlap between CVD risk factors and loneliness
We uncovered polygenic overlap between loneliness

and CVD risk factors. In the conditional Q–Q plots, we
observed SNP enrichment for loneliness as a function of
the significance of the association with CVD risk factors
(Supplementary Fig. 6), and vice versa (Supplementary
Fig. 7), suggesting polygenic overlap between loneliness
and CVD risk factors, especially BMI.
MiXeR was performed with loneliness and BMI given

their substantial polygenic overlap demonstrated by
conditional Q–Q plot. MiXeR revealed considerable
polygenic overlap between loneliness and BMI, sharing
5.7K out of 13.4K causal variants (Fig. 1D). MiXeR results
for BMI should be interpreted with caution due to more
uncertain estimates (Supplementary Fig. 8; Supplemen-
tary Table 3).
MiXeR estimates of genetic correlation (Fig. 1D) were

consistent with those of LD score regression (Table 1).
Loneliness showed significant positive genetic correla-
tions with BMI, smoking, CAD and T2D, and negative
genetic correlation with HDL-C (Table 1).
Further, using condFDR, we identified several loneliness

SNPs conditional on their association with CVD risk
factors (Supplementary Tables 8–15), and vice versa
(Supplementary Table 16) at condFDR <0.01.

Genetic loci shared between SMDs, loneliness, and CVD
risk factors
At conjFDR <0.05, loneliness shared 67 loci with MD,

54 loci with SCZ, and 28 loci with BD (Fig. 2A–C, Table 1;
Supplementary Tables 17–19). Some of these were over-
lapping between the SMDs (27), yielding a total of 122
distinct loci associated with both loneliness and SMDs.
Among these shared loci, 115 loci were not identified in
the original loneliness GWAS44. We evaluated the direc-
tionality of allelic effects in the loci shared between the
phenotypes by investigating their z-scores. As denoted by
the sign of the effect sizes, effect directions were mostly
consistent (Table 1; Supplementary Tables 17–19). The
majority of MD risk alleles (95.5%), SCZ risk alleles
(74.1%), and BD risk alleles (61.7%) showed same effect
direction in loneliness (Supplementary Tables 17–19).
In addition, loneliness shared multiple loci with CVD

risk factors, including BMI (36 loci; Fig. 2D), TC (6 loci),
HDL-C (5 loci), SBP (9 loci), DBP (4 loci), CAD (12 loci),
and T2D (1 locus) (Table 1; Supplementary Tables 20–26;
Supplementary Fig. 9), but no loci shared with smoking.
Some of these were overlapping across CVD risk factors,
yielding a total of 55 distinct loci shared between lone-
liness and CVD risk factors. Among these shared loci, 49

Fig. 1 Venn diagrams of unique and shared polygenic variants.
Venn diagrams showing polygenic overlap (gray) between A)
loneliness (orange) and major depression (MD) (green), B)
schizophrenia (SCZ) (green), C) bipolar disorder (BD) (green), and D)
body mass index (BMI) (green). The numbers indicate the estimated
quantity of causal variants (in thousands) per component, explaining
90% of SNP heritability in each phenotype, followed by the standard
error. The size of the circles reflects the degree of polygenicity. Figures
generated from MiXeR.
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were not identified in the original loneliness GWAS44. For
the loci shared between loneliness and CVD risk factors,
we discovered same effect directions of 69.4% of loci
shared with BMI, 83.3% of loci shared with TC, 60% of
loci shared with HDL-C, and 58.3% of loci shared with
CAD (Supplementary Tables 20–26).
Further, the trio conjFDR analyses identified loci shared

between loneliness, BMI and MD (4), SCZ (5), and BD (1)
(Fig. 3; Supplementary Tables 27–29). 60% of the loci
shared between both loneliness, SMDs, and BMI pos-
sessed same effect directions (Supplementary Tables
27–29). Further, genetic correlations were in line with the
consistent effect directions (Table 1).
Altogether, we identified a total number of 163 distinct

loci shared between loneliness, SMDs, and CVD risk
factors. Of these shared loci, 153 were not identified in the
original loneliness GWAS44. To visualize the shared loci,
we constructed conjFDR Manhattan plots (Figs. 2, 3;
Supplementary Fig. 9) where all SNPs without pruning are
shown, and the independent lead SNPs are encircled
in black.

Functional annotation
Functional annotation of all SNPs with a conjFDR value

<0.1 within loci shared between loneliness and either
SMDs or CVD risk factors demonstrated that these were
mostly intronic and intergenic (Supplementary Tables
30–39). Gene-mapping of shared variants between

loneliness and SMDs and CVD risk factors implicated
brain-expressed genes (Supplementary Tables 30–39;
Supplementary Results). For gene-set analyses, we focused
on genes mapped to the loci shared between loneliness
and SMDs and BMI, as these phenotypes showed most
genetic overlap in the above results. Gene-set analyses
for loneliness and SMDs discovered several biological
processes, including “chromatin assembly”, “negative
regulation of biosynthetic process”, “immune system
development”, “synapse”, and “dentritic tree” (Supple-
mentary Tables 40–42; Supplementary Results). Gene-set
analyses for loneliness and BMI implicated “positive reg-
ulation of biosynthetic process” and “regulation of
response to cytokine stimulus” (Supplementary Table 43;
Supplementary Results). Further information about
FUMA results are provided in Supplementary Results and
Supplementary Tables 17–43.

Discussion
Here, we discovered polygenic overlap between lone-

liness, SMDs and CVD risk factors and quantified their
shared genetic architecture. We identified shared loci
between loneliness and MD (67 loci), SCZ (54 loci) and
BD (28 loci), and loneliness and CVD risk factors (55 loci).
In addition, 10 loci were found to jointly influence SMDs,
loneliness and BMI. Among the shared loci identified, 153
were novel to loneliness. While there was distinct differ-
ences between MD, SCZ, and BD, the majority of the

Table 1 Shared loci between loneliness and SMDs and CVD risk factors.

Associated phenotype Shared conjFDR Loci (n) concordant effect (%) Genetic correlation

SMD

MD 67 95.5% 0.570 (p= 2.74E−116)

SCZ 54 74.1% 0.167 (p= 5.08E–12)

BD 28 61.7% 0.018 (p= 0.60)

CVD risk factor

BMI 36 69.4% 0.182 (p= 3.73E−17)

TC 6 83.3% 0.039 (p= 0.26)

HDL-C 5 60.0% −0.101 (p= 6.62E−5)

SBP 9 na na

DBP 4 na na

T2D 1 na 0.119 (p= 0.0003)

CAD 12 58.3% 0.129 (p= 4.60E−5)

Smoking 0 na 0.252 (p= 0.0002)

Number of shared loci at conjFDR <0.05, concordant effect directions in percentage, and genetic correlation estimated by LD score regression. Bold values in the
genetic correlation column are significant after Bonferroni correction (p < 0.05/11).
SMD severe mental disorder, MDmajor depression, SCZ schizophrenia, BD bipolar disorder, CVD cardiovascular disease, BMI body mass index, TC total cholesterol, HDL-
C high-density lipoprotein cholesterol, SBP systolic blood pressure, DBP diastolic blood pressure, T2D type 2 diabetes mellitus, CAD coronary heart disease, na not
available, conjFDR conjunctional FDR, Na effect directions not available from the SBP/DBP GWAS. As there were no shared loci between loneliness and smoking,
percentage of concordant effects were not computed. As only one shared locus was found between T2D and loneliness, percentage with concordant effect is
not given.
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shared variants (~80%) showed consistent effect direc-
tions, suggesting that genetic susceptibility to loneliness
may also increase the risk of SMDs and CVD. The present
results, together with prior evidence of genetic overlap
between SMDs and CVD risk factors5,6, demonstrate
shared genetic loci between loneliness, SMDs, and CVD
risk factors, which may underlie some of the clinical
relationship between loneliness, SMDs, and CVD
comorbidity.

We used MiXeR47 to reveal polygenic overlap between
loneliness, SMDs and BMI irrespective of genetic corre-
lation. We applied conjFDR to leverage the boost in
power from cross-trait enrichment, and uncovered mul-
tiple shared genetic variants between loneliness, SMDs
and CVD risk factors. The conjFDR approach extends
measures of genetic correlation by allowing discovery of
shared loci regardless of their effect directionality48,54.
Most of the loci shared between loneliness and MD

Fig. 2 Common genetic variants jointly associated with loneliness and MD, BD, SCZ, and BMI at conjFDR <0.05. Manhattan plots for
loneliness and A) major depression, B) bipolar disorder, C) schizophrenia and D) body mass index. Manhattan plots showing the −log10 transformed
conjFDR values for each SNP on the y axis and chromosomal positions along the x axis. SNPs with conjunction FDR < 0.05 (i.e., −log10 FDR > 1.3) are
shown with enlarged data points. A black circle around the enlarged data points indicates the most significant SNP in each LD block. The figure
shows the localization of the “conjunctional loci”, and further details are provided in Supplementary Tables 17–20. MD major depression, SCZ
schizophrenia, BD bipolar disorder, BMI body mass index, conjFDR conjunctional FDR.
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(95.5%) and SCZ (74.1%) had the same effect direction,
confirming the positive genetic correlation44. However,
many of the shared loci between BD and loneliness had
mixed effect directions, in line with the non-significant
genetic correlation44. This demonstrates the usefulness of
the condFDR approach to discover polygenic overlap
between complex phenotypes despite the lack of genetic
correlation. The results indicate that large fractions of the
genomic risk architectures underlying MD, SCZ, and BD
also influence loneliness, albeit in a different manner,
providing new insights into their genetic nature.
Genetic risk factors of loneliness involve a propensity to

experience psychological pain in response to social dis-
connection26. The perception of being socially dis-
connected introduces a hypervigilance to social threats,
which can cause cognitive biases:26 lonely individuals
appear to perceive the social world as more threatening,
and expect and remember more negative social experi-
ences (e.g., rejection)25,26. Although speculative, negative
social expectations may increase the risk of paranoia, and
thereby, the risk of developing a psychotic disorder61,62.
Therefore, a genetic overlap between loneliness and SCZ
may reflect shared genetics influencing a tendency to view
the world as unsafe, contributing to poor social interac-
tions and, thereby, increase the risk of loneliness and
psychotic disorders. Also, loneliness is likely to be asso-
ciated with social withdrawal and amotivation, which are
negative symptoms in SCZ. Further, cognitive biases tend
to negatively influence the behavior of lonely individuals
(e.g., exhibit less interest and trust) which may discourage
others from seeking contact and elicit depressive symp-
toms25,26. In addition, loneliness is associated with diffi-
culties regulating emotions63, including diminished ability
to downregulate negative emotions, similar to what is
seen in MD64. Accordingly, the genetic overlap between

loneliness and MD may reflect a genetic disposition to
cognitive biases, emotional dysregulation, and behavior
patterns (e.g., social withdrawal).
Similar processes may be involved in BD, which is

characterized by mood disturbances, with psychotic fea-
tures in 60%65. We may speculate that people with BD who
exhibit psychotic symptoms like paranoia, are more prone
to social withdrawal, contributing to loneliness. Conversely,
individuals who are more socially active in manic phases,
may feel less lonely. However, uncritical social behavior
related to mania may contribute to social rejection and
thus induce loneliness. We need further research on
loneliness across different types of mood episodes in BD,
which so far has provided inconsistent results23,66. The
phenotypic heterogeneity in BD would be in line with our
findings of many loci with mixed effect directions in BD
and loneliness, while no genetic correlation. Taken toge-
ther, our findings suggest that genetic determinants of
mental processes and behavior contributing to loneliness
overlap with SMDs. However, environmental factors such
as a limited social network, lack of opportunities for social
interactions, poverty and stigma27,67, remain important
predictors of loneliness in SMDs.
Some of the genetic overlap discovered between lone-

liness and MD may be due to loneliness being an aspect of
the phenomenology of MD. Still, considerable evidence
suggests that depression and loneliness are distinct; while
loneliness is a negative feeling signaling inadequate social
contact, depression is a psychiatric diagnosis reflecting a
more general dysphoric state25,26,68. A distinction between
loneliness and depression is also supported by a loneliness
GWAS that demonstrated that while loneliness and MD
are genetically correlated, the loneliness loci remained
significant after excluding individuals with depression
from the analyses44.

Fig. 3 Common genetic variants jointly associated with SMDs, BMI and loneliness at conjFDR <0.05. Manhattan plot showing the −log10
transformed conjFDR values for each SNP on the y axis and chromosomal positions along the x axis. SNPs with conjunction FDR < 0.05 (i.e., −log10
FDR > 1.3) are shown with enlarged data points. A black circle around the enlarged data points indicates the most significant SNP in each LD block.
The figure shows the localization of the “conjunctional loci”. SMDs severe mental disorders, MD major depression, SCZ schizophrenia, BD bipolar
disorder, BMI body mass index, conjFDR conjunctional FDR.
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By using conjFDR we discovered 55 loci that jointly
influence loneliness and CVD risk factors. Further, we
found overlapping loci between both loneliness, SMDs
and BMI. The majority of the shared SNPs possessed the
same effect directions, in line with positive genetic cor-
relations identified between loneliness, CAD and most
CVD risk factors. These findings imply that genetic sus-
ceptibility to loneliness is related to increased CVD risk,
consistent with epidemiological data of positive associa-
tions between loneliness and CVD risk11–15,69,70. Several
potential mechanisms may link loneliness to CVD risk25,
including stress activation, lifestyle and psychological
coping25. In particular, loneliness has been linked to
activation of the hypothalamic–pituitary–adrenal axis71,
which in turn has been implicated in the development of
atherosclerosis72. Loneliness may also have indirect effects
on CVD through lifestyle25, emotional regulation25, and
mental illness13. Our findings suggest that the co-
occurrence of loneliness and CVD risk may partly be
driven by shared genetic architecture, and may explain
some of comorbid CVD in SMDs. Further, gene-set
analyses of the shared loci between loneliness and SMDs
indicated genes associated with biological processes
involving chromatin processes and brain functions,
including synapses and dendrites. This provides plausible
genetic links between loneliness, SMDs, and brain func-
tion. The gene-set analyses of loneliness loci shared with
SMDs and BMI also indicated genes related to metabolic
mechanisms and immune system, which have been
implicated in the pathophysiology of SMDs and CVD
morbidity73. However, experimental investigations are
necessary to understand how the identified variants
influence brain, metabolic and immune system develop-
ment and function. Further, gene-mapping of shared
variants between loneliness and SMDs and CVD risk
factors, implicated genes expressed in brain tissue.
Although the identified genes are not necessarily the
genes by which the genetic variants exert their phenotypic
effect, the results support the importance of brain-
expressed genes in the shared genetic etiology of SMDs,
loneliness and CVD. Thus, it seems likely that the shared
genetic variants, together with environmental factors,
contribute to brain dysfunction that affect different
mental processes (cognitive bias, emotional regulation)
and behavior (e.g., lifestyle, withdrawal) and thereby
associated with the development of SMDs, loneliness and
CVD. Other pathways are also possible; for instance,
shared variants between loneliness and BMI may affect
metabolism and increase the risk of overweight, which
may hamper self-esteem contributing to development of
loneliness and SMDs.
Although loneliness is highly prevalent in SMDs and

associated with poorer quality of life, lower functioning and
higher CVD risk7,8,22–24, interventions that effectively reduce

loneliness in people with SMDs are limited67. Promising
results suggest that correcting maladaptive social thinking
offers a chance for reducing loneliness in people with
mental disorders74. Our findings highlight the importance of
an integrated approach to people with SMDs focusing on
social contact. The results are also relevant for the social
isolation strategies to prevent the coronavirus pandemic:
While social distancing may protect against the coronavirus
infection, it may increase loneliness16–18. Our findings sug-
gest that people with SMDs may have a genetic suscept-
ibility for loneliness, making them particularly vulnerable to
these adverse effects of the solitude enforced in numerous
countries16–18. Preventing and reducing loneliness may have
beneficial effects both on psychosocial functioning, quality
of life, and the illness course itself. Whether reducing
loneliness in SMDs may also improve cardiovascular health,
should be explored in future research.
Loneliness is a complex phenotype characterized by the

perception that one’s social needs are not being met9,25. A
challenge in studying loneliness has been the lack of a
measure suitable for large-scale studies75. Therefore,
recommendations for loneliness assessment in large stu-
dies were recently published76. A direction question of
loneliness is recommended at a minimum76, such as “Do
you often feel lonely?” used in the UK Biobank44. In
addition, indirect measures of loneliness are recom-
mended as loneliness is associated with stigma and,
therefore, some people may be reluctant to admit to
feeling lonely75,76. While the UK Biobank did not use any
of the proposed indirect items76, participants were asked
about their ability to confide in someone close44. Lonely
people perceive themselves as less able to confide and
have fewer people to confide in than non-lonely indivi-
dual77,78, providing support for this item as an indirect
probe of loneliness. Further, to increase power, the
loneliness GWAS also included data on frequency of
contact with family and friends and living alone44. This
data concerns information about objective rather than
subjective social isolation. However, lonely people tend to
spend more time alone79 and are more likely to live alone
than people who are not lonely80. Further support for the
association between loneliness and objective isolation
comes from the loneliness GWAS: the genetic loci iden-
tified in the complete analysis (including perceived lone-
liness, ability to confide, frequency of contact and living
alone) were similar to those reported from analyzing only
subjective loneliness44. Nevertheless, loneliness and
objective isolation are distinct, and the loneliness measure
in the UK biobank is limited by not using the best vali-
dated loneliness items75,76.
In conclusion, our study demonstrates shared genetic

loci between loneliness, SMDs, and CVD risk factors,
providing new insights into their shared genetic archi-
tecture. This suggests a potential genetic basis for the
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clinical association between loneliness, SMDs, and CVD.
The findings further our understanding of comorbid
CVD in SMDs and, ultimately, may form the basis of
prevention and treatment development. The study illus-
trates the utility of the condFDR approach to increase
gene discovery and disentangle the complex genetic
relationship between loneliness, SMDs, and CVD risk
factors.
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SUPPLEMENTARY INFORMATION for 

Polygenic overlap and shared genetic loci between loneliness, severe mental disorders 

and cardiovascular disease risk factors suggest shared molecular mechanisms 

SUPPLEMENTARY METHODS 

Participant samples 

We obtained GWAS results in the form of summary statistics. Data on schizophrenia (SCZ), 

bipolar disorder (BD) and major depression (MD) were retrieved from Psychiatric Genomics 

Consortium (PGC)1-3. The SCZ dataset contained 49 non-overlapping case-control samples 

(34 241 cases with SCZ or schizoaffective disorder and 45 604 controls) and 3 family-based 

association studies (1235 parent affected-offspring trios)1. The BD dataset consisted of 20 352 

cases and 31 358 controls from 32 samples2. Among the cases, 14,879 individuals were 

diagnosed with BD type I (BD1), 3,421 with BD type II (BD2), 977 with schizoaffective 

disorder, bipolar type (SAB), and the remaining unspecified BD2. The major depression (MD) 

dataset involved 135 458 cases and 344 901 controls3. The UK biobank cohort (n = 29 740) 

was excluded from the MD data set to avoid sample overlap. 

Data on loneliness was obtained from the general population in the UK Biobank study 

(n = 452 302)5. 487 647 people responded to three questions regarding perceived loneliness, 

frequency of social contact, and ability to confide in someone close5. Genomic and 

phenotypic data were available from 452 302 participants after quality control criteria. The 

UK Biobank primarily compromises healthy individuals, and a small proportion of 

participants have a psychiatric diagnosis based on the International Classification of Diseases 

(ICD)-10, retrieved from health records (UK Biobank data field 41270). The estimated 

prevalence of individuals with ICD-10 coded diagnosis are 0.6% with SCZ or another 
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psychotic disorder, 0.6% with BD, 5% with depression and less than 4% with anxiety 

disorder, as shown in Supplementary Table 1. The number of self-reported diagnoses is higher 

(Supplementary Table 2)6. However, the generalizability of these estimates is limited by the 

availability of self-report data from only a subset of the UK Biobank cohort. In addition, self-

reported diagnoses should be considered with caution as they are less reliable than ICD-coded 

diagnoses. Therefore, any diagnostic classification arising from self-report should be regarded 

as probable, rather than a confirmed mental disorder6. For further information about self-

reported diagnoses and symptoms in the UK Biobank, see Davis et al.6. In the loneliness 

GWAS, Day et al. performed a sensitivity analyses by repeating the GWAS without 

individuals with self-reported depression5. This sensitivity analysis did not result in any 

appreciable change in results, suggesting that depression did not confound the findings of 

loneliness loci5. Anxiety disorders did not seem to confound the findings either as most 

individuals with self-reported anxiety disorder were excluded when individuals with 

depression were removed from analysis, given the high comorbidity between these disorders6. 

Further, we used data from GWASs on cardiovascular disease (CVD) risk factors, 

including body mass index (BMI) (n = 339 224)7, type 2 diabetes mellitus (T2D) (n = 159 

208)8, total cholesterol (TC) (n = 188 578)9, high-density lipoprotein (HDL) cholesterol (n = 

188 578)9, systolic blood pressure (SBP) (n = 200 000)10, diastolic blood pressure (DBP) (n = 

200 000)10, along with coronary artery disease (CAD) (n =185 000)11. In addition, we used 

GWAS data on smoking (n > 200 000) for supplementary analysis12. We used a larger BMI 

GWAS (n = 795 640)13 including UK biobank data for MiXeR than for condFDR/conjFDR 

because MiXeR controls for overlapping samples and does, therefore, not require excluding 

overlapping participants (see below for description of MiXeR). The GWAS samples used for 

the present study are previously shown to be sufficiently powered to identify gene variants at 
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genome-wide significant level. For further details of the inclusion criteria, genotyping and 

phenotype characteristics, see the original publications1-3, 5, 7-13.  

MiXeR 

We applied causal mixture models14, 15 to the GWAS summary statistics, using the MiXeR tool 

(https://github.com/precimed/mixer). For each SNP, 𝑖, univariate MiXeR models its additive 

genetic effect of allele substitution, 𝛽𝑖, as a point-normal mixture, 𝛽𝑖 = (1 − 𝜋1)𝑁(0,0) +

𝜋1𝑁(0, 𝜎𝛽
2), where 𝜋1 represents the proportion of non-null SNPs (`polygenicity`) and 𝜎𝛽

2

represents variance of effect sizes of non-null SNPs (`discoverability`). Then, for each SNP, 𝑗, 

MiXeR incorporates LD information and allele frequencies for M=9,997,231 SNPs extracted 

from 1000 Genomes Phase3 data by LD score regression software16, and estimate the expected 

probability distribution of the signed test statistic, 𝑧𝑗 = 𝛿𝑗 + 𝜖𝑗 = 𝑁 ∑ √𝐻𝑖 𝑟𝑖𝑗𝛽𝑖 + 𝜖𝑗𝑖 , where 𝑁

is sample size, 𝐻𝑖 indicates heterozygosity of i-th SNP,  𝑟𝑖𝑗 indicates allelic correlation between 

i-th and j-th SNPs, and 𝜖𝑗 ∼ 𝑁(0, 𝜎0
2) is the residual variance. Further, the three parameters,

𝜋1, 𝜎𝛽
2, 𝜎0

2, are fitted by direct maximization of the likelihood function. The number of causal

variants is estimated as 𝑀𝜋1, where M=9,997,231 gives the number of SNPs in the reference 

panel. 

In the cross-trait analysis, MiXeR models additive genetic effects as a mixture of four 

components, representing null SNPs in both traits (𝜋0); SNPs with a specific effect on the 

first and on the second trait (𝜋1 and 𝜋2, respectively); and SNPs with non-zero effect on both 

traits (𝜋12). In the last component, MiXeR models variance-covariance matrix as 𝚺𝟏𝟐 =

[
𝜎1

2 𝜌12𝜎1𝜎2

𝜌12𝜎1𝜎2 𝜎2
2 ] where 𝜌12  indicates correlation of effect sizes within the shared 

component, and 𝜎1
2 and 𝜎2

2 correspond to the discoverability parameter estimated in the

univariate analysis of the two traits. After fitting parameters of the model, the Dice coefficient 

https://github.com/precimed/mixer
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of polygenic overlap is then calculated as 
2𝜋12

𝜋1+2𝜋12+𝜋2
, and genetic correlation is calculated as 

𝑟𝑔 =
𝜌12𝜋12

√(𝜋1+𝜋12)(𝜋2+𝜋12)
. Further information is available in14. 

To filter situations with insufficiently powered GWAS summary statistics, we use 

Akaike information criterion (𝐴𝐼𝐶 = 2𝑘 − 2 ln 𝐿), where 𝑘 is the number of free parameters 

in the model,  𝐿 is the value of the likelihood function, and 𝑛 is the effective number of SNPs 

used in optimization procedure. We calculate the difference between AIC for the full bivariate 

model, 𝑘 = 3, and AIC for the reduced bivariate model, 𝑘 = 2, due to 𝜋12 being constrained 

to smallest or largest possible ( 𝜋12
𝑚𝑖𝑛 = 𝑟𝑔√𝜋1

𝑢 𝜋2
𝑢 and 𝜋12

𝑚𝑎𝑥 = min (𝜋1
𝑢 , 𝜋2

𝑢), respectively). A

positive value of AIC indicates that GWAS summary statistics have enough information to 

distinguish the custom polygenic overlap, as shown on the MiXeR Venn diagrams, versus the 

constrained models with minimal (𝜋12
𝑚𝑖𝑛) and maximum (𝜋12

𝑚𝑎𝑥) polygenic  overlap. MiXeR

results are presented as a Venn diagram of shared and unique polygenic components across 

traits. 

Conditional False Discovery Rate 

The ‘enrichment’ seen in the conditional Q-Q plots can be directly interpreted in terms of true 

discovery rate (TDR = 1 – false discovery rate (FDR))17. More specifically, for a given p-

value cutoff, the FDR is defined as 

FDR(p) = π
0
F

0
(p) / F(p),  [1] 

where π
0 is the proportion of null SNPs, F

0 is the null cumulative distribution function (cdf),

and F is the cdf of all SNPs, both null and non-null18. Here, we assume the SNP p values are a 

priori independent and identically distributed. Under the null hypothesis, F
0 is the cdf of the

uniform distribution on the unit interval [0,1], so that Eq. [1] reduces to 

FDR(p) = π
0
p / F(p), [2] 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The cdf F can be estimated by the empirical cdf q = Np / Ν, where Np is the number of SNPs 

with p-values < p, and N is the total number of SNPs. Replacing F by q in Eq. [2], we get  

Estimated FDR(p) = π
0
p / q,  [3]   

which is biased upwards as an estimate of the FDR19. Replacing π
0
 in Equation [3] with unity 

gives an estimated FDR that is further biased upward;   

q* = p / q,  [4]  

If π
0 is close to one, which is probably true for most GWASs, the increase in bias from Eq. [3] 

is minimal. Therefore, the quantity 1 – p/q, is biased downward and thus a conservative 

estimate of the TDR. Referring to the Q-Q plots, we see that q* is equivalent to the nominal 

p-value divided by the empirical quantile, as defined previously. We can thus read the FDR 

estimate directly off the Q-Q plot as  

-log10(q*) = log10(q) – log10(p),  [5]   

demonstrating that the estimated FDR is directly related to the horizontal shift of the curves in 

the Q-Q plots from the expected line x = y, i.e. a larger shift corresponds to a smaller FDR.  

 

Conditional Q-Q plots 

Q-Q plots compare a nominal probability distribution against an empirical distribution. In the 

presence of all null relationships, nominal p-values form a straight line on a Q-Q plot when 

plotted against the empirical distribution. For SCZ, BD, MD, loneliness and CVD risk factor 

SNPs and for each categorical subset (strata), -log10 nominal p-values were plotted against -

log10 empirical p-values (conditional Q-Q plots). Leftward deflections of the observed 

distribution from the projected null line illustrate increased tail probabilities in the distribution 

of test statistics (z-scores) and consequently an over-abundance of low p-values compared to 

that expected by chance, also called ‘enrichment’.  
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Under large-scale testing paradigms, such as GWAS, we can calculate quantitative 

estimates of likely true associations from the distributions of summary statistics18, 20. 

Conditional Q-Q plots of nominal p-values from GWAS summary statistics visualizes this 

enrichment of statistical association relative to that expected under the global null hypothesis. 

The usual Q-Q curve has the nominal p value, denoted by "p", as the y-ordinate and the 

corresponding value of the empirical cdf, denoted by "q", as the x-ordinate. Under the global 

null hypothesis the theoretical distribution is uniform on the interval [0,1]. As is common in 

GWAS, we instead plot -log10 p against -log10 q to emphasize tail probabilities of the 

theoretical and empirical distributions. Therefore, genetic enrichment is illustrated with a 

leftward shift in the Q-Q curve, corresponding to a larger fraction of SNPs with nominal -

log10 p-value greater than or equal to a given threshold. Conditional Q-Q plots are constructed 

by creating subsets of SNPs based on levels of an auxiliary measure for each SNP, and 

computing Q-Q plots separately for each level. If SNP enrichment is captured by variation in 

the auxiliary measure, this is expressed as successive leftward deflections in a conditional Q-

Q plot as levels of the auxiliary measure increase. We constructed conditional Q-Q plots of 

empirical quantiles of nominal -log10 values for SNP association for all SNPs, and for subsets 

(strata) of SNPs determined by the nominal p-values of their association with the conditional 

phenotypes, and vice versa. In particular, we computed the empirical cumulative distribution 

(cdf) of nominal p-values for a given phenotype for all SNPs and for SNPs with significance 

levels below the indicated cut-offs for the conditional phenotypes (-log10(p) ≥ 1, -log10(p) ≥ 2, 

-log10(p) ≥ 3 corresponding to p < 0.1, p < 0.01, p < 0.001 respectively). The nominal p-

values (–log10(p)) are plotted on the y-axis, and the empirical quantiles (–log10(q), where q=1-

cdf(p)) are plotted on the x-axis. To assess for polygenic effects below the standard GWAS 

significance threshold, we focused the conditional Q-Q plots on SNPs with nominal –log10(p) 

< 7.3 (corresponding to p > 5x10-8). We controlled for spurious enrichment by calculating all 



7 

conditional Q-Q plots after random pruning averaged over 500 iterations. At each iteration, 

one SNP in every LD block (defined by an r2 >0.1) was randomly selected and the empirical 

cdfs were computed using the corresponding p-values. 

Detection of SNPs using conditional and conjunctional FDR 

The FDR can be interpreted as the probability that a SNP is null given that its p-value is as 

small as or smaller than its observed p-value. The conditional FDR (condFDR) is an extension 

of the standard FDR, which incorporates information from GWAS summary statistics of a 

second phenotype to adjust its significance level. The condFDR is defined as the probability 

that a SNP is null in the first phenotype given that the p-values in the first and second 

phenotypes are as small as or smaller than the observed ones. It is important to note that 

ranking SNPs by the standard FDR or by p-values gives the same ordering of SNPs.  In 

contrast, ranking SNPs by condFDR will reorder SNPs when the primary and secondary 

phenotypes are genetically related. 

To identify SNPs that are associated with both phenotypes, we used conjunctional 

FDR (conjFDR)21, 22, employing an overall FDR threshold of 0.05 according to the standard 

FDR approach4. The conjunctional FDR (conjFDR) is defined as the posterior probability that 

a SNP is null for either phenotype or both simultaneously, given that its p-values for 

association with both phenotypes are as small as or smaller than the observed p-values21, 23-26. 

A conservative estimate of the conjFDR is obtained by the maximum condFDR for a given 

SNP after repeating the condFDR procedure for both traits and inverting their roles27. Given 

that complex correlations in regions with intricate LD can bias FDR estimation28, we 

excluded SNPs in the extended major histocompatibility complex and chromosome 8p23.1 

(genome build 19 locations 25119106–33854733 and 7242715–12483982, respectively) and 

SNPs in LD (r2>0.1) with such SNPs before fitting the FDR models. To investigate loci 
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shared between three phenotypes, including SMDs, loneliness and BMI, we used trio 

conjFDR. Trio conjFDR value of an SNP is defined as the maximum of three pairwise 

conjFDR values of the SNP. For example, trio conjFDR{SCZ & BMI& loneliness}c = 

max(conjFDR{SCZ & BMI}, conjFDR{SCZ & loneliness}, conjFDR{BMI & loneliness}). Effect size (z-

scores) of SNPs were obtained from the original summary statistics (see original publications 

for how they were calculated1-3, 5, 7-13). P-values were corrected for inflation using a genomic 

inflation control procedure21. 

Genomic loci definition 

We defined independent genomic loci using the FUMA, an online tool for functional mapping 

of genetic variants (http://fuma.ctglab.nl/)29. Summary statistics from the GWASs on SMDs, 

loneliness and CVD risk factors were used as input for FUMA. First, independent significant 

SNPs were identified as SNPs with condFDR < 0.01 and independent from each other at LD 

r2 < 0.6. Secondly, lead SNPs were identified by retaining those independent significant SNPs 

that were independent from each other at r2 < 0.1. Next, distinct genomic loci were identified 

by merging physically overlapping lead SNPs (LD blocks < 250 kb apart). Borders of the 

genomic loci were determined by identifying all SNPs in LD (r2 ≧ 0.6) with one of the 

independent significant SNPs in the locus. The region containing all of these candidate SNPs 

was regarded as a single independent genomic locus. All LD information was calculated from 

the 1000 Genomes Project reference panel30. 

Genetic correlation 

We estimated the genetic correlation using MiXeR14 and LD score regression31, procedures 

that control for overlapping samples without requiring individual genotype data. LD score 

regression was estimated using the Python-based package available at 

http://fuma.ctglab.nl/
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https://github.com/bulik/ldsc. The procedure is described in the documentation of the package 

(https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation). 

 

Functional annotation 

We used FUMA29, an online annotation platform (http://fuma.ctglab.nl/) to functionally 

annotate all candidate SNPs in the genomic loci with a condFDR or conjFDR value<0.10 

having an r2≧0.6 with one of the independent significant SNPs. SNPs were annotated with 

Combined Annotation Dependent Depletion (CADD) scores32, RegulomeDB33 scores, and 

chromatin states34, 35 (see below). We conducted gene-set analysis to evaluate whether the 

genes mapped to the shared loci were overrepresented via FUMA29. We used Bonferroni-

adjusted p-value threshold of 0.05 to correct for multiple comparisons. 

The CADD score is a deleterious score of variants computed by integrating 63 

functional annotations32. The higher the score, the more deleterious. A CADD score above 

12.37 is the threshold to be potentially pathogenic32. The RegulomeDB score is a categorical 

score to guide interpretation of regulatory variants33. It is based on information from eQTLs 

and chromatin marks, ranging from 1a to 7 with lower scores indicating a higher likelihood of 

having a regulatory function. Scores are as follows: 1a=eQTL + Transcription Factor (TF) 

binding + matched TF motif + matched DNase Footprint + DNase peak; 1b=eQTL + TF 

binding + any motif + DNase Footprint + DNase peak; 1c=eQTL + TF binding + matched TF 

motif + DNase peak; 1d=eQTL + TF binding + any motif + DNase peak; 1e=eQTL + TF 

binding + matched TF motif; 1f=eQTL + TF binding / DNase peak; 2a=TF binding + matched 

TF motif + matched DNase Footprint + DNase peak; 2b=TF binding + any motif + DNase 

Footprint + DNase peak; 2c=TF binding + matched TF motif + DNase peak; 3a=TF binding + 

any motif + DNase peak; 3b=TF binding + matched TF motif; 4=TF binding + DNase peak; 

5=TF binding or DNase peak; 6=other; 7=Not available33.  
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The chromatin state represents the accessibility of genomic regions (every 200bp) with 

15 categorical states predicted by a hidden Markov model based on 5 chromatin marks for 

127 epigenomes in the Roadmap Epigenomics Project35. A lower state indicates increased 

accessibility, with states 1-7 referring to open chromatin states. We annotated the minimum 

chromatin state across tissues to SNPs. The 15-core chromatin states as suggested by 

Roadmap are as follows: 1=Active Transcription Start Site (TSS); 2=Flanking Active TSS; 

3=Transcription at gene 5’ and 3’; 4=Strong transcription; 5= Weak Transcription; 6=Genic 

enhancers; 7=Enhancers; 8=Zinc finger  genes & repeats; 9=Heterochromatic; 

10=Bivalent/Poised TSS; 11=Flanking Bivalent/Poised TSS/Enh; 12=Bivalent Enhancer; 

13=Repressed PolyComb; 14=Weak Repressed PolyComb; 15=Quiescent/Low. 

We also used FUMA to link candidate and lead SNPs to genes using either of three 

gene-mapping strategies: 1) positional mapping to link SNPs to genes based on their physical 

proximity (i.e., within a 10kb window), 2) expression quantitative trait locus (eQTL) mapping 

to match cis-eQTL SNPs to genes whose expression is associated with allelic variation at the 

SNP level, and 3) chromatin interaction mapping to link SNPs to genes based on three-

dimensional DNA–DNA interactions between each SNP’s genomic region and nearby or 

distant genes, as used in a recent GWAS from our group36. We considered eleven eQTL 

databases in FUMA which include eQTL information from several human tissue types 

including multiple brain regions (http://fuma.ctglab.nl/tutorial#eQTLs). The eQTL analyses 

were corrected for multiple comparisons using an FDR threshold of 0.05. FUMA includes Hi-

C data of over 21 tissue/cell types including human brain tissue 

(https://fuma.ctglab.nl/tutorial#chromatin-interactions). We used an FDR of 1 x 10-6 to define 

significant chromatin interactions, in line with recommendations37. Analyses were corrected 

for multiple comparisons. 
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Image processing software 

Matplotlib Python library (https://matplotlib.org/) and Matlab. 

SUPPLEMENTARY RESULTS 

MiXeR results 

The MiXeR model provides adequate fit to the GWAS data of loneliness and SMDs, as 

indicated by AIC in Supplementary Table 3, conditional Q-Q plots and negative log-

likelihood (Supplementary Figures 3-5), while the results of loneliness vs MD analysis are 

more uncertain, suggesting that a larger MD GWAS is needed to obtain more certain MiXeR 

estimates. In particular, the negative values of AIC indicate that GWAS summary statistics do 

not have enough power to distinguish the estimated polygenic overlap, as shown on the 

MiXeR Venn diagrams, versus the constrained models with minimal (π12
min) and maximum

(π12
max) polygenic overlap (Supplementary Table 3). Nevertheless, the Venn diagram suggests

that loneliness and MD share genetic architecture (Figure 1a), although the amount of shared 

genetic variants remains uncertain, as indicated by AIC. Further, the MiXeR results for BMI 

should be interpreted with some caution because the MiXeR model was less accurate in 

predicting the empirical data (see conditional Q–Q plot in Supplementary Figure 8) than the 

MiXeR model for loneliness and SMDs (Supplementary Figure 3-5). Further information 

about the quality of the MiXeR model for loneliness and BMI, see Supplementary Figure 8 

and AIC in Supplementary Table 3. 

Gene-mapping results 

We performed gene-mapping of lead and candidate SNPs, which provided consistent results, 

implicating brain-expressed genes. Among lead SNPs shared between loneliness and MD 
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(67), positional mapping aligned the SNPs to 44 genes, cis-eQTL mapping implicated 20 

genes, and chromatin interaction mapping implicated 5 genes (Supplementary Table 17). Of 

SNPs shared with SCZ (54), positional mapping aligned the SNPs to 34 genes, cis-eQTL 

mapping implicated 20 genes, and chromatin interaction mapping implicated 7 genes 

(Supplementary Table 18). Among SNPs shared with BD (28), positional mapping linked the 

SNPs to 14 genes, cis-eQTL mapping indicated 13 genes, and chromatin interaction mapping 

implicated 2 genes (Supplementary Table 19). Taken together, 69.8% (104/149) of the SNPs 

shared between loneliness and SMDs were mapped to genes when considering all gene-

mapping strategies, of which approximately 40.3 % of them mapped to brain-expressed genes 

(60/149) based on eQTL and chromatin interaction mapping (Supplementary Tables 17-19). 

Among SNPs shared between loneliness and BMI (36), positional mapping aligned the SNPs 

to 25 genes, cis-eQTL mapping implicated 14 genes, and chromatin interaction mapping 

implicated 1 gene (Supplementary Table 20). Of the SNPs shared between loneliness and the 

remaining CVD risk factors and CAD, all SNPs were mapped to genes when considering all 

three gene-mapping strategies (Supplementary Tables 21-26). The majority of these SNPs 

were mapped to genes with eQTL and chromatin interaction mapping, indicating brain-

expressed genes (TC: 6/6; HDL-C: 3/5, SBP: 5/9; DBP: 3/4; CAD: 8/12; and T2D: 1/1). 

Among lead SNPs shared between loneliness, BMI and MD, positional mapping aligned the 

SNPs to 2 genes, while no SNPs were gene-mapped based on the other two strategies 

(Supplementary Table 27). Among SNPs shared between loneliness, BMI and SCZ, positional 

mapping linked the SNPs to 3 genes, 2 of which were mapped using eQTL and chromatin 

interaction mapping (Supplementary Table 28). No SNPs shared between loneliness, BMI and 

BD were mapped to genes (Supplementary Table 29). 

Among candidate SNPs shared between loneliness and MD (4256), positional 

mapping aligned the SNPs to 2895 genes, cis-eQTL mapping implicated 1737 genes, and 
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chromatin interaction mapping implicated 124 genes (Supplementary Table 30). Of candidate 

SNPs shared with SCZ (4021) positional mapping aligned the SNPs to 2273 genes, cis-eQTL 

mapping implicated 1851 genes, and chromatin interaction mapping implicated 201 genes 

(Supplementary Table 31). Among the candidate SNPs shared with BD (1349), positional 

mapping aligned the SNPs to 532 genes, cis-eQTL mapping implicated 489 genes, and 

chromatin interaction mapping implicated 25 genes (Supplementary Table 32). Taken 

together, 69.8% (6716/9626) of the SNPs shared between loneliness and SMDs were mapped 

to genes when considering all gene-mapping strategies, of which approximately 42.8 % of 

them mapped to genes (4219/9626) based on eQTL and chromatin interaction mapping 

(Supplementary Tables 30-32). Further, among the candidate SNPs shared with BMI (1037), 

positional mapping aligned the SNPs to 732 genes, cis-eQTL mapping implicated 450 genes, 

and chromatin interaction mapping implicated 46 genes (Supplementary Table 33). Of the 

SNPs shared between loneliness and the remaining CVD risk factors and CAD, all SNPs were 

mapped to genes (expect for 22% of CAD SNP shared with loneliness) when considering all 

three gene-mapping strategies (Supplementary Tables 34-39). The majority of these SNPs 

were mapped to genes with eQTL and chromatin interaction mapping (TC: 187/190; HDL-C: 

181/194, SBP: 503/519: DBP: 120/122; CAD: 700/996; and T2D: 8/8). 

Gene-set analysis results 

For gene-set analyses, we focused on the genes mapped to the loci shared between loneliness 

and SMDs and BMI, as these phenotypes showed most genetic overlap in the above results. 

Gene-set analyses for genes mapped to loci shared between loneliness and SMDs discovered 

several biological and cellular processes, including “chromatin assembly”, “nucleosome 

organization”, “negative regulation of biosynthetic process” and “DNA packaging complex” 

(Supplementary Tables 40-42). Other significant processes involved “immune system 
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development” and neural processes (e.g. “synapse”, “postsynapse” and “dendritic tree”) 

(Supplementary Tables 40-42). Further, genes mapped to loci shared between loneliness and 

BMI, were significantly associated with four biological processes, the most strongly 

associated being “positive regulation of RNA biosynthetic process” (Supplementary Table 

43), suggesting metabolic processes. 
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SUPPLEMENTARY FIGURES

Supplementary Figure 1. Polygenic overlap between loneliness and MD, SCZ and BD. Conditional Q-Q plots of nominal versus 
empirical −log10p values (corrected for inflation) in loneliness below the standard GWAS threshold of p < 5 × 10−8 as a function 
of significance of association with MD, SCZ and BD at the level of p < 0.1, p < 0.01, p < 0.001, respectively. The blue lines 
indicate all SNPs. The dashed lines indicate the null hypothesis. Abbreviations: MD, major depression; SCZ, schizophrenia; BD,
bipolar disorder. The conditional Q-Q plots build on the condFDR method.
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Supplementary Figure 2. Polygenic overlap between loneliness and MD, SCZ and BD. Conditional Q-Q plots of nominal versus 
empirical −log10 p-values (corrected for inflation) in MD, SCZ and BD below the standard GWAS threshold of p < 5×10−8 as a 
function of significance of association with loneliness, at the level of p <  0.1, p <  0.01, p < 0.001, respectively. The blue lines 
indicate all SNPs. The dashed lines indicate the null hypothesis. Abbreviations: MD, major depression; SCZ, schizophrenia; BD, 
bipolar disorder. The conditional Q-Q plots build on the condFDR method. 
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Supplementary Figure 3. Venn diagram, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagram of
unique and shared polygenic components at the causal level, showing polygenic overlap (gray) between loneliness (orange) and 
major depression (MD) (green). The numbers in the Venn diagram indicate the estimated quantity of causal variants (in thousands) 
per component, explaining 90% of SNP heritability in each phenotype, followed by standard error. The size of the circles reflects 
the degree of polygenicity. The Dice coefficient (DC) in the Venn diagram indicates the percentage of shared causal variants 
between the two phenotypes. Conditional Q–Q plots of observed versus expected −log10 p-values in the primary trait as a function 
of significance of association with a secondary trait at the level of p < 0.1, p < 0.01, p < 0.001. Blue line indicates all SNPs. Dotted 
lines in blue, orange, green, and red indicate model predictions for each stratum. Black dotted line is the expected Q–Q plot under 
null hypothesis. Negative log-likelihood plot: minus log-likelihood calculated for the bivariate model as a function of parameter. 
The remaining parameters of the model were constrained to their fitted values. Figures generated from MiXeR.
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Supplementary Figure 4. Venn diagram, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagram of
unique and shared polygenic components at the causal level, showing polygenic overlap (gray) between loneliness (orange) and 
schizophrenia (SCZ) (green). The numbers in the Venn diagram indicate the estimated quantity of causal variants (in thousands) per 
component, explaining 90% of SNP heritability in each phenotype, followed by standard error, and Dice coefficient (DC) indicates 
the percentage of shared causal variants between the two phenotypes. Appearance of the Q-Q plot and negative log-likelihood plot
are described below the previous figure (Supplementary Figure 3). Figures generated from MiXeR.
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Supplementary Figure 5. Venn diagram, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagram of
unique and shared polygenic components at the causal level, showing polygenic overlap (gray) between loneliness (orange) and 
bipolar disorder (BD) (green). The numbers indicate the estimated quantity of causal variants (in thousands) per component, 
explaining 90% of SNP heritability in each phenotype, followed by standard error, and Dice coefficient (DC) indicates the 
percentage of shared causal variants between the two phenotypes. Appearance of the Q-Q plot and negative log-likelihood plot are
described below Supplementary Figure 3. Figures generated from MiXeR.
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Supplementary Figure 6. Polygenic overlap between loneliness and CVD risk factors. Conditional Q-Q plots of nominal versus 
empirical −log10 p-values (corrected for inflation) in loneliness below the standard GWAS threshold of p < 5×10−8 as a function of 
significance of association with CVD risk factors at the level of p <  0.1, p <  0.01, p <  0.001, respectively. The blue lines indicate 
all SNPs. The dashed lines indicate the null hypothesis. Abbreviations: CVD, cardiovascular disease; BMI, body mass index; CAD, 
coronary heart disease; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; SBP, systolic blood pressure; DBP, 
diastolic blood pressure; T2D, type 2 diabetes mellitus. The conditional Q-Q plots build on the condFDR method. 
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Supplementary Figure 7. Polygenic overlap between loneliness and CVD risk factors. Conditional Q-Q plots of nominal versus 
empirical −log10 p-values (corrected for inflation) in CVD risk factors below the standard GWAS threshold of p < 5×10−8 as a 
function of significance of association with the loneliness at the level of p < 0.1, p < 0.01, p < 0.001, respectively. The blue lines 
indicate all SNPs. The dashed lines indicate the null hypothesis. Abbreviations: CVD, cardiovascular disease; BMI, body mass 
index; CAD, coronary heart disease; HDL-C, high-density lipoprotein cholesterol; TC, total cholesterol; SBP, systolic blood 
pressure; DBP, diastolic blood pressure; T2D, type 2 diabetes mellitus. The conditional Q-Q plots build on the condFDR method.
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Supplementary Figure 8. Venn diagram, conditional Q-Q plots, and negative log-likelihood plot, respectively. Venn diagram of 
unique and shared polygenic components at the causal level, showing polygenic overlap (gray) between loneliness (orange) and 
body mass index (BMI) (green). The numbers indicate the estimated quantity of causal variants (in thousands) per component, 
explaining 90% of SNP heritability in each phenotype, followed by standard error, and Dice coefficient (DC) indicates the 
percentage of shared causal variants between the two phenotypes. Appearance of the Q-Q plot and negative log-likelihood plot 
are described below Supplementary Figure 3. Figures generated from MiXeR.
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Supplementary Figure 9. Common genetic variants jointly associated with loneliness and CVD risk factors at conjFDR 

< 0.05. Manhattan plot showing the –log10 transformed conjFDR values for each SNP on the y axis and chromosomal 

positions along the x axis4. SNPs with conjFDR < 0.05 (i.e., −log10 FDR > 1.3) are shown with enlarged data points. A 

black circle around the enlarged data points indicates the most significant SNP in each LD block. The figure shows the 

localization of the ‘conjunctional loci’, and further details are provided in Supplementary Tables 21-26. Abbreviations: 

CVD: cardiovascular disease; TC, total cholesterol; HDL-C, high-density lipoprotein cholesterol; DBP, diastolic blood 
pressure; SBP, systolic blood pressure; CAD, coronary heart disease; T2D, type 2 diabetes mellitus: conjFDR, 

conjunctional FDR. 
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Supplementary Table 1. ICD-coded diagnosis in the UK Biobank 

ICD-10 diagnosis Count Percentage of the UK Biobank 

sample 

F20-29 Schizophrenia/schizotypal and 

delusional disorder  

2483  0.6% 

F30 Manic episode; F31 Bipolar disorder 245; 2123  0.6%a 

F32 Depressive episode;  

F33 Recurrent depressive disorder;  

F34 Persistent mood disorders;  

F38/39 Other/Unspecified mood disorders 

Major depressive disorderc 

19542; 

1156; 

95; 

93 

8276 

 5.1%b 

F40-48 Neurotic, stress-related and 

somatoform disorders 

14914   3.6% 

F50-59 Behavioural syndrome associated 

with physiological disturbances/physical 

factors  

729 <0.2% 

F60-69 Disorder of adult personality and 

behaviour 

800 <0.2% 

F70-99 Other behavioural and mental 
disorders  

1018   0.2% 

Numbers of ICD-10 coded psychiatric diagnoses from the UK Biobank data field 41270. Data was 

available from 410 320 individuals.  
aThis percentage includes manic episode and bipolar disorder.  
bThis percentage includes depressive episode and depressive disorder. 
cThe diagnostic term “major depressive disorder “ (MDD) is used in Diagnostic and Statistical Manual 

of Mental Disorders (DSM), not in ICD-10. The number of individuals meeting the criteria of MDD is 

estimated by Howard et al. 201838. 

ICD: International Classification of Diseases.  

Supplementary Table 2. Self-reported diagnosis in the UK Biobank sample 

Self-reported diagnosis Count Percentage of the UK Biobank sample 

Depression 33 424 21.1% 

Schizophrenia  

Any other type of psychotic disorder 

157 

604 

 0.1% 

 0.4 

Bipolar disorder 837  0.5 

Anxiety, nerves or generalized anxiety 22 036 14.0% 

The numbers are retrieved from the 157 366 participants that completed the Mental Health 

Questionnaire and published in Davis et al. 20206.
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Supplementary Table 3. Results of cross-trait analysis with the MiXeR 

model for loneliness, MD, SCZ, BD and BMI 

Trait1 Trait2    AIC 

best vs min. 

overlap 

best vs max. overlap 

Loneliness MD -1.739 -1.515 

Loneliness SCZ 9.231 -1.413 

Loneliness BD 5.955 9.315 

Loneliness BMI 16.180 6.852 

AIC - results from Akaike information criterion, showing AIC calculated 

for the full versus reduced bivariate MiXeR model14, constrained to 

minimal feasible polygenic overlap (“best vs min.”) or to the complete 

polygenic overlap (“best vs max.”). A negative value indicates that AIC 

chooses reduced model, while a positive value provides an evidence for 
the polygenic overlap, shown in the MiXeR Venn diagram. MD: Major 

depression; SCZ, schizophrenia; BD, bipolar disorder; BMI, body mass 

index. 
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Abstract 

Patients with bipolar disorder (BIP) have a high risk of cardiovascular disease (CVD), despite 

considerable individual variation. The mechanisms underlying comorbid CVD in BIP remain 

largely unknown. We investigated polygenic overlap between BIP and CVD phenotypes, 

including CVD risk factors and coronary artery disease (CAD). We analyzed large genome-

wide association studies of BIP (n=51 710) and CVD phenotypes (n=159 208–795 640), using 

bivariate causal mixture model (MiXeR), which estimates the total amount of shared genetic 

variants, and conjunctional false discovery rate (FDR), which identifies specific overlapping 

loci. MiXeR revealed polygenic overlap between BIP and body mass index BMI (82%), 

diastolic and systolic blood pressure (20-22%) and CAD (11%) despite insignificant genetic 

correlations. Using conjunctional FDR<0.05, we identified 129 shared loci between BIP and 

CVD phenotypes, mainly BMI (n=69), systolic (n=53) and diastolic (n=53) blood pressure, of 

which 22 are novel BIP loci. There was a pattern of mixed effect directions of the shared loci 

between BIP and CVD phenotypes. Functional analyses indicated that the shared loci are 

linked to brain-expressed genes and involved in neurodevelopment, lipid metabolism, 

chromatin assembly/disassembly and intracellular processes. Altogether, the study revealed 

extensive polygenic overlap between BIP and comorbid CVD, implicating shared molecular 

genetic mechanisms. The mixed effect directions of the shared loci suggest variation in 

genetic susceptibility to CVD across BIP subgroups, which may underlie the heterogeneity of 

CVD comorbidity in BIP patients. The findings suggest more focus on targeted lifestyle 

interventions and personalized pharmacological treatment to reduce CVD comorbidity in BIP. 
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Introduction 

People with bipolar disorder (BIP) have on average twice as high risk of cardiovascular 

disease (CVD) compared to the general population, contributing to a reduction in life 

expectancy1-3. CVD comorbidity and mortality have remained high during the past decades, 

indicating that most patients with BIP have not benefited from recent advances in medicine4-7. 

The etiology the CVD comorbidity remains largely unknown, but it is likely to be associated 

with medication side-effects and lifestyle factors, such as poor diet, physical inactivity and 

smoking1, 8. A genetic susceptibility to CVD may also play a role, similar to what has been 

indicated in schizophrenia9, 10, including overlapping genetic loci11, 12. This is supported by 

the considerable genetic overlap between schizophrenia and BIP13. However, there is a large 

individual variation in CVD comorbidity2-4, which suggests increased genetic risk for CVD in 

subgroups of BIP. 

BIP is a complex disorder with heritability estimates of 70-80% 14. The polygenic 

nature of BIP is becoming increasingly apparent as recent genome-wide association studies 

(GWASs) have identified 64 risk loci for BIP15. GWASs have also discovered many genetic 

loci associated with CVD risk factors, including body mass index (BMI)16, 17, type 2 diabetes 

(T2D)18, total cholesterol (TC)19, low-density lipoprotein (LDL) cholesterol19, high-density 

lipoprotein (HDL) cholesterol19, systolic blood pressure (SBP)20, diastolic blood pressure 

(DBP)20, along with coronary artery disease (CAD)21.  

Few studies have investigated the genetic relationship between BIP and CVD risk 

factors and CAD22-24. A recent study suggested an inverse genetic relationship between BIP 

and CVD risk factors (BMI, TC, LDL, HDL)23, indicating that BIP may be related to reduced 

genetic risk of CVD. However, the results varied depending on using polygenic risk scores 

(PRS) or linkage disequilibrium score regression (LDSR)23; the latter did not provide 

significant results. Importantly, a significant genetic correlation estimated with LDSR 
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requires consistent effect directions of the shared variants between the phenotypes25. Thus, 

genetic correlation fails to capture polygenic overlap in the presence of a mixture of effect 

directions across shared variants26. The bivariate causal mixture model (MiXeR), which 

estimates the total number of shared genetic variants27, can identify polygenic overlap (i.e. 

shared genetic architecture among common variants), beyond genetic correlations. Further, 

the conditional/conjunctional false discovery rate (cond/conjFDR) methodology can identify 

the specific overlapping loci28. These methods have the advantage of identifying shared 

variants regardless of their effect directions27, 28. In addition, the cond/conjFDR tools increase 

the power for genetic discovery due to joint analysis of two GWAS, leading to the 

identification of loci that do not reach significance threshold in traditional GWAS analyses28, 

as illustrated with several complex human traits24, 29-31. 

We recently discovered 69 shared loci between BIP and BMI, of which 52 % 

possessed concordant effect directions, while genetic correlation was insignificant24. These 

results demonstrate polygenic overlap between BIP and BMI and the mixed effect directions 

may suggest subgroups of BIP with higher susceptibility for weight gain. Further, the findings 

highlight the importance of analysis of genetic correlation with analytical methods that allow 

for identification of shared genetic variants irrespective of their effect directions26.  

In the present study, we investigated the polygenic overlap between BIP, CVD risk 

factors and CAD beyond genetic correlations with the MiXeR method27, and applied the 

cond/conjFDR approach to identify shared loci28. We expect to unravel more of the shared 

genetic architecture between BIP, CVD risk factors and CAD, and enhance the discovery of 

specific overlapping genetic loci to inform the underlying molecular mechanisms. 

Methods 

Participant samples 
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We obtained GWAS results in the form of summary statistics (p-values and z-scores). BIP 

data were retrieved from Psychiatric Genomics Consortium (PGC) and consisted of 20 352 

cases and 31 358 controls from 32 samples32. Among the cases, 14,879 individuals were 

diagnosed with BIP type I (BIP1), 3,421 with BIP type II (BIP2), 977 with schizoaffective 

disorder, bipolar type (SAB), and the BIP not otherwise specified (NOS)32. Further we used 

data from large GWASs on CVD phenotypes, including BMI, TC, HDL, LDL, SBP, DBP and 

T2D and CAD (n=159 208 – 795 640)17-21, 33. We repeated the previously published analysis 

of genetic overlap between BIP and BMI24 using cond/conjFDR. While MiXeR corrects for 

overlapping samples27, cond/conjFDR do not28. Thus, we screened for overlapping samples 

between the BIP GWAS and the CVD GWASs by checking the substudies included in the 

GWASs, and found no overlapping samples. However, we did not have access to individual 

genotype data and were thus prevented from determining whether any individuals participated 

in both the BIP GWAS and any of the CVD GWASs. For further information about the 

GWASs, see Supplementary Methods and original publications17-21, 32. The local ethics 

committees approved all GWASs used in the current study, and all participants provided 

informed consent. Regional Committees for Medical Research Ethics - South East Norway 

has evaluated the current protocol and found that no additional institutional review board 

approval was necessary because no individual data were used. 

Statistical analysis 

We constructed conditional quantile-quantile (Q-Q) plots to visualize the putative overlap in 

SNPs associations, i.e. cross-trait enrichment. Enrichment exists when the proportion of SNPs 

associated with a phenotype (e.g. BIP) increases as a function of the strength of the 

association with a secondary phenotype (e.g. BMI)28. In the conditional Q-Q plots, this cross-
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trait enrichment is visualized as successive leftward shifts from the null line12, 28. Details 

about this method are available in Supplementary Methods. 

Next, we used the statistical tool MiXeR to estimate the total number of shared and 

unique trait-influencing variants (i.e. variants with pure genetic effects not induced by LD) 

using GWAS summary data27. This method evaluates polygenic overlap independent of 

genetic correlation between phenotypes. The MiXeR results are illustrated with Venn 

diagrams of shared and unique variants. Estimates of uncertainty are provided, including 

standard error in parenthesis in the Venn diagrams. We evaluated the model fit, i.e. the ability 

of the MiXeR model to predict the actual GWAS data, based on modelled vs. actual 

conditional Q-Q plots, negative log-likelihood plots and Akaike information criterion (AIC). 

For details about MiXeR, see Supplementary Methods and Frei et al.27. 

The condFDR approach was used to increase discovery of specific genetic variants 

associated with BIP and CVD phenotypes28. The condFDR method builds on Bayesian 

statistics and increases the power to identify loci associated with a primary phenotype (e.g., 

BIP) by leveraging associations with a secondary phenotype (e.g., BMI). Thus, this method 

re-ranks the test-statistics of a primary phenotype (e.g. BIP) based on a conditional variable, 

i.e. the strength of the association with a secondary phenotype (e.g. BMI)28. Inverting the 

roles of primary and secondary phenotypes yields the inverse condFDR value28. ConjFDR is 

an extension of condFDR and can detect loci jointly associated with two phenotypes (e.g. both 

BIP and BMI)28. ConjFDR is defined as the maximum of the two condFDR values, providing 

a conservative estimate of the FDR for a SNP association with both phenotypes12, 28. P-values 

are corrected for inflation using a genomic inflation control procedure 12, 28. Consistent with 

previous publications24, 29, 34, 35, we used the thresholds condFDR<0.01 and conjFDR<0.05. 

For further information, see Supplementary Methods and method reviews28, 36. 
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Genomic loci definition 

To define the independent genomic loci, we applied FUMA, an online tool for functional 

mapping of genetic variants (http://fuma.ctglab.nl/)37. Independent significant SNPs were 

defined as SNPs with condFDR<0.01 or conjFDR<0.05 and independent from each other at 

LD r2<0.6. Lead SNPs were identified by retaining those independent significant SNPs that 

were independent from each other at r2< 0.1. To define distinct genomic loci, we merged any 

physically overlapping lead SNPs (LD blocks <250 kb apart) selecting a SNP with the lowest 

p-value as a lead SNP of the merged locus. The borders of the genomic loci were defined by 

identifying all SNPs (candidate SNPs) in LD (r2≧0.6) with one of the independent significant 

SNPs in the locus37 (see Supplementary Methods). 

Effect directions and genetic correlations 

We evaluated the directional effects of the shared lead SNPs between BIP and CVD 

phenotypes by comparing their z-scores and odds ratios from the original publications16, 18-21, 

32. Genetic correlations were estimated using LDSR and corrected for multiple testing

(0.05/8)38. 

Functional annotation 

We used FUMA37 to functionally annotate candidate SNPs in the genomic loci  

with a condFDR/conjFDR value<0.10 and an LD r2≧0.6 with one of the independent 

significant SNPs. SNPs were annotated using three different tools, including Combined 

Annotation Dependent Depletion (CADD)39, a method that predicts the deleteriousness of 

SNPs on protein structure/function; RegulomeDB40, which predicts regulatory functions; and 

chromatin states that indicate the transcription/regulation effects at the SNP locus41, 42. We 

also identified previously reported GWAS associations in the GWAS catalog43 overlapping 

http://fuma.ctglab.nl/
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with the identified loci. We proceeded with further functional analyses provided that we 

identified at least one shared locus at conjFDR<0.05. Thus, the prerequisite for performing 

functional analysis was the presence of ≥ one locus jointly associated with BIP and a given 

CVD phenotype. The functional analyses included gene-mapping, gene-set analysis and 

pathway analysis. In particular, FUMA was used to map lead and candidate SNPs to genes 

based on either of three properties of the SNPs: 1) their physical position (i.e. proximity to a 

gene), 2) expression quantitative trait locus (eQTL) functionality and 3) chromatin 

interaction37. Next, we investigated whether genes mapped to all SNPs in shared loci were 

overrepresented in gene-sets using FUMA37 and in pathways using ConsensusPathDB44. For 

details, see Supplementary Methods. 

Results 

Genetic overlap between BIP and CVD phenotypes 

In the conditional Q-Q plots, we observed enrichment in BIP SNPs as a function of the 

significance of associations with CVD phenotypes (Supplementary Figure 1), indicating 

polygenic overlap. The reverse conditional Q-Q plots also demonstrated enrichment in CVD 

phenotypes given associations with BIP (Supplementary Figure 2). 

After observing cross-trait enrichment, we applied MiXeR which discovered different 

polygenicity of BIP (8.1k), BMI (11k), SBP (4.4k), DBP (3.9k) and CAD (1.4k). 

Parameter estimates of the MiXeR model and corresponding standard error are provided in 

Table 1 and Figure 1. MiXeR revealed polygenic overlap between BIP and BMI, sharing 6.6k 

of 12.5k variants, as illustrated by the Venn diagram (Figure 1a). The shared variants 

constitute 81.5% and 60% of variants influencing BIP and BMI, respectively. MiXeR also 

revealed polygenic overlap between BIP and SBP, sharing 1.8k of 10.7k variants (Figure 1b), 

representing 22.2% and 40.9% of variant influencing BIP and SBP, respectively. Similarly, 

MiXeR identified polygenic overlap with DBP, sharing 1.6k of 10.4K variants (Figure 1c), 
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constituting 19.8% and 41.0% of the genetic variants underlying BIP and DBP, respectively. 

In addition, BIP shared 0.9k of 8.6k variants with CAD (Figure 1d), representing 11.1% and 

64.3% of the genetic basis of BIP and CAD, respectively. Model fit was considered adequate 

as indicated by model-based Q-Q plots following the actual Q-Q plots (Supplementary 

Figures 3-6), although some caution in interpreting the MiXeR model for BIP and CAD is 

needed as the predicted Q-Q plots follow the observed Q-Q plots less closely at smaller p-

values. The log-likelihood plots illustrated adequate model fit (Supplementary Figures 3-6) 

and AIC demonstrated sufficiently powered model (Supplementary MiXeR Table). The 

MiXeR model was not used for the other CVD phenotypes due to inadequate model fit 

(Supplementary Figures 7a-d). 

Loci shared between BIP and CVD phenotypes 

At condFDR<0.01, we identified multiple loci associated with BIP conditional on their 

association with each CVD phenotype (Supplementary Tables 1-8), and vice versa 

(Supplementary Tables 9-16, and Supplementary Results). At conjFDR<0.05, we discovered 

several loci jointly associated with BIP and CVD phenotypes, including 69 loci shared with 

BMI as previously reported24, and 53 loci with SBP, 53 loci with DBP, 15 with TC, 13 loci 

with LDL, 10 loci with HDL, 4 loci with T2D and 10 loci with CAD (Figure 2a-h; 

Supplementary Tables 17-24). We observed small SNP p-values for both phenotypes, which 

indicate true associations with both BIP and CVD phenotypes. Several loci were jointly 

associated with BIP and more than one CVD phenotype, resulting in 129 distinct loci 

associated with both BIP and CVD phenotypes at conjFDR<0.05. Twenty two of the shared 

loci are novel BIP loci (Supplementary Table 25). See Supplementary Methods for all the 

studies reviewed to determine the number of novel BIP loci. 
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We evaluated the directionality of allelic effects of the shared lead SNPs between the 

phenotypes by investigating their z-scores. There was a pattern of mixed effect directions of 

the shared SNPs between BIP and CVD risk factors (Table 2). We discovered the same effect 

direction of 52.2% of SNPs shared with BMI (as previously reported24), 49.1% SNPs shared 

with SBP, 47.2% SNPs shared with DBP, 26.7 % SNPs shared with TC, 46.2% SNPs shared 

with LDL, 40% SNPs shared with HDL, 25% SNPs shared with T2D, and 70% SNPs shared 

with CAD (Supplementary tables 17-24). The genetic correlations were insignificant (rg=-

0.06-0.04) (Table 2). 

Functional annotation 

Functional annotation of all SNPs having a conjFDR value<0.1 in the loci shared between 

BIP and CVD phenotypes demonstrated that these were mostly intronic and intergenic 

(Supplementary Tables 26-33). Gene-mapping of shared loci between BIP and CVD 

phenotypes largely implicated brain-expressed genes (Supplementary Tables 34-41; 

Supplementary Results). Further, gene-set analyses revealed several significantly associated 

biological and cellular processes with the genes mapped to the shared loci between BIP and 

BMI, including “chromatin organization”, “chromatin assembly/disassembly” and “DNA 

packaging complex” (Supplementary Table 42). The genes mapped to the shared loci between 

BIP and SBP were most significantly associated with “neurogenesis”, “neuronal 

differentiation” and “mitochondrion” (Supplementary Tables 43). Gene-set analyses also 

identified several significantly associated processes with the genes mapped to the shared loci 

between BIP and DBP, including “chromatin assembly”, “nucleosome organization” and 

“DNA backpacking complex” (Supplementary Tables 44). Here, the three most significant 

biological processes and the most significant cellular process seem to be driven by 

associations from the histone gene cluster (Supplementary Tables 44). Since many of the 
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genes in these gene sets are localized in a single cluster, a single association in this cluster can 

drive the apparent enrichment of the entire gene set. Therefore, we also performed gene-set 

analysis of the genes nearest the lead SNPs in the shared loci between BIP and DBP 

(Supplementary Table 45). This analysis identified a different set of genes and associated 

biological processes (including “positive regulation of gene expression” and “maintenance of 

protein localization”) (Supplementary Table 45) compared to the results in Supplementary 

Table 44. The genes mapped to the shared loci between BIP and lipids (TC, HDL and LDL) 

were significantly associated with “chromatin assembly/disassembly”, “hyaluronan metabolic 

process” and “lipid biosynthetic process” (Supplementary Tables 46-48). The genes mapped 

to loci shared between BIP and T2D and CAD were most significantly associated with 

“unsaturated fatty acid biosynthesis” (Supplementary Tables 49-50). 

We identified several pathways overrepresented among the genes mapped to loci 

shared between BIP and CVD phenotypes. We found neural cell adhesion molecule (NCAM) 

signaling for neurite out-growth pathway to be significantly overrepresented among the genes 

mapped to the shared loci between BIP and BMI (Supplementary Table 51). Other pathways 

(e.g. Organelle biogenesis and maintenance, Oxytocin signaling pathway and Cushing 

syndrome) were also overrepresented among these genes, but they did not reach significance 

after correcting for multiple testing (see q-values in Supplementary Table 51). We also 

identified several pathways overrepresented among the genes mapped to loci shared between 

BIP and SBP/DBP, including signaling by plasma membrane FGR1 fusions, beta-

agonist/beta-blocker pathway, sympathetic nerve pathway, cortisol synthesis and secretion 

and several hormonal and metabolic pathways (Supplementary Tables 52-53). We found 

omega-3 fatty acid metabolism pathway and other pathways to be overrepresented among the 

genes mapped to the shared loci between BIP and lipids, T2D and CAD (Supplementary 

Tables 54-58). 
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Discussion 

In the present study, we demonstrated extensive polygenic overlap between BIP and CVD 

phenotypes. We revealed 129 shared loci of which 22 were novel BIP loci. The shared loci 

possessed mixed effect directions in BIP and CVD risk factors and CAD, consistent with 

insignificant genetic correlations. The results provide new insights into the shared genetic 

architecture of BIP and CVD morbidity, implicating novel molecular genetic mechanisms, 

and may suggest variation in CVD risk across subgroups of patients with BIP. 

The present study goes beyond standard methods to assess genetic overlap as the 

MiXeR can estimate polygenic overlap with mixed effect directions, and the conjFDR method 

can detect shared genetic variants between phenotypes regardless of the overall genetic 

correlation26-28. Using MiXeR we discovered that ~82% the genetic variants influencing BIP 

also influence BMI. In addition, ~20% of variants influencing BIP also influence SBP/DBP, 

yet a larger proportion (~40%) of genetic variants underlying SBP/DBP affect BIP. MiXeR 

also suggested polygenic overlap between BIP and CAD, although the degree of overlap is 

uncertain, suggesting that a larger CAD GWAS is needed to obtain more reliable MiXeR 

estimates. The differences in overlap partly reflect variation in polygenicity of these 

phenotypes, with BIP and BMI being more polygenic than SBP/DBP and CAD, as illustrated 

in the Venn diagrams. 

Further, conjFDR revealed several shared loci between BIP and CVD phenotypes. 

More specifically, we identified a total of 227 overlapping loci between BIP and CVD risk 

factors at conjFDR<0.05, of which 129 were unique (Table 2). Most of the loci were shared 

with BMI24 and SBP/DBP, while a smaller number of loci were shared with lipids, CAD and 

T2D based on conjFDR. While the GWAS sample sizes do not influence the nature of the 

joint association between BIP and the CVD phenotypes, they are likely to influence the 
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magnitude of genetic overlap across the CVD phenotypes28. Accordingly, while the finding of 

most shared loci with BMI and SBP/DBP suggests greater overlap, this finding may also be 

related to the larger GWAS samples used for BMI17 and SBP/DBP20 than for the other CVD 

phenotypes18, 19, 21. In addition, the highly polygenic nature of BMI likely contributed to the 

finding of more shared loci with BMI. Interestingly, there was a general pattern of 

bidirectional effects of the shared loci. Genetic variants with mixed effect directions “cancel 

each other out”, resulting in insignificant genetic correlations between BIP and CVD risk 

factors, as well as CAD. Thus, while our results suggest shared molecular mechanisms 

implicating pleiotropy, there is no clear pattern of increased or decreased genetic liability to 

CVD in BIP. 

The mixed effect directions among the loci shared between BIP and CVD phenotypes 

underscore the complexity of the genetic relationship. While there was a general trend of 

opposite effect direction (~52%), there was a majority of concordant effect directions in CAD. 

However, due to the small number of SNPs involved, these individual loci explain a little 

proportion of the overall risk. Thus, the findings indicate that common genetic variants do not 

explain the higher CVD risk in BIP. It is possible that genetic factors not captured by 

currently GWASs, such as rare variants, may contribute. However, it is likely that 

environmental risk factors play a central role in comorbid CVD in BIP. In particular, 

medication, poor nutrition, physical inactivity and smoking are important contributors to 

CVD in BIP8, 45.  The mixed effect directions of the shared loci comply with previous findings 

of bidirectional effects among overlapping loci between SCZ and multiple CVD risk factors12. 

Similar to the current study, other studies also indicate genetic overlap between BIP and CVD 

in spite of non-significant genetic correlations23, 46. Further, the bidirectional effects of the 

shared variants between BIP and BMI are in line with the large clinical variation in weight 

changes during mood episodes of BIP. Some patients experience weight loss while others 
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gain weight during a depressive episode, and most patients lose weight during a manic 

episode47. Similarly, studies suggest variation in lipid levels and SBP/DBP related to affective 

episodes, with higher levels of dyslipidemia and SBP/DBP in depressive than in manic 

episodes48-50. 

Further, the mixed effect directions of shared variants may reflect variation in genetic 

liability to CVD across BIP subgroups. BIP is a heterogeneous disorder involving different 

subtypes, illness courses and severity51 that may be differentially related to CVD comorbidity. 

Notably, while the average level of CVD risk is higher in BIP compared to the general 

population, the CVD comorbidity seems to be restricted to BIP subgroups, illustrated by 

overweight (~50-75%), dyslipidemia (~25-40%), T2D (~5-20%) and hypertension (~35-

60%)2-4, which suggest subsets of patients with different susceptibility to CVD. For instance, 

patients with more depressive symptoms may represent such a subgroup, as increased 

depressive symptoms rather than mania are associated with higher rates of obesity, 

dyslipidemia and T2D48-50, 52-55. Moreover, recent findings indicate a genetic susceptibility to 

weight gain in major depression24. Since BIP type 2 is genetically more related to major 

depression 32, this subtype of BIP may also involve increased genetic risk of weight gain. BIP 

type 1, on the other hand, is more genetically correlated with SCZ32 and may thus have 

reduced genetic risk of weight gain24. Larger and well-characterized GWAS samples are 

needed to identify subgroups with varied genetic susceptibility to weight gain and other CVD 

phenotypes in BIP. The identification of potential subgroups with different genetic liability to 

CVD can increase the understanding of CVD comorbidity in BIP and help improve risk 

prediction and prevention. 

Functional annotation indicated that the shared variants between BIP and CVD are 

mostly intronic and intergenic, which is in line with other GWAS findings24, 34. The results 

indicate the shared SNPs influence gene expression via regulatory effects56. Further functional 
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analyses indicated that the shared variants between BIP and CVD phenotypes are involved in 

several biological processes and pathways associated with neurodevelopment, lipid 

metabolism, intracellular processes and chromatin assembly/disassembly (i.e. formation or 

destruction of chromatin structures, which play an important role in regulating transcription 

and gene expression57). Further, the shared loci were largely linked to genes expressed in the 

brain. In line with current findings, brain dysfunction is implicated in the pathophysiology of 

BIP58 and more recently linked to the shared variants between BIP and BMI22, 24. Moreover, 

lipid biology may be involved in the pathophysiology of BIP, as proposed for SCZ29, 

consistent with evidence of white-matter abnormalities and myelin dysfunction in both 

disorders59, 60. Furthermore, functional analyses of the shared loci between BIP and SBP 

implicated genes involved in stress-related pathways, including cortisol synthesis and 

secretion. Similarly, recent findings indicate overlapping genetic variants between BIP and 

CVD risk factors associated with hypothalamic-pituitary-adrenal (HPA) axis regulation22, 24. 

Shared genetic variants associated with the HPA axis appears plausible given evidence of 

HPA axis dysregulation in BIP61, obesity and hypertension62. However, the results from 

functional analyses should be considered with caution given the limitations of 

ConsensusPathDB and FUMA, including vulnerability to bias from clusters of genes in the 

genome. This bias was evident in the results from gene-set analysis of the shared loci between 

BIP and DBP (Supplementary Table 44), indicating that the most significant biological 

processes are driven by associations from the histone gene cluster. 

Altogether, the current findings are in line with the hypothesis that brain-related 

mechanisms play a role in CVD comorbidity in BIP. It is possible that shared genetic variants, 

interacting with environmental risk factors, affect brain function that influences behavior (e.g. 

lifestyle choices) and mental processes (e.g. affective symptoms) and, thereby, the 

development of BIP and comorbid CVD. It is also possible that shared variants between BIP 
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and CVD morbidity affect metabolic mechanisms22, 24, influencing CVD risk and brain 

function, contributing to development of BIP. In addition, separate pathways underlying BIP 

and CVD are likely given the bidirectional effects of the shared loci. However, the proposed 

pathways are preliminary and require further experimental investigation due to limitations of 

current methods used to functionally annotate SNPs37 and the complexity of the 

pathophysiology of BIP and CVD. 

The current results of mixed effect directions of shared loci between BIP and CVD 

phenotypes have important clinical implications. The results indicate that the genetic 

susceptibility for CVD may vary across BIP subgroups, calling for more diverse and targeted 

clinical interventions. Future investigations of subgroups with different genetic liability to 

CVD can form the basis for improved prediction tools, which can pave the way for early risk 

identification and prevention of CVD in BIP. Improved prevention should involve better 

tailored pharmacological treatment according to individuals’ genetic risk and personalized 

lifestyle interventions with focus on the barriers for maintaining a healthy lifestyle, such as 

motivational and other affective symptoms, adverse effects of medication and socioeconomic 

issues63, 64.  

In conclusion, the current study revealed polygenic overlap between BIP and CVD 

phenotypes and identified 129 shared loci with mixed effect directions. Future experimental 

studies of the identified shared loci may provide new insights into molecular mechanisms, 

which can ultimately facilitate development of drugs with less cardiometabolic adverse effects 

by identifying potential therapeutic targets. The current results underline the importance of 

environmental factors in development of CVD comorbidity in BIP and may indicate variation 

in genetic susceptibility to CVD across BIP subgroups. Future studies with larger GWAS 

samples should focus on identifying patients at higher genetic risk of comorbid CVD. This 
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can form the basis for risk stratification and more targeted interventions for better prevention 

of CVD in BIP.  
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Tables 

Table 1. The results of MiXeR analysis for bipolar disorder and cardiovascular disease phenotypes 

Trait 1 Trait 2 Shared variants (se) Unique variants trait 1 (se) Unique variants trait 2 (se) 

BIP BMI 6.6 (0.5) 1.5 (0.4) 4.4 (0.5) 

BIP SBP 1.8 (0.3) 6.3 (0.3) 2.6 (0.3) 

BIP DBP 1.6 (0.3) 6.5 (0.4) 2.3 (0.3) 
BIP CAD 0.9 (0.3) 7.2 (0.4) 0.5 (0.3) 

Number of shared and unique trait-influencing variants (in thousands), followed by standard error, 

estimated by MiXeR. Abbreviations: BIP; bipolar disorder; BMI, body mass index; SBP, systolic blood 

pressure; DBP, diastolic blood pressure; CAD, coronary heart disease; se, standard error.  

Table 2. Shared loci between BIP and CVD phenotypes 

Associated phenotype Shared loci (n) 

conjFDR 

 Concordant 

effect (%) 

Genetic correlation 

CVD phenotypes 

BMI* 

SBP 

DBP 

TC 

LDL 

HDL 

T2D 

CAD 

69 

53 

53 

15 

13 

10 

4 

10 

52.2% 

49.1% 

47.2% 

26.7 % 

46.2 % 

40.0 % 

25.0 % 

70.0 % 

-0.06 (p=0.010) 

 0.02 (p=0.396) 

 0.04 (p=0.155) 

 0.02 (p=0.463) 

 0.03 (p=0.346) 

-0.02 (p=0.471) 

-0.04 (p=0.422) 

-0.02 (p=0.539) 

Number of shared loci at conjFDR <0.05, concordant effect directions in percentage, and 

genetic correlation estimated by LD score regression. Abbreviations: BIP; bipolar disorder; 
CVD, cardiovascular disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; 

BMI, body mass index; TC, total cholesterol; HDL, high-density lipoprotein cholesterol; 

LDL, low- density lipoprotein cholesterol; T2D, type 2 diabetes mellitus; CAD, coronary 

heart disease; conjFDR, conjunctional FDR. *The results for BMI & BIP are retrieved from 

Bahrami et al. 202024.  
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Figures 

Figure 1. Venn diagrams of shared and unique polygenic variants 

Venn diagrams of shared and unique trait-influencing variants, showing polygenic overlap 

(gray) between bipolar disorder (BIP) (blue) and body mass index (BMI) (orange), coronary 

artery disease (CAD) (orange), systolic blood pressure (SBP) (orange) and diastolic blood 

pressure (DBP (orange). The numbers in the Venn diagram indicate the estimated quantity of 

shared and unique trait-influencing variants (in thousands), explaining 90% of SNP 

heritability in each phenotype, followed by standard error. The size of the circles reflects the 

degree of polygenicity. The figure is based on MiXeR results. 
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Figure 2. Common genetic variants jointly associated with BIP and CVD phenotypes at 

conjFDR < 0.05 

C)

D)

B)

A)
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F) 

E)

G) 
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Manhattan plot showing the –log10 transformed conjFDR values for each SNP on the y axis 

and chromosomal positions along the x axis. SNPs with conjunction FDR < 0.05 (i.e., −log10 

FDR > 1.3) are shown with enlarged data points. A black circle around the enlarged data 

points indicates the most significant SNP in each LD block. The figure shows the localization 

of the ‘conjunctional loci’, and further details are provided in Supplementary Tables. 

Abbreviations: BIP, bipolar disorder; CVD, cardiovascular disease; BMI, body mass index; 

SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total cholesterol; HDL, 

high-density lipoprotein cholesterol; LDL, low density lipoprotein cholesterol; T2D, type 2 

diabetes; CAD, coronary artery disease; conjFDR, conjunctional FDR. The results at 

conjFDR<0.01 are previously presented in Bahrami et al. 202024. 
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SUPPLEMENTARY INFORMATION for 

Extensive bidirectional genetic overlap between bipolar disorder and cardiovascular 

disease phenotypes 

SUPPLEMENTARY METHODS 

Participants 

We obtained GWAS results in the form of summary statistics (p-values and z-scores). Data on 

bipolar disorder (BIP) were retrieved from Psychiatric Genomics Consortium (PGC)1. The 

BIP dataset consisted of 20 352 cases and 31 358 controls from 32 samples1. Among the 

cases, 14,879 individuals were diagnosed with BIP type I (BIP1), 3,421 with BIP type II 

(BIP2), 977 with schizoaffective disorder, bipolar type (SAB), and the remaining BIP not 

otherwise specified (NOS)1. Further, we used data from GWASs on cardiovascular disease 

(CVD) phenotypes, including the CVD risk factors body mass index2 (n=795 640), type 2 

diabetes mellitus (T2D)3 (n=159 208), total cholesterol (TC)4 (n=188 578), low-density 

lipoprotein (LDL) cholesterol4 (n=188 578), high-density lipoprotein (HDL) cholesterol4 

(n=188 578), systolic and diastolic blood pressure (n=745 820-757 601)5, along with coronary 

artery disease (CAD, n=332 477, including 71 602 CAD cases and 260 875 controls)6. We 

repeated the previously published cond/conjFDR analysis of genetic overlap between BIP and 

BMI7. Details about the inclusion criteria, genotyping and phenotype characteristics, see the 

original publications1-6. There was no sample overlap between the BIP GWAS1 and the CVD 

phenotype GWASs. 

MiXeR 

We applied causal mixture models8, 9 to the GWAS summary statistics, using the MiXeR tool 

(https://github.com/precimed/mixer). For each SNP, 𝑖, univariate MiXeR models its additive 

genetic effect of allele substitution, 𝛽𝑖, as a point-normal mixture, 𝛽𝑖 = (1 − 𝜋1)𝑁(0,0) +

https://github.com/precimed/mixer
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𝜋1𝑁(0, 𝜎𝛽
2), where 𝜋1 represents the proportion of non-null SNPs (`polygenicity`) and 𝜎𝛽

2

represents variance of effect sizes of non-null SNPs (`discoverability`). Then, for each SNP, 𝑗, 

MiXeR incorporates LD information and allele frequencies for M=9,997,231 SNPs extracted 

from 1000 Genomes Phase3 data by LD score regression software9, 10, and estimate the 

expected probability distribution of the signed test statistic, 𝑧𝑗 = 𝛿𝑗 + 𝜖𝑗 = 𝑁 ∑ √𝐻𝑖𝑟𝑖𝑗𝛽𝑖 +𝑖

𝜖𝑗, where 𝑁 is sample size, 𝐻𝑖 indicates heterozygosity of i-th SNP,  𝑟𝑖𝑗 indicates allelic 

correlation between i-th and j-th SNPs, and 𝜖𝑗 ∼ 𝑁(0, 𝜎0
2) is the residual variance. Further,

the three parameters, 𝜋1, 𝜎𝛽
2, 𝜎0

2, are fitted by direct maximization of the likelihood function.

The number of trait-influencing variants (i.e. variants with pure genetic effects not induced by 

LD) is estimated as 𝑀𝜋1, where M=9,997,231 gives the number of SNPs in the reference 

panel. 

In the cross-trait analysis, MiXeR models additive genetic effects as a mixture of four 

components, representing null SNPs in both traits (𝜋0); SNPs with a specific effect on the 

first and on the second trait (𝜋1 and 𝜋2, respectively); and SNPs with non-zero effect on both 

traits (𝜋12). In the last component, MiXeR models variance-covariance matrix as 𝚺𝟏𝟐 =

[
𝜎1

2 𝜌12𝜎1𝜎2

𝜌12𝜎1𝜎2 𝜎2
2 ] where 𝜌12  indicates correlation of effect sizes within the shared 

component, and 𝜎1
2 and 𝜎2

2 correspond to the discoverability parameter estimated in the

univariate analysis of the two traits. After fitting parameters of the model, genetic correlation 

is calculated as 𝑟𝑔 =
𝜌12𝜋12

√(𝜋1+𝜋12)(𝜋2+𝜋12)
. Further information is available in8. 

To evaluate model fit, i.e. the ability of the MiXeR to predict the actual GWAS data, 

we constructed modelled vs. actual conditional Q-Q plots (Supplementary Figures 3-6). 

Optimal model fit is indicated in the conditional Q-Q plots by the model-based curves closely 

following the actual Q-Q curves8. Model fit was also assessed using negative log-likelihood 

plots8, which visualizes the performance of the best model versus models with minimum and 
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maximum polygenic overlap (Supplementary Figures 3-6). The best model represents the 

MiXeR model of polygenic overlap between phenotypes. The minimum model represents a 

scenario of least possible overlap, and the maximum model represents a scenario of largest 

possible overlap. In the negative log-likelihood plot (Supplementary Figures 3-6), the 

minimum model is represented by the point furthest to the left, the maximum model is 

represented by the point furthest to the right, and the best model is represented by the lower 

point of the curve. The lowest point on the curve (y-axis) indicates better model fit8.  

To filter situations with insufficiently powered GWAS summary statistics, we use 

Akaike information criterion (𝐴𝐼𝐶 = 2𝑘 − 2 ln 𝐿), where 𝑘 is the number of free parameters 

in the model,  𝐿 is the value of the likelihood function, and 𝑛 is the effective number of SNPs 

used in optimization procedure. We calculate the difference between AIC for the full bivariate 

model, 𝑘 = 3, and AIC for the reduced bivariate model, 𝑘 = 2, due to 𝜋12 being constrained 

to smallest or largest possible ( 𝜋12
𝑚𝑖𝑛 = 𝑟𝑔√𝜋1

𝑢 𝜋2
𝑢 and 𝜋12

𝑚𝑎𝑥 = min (𝜋1
𝑢 , 𝜋2

𝑢), respectively). A

positive value of AIC indicates that GWAS summary statistics have enough information to 

distinguish the custom polygenic overlap, as shown on the MiXeR Venn diagrams, from the 

constrained models with minimal (𝜋12
𝑚𝑖𝑛) and maximum (𝜋12

𝑚𝑎𝑥) polygenic overlap.

Conditional False Discovery Rate 

The ‘enrichment’ seen in the conditional Q-Q plots can be directly interpreted in terms of true 

discovery rate (TDR = 1 – false discovery rate (FDR))11. More specifically, for a given p-

value cutoff, the FDR is defined as 

FDR(p) = π
0
F

0
(p) / F(p),  [1] 

where π
0 is the proportion of null SNPs, F

0 is the null cumulative distribution function (cdf),

and F is the cdf of all SNPs, both null and non-null12. Under the null hypothesis, F
0 is the cdf

of the uniform distribution on the unit interval [0,1], so that Eq. [1] reduces to 
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FDR(p) = π
0
p / F(p), [2] 

The cdf F can be estimated by the empirical cdf q = Np / Ν, where Np is the number of SNPs 

with p-values < p, and N is the total number of SNPs. Replacing F by q in Eq. [2], we get 

Estimated FDR(p) = π
0
p / q,  [3]

which is biased upwards as an estimate of the FDR13. Replacing π
0
 in Equation [3] with unity

gives an estimated FDR that is further biased upward; 

q* = p / q, [4] 

If π
0 is close to one, which is probably true for most GWASs, the increase in bias from Eq. [3]

is minimal. Therefore, the quantity 1 – p/q, is biased downward and thus a conservative 

estimate of the TDR. Referring to the Q-Q plots, we see that q* is equivalent to the nominal 

p-value divided by the empirical quantile, as defined previously. We can thus read the FDR 

estimate directly off the Q-Q plot as 

-log10(q*) = log10(q) – log10(p), [5] 

demonstrating that the estimated FDR is directly related to the horizontal shift of the curves in 

the Q-Q plots from the expected line x = y, i.e. a larger shift corresponds to a smaller FDR. 

Conditional Q-Q plots 

Q-Q plots compare a nominal probability distribution against an empirical distribution. In the 

presence of all null relationships, nominal p-values form a straight line on a Q-Q plot when 

plotted against the empirical distribution. For BIP and CVD phenotype SNPs and for each 

categorical subset (strata), -log10 nominal p-values were plotted against -log10 empirical p-

values (conditional Q-Q plots). Leftward deflections of the observed distribution from the 

projected null line illustrate increased tail probabilities in the distribution of test statistics (z-

scores) and consequently an over-abundance of low p-values compared to that expected by 

chance, also called ‘enrichment’. This is illustrated in Supplementary Figures 1-2. 
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Under large-scale testing paradigms, such as GWAS, we can calculate quantitative 

estimates of likely true associations from the distributions of summary statistics12, 14. 

Conditional Q-Q plots of nominal p-values from GWAS summary statistics visualizes this 

enrichment of statistical association relative to that expected under the global null hypothesis. 

The usual Q-Q curve has the nominal p value, denoted by "p", as the y-ordinate and the 

corresponding value of the empirical cdf, denoted by "q", as the x-ordinate. Under the global 

null hypothesis the theoretical distribution is uniform on the interval [0,1]. As is common in 

GWAS, we instead plot -log10 p against -log10 q to emphasize tail probabilities of the 

theoretical and empirical distributions. Therefore, genetic enrichment is illustrated with a 

leftward shift in the Q-Q curve, corresponding to a larger fraction of SNPs with nominal -

log10 p-value greater than or equal to a given threshold. Conditional Q-Q plots are constructed 

by creating subsets of SNPs based on levels of an auxiliary measure for each SNP, and 

computing Q-Q plots separately for each level. If SNP enrichment is captured by variation in 

the auxiliary measure, which is expressed as successive leftward deflections in a conditional 

Q-Q plot as levels of the auxiliary measure increase. We constructed conditional Q-Q plots of 

empirical quantiles of nominal -log10 values for SNP association for all SNPs, and for subsets 

(strata) of SNPs determined by the nominal p-values of their association with the conditional 

phenotypes, and vice versa. In particular, we computed the empirical cumulative distribution 

(cdf) of nominal p-values for a given phenotype for all SNPs and for SNPs with significance 

levels below the indicated cut-offs for the conditional phenotypes (-log10(p) ≥ 1, -log10(p) ≥ 2, 

-log10(p) ≥ 3 corresponding to p < 0.1, p < 0.01, p < 0.001 respectively). The nominal p-

values (–log10(p)) are plotted on the y-axis, and the empirical quantiles (–log10(q), where q=1-

cdf(p)) are plotted on the x-axis. To assess for polygenic effects below the standard GWAS 

significance threshold, we focused the conditional Q-Q plots on SNPs with nominal –log10(p) 

< 7.3 (corresponding to p > 5x10-8). We controlled for spurious enrichment by calculating all 
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conditional Q-Q plots after random pruning averaged over 500 iterations. At each iteration, 

one SNP in every LD block (defined by an r2 >0.1) was randomly selected and the empirical 

cdfs were computed using the corresponding p-values. 

Detection of SNPs using conditional and conjunctional FDR 

The FDR can be interpreted as the probability that a SNP is null given that its p-value is as 

small as or smaller than its observed p-value. The conditional FDR (condFDR) is an extension 

of the standard FDR, which incorporates information from GWAS summary statistics of a 

second phenotype to adjust its significance level. The condFDR is defined as the probability 

that a SNP is null in the first phenotype given that the p-values in the first and second 

phenotypes are as small as or smaller than the observed ones. It is important to note that 

ranking SNPs by the standard FDR or by p-values gives the same ordering of SNPs.  In 

contrast, ranking SNPs by condFDR will reorder SNPs when the primary and secondary 

phenotypes are genetically related. The conjunctional FDR (conjFDR) is defined as the 

posterior probability that a SNP is null for either phenotype or both simultaneously, given that 

its p-values for association with both phenotypes are as small as or smaller than the observed 

p-values15-19. A conservative estimate of the conjFDR is obtained by the maximum condFDR 

for a given SNP after repeating the condFDR procedure for both traits and inverting their 

roles.
20. Given that complex correlations in regions with intricate LD can bias FDR 

estimation21, we excluded SNPs in the extended major histocompatibility complex and 

chromosome 8p23.1 (genome build 19 locations 25119106–33854733 and 7242715–

12483982, respectively) and SNPs in LD (r2>0.1) with such SNPs before fitting the FDR 

models. P-values were corrected for inflation using a genomic inflation control procedure15. 

Genomic loci definition 
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We defined independent genomic loci using the FUMA, an online tool for functional mapping 

of genetic variants (http://fuma.ctglab.nl/)22. Summary statistics from the GWASs on BIP and 

CVD phenotypes were used as input for FUMA. First, independent significant SNPs were 

identified as SNPs with condFDR < 0.01 and independent from each other at LD  

r2 < 0.6. Secondly, lead SNPs were identified by retaining those independent significant SNPs 

that were independent from each other at r2 < 0.1. Next, distinct genomic loci were identified 

by merging physically overlapping lead SNPs (LD blocks < 250 kb apart) selecting a SNPO 

with the most significant p-value as a lead SNP if the merged locus. Borders of the genomic 

loci were determined by identifying all SNPs in LD (r2 ≧ 0.6) with one of the independent 

significant SNPs in the locus. The region containing all of these candidate SNPs was regarded 

as a single independent genomic locus. All LD information was calculated from the 1000 

Genomes Project reference panel23. 

Effect sizes and genetic correlation 

Effect size (z-scores) of the shared SNPs were obtained from the original summary statistics 

(see original publications1, 3, 4, 6, 24). We estimated the genetic correlation using LD score 

regression25. LD score regression was estimated using the Python-based package available at 

https://github.com/bulik/ldsc. The procedure is described in the documentation of the package 

(https://github.com/bulik/ldsc/wiki/Heritability-and-Genetic-Correlation). 

Identification of novel BIP loci 

We identified novel BIP loci by comparing the identified loci at conjFDR <0.05 with the loci 

reported in the original BIP GWAS1, the most recent BIP GWAS26 (available through 

personal communication), the NHGRI-EBI catalog27, previous cond/conjFDR analyses and 

other studies reporting genome-wide significant BIP loci1, 7, 28-45. 

http://fuma.ctglab.nl/
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Functional annotation 

We used FUMA22, an online annotation platform (http://fuma.ctglab.nl/) to functionally 

annotated all candidate SNPs in the genomic loci with a condFDR or conjFDR value<0.10 

having an r2≧0.6 with one of the independent significant SNPs. SNPs were annotated with 

Combined Annotation Dependent Depletion (CADD) scores46, RegulomeDB47 scores, and 

chromatin states48, 49. The CADD score is a deleterious score of variants computed by 

integrating 63 functional annotations46. The higher the score, the more deleterious. A CADD 

score above 12.37 is the threshold to be potentially pathogenic46. The RegulomeDB score is a 

categorical score to guide interpretation of regulatory variants47. It is based on information 

from eQTLs and chromatin marks, ranging from 1a to 7 with lower scores indicating a higher 

likelihood of having a regulatory function. Scores are as follows: 1a=eQTL + Transcription 

Factor (TF) binding + matched TF motif + matched DNase Footprint + DNase peak; 

1b=eQTL + TF binding + any motif + DNase Footprint + DNase peak; 1c=eQTL + TF 

binding + matched TF motif + DNase peak; 1d=eQTL + TF binding + any motif + DNase 

peak; 1e=eQTL + TF binding + matched TF motif; 1f=eQTL + TF binding / DNase peak; 

2a=TF binding + matched TF motif + matched DNase Footprint + DNase peak; 2b=TF 

binding + any motif + DNase Footprint + DNase peak; 2c=TF binding + matched TF motif + 

DNase peak; 3a=TF binding + any motif + DNase peak; 3b=TF binding + matched TF motif; 

4=TF binding + DNase peak; 5=TF binding or DNase peak; 6=other; 7=Not available47.  

The chromatin state represents the accessibility of genomic regions (every 200bp) with 

15 categorical states predicted by a hidden Markov model based on 5 chromatin marks for 

127 epigenomes in the Roadmap Epigenomics Project48. A lower state indicates increased 

accessibility, with states 1-7 referring to open chromatin states. We annotated the minimum 

chromatin state across tissues to SNPs. The 15-core chromatin states as suggested by 
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Roadmap are as follows: 1=Active Transcription Start Site (TSS); 2=Flanking Active TSS; 

3=Transcription at gene 5’ and 3’; 4=Strong transcription; 5= Weak Transcription; 6=Genic 

enhancers; 7=Enhancers; 8=Zinc finger  genes & repeats; 9=Heterochromatic; 

10=Bivalent/Poised TSS; 11=Flanking Bivalent/Poised TSS/Enh; 12=Bivalent Enhancer; 

13=Repressed PolyComb; 14=Weak Repressed PolyComb; 15=Quiescent/Low. Standardized 

SNP effect sizes were calculated for the most impactful SNPs by transforming the sample 

size-weighted meta-analysis Z score, in line with Zhu et al.49.  

Furthermore, using FUMA22, we linked lead and candidate SNPs to genes applying 

either of three gene mapping strategies: 1) positional mapping to align SNPs to genes based 

on their physical proximity (i.e., within a 10kb window), 2) expression quantitative trait locus 

(eQTL) mapping to match cis-eQTL SNPs to genes whose expression is associated with 

allelic variation at the SNP level, and 3) chromatin interaction mapping to link SNPs to genes 

based on three-dimensional DNA–DNA interactions between each SNP’s genomic region and 

nearby or distant genes. We evaluated eleven eQTL databases in FUMA which contains 

eQTL information from multiple human tissue types including several brain regions 

(http://fuma.ctglab.nl/tutorial#eQTLs). The eQTL analyses were corrected for multiple 

comparisons using an FDR threshold of 0.05. FUMA contains Hi-C data of over 21 tissue/cell 

types including human brain tissue (https://fuma.ctglab.nl/tutorial#chromatin-interactions). 

We used an FDR of 1 x 10-6 to define significant chromatin interactions based on the 

suggestion by Schmitt et al.50. FUMA was also used to identify previously reported GWAS 

associations in the NHGRI-EBI catalog27 and to evaluate gene ontology (GO)51 gene-set 

enrichment for the genes mapped to all (candidate and lead) SNPs in the identified shared 

loci. Finally, we performed pathway over-represented analyses of genes mapped to all 

(candidate and lead) SNPs in the shared loci using ConsensusPathDB52. ConsensusPathDB 

integrates interaction networks involving binary and complex protein-protein, genetic, 
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metabolic, signaling, gene regulatory and drug-target interactions, along with biochemical 

pathways52. ConsensusPathDB integrates 30 public interaction/pathway resources and has 

regular content updates, ensuring that this database stays up-to-date and comprehensive52. 

Other GWASs of overlapping loci between complex traits have also applied 

ConsensusPathDB for pathway analysis7, 53. Analyses were corrected for multiple 

comparisons. 

SUPPLEMENTARY RESULTS 

MiXeR results 

MiXeR results, including number of shared and unique trait-influencing variants and 

corresponding standard error, are presented in Figure 1 and Table 1. Using MiXeR we 

discovered extensive polygenic overlap between BIP and BMI, sharing 6.6k out of 12.5k 

variants involved, as illustrated by the Venn diagram (Figure 1a). The shared variants 

represent 81.5% of the genetic variants influencing BIP (8.1k) and 60% of the variants 

underlying BMI (11.0k). MiXeR also revealed polygenetic overlap between BIP and SBP, 

sharing 1.8k out of 10.7k variants, as visualized in the Venn diagram (Figure 1b). The shared 

variants with SBP represent 22.2% of the genetic variants influencing BIP (8.1k), and 40.9% 

of variants influencing SBP (4.4k). Likewise, MiXeR identified polygenic overlap with DBP, 

sharing 1.6k out of 10.4K variants, as seen in the Venn diagram (Figure 1c). The shared 

variants with DBP represent 19.8% of the variants influencing BIP (8.1k) and 41.0% of the 

variants influencing DBP (3.9k). Finally, using MiXeR we discovered genetic overlap 

between BIP and CAD, sharing 0.9k out of 8.6k variants, as shown in the Venn diagram 

(Figure 1d). The overlapping variants constitute 11.1% of the genetic variants influencing BIP 

(8.1k) and 64.3% of the variants influencing CAD (1.4k). 

The MiXeR estimates adequately model the GWAS data, as indicated by the model-
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based Q-Q plots following the actual Q-Q plots (Supplementary Figures 3-6). However, the 

model for BIP and CAD followed the actual Q-Q plots less closely at higher p-values 

(Supplementary Figure 6), suggesting caution in interpreting the data. A larger CAD GWAS 

is necessary to obtain more reliable MiXeR estimates. The negative log-likelihood plots also 

illustrated adequate model fit, as indicated by the lowest point on the curve at n=the estimated 

number of shared variants (Supplementary Figures 3-6). Further, AIC demonstrated sufficient 

power of the model (Supplementary MiXeR Table). The positive AIC values indicate that the 

MiXeR model is adequately powered to differentiate the estimated polygenic overlap from 

minimum possible overlap (best vs. min. overlap) and maximum possible overlap (best vs 

max. overlap) (Supplementary MiXeR Table). 

MiXeR was not applied for the other CVD phenotypes due to inadequate model fit, as 

demonstrated in the negative log-likelihood plots not showing a clear minimum on the curve 

(Supplementary Figures 7a-d). 

Conditional FDR results 

We observed consistent enrichment in BIP conditional on associations with CVD phenotypes 

(Supplementary Figure 1), and enrichment in CVD phenotypes given associations with BIP 

(Supplementary Figure 2). This indicates polygenic overlap between BIP and CVD 

phenotypes. To increase statistical power, we leveraged the pleiotropic enrichment using 

condFDR analysis and re-ranked BIP SNPs conditional on their association with CVD 

phenotypes, and vice versa. At condFDR<0.01, we identified 52 loci associated with 

BIP conditional on their association with BMI (as previously reported7); 45 loci conditional 

on SBP; 42 loci conditional on DBP, 22 conditional on TC, 21 conditional on LDL, 22 

conditional on HDL, 32 loci conditional on T2D and 36 loci conditional on CAD 

(Supplementary Tables 1-8). Next, we identified multiple loci associated with CVD 
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phenotypes conditional on associations with BIP, including 679 loci associated with BMI (as 

previously reported7), 920 loci associated with SBP, 937 loci associated with DBP and 196 

loci associated with TC (Supplementary Tables 9-12). Several loci were also associated with 

LDL (n=147), HDL (n=191), T2D (n=71) and CAD (n=130) conditional on BIP 

(Supplementary Tables 13-16). 

Effect directions of shared lead SNPs between BIP and CVD phenotypes 

We evaluated the directionality of allelic effects of the shared lead SNPs between the 

phenotypes by investigating their z-scores. As denoted by the sign of the effect sizes, there 

was a pattern of mixed effect directions of the shared SNPs between BIP and CVD risk 

factors (Table 2). We discovered the same effect direction in 36/69 loci (52%) in BMI and 

BIP as previously reported7, 26/53 loci (49.1%) in SBP and BIP, 25/53 loci (47.2%) in DBP 

and BIP, 4/15 loci (26.7 %) in TC and BIP, 6/13 loci (46.2%) in LDL and BIP, 4/10 loci 

(40%) in HDL and BIP, 1/4 loci (25%) in T2D and BIP, and 7/10 loci (70%) in CAD and BIP 

(Supplementary tables 17-24). 

Gene-mapping results 

Gene-mapping of lead SNPs: Among SNPs shared between BIP and BMI (69), positional 

mapping aligned the SNPs to 48 genes, cis-eQTL mapping implicated 22 genes, and 

chromatin interaction mapping implicated no genes (Supplementary Table 17). Among lead 

SNPs shared with SBP (53), positional mapping linked the SNPs to 42 genes, cis-eQTL 

mapping indicated 28 genes, and chromatin interaction mapping implicated 4 genes 

(Supplementary Table 18). Among the SNPs shared with DBP (53), positional mapping 

linked the SNPs to 42 genes, cis-eQTL mapping linked the SNP to 30 genes, and chromatin 

interaction mapping implicated 5 genes (Supplementary Table 19). Of SNPs shared with TC 
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(15), positional mapping aligned the SNPs to 13 genes, cis-eQTL mapping implicated 10 

genes, and chromatin interaction mapping implicated 2 genes (Supplementary Table 20). 

Among SNPs shared with LDL (13), positional mapping linked the SNPs to 10 genes, cis-

eQTL mapping indicated 8 genes, and chromatin interaction mapping implicated no genes 

(Supplementary Table 21). Among SNPs shared with HDL (10), positional mapping linked 

the SNPs to 6 genes, cis-eQTL mapping indicated 8 genes, and chromatin interaction mapping 

implicated one gene (Supplementary Table 22). Among the SNPs shared with T2D (4), 

positional mapping linked the SNP to 2 genes, cis-eQTL mapping indicated 3 genes, and 

chromatin interaction mapping implicated no genes (Supplementary Table 23). Among the 10 

SNPs shared with CAD, positional mapping linked the SNP to 6 gene, cis-eQTL mapping 

indicated 6 genes, and chromatin interaction mapping implicated one gene (Supplementary 

Table 24). Since chromatin interaction mapping and eQTL mapping were restricted to genes 

in the brain, the current results implicated that most of the shared loci were linked to genes 

expressed in the brain. 

Gene-mapping of candidate SNPs: Using FUMA, we linked the candidate SNPs in the 

shared loci between BIP and BMI to 226 protein-coding genes (Supplementary Table 34). 

Positional mapping linked the SNPs to 159 genes, cis-eQTL mapping linked the SNP to 124 

genes, and chromatin interaction mapping implicated 3 genes (Supplementary Table 34). 

FUMA linked the candidate SNPs in the shared loci between BIP and SBP to 226 protein-

coding genes (Supplementary Table 35). Positional mapping linked the SNPs to 159 genes, 

cis-eQTL mapping indicated 124 genes, and chromatin interaction mapping implicated 3 

genes (Supplementary Table 35). FUMA linked the candidate SNPs in the shared loci 

between BIP and DBP to 282 protein-coding genes (Supplementary Table 36). Positional 

mapping linked the SNPs to 205 genes, cis-eQTL mapping linked the SNP to 138 genes, and 

chromatin interaction mapping implicated 20 genes (Supplementary Table 36). FUMA linked 
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the candidate SNPs in the shared between BIP and TC to 109 protein-coding genes 

(Supplementary Table 37). Positional mapping linked the SNPs to 66 genes, cis-eQTL 

mapping linked the SNP to 69 genes, and chromatin interaction mapping implicated no genes 

(Supplementary Table 37). FUMA linked the candidate SNPs in the shared between BIP and 

LDL to 74 protein-coding genes (Supplementary Table 38). Positional mapping linked the 

SNPs to 40 genes, cis-eQTL mapping linked the SNP to 53 genes, and chromatin interaction 

mapping implicated no genes (Supplementary Table 38). FUMA linked the candidate SNPs in 

the shared between BIP and HDL to 68 protein-coding genes (Supplementary Table 39). 

Positional mapping linked the SNPs to 35 genes, cis-eQTL mapping linked the SNP to 41 

genes, and chromatin interaction mapping implicated 6 genes (Supplementary Table 39). 

FUMA linked the candidate SNPs in the shared between BIP and T2D to 23 protein-coding 

genes (Supplementary Table 40). Positional mapping linked the SNPs to 14 genes, cis-eQTL 

mapping linked the SNP to 16 genes, and chromatin interaction mapping implicated no genes 

(Supplementary Table 40). FUMA linked the candidate SNPs in the shared between BIP and 

CAD to 63 protein-coding genes (Supplementary Table 41). Positional mapping linked the 

SNPs to 34 genes, cis-eQTL mapping linked the SNP to 44 genes, and chromatin interaction 

mapping implicated one gene (Supplementary Table 41). In line with the genes mapped to 

lead SNPs, the majority of the genes mapped to candidate SNPs in the shared loci between 

BIP and CVD phenotypes were expressed in the brain. 
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Supplementary Figure 1. Polygenic overlap between BIP and CVD phenotype. Conditional 

Q-Q plots of nominal versus empirical −log10p values (corrected for inflation) in BIP below 

the standard GWAS threshold of p < 5 × 10−8 as a function of significance of association 

with CVD phenotype, at the level of p < 0.1, p < 0.01, p < 0.001, respectively. The blue lines 

indicate all SNPs. The dashed lines indicate the null hypothesis. The Q-Q plot for BIP and 

BMI is previously published in Bahrami et al. 20207. Abbreviations: BIP, bipolar disorder;

CVD, cardiovascular disease; BMI, body mass index; SBP, systolic blood pressure; DBP, 

diastolic blood pressure; TC, total cholesterol; HDL, high-density lipoprotein cholesterol; 

LDL, low density lipoprotein cholesterol; T2D, type 2 diabetes; CAD, coronary artery 

disease. The conditional Q-Q plots build on the condFDR method.
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Supplementary Figure 2. Polygenic overlap between BIP and CVD phenotype. Conditional 

Q-Q plots of nominal versus empirical −log10p values (corrected for inflation) in CVD 

phenotype below the standard GWAS threshold of p < 5 × 10−8 as a function of significance 

of association with BIP, at the level of p < 0.1, p < 0.01, p < 0.001, respectively. The blue 

lines indicate all SNPs. The dashed lines indicate the null hypothesis. The Q-Q plot for BIP 

and BMI is previously published in Bahrami et al. 20207. Abbreviations: BIP, bipolar 

disorder; CVD, cardiovascular disease; BMI, body mass index; SBP, systolic blood pressure; 

DBP, diastolic blood pressure; TC, total cholesterol; HDL, high-density lipoprotein 

cholesterol; LDL, low density lipoprotein cholesterol; T2D, type 2 diabetes; CAD, coronary 

artery disease. The conditional Q-Q plots build on the condFDR method.
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Supplementary Figure 3. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, 

respectively. Venn diagrams of shared and unique trait-influencing variants, showing polygenic overlap (gray) 

between bipolar disorder (BIP) (blue) and body mass index (BMI) (orange). The numbers in the Venn 

diagram indicate the estimated quantity of trait-influencing variants (in thousands), explaining 90% of SNP 

heritability in each phenotype, followed by standard error. Conditional Q–Q plots of observed versus 

expected −log10 p-values in the primary trait as a function of significance of association with a secondary trait 

at the level of p < 0.1, p < 0.01, p < 0.001. Blue line indicates all SNPs. Dotted lines in blue, orange, green, 

and red indicate model predictions for each stratum. Black dotted line is the expected Q–Q plot under null 

hypothesis. Negative log-likelihood plot: minus log-likelihood calculated for the bivariate model as a function 

of parameter. The remaining parameters of the model were constrained to their fitted values. Figure

generated from MiXeR.
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Supplementary Figure 4. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, respectively. 

Venn diagrams of shared and unique trait-influencing variants, showing polygenic overlap (gray) between 

bipolar disorder (BIP) (blue) and systolic blood pressure (SBP) (orange). The numbers in the Venn diagram 

indicate the estimated quantity of trait-influencing variants (in thousands), followed by standard error. 

Appearance of the Q-Q plot and negative log-likelihood plot are described below Supplementary Figure 3.

Figure generated from MiXeR. 
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Supplementary Figure 5. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, 

respectively. Venn diagrams of shared and unique trait-influencing variants, showing polygenic overlap (gray) 

between bipolar disorder (BIP) (blue) and diastolic blood pressure (DBP) (orange). The numbers in the Venn 

diagram indicate the estimated quantity of trait-influencing variants (in thousands), followed by standard 

error. Appearance of the Q-Q plot and negative log-likelihood plot are described below Supplementary Figure 

3. Figure generated from MiXeR.
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Supplementary Figure 6. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, 

respectively. Venn diagrams of shared and unique trait-influencing variants, showing polygenic overlap (gray) 

between bipolar disorder (BIP) (blue) and coronary artery disease (CAD) (orange). The numbers in the Venn 

diagram indicate the estimated quantity of trait-influencing variants (in thousands, followed by standard error. 

Appearance of the Q-Q plot and negative log-likelihood plot are described below Supplementary Figure 3.

Figure generated from MiXeR.
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Supplementary MiXeR Table. Results of cross-trait analysis 
with the MiXeR model
Trait1 Trait2      AIC

best vs min. overlap best vs max. overlap 
BIP BMI 52.14 5.69
BIP SBP 23.21 35.21
BIP DBP 17.68 36.64
BIP CAD 6.00 3.69
AIC - results from Akaike information criterion, showing AIC 
calculated for the full versus reduced bivariate MiXeR model, 
constrained to minimal feasible polygenic overlap (“best vs min.”) 
or to the complete polygenic overlap (“best vs max.”). A positive 
AIC value provides evidence for the polygenic overlap, shown in 
the MiXeR Venn diagram. BIP: Bipolar disorder; BMI, body mass 
index; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
CAD, coronary artery disease.
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Supplementary Figure 7a-d. Venn Diagrams, conditional Q-Q plots, and negative log-likelihood plot, 

respectively. Venn diagrams of shared and unique trait-influencing variants, showing polygenic overlap (gray) 

between bipolar disorder (BIP) (blue) and a) type 2 diabetes (T2D) (orange), b) total cholesterol (TC) 

(orange), c) low-density lipoprotein (LDL) (orange) and d) high-density lipoprotein (HDL) (orange). The 

numbers in the Venn diagram indicate the estimated quantity of trait-influencing variants (in thousands), 

explaining 90% of SNP heritability in each phenotype, followed by standard error. Conditional Q–Q plots of 

observed versus expected −log10 p-values in the primary trait as a function of significance of association with 

a secondary trait at the level of p < 0.1, p < 0.01, p < 0.001. Blue line indicates all SNPs. Dotted lines in blue, 

orange, green, and red indicate model predictions for each stratum. Black dotted line is the expected Q–Q plot 

under null hypothesis. Negative log-likelihood plot: minus log-likelihood calculated for the bivariate model as 

a function of parameter. The remaining parameters of the model were constrained to their fitted values. 

Figure generated from MiXeR.
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