
REFLECTIONS ON THE DEVELOPMENT OF THE MUSICAL GESTURES
TOOLBOX FOR PYTHON

Bálint LACZKÓ1 and Alexander Refsum JENSENIUS1

1fourMs Lab, RITMO Centre for Interdisciplinary Studies in Rhythm, Time, and Motion, Department of
Musicology, University of Oslo,

ABSTRACT

The paper presents the Musical Gestures Toolbox (MGT)
for Python, a collection of modules targeted at researchers
working with video recordings. The toolbox includes
video visualization techniques such as creating motion
videos, motion history images, and motiongrams. These
visualizations allow for studying video recordings from
different temporal and spatial perspectives. The toolbox
also includes basic computer vision methods, and it is
designed to integrate well with audio analysis toolboxes.
The MGT was initially developed to analyze music-related
body motion (of musicians, dancers, and perceivers) but
is equally helpful for other disciplines working with video
recordings of humans, such as linguistics, pedagogy, psy-
chology, and medicine.

1. INTRODUCTION

Over the years, we have developed various software tools
and toolboxes in the fourMs Lab at the University of Oslo
to analyze and visualize data from motion capture equip-
ment or video recordings. One aim has been to create video
visualization methods that can create spatial and tempo-
ral representations similar to what is possible with mo-
tion capture data. These video analysis tools started as
standalone applications developed in Max [1], which were
later modularized into the first Musical Gestures Toolbox
(MGT) for Max [2]. These modules were again merged
into the Jamoma framework [3], allowing for more com-
plex video analysis in real-time applications [4]. This col-
lection was later ‘ported’ to the Musical Gestures Toolbox
for Matlab [5], which has now been reimplemented in the
Musical Gestures Toolbox for Python. 1

All the MGT versions aim to provide researchers and
practitioners with a simple workflow for analyzing and vi-
sualizing human body motion from video recordings. The
toolbox can be used through traditional scripts, with in-
teractive scripting in iPython (Figure 1), or with Jupyter
Notebooks. We have also been particularly interested in
supporting workflows that integrate relevant audio analy-
sis and visualization tools in the new MGT for Python.

1 https://github.com/fourMs/MGT-python

Copyright: © 2021 the Authors. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 4.0 International License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Figure 1. Example of how MGT can be used with iPython.

The paper starts with an overview of existing Python
packages for video analysis. Then we present the content
of MGT for Python, discuss some use cases, and present
some thoughts about future development directions.

2. BACKGROUND

There is already a plethora of Python projects related to
video analysis. 2 Most of these projects focus on imple-
menting a single or a few related functions, and they often
make extensive use of deep learning architectures. Their
typical functions are single or multiple object tracking, ob-
ject counting, anomaly detection, video classification, and
segmentation.

Our target group is music researchers with limited pro-
gramming experience, in which case, pre-packaged tool-
boxes are preferable. Reviewing the Python Package In-
dex (PyPi), 3 we find primarily toolboxes that implement
basic video editing features, conversion between formats,
or embedding them in documents. Almost all of these use
Python bindings and wrappers for the versatile FFmpeg li-
brary 4 to maintain fast rendering. A few packages offer
some form of video analysis, such as Video-facenet 5 or
general-purpose solutions like scikit-video. 6

Of existing toolboxes, MGT for Python most resembles
scikit-video, with a collection of high-level tools for me-
dia reading and storing, motion estimation tools, and some
utility functions. Scikit-video also aims to create an easy-
to-use toolbox for ‘students, engineers, instructors, and re-
searchers.’ However, it does not include visualization tools
or workflows to organize the analyzed data. Their motion

2 https://github.com/topics/video-analysis?l=python
3 https://pypi.org/
4 https://ffmpeg.org/
5 https://pypi.org/project/video-facenet/
6 http://www.scikit-video.org/stable/

https://github.com/fourMs/MGT-python
http://creativecommons.org/licenses/by/4.0/
https://github.com/topics/video-analysis?l=python
https://pypi.org/
https://ffmpeg.org/
https://pypi.org/project/video-facenet/
http://www.scikit-video.org/stable/


estimation tools focus more on functions typically used in
video compression algorithms, such as block motion com-
pensation. Their measurement tools focus on video quality
assessment and scene detection. These tools can be help-
ful for some tasks but less for our primary analysis object:
human (music-related) body motion.

3. THE TOOLBOX

MGT for Python offers a suite of tools based on well-
established video and audio analysis techniques, as well
as an array of utilities for basic video manipulation. Addi-
tionally, it supports data visualization and data alignment.

3.1 Aims and Priorities

The design goals of MGT for Python are primarily based
on the needs of our ongoing research on music-related
body motion. This includes studies of both performers and
perceivers. Second, we are interested in providing tools
for others that use video recordings in their research. The
design goals can be summarized as follows:

High-level, easy-to-use interface: Since we aim the tool-
box at students and researchers, our tools should be
comprehensible to someone with limited program-
ming experience. The toolbox structure should be
easy to grasp, and the nomenclature should signify
the corresponding functionality.

Thorough documentation: In addition to providing com-
plete documentation for all classes, methods and
functions in the toolbox, the package should have
a comprehensive set of examples and tutorials that
can ease the learning curve.

Consistency: Classes and functions should work consis-
tently. The nomenclature should follow the same
logic across modules, and the toolbox should be con-
sistent with earlier implementations.

Speed: Every tool that renders an output file (video, im-
age, or text) should perform its job as fast as possi-
ble, given the underlying limitations of Python and
the backend processes used.

Support for different workflows: Since MGT for
Python is intended both for education and research,
the tools should work reliably both in Jupyter
notebooks and in terminal programs. Addition-
ally, it should offer various coding styles for fast
prototyping, in-depth analysis, and batch execution.

Integration of video and audio analysis: The toolbox
should offer ways to align and interleave extracted
time-based data with time-based audio analysis
tools integrated in the package.

Compatibility: The toolbox needs to support a variety of
file formats, compression standards, and durations.

Cross-platform: The toolbox should work reliably on dif-
ferent platforms.

Scalability: The toolbox should support multiprocessing
to scale to the available resources on servers and vir-
tual desktop infrastructures.

3.2 Backend

MGT for Python builds on four backend libraries. Most
tools use FFmpeg for rendering. In order to reduce de-
pendencies, we have implemented our suite of wrapper
functions to FFplay (for windowed playback), FFprobe
(for getting file information), and FFmpeg (for rendering
videos and images).

While we use FFmpeg for basic video manipulation, for-
mat conversion, and rendering visualizations, OpenCV 7 is
used to perform frame-by-frame-based analyses. The Mat-
plotlib 8 library is used to visualize data and Librosa 9 is
used for audio analysis. Finally, the pose module uses pre-
trained models from OpenPose. 10

3.3 MgObject, loading and viewing videos

To work with video files in MGT for Python, we use the
MgObject class. It is responsible for pointing to the file
location, performing all preprocessing steps, or keeping
tabs on alternate versions of the same file (such as .avi
and .mp4). All the more advanced processing functions
are methods of the MgObject.

To view the video of the MgObject, we use the show
method. It supports both a windowed playback (via FF-
play) or embedded in a Jupyter Notebook (for which it
auto-converts the video to .mp4 if necessary).

The show method also has an optional key parameter to
reference the result of a process called earlier on a source
video (perhaps in a code segment that is not exposed) or to
make sure we show the latest render of a process. The rest
of the MgObject attributes are there to apply some prepro-
cesses to the source video.

3.4 Preprocesses

When a video is loaded into an MgObject, it is also possi-
ble to apply some basic processes that prepare it for anal-
ysis. There are six types of preprocessing steps (listed in
order of execution):

trim: Trim the start and stop of the source video.

skip: Skip every n frames.

rotate: Rotate the video by an angle.

cb: Adjust the contrast and brightness of the video.

crop: Crop the spatial dimensions of the video either with
automatic detection of the area of motion or manu-
ally through a graphical user interface.

grayscale: Convert the video to grayscale. This will cause
all processes called on the MgObject to function in
grayscale mode, improving processing speed.

7 https://github.com/opencv/opencv-python
8 https://matplotlib.org/
9 https://librosa.org/

10 https://github.com/CMU-Perceptual-Computing-Lab/openpose

https://github.com/opencv/opencv-python
https://matplotlib.org/
https://librosa.org/
https://github.com/CMU-Perceptual-Computing-Lab/openpose


All of these processes use the FFmpeg backend. Speci-
fying all attributes for the preprocesses results in a single
video file by default. It is also possible to keep the results
of all steps as separate videos using the keep_all attribute.

3.5 Video-based processes

The tools to analyze and visualize videos include:

motion: The most frequently used function that generates
a motion video, horizontal and vertical motiongrams
(Figure 2) and plots of the centroid and quantity of
motion found in the video.

motionvideo: A shortcut to only render the motion video.

motiongrams: A shortcut to only output the motion-
grams.

motiondata: A shortcut to only output the motion data
(time, centroid and quantity of motion for each video
frame) as a CSV file.

motionplots: A shortcut to only output the motion plots
(centroid and quantity of motion).

videograms: A visualization that resembles motion-
grams, but based on the original video source.

history: Renders a history video by layering the last n
frames on the current frame for each frame in the
video (Figure 3).

average: Renders an average image of all video frames.

flow.sparse: Renders a sparse optical flow video (using
the OpenCV implementation) (Figure 4).

flow.dense: Renders a dense optical flow video (using the
OpenCV implementation).

pose: Renders a video with human pose estimation (using
pre-trained models from OpenPose) and optionally
outputs the pose data as a CSV file.

The above tools are, in fact, all methods of the MgOb-
ject class. The usual workflow with MGT for Python is to
(1) load a video file into an MgObject, (2) optionally ap-
ply some preprocessing, (3) apply an analysis/visualization
process on the video by calling some method on the MgOb-
ject, (4) use the process results, such as viewing the ren-
dered video or image, plotting the analysis, or reusing the
result in another process.

3.6 Audio-based processes

MGT for Python offers several tools to analyze the audio
track of video files. These are implemented both as class
methods for MgObject and as standalone functions. These
tools are based on the librosa audio analysis package and
the matplotlib package for showing composite figures. To
make working with these figures simpler and more flexible,
we use the MgFigure class as a data structure.

The list of audio-based processes is the following:

Figure 2. Sketch of the calculation of motiongrams from a
motion image.

Figure 3. motion visualization with video delay.

Figure 4. motion visualization with sparse optical flow.



audio.waveform (or mg_audio_waveform): Renders a
waveform plot of the audio track/file.

audio.spectrogram (or mg_audio_spectrogram): Ren-
ders a spectrogram of the audio track/file.

audio.tempogram (or mg_audio_tempogram): Renders
plots of onset strength and tempogram (based on the
former).

audio.descriptors (or mg_audio_descriptors): Renders
plots of: RMS energy, spectral flatness, spectral cen-
troid, spectral bandwidth, and spectral rolloff of the
audio track/file.

3.7 Figures, images, lists

When working with video files in MGT for Python, we al-
most always use MgObjects to preprocess the videos via
the objects’ attributes and apply other processes via class
methods. There are similar helper classes for working with
matplotlib figures and image files. We use the MgFigure
class to make matplotlib figures reusable and modular, and
MgImage serves a similar purpose for images. We also
have our extended list implementation with MgList that
replicates the same functionality as standard Python lists,
with an additional method as_figure. It allows us to com-
pose a stack of time-aligned plots in a specific order.

The workflow will typically to start by creating the Mg-
Figures and MgImages (or MgLists of these) to stack to-
gether. Next, we gather them into an MgList before calling
as_figure. The first element in the Mglist will correspond
to the top figure in the stack and the last element to the
bottom figure. See Figure 5 for an example.

4. USE CASES

In this section, we will describe typical use cases of MGT
for Python. The toolbox currently focuses on three types of
tasks: (1) extracting motion data, (2) motion visualization,
(3) aligning audio and video data and visualizations.

4.1 Extracting and analyzing motion data from videos

There are many methods for analyzing human music-
related body motion [6]. Of all these, regular video record-
ings may arguably be considered the cheapest and most
versatile. Most smartphones can provide a video quality
that is sufficient for motion extraction. The challenge is
how to visualize and analyze motion from the video files.
That is the core functionality of MGT. We often work
with motion capture systems in our labs. Even though
marker-based or sensor-based motion capture systems pro-
vide high spatial and temporal accuracy and precision, they
do not capture the context in the same way as a video
recording. MGT for Python gives researchers a tool for an-
alyzing motion data from video files with just a few lines
of code.

Figure 5. Time-aligned audiovisual analysis. From top
to bottom: Vertical motiongram, vertical videogram, RMS
energy, spectral descriptors, onset strength, tempogram.



4.2 Visualizing motion capture data with images

MGT offers a range of motion visualization tools. We can
isolate motion from a static background, visualize the di-
rection each body part is moving, emphasize its speed and
trajectory, or summarize the area or evolution in a sin-
gle image. Such visualizations often need lengthy boil-
erplate code to set up. MGT for Python aims to offer fast-
rendering visualization tools as simple as a function call.

4.3 Aligning video and audio analysis

In addition to the video-based analysis and visualizations,
we also want to offer simple ways to align motion and au-
dio data. Currently, we support this in the form of stacking
plots and images in a time-aligned fashion. These com-
posite plots can inform the correlations between onsets,
rhythm, loudness, or other spectral characteristics and mo-
tion speed, area, or trajectory.

5. CONCLUSIONS AND FUTURE WORK

The Musical Gestures Toolbox for Python offers simple
ways to extract, analyze and visualize motion, and its rela-
tion to musical sound. Our ultimate goal with MGT is to
offer an object-oriented way to integrate audio, video, and
motion capture data.

MGT is designed to offer a simple, flexible, and fast
workflow for researchers, teachers, or students. So far, we
have focused on creating a set of video analysis tools with
a handful of audio-related functions. At present, we have
worked on integrations with librosa [7]. In the future, it
would also be relevant to include support for other audio li-
braries, including Madmom [8] and Essentia [9]. Another
direction is to include analysis and visualization functions
aimed at motion capture data. Here we will build on some
of the solutions developed in the MGT for Matlab, which
includes support for combining audio analysis with MIR-
Toolbox [10] and MoCap Toolbox [11].

Another future goal of the Python implementation of
MGT is to make the toolbox scalable so that it can run on
servers and distributed computing systems. FFmpeg (our
main rendering backend) already supports multi-core exe-
cution. However, the OpenCV backend functions are loop-
ing inside Python, which is inherently single-threaded and
thus inefficient. We have already made an experimental
multithreaded version of the motion function in the latest
release. In the future, we want to redesign all OpenCV-
based rendering loops to support multithreaded workflows.

As the toolbox grows, we also want to build a test suite
with complete code coverage to maintain stability through-
out development. Finally, since MGT for Python aims to-
wards research and education, we also plan to continuously
extend the toolbox’s feature set based on user feedback.

Acknowledgments

Thanks to Frida Furmyr and Marcus Widmer, who devel-
oped the first version of MGT for Python, and Bo Zhou,
who co-developed MGT for Matlab, which the Python
toolbox builds on. This work was partially supported by

the Research Council of Norway through its Centres of
Excellence scheme, project number 262762 and by Nord-
Forsk’s Nordic Sound and Music Computing Network
(NordicSMC), project number 86892

6. REFERENCES

[1] A. R. Jensenius, R. I. Godøy, and M. M. Wanderley,
“Developing tools for studying musical gestures within
the Max/MSP/Jitter environment,” in Proceedings of
the International Computer Music Conference, 2005,
pp. 282–285.

[2] A. R. Jensenius, “Action–Sound: Developing Methods
and Tools to Study Music-Related Body Movement,”
PhD Thesis, University of Oslo, 2007.

[3] T. Place and T. Lossius, “Jamoma - A modular standard
for structuring patches in Max,” in Proceedings of the
International Computer Music Conference, 2006, pp.
143–146.

[4] T. Place, T. Lossius, A. R. Jensenius, and N. Pe-
ters, “Flexible Control of Composite Parameters in
Max/Msp,” in Proceedings of the International Com-
puter Music Conference, Belfast, 2008, pp. 233–236.

[5] B. Zhou, “Video Analysis of Music Related Body Mo-
tion in Matlab,” Master’s Thesis, University of Oslo,
2016.

[6] A. R. Jensenius, “Methods for studying music-related
body motion,” in Handbook of Systematic Musicology,
R. Bader, Ed. Berlin Heidelberg: Springer-Verlag,
2018, pp. 567–580.

[7] B. McFee, C. Raffel, D. Liang, D. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “Librosa: Audio and Mu-
sic Signal Analysis in Python,” in Proceedings of the
International Python in Science Conference, Austin,
Texas, 2015, pp. 18–24.

[8] S. Böck, F. Korzeniowski, J. Schlüter, F. Krebs, and
G. Widmer, “Madmom: A new python audio and mu-
sic signal processing library,” in Proceedings of the
24th ACM International Conference on Multimedia,
2016, pp. 1174–1178.

[9] D. Bogdanov, N. Wack, E. Gómez Gutiérrez, S. Gu-
lati, H. Boyer, O. Mayor, G. Roma Trepat, J. Salamon,
J. R. Zapata González, and X. Serra, “Essentia: An
open source library for audio analysis,” ACM SIGMM
Records. 2014; 6 (1): 18-21., 2014.

[10] O. Lartillot and P. Toiviainen, “A Matlab toolbox for
musical feature extraction from audio,” in Interna-
tional Conference on Digital Audio Effects, 2007, pp.
237–244.

[11] B. Burger and P. Toiviainen, “MoCap Toolbox - A Mat-
lab toolbox for computational analysis of movement
data,” in Proceedings of the Sound and Music Com-
puting Conference, 2013, pp. 172–178.


	 1. Introduction
	 2. Background
	 3. The Toolbox
	3.1 Aims and Priorities
	3.2 Backend
	3.3 MgObject, loading and viewing videos
	3.4 Preprocesses
	3.5 Video-based processes
	3.6 Audio-based processes
	3.7 Figures, images, lists

	 4. Use cases
	4.1 Extracting and analyzing motion data from videos
	4.2 Visualizing motion capture data with images
	4.3 Aligning video and audio analysis

	 5. Conclusions and future work
	 6. References

