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Abstract

The standard procedure for left anterior descending (LAD) coronary artery by-
pass requires a sternum split. The internal mammary artery (IMA), most typi-
cally the left one (LIMA), is dissected free from behind the sternum and is then
anastomosed onto the heart below the occlusion of the LAD. Totally Endoscopic
Coronary Artery Bypass (TECAB) is a less invasive alternative to the standard
procedure. This procedure results in heavily reduced invasiveness, but also leads
to loss of precision, reduced force feedback and loss of overview. The purpose
of this work is to alleviate the problems related to loss of overview by generat-
ing an augmented reality for the surgeons in which they are given the impression
of ’seeing through’ the tissues surrounding the LIMA thus making localization
of the LIMA a simple matter. Using preoperative CT or MR data, the LIMA is
located with respect to the tissues surrounding it. Intra-operatively tissues sur-
rounding the LIMA are tracked using a stereo endoscope held by a robotic arm
(AESOP). Knowing the position of the endoscope relative to the visible surface
inside the chest cavity now makes it possible to calculate where in the endoscopic
video stream the LIMA is located. Positioning of the endoscope is also possible
using an optical tracking system. This information is then used to generate an
augmented reality where the LIMA is superimposed on it’s correct position in the
video stream. The thesis is using artificial models to test and experiment on the
described problem.
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Chapter 1

Introduction

Three fields in computer science provides the main foundation for this thesis.
These fields are briefly introduced in this chapter.

1.1 Visualization

Visualization is a large field in computer science that deals with the problems of
making data perceivable and understandable with the help of vision, for example
using a standard monitor to display the data. Visualization has acquired more
and more attention as 3D visualization has become more available due to faster
hardware and a greater selection of software.

1.2 Image processing

The Merriam-Webster dictionary explains animageas. . . “a : the optical counter-
part of an object produced by an optical device (as a lens or mirror) or an elec-
tronic device b : a likeness of an object produced on a photographic material.”
An image produced by thisdevicecontains an equal or mostly less informative
description of the object or data we want to study. The image can contain lots of
useful information but also lots of redundant information that we are not interested
in. The art of image processing tries to enhance the interesting information while
suppressing other info. It should be noted that whatever we do with an image we
can never increase the amount of information in it, the only thing we can do is to
try to extract the specific information that we are interested in. Image processing
does not imply that we directly use visualization to view the processed image. It



1.3 Computer vision

can just as well be input to a computer program that makes some calculations on
our processed image.

1.3 Computer vision

Computer vision is a field tightly bound to image processing. Thinking that com-
puter vision and image processing is the same is wrong, but image processing is
an important part of computer vision. Computer vision deals with seeing, to use
information mediated by light or to use information from sensors that in some way
examine their surroundings in order to successfully interact with the environment.
Mr David Young at the University of Sussex gives some examples of problems
that computer vision deals with. . .

? How do people and animals see ?

? Robotic vision

? What computational structures underly vision ?

? How does the environment make vision possible ?

? How do we reconstruct a third dimension from 2D images ?

? How can we build machines to solve specific tasks involving vision ?

Figure1.1 is an example of computer vision used to navigate a robot. This robot
uses a system with two sonars to get information of distance and position of pos-
sible obstacles in front of the robot to make it able to navigate around objects. A
stereo camera is another approach commonly used to navigate robots.

This is the essence of computer vision, a computer program connected to a de-
vice that captures radiation yielding an image, and by using image processing
techniques on this image, it decides what to do next.

Computer vision can be used in a huge number of applications, such as in the
industry where for example computer vision can be used to decide whether
the finished products are defect free or not. Until recently humans have per-
formed these checks, but humans get tired, they take coffee breaks when
they are not supposed to and so on. Computers do not suffer from these pri-
mary needs, and can keep on checking as long as they have electricity, and
as long as the programmer has made a decent job in handling all sorts of

2



1.4 Chapter Organization

Figure 1.1: This robot uses two sonars to extract information about it’s surrounding envi-
ronment. Permission kindly given by Mr David P. Anderson, Southern Methodist University.
http://www.geology.smu.edu/˜dpa-www/myrobots.html

input, thus avoiding application crashes or stalls. Other examples are rec-
ognizing faces and take action based on which face that is seen. Imagis
http://www.imagistechnologies.com/ in Vancouver has a facial
recognition system that is used in many environments such as casinos and airports.
The company Vision IQhttp://www.vision-iq.com has implemented a
computer vision system that monitors swimming pools and warns the lifeguards
of possible accidents. Dipix technologieshttp://www.dipix.com/ has a
system for the baking industry that monitors bake color, shape, size and other
properties that bread or tortillas may have. The number of possible applications
is huge.

1.4 Chapter Organization

This thesis mainly rests on the foundations of techniques from the above three
mentioned fields in addition to mathematics. The thesis is divided in the following
chapters.

Chapter 2 and 3 Describes the background and motivation of the thesis. First
clinical and then theoretical.

Chapter 4 Notes some of the work that has been done earlier by others in relevant
areas.

Chapter 5 Gives a brief descriptive and schematic overview of the project.

3
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1.4 Chapter Organization

Chapter 6 Describes the models that have been used.

Chapter 7 Describes all theory and algorithms considered and used in the imple-
mentation and testing. This is the main part of this thesis.

Chapter 8 Describes the implemented application and its graphical user interface.

Chapter 9 Report of the results and result data.

Chapter 10Further discussion about the results.

Chapter 11Conclusions we can draw from the results.

Chapter 12 What can be improved and inspirations for extensions and future
work.

Appendix A Report concerning this thesis that was accepted to CARS 2003 in
London (Computer Assisted Radiology and Surgery)

4



Chapter 2

Clinical Background and Motivation

Medical imaging is an interesting combination of mathematics, medicine, and
computer science. The motivation for this thesis and work starts with a medical
issue occurring during heart surgery.

2.1 Heart surgery

Heart diseases are a major cause of death, especially in the developed countries.
In Norway the number of deaths related to diseases in the circulatory system has
been between 41% and 46% of the total number of deaths per year during the
period 1991-2000 according toStatistics Norway, [SSB]. Of these circulatory
diseases a large amount is due to ischemic1 heart diseases, in 2000 they answered
for 45% of the deaths related to circulatory diseases.

One common ischemic heart disease is arteriosclerosis where one or more of the
coronary arteries on the heart are stenosed2. The heart with it’s coronary arteries
is illustrated in figure2.1.

1localized tissue anemia due to obstruction of the inflow of arterial blood
2a narrowing or constriction of the diameter of a bodily passage or orifice



2.1 Heart surgery

Figure 2.1: View of the human heart and lungs [GRAY-00]. The vessels that can be seen on
the front of the heart are the coronary arteries of which one on the front left is LAD which
is a commonly stenosed coronary artery.

The cause of the occlusion is build up of cholesterol deposits on the walls of the
arteries. These deposits limit the flow of blood which in time often will result in a
heart attack [MULLANY-03 ]. Commonly, the stenosed coronary artery is the Left
Anterior Descending Artery (LAD) orThe widow makeras it was named in the
Mayo proceedings [HOLMES-00]. In cases where life style and dietary changes
have no effect, surgery may be the only option left.

The operating procedures to overcome the problem are called Coronary Artery
Bypass Surgery (CABG) procedures and are performed by making bypasses for
the blood to get pass the occlusions. In most cases at least one of the bypasses
is constructed from one of the Internal Mammary Arteries (IMA) that is located
behind the sternum3. There are two internal mammary arteries in the human body;
the left and the right, referred to as LIMA and RIMA respectively. LIMA is the
most commonly used as it’s located closer to the heart. A short description of

3The breastbone. The sternum articulates with the ribs 1 through 7 on either side of the chest

6



2.1 Heart surgery

different CABG procedures follows. . .

? Traditional Coronary Artery Bypass Grafting (CABG)
During traditional CABG the heart is stopped and connected to a heart lung
machine which does the work of both heart and lungs. There is also a pos-
sibility for off pump CABG (OPCAB) for suitable patients. Both these pro-
cedures requires a sternotomy, i.etc. a very invasive procedure which is a
surgical opening through the breast bone [MULLANY-03 ]. This procedure
can be seen in figure2.2.

? Port Access Coronary Artery Bypass (PORTCAB) Grafting
This procedure eliminates the need of opening the chest required by tra-
ditional open heart surgery. The sternal incision is exchanged for three or
four very small incisions between the ribs. In these small incisions which
are called ports, instruments are inserted along with a camera which allows
the surgeon to see inside the patients chest. The heart is stopped and con-
nected to a heart lung machine. As the incisions are smaller, this is a less
invasive procedure compared to traditional CABG and the recovery time is
reduced in addition to less scarring [MORGAN-00]. Though the precision
is reduced and this has been the driving force to develop surgical robots,
which reduces the tremor in the instruments as well as downscaling move-
ments [BENGTSSON-03].

? Minimally Invasive Direct Coronary Artery Bypass (MIDCAB ) Grafting
The MIDCAB is an alternative to traditional CABG that is less invasive. In-
stead of a sternotomy a mini-thoracotomy is performed which is a smaller
incision of the chest wall. MIDCAB is performed off pump. Reduced post-
operative pain and an improvement in early mobility and functional recov-
ery compared to traditional CABG is evaluated in [DIEGELER-99] and an
overview of the procedure is given in [NATAF-97].

? Totally Endoscopic Coronary Artery Bypass (TECAB ) Grafting
TECAB is a procedure that combines the favorable aspects of MIDCAB
and PORTCAB; thus using the port access from PORTCAB while operat-
ing on a beating heart from the MIDCAB. The TECAB is a robot assisted
procedure where the instruments are guided by robot arms. [MORGAN-00]

7



2.2 Surgical technique of TECAB

Figure 2.2: The standard CABG procedure uses a sternum split which is an opening through
the breastbone to localize and dissect the Left Internal Mammary Artery (LIMA). As can be
seen in this image this is a very invasive procedure.

2.2 Surgical technique of TECAB

In this thesis the focus is on the robot assisted TECAB procedure due to it’s techni-
cal and minimally invasive benefits. This section describes the surgical technique
in brief, for more details refer to [KAPPERT-01].

Kappert et al. has used the Da Vinci surgical system (while Rikshospitalet Oslo,
Norway uses the similar ZEUSTM robotic system). An article describing the sur-
gical technique using ZEUSTM is [KIAII-00 ]. The beating heart operating pro-
cedure uses four 1 cm chest incisions and consists mainly of two steps. The first
step is to harvest the LIMA/RIMA. The second step to suture the coronary anas-
tomoses. To minimize the movements of the chest single lung ventilation is used,
which means that the left lung is collapsed during the surgery. Three of the 1 cm
incisions are placed in a triangle between the third and sixth intercostal space.
Humidified and warmedCO2 is insufflated through the central port in which the
endoscope thereafter is introduced. The first part of the surgery consists of expos-
ing the LIMA from surrounding tissues.

The first third of the LIMA is quite easily located only covered by thin parietal
pleura4. The middle third is sometimes hidden in fat and hard to identify. The
distal third of the LIMA is intramuscular and therefore not visible. This can be
seen in figure2.3. At the level of the fourth and fifth intercostal spaces the LIMA

4the thin membrane around the lungs

8



2.3 Enhancements of the technique

is also hidden by the cardiac mass, [NATAF-96].

Figure 2.3: Photographic view of LIMA, LAD and heart illustrating the difficulty to locate
the LIMA as most of it is hidden. The image is from an open chest surgery and therefore the
overview here is much better than in the minimal invasive techniques such as the TECAB.
In the TECAB procedure the view comes from the endoscope that is inserted in one of the
ports. Permission kindly given by Dr. Mark Levinson and Mr Jon Golden. Image c© 2003
Forum Multimedia Publishing, LLC. All rights reserved.

Locating hidden arteries beneath superficial tissue can be a difficult task in min-
imal invasive surgery [BEASLEY-02], and it’s vital that the IMA is not injured
due to failure in the localization. The localization is particularly difficult as the
surgeon loses the force feedback due to the introduction of the robot. During open
surgery he is able to feel where the artery is located with his fingers. The surgeon
can also look for pulsations inside the parietal pleura to locate the artery, but occa-
sionally this is not observed. In these cases gentle compression of the soft tissues
can augment arterial pulsations, [KIAII-00 ]. The surgeons overview of the chest
cavity is also greatly reduced as he only has the view from the endoscope. An
illustration of the procedure is shown in figure2.4.

2.3 Enhancements of the technique

If we review the considerations and benefits with the TECAB versus the standard
procedure we have. . .

Benefits

? Less invasive due to smaller incisions

9
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LAD

Endoscope

Sternum

Anastomosis site

LIMA

Figure 2.4: This illustration shows the heart behind the sternum and the endoscope used in
the TECAB procedure. The LIMA is used as a bypass and is anastomosed to the LAD below
the occlusion.

? Reduced postoperative pain

? Shorter recovery time and hospital stay

? Reduced scarring and tissue damage

Considerations

? Loss of force feedback

? Reduced overview

? Resulting loss of precision

As the force feedback is lost and the overview is reduced a severe loss of precision
results.

Due to this difficulty in locating the LIMA (as also described in section2.2),
methods to visualize the hidden LIMA are wanted.

10



2.3 Enhancements of the technique

Localization of the LIMA relative it’s surrounding tissues can be made with 3D
angiography5, Magnetic Resonance (MR) or Computerized Tomography (CT). In
the rest of this thesis CT is assumed as the source. If the data obtained from the CT
could be combined with the video stream from the endoscope in such a way that
the LIMA could be seen inside the fat and muscles, it would be of great help for
the surgeon. This augmented reality would constantly provide the surgeon with
the position of the LIMA even though covered by muscles, fat, instruments and
blood that also will obstruct the view as the surgeon starts to cut into the tissues.

The problem that must be solved is to find the position and orientation of the en-
doscope relative to the fat and muscular surface inside the chest cavity. If this
correspondence is established we can project the LIMA from the postoperative
CT. This assumes that the LIMA has not moved significantly relative to specific
parts in the chest cavity. The addition of intraoperative imaging and localization
of the LIMA relative the patient could be an extension. Two approaches are ex-
amined in this thesis, the first one exploits the stereo capability of a stereoscopic
endoscope (stereoscope) to extract surface information in section7.4. The second
approach uses an optical tracker device to find the relative position and orienta-
tion of the scope in section7.5. A combination of the techniques are discussed in
chapter7.6. Other approaches are mentioned in chapter4.

5Angiography is a roentgenographic examination of blood vessels after injection of a ra-
diopaque contrast medium

11



Chapter 3

Image processing background

Many aspects of image processing are in use in the thesis but the main techniques
discussed are Stereo Algorithms and Image Registration. One specific part of the
Image Registration called Surface Registration is of special interest in this thesis.
A brief overview of these areas is given in this chapter.

3.1 Stereo Algorithms

The endoscope is stereoscopic and section7.4 tries to take advantage of this.
Stereo algorithms tries to extract depth information from a scene observed from
two cameras. Two main approaches exists which is generation of dense or sparse
disparity maps. Dense disparity maps have a disparity value for every pixel in
one of the images while sparse disparity maps only has disparity values in certain
points or areas in the image such as on edges found using a edge detector. A dis-
parity value ofd is defined as how many pixels two corresponding points differ
along a scanline between the left and right frame which is further explained in
section7.4. As the stereo algorithms can be used to extract distance information
about the scene the camera observes, it could be used to establish the correspon-
dence between the camera and the observed objects.

3.2 Image Registration

The info extracted from the stereo algorithms must somehow be registered against
the CT scan to establish the correspondence between the endoscope and the chest
cavity.



3.2 Image Registration

There are three general methods for registration of images from different sources.
Landmark-, surface-, and intensity-matching. In landmark matching you use cor-
responding landmarks in the image sources for the registration. Surface matching
uses an algorithm that matches different images or data of the same surface. You
are here trying to translate, rotate, and scale one of the images to match the other.
Intensity matching uses mutual intensity information to register the images. The
matched intensities may come from different Magnetic Resonance Imaging (MRI)
scans or from different modalities such as MRI and Positron Emission Tomogra-
phy (PET).

Surface matchings or Surface Registrations main motivation is to match an ob-
ject observed by a range sensor (in our case a stereo camera) against an object
or a library of model objects. The goal is, as described above to try to translate,
rotate, and scale the model object so it fits as best as possible. Surface registra-
tion is not only used for deciding the orientation of an object, but also for object
recognition where you select the best matching object among several. The match-
ing can be global or partial, where in the global case you try to match a whole
object, or organ in medicine. Partial surface registration matches only partial in-
formation against the model object. There are many methods available for surface
registration. Heuristic surface registration searches a transformation that matches
similarities, which can for example be points of maximum curvature. Silhouettes,
or projections of 3D objects can also be examined to match surfaces. Another
method uses surface normal histograms for matching convex shapes. Quaternions
can also be used, for brief descriptions of more surface registration methods and
references, refer to [BAREQUET-97]. Surface registration methods and the one
used in this thesis are discussed in section7.4.5.

13



Chapter 4

Previous work

This chapter does not explain any subjects mentioned but gives a short overview
over relevant and introducing articles in these areas. Refer to later chapters, espe-
cially Chapter7 for more in depth explanations.

Stereo images are not a new invention that came with the computers, but that came
with photography in the nineteenth century. But the fascination for the concept of
stereo vision can be traced back as far as around 300 B.C. when Euclid explained
the principle of binocular vision. There also existed stereo drawings and paintings
before the photography was invented.

A device called a steroscope was invented 1849 in which you installed two frames
with images taken a small distance apart. Using it you see one image with each
eye which gives a feeling of depth [SOMMERER-99]. A variant of this is the
ViewmasterR© in figure4.2that many of us has played with.

One early stereo pair are the photographs in figure4.1. With the introduction of

Figure 4.1: Stereo pair images from around the middle of the nineteenths century by the
photographer William Stanley Jevons. c© Macleay Museum, Sydney. Permission kindly
given by Mr Geoff Barker.



Previous work

Figure 4.2: The viewmasterR© was invented in the 1930’s, at that time considered a home
entertainment system. It still exists though now mostly referred to as a toy.

computers and digital images there grew an interest of extracting information of
depth from stereo images or more images. This has showed not to be as easy as
for our brain which does beautiful depth extraction in most scenarios. Therefore
stereo algorithms are often aimed at one specific use. Stereo vision has been and is
still one of the most active research areas in computer vision. A survey and com-
parison between existing stereo algorithms can be found in [SCHARSTEIN-02].

Stereo algorithms that has been tried can be found in [ROJAS-97], [KOSCHAN-96]
and [BIRCHFIELD-98].

Another problem discussed in this thesis is that of matching a partial surface
against a 3D model. This is a problem not uncommon in medical situations.
A short overview over surface based image registration methods can be found
in [FITZPATRICK-00] which also discusses the image registration techniques in
general. Methods doing surface registration can be found in [BAREQUET-97],
[BESL-92], [ZHANG-92], [AUDETTE-00] and [JOHNSON-97]. This is dis-
cussed in section7.4.5of this thesis.

Camera calibration is also a field that has been looked into by many people, the
problem here has been to develop an easy technique with few input parameters.
The technique that has been used in the calibration tool in this thesis is based on
the article [ZHANG-00] which do not need any other input than some images of
a pattern in different angles. An excellent historical overview of the calibration
field is in [CLARKE-98].

Other works that especially address the problem of locating the internal
mammary artery during minimally invasive coronary artery bypass exists.
Tactile sensors has been tested by Biorobotics Lab of Harvard University,
http://biorobotics.harvard.edu . A tactile sensor is a sensor that
measures pressure changes in it’s environment, this sensor is placed on the
superficial tissue and by the use of signal processing algorithms it’s able to

15
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approximate the location of the artery. The considerations of this project is that
you have to insert this sensor into the chest cavity and place it onto the superficial
tissue. It sometimes has problems to follow the artery correctly and is using
backtracking algorithms to get back on track again. According to the report the
measured errors in an experimental setup was 2 mm with a standard deviation of
3 mm, while it was able to follow the artery for 3 cm. This project is described in
[BEASLEY-02].

And finally we have the field of mathematics that is in use in this thesis and in
almost every article cited. Most of the mathematics can be explained in any uni-
versity level introducing book in linear algebra or calculus.

16



Chapter 5

Project overview

In figure 5.1 there is an overview of the whole project as planned. This section
provides a short schematicly bound description.

We have two sources at the top,Stereo endoscopeandCT. The endoscope gives
the stereoscopic video stream while the CT gives image slices that can be used to
build up a 3D representation of a scanned object.

Following the endoscope path, we first let some images of a calibration pattern
go throughPeru, which is the implemented tool which includes the functionality
to calibrate a camera. This gives camera specific parameters that can be used to
undistort the video stream. The undistorted video stream is going through stereo
algorithms to extract depth information. This enters theSurface registrationto-
gether with the orientation vectors of the endoscope retrieved by a tracking sys-
tem, and a segmented surface.

The segmented surface comes from the CT path. The scanned CT slices are rep-
resented as a 3D dataset which is segmented with two labels, the exterior surface
(the visible surface) and the interior surface (the surface of the hidden parts that
we want to superimpose onto the video stream).

The Surface matching/registrationtakes the three earlier mentioned inputs and
determines the correct orientation of the dataset relative the camera. Thus we can
overlay the video stream with the hidden objects(lima).



Project overview

Stereo endoscope

CalibImages Video Stream

CT

3D DataSet

Peru

Peru with Camera Pararameters

Undistorted Video Stream

Thresholding & Segmentation

Segmented fat

Segmented lima

Stereo algorithm

Videostream with depth info

Surface Registration

Rotation Parameters

Projection

LIMA on Videostream

Flashpoint

Orientation vectors

Figure 5.1: Flow diagram of the project. Greenish arrows indicates the flow of the video
stream while bluish arrows indicates the flow of the model data set. This figure is explained
in depth in the chapter text.
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Chapter 6

The Model

6.1 Purpose

Working with stereo images from inside the chest cavity is not an easy task. The
intensity is evenly distributed and it’s not easy to find corresponding points be-
tween the left and right image. There are also instruments partly blocking the
view. So it seems like a good idea to start with something simpler.

A simple model was built in lego. The model consists of one large house with a
smaller house hidden inside. There are also two objects outside the larger house
that can be used if needed. The small house inside the larger house will here
represent the hidden object that we want to visualize, and relating to the TECAB
procedure the little house would represent the LIMA and the large house would
represent the visible surface inside the chest cavity. The interesting parts of the
dataset are the surfaces of the mentioned parts, as that is what is seen by the eye
or a camera.

The model can be seen in figure6.1, and figure6.2.

The model was scanned in a CT-scanner and one slice can be seen in figure6.3.

One screenshot from the developed application where a part of the model is visu-
alized can be seen in figure6.4.



6.2 Problems

Figure 6.1: The exterior of the logo model as the camera will see it

6.2 Problems

Due to problems with the images from the endoscope a computer generated model
has also been used that can be seen in figure7.23. These problems are discussed
in chapter10.

Figure 6.2: Two views of the interior of the model which contains the hidden object that
should be superimposed onto the video stream.
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6.2 Problems

Figure 6.3: Slice of the lego model from a CT scan. The inner hidden object (the smaller
house) is clearly visible.

Figure 6.4: Slices 116 to 151 in the range of the hidden house of the model. Data visualized
as a pointcloud using a ray casting algorithm with disparity color visualization.
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Chapter 7

Theory

This is the main part of this thesis where the different algorithms are discussed
and tested. Section7.4 discusses how the stereo capability of the camera can be
exploited to find the endoscopes position and orientation relative the CT scanned
object. Section7.5 aims for the same goal, but here a tracking system is used
to directly get the position and orientation of the endoscope. Finally section7.6
discusses how these two techniques can be used together. Section7.3 discusses
the calibration of the camera that is used in all approaches to the problem. First
section7.1starts with a simplification of the problem by making certain assump-
tions.

7.1 Assumptions

In this thesis we are going to assume that the segmentation has already been done
with correct labeling. We also assume that the hidden part of the CT data is at
rest relative to the rest of the CT dataset which means that no deformations of the
dataset are expected. This means that correctly knowing the position and orienta-
tion of the surface of the exterior of the CT dataset makes a precise positioning of
hidden parts possible.



7.2 Segmenting the CT-data

7.2 Segmenting the CT-data

We need to make a segmentation of the 3D angio dataset to extract the LIMA and
then project it onto the video stream. There are several methods to do this, these
methods are not considered in this thesis as the anatomical dataset is assumed to
be already segmented. Though a simple segmentation of the experimental model
need to be done as described in section7.2.1.

We also need to find which points in the dataset that are the points visible to the
camera or in other words; the points that are on the external surface of the object.
These points are called the exterior surface. These exterior surface points are
going to be used in a surface registration phase while for the LIMA it will consist
of the points that are needed for visualization. The last mentioned points aimed
for visualization is the interior surface.

7.2.1 Simple segmentation of the model

Due to the geometry of the model and the hidden object it’s an easy task so seg-
ment it into exterior and interior. The Peru application provides methods for read-
ing user specified sub cubes, and with this functionality it’s easy to make a seg-
mented version of the model dataset. Just scroll through the slices until you find
the correct starting slice and enter that in theSlice startbox. Don’t forget to en-
ter the preferredEdge limitwhich is the thresholding value. The result of this
thresholding is directly visualized in the image window. Then locate the slice that
contains the largest part of the hidden object and by using the middle mouse button
press in upper left corner hold and drag and then release at the bottom right corner.
The coordinates appear in theRangereadboxes. Next find the first slice that do
not contain your hidden object and note that in theSlice endbox. Now check the
Rangereadbox and applyRead slices. The surface points are found as desribed
in section7.2.2and can now be directly 3D visualized to see if you are satisfied
with the result. The visualization is done by dragging the sliders to the right in the
interface. The dataset is saved to disk under the filename pointcloud.data.

7.2.2 Surface extraction

Even when reading the subcube which contains the hidden object that we want to
visualize we don’t need to use all the points in the visualization. An algorithm that
finds the surface points and ignores the inner points was written. Using neighbor
relationships, the connected zeros are found (empty space around object), then

23



7.2 Segmenting the CT-data

localization of object points connected with the marked space using the neighbor
relationship is made. Thus only points that are neighbors to the empty spaced
are selected. Currently two neighbor relationships are supported, the 26 cube
neighbors and a 3D cross using 6 neighbors. This algorithm reduces the number
of points in the dataset heavily. Though this method can yield more points than
necessary due to the fact that it follows the outer connected space and if the model
has a hole it will fill it. Thus a sphere with a tiny hole would preserve all it’s
inside surface points which of course are not very interesting from a camera point
of view. This is not a problem that will be handled here because of the simple
closed geometry of the model. But a quick thought is to use only those points
where it’s possible to draw a straight line to the outside of the object, along which
no object points are intersected.

7.2.3 Tessellating a pointcloud using marching cubes

Visualizing a set of many points in 3D can be a good visualization if we have a
few numbers of points; due to the fact that we can see the structure of the whole
object at once. Movement of the point cloud is often needed to make us perceive
the structure. But when the point set becomes very large it gets hard to make
out all the structures and it gets computationally intensive, so instead we want to
render the points using surfaces. The most basic surface made out from points
is the triangle and is thus used extensively in computer graphics. The process
of finding what triangles to use in a set of points is called tessellation and one
algorithm that tessellates a set of points in 3D is the marching cubes algorithm
which is described in this section and was introduced by Lorensen and Cline in
1987 [LORENSEN-87].

The marching cubes algorithm as commonly described takes a volumetric dataset
and tessellates the iso surface at a specified iso value. Applied to a binary cube
(point cloud) we can use 0.5 as iso value. Using a non binary dataset a simple
thresholding is applied at the iso value and a binary dataset is obtained.

The algorithm handles so called voxels (a primary three dimensional cell, topo-
logical equivalent with the hexahedron where the six sides is perpendicular to one
of the coordinate axes, [SHROEDER-98]) and looks at the eight corners. After
thresholding the dataset it’s voxels can be in several different states depending on
the values of the corners. 8 corners with 2 possible states each yields28 = 256
cases. Of course several of these cases are equivalent for the tessellation, for ex-
ample all 8 cases with just one point. The 256 cases can be shown to be reduced
to 15 equivalence classes due to the symmetry. If you leave out the case where all
or none of the corners are above the iso value which would not yield any triangles
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7.2 Segmenting the CT-data

we are left with 14 equivalence classes of tessellation. One of the classes can be
seen in figure7.1.

Figure 7.1: One of the cases in the marching cubes algorithm where the blue dots indicates
pixels with values above the threshold and in red lines the tessellation being made in this
configuration.

The algorithm looks at each voxel in the dataset and tessellates according to which
of the 15 equivalence classes the current voxel belongs to. Unfortunately it’s not
so easy as just deciding which equivalence class the voxel belongs to because
some of the classes shows ambiguity, in other words there are several ways to tes-
sellate some of the classes. If this is done carelessly there can be holes in the sur-
face. Some solutions to this problem exists and one is to use an alternate technique
which is called marching tetrahedron. The marching tetrahedron does not show
any ambiguity for the classes and thus leaves no holes, but marching tetrahedron
gives more triangles and bumps can appear in the surface, [SHROEDER-98]. An-
other approach is theasymptotic deciderby Nielson and Hamann [NIELSON-91].
In the other methods the values of the dataset are assumed to vary linearly along
the edges, but in the asymptotic decider the data is assumed to vary bilinearly over
the face. So to find the edge cut points a bilinear interpolation is carried out. It
can be verified that the contour curves of the bilinear interpolation are hyperbola.
Looking at one face of the cube we thus get two hyperbola. When both the hy-
perbola intersects the domain (the cube face) we have an ambiguity. The criteria
then used to connect the edge cut points by Nielson and Hamann is based upon
whether or not they are joined by a component of the hyperbolic arc. This se-
lection can be determined by comparing the contour value with the value of the
bilinear interpolant. See [NIELSON-91] for details.

A third approach is to use complementary cases, these are cases that fits with the
neighboring cases and prevents holes. This is an efficient and simple solution to
the problem.

The implementation of the algorithm can be done efficiently using lookup tables.
First an 8 bit index looking up the configuration of the corners in a lookup table
which returns a 12 bit number indicating which of the possible 12 edges that is cut
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7.2 Segmenting the CT-data

by the iso surface. The intersection points is calculated using linear interpolation
when the data is assumed to vary linearly along the cell edges. Looking up another
table at the same 8 bit index tells us which triples of edge cut points that makes
up the triangles (at most five).

The making of a surface from the points enhances the visualization significantly.
But implementing the whole algorithm including all the possible combinations
and lookup tables is time consuming and therefore one finished implementation
were tested which clearly showed to improve the ability to percept the shape of
the visualized object. Unfortunately this code was not open source and permission
was not given by the author. Therefore all images will show the dataset as a
pointcloud. But even though this has to do with estetics and not the fundamental
algorithms of the thesis it needs to be held in mind that this improvement is of
significant importance to make a good impression of where the hidden object is
and what orientation it has. Complex shapes are very difficult to percept as point
clouds.
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7.3 Calibration

7.3 Calibration

To be able to make a good 3D-reconstruction from camera images, camera cal-
ibration is essential. The epipolar constraint is one of the most fundamentally
useful parts in the reconstruction phase, so a correction such that the images are
epipolar are highly wanted.

C

C ′
l

l′

m

m′?

M̂

Figure 7.2: Epipolar geometry: We have two camerasC and C ′ capturing the left and right
image planes, here in red color. The exact position of a pointM in the scene is not known
other than that it lies along the line M̂ thus projected in point m on line l in the left image.
The point M thus lies in the bottom plane visualized in blue. As the point lies alonĝM it’s
bound to be projected at pointm′ somewhere along the linel′ in the right image. l and l′ are
called epipolar lines. Points located at other locations in the scene yields the other epipolar
lines indicated by the two other planes above the blue plane in the figure.

As seen in Figure7.2 a given image point in one image restricts the position of
the corresponding point in the other image. The two corresponding lines in the
images are called epipolar lines and are said to be in epipolar correspondence.
The plane that gives rise to the two epipolar lines can be tilted as the viewed point
is moved and therefore defines a bundle of epipolar lines.

Of course there are always epipolar lines (curves) in a stereo image pair, but we
want them to be horizontal (or vertical) lines such that the disparity search can be
reduced to a 1D search along the rows (or columns) in the image. This process of
image calibration is called rectification. The principle is to transform the images
to parallel camera geometry, or in other words we want to transform the image
planes such that the corresponding space planes are coinciding. The standard
rectification technique is planar rectification and it selects a plane parallel to the
camera baseline. Planar rectification requires however that the images are well
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7.3 Calibration

calibrated in beforehand, even though there exists planar rectification algorithms
for uncalibrated images. Another approach is polar rectification, and one easy
algorithm is found in [POLLEFEYS-00]. This algorithm can deal with all possible
camera geometries. Input needed is the oriented fundamental matrix.

For more details on the following section, refer to [POLLEFEYS-00]. The rectifi-
cation aspect is not further examined in this thesis as the two cameras are mounted
with parallel image planes in the endoscope. Though another aspect of calibra-
tion is that the coordinates in the image does not correspond with the physical
coordinates in the retinal plane (image plane). For a CCD camera the relation
depends on the size and shape of the pixels and the position of the CCD chip. For
a standard camera the error is introduced in the digitization process. The image
coordinates can be found using the following equations wherexR andyR is the
coordinates in the retinal plane. . .
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The above equation is written simpler as x
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fy cy

1
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yR

1

 (7.2)

In equation7.2 the upper triangular matrix is called the calibration matrix of the
camera, wherefx andfy are the focal length measured in width and height of the
pixels, anss is a skew factor.cx andcy are together the principal point1. The skew
are for most cameras very close to zero. You have to remember that the calibration
is made for fixed optics, a camera with changed focus or zoom makes the focal
length change and thus needs other calibration parameters.

Looking at the output from the endoscope used in this thesis when it’s aimed at a
grid pattern reveals that camera calibration obviously is necessary. The distortion
you directly notice with the eye is radial distortion where magnification is different
in the edges than in the center of the image. This is illustrated in figure7.3 and
7.4.

For radial distortion we can get the undistorted coordinates(x, y) from the ob-
served image coordinates(x0, y0) by the following equations. . .

1The principal point is the projection of the point of sight upon the plane of projection
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7.3 Calibration

Figure 7.3: Illustrative example of radial distortion where the magnification is different in
the edges than in the center of the image.

x = x0 + (x0 − cx)(K1r
2 + K2r

4 + . . .) (7.3)

y = y0 + (y0 − cy)(K1r
2 + K2r

4 + . . .) (7.4)

Here the (K1, K2, . . .) are the parameters of radial distortion where. . .

r = (x0 − cx)
2 + (y0 − cy)

2 (7.5)

You should note that also this calibration is done for fixed optics. Should the optics
change, the parameters will change. Usually only the first two parameters are used
in the undistortion process as it’s both expensive and numerically unstable to use
too many.

PINCUSHION BARREL

Figure 7.4: The two variants of radial distortion. To the left pincushion distortion and to
the right barrel distortion. Pincushion distortion is mostly seen in tele lenses while barrel
distortion is often shown in wide angle lenses. The endoscope suffers not surprisingly from
the barrel variant.
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7.3 Calibration

All camera parameters can be divided intointrinsic or extrinsicparameters.

? Intrinsic parameters
The camera characteristics

– Focal length
The distance between the lens and the point where parallel rays
through the lens diverge to a point

– Image center
Location of image center in pixel coordinates

– Effective pixel size
Describes the size of the pixel in both directions (sx,sy)

– Radial distortion coefficients of the lens
See equation7.3and7.4.

? Extrinsic parameters
Spatial relationship between the camera and the world. If the we have cali-
brated for the intrinsic the following. . .

– Rotation matrix Tells us about the rotation of the camera relative the
world

– Translation vector Translation of the camera relative the world

The calibration algorithms used in the Peru application are based on the work by
Zhengyou Zhang [ZHANG-00].

In practice the implemented application together with the calibration works as fol-
lows. First a calibration pattern must be made. The calibration patterns should be
something very much like a chessboard, but the algorithm seems to work better
with patterns that do not have the same number of tiles in the x and y directions.
The tiles could be rectangular and in the application there is an input parameter
for the proportions of the tiles. The other input you must manually enter is the
number of tiles in x and y direction. Using the camera that shall be calibrated you
take pictures of the calibration pattern in several orientations. The more patterns
the better result, but due to the fact that the algorithm is not completely stable too
many patterns (≈ 40+) sometimes yields very strange results. Use of15± 5 pat-
terns should give useful results. Input to the algorithm using the Peru application
is showed in figure7.6.

The undistortion parameters are found by first locating the intersections/corners in
the checker board patterns. Knowing that these corners should lie along straight
lines in an undistorted image, the parameters (equations7.3, 7.4) can be found.
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7.3 Calibration

Figure 7.5: Example of image calibrated using the described algorithm. The left image is the
original distorted one, and the right image is the undistorted result.

7.3.1 Preprocessing of calibration images

What images are suitable to use as calibration patterns ? Too extreme angles of
the checker board pattern makes it hard for the algorithm to find the corners, so
use moderate angles. Sufficient and even lighting in the calibration images is
also preferable. If this is not possible some preprocessing can help the algorithm.
The endoscopic camera for example uses a ring of light around the lens and thus
illuminates the image in a circular round spot, see figure7.7.

This yields images that is darker in the edges than in the middle, which gives the
corner detection algorithm trouble. This can be corrected with morphology using
a method called top hat transform.

Figure 7.6: Screenshot from the Peru application showing the input to the calibration algo-
rithm
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7.3 Calibration

Figure 7.7: As can be seen as a glowing ring on the endoscope the light will be elliptically
shaped in the images. Viewing an object at close range yields images where the light do not
cover the entire image thus giving images with uneven lighting. This can clearly be seen in
figure 7.5.

A top hat transformation extracts objects from images with variations in lighting.

The top hat transformation consists of one morphological operation called open-
ing. To understand what the morphological opening is, one must be familiar with
two other operations called morphological erosion and morphological dilation.
Erosion and dilation is performed using a structuring element. Both erosion and
dilation are here described using Minkowski’s formalism, [SONKA-98]. Dilation
⊕ using structuring elementB is defined as. . .

X ⊕B = {p ∈ ε2 : p = x + b, x ∈ X, b ∈ B} (7.6)

Thus dilationX ⊕ B is the point set of all possible vector additions of pairs of
elements, one from each of the setsX andB. Examples of the morphological
transformations can be seen in figure7.10.

Erosion	 using structuring elementB is defined as. . .

X 	B = {p ∈ ε2 : p + b ∈ X ∀ b ∈ B} (7.7)

Thus erosionX 	B is given by all the pointsp for which all possiblep + b are in
X.

Contour extraction can for example be made asI − (I 	B) or (I ⊕B)− I where
I is an image and B a structure element.
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7.3 Calibration

The morphological opening of an image is defined as. . .

X ◦B = (X 	B)⊕B (7.8)

. . . and the closing as. . .

X •B = (X ⊕B)	B (7.9)

Closing will connect objects that are close to each other while the opening of an
image will split objects that are thinly connected. How close and how thin is
decided by the structure elementB.

The top hat transform is now defined as. . .

X \ (X ◦K) = X \ ((X 	K)⊕K) (7.10)

. . . or in words the original image minus it’s opening. The opening gives us all
the parts of the image that can not fit into the structuring element. Note that this
includes the background with it’s uneven light. By removing the opening from
the original we are left with an image where the badly illuminated (in our point of
view) background is removed and those parts of the image that we are interested in
is kept because they are larger than the structuring element. An illustration of top
hat performed on an image of a chess board with a radial light source is illustrated
in figure 7.8, the morphological operations involved is illustrated in figure7.10
and a 1D illustration in figure7.9.
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Figure 7.8: To the left the original image with a radial light source illuminating the pattern.
The middle image shows a desperate try with simple thresholding yielding an unsatisfactory
result. The right image shows what the top hat transform gives us after postprocessing with
contrast stretching.

I

II

III

Figure 7.9: Top hat transformation in 1D. (I) is the original function before transformation.
(II) Shows the opening of the function in blue. (III) Shows (I) - (II).
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Figure 7.10: This figure illustrates the use of different morphological transformations. The
top left image is the original image before any transfomations. Top right shows the comple-
ment of the original image, this is such that the structural element will work on the correct
parts of the image. Second row left shows erosion performed on the complemented origi-
nal image. Second row right shows the dilated version. Third row left is the opening, while
third row right shows the closing. Bottom row left is the tophat transformation, and bottom
row right is the complement of the tophat transformation such that we return to the original
image. The structuring element used on these images was a disk with radius 25.
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7.3.2 Rotation

The images from the stereo endoscope is not completely aligned such that we need
to look at the problem of finding the rotation and translation of one image to fit
the other which will be described in this subsection.

Problem description

Given two images of a suitable calibration pattern, find the relative rotation be-
tween them. The two images can originate from the same camera where the sec-
ond image is taken with the camera rotated relative the first image, or the two
images can originate from two different cameras with images of the same scene.
The two images can also be slightly translated relative each other as for example
is the case for a stereo image pair. An illustrative overview can be seen in figure
7.11.

Figure 7.11: To the left only rotation and to the right rotation and translation

Choosing an appropriate pattern

Several patterns were thought of. The final decision was made according to a set
of wanted features which were. . .

? Should handle rotations from 0-360 degrees (-180,180)

? Easy to make (drawn by hand)

? Accurate

? Easy to find relative translation

The idea of the final decision was to make a pattern consisting of circles which
would provide an easy way of finding translation by deciding the relative move-
ment of the center of the circles. To distinguish the circles from each other they
are drawn in different sizes. This is defined as only different sizes, not specific
sizes. The number of circles to use was set to 4 to be fairly moderate and provide
accurate results. The results are satisfying even if the circles are drawn by hand
as the algorithm detects ellipses with the circle as a special case. The position
of the 4 different sized circles makes it easy to find rotations if 0 - 360 degrees
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while this would not have been possible with equal sized circles where we are not
guaranteed to see any difference in a 90 degree rotation and a 0 degree rotation.
Two images of such a pattern is shown in figure9.1.

The algorithm

The OpenCV library [OPENCV] includes a function for ellipse finding in an im-
age which is used. The first trial was a pattern with filled circles, but it was hard to
get a single contour around the circles using that strategy. The contours must be
extracted for the ellipse finding part, and are found using the canny edge detector.
There were success with the filled circles, but the preprocessing was unnecessary
complicated by using top hat transform and a specialized thresholding method that
looked for the valley closest to the mean value in the histogram. Using non filled
circles the problem of finding the significant contours directly was simplified such
that any preprocessing with the canny edge detector and specialized thresholding
algorithms become unnecessary.

The algorithm to find the correct relative rotation was set as follows. . .

I Make the image gray scale

II Apply canny edge detector and make a binary image with the found edges

III Extract the outer contours

IV Sort the found circles by size

V Calculate angles between circle centers

VI Redo the previous steps with the second image

VII Compare the found angles in both images and calculate the difference

VIII If wanted, correct one of the images such that both have same rotation

Trimming the corrected images

When we correct one of the images to get the same rotation as the other one we
get areas in this image that is not represented in the other image. This is illustrated
in figure7.12.

As the stereo algorithms works on strictly rectangular images with no empty ar-
eas we want to select a rectangular area that is common to both images after the
rotation. One way to do this is to find the common internal rectangle with largest
possible area (the common image). Suppose the images share a common center
which the other image is rotated around, figure7.13. This assumes translation is
already found where areas outside are easily cropped away.
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Figure 7.12: Areas not represented after a correction, here marked with slanted red pattern

As a first idea you could determine the largest possible area by placing the top of
the internal rectangle∆y down from the not rotated image. This turned out to be a
relatively messy equation, and the solution gives a common image asymmetrically
placed in the common area. This is illustrated in figure7.13. A better and more
elegant solution is to set up the following equations. . .

yt = tan (θ)xt +
h

2 cos (θ)
(7.11)

yb = tan (θ)xb −
h

2 cos (θ)
(7.12)

Equations7.11and7.12is the top respective bottom line of the rotated image in
a coordinate system centered at the center of the image that we see as not rotated

θ

∆y

xm

ymh

A

w

yrr

yrt

Figure 7.13: Finding the largest area A in a common rectangle for both images by setting the
common rectangle∆y down from the top of the not rotated frame. Using the angleΘ and
the distances shown in this figure a relatively messy equation arises for the maximum area
of the common rectangle.
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and the axes aligned with it. Now we want to find the largest possible areaA in
a common rectangle centered at the center, so we setx in the equations to−∆x
respective∆x which gives. . .

yt = − tan (θ)∆x +
h

2 cos (θ)
(7.13)

yb = tan (θ)∆x− h

2 cos (θ)
(7.14)

This means that the height of the created internal rectangle becomes. . .

yt−yb =

(
− tan (θ)∆x +

h

2 cos (θ)

)
−
(

tan (θ)∆x− h

2 cos (θ)

)
=

h

cos (θ)
−2 tan (θ)∆x

(7.15)

So the areaA becomes. . .

A = 2∆x

(
h

cos (θ)
− 2 tan (θ)∆x

)
= 2∆x

(
h− 2 ∗∆x sin (θ)

cos (θ)

)
(7.16)

But to not cut the rotated frame we add a restriction that the distance∆x must not
be larger than where the rotated frame cuts the not rotated frame. Using equation
for the right side of the rotated image7.17we get the intersection in equation7.18.

yr = − 1

tan (θ)
x +

w

2 sin (θ)
(7.17)

yr =
h

2
⇒ x =

w − h sin θ

2 cos θ
(7.18)

A plot representing the area in color with the angle and distance as axis is shown
in figure7.14.

As seen in figure7.14 the area tends to be largest at the border against the re-
stricted limit for angles less than approximately 40 degrees, so a good and simple
choice would be to use the restricted limit as the with of the internal common rect-
angle. For applications where it’s interesting to look at larger angles you could
differentiate the area and find the maximum area below the restricted limit.
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7.3 Calibration

Figure 7.14: The area of the rectangle represented as color, with the axisθ for the rotated an-
gle and∆x for the half width of the internal common rectangle. The black area is restricted
due to cutting of the rotated frame.

Finding the translation

We can find the translation of the pattern by looking at the mean centre of all the
circles in the not rotated image. The position we get when we rotate this center
around the image center the found number of degrees is then compared to the
mean circle center of the rotated image. Images from the output of the rotation
algorithm can be seen in section9.1.
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7.4 Stereo approach

This chapter will discuss and examine how the stereo capability of the endoscope
could be used to find the correspondence between the camera view and the CT
data set.

7.4.1 Surface reconstruction based on stereo information

Based on the information of two separated images viewing the same scene, sur-
face and depth information can be extracted. The key problem in stereo vision
is to decide which points in the left and right image that corresponds. When a
correspondence is set up between two pointspl andpr, we say that the disparity
for these two points is the relative movement along a scanline between the left
and right frame where a scanline is an epipolar line as explained in section7.3.
For rectified images we get epipolar lines along the rows in the image and the
disparity value is simply. . .

d = plx − prx (7.19)

whereplx means the x coordinate of pixelpl.

The relationship between disparity and distance is shown in figure7.15.

We see from figure7.15. . .

d = s
f

z
(7.20)

When you are to calculate the depth/disparity information there are two distin-
guished techniques, sparse depth maps, and dense depth maps. The sparse depth
maps only calculates the depth for certain points or areas in the images such as
edges found by an edge detector, while dense depth maps calculates the depth for
all pixels in the image.

Computations for dense disparity maps are time consuming. But it’s not always
all information is needed, often the target of the stereo analysis is to calculate the
distance to objects in the scene from the camera, and it can be sufficient with a
sparse edge based disparity map. One method to calculate sparse disparity maps
are described in [KLETTE-95] and is based on disparity histograms.

However we want to find a surface such that we will be able to find the correspond-
ing match on the CT dataset and thus dense maps will give us most information.
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Imageplane

f

d

Cleft Cright

s

z

Figure 7.15: Illustration of disparity. The left and right cameras (Cleft and Cright ) are looking
at the yellow square.z is the depth coordinate in camera coordinates.f is the focal length
and s is the separation between the cameras. The distanced is the relative movement of the
square in the imageplane, which is defined as the disparity.

There are some constraints to exploit in stereo imaging. First we have the. . .

? Epipolar constraint
See figure7.2, with which the searchspace can be reduced to one dimension.
The epipolar lines are often referred to as the scanlines

In [ROJAS-97] the following constraints that can additionally be used are listed. . .

? The continuity or smoothness constraint:
Disparity will vary slightly

? The ordering constraint:
The stereo projection almost always preserves the order of the primitives
extracted from the two images along matching epipolar lines.

? The photometric constraint:
The disparity assignments should map points in left image to points in right
image with similar photometric attributes.

To satisfy the photometric and the smoothness constraint the problem can be set
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up as a minimization of. . .

E =
N∑

i=1

(L(i)−R(i− d(i))2 + µ
N∑

i=2

(d(i)− d(i− a))2 (7.21)

where the first term penalizes the difference in image features between corre-
sponding points (photometric constraint), and the second term penalizes the dif-
ference in disparity of neighbouring pixels (smoothness constraint) using a weight
µ. L(i) andR(i) are photometric measures of the neighborhood of pixel i in one
scanline.

7.4.2 Preprocessing

Some preprocessing of the left and right stereo image before applying the stereo
algorithm can improve the results. It should be noted that preprocessing is more
expensive than postprocessing as the preprocessing is applied to both left and right
frame while the postprocessing is only applied to the generated disparity map.

7.4.2.1 Camera calibration

The first preprocessing step is to calibrate the camera and correct the images ac-
cording to the theory described in section7.3.

7.4.2.2 Noise reduction

One problem with finding corresponding points/parts of two images is noise. To
deal with this problem a noise filter can help. There exists several types of noise
filters.

TheMean filter looks at a pixel neighborhood and set the pixel value to the mean
of that neighborhood. This filter reduces noise but is not good to remove so called
salt and pepper noise where some pixels have incorrectly got the highest or lowest
possible value. These pixels contribute too much to the mean value calculation.
Also edges get blurred by this filter.

The Median filter is better at handling noise such as salt and pepper. Here the
pixel we look at get the median value of it’s neighborhood and thus is not as
influenced by single extreme values as the mean filter is. But the median filter is
more expensive as the values in the window used has to be sorted. And the filter
does not handle gaussian noise very well.
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Figure 7.16: Example of noise removal pre filtering on a stereo pair of a slanted area. Left
image is without pre noise removal and to the rigt the same algorithm on the same scene with
pre noise removal. The gaussian filter has been used, and no post processing.

Then we have theGaussian filter which is quite similar to the mean filter except
that it uses different weights in the neighborhood giving the pixel we look at high-
est weight. The kernel is derived from an gaussian function, hence the name. This
filter preserves the edges better than the mean filter but is also bad at handling salt
and pepper noise, but handles gaussian noise better than the median filter.

In figure7.16we can see that noise preprocessing with noise removal can increase
the results from the stereo algorithms. There will probably not be very much salt
and pepper noise in the input left and right image such that median or gaussian
pre filtering could be more advantageous here.

7.4.2.3 Mean correction

If the cameras light sensitivity is different the images will get different mean val-
ues. This can be compensated for by computing the mean value of all pixels for
both images and add the difference to one of the images. This can help the al-
gorithm where the difference is significant, but can also be negative if we look
at an extreme example. Imagine that one stereo scene consists of a totally black
object to the left and a totally white object to the right. Then both images from the
cameras will have different mean value naturally as the right image would contain
more white.

7.4.2.4 Histogram equalization

If the two cameras differ more than a small amount there can be beneficial to
use histogram equalization on the images. Histogram equalization redistributes
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intensity distributions and can also be called contrast enhancement. Contrast for
two regions is defined as. . .

c =
F −B

F + B
(7.22)

whereF andB is the mean gray levels of the regions for which the contrast is
evaluated, [SONKA-98].

Histogram equalization increases contrast for tops in the histogram and decreases
contrast for valleys in the histogram. A histogram equalization on two images that
has histogram that differs slightly can be more similar after histogram equaliza-
tion has been performed on both images. If you apply this filter on each channel
separately you can get shifts in color that can visually appear a bit odd, this is not
necessarily bad for the algorithms that will work on the image.

7.4.3 Stereo algorithms

This section contains an overview of different stereo algorithm techniques and
those implemented and tested in this thesis.

7.4.3.1 Blockmatching

Block matching compares equally sized blocks in the left and right image, and the
Mean Square Error (MSE) between the pixel values inside the respective blocks
defines a measure of the similarity. For gray value image the MSE is defined as. . .

MSE(x, y, δ) =
1

∆w2

k∑
i=−k

k∑
j=−k

|ER(x+i, y+j)−(EL(x+i+δ, y+j)|2 (7.23)

whereδ is an offset describing the difference(xR − xL) between the column
positions in the left and right image. When using color images we must measure
the distance between colors, and it shows that the method used for deciding the
distance between colors have no significant value [KLETTE-95], so when the
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euclidean distance in the RGB color cube is used the MSE can be calculated as. . .

MSECOLOR(x, y, δ) =
1

∆w2

k∑
i=−k

k∑
j=−k

distc(CR(x+i, y+j), CL(x+i+δ, y+j))

(7.24)

where for two colorsc1 = (R1, G1, B1) and c2 = (R2, G2, B2) the distance
distc(c1, c2) = |R1 −R2|2 + |G1 −G2|2 + |B1 −B2|2

The disparityd between the blocks is the distance between positions of the blocks
showing the minimumMSE or MSECOLOR. The search can be limited by defin-
ing a maximum disparityDmax.

A technique based on block matching was found to be rather efficient in
[KLETTE-95] for obtaining dense stereo correspondence. Different color models
where investigated for this method (RGB, XYZ,I1I2I3, HSI), whereI1I2I3

showed to provide the best information for stereo matching.I1I2I3 is defined
as. . .

I1 =
R + G + B

3
, I2 =

R−B

2
, and I3 =

2G−R−B

4

Several block matching algorithms have been implemented. One fast version us-
ing a constant window size of 3, one with variable window size with more ac-
curate results called standard blockmatching and one fast method that advances
a full block at the time. Finally a hierarchical method has been tested which is
described in the next section7.4.3.2. The earlier mentioned different approaches
will now be described in more detail.

Standard Blockmatching

The standard method takes three parameters as input in addition to the two frames,
Dmax which limits the maximum disparity between two blocks, blocksize∆w
which is the width of the window used and finally what type of error measure
that should be applied to measure the error between blocks. The error measures
implemented is either the absolute difference or the squared difference.∆w is
currently limited in the implementation to positive odd values to get a center pixel
in the block. Algorithm follows. . .

I Use left and right images with extended borders such that we get values for
every pixel in the image. The extended images have the size:X + ∆w− 1 +
Dmax, Y + ∆w − 1 whereX andY is the width and height of the original
images.

46



7.4 Stereo approach

II Looking at the window around each pixel in the right image we start scanning
using blocks in the left image toward the right untilDmax is reached. The
block where minimum difference is reached is the matched block. Now the
pixel in the right image is assigned the difference in x-values between itself
and the center pixel in the matched block.

III Advance to next pixel in the right image

The algorithm is illustrated in figure7.17.

Figure 7.17: This is an illustration of the block matching algorithm. The block around the
red pixel in the right frame is about to be matched against a block in the left frame. Tested
blocks will slide through the left frame toward the right, here indicated by light green pixels.
The blue frame indicates the original frame sizes, and the grid extends to the enlarged frames
used in the calculations. In this example the max disparityDmax is set to 5 and the width of
the block ∆w = 3. The blue pixel that appears in both frames is shifted 2 pixel to the left in
the right frame to indicate a pixel that would get disparity 2.

Fast Blockmatching

The fast method uses a constant window size of 3. The difference between the
standard and the fast method that makes it possible to speed it up is that the fast
method compares block sum to block sum where the standard method compares
the difference between blocks by a pixel to pixel strategy. This difference makes
it possible to precompute the block values such that one block sum does not have
to be calculated more than once even though the testing block will slide over it
several times. This speeds the algorithm up a great deal and it gives better result
than comparing the images pixel to pixel (standard method with block size 1).
Though the standard method with block size 3 gives better result than the fast
method in terms of the error, as can be seen in section9.2.

Blockadvancing Blockmatch

This method is similar to the Standard with the difference that as we get the dispar-
ity value for a pixel it is set for all pixels belonging to it’s surrounding block. Then
we advance block size number of pixels. This will of course give a less detailed
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disparity map, where the detail decreases with increasing block size. Though we
get a faster algorithm that also gives less pixel noise in the resulting disparity map.

A in depth comparison between the methods is found in the Result chapter (Ch9).

Due to the problems with large areas of about the same intensity, a algorithm
that better handles large areas of same intensity is wanted. One approach is the
hierarchical one that uses an image pyramid as described in section7.4.3.2.

7.4.3.2 Pyramid blockmatching

Large areas of the same intensity is a problem for the ordinary blockmatching
method as the blocks will get very similar values.. One method to address this
problem is by using an hierarchical image pyramid during the processing as in
[KOSCHAN-96]. The use of image pyramids was introduced in the 1970’s by
Tanimoto and Pavlidis in [TANIMOTO-75]. Examples of image pyramids can be
seen in figure7.18.

Figure 7.18: Hierarchical image pyramid or Gaussian image pyramid which is created by
smoothing and subsampling the original to lower resolution. To the left an example pattern,
and to the right using an image.

The idea is that when we reduce the resolution of the image we get one pixel
that represents several or many depending on how large the reduction. For large
untextured areas we soon get one pixel that represents the area. Blockmatching on
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this resolution reduced image assigns a disparity value to the pixel. Then looking
at an image with increased resolution we can use the disparity value of the pixel
p as a hint for the pixels that pixelp represents on a lower level. This restriction
that comes from the images up in the pyramid prevents pixels in large untextured
areas to slide away too much further down in the pyramid. This would of course
yield a problem in scenes where the depth oscillates rapidly. For example a stereo
image of a tree would probably have this problem with the pyramid blockmatch
approach. You have to know what type of scene you are capturing before deciding
to use a particular stereo algorithm.

We can think of the original image and the resolution reduced images as the image
pyramid where the base is the original image and upward in the pyramid we have
images with lower resolution. If we keep on going we will have the top of the
pyramid as only one pixel which is the mean value of all the pixels in the original
image. The pyramid blockmatching algorithm does not need to create a pyramid
so large that we get only one pixel at the top, as block matching on a single pixel
is meaningless. For a normal sized image, the use of 2 - 5 levels in the pyramid is
reasonable.

The following rules are set up. . .

D∆(s) = 2s−1DT (7.25)

Dmin(s) =

{
D(0)−D∆(s) for s = 1
Dmin(s− 1)−D∆(s− 1) for s > 1

(7.26)

Dmax(s) =

{
D(0) + D∆(s) for s = 1
Dmax(s− 1) + D∆(s− 1) for s > 1

(7.27)

In the equations we have thatD(s + 1) is the disparity at pyramid levels + 1 can
be derived from the disparities at levels. DT is the tolerance of the disparities on
the next level, which controls the smoothness as smallDT gives smaller width of
the search spaceD∆.

Output disparity maps from the blockmatching algorithms can be seen in figure
9.6.

7.4.3.3 Birchfield

The birchfield algorithm matches individual pixels in scanline pairs while allow-
ing occluded pixels being unmatched.
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An occluded pixel is a pixel which contains the intensity originating from of a
point on an object for which a match do not exist in the other image. This is
because the viewline from the camera to this part of the object is blocked by an
object in it’s path. Easy experiment to understand this fact is the classical stereo
finger exercise; when you look at your finger held up in front of your eyes with
one eye closed, the finger is covering some part of your view. When you look with
the other eye you cover more or less another part of the background. Thus some
part of your view is just visible for one of the eyes and occluded for the other.

The algorithm handles large untextured areas better than some other algorithms.
Large untextured areas is hard because it’s not enough to look at a small neigh-
borhood to state the correlating pixels in the other image.

For each scanline, which should be an epipolar line, in the image a matching
sequence is found which tells which pixles in the left scanline that corresponds
to which pixels in the corresponding scanline in the other image. A matching
sequence is labeledM . EachM is associated with a cost which tells how unlikely
it is that this sequence is the true correspondence. The definition of this cost
sequence in equation7.28 is a constant penalty for each occlusion and a reward
for each match such that this cost function would give us match sequences with as
few occlusions as possible and as many matches as possible.

γ(M) = Noccκocc −Nmκr +
Nm∑
i=1

d(xi, yi) (7.28)

The disadvantage with this cost function is that it prefers piecewise constant dis-
parity maps. This means that a slow real change in disparity over the scanline
results in a single constant disparity in the algorithm. The pros is that it detects
depth discontinuities very accurate. Also the simplicity of the cost function makes
it easy to implement in opposite to other algorithms that uses very complex cost
functions.

In equation7.28 we have thatκocc is the constant occlusion penalty,κr is the
constant reward,d(xi, yi) is the dissimilarity between pixelsxi andyi. Nocc and
Nm are the number of occlusions and matches respectively inM .

To understand the terms in the cost function one can imagineκocc as an increasing
evidence as we get more and more occlusions that we should change the disparity.
κr can be thought of as the maximum amount of dissimilarity that can be expected
for two matching pixels. In the original version of the birchfield algorithm in
[BIRCHFIELD-98] κocc = 25 andκr = 5 are used.

Looking at how the dissimilarityd(xi, yi) is calculated it is not only the difference
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between the pixels. Many algorithm do this for simplicity, but sampling of the
same edge can be quite different in two images. This problem can be dealt with
in several ways. One can use subpixel resolution and thus get a more accurate
position of an edge, but this is a quite expensive operation. Using blocks of pixels
as in the block matching algorithms (also called windows) is another alternative.
Birchfield states that a third method of usinglinearly interpolated intensity func-
tionssurrounding two pixels can be proved insensitive to sampling.

The interpolation function linearly interpolates one pixel around the pixel being
tested in the right image and uses the pixel itself,yi and the two interpolated
valuesI−R andI+

R in the comparison with the pixelxi in the left image. Finding
the minimumImin and the maximumImax of I−R , I+

R andyi, the dissimilarity is
defined in equation7.29.

d(xi, yi) = max{0, xi − Imax, Imin − xi} (7.29)

There is one restriction here and it is that the vicinity ofxi andyi on the sensor
must be either concave or convex. This problem is illustrated by a simple stere-
opair constructed which contains two textured squares on a white background one
shifted more than the other. Illustration of the problem can be seen in figure7.19.
The algorithm thus genereates better results if the lens has been slightly defocused
or by use of gaussian smoothing before the computation.

In addition to the cost function some constraints are used. The first set of con-
straints deal with the problem of untextured regions. This constraints make the
algorithm handle this regions better than many other stereo algorithms. The prop-
erty of the images to be fulfilled for this to work is that the depth discontinuities
has an intesity variation of at least 5 gray levels. Other constraints is maximum
disparity and that no matched pixel has occluded pixels on both sides of itself.

Using the algorithm as this far described could givestrangebehaviour looking
at the scanlines next to each other as each scanline is treated individually. Ex-
tending the costfunction to a two dimensional const function that also lookes at
neigborhoods of scanlines could overcome this problem. However as this is a
costly way of doing it, the birchfield algorithm instead uses a global postprocess-
ing method that only increases the time used by 30% instead of the 2D extension
which sometimes can cost as much as 800% in computation time. In the postpro-
cessing method each pixel is assigned a reliability that it has this disparity when
looking at it’s column. After looking at the columns, reliability is checked along
rows. The disparity map are now corrected by removing isolated disparities which
is surrounded by pixels with high reliability. Finally a mode filtering is made to
clean the disparity map. Mode filtering uses the most frequently occurring inten-
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Figure 7.19: Top row contains left and right image of the constructed pair. Lower left shows
blockmatching performed on the pair, while the lower right shows birchfield on the same
pair.

sity in a kernel of specified size.

7.4.3.4 Sparse methods

Because we know the geometry of the object we are seeing in the stereoscope
sparse methods can be at least something to have in mind.

[ROJAS-97] describes two sparse procedures using minimization and least-cost
strategies that can be used either separately or in union. The first procedure
is based on use of dynamic programming to find the shortest distance between
two strings. Two stringsA = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm} are
given from the pixels in the left and right images respectively. A functionF :
{1, 2, . . . , n} 7→ {1, 2, . . . ,m, Θ} maps pixels from stringA to stringB. F (i) =
Θ means that no correspondence is found, whileF (i) = k tells that the i’th pixel
of A can be paired with the k’th pixel ofB. A cost functionCF is associated with
the mapping, whereF (i) = Θ gives a constant cost ofτ , andF (i) = k gives
a cost that are influenced by attributes of both pixels inA andB. The distance
between the two strings are defined as a minimization of the cost function over all
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the pixels. The minimum total cost of matching the firsti symbols inA with thej
first symbols inB, can now be written using a recurrence relation, that allows use
of dynamic programming techniques, equation7.30. . .

CTM(i, j) = min{CTM(i−1, j−1)+cost(i, j), CTM(i, j−1)+τ, CTM(i−1, j)+τ}
(7.30)

The procedure starts with finding edgepixels in left and right image using the
Laplacian-of-Gaussian mask (LoG). The laplacian is an 2D isotropic measure of
the 2nd spatial derivative of an image. The 2nd spatial derivate highlights regions
of rapid intensity change, which makes it suitable for edge detection. The gaussian
is used to smooth the image before the laplacian is applied to reduce the noise
sensitivity. The two filters can be applied as one, as this convolution is assosiative.
The LoG output contains zero-crossings in the image. . .

? Zero at a long distance from the edge

? Positive just to one side of the edge

? Negative just to the other side of the edge

? Zero at some point in between, on the edge itself

For each horizontal line the zero-crossings are found and put in stringA andB for
the left and right image respectively. The costfunction in equation7.30is defined
as follows. . .

cost(i, j) =

p∑
k=1

wk(Lk(i)−Rk(j))
2 (7.31)

L(i) andR(j) represents image features andwk a weight. Now equation7.30can
be applied to find the optimal correspondence between the pixels. The described
procedure only calculates the correspondence between edge pixels, and thus only
the disparity for the edgepixels. In [ROJAS-97] a second procedure is described
which takes two complete epipolar lines from the left and right images. Using
procedure one we can make use of the fact that the pixels in an intervalllk between
two pixels inA must correspond to pixels in the intervall between pixels inB that
matched the two pixels inA. Now we can minimize the following equation which
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is an extension of equation7.21.

E =
∑
i∈lk

v(i)(L(i)−R(i− d(i))2+
∑
i∈lk

(1− v(i))τ+µ
∑
i∈lk

v(i)(d(i)− d(i− a))2

(7.32)

where

v(i) =

{
1 if pixel i of L is visible in the right image,
0 otherwise

(7.33)

Now theCTM matrix is set up where each row corresponds to one pixel’s (∈
lk) possible disparities. The minimization problem is now solved by finding the
shortest path in a weighted directed graph, where the vertices are the possible
disparities. In figure7.20the matrix elements are drawn as vertices, and a top node
is inserted. The edges are weighted and the minimization is solved by finding the
shortest path from the top-node to the bottom.

Top Node

Figure 7.20: CTM-matrix as a weighted directed graph. To find the best string match we
start at the top node and finds the shortest path to the bottom. Each edge is weighted and
the columns are the different possible disparities for the pixel representing each row.
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7.4.3.5 Other methods

Other methods to achieve depth information from images areshading based
shape recovery, see [HORN-89], where you move lightsources around and by
studying the shading (shadows), depth information can be extracted. It should
also be mentioned that depth information can be found using focusing, see
[KRISTENSEN-93].

7.4.4 Postprocessing

The error of the output of the stereo algorithms can be further reduced using fil-
tering directly on the resulting disparity map.

7.4.4.1 Median filtering

Here the filter is applied on the disparity map. The median filter is explained in
section7.4.2.2discussing the prefilters. The median filter is a costly operation,
but applying it as a postfilter reduces the computational efforts since we don’t
have to apply it to both left and right images, only the resulting disparity map.
This filter has shown to be very beneficial in terms of reduced error, see section
9.2 in the result chapter. The raw disparity output map is often relatively noisy
where some pixels incorrectly has received completely incorrect disparity which
also often differs significantly from the surrounding pixels, thus a median filter
could be appropriate.

7.4.4.2 Gradient Removal

This filter is specially implemented to deal with a problem that arises in the block-
matching algorithms. The problem occurs around abrupt changes in disparity
where the background is uniform. Looking at a block to the right of an abrupt
change in disparity in the right image, the searching block in the left image will
find the best match when it passes the edge (the abrupt change). When moving
the block in the right image the searching block in the left image will again find
the best match as the first block pass the edge as the background is uniform. Note
that which of the disparities (where several best matches occur) that is chosen
is dependent on the implementation. Here the lowest disparity is assumed to be
chosen. This makes the disparity after the edge drop by one for each step thus
resulting in gradient behavior after edges. The gradient removal filter handles
this and looks for gradients where the gradient drops by one for each pixel and
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removes these gradients. Such gradients is vary rarely occurring naturally in a
disparity map. Gradient that only consists of one drop is spared. An example of
this filter is shown in figure7.21.

Figure 7.21: Gradient Removal where the left image has a gradient on the right hand side of
the cylinder which has been removed in the right image.
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7.4.5 Surface registration

To be able to correlate the calculated depth map generated by the stereo al-
gorithms with the 3D model we turn to the subject of surface registration. In
[JOHNSON-97] surface registration is described to be the process that aligns 3D
data sets acquired from different view points or at different times. In this case
we want to align the depth map/surface with the 3D model (in the experiments
in this thesis the Lego model). When we find the correct alignment between the
depth surface and the model we know the transformation that takes the model
and orients it against the depth surface or vice versa. This transformation is used
to find the camera position relative the model, or equivalent the models position
relative the camera. By having this information we can superimpose the hidden
and segmented objects of the model onto the video stream.

In general we can think of the stereo camera as a range sensor and the Lego house
as our 3D model. Then we want to know the range sensors position relative the
model by registering the surface generated by the range sensor with the 3D model.

Section7.4.5.1gives a brief overview over different methods of surface registra-
tion, while section7.4.5.2gives a more detailed description of the implemented
method.

7.4.5.1 Surface registration overview

In the general case surface registration can be partitioned into three is-
sues. . . [AUDETTE-00]

? Choice of transformation

? Elaboration of surface representation and similarity criterion

? Matching and global optimization

Choice of transformation

The choice of transformation can be divided in two different cases. ARigid body
transformationor aNonrigid transformation. A rigid body transformation is ap-
plied if the deformation between the two surfaces in negligible, while a nonrigid
transformation is used if we have significant deformations of the surfaces. Noise
should not be treated as a significant deformation. A rigid body transformation is
as simple as. . .

xB = RABxA + tAB (7.34)
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where a pointxB in the point setB is given by the pointxA in the point setA
rotatedR and translatedt. So a rigid body transformation preserves the shape and
size, only position and orientation are affected. The function we want to minimize
in the rigid body transformation is typically. . .

min
R,t

N∑
i=1

‖xBi
− (RxAi

+ t)‖2 (7.35)

wherei goes through all points and calculates the squared distance between cor-
responding points. Thus a minimization of the squared distance between the point
sets.

Looking at the nonrigid transformation we must deal with a more general case of
transformations calledaffine transformations. The affine transformation is written
as. . .

xB = A3×3xA + b3×1 (7.36)

An affine transformation preserves collinearity, which means that all points lying
on a line before the transform will still lie on a line after the transform, as well
as ratios of distances. For nonrigid transformations there are also several other
approaches such as using global polynomial functions or piecewise polynomials
such as splines for local nonrigid transformations, [AUDETTE-00].

In the rigid body transformation we have a orthogonality constraint on the ele-
ments ofR which is a3× 3 matrix which we do not have in the nonrigid case.

Surface representation and similarity criterion

Four approaches to represent the surfaces isfeature, point, model basedand
global similarity . What is chosen here can depend on a variety of factors such as
if the surfaces are nearly aligned from the start or if we expect an arbitrarily large
transformation, also of interest is the smoothness of the surfaces.

TheFeature basedmethods uses surface morphology to find features in a prepro-
cessing step. This makes the description compact in comparison to the point and
model based methods which uses all or a large subset of all points. These methods
are commonly used on rigid transformations.

ThePoint basedmethods uses the surface points as primitives and tries to mini-
mize distances between point pairs. Another name for surface registration based
on point sets isfree-form surface matching [BESL-92]. The free form surface
matching generally assumes that the two point sets are close to aligned. The min-
imization function can be to minimize the squared distances between mutually
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closest points. There exists many free form surface matching methods where the
most common difference is in the choice of distance metrics in the minimization
function. One common distance metric is. . .

d(xB, RkxA,min + tk) = min
xA∈XA

d(xB, RkxA + tk) (7.37)

where the pointxB ∈ XB andxA ∈ XA whereXA is the transformed point
set. To minimize the distance between closest point pairs there is a widely used
method calledIterative Closest Point(ICP) which was introduced in [BESL-92].

The Model basedmethods often uses an implicit criterion such as an external
force. A brief overview is found in [AUDETTE-00].

The Global similarity methods are often used on relatively featureless surfaces
where we can expect to find arbitrarily large transformations. The use of 2D
footprintsand examples of global similarity methods and can be further studied in
[YAMANY-99 ] and [JOHNSON-97].

Matching and global optimization

This is the stage of the process that finds corresponding points or feature pairs of
the two surfaces. If feature pairs are used this can be a comparison of discrete
candidates, or for point and model based methods this is usually a minimization
of some objective function.

When corresponding points or features are found we search for the transformation
that aligns these as good as possible. The iterative methods then finds new closest
points and calculates a new transformation toward convergence.

7.4.5.2 Iterative Closest Point algorithm using the Fast Marching method
and Singular Value Decomposition

In this thesis the problem consists of aligning two 3D point sets, the easiest and
most used method doing this is the ICP algorithm mentioned earlier which shortly
can be written as. . . [STEIN-02]

I Find corresponding points between two sets of data,P̂ = [p1p2 . . . pm] and
Q̂ = [q1q2 . . . qm], such thatpi corresponds toqi

II Transform one set of points such that some error metric between the two sets
are minimized

III Restart and continue until convergence
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The first problem of finding the corresponding points is the major difficulty in the
ICP algorithm. If the point sets are fairly aligned from the beginning a method
based on the nearest point in the other point set is advantageous. The nearest
points are found according to their euclidean distance.

Taking one pointp ∈ P and searching for the closest point in the other pointset
Q is very exhausting if it’s done for every point inP and for each iterative step,
IMN if we haveM points in the point setP andN points in the point setQ and
I iterative steps. One solution is to pre-compute a distance map forQ and using
that as a lookup table for each step. This distance map would only have to be
computed once defining a distance-cube in space where each cell would contain a
pointer to it’s nearest point in the point setQ and the distance to this point. The
distance is not strictly necessary except during the computation, it’s the pointer
that’s interesting. Another method to speed up the computation is the use of K-D
search trees which can be studied in [FRIEDMAN-77], but as we assume that the
model point setQ is static we use a distance map which then can act as a very
quick lookup table for every position of the point setP . The downside is that this
distance map can be quite memory intensive for large datasets.

So if we have the point setP in a certain orientation totally enclosed in the distance
cube computed forQ we can directly look up the nearest points and thus the lists
P̂ andQ̂ of point correspondences are given.

This precomputation of the distance map can of course also be computationally
expensive for large datasets. We don’t want to wait unnecessary long time for it
to finish. There is a smart method to efficiently compute the distance map called
Fast Marching Method described in [SETHIAN-99]. This method uses a growing
surface concept to compute the distances. A brief description of the algorithm
follows. . .

I Initialize all points of the distance map to∞ distance

II Initialize those points that belongs to the point set with 0 distance and itself
as pointer to closest point and add them to a priority queue sorted on distance.

III Lift the pointp with shortest distance from the priority queue.

IV For all p’s 26 neighborsn, check if the distanced is ∞. If d = ∞ update
it’s distance to the euclidean distance top’s nearest point and setn’s nearest
point top’s nearest point. Addn to the priority queue.

If n’s d 6= ∞, check if the distance top’s nearest point is closer thann’s
current closest distance. If so update with new distance and nearest point. Do
not addn to the priority queue.
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V Restart from III until priority queue is empty.

Using the Fast Marching Method onQ to obtain the distance map to be used in
registration ofP on Q, we get the listsP̂ and Q̂ of correspondences wherepi

corresponds toqi. Visualization of the distance map can be seen in figure7.22.

Figure 7.22: First row visualizes one of the slices in the distance map cube. Darker color
mean a closer distance to the surface. Two methods are supported by the Peru application.
One implements the distance as steps in number of pixels (top left) which is faster than exact
euclidean distances which is showed in the top right figure. But as this is only done once the
exact implementation is preferable. The example comes from a 3D-Studio scene that can be
seen in figure7.23 where the right image has nearly the same viewpoint as these distance
maps. Bottom image shows a similar visualization for the lego model where the CT slice has
been superimposed. The distance map also contains pointers to the nearest points on the
surface, this is not easily visualized and is therefore not included in these visualizations.

When the correspondence lists has been set up we want to find the transformation
that minimizes the distance between the point sets. Typically used methods doing
this are quaternions or Singular Value Decomposition (SVD). The quaternions
approach is used in [BESL-92], and SVD in [ARUN-87]. SVD is used to find
the best transformation according to minimization of the distance between the
corresponding points. The full mathematical description of the Singular Value
Decomposition can be found in books about numerical analysis as for example in
[CHENEY-96]. The reason that SVD was chosen is that several papers has found
it to be the most stable one compared to the quaternion approach, see for example
[LORUSSO-95].
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Our problem can be set up using the matricesP̂ andQ̂ which is the lists of cor-
responding points of the two point sets as earlier described andR which is the
transformation matrix. The equation where we want to findR such that we find
the minimal solution is. . .

P̂R = Q̂ (7.38)

First we use SVD on̂P . . .

P̂m×3 = Um×mDm×3V3×3 (7.39)

where. . .

UU∗ = I andV V ∗ = I (7.40)

whereU∗ ≡ ŪT is the adjoint matrix, which is as noted the transposed conjugate
matrix. In this application we do not deal with complex values but to be correct
this notation is used. The matrixD is a diagonal matrix which will contain the
singular valuesσ1 . . . σn of P̂ on the diagonal. They are the nonnegative square
roots of the eigenvalues of̂P ∗P̂ . Depending on the implementation (or arbitrary
choices in the performance of the SVD) there can be differences in the ordering of
σ1 . . . σn hence a matrix can have several different singular value decompositions.
In our case we haven = 3.

We state what we want to minimize. . .

ρ = inf
R
‖P̂R− Q̂‖2

=
by eq.7.39

inf
R
‖UDV R− Q̂‖2

= inf
R
‖U∗(UDV R− Q̂)‖2

= inf
R
‖DV R− U∗Q‖2

(7.41)

If we now let. . .

c = U∗Q̂ andy = V R (7.42)

we see that. . .

ρ =
by eq. (7.41)

inf
y
‖Dy − c‖2 (7.43)
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so. . .

‖Dy − c‖2
2 =

r∑
i=1

(σiyi − ci)
2 +

m∑
i=r+1

c2
i (7.44)

is minimized by settingyi = ci

σi
for 1 ≤ i ≤ r andyr+1, . . . , yn can be chosen

arbitrary. Thus we have. . .

ρ =

√√√√ m∑
i=r+1

c2
i (7.45)

Of all they vectors that givesρ we can chose the one withyr+1 = · · · = yn = 0
which is given by. . .

y = D+c (7.46)

whereD+ is the pseudoinverse ofD which here can be written as. . .

Dm×n =



σ1

σ2

...
σr

0
...

0


−→ D+

n×m =



σ−1
1

σ−1
2

...
σ−1

r

0
...

0


(7.47)

Now we can set up the final equation to solve forR. . .

R =
by eq.7.42

V ∗y =
by eq.7.46

V ∗D+c =
by eq.7.42

V ∗D+U∗Q̂ (7.48)

This takes one point set to the other, but as can be observed this does not imply
that R is orthogonal and thus is not a rigid motion. As we want a rigid motion
we have to look at a slightly different approach. We restate our problem with the
extra constraint. . .
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Find the matrixR∈Rm×n with orthogonal columns such that the matrixP̂∈Rm×nR∈Rn×n

approximateŝQ∈Rm×n as closely as possible.

This problem is calledProcrustes matrix problemafter Procrustes in the greek
mythology. Procrustes offered hospitality to passing strangers, who was invited
on a meal and a nights rest in Procrustes very special iron bed that would fit anyone
who tried it. What the visitors did not knew, was that Procrustes made the visitors
fit the bed, not the bed fit the visitors. He stretched them if they were too short or
cut of their limbs if they were too long.

By using the Frobenius norm, Procrustes problem is set up as minimizing the
following equation [EVERSON-98]. . .

‖Q̂− P̂R‖
2

F with RT R = I (7.49)

whereRT means the transpose ofR as Procrustes problem is defined inR, and
the Frobenius norm of a matrixA is defined as. . .

‖A‖F =

(∑
i,j

a2
i,j

)1/2

(7.50)

SinceR has orthogonal columns we can write. . .

‖Q̂− P̂R‖2
F = TrQ̂T Q̂ + Tr(P̂R)(P̂R)T − 2TrQ̂RT P̂ T

= TrQ̂T Q̂ + TrP̂ T P̂ − 2TrQ̂RT P̂ T

= TrQ̂T Q̂ + TrP̂ T P̂ − 2TrP̂ T Q̂RT

(7.51)

where we can see that minimizing‖Q̂ − P̂R‖2
F is equivalent to maximizing

TrP̂ T Q̂RT . Tr is the trace. In a technique similar to the one earlier described
we can also here findR by using SVD. We decomposêP T Q̂ using SVD. . .

P̂ T
n×mQ̂m×n = Un×nDn×nVn×n (7.52)

whereUUT = I andV V T = I and andD contains the singular valuesσ1 . . . σr

on the diagonal. We now have. . .

TrP̂ T Q̂RT = TrUDV R̂T = TrUT RV T D = TrTD =
n∑

i=1

tiiσi ≤
n∑

i=1

σi (7.53)
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whereT = UT RV T which easily can be seen to be orthogonalT T T = I. As T
is orthogonal, the trace in equation7.53is maximized whenT = In×n, which is
true for. . .

R = UV (7.54)

There is an alignment issue to be taken care of before the evaluation depending
on which plane the model has been sliced in. This is demonstrated on a simple
3D model made in 3D-Studio which can be seen in figure7.23. The point setQ
generated using the peru application is visualized in figure7.24.

Figure 7.23: To the left a render of a 3D scene made in 3D-Studio. The scene consists of
some simple textured objects. One plane (floor), one rectangular box (wall), one cylinder
and one spiral standing behind the wall. The render is part of an movie made using two
virtual cameras to obtain a stereo flyby of the scene. To the right one slice from the same
scene. The scene is sliced top-down. The CT-slicing emulation was constructed by using an
AND-operation between a plane that was sliding down the scene and the scene objects. A
virtual orthographic camera was placed on top of the scene pointing down to capture the
slices.

As can be seen this scene is sliced in another plane than the depth maps will be in.
For the initial guess we need to transform the coordinates of the depth maps cor-
rectly to align them correctly with the point setQ. This is a very simple operation
computationally but something to be aware of when starting the iteration of ICP
as it assumes we are relatively near the correct orientation. The implementation
places the model inside a cube and thus we take as a parameter to the program
which face of the cube/model we should start iterating from. We can choose be-
tween north, south, east and west. We assume that the start position is one of
these sides. We also assume that the depth maps is not upside down, i.etc. that the
cameras upvector is fairly aligned with the models up orientation.

The implemented algorithm is as follows. . .
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Figure 7.24: This is a render from the peru application showing the point set from a virtual
camera.

I From the model datasetQ the distance map is calculated as described earlier

II Check which points in the surfaceP to be registered that are inside the dis-
tancemap cube and set up the correspondencesP̂ andQ̂

III Find center of mass (CM) for̂P andQ̂ and translateP towardQ the vector
Q̂CM − P̂CM

IV Find new correspondenceŝP andQ̂ from this positioning

V Use procrustes algorithm to find the rotationmatrix that minimize the frobe-
nius norm between the two pointsets and apply this rotation onP

VI Restart from II until convergence

7.4.5.3 Difficulties

One problem with the generated depth maps that make the surface registration
more difficult is the discreteness. One surface with a linear change in distance
will result in a stair shaped disparity map as can be visualized in figure7.25.

Another problem regards perspective. A stereo image of a square shaped object
will result in s disparity map where the square shaped object will not appear as
square shaped (if we are not viewing it from right above) due to the perspective.
A simple algorithm to deal with this has been tested which stretches areas of the
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Y

X
Z

Depth surfacePThe modelQ

Figure 7.25: This shows one of the difficulties in trying to match the depth surface to the
model. We have a stereocamera to the left observing the black tilted plane with a smaller
perpendicular plane on it’s upper side, this is the model noted asQ. Imagine that Q is a
surface that continues into the picture along the z-axis. Depending on the resolution of the
images we are able to separate between a finite number of discrete levels of distance. This
levels are here indicated by vertical lines. Thus the upper right image is the generated depth
map P in blue of the scene with the modelQ marked in red. Thus the problem is to match
a discrete surface likeP to the right to the model Q. Below isQ and P rotated such that
Q’s lower plane is aligned along the x-axis. This shows that there are many ambiguous
orientations that could arise where the depth surface finds a match along it’s diagonal lines
instead of through them, which would be the correct match in this case.

disparity map depending on the disparity. Small disparities will be stretches less
than large. This algorithm is visualized in figure7.26. This algorithm is very
simple and does not work in all cases, for example it is very noise sensitive as
dark noise will expand.
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Figure 7.26: The perspective correction would in this example of a road stretch areas of same
distance from the camera with a factorx depending on the distance. Areas far away from
the camera would be stretched the most while areas closest to the camera would be stretched
very little. In this figure the original road would be extended to the red borders.

7.5 Optical tracker approach

Another simpler approach to find the position and orientation of the camera rela-
tive the surface extracted CT dataset is the use of a tracking system that constantly
measures the orientation and position of the camera. This approach assumes that
the object recorded is not moved relative the tracker coordinate system (tcs). If it
moves a correction has to be made, see section7.6.

7.5.1 The lego model

The Peru application reads the CT slices and threshold them at an user specified
value. The dataset is now represented as a binary cube. Visualizing all the points
in this binary cube is not very interesting. We want to segment the dataset such
that we can visualize only the hidden part. For the segmentation we could use
specialized algorithms such as those described in section7.2, but for the simple
model the Peru application supports a rangeread of the slices, see section7.2.1,
such that we can read a subcube from all slices.

The points found in the surface extraction algorithm of the segmentation are then
directly placed in an Open Inventor/Coin environment or are tessellated using for
example the marching cubes algorithm.

In the first phase of the project we are using a model which depicts the medical

68



7.5 Optical tracker approach

problem. The model consists of layers, one outer layer and one hidden inner layer,
see Chapter6. The purpose is to overlay a video of the complete model with the
not visible inner layer of the model.

The system is set up as follows: The optical tracking system Flash Point (Image
Guided Technologies Inc., Colorado, USA) (figure7.27) consists of three optical
sensors (IR cameras) that track three infrared emitters positioned on a probe. The
probe is mounted on the camera thus giving us the position and orientation of the
camera. The information that is received is the position plus one normal and one
transversal vector.

Figure 7.27: Left: The flashpoint rig with it’s three infrared cameras. Right: The T-shaped
LED probe that the cameras monitors.

Thus three vectors of interest can be obtained, the direction in which the camera is
pointing, the up vector (the orientation in which the top of the camera is pointing),
and the location of the camera. One fourth vector of interest is the x-direction of
the image plane and is easily found by the crossproduct of the camera direction
and the up vector.

The developed application receives the coordinates of the camera and places a
virtual camera in this position and orientation in an Open Inventor/Coin environ-
ment.

The video from the camera that will show the actual model is textured using direct
OpenGL on a far plane in the scene. The distance to this plane should be as far
as is necessary to not intersect with the objects in the scene. The position of the
corners of the plane are found by using the camera coordinate system to place
it perpendicular to the camera view. The size is determined by simple geometry
such that the plane fills the camera view.

Width = 2D tan
(

φA
2

)
Height = 2D tan

(
φ
2

) (7.55)
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In equation7.55D is the distance from the camera to the plane,φ is the height
angle of the camera view andA is the aspect ratio.

To place the plane aligned with the camera orientation we need the camera up
vectorU and the direction vector of the camera viewV . OpenInventor do not
give these directly for the virtual camera and thus it must be calculated from the
displacement from an original position using the following equations which is a
simplified version of the rotationmatrix round an arbitrarty vector. . .

V = (1− cos (θ)) ∗ axis[0] ∗ axis[2] + sin (θ) ∗ axis[1],
(1− cos (θ)) ∗ axis[1] ∗ axis[2]− sin (θ) ∗ axis[0],
cos (θ) ∗ (1− cos (θ)) ∗ axis[2] ∗ axis[2]

(7.56)

U = (1− cos (θ)) ∗ axis[0] ∗ axis[1]− sin (θ) ∗ axis[2]
cos (θ) + (1− cos (θ)) ∗ axis[1] ∗ axis[1]
(1− cos (θ)) ∗ axis[2] ∗ axis[1] + sin (θ) ∗ axis[0]

(7.57)

Here the camera is rotatedΘ around the coordinate axis axis from an original
position.∗ is used as multiplication sign to improve readability.

Shaking and jiggling of the image plane prevented direct use of the received cam-
era vectors.

The scene is now using the tracker coordinate system, and thus we need all our
coordinates in this coordinate system.

If the interior of the model (the hidden part of the dataset that we want visualize)
is now placed inside the scene, the far video plane is overlaid with the interior at
the correct position as pictured in figure7.28. The setup with the model can be
seen in figure7.29.

7.5.2 Position correlation

To be able to place the hidden object into the scene we need to transform the
object coordinates (ocs) to the tracker coordinate system (tcs) which is received
from the flashpoint system. The object coordinates is the coordinates we get when
we place the origo in the upper left hand corner of the first CT slice with the x-axis
extending to the right and the y-axis extending downwards and the z value as the
slice number. This transformation is found using the following procedure. . .

Four markers are placed on the object in ocs coordinates, and this is achieved using
the Peru application, see figure7.30. These markers are saved to file together
with the datastructure that holds the model. Localization of these markers in the
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Textured Plane

Interior structure

Projection of interior structure

Virtual Camera

Figure 7.28: The Open Inventor scene with the textured plane in the background, and the
part of the CT data that we want to visualiza as a scene object. A virtual camera is con-
tinuously updated with the orientation and position of the real camera with the help of the
tracking system. The output from the virtual camera is then used as output to a TV screen
or monitor.

tracker coordinate system is done using a tracked pointer that is pointed at the
corresponding markers on the real model one at a time. It’s important to point out
the markers on the model in correct order.

Figure 7.29: The setup for the model, the camera/endoscope is in this stage hand held and
the T-formed black object in the front is the probe that the flashpoint system tracks. The
tracking is made on the small bright dots on the probe which is infrared emitters.
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Figure 7.30: Markers are placed on the model, here exaggerated in yellow to enhance visi-
bility in the figure.

Four markers in both ocs and tcs coordinates makes it possible to find the coordi-
nate transformation matrix from ocs to tcs by solving three equation systems. The
following must hold. . .

Vocs ∗ T = Vtcs (7.58)

Expanding equation7.58for one of the four markers using homogenous coordi-
nates we get. . .

[
M1ocsx M1ocsy M1ocsz 1

]
∗


a b c 0
d e f 0
g h i 0
tx ty tz 1

 =


M1tcsx

M1tcsy

M1tcsz

1


(7.59)
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Using all the markers we get the following systems. . .


M1ocsx M1ocsy M1ocsz 1
M2ocsx M2ocsy M2ocsz 1
M3ocsx M3ocsy M3ocsz 1
M4ocsx M4ocsy M4ocsz 1

 ∗


a
d
g
tx

 =


M1tcsx

M2tcsx

M3tcsx

M4tcsx

 (7.60)


M1ocsx M1ocsy M1ocsz 1
M2ocsx M2ocsy M2ocsz 1
M3ocsx M3ocsy M3ocsz 1
M4ocsx M4ocsy M4ocsz 1

 ∗


b
e
h
ty

 =


M1tcsy

M2tcsy

M3tcsy

M4tcsy

 (7.61)


M1ocsx M1ocsy M1ocsz 1
M2ocsx M2ocsy M2ocsz 1
M3ocsx M3ocsy M3ocsz 1
M4ocsx M4ocsy M4ocsz 1

 ∗


c
f
i
tz

 =


M1tcsz

M2tcsz

M3tcsz

M4tcsz

 (7.62)

Solving these three systems we get the coordinate transformation matrixT from
ocs to tcs.

Transforming the points in the dataset from ocs to tcs we can then place it inside
the Open Inventor/Coin environment where the camera is already placed in the
same coordinate system.

Results and experiments with the optical tracker approach are presented in section
9.4.
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7.6 Combined stereo and tracker approach

Both the optical tracker approach, section7.5and the stereo approach, section7.4
tries to find the position and orientation of the camera relative the CT dataset.
Both approaches suffers from problems.

One problem with the stereo approach is to get a good initial guess to the surface
registration algorithm as the algorithm assumes that the surfaces are relatively
close to each other.

One problem with the optical tracker approach is that it assumes that the objects
in the scene are not moving relative to the tracker coordinate system (tcs).

A combination of the two techniques could help both of this problems. The initial
guess of the surface to be registered could be taken from the tracking system. And
if the objects has moved a small distance relative tcs the stereo algorithm should
be able to handle that.
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Chapter 8

The implemented application and its
GUI

An application that integrates the earlier discussed parts was developed. This
chapter is devoted to describe it’s various parts.

Nearly all of the earlier described algorithms has been implemented in this appli-
cation with the exception of some coding (mostly the OpenGL/Coin/Open inven-
tor code) that had to be done on a SGI ( Silicon Graphics, Inc ) computer which
received the videostream from the endoscope.

Intels OpenCV library [OPENCV] has been chosen as the main library used in the
implementation of the application which is named Peru. The name Peru has it’s
origin from the motivation of the thesis which is to find LIMA. And where better
look for LIMA than in Peru ?

Peru consists of four main classes;CCOCV, CalibCV , Stereo and Matcher.
CalibCV is handling all the gui using trolltechs Qt [Qt]. CCOCV (abbr Cam-
eraCalibrationOpenCV) contains all functionality for finding camera calibration
parameters, and undistort images using the found parameters.Stereois the base-
class for all implemented stereo algorithms whileMatcher contains the surface
registration algorithms.

The classRenderer is a special implemented class for visualization of point
clouds using a Raycasting algorithm. This class visualized for example all output
of the surface registration algorithms (section9.3) and the subcube segmentation
that was made in section7.2.1. ClassImageWidget handles all output of images
to the screen which includes saving of shown image, change of colormap and scal-
ing. ClassPixel is the baseclass for all Pixels/Points with three coordinates x,y,z.
FPixel uses floating points values andSPixel includes information of direction
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Figure 8.1: Class overview of the application with main focus on the four main classes.

used in the distance maps in the surface registration phase. There is also a class
Filter not shown in figure8.1that is the baseclass for all Post and Prefilters.

8.1 Programming language and libraries

The programming language of choice was C++. The reasons for this choice was
several. But what languages are there to chose between when making a scientific
computer program? Let’s make a short lists with brief descriptions.

? Fortran
Fortran is a shortening of FORmula TRANslation and has been around for a
long while. Before Fortran most programming was made in assembler. The
first version was worked on by IBM in the 1950’s and many versions have
come since then. As a convention all version has been named by the two
last digits of the year when it’s standard was proposes. Thus we have. . .

– Fortran 66

– Fortran 77

– Fortran 90

Fortran was constructed as a language for scientific computing, mainly be-
cause at that time the only people who used computers was physicists and
mathematicians. The benefits with Fortran is that it is relatively straightfor-
ward and have good performance. The considerations is that it is somewhat
antique today. Specially Fortran 77 which is the most widely used cause
there are lot’s of compilers for it, and there exists free compilers. Fortran 90
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has corrected some of the considerations with Fortran 77, but there exists
no free compilers what I am aware of for Fortran 90.

? C
C is also a language that has been around for a while, it was created in
1971-1972. It was originally developed by computer scientists to write op-
erating systems, for example all UNIX and Linux systems are programmed
in C. But because C was not originally developed with the aim of scientific
computing some features are missed. For example the arrays are quite prim-
itive in C. But on the other hand C is a low level language which gives the
programmer control to make the code extremely efficient.

? C++
Just by the name of this language you understand that it’s tightly bound to C.
C++ is an extension of C that takes advantage of object oriented program-
ming. C is a fairly simple language in the way that everything always will
boil down to macros, pointers, structs, arrays and functions. C++ is much
richer and includes private and protected members, function overloading,
default parameters, constructors, destructors, user-defined operators, inline
functions, references, friends, templates, exceptions, namespaces, and more
[MEYERS-98]. This makes the language very flexible, you can always do
the same task in many ways. This does also make it demanding of the pro-
grammer to know all the opportunities that the language provides. But C++
is a language that is used by millions of programmers, and resources of
libraries and source code is large.

? Java
Java is another object oriented programming language that has gain much
popularity. Java is developed by Sun Microsystems and the first version saw
the light of this world in 1995 which makes it a fairly new language to the
earlier discussed ones. Javas portability is one of it’s great advantages. The
code can be run on almost every platform using a virtual machine. This
portability comes at a cost however and makes Java less efficient than the
other languages mentioned here. It should be mentioned though that the use
of just in time compilers java can come pretty close to C++ and sometimes
in certain affects even beat it. Also java is often more simple to debug, while
bugs in C++ can be very tricky.

As I wanted to take advantage of the object oriented programming benefits the
choice stood between Java and C++. Java I already knew, while I had little experi-
ence in C++. Java is easier to program in with it’s ease of development, reusability,

77



8.2 Layout

portability and memory management. But for computational purposes and scien-
tific computation C++ is still the language that is mostly used due to the higher
performance, and that the existing software almost extensively are programmed
in C++. I also had a desire to learn something new, so my choice was C++ and
this thesis also become a great course in the language.

Looking at the libraries used the most fundamental and most used is the earlier
mentioned OpenCV library. I investigated some other libraries such as. . .

? Gandalfhttp://gandalf-library.sourceforge.net/

? Tinahttp://www.tina-vision.net/index.php/

? ImageMagickhttp://www.imagemagick.org/

Both Gandalf and Tina are written in C. There seemed to be much more life and
development on the OpenCV library at the time such as a nice news group and
frequent updates. Otherwise Tina is an interesting library which contains a lot of
useful methods, but unfortunately a bit hard to get an overview and many parts
are quite old. Tina has been under development since 1986 and consists of over
150000 lines of code. I also used ImageMagick for some parts of the applica-
tion at first, this though being phased out as the OpenCV library had or during
the development got all of the operations I did with ImageMagick anyway. Im-
ageMagick is more aimed at image manipulation than scientific calculations. One
more important fact to chose OpenCV is that it also exist for Windows. While de-
velopment is being done on a linux machine it’s very nice to able to port it some
day if that should be desirable.

Finally there was the question of a gui to make it easier to operate. OpenCv
includes a small library for gui but it’s more aimed for simple tasks such as
displaying an image on the screen. My choice fell soon on the Qt library
http://www.trolltech.com which is rapidly gaining in popularity and is
a gui that is portable to many different platforms.

8.2 Layout

The layout of the Peru application is modulated in tabs such that it’s easy to sep-
arate the different parts and thus disable or enable different functionality easy if
that should be desirable. Currently there are three tabs, calibration, stereo and
matching shown in figure8.2.
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Figure 8.2: Overview of the graphical user interface for the implemented tool Peru.

Except for the tabs there are two main windows, one for text output in form of
info and errors, the other one shows image output. There are also a progressbar
that indicates the progress of most operations. Under the image output windows
there are some controls for it.Undistort undistorts the current displayed image
with the current undistort parameters.Scalescales the image to fit in window.

There are also some status leds at the bottom to indicate the state of different parts
of the program. As of now there are three leds indicating if parameters for the
undistort method has been specified and if a so called Stereo-Matcher link has
been established. This link tells that the output from the stereo tab should be used
as input in the matcher tab, in other words the output disparity maps from the
stereo algorithms is directly sent to the input of the surface registration algorithm.

Help in short format is available for all of the features by hovering the mouse
cursor over it.

8.3 Maintainability

The application has been written such that additions and separations will be as
painless as possible.
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Separability:
The three tabs contains functionality implemented as three different classes and is
thus easy to separate if desired. The gui is one class that talks to the other classes.
The other classes talks minimally to the gui such that they easily can be connected
to some other gui. The only communications toward the gui are info messages to
the text output window.

Additions:
Additions of new stereo algorithms are easy, you only have to make a subclass of
Stereoand implement calculateDisparity() that operates on the images named left
and right. The output should go into the image dispI and that’s it. Of course you
also have to add the algorithm to the gui such that it may be chosen. One detail to
have in mind is that the Stereo super class takes two parameters to it’s constructor
which is int argc andchar** argv. This is because the Stereo super class easily
can be used as a commandline driven program if separated from the gui. If you are
just adding a new stereo algorithm this is nothing to think about, but the interface
that uses theStereosuper class must know of this.

Prefilters and postfilters are also easy to add as it’s built up in the following way:
One abstract classFilter is used as super class for each specific filter. The stereo
class then has two Filter vectors that can be filled with wanted filters. One vector
for pre filters and one for post filters. Adding a new filter is as simple as to subclass
Filter and implement the pure virtual methodapply(IplImage* image)with your
filter. Then add functionality to the gui class to put that filter in the appropriate
filter vector.
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Chapter 9

Results

This chapter presents the results from the different parts of the thesis in tables
and figures. A discussion of the results is found in Chapter10. Some results are
presented in other forms earlier in the thesis and are being referenced to.

9.1 Calibration

The computational performance of the camera calibration step is not of high im-
portance due to the fact that it only has to be done once for each camera. But the
stereo images should be undistorted continously. The grabbed images from the
endoscope has a resolution of 720x288 pixels. The performance of the undistort
implementation was measured to be about 16 fps on a 2.4GHz machine, this was
measured when first the left and then the right frame was undistorted. The undis-
tort procedure is of course very simple to parallelize such that the left and right
channel is undistorted simultaneously by two CPU’s. But more importantly the
process as here measured uses a function to undistort the images, this function
defines a mapping which a lookup table could take advantage over. The lookup
table approach would probably give the undistort process a major speedup.

Another aspect of the calibration is the rotation correction. Examples of the output
from the implemented code follows. . .



9.1 Calibration

Figure 9.1: First Row:Two images taken by a hend held Nikon 995 digital camera of a hand
drawn test pattern. Second Row: The images overlaid to visualize the difference between
them.

Figure 9.2: The left image shows one of the images rotated by the implemented algorithm to
match the other image with the resulting black areas. The right image shows the same image
after cropping it according to section7.3.2. The found ellipses are marked with red color by
the application.
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9.1 Calibration

Figure 9.3: Both the cropped and corrected images overlaid. This is without translation
correction.

Figure 9.4: Both the cropped and corrected images overlaid. This time with translation
correction. As the camera was handheld we seem to have some perspective or scale difference
and thus it’s not possible to align all circles perfectly.
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9.2 Stereo Algorithms

9.2 Stereo Algorithms

This section will present the results of the stereo algorithms. All tests are per-
formed on the Tsukuba test scene that can be seen in figure9.6. The scene has
been used since ground truth is available, thus making error measurement simple.
The tsukuba scene also includes both textured, untextured and smooth areas.

The images from the endoscope turned out to be very hard to work with as the
quality was poor. It should be mentioned that the signal was analog and that both
left and right channel was squeezed into one stream using each other image line
as left and right channel respectively thus reducing the resolution of the images in
y-direction by half. Examples from endoscopic images of the lego model can be
seen in figure9.5.
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Figure 9.5: Top left is channel 0 from the endoscope where vertical stripes can be seen. Top
right is same part of the image for channel 1. The images has been histogram equalized but
some of the colors are still not very similar. Also some block artifacts can be seen that almost
looks like jpeg compression artifacts even though the images are in RAW format. Second
row shows the images after a smoothing filter has been applied that smoothes orthogonal
to the stripe pattern, thus removing most of it. This though removes some of the details
in the image. There is a problem with areas of same intensity which gets blob artifacts in
them as can clearly be seen in both channels. Also to be seen here are some floating of the
colors in channel 1, this is most easily seen in the bottom right image where the yellow bands
extends further to the right than the blue. Another aspect that can be mentioned is the high
demand for light that the endoscope had. The available light was very strong, actually I
wore sunglasses when I worked with surface registration to not hurt my eyes. This light
was sufficient to get good illumination on surfaces no more than 7-10 cm away from the
endoscope. This can be seen in this image as the dark background which is the floor of the
legomodel is too far away to get sufficient light from the endoscopes light. One 1000 W lamp
was tried to give good illumination of the background but this gave off so much IR radiation
that it interfered with the optical tracking system.



Figure 9.6: This is the output of the different blockmatching approaches used. The images (except the first row) are the disparity maps where
larger disparity is shown in as brighter color implying objects closer to the camera. Note that this is without any post or preprocessing at all, and the
block size∆w is 3 for all methods to make them comparable. Top row shows left and right image of original scene. Second row to the left shows Standard
blockmatching using absolute difference while the right image shows Standard blockmatching using squared difference. Third row to the left shows
Fast blockmatching and to the right the Blockadvancing blockmatching method. Bottom row left shows Pyramid Blockmatching using two levels and a
tolerance of 7 per level. Bottom row right shows the exact disparity map. The colors does not completely correspond as the images has been contrast
stretch to lie in the interval 0-255 instead of 0-14 for visual enhancement. As can be seen in comparison to the other algorithms the pyramid method
addresses much of the noise without any form of filtering.



9.2 Stereo Algorithms

Figure 9.7:
Top left: Improved results of standard blockmatching using∆w = 5, Pre Gaussian filtering
and Post Median filtering. An example of only pre gaussian filtering can be seen in figure
7.16.
Top right: Standard blockmatching using a very large window (∆w = 21) shows that noise
is almost totally removed but the position of the edges are not correct. And this disparity
map took 16 seconds to generate.
Bottom left: Output of the birchfield algorithm without any pre or postfiltering.
Bottom right: An example of the output an uncalibrated image pair of the tsukuba scene
with barrel distortion. A striped effect appears as the scanlines bend differently at the same
scene position in the frames. Same parameters as the top left image.
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Figure 9.8: This figure shows how the mean square error changes as a function of the
blocksize. The test is performed on the tsukuba scene where ground truth is available.
DMAX = 14 has been used which is the true max disparity of the scene. Standard block-
matching is used without any filtering.
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Figure 9.9: This figure shows how the mean square error changes as a function ofDMAX .
The test is performed on the tsukuba scene where ground truth is available and the known
max disparity is 14. Standard blockmatching is used without any filtering.
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Figure 9.10: This figure shows the mean square error resulting from different combination
of pre-filters and post-filters. The code under the bars should be read in the following way:
There are four markers where an X stands forfilter appliedand an O stands forfilter not
applied. The order of the filters are: PreGaussian smoothing, Pre Medianfilter, Post Median
Filter and finally Post Gradient Removal. Standard blockmatching was used on the tsukuba
scene with aDMAX of 14 and a blocksize∆w of 5.
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Figure 9.11: This figure demonstrates the performance of the different implemented stereo
algorithm on the tsukuba scene. The performance is measured in both the terms of the
mean square error and the speed of the algorithms in FPS(Frames per second). There is also
included the ratio between the MSE and FPS which tells us something about the achieved
quality per time unit. The abbreviations is ABS = Standard Blockmatching with minimum
absolute difference between the blocks, MSD = Standard Blockmatching with min squared
difference between the blocks, FAST = Fast blockmatching and PBL is Pyramid Blockmatch-
ing. Here Pre Gaussian filtering is used in combination with Post Median filtering. The
algorithms are described in section7.4.3.
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9.3 Surface Registration

This section presents the results from the experiments with the surface registration
algorithm.

Model Dimensions Total Points Reduced Points Iterations to convergence Seconds per iteration Noise MSE per pixel
Legohouse 202,278,85 1428287 183677 44 0.14 0 0.09
Legohouse 202,278,85 1428287 183677 38 0.15 1 0.97
Legohouse 202,278,85 1428287 183677 40 0.17 3 2.89
Legohouse 202,278,85 1428287 183677 40 0.17 5 4.88

Inner Legohouse 79,175,35 201152 41404 21 0.031 0 0.68
Inner Legohouse 79,175,35 201152 41404 25 0.034 1 0.97
Inner Legohouse 79,175,35 201152 41404 22 0.036 3 2.88
Inner Legohouse 79,175,35 201152 41404 38 0.035 5 4.83

3DS model 360,240,100 122726 91765 60 0.065 0 1.27
3DS model 360,240,100 122726 91765 1001 0.075 1 1.12
3DS model 360,240,100 122726 91765 80 0.072 3 3.05
3DS model 360,240,100 122726 91765 40 0.055 5 5.51

Table 9.1: Registration performance. This table demonstrates both the time effi-
ciency performance and the quality of the registration made in terms of the error.
A Pentium 4 2.4GHz CPU was used on a computer with 1024MB RAM using
RedHat Linux 8 with kernel version 2.4 as operating system. All the models used
here are described in more detail in Chapter6 and Section7.4.5.2. All displace-
ments for testing the algorithm is here 5,5,-5 degrees around x,y and z axis respec-
tively. The test is performed such that a transformed copy of all surface points are
entered to the ICP algorithm (Section7.4.5.2) and a registration is performed.
The Legohouse dataset was thresholded at threshold level 60 before the surface
extracting algorithm. The surface extraction algorithm here always uses all 26
closest neighbors as the neighborhood. A range[146, 88, 91] → [348, 366, 176]
was extracted from the CT scan to give us a cube containing the large legohouse.
The Inner legohouse dataset was also thresholded at level 60, but with a range
[210, 185, 116] → [289, 360, 151] such that only the small inner legohouse was
extracted. The 3DS model is not thresholded before the surface extraction algo-
rithm as the CT slices are binarized in the CT-emulation described in Figure7.23.
The MSE error is the mean squared distance from a point in the transformed and
possibly noise distorted pointset to the correct corresponding point in the original
dataset. The error measure is the mean per point.
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9.3 Surface Registration

Figure 9.12: These images shows the result of 70 iterations with the ICP algorithm on a
part of the 3D-Studio model. The left image shows the configuration of the datasetsP and
Q before registration and the left image shows the configuration of the datasets after 70
iterations of ICP. P is green andQ is blue. The cyan color comes from overlapping pixels.
As can be seen the rotation retrieval is very good while the translation contains an error in
the Z-axis. Because of the planar nature of these point sets almost every point has found a
very close neighbor except for the points in the bottom floor. The bottom floor ofP is outside
the distance cube and thus not included in the calculations which explains the small MSE
converged to at the position in the right image after 70 iterations. A plot of the mean square
error per pixel is shown in figure 9.13. HereP is rotated 5,15 and -15 degrees around the x,y
and z axis respectively. Translation is 5,10 and 10 distance units in x,y and z from correct
alignment.
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Figure 9.13: A plot over how the mean square error per pixel drops for each iteration. As
can be seen the largest steps is done in the first 10 iterations and then slowly dropping until
convergence at 70 iterations. See figure9.12for a visualization of the process.

92



9.3 Surface Registration

Figure 9.14: These images shows the result of 70 iterations with the ICP algorithm on a part
of the 3D-Studio model. This time there is no translation difference between the two sets.
Convergence is here reached in about 28 iterations, but 70 is used to be consistent with the
last trial. The left image shows the configuration of the datasetsP and Q before registration
and the left image shows the configuration of the datasets after 70 iterations of ICP.P is
green andQ is blue. The cyan color comes from overlapping pixels. A plot of the mean
square error per pixel is shown in figure9.15. As in the last trial in figure 9.12P is rotated
5,15 and -15 degrees around the x,y and z axis respectively. But no translation is applied.
The resulting alignment is here perfect.
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Figure 9.15: A plot over how the mean square error per pixel drops for each iteration. Con-
vergence is here reached after 28 iterations. The plot from figure9.13 is included here in
gray as a comparison. See figure9.14for a visualization of the process.
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9.3 Surface Registration

Figure 9.16: This shows a noise test on the ICP algorithm. Top rows contain the model
point set Q (blue) and noise distorted and rotated copy ofQ used asP (green) before ICP
algorithm is applied. Bottom row shows howP has been rotated and translated by the
parameters found in the algorithm. From left to right we have an addition of± 1,3,5,8 and
10 distance units of random uniform noise. The dataset has dimensions120× 56× 100. Note
the misplacement ofP in the last two columns.
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Figure 9.17: This plot shows the robustness of the ICP algorithm against noise in the surface
to be registered. There is an addition of± 1,3,5,8 and 10 distance units of random noise to
each point inQ. The plot shows the mean square error per point to the point which is found
as the corresponding point. Here we can see the steady convergence of the ICP algorithm,
although we also note that for noise levels of 8 and 10 we get a slight increase in error from
iteration 15 and higher.
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Figure 9.18: This plot shows a similar plot for the noise cases in figure9.17, but here the
error is recorded as the mean square error per point to the point known to be the correct
corresponding point. This plot shows more clear that noise levels 8 and 10 has trouble con-
verging to the correct position, they are instead pushing the surface outside as can be seen in
the last two columns of figure9.16.
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9.4 Optical tracker

This section will show some example images where the interior of the legomodel
is superimposed onto the videostream from the endoscope. The positioning was
quite good but the system had a small delay when moving the endoscope fast by
hand. Using the robot to control the camera this was not an issue as the speed
of the robot is slower. Some drifting of the superimposed structure could also be
noted when it was located far out in the edges of the image.
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Figure 9.19: The interior of the legomodel is superimposed onto the videostream. All images
has been level adjusted or contrast stretched to compensate for the poor output quality.
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Chapter 10

Discussion

The output of the stereo algorithms should both be low in error and of fast per-
formance as the application should run in realtime. The experiments presented in
the Result chapter9 has information concerning both these aspects and of special
interest is figure9.11. But first we look at the different parameters and filters that
can be applied before and after the algorithm.

Figure9.8shows the error relative the width of the block used for the blockmatch-
ing types of algorithms. We clearly see that the error reduces as we increase the
size of the blocks. But using too large blocks in fact increases the error. This
increase for very large blocks come from blurring of edges. Here the problem is
that as the size of the block increases we get less precision in the spatial position
of the disparity, but a small block size will get good spatial precision but less good
block similarity precision. It should also be noted that increasing the size of the
block increases the computational effort of the algorithm significantly (quadratic
dependent on the width of the block). Using a block size of five instead of three
yields a much improved result, larger block size gives very bad performance in
terms of time used so I suggest as a compromise to use 3, 5 or at the very most
7 as the size of the block. Further tests of the blockmatching algorithms uses a
block size of 5.

Figure9.9 looks at the choice of the max disparity to search for. The scene tested
has a known max disparity of 14, and we note that using the same value of the
max disparity as the true max disparity yields the best result. This is maybe not
surprising as larger values makes possibility for pixels to get a disparity that is
higher than possible, and a value of the max disparity that is too low of course
introduces errors for all pixels that has a true disparity that is higher than the max
searched for. To know the scene you are observing and thus using a max disparity
that is as close to the true as possible should be the goal. Though you should make
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sure that you do not chose a value that is too low to avoid that some pixels are not
even possible to be assigned their true disparity.

Figure9.10 examines the use of different post and prefilters. The first thing to
notice is that the eight worst combinations of filters all include the Post Gradient
Removal. This added error comes from that when removing the gradients the al-
gorithm currently replaces it with a value of 0. This is not always a good choice
as the correct disparity after the edge may be far from 0. A better way to imple-
ment this filter would probably be to look at values above the current scanline and
replace the removed gradient with values based on this above values. Anyway
this added error that now results may not be a problem for the surface registration
algorithm as pixels with a disparity value of zero is assumed to belong to some
distant background and are thus not included in the calculations. In this case the
Post Gradient Removal is in fact positive even though the mean square error for
the total disparity map has increased. We secondly note that of the eight worst
combinations, four of them are not as bad as the four worst. The difference here
is that none of the four worst filters include the Post Median filter while worst fil-
ters number 5 - 8 all includes Post Median Filter. In fact every filter combination
which do not include the Post Median Filter benefits from including it. We can
also note that Pre Median Filter does not nearly give the same improvement as the
Post version. Also the Pre Median Filter is much more expensive as it is applied
to both left and right image. Pre Gaussian Filtering seems to do a better job to
make the blocks match at the correct disparities. The best combination reached
in the experiment is using Pre Gaussian Filter in combination with Post Median
Filter. There are two filters not considered in this experiment which is the His-
togram equalization and the Mean Value Correction. These filters has shown to
be beneficial if the images from the two cameras differ more than slightly. The
mean correction filter is very fast and can give good improvements from cameras
that do not have the same sensitivity.

It should also be mentioned that no difference between the RGB space and the
I1I2I3 space as [KLETTE-95] had found to be a better choice was found. Though
Klettes statement that using the information in all three channels improved the
result by 20% to 25% was confirmed and therefore all the results in the last chapter
are using all RGB channels.

Figure9.11finally say something about both speed and the quality according to
small errors in the algorithms. The first thing to notice is that using squared differ-
ence to measure the difference between blocks in the Standard Blockmatch algo-
rithm is not very meaningful, the performance drops a great deal while in fact the
error is slightly larger which makes MSD the worst of the algorithms according
to error per time (the brown bar). We also note that the fastest algorithm has the
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largest error. Fast blockmatching, Birchfield and Pyramid blockmatching shows a
trend where faster algorithms yields larger error. Pyramid blockmatching which is
not nearly as optimized as fast blockmatching could probably be done faster and
thus be a good candidate for the winner among the implemented algorithms when
considering both speed and low error. It’s current performance of about 5 FPS
on a 2.4GHz machine shows potential for realtime performance. Reaching higher
speed can also be accomplished using several CPU’s where a current available
CPU would pick up the next stereo pair from the video stream yielding a small
delay rather than a slowdown.

The surface registration part shows that most of the error seems to be reduced in
about the first 10 iterations independently of the dataset used, this can be seen in
figures9.13, 9.15, 9.17and9.19. Looking at table9.1 we can see that the time
used per iteration can sometimes be quite large. Even though the dataset has been
reduced by only using the surface points there should be potential to improve-
ments here as it’s not necessarily obvious that we need to use all the points on the
surface. One idea would be to pick out feature points to use in this registration
which could reduce the time used in this part significantly. The surface registra-
tion algorithm has shown to be very noise robust and has handled uniform random
noise up to±5 pixels in the 3DS scene where the diameter of the cylinder is 20
pixels. Note also that during operation the position of the surface in the last time
frame can be used as guide for initial position for the current time frame. Thus the
surface is nearly aligned and the number of iterations needed is reduced.
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Chapter 11

Conclusions

The output from the implemented algorithms with the endoscopic input images is
not usable by it’s own for good disparity maps. Chapter12discusses what can be
done about this.

Some conclusions can be drawn from the stereo experiments, the algorithms has
shown to give good quality disparity maps for calibrated images of higher quality
than the stereoscopic endoscope delivers.

Good matching against the CT data relies on a disparity map that is as similar
as possible to the dataset, this requires smoothing of the discrete disparity map
which in turns destroys information about abrupt true changes in the disparity
map. Therefore a scene consisting of a continuous smooth surface is easier to
work with than the discontinuous surface like the lego model yields where you
can’t smooth the disparity map without destroying significant information.

The performance of the stereo algorithms has potential to be used in realtime.
Also many of these has simple solutions for parallelization, for example the block-
matching methods could be calculated in several threads which each operated on
different parts of the image. Extensive time has not been used to top optimize the
algorithms, such that it should be potential to improve them to some extent.

As earlier mentioned the surface registration phase has been shown to be noise
robust. Robustness to deformations has not been tested. It seem to have more
trouble with translations than rotations.

The optical tracking part has shown to be the most successful part of this thesis
where a realtime application has been implemented and tested with good results.
This part should be useful on it’s own for applications where the observed object
is not moving relative the tracker coordinate system.



Chapter 12

Future work

The stereo approach needs much more work before it can be a usable strategy
for finding the correspondence between the camera and the dataset. The problem
is complex and involves many steps as can be seen in this thesis. Better image
quality from the cameras is needed. Use of fiducial markers or additional sensors
could help in the areas of the images where the stereo algorithms are unable to
find good correspondence points. Much like the principle of hierarchical block-
matching (Pyramid Blockmatch), such markers or sensors could restrict disparity
search in certain areas. Also the perspective problem needs to be dealt with. As
the geometry of the observed object is known in advance this info could be used.
Finally a smoothing method for the disparity map should be investigated, where
this is easiest if the observed object is known to have a continuous surface. In the
not continuous surface case this is harder as we do not want to smooth the sudden
large changes in disparity, but also here the fact that we know the geometry of the
observed object could be exploited.
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Abstract

The standard procedure for left anterior descending (LAD) coronary artery bypass re-
quires a sternum split. The internal mammary artery (IMA), most typically the left one
(LIMA), is dissected free from behind the sternum and is then anastomosed onto the heart
below the occlusion of the LAD.

Totally endoscopic coronary artery bypass (TECAB) is a less invasive alternative to the
standard procedure. This procedure results in heavily reduced invasiveness, but also leads
to loss of precision, reduced force feedback and loss of overview. The purpose of this work
is to alleviate the problems related to loss of overview by generating an augmented reality
for the surgeons in which they are given the impression of ’seeing through’ the tissues
surrounding the LIMA thus making localization of the LIMA a simple matter. Using pre-
operative CT or MR data, the LIMA is located with respect to the sternum and the tissues
surrounding it. Intra-operatively, the sternum is located and the tissues surrounding the
LIMA are tracked using a stereo videoscope held by a robotic arm. Knowing the position
of the videoscope relative to the sternum now makes it possible to calculate where in the
videoscopic images the LIMA is located. This information is then used to generate an
augmented reality showing the tissues surrounding the LIMA as transparent, thus revealing
the position of the LIMA within them.
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1 Introduction

During the standard procedure for left anterior descending (LAD) artery bypassing,
access to the heart is gained through a sternum split. The left internal mammary
artery (LIMA) is dissected free from where it is located behind the sternum and
then anastomosed onto the heart below the occlusion of the LAD. Figure 1 shows
an image of the standard procedure making it possible to appreciate its invasiveness.

Fig. 1. Offpump coronary bypass surgery through a split sternum.

The invasiveness of this procedure has inspired much research on alternatives. To-
tally endoscopic coronary artery bypass (TECAB) is one such alternative where ac-
cess to the thoracic cavity is gained through small incisions in the thoracic wall [1],
[2], [3], [4], [7], [8]. The main advantage of this technique is the heavily reduced in-
vasiveness resulting in reduced recovery time and less scarring. The main disadvan-
tages are loss of precision, reduced force feedback and loss of overview. The loss
of precision during TECAB was one of the driving forces behind the development
of surgical robots capable of reducing tremor in the instruments as well as down-
scaling movements. The introduction of such robots will unfortunately completely
remove all force feedback. As a consequence, palpating the tissues surrounding the
LIMA, and thereby locating the LIMA through pulsations is no longer possible.
Dissection and mobilization of the LIMA now become very difficult procedures.

The purpose of this work is to alleviate this problem by generating an augmented
reality for the surgeons in which they are given the impression of ’seeing through’
the tissues surrounding the LIMA thus making localization of the LIMA a simple
matter.
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2 Methods

Prior to surgery the patients thoracic cavity is imaged using CT or MR to allow
for localization of the LIMA with respect to its surrounding tissue and with respect
to the sternum. The LIMA and its surrounding tissues are segmented from these
images by standard image segmentation methods. In addition, the coordinate sys-
tem of the robots are located with respect to the patients sternum. During surgery,
a stereoscopic videoscope and two instruments, all held by robotic arms and op-
erated via an external console, are introduced into the thoracic cavity. Once intro-
duced into the thoracic cavity, the videoscope can visualize the tissue surrounding
the LIMA. Since the position of the videoscope is known and since the position of
the videoscope relative to the LIMA is known it now becomes possible to superim-
pose a 3D image of the LIMA on the 3D image of the tissues behind the sternum.
This effectively gives the operating surgeons the impression of seeing through the
tissues surrounding the LIMA.

In order to allow for precise and safe dissection of the LIMA, it is obvious that the
virtual image of the LIMA must depict the position of the LIMA as precisely as
possible. The allowed tolerance is expected to be less than +/- 2mm in any spatial
direction.

The position of the LIMA relative to the sternum is well known (from the seg-
mented images), however, the position of the robot relative to the sternum (and
thus relative to the LIMA) is much harder to establish. Primarily, this is so because
the sternum moves with the respiratory movements of the patient. Secondly, the
exact position of the sternum is difficult to asses even in the absence of these move-
ments. The precision required for this procedure can therefore not be achieved only
by positioning the robotic system relative to the patients sternum.

To solve this problem, a two-step method is used. The robot held camera is first
positioned as precisely as possible relative to the sternum. The remaining errors in
position are then removed by continuously tracking the movements of the tissues
behind the sternum. The shape of this tissue is known from the CT/MR imaging
step. Observing this tissue using the stereo videoscope provides two image streams
that can be used to define a depth map of the observed scene. This is done by using
standard image processing algorithms for depth recovery from stereo video data
[6]. Once the depth map is known, the position of the camera relative to the tissues
behind the sternum is determined by correlating the depth map to the shape of the
same tissues as determined from the CT/MR images. This procedure is facilitated
by the fact that a good estimate of the camera position relative to the sternum can
be obtained by proper alignment of the robot relative to the patients sternum.
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3 Results

The problem of segmenting the LIMA from the pre-operative CT or MR images is a
relatively simple one to solve, primarily because of the fact that this processing does
not need to take place in real time, it is done before the patient enters the operating
room. The segmentation can thus be performed with manual intervention. We will
therefore not consider this problem any further in this paper.

Superimposing images of the LIMA onto the videoscopic images of the tissues be-
hind the sternum must be done in real time. To test our procedure we have made
a solid model of complex shape that captures the essential challenges of the given
problem. The model is shown in figure 2 and is constructed using LEGOTMpieces.
As the figure clearly shows that the model is two-layered, consisting of an outer
shell enclosing an inner structure thus simulating the LIMA embedded in its sur-
rounding tissue. As the last part of this figure shows, we have also imaged the
model in a CT scanner. In our experimental setup the stereo video camera is held
by a robotic arm (Aesop 3000, Computer Motion), the position of the robotic arm
is known relative to the outer shell of the solid object. The camera generates stereo
images of the solid object. Knowing the position of the camera relative to the outer
shell of the model, and knowing the inner structure of the model from segmented
CT images of it, it now becomes possible to superimpose an image of the inner
structure of the model onto an image showing its surface. This is illustrated in fig-
ure 3

Fig. 2. Lego model, overview, opened to reveal interior structure and image from CT scan.

The problem of generating the depth maps based on the stereo video data must
also take place in real time. We have developed a tool to calibrate the stereo video
camera, and done extensive work on realtime stereo map generation algorithms
[5]. We have also started work on the last problem, that of correlating the depth
maps generated from the video camera with the surface of the 3D model in order
to increase the precision of the placement of the videoscope relative to the model.
Since the approximate position of the video camera relative to the patient or model
is provided by the robotic system, the search space in which to look for the best
correlation is heavily reduced and makes it possible to do the correlation by finding
the affine transformation that will reduce the mean square distance between the
model and the depth map to a minimum.
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Fig. 3. Lego model with superimposed inner structure.

4 Conclusion

We have developed a prototype of a system for generating an augmented real-
ity for surgeons performing totally endoscopic coronary artery bypass (TECAB).
Our main aim is to facilitate the mobilization of the left internal mammary artery
(LIMA) by making it (artificially) visible inside the tissue surrounding it. This will
partially alleviate the problems experienced by surgeons performing TECAB such
as loss of visual and haptic feedback. We have solved the main problems related to
this task and have obtained good results on artificial models. We will in the near
future perform the same tests on data collected on human subjects. As a future ex-
tension of this work, we hope to allow for handheld cameras, this requires that the
positioning of the camera can be made exclusively based on the images.
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