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Abstract

The structure and integrity of the ageing brain is interchangeably linked to physical

health, and cardiometabolic risk factors (CMRs) are associated with dementia and other

brain disorders. In this mixed cross-sectional and longitudinal study (interval

mean = 19.7 months), including 790 healthy individuals (mean age = 46.7 years, 53%

women), we investigated CMRs and health indicators including anthropometric measures,

lifestyle factors, and blood biomarkers in relation to brain structure using MRI-based mor-

phometry and diffusion tensor imaging (DTI). We performed tissue specific brain age pre-

diction using machine learning and performed Bayesian multilevel modeling to assess

changes in each CMR over time, their respective association with brain age gap (BAG),

and their interaction effects with time and age on the tissue-specific BAGs. The results

showed credible associations between DTI-based BAG and blood levels of phosphate

and mean cell volume (MCV), and between T1-based BAG and systolic blood pressure,

smoking, pulse, and C-reactive protein (CRP), indicating older-appearing brains in people

with higher cardiometabolic risk (smoking, higher blood pressure and pulse, low-grade
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inflammation). Longitudinal evidence supported interactions between both BAGs and

waist-to-hip ratio (WHR), and between DTI-based BAG and systolic blood pressure and

smoking, indicating accelerated ageing in people with higher cardiometabolic risk

(smoking, higher blood pressure, and WHR). The results demonstrate that car-

diometabolic risk factors are associated with brain ageing. While randomized controlled

trials are needed to establish causality, our results indicate that public health initiatives

and treatment strategies targeting modifiable cardiometabolic risk factors may also

improve risk trajectories and delay brain ageing.
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1 | INTRODUCTION

It is well established that various cardiometabolic risk factors (CMRs) are

associated with an increased risk of a range of brain disorders, including

stroke, Alzheimer's disease and other dementias, in addition to ageing-

related cognitive decline, supporting an intimate body–brain connection

in ageing (Qiu & Fratiglioni, 2015). Moreover, associations between high

insulin and obesity in childhood and risk for psychosis and depression at

24 years of age indicate that CMRs in childhood represent predictors for

mental disorders later in life (Perry et al., 2021). Research has found that

established CMRs such as blood pressure (Fuhrmann et al., 2019;

Verhaaren et al., 2013), WHR, body mass index (BMI) (Karlsson

et al., 2013; Spangaro, Mazza, Poletti, Cavallaro, & Benedetti, 2018), dia-

betes mellitus (Hoogenboom et al., 2014; Hsu et al., 2012), hypertension

(McEvoy et al., 2015), total elevated cholesterol (Walhovd, Storsve,

Westlye, Drevon, & Fjell, 2014; Williams et al., 2018), smoking

(Jeerakathil et al., 2004), and high low-density lipoprotein (LDL) choles-

terol (Murray et al., 2005), are all associated with brain structure to vari-

ous degrees. However, there is substantial variability among individuals in

terms of impact on the brain and the putative biological factors involved.

Brain-predicted age has recently emerged as a reliable and herita-

ble biomarker of brain health and ageing (Cole et al., 2017; Franke,

Ziegler, Klöppel, & Gaser, 2010; Kaufmann et al., 2019). The differ-

ence between the brain-predicted age and chronological age—also

referred to as the brain age gap (BAG)—can be used to assess devia-

tions from expected age trajectories. These estimations of brain age

may thus have clinical implications, as identifying factors associated

with higher BAG and accelerated ageing can help us detect potential

targets for intervention strategies.

Higher brain age has been associated with poorer cognitive func-

tioning in healthy individuals (Richard et al., 2018) and people with

cognitive impairment (Varatharajah et al., 2018), mild cognitive impair-

ment (MCI), dementia (Kaufmann et al., 2019), and mortality in elderly

people (Cole et al., 2018). Larger BAGs have also been reported

among patients with psychiatric and neurological disorders, including

schizophrenia, bipolar disorder, multiple sclerosis (Høgestøl

et al., 2019; Kaufmann et al., 2019; Tønnesen et al., 2020), depression

(Han et al., 2020), and epilepsy (Pardoe, Cole, Blackmon, Thesen, &

Kuzniecky, 2017; Sone et al., 2019).

While BAG shows substantial heritability (Cole et al., 2017;

Kaufmann et al., 2019), the rate of brain ageing is malleable and

dependent on a range of life events and health and lifestyle factors

(Cole, 2020; Lindenberger, 2014; Sanders et al., 2021). Understanding

the impact of cardiometabolic risk on brain integrity and ageing repre-

sents a window of opportunity wherein interventions targeting key

elements of cardiometabolic health may delay and even prevent path-

ological brain changes (Friedman et al., 2014).

Studies assessing cardiometabolic risk have reported brain age

associations with diastolic blood pressure, BMI (Franke, Ristow, &

Gaser, 2014), obesity (Kolenic et al., 2018; Ronan et al., 2016), and

diabetes (Franke, Gaser, Manor, & Novak, 2013). Larger BAGs have

also been associated with high blood pressure, alcohol intake, diabe-

tes, smoking, and history of stroke in the UK Biobank (Cole, 2020),

and with high blood pressure, alcohol intake, and stroke risk scores in

the Whitehall II MRI sub-sample (de Lange et al., 2020). Despite exis-

ting research, the links between cardiometabolic risk and brain ageing

are still unclear. Longitudinal studies utilizing multimodal imaging may

aid to link individual CMRs to tissue specific effects.

By including cross-sectional and longitudinal data obtained from

790 healthy subjects aged 18–94 years (mean 46.7, SD 16.3), our pri-

mary aim was to investigate how key CMRs interact with tissue-

specific (DTI and T1-weighted) measures of brain ageing. We investi-

gated longitudinal associations between brain age and a range of

CMRs and tested both for main effects across time and interactions

with age and time. Adopting a Bayesian statistical framework, we

hypothesized that key indicators of cardiometabolic risk would be

associated with more apparent brain ageing, both reflected as main

effects across time, and as interactions, indicating a faster pace of

brain ageing over the course of the follow-up period in people with

high cardiometabolic risk.

2 | MATERIAL AND METHODS

2.1 | Sample description

The initial sample consisted of 1,130 (832 baseline, 298 follow up)

datasets from 832 healthy participants from two integrated studies;

2 BECK ET AL.



the Thematically Organized Psychosis (TOP) (Tønnesen et al., 2018)

and StrokeMRI (Richard et al., 2018). Exclusion criteria included neu-

rological and mental disorders, and previous head trauma. The study

was conducted in line with the Declaration of Helsinki and approved

by the Regional Ethics Committee, and all participants provided writ-

ten informed consent. The data and code used in the study is freely

available in a public repository—Open Science Framework (OSF)—and

accessible directly through the OSF webpage (https://osf.io/ujwat/).

Following the removal of 68 MRI datasets after quality checking

(QC) of the MRI data (see Section 2.5), the final sample comprised

1,062 datasets from 790 individuals, including longitudinal data (two

time-points with 19.7 months interval on average (min = 9.8,

max = 35.6) from 272 participants. Demographic information of the

test sample is summarized in Table 1, Figure 1.

Data from the Cambridge Centre for Ageing and Neuroscience

(Cam-CAN: http://www.mrc-cbu.cam.ac.uk/datasets/camcan/; Shafto

et al., 2014; Taylor et al., 2017) was used as an independent training

sample for brain age prediction (see Section 2.6). After QC, MRI data

from 622 participants were included (age range = 18–87, mean age

± standard deviation = 54.2 ± 18.4). Figure S1 shows the age distribu-

tion for the training and test samples.

2.2 | MRI acquisition

MRI was performed at Oslo University Hospital on a GE Discovery

MR750 3T scanner with a 32-channel head coil. DTI data were

acquired with a spin echo planar imaging (EPI) sequence with the fol-

lowing parameters: repetition time (TR)/echo time (TE)/flip angle:

8,150 ms/83.1 ms/90
�
, FOV: 256 � 256 mm2, slice thickness: 2 mm,

in-plane resolution: 2 � 2 mm2, 60 noncoplanar directions

(b = 1,000 s/mm2), and 5 b = 0 volumes, scan time: 8:58 min. In addi-

tion, 7 b = 0 volumes with reversed phase-encoding direction were

acquired. High-resolution T1-weighted data was acquired using a 3D

inversion recovery prepared fast spoiled gradient recalled sequence

(IR-FSPGR; BRAVO) with the following parameters: TR: 8.16 ms, TE:

3.18 ms, flip angle: 12
�
, voxel size: 1 � 1 � 1 mm3, FOV:

256 � 256 mm2, 188 sagittal slices, scan time: 4:43 min.

For the Cam-CAN training set, participants were scanned on a 3T

Siemens TIM Trio scanner with a 32-channel head-coil at Medical

Research Council (UK) Cognition and Brain Sciences Unit (MRC-

CBSU) in Cambridge, UK. DTI data was acquired using a twice—

refocused spin echo sequence with the following parameters a TR:

9,100 ms, TE: 104 ms, FOV: 192 � 192 mm2, voxel size: 2 mm,

66 axial slices using 30 directions with b = 1,000 s/mm2, 30 directions

with b = 2,000 s/mm2, and 3 b = 0 images (Shafto et al., 2014). High-

resolution 3D T1-weighted data were acquired using a magnetization

prepared rapid gradient echo (MPRAGE) sequence with the following

parameters: TR: 2,250 ms, TE: 2.99 ms, inversion time (TI): 900 ms,

flip angle: 9
�
, FOV of 256 � 240 � 192 mm3; voxel

size = 1 � 1 � 1 mm3, GRAPPA acceleration factor of 2, scan time

4:32 min (Shafto et al., 2014).

2.3 | DTI processing and TBSS analysis

Processing steps for single-shell DTI data in the test set followed a

previously described pipeline (Maximov, Alnæs, & Westlye, 2019),

including noise correction (Veraart, Fieremans, & Novikov, 2016),

Gibbs ringing correction (Kellner, Dhital, Kiselev, & Reisert, 2016), cor-

rections for susceptibility induced distortions, head movements and

eddy current induced distortions using topup (http://fsl.fmrib.ox.ac.

uk/fsl/fslwiki/topup) and eddy (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

eddy; Andersson & Sotiropoulos, 2016). Isotropic smoothing was car-

ried out with a Gaussian kernel of 1 mm3 implemented in the FSL

function fslmaths. DTI metrics were estimated using dtifit in FSL and a

weighted least squares algorithm. Processing steps for the training set

followed a similar pipeline with the exception of the noise correction

procedure. Voxelwise statistical analysis of the fractional anisotropy

(FA) data was carried out using Tract-Based Spatial Statistics (TBSS)

(Smith et al., 2006), as part of FSL (Smith et al., 2004). First, FA images

were brain-extracted using BET (Smith, 2002) and aligned into a com-

mon space (FMRI58_FA template) using the nonlinear registration tool

FNIRT (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012),

TABLE 1 Sample descriptives at baseline and follow-up

Baseline

sample (n = 790)

Follow-up

sample (n = 272)

Age (mean ± SD) 46.7 ± 16.3 57.8 ± 15.0

Sex (%)

Male 372 (47.09%) 106 (38.97%)

Female 418 (52.91%) 166 (61.03%)

F IGURE 1 Available baseline and follow-up data. All participants
are shown. Participants with data at baseline are visualized in red dots
(N = 790). The subset (n = 272) with longitudinal measures are
connected to corresponding timepoint with green dots. The mean
interval between timepoints was 1.64 years (SD = 0.5 years). Subplot
shows age distribution at baseline
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which uses a b-spline representation of the registration warp field

(Rueckert et al., 1999). Next, the mean FA image of all subjects was

created and thinned to create a mean FA skeleton that represents the

centers of all tracts common to the group. Each subject's aligned FA

data was then projected onto this skeleton. The mean FA skeleton

was thresholded at FA >0.2. This procedure was repeated in order to

extract axial diffusivity (AD), mean diffusivity (MD), and radial diffusiv-

ity (RD). fslmeants was used to extract the mean skeleton and

20 regions of interest (ROIs) based on a probabilistic white matter

atlas (JHU) (Hua et al., 2008) for each metric. Including the mean skel-

eton values, 276 features per individual were derived in total.

2.4 | FreeSurfer processing

T1-weighted MRI data were processed using FreeSurfer (Fischl, 2012)

7.1.0 for the test set and FreeSurfer 5.3 for the training set. To extract

reliable area, volume, and thickness estimates, the test set including

follow-up data were processed with the longitudinal stream (Reuter,

Schmansky, Rosas, & Fischl, 2012) in FreeSurfer. Specifically, an unbi-

ased within-subject template space and image (Reuter & Fischl, 2011)

is created using robust, inverse consistent registration (Reuter,

Rosas, & Fischl, 2010). Several processing steps, such as skull strip-

ping, Talairach transforms, atlas registration as well as spherical sur-

face maps and parcellations are then initialized with common

information from the within-subject template, significantly increasing

reliability and statistical power (Reuter et al., 2012). Due to the longi-

tudinal stream in FreeSurfer influencing the thickness estimates, and

subsequently having an impact on brain age prediction (Høgestøl

et al., 2019), both cross-sectional and longitudinal data in the test set

were processed with the longitudinal stream. Cortical parcellation was

performed using the Desikan–Killiany atlas (Desikan et al., 2006), and

subcortical segmentation was performed using a probabilistic atlas

(Fischl et al., 2002). Two hundred sixty-nine FreeSurfer based features

were extracted in total, including global features for intracranial vol-

ume, total surface area, and whole cortex mean thickness, as well as

the volume of subcortical structures.

2.5 | QC procedure

Prior to statistical analyses, a rigorous QC procedure was

implemented to ensure sufficient data quality.

For DTI data (N = 1,130) we derived various QC metrics (see

Table S1), including temporal signal-to-noise-ratio (tSNR; Roalf

et al., 2016). Datasets with tSNR z >2.5 standard deviations from the

mean were flagged and manually checked and removed if deemed to

have unsatisfactory data quality. A total of 14 datasets were removed

during QC, leaving the dataset at n = 1,116 scans.

For T1-weighted data, QC was carried out using the ENIGMA

cortical QC protocol including three major steps: outlier detection,

internal surface method, and external surface method. Quality ratings

of each image were recorded using the ENIGMA cortical QC template

for each of the initial 1,130 dataset. A total of 16 datasets were

removed, leaving the dataset at n = 1,114 scans. Next, the separate

datasets from both T1 (N = 1,114) and DTI (N = 1,116) were merged

to form a matching sample by subject ID, leaving the sample at

N = 1,101, consisting of the same subjects that had quality checked

data for both modalities. Finally, this sample was merged with the

CMR data, leaving the final sample used for the study at N = 1,062.

2.6 | Brain age prediction

In line with previous studies (Kuhn et al., 2018; Richard et al., 2018),

we used Cam-CAN to train the brain age prediction models. The

model input included 276 features for the DTI-based age prediction

and 269 features for the age prediction based on T1-weighted data,

as described in Sections 2.3 and 2.4, and summarized in Table S2. Age

prediction was performed using XGBoost regression (https://xgboost.

readthedocs.io/en/latest/python), which is based on a decision-tree

ensemble algorithm used in several recent brain age prediction studies

(Beck et al., 2021; de Lange, Barth, et al., 2020; de Lange, Kaufmann,

et al., 2019; de Lange et al., 2020; Kaufmann et al., 2019; Richard

et al., 2020). Parameters were tuned in nested cross-validations using

five inner folds for grid search (max depth: [2, 10, 1], number of esti-

mators: [60, 220, 40], learning rate: [0.1, 0.01, 0.05]), and 10 outer

folds for validating model performance within the training sample.

The models were fitted using the best estimators, and the optimized

models were applied to the test sample. R2, RMSE, and MAE were cal-

culated to evaluate prediction accuracy in the test set. To adjust for a

commonly observed age-bias (overestimated predictions for younger

participants and underestimated predictions for older participants)

(Liang, Zhang, & Niu, 2019), we applied a statistical correction as pre-

viously described in (de Lange & Cole, 2020); we first fitted

Y¼ α�Ωþβ, where Y is the modeled predicted age as a function of

chronological age (Ω), and α and β represent the slope and intercept.

Next, we used the derived values of α and β to correct predicted age

with Corrected Predicted Age = Predicted Age + Ω� α�Ωþβð Þ½ �
before re-calculating R2, RMSE, and MAE. The age-bias correction

procedure was performed in the test set, and is equivalent to remov-

ing the effect of chronological age from the predictions or BAG values

(see e.g., Beheshti, Nugent, Potvin, & Duchesne, 2019; de Lange

et al., 2021; Liang et al., 2019). BAG was calculated using (corrected

predicted age—chronological age) for each of the models, providing

T1 and DTI-based BAG values for all participants. To test if a

nonlinear age-bias correction yielded different results, we corrected

the predictions using a nonlinear correction (de Lange, Barth,

et al., 2020; de Lange, Kaufmann, et al., 2019). These approaches

showed highly comparable results, as shown in Figure S11.

2.7 | Cardiometabolic risk factors

Clinical information including BMI, systolic and diastolic blood pres-

sure, pulse, WHR, and smoking were collected at the time of MRI,
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with standard hospital biochemical blood measures being collected at

a different site (Table S2). All participants underwent a physical exami-

nation. BMI (weight in kg/height in m2) was calculated from weighing

the participants on calibrated digital weights wearing light clothing

and no shoes. Waist circumference was measured midway between

lowest rib and the iliac crest. Blood pressure was recorded in sitting

position after resting before MRI scans were collected and after.

Blood samples were drawn and analyzed for hemoglobin, erythrocyte

indexes (MCV [mean corpuscular volume], MCH [mean corpuscular

hemoglobin], MCHC [mean corpuscular hemoglobin concentration]),

thrombocytes, sodium, potassium, chloride, calcium, magnesium,

phosphate, creatinine, ALAT (alanine transaminase), CK (creatine

kinase), LD (lactate dehydrogenase), GT (gamma-glutamyl transferase),

CRP (C-reactive protein), total cholesterol, LDL (low-density lipopro-

tein) cholesterol, HDL (high-density lipoprotein) cholesterol, triglycer-

ides, and glucose. Blood samples were analyzed at the Department of

Medical Biochemistry, Oslo University Hospital, on several routine

instruments: Integra 800, Abbot Architect, i2000, Cobas 8000 e602

and Cobas 8000 e801 (Roche Diagnostics, Basel, Switzerland: www.

roche.com/about/business/diagnostics.html) using standard methods

controlled by internal and external quality control samples (Rødevand

et al., 2019).

Missing entries (<15% for each variable) were imputed using the

MICE package (van Buuren & Groothuis-Oudshoorn, 2011) in R,

where five imputations were carried out using the predictive mean

matching method (package default). The distribution of the original

and imputed data was inspected (Figures S2–S5) and the imputed data

were deemed as plausible values. Of the five imputations, the first

was used for the remainder of the study. Additional QC was carried

out on all CMRs using a multivariate outlier detection algorithm,

where anomalies in the data are detected as observations that do not

conform to an expected pattern to other items. Using the R package

mvoutlier (Filzmoser, Garrett, & Reimann, 2005), potential outliers

were flagged using the Mahalanobis distance (Figures S6 and S7).

Informed by an interactive plot using the chisq.plot function, manual

outlier observations of each of these flagged values deemed eight of

them as true outliers (Figure S8), leading to their removal from the ini-

tial 1,120 CMR dataset, and leaving the dataset at 1,112. The final

sample was further reduced to 1,062 datasets (from 790 individuals)

when merged with the available MRI datasets (N = 1,101).

F IGURE 2 Associations between CMRs. Heatmap showing correlation matrix of all CMRs (scaled), where the lower diagonal shows partial
correlations (calculated by taking the residuals from two associated resistant regression models and calculating the correlations between them),
and the upper diagonal shows full correlations. Hierarchical clustering of the variables was performed based on the full correlations and revealed
five cluster groups, shown by numbers in brackets. Table S3 provides a detailed overview of all abbreviations used and Figure S9 an overview of
the hierarchical clustering-derived dendrogram used in the figure
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To visualize the associations between the CMRs, hierarchical clus-

tering of the variables was performed using “hclust,” part of the “stats”
package in R (R Core Team, 2012), which uses the complete linkage

method to form clusters. Five cluster groups were revealed. Figure 2

provides the full (upper diagonal) and partial (lower diagonal) correla-

tions with results of hierarchical clustering represented by numbers in

brackets for each variable.

2.8 | Statistical analysis

All statistical analyses were carried out using R, version 3.6.0 (www.r-

project.org/; R Core Team, 2012). To investigate the associations

between the CMRs and BAG, we carried out Bayesian multilevel

models in “Stan” (Stan Development Team, 2019) using the brms

(Bürkner, 2017, 2018) package in R (R Core Team, 2012). For descrip-

tive purposes, we first tested associations between BAG and time.

Here, BAG (for T1 and DTI separately) was entered as the dependent

variable while timepoint was entered as the independent variable. Sec-

ond, we tested associations between each CMR and time and age

(chronological age calculated as years between date of birth and date of

MRI scan). Here, timepoint and age were entered as the independent

variable (in separate analyses). Third, to address the primary aim of the

study, we tested for associations between BAG and each CMR across

time. Here, BAG (for T1 and DTI separately) was entered as the depen-

dent variable with each CMR separately entered as the independent

fixed effects variable along with age, sex, and time, with subject ID as

random effects. Fourth, in order to test our hypothesis that the associa-

tions between cardiometabolic risk and BAG vary as a function of age

both cross-sectionally and longitudinally, interaction effects of CMR

and age on BAG, and CMR and time on BAG, were included in the

models as additional fixed effects. For each model, timepoint and age

were included in the models where appropriate, while sex was added to

every model. In order to prevent false positives and to regularize the

estimated associations, we defined a strong normal prior around zero

with a standard deviation of 0.3 for all coefficients bar BAG � time. For

each coefficient of interest, we report the mean estimated value and its

uncertainty measured by the 95% credible interval of the posterior

distribution. We calculated Bayes factors (BFs) using the Savage-Dickey

method (Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010). For a

pragmatic guide on BF interpretation, see Table S4.

TABLE 2 Average R2, root mean square error (RMSE), and mean
absolute error (MAE) ± standard deviation for the age prediction
models within the training sample (Cam-CAN), test set, and age-
corrected test set

Training
sample
(Cam-CAN)

Test set before
age-bias
correction

Test set after
age-bias
correction

DTI R2 .82 ± .04 .72 .92

RMSE 7.67 ± 0.83 10.11 5.12

MAE 6.15 ± 0.55 8.37 4.06

T1 R2 .81 ± .04 .73 .87

RMSE RMSE 9.11 6.55

MAE MAE 7.2 5.21

TABLE 3 Descriptive statistics at baseline for each variable bar
smoking, which is summarized in its own table due to its ordinal
nature

Mean ± SD Min Max

Hematology

Hemoglobin 14.2 ± 1.2 9.8 18.6

MCHC 33.2 ± 1 29 36

MCV 90.6 ± 3.9 76 108

MCH 30 ± 1.4 22.2 36.7

Thrombocytes 255.8 ± 55.4 81 499

Electrolytes

Phosphate 1.1 ± 0.2 0.5 1.6

Calcium 2.4 ± 0.1 2.1 2.9

Sodium 140.6 ± 2.1 131 147

Chloride 101.6 ± 2.2 93 107

Magnesium 0.9 ± 0.1 0.6 1.1

Potassium 4.3 ± 0.3 2.9 5.9

Metabolites

Creatinine 74.7 ± 13 46 115

Enzymes/Markers

ALAT 24.7 ± 12.3 3 97

CK 126.7 ± 75 31 499

LD 168 ± 29 83 293

GT 24.7 ± 17.4 5 149

Carbohydrates

Glucose 5.3 ± 0.8 2.3 10.6

Proteins/Lipids

HDL cholesterol 1.6 ± 0.5 0.6 4.4

Total cholesterol 5.1 ± 1.1 2.9 8.9

LDL cholesterol 3.2 ± 0.9 1.2 6.4

CRP 1.6 ± 1.7 0.4 12.2

Triglycerides 1.3 ± 0.9 0.3 7.7

Clinical measures

WHR 0.9 ± 0.1 0.5 1.3

Systolic 127.6 ± 17.5 90 190

Diastolic 80 ± 9.6 50 113.7

Pulse 66 ± 9.5 40 97.6

BMI 25.2 ± 4.1 16.8 43.4

TABLE 4 Smoking at baseline

Frequency (%)

Never smoked 593 (75.1)

Previous smoker 127 (16.0)

Current smoker 70 (8.9)
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3 | RESULTS

3.1 | Brain age prediction

Within the training sample, the correlation between predicted and

chronological age was r = .91 95% CI [0.89, 0.92] for the DTI model,

and r = .90 [0.87, 0.92] for the model based on T1-weighted data.

Applying the model to the test sample resulted in a correlation

between predicted and chronological age of r = .85 [0.83, 0.87] for

the DTI model, and r = .85 [0.84, 0.87] for the model based on

T1-weighted data. Figure S11 shows the correlations before and

after age-bias correction. R2, RMSE, and MAE are provided in

Table 2.

3.2 | Cardiometabolic risk factors

3.2.1 | Descriptive statistics

Tables 3 and 4; Figure 3.

3.3 | Bayesian multilevel models

3.3.1 | Effects of time on brain age gaps

Figure 4 shows predicted age for each model plotted as a function of

age. Bayesian modeling revealed higher DTI (β = 0.24), and T1

(β = 0.19), based BAG at follow-up than baseline (Figure S12).

3.3.2 | Effects of time and age on CMRs

Figure 5 shows the posterior distributions for estimates of the coeffi-

cient for time on each variable. Full table of results for time and age

effects on each variable can be seen in Table S5. Supplementary visu-

alization of the effects of time and age on a selection of the CMRs

can be seen in Figures S13–S15.

Briefly, the tests confirmed extreme evidence (BF <0.01) in favor

of an association between time and calcium (β = �.13), WHR

(β = �.10), sodium (β = .13), chloride (β = .15), MCV (β = .10), systolic

blood pressure (β = �.08), and diastolic blood pressure (β = �.13).

F IGURE 5 Associations
between cardiometabolic risk
factors and time. The figure
shows posterior distributions of
the estimates of the coefficient.
Estimates for time on each
variable with red dot in each plot
representing mean value. Color

scale follows direction evidence.
Width of distribution represents
the uncertainty of the parameter
estimates
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Very strong evidence was provided for BMI (BF = 0.03, β = .05),

while strong evidence was provided for triglycerides (BF = 0.08,

β = �.08), hemoglobin (BF = 0.07, β = �.07), and MCH (BF = 0.08,

β = .08). Strong evidence was also provided in favor of no (null) asso-

ciation between time and pulse (BF = 11.8, β = .008), magnesium

(BF = 10.8, β = .003), and LDL cholesterol (BF = 10.7, β = �.007).

Figure 6 shows the posterior distributions for estimates of the

coefficient for age on each variable. The tests revealed extreme evi-

dence (BF <0.01) in favor of an age association for phosphate

(β = �.25), HDL cholesterol (β = .17), glucose (β = .25), GT (β = .21),

WHR (β = .45), LD (β = .33), MCV (β = .30), MCH (β = .21), total cho-

lesterol (β = .36), LDL cholesterol (β = 0.30), systolic (β = 0.59) and

diastolic blood pressure (β = .33), potassium (β = .18), and smoking

(β = .23). The models revealed moderate evidence in favor of no

changes over time for thrombocytes (BF = 7.51, β = �.02), calcium

(BF = 6.68, β = .03), creatinine (BF = 3.24, β = .05), and chloride

(BF = 5.82, β = �.03).

3.3.3 | Associations between BAG and CMRs

Figures 7 and 8 show posterior distributions of the estimates of the

coefficient reflecting the associations between each CMR and BAGs,

and Tables S6 and S7 show full table of results. Credible intervals and

evidence ratios can be found in Figure S16. The tests revealed moder-

ate evidence in favor of an association between DTI BAG and phos-

phate (BF = 0.17, β = .29) and MCV (BF = 0.14, β = �.32), and

anecdotal evidence for WHR (BF = 0.89, β = .17), creatinine

(BF = 0.6, β = .23), MCH (BF = 0.46, β = �.24), and total cholesterol

(BF = 0.76, β = �.19).

Moderate evidence in favor of an association with T1 BAG was

provided for systolic blood pressure (BF = 0.13, β = .37), smoking

(BF = 0.17, β = .35), pulse (BF = 0.3, β = .29), and CRP (BF = 0.21,

β = .29), and anecdotal evidence for BMI (BF = 0.86, β = �.20), LD

(BF = 0.55, β = 0.24), and creatinine (BF = 0.52, β = �.26). No results

provided moderate or stronger evidence (BF >3) in favor of the null.

3.3.4 | Interaction effects of time and CMRs on
brain age gap

Figures 9 and 10 show posterior distributions reflecting estimates of

the coefficient for the interaction between time and each CMRs on

DTI and T1 BAGs. Tables S8 and S9 show full table of results. Credible

intervals and evidence ratios can be found in Figure S17. For DTI

BAG, the evidence supporting an interaction with time was strong for

F IGURE 6 Associations
between cardiometabolic risk
factors and age. The figure shows
posterior distributions of the
estimates of the coefficient.

Estimates for age on each variable
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WHR (BF = 0.09, β = .25) and systolic blood pressure (BF = 0.07,

β = .25), indicating faster pace of brain ageing among people with

higher WHR and systolic blood pressure. This is visualized in

Figure S18. The models further indicated moderate evidence for

smoking (BF = 0.31, β = .19) and anecdotal evidence for creatinine

(BF = 0.73, β = .15).

For T1 BAG, the evidence supporting an interaction with time

was strong for WHR (BF = 0.06, β = .30), indicating faster pace of

brain ageing among people with higher WHR. The models also rev-

ealed moderate evidence for GT (BF = 0.11, β = .27), and anecdotal

for pulse (BF = 0.63, β = .17), triglycerides (BF = 0.58, β = .22), ALAT

(BF = 0.37, β = .23), hemoglobin (BF = 0.64, β = .18), total choles-

terol (BF = 0.72, β = .17), and LDL cholesterol (BF = 0.38, β = .21).

Thrombocytes (BF = 3.34, β = �.02), CRP (BF = 3.18, β = �.01),

phosphate (BF = 3.11, β = �.03), ALAT (BF = 3.06, β = �.02), CK

(BF = 3.23, β = �.01), LD (BF = 3.2, β = �.01), sodium (BF = 3.1, β

<.01), chloride (BF = 3.16, β = .04), total cholesterol (BF = 3.14,

β = �.03), and LDL cholesterol (BF = 3.19, β = �.01) showed moder-

ate evidence in favor of no interaction effect with time on DTI BAG (-

Table S4). For T1 BAG, only MCV showed moderate evidence in favor

of no association (BF = 3, β <.01).

3.3.5 | Interaction effects of age and CMRs on
changes in brain age gap

Figures 11 and 12 show posterior distributions of the estimates of the

coefficient for the interaction between age and each CMR on DTI and

T1 BAGs. See Tables 10 and 11 for full table of results. Credible inter-

vals and evidence ratios can be found in Figure S19. The analysis pro-

vided strong support of an interaction effect with age on DTI BAG for

GT (BF = 0.09, β = .36) and systolic blood pressure (BF = 0.02,

β = .44), indicating that GT and systolic blood pressure are more

important predictors of brain age with increasing age. This is visual-

ized in Figure S20. The models further indicated moderate support for

WHR (BF = 0.18, β = .31), and anecdotal support for thrombocytes

(BF = 0.56, β = �.23), glucose (BF = 0.36, β = .24), BMI (BF = 0.72,

β = .21), CK (BF = 0.38, β = �.25), creatinine (BF = 0.4, β = �.25),

diastolic blood pressure (BF = 0.51, β = .23), and potassium

(BF = 0.6, β = �.20).

The support of an interaction effect with age on T1 BAG was

strong for CRP (BF = 0.01, β = .42) and systolic blood pressure

(BF = 0.01, β = .55), indicating that CRP and systolic blood pressure

are increasingly important predictors of BAG with increasing age. The

F IGURE 7 Associations
between cardiometabolic risk
factors and DTI BAG. The figure
shows posterior distributions of
the estimates of the coefficient.
Estimates for each variable on
DTI BAG
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models further indicated moderate evidence for pulse (BF = 0.25,

β = .30), glucose (BF = 0.15, β = .33), triglycerides (BF = 0.19,

β = .36), WHR (BF = 0.3, β = .31), CK (BF = 0.13, β = �.35), and

smoking (BF = 0.18, β = .35), and anecdotal for phosphate

(BF = 0.63, β = �.23), BMI (BF = 0.67, β = .24), ALAT (BF = 0.44,

β = .25), LD (BF = 0.72, β = .21), MCHC (BF = 0.41, β = �.26), MCV

(BF = 0.62, β = .24), total cholesterol (BF = 0.88, β = .20), and LDL

cholesterol (BF = 0.88, β = .19). No results provided moderate or

stronger evidence (BF >3) in favor of the null hypothesis.

4 | DISCUSSION

Brain and cognitive ageing is highly heterogeneous and may involve a

range of biological processes. Cardiometabolic risk factors are associ-

ated with increased risk of brain disorders, and a better understanding

of the links between brain ageing and malleable indicators of car-

diometabolic health may provide a window of opportunity for inter-

ventions. The current cross-sectional and longitudinal findings

support that higher cardiometabolic risk is associated with faster brain

ageing. Both the overall BAG and the rates of change were associated

with a range of CMRs, including anthropometric measures, blood

lipids, lifestyle factors (smoking), and blood pressure.

4.1 | Associations between CMRs and age, and
interactions with age

Age showed credible associations with several CMRs, including

phosphate, HDL cholesterol, glucose, GT, WHR, LD, MCV, MCH,

total cholesterol, LDL cholesterol, systolic and diastolic blood pres-

sure, potassium, and smoking. Interaction effects for age and

CMRs on DTI BAG were evident for GT, systolic blood pressure,

and WHR. For T1 BAG, age interaction effects were evident for

CRP and systolic blood pressure, pulse, triglycerides, WHR, CK,

and smoking.

In general, these associations are in line with previous studies

showing associations between CMR and age-related neurodegenera-

tive diseases and cognitive decline. For example, higher serum phos-

phate, an element filtered by the kidney, is associated with increased

F IGURE 8 Associations
between cardiometabolic risk
factors and T1 BAG. The figure
shows posterior distributions of
the estimates of the coefficient.
Estimates for each variable on
T1 BAG

12 BECK ET AL.



risk of incident dementia (Li, Xie, Bowe, Xian, & Al-Aly, 2017), and risk

of brain hemorrhage (Yamada et al., 2016), while low serum phos-

phate level is associated with cerebral β-amyloid deposition (Park

et al., 2017), increased risk of brain infarction in hemodialysis patients

(Yamada et al., 2016), and lower composite score in relation to cogni-

tive function (Basheer, Pradeep Kumar, Sreekumaran, &

Ramakrishna, 2016).

Previous research has also found that high serum potassium

levels were associated with MCI (Vintimilla et al., 2018), while high

glucose levels were associated with low gray matter density and FA

(Weinstein et al., 2015). Higher GT levels, as an index of liver function,

has previously been associated with brain volume shrinkage in

patients with alcohol dependence (Chen et al., 2012), brain infarcts in

a healthy population (Nam et al., 2019), and cardiovascular mortality

(Ruttmann et al., 2005).

4.2 | Associations between CMR and brain ageing,
and interactions with time

Supporting the hypothesized link between cardiometabolic risk and

brain ageing, our findings demonstrated associations between several

CMRs and BAG. Strongest evidence was found for phosphate and

MCV for DTI BAG, and systolic blood pressure, smoking, pulse, and

CRP for T1 BAG, indicating older-appearing brains in people with

poorer cardiometabolic health. Further, our longitudinal analyses rev-

ealed that the rate of brain ageing across the study period was

influenced by cardiometabolic risk, with strong evidence for WHR for

both BAG models, and systolic blood pressure for DTI BAG. In addi-

tion, moderate evidence of smoking was found for DTI BAG. For

these effects, reduced cardiometabolic health was associated with

increased rate of brain ageing.

In general, these associations are in line with previous studies

showing associations between CMRs and age-related cognitive

decline, with higher MCV levels being associated with reduced epi-

sodic memory, global cognitive function, and mental status (Chen

et al., 2020; Gamaldo, Ferrucci, Rifkind, Longo, & Zonderman, 2014),

in addition to an increased risk of cerebrovascular and cardiovascular

related deaths (Wu, 2018). Moreover, related health markers of red

blood cell measures (MCHC) have previously been associated with

higher depressive symptom scores (Lee et al., 2017).

Higher levels of CRP, a systemic marker of inflammation, have previ-

ously been associated with smaller temporal lobes (Bettcher et al., 2012),

reduced working memory, smaller cortical thickness in frontal, insula, and

F IGURE 9 Interaction effects
between cardiometabolic risk
factors and time on DTI BAG. The
figure shows posterior
distributions of the estimates of
the coefficient. Estimates for the
interaction effect of time and
each CMRs on DTI BAG
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temporal brain regions (Jacomb et al., 2018), worse performance in tests

assessing executive functions, reduced global FA (Wersching et al., 2010),

and increased cerebral myoinositol (Eagan et al., 2012). Although the

mechanisms remain unclear, elevated CRP has also been found in patients

with acute psychosis and schizophrenia (Jacomb et al., 2018).

While no direct support from studies looking at WHR and BAG

currently exists, previous studies have reported associations between

obesity and white matter DTI (FA and MD), white matter volume

(Karlsson et al., 2013) and brain age (Kolenic et al., 2018; Ronan

et al., 2016). Additionally, research investigating the association

between adipose tissue and brain health has recently revealed signifi-

cant negative associations between BMI and white matter surface

area and cortical gray matter volume, and between WHR and caudate

volume (Gurholt et al., 2020).

Our results demonstrating that elevated systolic blood pressure

and smoking were associated with faster brain ageing over time are in

line with previous cross-sectional studies, with systolic blood pressure

reportedly being associated with white matter BAG (de Lange

et al., 2020) and reduced cerebral vascular density (Williamson

et al., 2018). Similarly, smoking has also been associated with

decreased total brain volume (Reiman et al., 2008) and reduced cere-

bral vascular density (Williamson et al., 2018). Moreover, longitudinal

studies have reported higher rates of annual white matter lesion pro-

gression in subjects with increased systolic blood pressure (Verhaaren

et al., 2013).

Albeit with moderate evidence, the rate of brain ageing was also

associated with increased pulse and several key blood biomarkers

reflecting various aspects of cardiometabolic health, including creati-

nine, GT, triglycerides, ALAT, total and LDL cholesterol, and hemoglo-

bin. These findings jointly contribute to the larger picture of

modifiable CMRs influencing brain ageing. Additionally, the findings

are largely in line with previous studies demonstrating more white

matter hyperintensities in people with lower hemoglobin levels, and

less coherent white matter in people with high total and LDL choles-

terol and high triglyceride levels (Williams et al., 2013).

4.3 | Future research and recommendations for
treatment

In common with other imaging based surrogate markers, brain

predicted age should be understood as not only a phenomenon

impacted by the effects of ageing, but also by the effects of a lifetime

of exposure to positive and negative lifestyles and environments,

F IGURE 10 Interaction
effects between cardiometabolic
risk factors and time on T1 BAG.
The figure shows posterior
distributions of the estimates of
the interaction effect of time and
each variable on T1 BAG. Width
of the distribution represents the
uncertainty of the parameter

estimates

14 BECK ET AL.



coupled with a genetic component that plays a crucial role in the vari-

ation. Despite not being able to disentangle the contribution of each

of these components when looking at an individual's predicted age

and subsequent brain age gap, this disparity between chronological

and predicted age still provides us with an individualized marker of

deviation from the expected value. And with this, recommendations

for treatment can focus on the individual and target management

of risk.

Alternatively, early intervention strategies that place their focus

on prevention rather than management of risk may be more benefi-

cial. For example, Williamson et al. (2018) found that cardiovascular

health in early adulthood relates to brain atrophy in later life. McEvoy

et al. (2015) found that white matter alterations appear early in the

course of hypertension and may persist despite adequate treatment.

The implication of this suggests that preventive strategies that pro-

mote cardiometabolic health early may be more beneficial in

prolonging healthy brain ageing. Moreover, maintaining the structure

of the brain in a younger state may have profound effects on delaying

the onset of age-related neurodegenerative diseases and cognitive

decline (Qiu & Fratiglioni, 2015; Steffener, 2016). While the current

longitudinal study focuses on cardiometabolic risk factors, previous

cross-sectional results from a partly overlapping sample has shown

poorer performance on cognitive tests in individuals with an over-

estimated age (Richard et al., 2018). Future research may aim to inte-

grate cardiometabolic risk factors with both brain imaging data and

crude measures of cognitive ability in a longitudinal context. Informed

by studies showing that higher levels of physical exercise

(Steffener, 2016) and meditation (Luders, Cherbuin, & Gaser, 2016)

are associated with lower brain ageing, interacting with modifiable

CMRs may change risk trajectories and prevent progression to disease

for a manifold of cardiovascular and neurodegenerative diseases as

well as mental disorders (Ringen et al., 2018; Ringen, Engh, Birkenaes,

Dieset, & Andreassen, 2014; Schmitt et al., 2018).

4.4 | Strengths and limitations

The current study had several strengths. As there is both variability in

the brain ageing process from person to person (Aycheh et al., 2018),

and variability in CMRs, the current study benefitted from a mixed

cross-sectional and longitudinal design, whereby changes can be

tracked across timepoints. For brain age, the prediction models had

high accuracy, and separate diffusion and T1-weighted brain age gaps

provided insight into modality-specific impact of CMRs. Most brain-

F IGURE 11 Interaction
effects between cardiometabolic
risk factors and age on DTI BAG.
The figure shows posterior
distributions of the estimates for
the interaction effect between
age and each variable on DTI
BAG, with red dot representing
mean value. Width of the

distribution represents the
uncertainty of the parameter
estimates
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age models use only T1-weighted structural MRI but changes in white

matter microstructure and coherence may precede alterations that

may not be detected by T1-weighted MRI (Cole, 2020).

Some limitations must also be addressed. The use of brain age

prediction for generating imaging-based biomarkers continue to be

extended and developed (Anatürk et al., 2021; Franke & Gaser, 2019;

Peng, Gong, Beckmann, Vedaldi, & Smith, 2019; Smith, Vidaurre,

Alfaro-Almagro, Nichols, & Miller, 2019). While several methods for

age-bias correction have been proposed (Beheshti et al., 2019; Liang

et al., 2019; Smith et al., 2019), many of these methods provide equiv-

alent results (de Lange et al., 2021; de Lange & Cole, 2020). Adjusting

for age-bias is not straight-forward as it can in some cases lead to

inflated values, particularly in datasets with a narrow age range where

the variation is small (de Lange et al., 2021). Improving methods for

age bias (Treder et al., 2021) or incorporating uncertainties into the

predictions (Hahn et al., 2021; Marquand et al., 2019) represent prom-

ising developments toward robust markers for brain health and dis-

ease. Another limitation is that the sample is predominantly ethnic

Northern European/Scandinavian, restricting our ability to generalize

to the wider public and other population groups of generally higher or

lower risk than our sample. Moreover, the sample is generally healthy,

and biases due to nonrandom attrition could be introduced.

Contrarily, the range of the values for many blood test and pressure

measurements reveal incidental indication of possible kidney failure,

anaemia, platelet disorder, hyperlipidaemia, and hypertension. Future

studies should utilize a more comprehensive cardiometabolic risk

assessment detailing dietary routines, alcohol intake, psychosocial

stress, and physical activity, which jointly have been shown to account

for 90% of the population-attributable risk of myocardial infarction in

men and 94% in women (Yusuf, Hawken, & Ounpuu, 2005). With

these limitations in mind, a degree of scepticism toward relating the

results clinically is warranted, as some results may be driven by tem-

porary physiological variations and food intake prior to blood testing.

Additionally, scepticism is warranted regarding the specificity of the

findings given that many of the CMRs included in the study are

related to each other to some degree. While very few CMRs reveal

correlation coefficients that indicate multicollinearity, there may still

be some redundancy of different variables showing the same informa-

tion or the estimate of a predictor being less precise. Structural speci-

ficity must also be considered, as supplementary analysis revealed a

correlation between T1 and DTI BAG (Figure S22). Future research

could consider relatedness of measures by adopting approaches that

model complex relationships among variables better (Wang

et al., 2020).

F IGURE 12 Interaction
effects between cardiometabolic
risk factors and age on T1 BAG.
The figure shows posterior
distributions of the estimates for
the interaction effect between
age and each variable on T1 BAG,
with red dot representing mean
value. Width of the distribution

represents the uncertainty of the
parameter estimate
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The longitudinal aspect of the study must also be discussed.

Although the FreeSurfer longitudinal stream was carried out for both

cross sectional and longitudinal data to avoid thickness estimates—

and consequently T1 BAG—being influenced for follow up data,

recent research suggests number of acquisitions per individual has

an impact on the function of the FreeSurfer longitudinal pipeline

(Beare et al., 2021). Further, the imputation procedure (MICE) was

originally proposed for cross-sectional data, and while not in the

scope of this study, more complex imputation methods that explic-

itly reflect the longitudinal structure of analysis models may be of

interest for future studies. Last, the study may be limited due to a

mean interval of 19.7 months for only one follow-up. Long-term lon-

gitudinal studies with several follow up sessions will be required to

determine the temporal course and clinical predictive value of our

findings in relation to future cardiometabolic disease and brain

ageing.

The findings provide further support to the notion of the BAG

reflecting individual variation in brain ageing (de Lange et al., 2020;

Niu et al., 2020). While the modality-specific grey and white matter

models showed similar performance, T1- and DTI-based BAGs rev-

ealed different associations with various CMRs. While it is likely that

tissue specific brain age models capture biologically distinct informa-

tion beyond single-modality models (de Lange et al., 2020; Richard

et al., 2018; Smith et al., 2020), future research should look into addi-

tional regional modeling of tissue-specific brain ageing to detect asso-

ciations with CMRs and other health indicators.

4.5 | Conclusion

Our findings support that cardiometabolic risk factors including sys-

tolic blood pressure, WHR, and smoking, are associated with an older-

appearing brain and accelerated brain ageing. While evidence demon-

strating that effective management of modifiable CMRs reduces

severity of associated brain imaging abnormalities is needed, promo-

tion of improved cardiometabolic health and increasing existing

knowledge on the links between the structure and function of the

brain and cardiometabolic health can aid the development of preven-

tative and risk-management treatment strategies in the general popu-

lation and, likely, among patients with neurodegenerative and mental

disorders.
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