
Modular Soundness Checking of
Feature Model Evolution Plans

Ida Sandberg Motzfeldt

Thesis submitted for the degree of
Master in Informatics: Programming and System

Architecture

(Software)

60 credits

Department of Informatics

Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Spring 2021

Modular Soundness Checking of
Feature Model Evolution Plans

Ida Sandberg Motzfeldt

© 2021 Ida Sandberg Motzfeldt

Modular Soundness Checking of Feature Model Evolution Plans

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

http://www.duo.uio.no/

Abstract

A software product line (SPL) is a family of closely related software
systems which capitalizes on the reusability and variability of the software
products. An SPL can be modelled using a feature model, a tree-like
structure from which all the configurations of the SPL can be derived.
Large projects such as an SPL require long-term planning, and plans for
SPLs may also be defined in terms of feature models, called feature model
evolution plans (FMEP). An FMEP gives information about what a feature
model looks like at each stage of the plan.

As business requirements often change, FMEPs should support interme-
diate change. Such changes may cause paradoxes in an FMEP, e.g. a node
left without a parent, making the plan impossible to realise. The complex
nature of FMEPs makes detecting paradoxes by hand impractical. Cur-
rent tools exist to validate FMEPs, but require analysis of the entire plan
even when a modification affects only small parts of it. For larger FMEPs,
this is inefficient. Thus, there is a need for a method which detects such
paradoxes in a more efficient way.

In this thesis, we present a representation for FMEPs, called an interval-
based feature model (IBFM). This representation enables local validation,
by which we mean validating only the parts of the plan that are affected
by the change. We define operations for updating an IBFM, and methods
for detecting paradoxes resulting from an operation. Moreover, we give
a proof of correctness for the method and an implementation as proof of
concept.

Using these methods, it is possible to create an efficient verification tool
for modification of FMEPs. This may be used as basis for a productive
SPL planning tool.

Acknowledgements

I would like to thank my supervisors, Ingrid and Crystal, for helping
and motivating me through the process of writing this thesis. They are
both highly academically gifted and genuinely nice people. It has been a
pleasure to work with them, both on the thesis and the research project.
I am grateful that we got to know each other on a personal level through
the research trips.

I would also like to thank Adrian, Christoph, and Michael for their help
and support, and for welcoming us to Germany and Braunschweig for
our collaboration. The trips to Germany and our meetings in Oslo have
some of the highlights during my studies, both academically and socially.
I especially enjoyed the Christmas market in Braunschweig. I am very
proud to have my name on a published paper alongside all these great
and very clever people.

The Department of Informatics has been an excellent place to study. I
have made valuable and lasting friendships here, and met some of my
favourite people. Academically, I have thrived here both as a student and
as a teaching assistant, largely due to the warm social environment at this
department.

I am grateful to Lars for our morning coffees during the pandemic, and
for helping me design my favourite symbol ∈≤≥. His enthusiasm inspires
me.

A special thanks goes to Eirik, who has been my greatest support and
friend during our studies. He has taught me a lot over the course of our
various academic collaborations, patiently helping and encouraging me
whenever my motivation has faltered. Our late night study sessions have
been some of the best times I have had during the five years we have
studied together. I am grateful to have had such a wonderful friend to
write my thesis with.

Finally, I wish to thank my parents, who have always encouraged me to
pursue my interests and helped me achieve my goals.

Ida Sandberg Motzfeldt
Oslo, 2021

ii

Contents

I Introduction and Background 1

1 Introduction 3
1.1 The LTEP Project . 4
1.2 Research Questions . 5
1.3 Contributions . 6
1.4 Chapter Overview . 6

2 Background 9
2.1 Software Product Lines . 9

2.1.1 Feature Models . 10
2.1.2 Feature Model Evolution Plans 12

2.2 Static Analysis . 13
2.2.1 Soundness . 15

II Definitions, Analysis, and Soundness Proofs 17

3 Formalizing the Feature Model Evolution Plan 19
3.1 Interval-Based Feature Model 19

3.1.1 Example — Application of Interval-Based Feature
Model . 25

3.1.2 Example — Interval-Based Feature Model 28
3.2 Operations . 28
3.3 Temporal and Spatial Scopes of Update Operations 30

4 A Rule System for Analysis of Plan Change 37
4.1 Analysis Rule for Adding a Feature 38

4.1.1 Example — Application of the ADD-FEATURE Rule . . 39
4.2 Analysis Rule for Adding a Group 46
4.3 Analysis Rule for Removing a Feature 46
4.4 Analysis Rule for Removing a Group 47
4.5 Analysis Rule for Moving a Feature 49

4.5.1 Algorithm for Detecting Cycles Resulting from
Move Operations . 50

4.6 Analysis Rule for Moving a Group 53

iii

4.7 Analysis Rule for Changing the Variation Type of a Feature . 54
4.8 Analysis Rule for Changing the Variation Type of a Group . 55
4.9 Analysis Rule for Changing the Name of a Feature 57

5 Soundness 59
5.1 Soundness for Interval-Based Feature

Models . 59
5.2 Soundness of the Rules . 61

5.2.1 Soundness of the Add Feature Rule 62
5.2.2 Soundness of the Move Feature Rule 66

5.3 Soundness of the Rule System 69

6 Implementation 71
6.1 Overview . 71

6.1.1 Translation from Definitions to Types 72
6.1.2 Example — Encoding the Interval-Based Feature

Model . 73
6.1.3 Interpreting the Rules as Code 75

III Conclusion 77

7 Conclusion and Future Work 79
7.1 Addressing the Research Questions 79
7.2 Future Work . 80
7.3 Conclusion . 81

A Remaining Soundness Proofs 85
A.1 Soundness of the Add Group Rule 85
A.2 Soundness of the Remove Feature Rule 87
A.3 Soundness of the Remove Group Rule 91
A.4 Soundness of the Move Group Rule 94
A.5 Soundness of the Change Feature Variation Type Rule 98
A.6 Soundness of the Change Group Variation Type Rule 100
A.7 Soundness of the Change Feature Name Rule 102

iv

List of Figures

1.1 Simple paradox . 4

2.1 Example feature model for a coffee machine 10
2.2 Coffee machine with added touch interface 12
2.3 Formalized feature model evolution plan 13

3.1 Interval map example . 22
3.2 Small interval-based feature model 27
3.3 Washing machine visualisation 28
3.4 Add feature scope visualisation 31
3.5 Move operation causing cycle 33

4.1 The ADD-FEATURE rule . 38
4.2 compatibleTypes . 39
4.3 setFeatureAttributes . 39
4.4 addChildFeature . 39
4.5 Add feature example — original plan 40
4.6 Add Feature — modified plan 43
4.7 The ADD-GROUP rule . 45
4.8 addChildGroup . 45
4.9 setGroupAttributes . 45
4.10 The REMOVE-FEATURE rule . 47
4.11 clampInterval . 48
4.12 clampIntervalValue . 48
4.13 clampSetInterval . 48
4.14 clampFeature . 48
4.15 clampGroup . 48
4.16 removeFeatureAt . 48
4.17 removeGroupAt . 48
4.18 The REMOVE-GROUP rule . 49
4.19 The MOVE-FEATURE rule . 50
4.20 Illustration of move paradox 52
4.21 ancestors . 53
4.22 The MOVE-GROUP rule . 53
4.23 The CHANGE-FEATURE-VARIATION-TYPE rule 54
4.24 getTypes . 54

v

4.25 The CHANGE-GROUP-VARIATION-TYPE rule 56
4.26 The CHANGE-FEATURE-NAME rule 56

6.1 Simple plan . 73
6.2 Illustration of the paradox . 75

vi

Part I

Introduction and Background

1

Chapter 1

Introduction

A software product line (SPL) capitalizes on the similarity and variability
of closely related software products [1]. The similarities and variability
are captured by features, which are customer-visible characteristics of a
system [1]. Each product in the product line (called a variant) comprises
a selection of these features, resulting in a flexible and customizable set
of variants available to customers. To model an SPL it is common to use a
feature model, a tree-like structure with nodes representing features. From
this model, a variant can be derived by selecting features. The feature
model’s structure creates restrictions for which variants are allowed, while
also making it possible to model all possible variants at once [2].

SPLs grow large as they are more profitable the more variants they
originate [1], and evolve over time as requirements change [3, 4]. Complex
projects require planning [5]. Intuitively, this means describing how the
feature model should look at a future point in time. For instance, new
technology may emerge that the manager wishes to incorporate in the
product line, but which she believes will take a year to implement. One
can then plan how the feature model will look at that point, as well
as at some earlier stages where the new technology is partly included.
However, as requirements change, plans must adapt, and it may be
necessary to change an existing plan, for instance by removing or adding
features. These retroactive changes can affect later parts of the plan,
causing paradoxes that make the plan impossible to realise [6].

A simple example of a paradox can be seen in Figure 1.1. The illustration
shows two evolution plans. In the original plan, a feature A exists in time
1 and is removed at time 5. We modify the plan by adding a child feature
B to A at time 3. This change causes a paradox at time 5, since feature B is
left without a parent feature. In this case, it would be simple to detect this
paradox by hand, but given a plan with hundreds of features and points in
time, paradoxes may be harder to locate. Thus, there is a need for tooling

3

Original plan

Root

A

1

Root

5...

Modified plan

Root

A

1

Root

5...

B

Root

A

3 ...

B

Figure 1.1: Simple paradox

that supports safe retroactive change to feature model evolution plans.

Notice also the difference between feature model change, i.e. planning to
remove A at time 5, and plan change, i.e. modifying the original plan
by introducing B at time 3. A plan may contain many changes to a
feature model, but the process of evolving the plan will change the plans
themselves. In this thesis we focus on plan changes.

1.1 The LTEP Project

This thesis is part of the LTEP research project, which was initiated
in 2019 to address the lack of methodology and tooling for planning
the long-term evolution of software product lines. It is a collaboration
between the University of Oslo and the German university Technische
Universität Braunschweig. The overarching goal of the project is to create
methodology for the long-term evolution planning of SPLs, and we have
published a paper [7] giving methods for verifying soundness of feature
model evolution plans (FMEPs), as well as a framework for expressing and
verifying logical relationships and dependencies between the spatial and
temporal components of the plan.

This soundness verification method lets us detect paradoxes in a feature
model evolution plan, and has been integrated into the SPL planning
tool DarwinSPL1 to make intermediate plan change possible; that is,
modifying an earlier stage of the plan instead of adding to the latest stage.
Such a change is exemplified in Figure 1.1, where the plan is changed by
adding B at time 3. In the method created in [7], the process of changing
the plan and verifying the change happens in the following way:

1) Introduce B at time 3

2) Derive the formal definition of the modified plan

1https://gitlab.com/DarwinSPL/DarwinSPL

4

https://gitlab.com/DarwinSPL/DarwinSPL

3) Analyse the new plan in its entirety

4) Locate the paradox that occurs at time 5, when we attempt to remove
A even though it has a child node B.

This method requires us to analyse the entire plan each time a change to
the plan is made, even though much of the plan will often not be affected
by a change. In this example, only A is affected by the modification, and
only between times 3 and 5. This thesis aims to remedy this by analysing
plan change instead of entire plans, leveraging the knowledge that a change
may only affect a small part of the plan, in both dimensions. One is the
spatial dimension, i.e., which parts of the feature model a change affects,
and the other is the temporal dimension, i.e., which points in time in the
plan are affected by change. We can then exploit that adding B only affects
its parent parent feature A during the time between 3 and 5, ignoring the
Root feature and time 1. The added benefit in this example is negligible,
but for larger plans, ignoring hundreds of features and points in time will
likely improve the performance significantly.

1.2 Research Questions

Although we have formalized the feature model evolution plan in our
previous work [7], change to such a plan has not been addressed formally.
The goal of this thesis is to formalize plan change and create an analysis
method which verifies it, leveraging the knowledge that a change affects
only parts of the plan. In order to achieve this goal, the thesis will address
the following research questions.

RQ1 Which operations are necessary for modifying a feature model evolution
plan? In the LTEP project, we defined operations for modifying a
feature model, but not a feature model evolution plan.

RQ2 How can we capture and formalize a feature model evolution plan in such a
way that the scope of each operation can be captured? Modifying a feature
model evolution plan does not necessarily affect the entire plan. We
wish to identify which parts of the plan may be affected by applying
an operation, i.e. the scope in space and time of each operation. This
problem requires a representation for feature model evolution plans
that allows us to isolate the scope and analyse the effects of applying
an operation modularly.

RQ3 How can we soundly analyse change? Changing an intermediate stage
of a feature model evolution plan may cause paradoxes — structural
violations of the feature model — at a later stage of the plan. We aim
to create an analysis method which ensures that any paradox arising

5

from plan change is discovered and reported. This analysis method
should be verifiably sound and possible to automate.

1.3 Contributions

In this thesis, we present a set of update operations for changing feature
model evolution plans. Furthermore, we define the scope of each of these
operations, meaning that we deduce exactly which parts of a plan may be
affected by each operation. A representation for feature model evolution
plans is devised with the aim to easily isolate the scope of an operation for
analysis. Based on the scope and representations, we create an analysis
method for validation and application of the update operations. The
analysis is formalized as a set of rules, giving a detailed specification of
when an operation may be applied to the evolution plan, and how to apply
the modification. We implement a prototype of the analysis as proof of
concept. Finally, we give a proof that the rule set is sound by showing that
each rule preserves well-formedness of the structure of the feature model,
that the application of each rule affects only a specified scope within the
feature model evolution plan, and that each rule updates the evolution
plan correctly according to the semantics of the operation applied.

1.4 Chapter Overview

Chapter 2 gives background on software product lines, feature models,
and feature model evolution plans, which form the basis of this thesis.
Moreover, we give some background on static analysis.

Chapter 3 provides the definitions used throughout the thesis. These
include the representation we use for feature model evolution plans —
the interval-based feature model — as well as the operations we define for
modifying them.

Chapter 4 defines rules for how to apply the operations to an interval-
based feature model, and requirements for when an operation may be
defined.

Chapter 5 details a proof for soundness of the rule system defined in
Chapter 4.

Chapter 6 describes an implementation of the rules. We present the
implementation by first giving an overview of the data types to provide
intuition, and briefly present the translation of the analysis rules.

6

Chapter 7 addresses our research questions, present possible improve-
ments and future work, and concludes the thesis.

7

8

Chapter 2

Background

In this chapter, we begin by giving a general overview of software product
lines, and continue by going into more detail on feature models and
feature model evolution plans. Lastly, we give a short introduction to
static analysis and its uses, as well as how it relates to the contributions
of this thesis.

2.1 Software Product Lines

Software product lines (SPLs) are an engineering methodology used for
developing products that share common features but have differences,
for instance a product line of smartphones. When developing a software
product line, engineers attempt to capitalize on the commonality by
reusing components of source code for several of the products. For
example, all smartphones have technology for internet access, but other
features are only included in some phones, like for instance a fingerprint
reader. The final products of a software product line are called variants,
which consist of a combination of features available in the SPL. In a
smartphone SPL, a variant is a complete smartphone. When software
product lines were still a novel concept, engineers tended to throw
together variants by copying and pasting the components where needed.
When the SPLs grew larger, this process became increasingly error-
prone. Each time a component needed to be updated, all variants using
the component must be reviewed. In later years, however, several
technologies have emerged that exploit the reuse of the components,
combining the components together into a final product. This makes
maintaining code much more efficient and less error-prone, as each
component only exists in one place. [1]

9

CoffeeMachine

Grinder

Automatic Manual

Beverages

Espresso Milk-based

Built-in

Latte Cappuccino

Steamer

Optional feature type

Mandatory feature type

Alternative group

Or group

Feature

Figure 2.1: Example feature model for a coffee machine 1

2.1.1 Feature Models

Variability management is the process of deciding which variants should
be allowed, i.e. which combinations of features can be combined into a
variant [8]. Formerly this was done as an informal process, often using
spreadsheets and the engineers’ intuition. To simplify and formalize this
process we use feature models to model the relations between the features
(which combinations are allowed, which are common to all variants, etc.).
Feature models are also useful as documentation for an SPL, providing a
common language between stakeholders [1]. A feature model is a tree-like
structure where the nodes are features and groups of features. A feature
cannot be selected in a variant unless its parent feature is also selected [2].
See Figure 2.1 for an example of a feature model.

A group gives logical structure to the features, restricting the allowed
combinations of the features. For instance, in an ALTERNATIVE group,
exactly one of the features must be selected in every variant. In the
example, the group under Grinder has this type. In a variant, a grinder
cannot be both automatic and manual. Moreover, the features have types
(OPTIONAL and MANDATORY). A MANDATORY feature must be selected
in all variants, whereas an OPTIONAL feature may be left out. The black
dot above Beverages means that this feature is mandatory, so all coffee
machines provide beverages. Furthermore, since its child feature Espresso
is also mandatory, all coffee machines have espresso. However, only some
coffee machines have milk-based drinks, as shown by the white dot above
the Milk-Based feature. If selected, then either built-in drinks such as
latte or cappuccino must be included in the variant, or the machine must

1Created using DarwinSPL: https://gitlab.com/DarwinSPL/DarwinSPL

10

https://gitlab.com/DarwinSPL/DarwinSPL

have a steamer so the user can make milk-based drinks themselves. The
group under Built-in is filled-in with black, which means that it is an OR
group. In a variant where Built-in is chosen, one or both of Latte and
Cappuccino must also be chosen, but not zero. The groups which are
neither ALTERNATIVE nor OR, as for instance Beverages, have the type
AND, which means that zero, one, or more of its child features may be
selected in a variant. There are several restrictions to the structure of a
feature model. For instance, an ALTERNATIVE or OR group cannot contain
a MANDATORY feature. Although all features have a type, not all of them
are displayed in this figure. The root feature (here CoffeeMachine) must
have type MANDATORY, since naturally it must be selected in all variants.
Since an ALTERNATIVE or OR group cannot contain a MANDATORY feature,
all features in those groups have the type OPTIONAL.

Feature models often also allow cross-tree constraints. These are similar
to the parent-child relation in the feature model but are independent of
the tree structure. For instance, one could imagine that the producer
would always include an automatic grinder if the Built-In feature is
selected, because the built-in feature does not work unless the machine
grinds the coffee automatically. This cross-tree constraint could be
expressed as ”Built-In requires Grinder“. Although cross-tree constraints
are commonly used, they are beyond the scope of this thesis.

The formal structural requirements (well-formedness rules) to a feature
model as specified in [7], are

WF1 A feature model has exactly one root feature.

WF2 The root feature must be mandatory.

WF3 Each feature has exactly one unique name, variation type and
(potentially empty) collection of subgroups.

WF4 Features are organized in groups that have exactly one variation
type.

WF5 Each feature, except for the root feature, must be part of exactly one
group.

WF6 Each group must have exactly one parent feature.

WF7 Groups with types ALTERNATIVE or OR must not contain MANDA-
TORY features.

WF8 Groups with types ALTERNATIVE or OR must contain at least two
child features.

Furthermore, a feature model is a tree structure and must not contain
cycles. Requirement WF8 is not taken into account in this thesis. A

11

CoffeeMachine

Grinder

Automatic Manual

Beverages

Espresso Milk-based

Built-in

Latte Cappuccino

Steamer

Interface

Button interface Touch interface

Figure 2.2: Coffee machine with added touch interface 2

paradox is a violation of well-formedness requirements WF1–WF7, and a
plan without paradoxes is sound.

2.1.2 Feature Model Evolution Plans

The evolution of an SPL can be planned using a feature model evolution
plan. Software product lines often grow very large, and it is crucial to plan
ahead. There exist tools for evolution planning, such as DarwinSPL [4].
An intuitive way to think of an evolution plan is as a sequence of feature
models associated with the points in time when they are planned to
be realized. For instance, imagine that the first coffee machines in the
software product line are represented by the feature model in Figure 2.1
on page 10. They are controlled by buttons, but as touch interfaces become
more common, the manager decides to add coffee machines with a touch
screen. This modification is included in Figure 2.2.

In the LTEP research project, we have formalized evolution plans as
an initial model combined with a list of time points, which are defined
as points in time, associated with edit operations, e.g. change type of
“Beverages” to OPTIONAL. In the formalized feature model, each feature
and group has a unique ID, and the edit operations use these IDs to
uniquely identify the features and groups to be added, removed, or
modified. To illustrate the idea, a simplified formalization of the evolution
plan is shown in Figure 2.3 on the next page. The initial model associated
with time t0 is the one shown in Figure 2.1 on page 10. Applying the
operations at t1 results in the feature model shown in Figure 2.2. In the
example, names are used in place of IDs to improve readability, but in the
formal definitions, IDs are used to identify features and groups uniquely.

We have published a semantics for these edit operations along with a
formal definition of a feature model, letting us formally define a sound

2Created using DarwinSPL: https://gitlab.com/DarwinSPL/DarwinSPL

12

https://gitlab.com/DarwinSPL/DarwinSPL

t0

CoffeeMachine

Grinder

Automatic Manual

Beverages

Espresso Milk-based

Built-in

Latte Cappuccino

Steamer

t1 Add new MANDATORY feature “Interface” to “CoffeeMachine” AND group
Add new ALTERNATIVE group to “Interface”
Add new feature “Button interface” to “Interface” ALTERNATIVE group
Add new feature “Touch interface” to “Interface” ALTERNATIVE group

Figure 2.3: Formalized feature model evolution plan

plan [7]. The semantics is formalized as a set of structural operational
semantic rules, detailing exactly which conditions must be fulfilled for an
operation to be applied, and the way to construct the resulting feature
model after applying it. A sound plan is an evolution plan in which
applying each operation in order results in a structurally sound feature
model for each step, i.e., a plan resulting in no paradoxes. Using this
semantics on a modified plan allows for validation of change. When
changing a feature model evolution plan, soundness of the updated plan
can be checked by modifying the list of edit operations and checking that
the resulting plan is sound using the semantics. However, this approach
models change to feature models, whereas the goal of this thesis is to model
and analyse change to a feature model evolution plan.

2.2 Static Analysis

Static analysis attempts to predict the behaviour of a program without ex-
ecuting it [9]. This is different from dynamic analysis, which analyses pro-
grams while executing [10]. Static analysis methods have various uses,
including compilers, for instance for type checking, error detection [11],
and optimizations; lint tools, which detect possible errors the program-
mer is making while coding [12]. Furthermore, it is used to prove prop-
erties about programs, i.e. that the program behaviour matches the spec-
ification [10]. As deciding properties about programs often reduce to the

13

famously undecidable halting problem, an algorithm cannot in general
decide exactly how a program behaves [9]. However, there exist several
methods to safely approximate solutions. For instance, live variable anal-
ysis discovers which variables may still be “alive” (meaning used in the
future) at a certain point of the program, which may be used for optimiza-
tion of memory allocation for variables. If a variable is known not to be
live, it is safe to overwrite it with another variable. If a variable may be live,
it cannot be overwritten safely. This makes live variable analysis a may
analysis. It is also a backward analysis since information about whether
a variable is used in the future is carried backwards. There are also must
analyses and forward analyses. A must analysis looks for the greatest so-
lution of things that must be true. In a forward analysis, the information
flows forward; meaning that what has happened earlier in the program
influences the analysis at later points in the program [9].

Unlike programs, it is possible to get a full overview of a feature model
evolution plan. It is always possible to find the correct answer given the
question ”Does feature A exist at time 5?”. An operational representation,
as in our publication [7], finds the answer by applying operations to the
initial model until time 5 is complete, and checks if feature A exists in the
resulting feature model. For intuition on why this must be true, imagine
a (correct) program where we know all statements are assignment. This
program terminates for a certainty since there is no iteration. The same
goes for an operational feature model evolution plan. The plan has a finite
number of steps and no iteration, and thus always will terminate. Since we
know that every operational feature model evolution plan “terminates”,
we avoid the halting problem which is at the core of all static analysis of
programs, which must always over- or under-approximate a solution to
be certain that the analysis terminates.

May and must analyses always deal with scope. When asking if a variable
is live, we are also defining the scope of the variable, meaning which parts
of the program the variable may be part of. Furthermore, the method for
defining the static program analyses can be applied to other domains. For
instance, it is common to define these analyses in terms of rules on the
form

Conditions
State −→ State′

where State is the context when the rule is applied, and the Conditions
consists of propositions concerning the State. After the rule is applied,
State′ is the result, usually a modified version of State. For instance, the
semantics of an if-statement may be defined by the rules

Γ [b] = >
IF1〈Γ, if b then S else S′〉 −→ 〈Γ, S〉

Γ [b] = ⊥
IF2〈Γ, if b then S else S′〉 −→ 〈Γ, S′〉

14

Here, Γ is the context treated as a map from variable names to values,
and Γ [b] returns the value of b at the time when the statement is executed,
which is either> (true) or⊥ (false). If the expression b is true, then the next
statement to be executed is S. If not, then the next statement is S′. Notice
that no rule defines the program behaviour if the value of b is neither >
nor ⊥. This means that anything other than > or ⊥ is an error, and an
implementation of the language will provide an error message for such
a case. This is a useful property of these rules, as there are often many
ways to write an incorrect program, and all of these can be captured by
not fitting the correct cases.

The syntax-driven, unambiguous, and compact nature of such rules make
them popular for formally defining type systems and analysis tools [9].
Here, they give both the behaviour of the if-statement (semantics) using
the syntax of the language, and, implicitly, they provide a method for
checking correctness of an if-statement. If the expression is neither true
nor false, then the program is incorrect. In this thesis, we largely exploit
this property of only defining the correct cases when giving rules for
soundness analysis of modifying feature model evolution plans.

2.2.1 Soundness

A feature model evolution plan may be viewed as a sequence of feature
models associated with time points. In this context, soundness of a feature
model evolution plan means that all of the feature models in the plan
uphold the structural requirements WF1–WF7 given in Section 2.1.1 on
page 11. In a sound plan, no paradoxes occur; for instance, no two features
have the same name at the same time, no groups with type ALTERNATIVE
or OR contain features of type MANDATORY, etc. This can be verified
automatically, as we did in [7].

15

16

Part II

Definitions, Analysis, and
Soundness Proofs

17

Chapter 3

Formalizing the Feature Model
Evolution Plan

To achieve our goal of a modular analysis of modification for feature
model evolution plans, we first need a representation that supports local
lookup and modification. Using the representation we defined in the
paper [7], with an initial model followed by a list of operations associated
with time points, would not serve us, as the operations have to be applied
in order to retrieve the state (current feature model) at any point in time.
We present a representation for feature model evolution plans — the
interval-based feature model — enabling lookup of information about specific
parts of the feature models at specific times, as well as the data structures
needed to define it. Furthermore, we formalise evolution plan change in
terms of operations, and present the scope of each operation.

3.1 Interval-Based Feature Model

In this section we present the interval-based feature model as our
representation for feature model evolution plans. To define it, we must
first formally define the data structures it is based upon.

A feature model evolution plan has two dimensions: the spatial dimen-
sion and the temporal dimension. The spatial dimension consists of the
feature models — which features and groups exist, what their names and
types are, and how they are related. The temporal dimension concerns
time, i.e., which points in time appear in the feature model evolution plan.
To store the information about the spatial dimension, we have decided to
use maps, which are useful for looking up information about a specific el-
ement. Looking up a feature ID in such a map will give us the information

19

about that feature.

Definition 3.1 (Map). A map is a set of entries on the form [k 7→ v], where
each key k uniquely defines a value v.

Following is the syntax for looking up a value at the key k in map MAP:

MAP [k]

This query would give us v if [k 7→ v] ∈ MAP.

For example, in the map M from numbers to strings

M = {[1 7→ “Static”], [2 7→ “Analysis”]}

the keys are 1 and 2, and looking up the key 1 gives us the value “Static”.
Using the map syntax, M [1] = “Static”.

If we wish to assign a value v to key k, this is the syntax:

MAP [k]← v

The semantics of assignment is given by the following:

(MAP ∪ {[k 7→ v]}) [k]← v′ = MAP ∪
{
[k 7→ v′]

}
MAP [k]← v′ = MAP ∪

{
[k 7→ v′]

}
if k is not a key in MAP

If we wish to replace the value at key 2 by “Electricity”, we have that

M [2]← “Electricity” = {[1 7→ “Static”], [2 7→ “Electricity”]}

For maps with set values, we define an additional operator ∪←−. If
MAP [k] = S then

MAP [k] ∪←− v = MAP [k]← S ∪ {v}

To remove a mapping with key k, we use MAP \ k. For maps with set
values, we additionally define \v, where v is some value. We use this
operator to remove a specific value from a set at key k. Let MAP be a map
with set values containing the mapping [k 7→ {v} ∪ S]. Then \v is defined
as follows:

MAP \v k =

{
MAP \ k if S = ∅
MAP [k]← S if |S| > 0

20

That is, if removing v leaves only the empty set at MAP [k], we remove the
mapping. Otherwise, we only remove v from the set of values associated
with k. If v /∈ S, then

MAP \v k = MAP

In other words, trying to remove a value which does not exist does not
modify the map.

We define time points as the points in time used in a feature model
evolution plan. A time point must be a member of a set T such that <
is a strict total order on T . An example of such a set are the integers Z,
since < on integers is a strict total order. Time points can also be dates or
strings, as long as any set of time points can be ordered uniquely. In this
thesis we use natural numbers for their simplicity, but in practice, a time
point will usually be a date.

We choose to express the temporal dimension of the feature model evolu-
tion plan using intervals. An interval denotes a range in time, for instance,
from Monday to Friday. This interval contains Tuesday, but not Sunday.

Definition 3.2 (Interval). We define an interval as a set of time points
between a lower bound and an upper bound, where the lower and
upper bounds are time points. We denote the interval using the familiar
mathematical notation [tstart, tend), where tstart is the lower bound, and
tend is the upper bound. These intervals are left-closed and right-open,
meaning that tstart is contained in the interval, and all time points until but
not including tend.

To allow us to use intervals that have no end, we define the time point ∞,
such that [1, ∞) is an interval that starts at 1 and never ends. For all time
points tn 6= ∞, we have that tn < ∞.

We say that an interval [tstart, tend) contains the time point tk if tstart ≤ tk <
tend. Two intervals [tn, tm) and [ti, tj) overlap if there exists a time point tk
with tn ≤ tk < tm and ti ≤ tk < tj, i.e., a time point contained in both
intervals. For instance, [2, 4) overlaps [3, ∞), since they both contain the
time point 3. Any interval [tn, tm) with n ≥ m is empty, meaning that it
contains no time points.

For intervals [tstart, tend) with unknown bounds, we may restrict the
bounds to tl and tr by writing 〈[tstart, tend)〉tr

tl
. We then get the interval

[max(tstart, tl), min(tend, tr)). For instance, 〈[3, ∞)〉52 = [3, 5), which is the
overlap between [3, ∞) and [2, 5).

To link the spatial and temporal dimensions of the feature model evolution
plan, we use interval maps, which let us express what is true for a feature
model during an interval. For instance, we can use an interval map to ex-
press that a feature has the name “Grinder” from time 1 to 5.

21

Definition 3.3 (Interval map). An interval map is a map where the key is
an interval.

To look up values, one can either give an interval or a time point as key.
Both will return sets of values. Looking up an interval returns the set of
values associated with keys overlapping the interval. For instance, if an
interval map IM contains the mapping [[t1, t5) 7→ v], all of the queries in
Figure 3.1 will return {v} (assuming that t1 < t2 < . . . < t5) and non-
overlapping keys:

IM [t1]

IM [t3]

IM [[t1, t5)]

IM [[t2, t4)]

Figure 3.1: Interval map example

IM [tn]≤ returns the set of keys containing time point tn. For interval
maps with non-overlapping keys, the resulting set will contain at most
one element. For interval maps with set values, we define an additional
function IM [tn]

v
≤ where v is some value, returning the set of the keys

containing tn and associated with a set containing v.

We furthermore define function IM [[tn, tm)]≤≥ which returns all the
interval keys in the map IM overlapping the interval [tn, tm).

Assigning a value v to an empty interval in a map IM returns the same
map, i.e., it is a no-op. Formally, if tn ≥ tm, then

IM [[tn, tm)]← v = IM

Likewise, the empty mapping [[tn, tm) 7→ v] is ignored, such that

IM ∪ {[[tn, tm) 7→ v]} = IM

An interval map can be used to formalize change. An interval mapping
[[0, 18) 7→ child], in the context of human age, can signify that a person
starts being a child at age 0, and stops being a child at age 18.

In addition to interval maps, we use interval sets to express the temporal
dimension of a feature model evolution plan. Like the interval maps, they
can be used to show when something is true or changes in a feature model,
but where the change is implicit.

22

Definition 3.4 (Interval set). An interval set is a set of intervals (Defini-
tion 3.2 on page 21).

Given an interval set IS, [tn, tm) ∈ IS if [tn, tm) is a member of the set,
which is the expected semantics of ∈. We define a similar predicate ∈≤
such that [tn, tm) ∈≤ IS if there exists some interval [ti, tj) ∈ IS with
ti ≤ tn ≤ tm ≤ tj, i.e. an interval in IS which contains [tn, tm). We
further define the predicate ∈≤≥ such that [tn, tm) ∈≤≥ IS if there exists
some interval [ti, tj) ∈ IS with [tn, tm) overlapping [ti, tj).

Notice that if [tn, tm) ∈ IS then also [tn, tm) ∈≤ IS, and [tn, tm) ∈≤≥ IS.
Thus ∈ is the most restrictive, and ∈≤≥ the least restrictive. For instance,
given the interval set

S = {[1, 3), [6, ∞)}

we have that [100, 1000) /∈ S, but [100, 1000) ∈≤ S, since [6, ∞) contains
[100, 1000). Likewise, [2, 7) /∈≤ S, but [2, 7) ∈≤≥ S, since [2, 7) overlaps
[1, 3).

We also define ∈≤ for time points tn, so that tn ∈≤ IS if some interval
[ti, tj) ∈ IS with ti ≤ tn < tj. In our example set S, 1 ∈≤ S and 256 ∈≤ S,
but 3 and 4 /∈≤ S.

IS [tn]≤ returns the subset of IS containing tn. For instance S [5]≤ = ∅, and
S [2]≤ = {[1, 3)}.

To describe an entire feature model evolution plan, we define the interval-
based feature model. It consists of three maps: NAMES, FEATURES, and
GROUPS. The NAMES map contains all of the names used in the feature
model, and which features they belong to during which times. Similarly,
the FEATURES and GROUPS maps rely on interval maps to store all of the
information about features and groups throughout the plan, respectively.
The information is retrieved by looking up a name, a feature ID, or a group
ID, which promotes the modularity of plan change verification.

Definition 3.5 (Interval-based feature model). An interval-based feature
model (IBFM) is defined as a triple (NAMES, FEATURES, GROUPS) where
NAMES is a map from names to interval maps with feature ID values,
FEATURES is a map from feature IDs to feature entries, and GROUPS is a
map from group IDs to group entries.

The reason for this choice is mainly modularity. As previously mentioned,
the goal of this thesis is to minimize which parts of the plan are checked for
paradoxes, as a change rarely affects more than a small part of the plan.
It would then be suboptimal to represent a plan as a sequence of trees
associated with time points, or an initial model followed by a sequence of
operations. To add a new feature to the plan, both representations would
require us to look through the entire plan to check that the feature ID and

23

name are unique at all times.

To add or rename a feature, a soundness checker must verify that no other
feature is using the name during the affected part of the plan. We therefore
include the NAMES map in the representation for efficient verification of
aforementioned issue. A feature or group ID may not already be in use
when we add it, so the FEATURES and GROUPS maps support efficient
lookup for IDs. The rest of this section gives more detailed explanations
of interval-based feature models.

Each feature, group, and name should be readily available, so as to make
sure that names and IDs are unique at all times. However, all of them
can be modified. A name may be used by several features at different
times. A group may be moved or removed and its type may be changed.
All of these operations can be applied to a feature, and its name can be
changed as well. Thus all of this information must be captured in the map
entries; if we look up a name, we should find all its usages, and if we look
up a feature or a group, all the information about its variations must be
available. We therefore design the map entries with this in mind.

The NAMES map has entries of the form [name 7→ IM], where the interval
map IM contains mappings on the form [[tstart, tend) 7→ featureID], where
featureID is the ID of some feature in the interval-based feature model.
This should be interpreted as “The name name belongs to the feature with ID
featureID from tstart to tend”. Looking up a name which does not exist will
return an empty map ∅.

This map is mainly used when adding features or changing names. The
new name and the scope of the change is then looked up in the NAMES
map to verify that no other feature shares the name.

The FEATURES map has entries of the form [featureID 7→ feature entry].
Since several pieces of information are crucial to the analysis of a feature,
it is not enough to have a simple mapping as we have for names. A
feature has a name, a type, a parent group, and zero or more child groups.
Furthermore, a feature may be removed and re-added during the course
of the plan, so we also need information about when the feature exists.
This information is collected into a 5-tuple

(
Fe, Fn, Ft, Fp, Fc

)
, where Fe

is an interval set denoting when the feature exists, Fn is an interval map
with name values, Ft is an interval map with the feature’s variation types,
Fp is an interval map with group ID values, and Fc is an interval map
where the values are sets containing group IDs, the interval keys possibly
overlapping.

Looking up a feature which does not exist returns an empty feature (∅,
∅, ∅, ∅, ∅). This lets us treat an unsuccessful lookup the same way as a
successful one.

24

The root feature’s ID is constant for a interval-based feature model. We
assume that it has been computed and represent it by referring to RootID.
This is to avoid cluttering the representation with information that never
changes.

The reasoning behind the choice of interval sets and maps here is in large
part to deal with the dimension of time in the evolution plans; for instance,
when a feature is removed, we can easily look up the affected interval in
the Fc map (child groups) to verify that removing the feature leaves no
group without a parent.

The GROUPS map has entries of the form [groupID 7→ group entry]. A
group has a type, a parent feature, and zero or more child features.
These can all be defined in terms of intervals and collected into a 4-
tuple

(
Ge, Gt, Gp, Gc

)
similarly to the feature entries, where Ge is an

interval set denoting when the group exists, Gt is an interval map with
the group’s types, Gp is an interval map with parent feature IDs, and Gc is
an interval map with child feature ID set values, the interval keys possibly
overlapping.

Looking up a group which does not exist in the map returns an empty
group (∅, ∅, ∅, ∅).

3.1.1 Example — Application of Interval-Based Feature
Model

To provide intuition, we give some examples of how to use the interval-
based feature model.

If a group with ID groupID with GROUPS [groupID] =
(
Ge, Gt, Gp, Gc

)
has

the type ALTERNATIVE at time t2, then

Gt [t2] = {ALTERNATIVE}

The result is a set due to the nature of the interval keys; t2 is contained
within some interval key in Gt.

Suppose we have a feature with ID featureIDwhere FEATURES [featureID] =(
Fe, Fn, Ft, Fp, Fc

)
. To check whether the feature exists at the time point t5,

we look up the time point in the feature’s existence set Fe. Recall that Fe is
an interval set. Then

t5 ∈≤ Fe

means that t5 is contained within some interval in Fe, so the feature does
exist at time t5. We use the operator ∈≤ because the elements in Fe are
intervals, and we wish to know whether t5 is contained within one of those

25

intervals. To get the feature’s parent group ID at time t5, we look up the
time point in the feature’s parent map Fp:

Fp [t5] = {parentGroupID}

This is exactly the same as how we previously used Gt [t2]. The resulting
set {parentGroupID} means that the only parent group the feature has
at time t5 is parentGroupID. Since the model is assumed to be sound, it
makes sense that a feature which exists has exactly one parent group. If
the feature did not exist, it would not have a parent group. The result
would then be

Fp [t5] = ∅

Although a feature always has exactly one parent group if it exists, it may
have several child groups. Recall that the child group map Fc has set
values, meaning that the values are sets of group IDs. Furthermore, the
keys may overlap, since a feature may have 3 groups from t3 to t6, but 1
in the interval [t4, t6). Thus, to obtain the set of child groups at time t5,
we must take the union of the result after looking up t5 in the child group
map Fc.⋃

Fc [t5] = {childGroup1, childGroup2, childGroup3, childGroup4}

If we did not take the union, we would get something like

Fc [t5] = {{childGroup1, childGroup2, childGroup3} , {childGroup4}}

This is why, later in the thesis, we see expressions like

groupID ∈
⋃

Fc [tn]

This expression means that the group with ID groupID is a child group of
our feature at time tn.

Furthermore, we sometimes wish to locate the time when something ends;
for instance, when a feature stops existing. If we want to find out when
our feature is next removed after t5, we can look it up in the existence set:

Fe [t5]≤ = {[t2, ∞)}

The result set means that the feature is added at t2, and is never removed.
The syntax looks exactly the same for interval maps. If we want to know
when the feature is next moved (after t5), we use the same operator with
the parent group map:

Fp [t5]≤ = {[t3, t6)}

The feature was moved to its current parent group at t3, and will be moved
next at t6.

26

({ [Washing Machine 7→ [[t0, ∞) 7→ 0]]
, [Washer 7→ [[t0, ∞) 7→ 1]]
, [Dryer 7→ [[t5, ∞) 7→ 2]] }

, { [0 7→ (
{[t0, ∞)},
{[[t0, ∞) 7→Washing Machine]},
{[[t0, ∞) 7→ MANDATORY]},
∅,

{[[t0, ∞) 7→ 10]}
)
]

, [1 7→ (
{[t0, ∞)},
{[[t0, ∞) 7→Washer]},
{[[t0, ∞) 7→ MANDATORY]},
{[[t0, ∞) 7→ 10]},
∅
)
]

, [2 7→ (
{[t5, ∞)},
{[[t5, ∞) 7→ Dryer]},
{[[t5, ∞) 7→ OPTIONAL]},
{[[t5, ∞) 7→ 10]},
∅
)
}

, { [10 7→(
{[t0, ∞)},
{[[t0, ∞) 7→ AND]},
{[[t0, ∞) 7→ 0]},
{[[t0, ∞) 7→ 1], [[t5, ∞) 7→ 2]}

)
]

})

Figure 3.2: Small interval-based feature model

27

We often want to know what is true for an interval, not just a time point.
In particular, we may want to check that the feature does not exist during
some interval, for instance [t0, t2). We then use the negated overlapping
member operator /∈≤≥:

[t0, t2) /∈≤≥ Fe

This predicate is true if no intervals in the set Fe overlaps [t0, t2). If we had
that [t1, t3) ∈ Fe, the above predicate would be false, since both intervals
contain the time point t1.

3.1.2 Example — Interval-Based Feature Model

A small example of an interval-based feature model can be found in
Figure 3.2. It contains three features and one group, and describes
an interval-based feature model for a washing machine. The washing
machine always has a washer, and a dryer is added at t5.

The same plan can be viewed in Figure 3.3, where the feature model at
different stages of the plan are shown at time 1 and 5 respectively. It is clear
from this example that the interval-based feature model is better suited for
manipulating the structure than reading it.

Washing Machine

Washer

Washing Machine

Washer Dryer

1 5 ...

Figure 3.3: Washing machine visualisation

3.2 Operations

We define update operations to alter the interval-based feature model. The
choice of operations is largely based on the edit operations defined in our
earlier work [7]. We adapt them by adding a temporal dimension, letting
us specify both where an operation should be applied in the feature model,
and when, i.e. at which stage of the plan. We give a brief summary of the
requirements a plan must fulfil for the operations to be applied.

• addFeature(featureID, name, featureType, parentGroupID) from tn
to tm
Adds feature with ID featureID, name name, and feature variation

28

type featureType to the group with ID parentGroupID in the interval
[tn, tm). No feature with ID featureID can exist during the interval,
and the name cannot belong to any other feature in the model during
the interval. The parent group must exists during the interval, and
the types of the feature and the parent group must be compatible,
i.e., if the feature has type MANDATORY, then the parent group must
have type AND. We choose to let this operation affect the plan only
within an interval so as to enable the adding of features to groups
that are planned to be removed, and to add flexibility.

• addGroup(groupID, groupType, parentFeatureID) from tn to tm
Adds group with ID groupID and type groupType to the feature
with ID parentFeatureID during the interval [tn, tm). The group ID
cannot be in use during the interval, and the parent feature must
exist during the entire interval.

• removeFeature(featureID) at tn
Removes the feature with ID featureID from the feature model at
tn. If the plan contains a removal of the feature and a subsequent
reintroduction, removing the feature at an earlier stage does not
affect the reintroduction, but rather moves the point of removal to
an earlier point in time. The feature must exist at tn in the original
plan for the modification to be valid. The feature must not have any
child groups that are left orphaned after removal.

• removeGroup(groupID) at tn
This operation is very similar to removeFeature. Removes the group
with ID groupID from the feature model at tn, not affecting potential
later reintroductions. The group must exist at tn in the original plan,
and the group must not have any child features that are left orphaned
after removal.

• moveFeature(featureID, targetGroupID) at tn
Moves the feature with ID featureID to the group with ID
targetGroupID at tn. The operation does not affect future moves
planned for the feature. The feature’s subtree is moved along with
the feature. The move cannot be done if it introduces a cycle; that
is, if the target group is in the feature’s subtree at some point in the
plan. Furthermore, the target group’s type must be compatible with
the feature’s type, i.e. if the feature is MANDATORY and the group is
OPTIONAL, the move cannot be done.

• moveGroup(groupID, targetFeatureID) at tn
This operation is very similar to moveFeature. It moves the group
with ID groupID to the feature with ID targetFeatureID at tn. The
operation does not affect future moves planned for the group. The
group’s subtree is moved along with the group. If the move causes a

29

cycle, then the modification should not be applied.

• changeFeatureVariationType(featureID, newType) at tn
Changes the feature variation type of the feature with ID featureID

to newType at time tn. The change does not affect planned type
changes to the feature. If the new type is MANDATORY, the parent
group type must be AND, or else the operation cannot be applied.

• changeGroupVariationType(groupID, newType) at tn
Changes the group variation type of the group with ID groupID to
newType. If the new type is OR or ALTERNATIVE, and a child feature
has type MANDATORY, then the operation cannot be applied.

• changeFeatureName(featureID, name) at tn
Changes the name of the feature with ID featureID to name. It does
not affect future renaming operations to the feature. No other feature
may have the same name.

The operations given above cover most of the changes that are likely to be
desired for a feature model evolution plan.

3.3 Temporal and Spatial Scopes of Update Op-
erations

The scope of an operation consists of the parts of the plan that may be
affected by the operation.

In this section, we define the scope for each of the operations defined in
Section 3.2 on page 28. The scope is later used when creating the analysis
rules for modification of the interval-based feature model. We describe the
spatial and temporal scopes for each operation. The spatial scope consists of
the parts of a feature model that may be affected by change. For instance,
adding a group affects the group being added and its parent feature, as
the operation does not modify any other part of the plan. We must also
take into account the temporal aspect, since the plan also has a dimension
of time. The temporal scope then consists of the time points that may be
affected by applying an operation. In Figure 3.41 , we visualise the spatial
and temporal scopes. In the original plan, a group D is added to feature B
at time 2. In time 3, it is moved to feature C. We modify the plan by adding
a feature E to group D from time 2 to time 4. In the modified plan, the
spatial and temporal scopes are shown, with the spatial scope containing
group D and feature E, and the temporal scope containing times 2 and 3.

1Notice that the plan differentiates between groups and features, but does not display
types or names

30

Notice that Root, A, B, and C are not in the scope, nor are the time points
1 and 4.

Original plan

Root

B

1 32

C

...

Root

C

D

Root

B C

D

B

A A A

apply addFeature(E, . . . , D) from 2 to 4

Modified plan

Group

Feature

Root

B

1 32

C

Root

C

D

Root

B C

D

B

E E

Spatial scope

4 ...

Root

B C

D

Temporal scope

A A A A

Figure 3.4: Add feature scope visualisation

For each of the operations defined in Section 3.2 on page 28, we define
the scope in the temporal and spatial dimensions. By assuming that the
original plan is sound, meaning that it contains no paradoxes, we include
only those parts of the plan in which the operation may cause a paradox.

Operation Scopes

We define the temporal and spatial scopes for each operation.

• addFeature(featureID, name, featureType, parentGroupID) from tn
to tm
We argue that the temporal scope is [tn, tm), since this is the only
interval in which the plan is affected by the change. In other words, if

31

we look at the plan as a sequence of feature models, the only feature
models that may become invalid as a result of this modification,
are the ones associated with time points between tn and (but not
including) tm. The spatial scope must be only the feature itself, the
parent group and the name. If the group type of the parent changes
to a conflicting one, the operation is unsound. If the parent group
is removed, we have an orphaned feature, which is also illegal. The
name is unique, so we must also verify that no other feature is using
the name during the temporal scope.

• addGroup(groupID, groupType, parentFeatureID) from tn to tm
The scopes are very similar in this and the preceding rule. The scope
in time is [tn, tm), and the scope in space is the group with id groupID

and the parent feature with ID parentFeatureID, for which the only
conflicting event is removal — the types of a group and its parent
never conflict.

• removeFeature(featureID) at tn
If the original interval containing tn in which the feature exists inside
the feature model is [tm, tk), then the temporal scope is [tn, tk), where
tn is the time at which we specify that the feature be removed, and tk
is the time at which the feature was originally planned to be removed.
In some cases, tk will be ∞, meaning that the feature was never
originally planned to be removed. Since the feature is removed at
tk in the original plan, and the original plan is sound as we assume,
removing the feature earlier may only affect the plan in the interval
between these two time points.

The spatial scope must be the feature itself, its parent group, its
child groups, and its name. If the feature has or will have a child
group during the interval, then it cannot be removed. Otherwise,
there are no conflicts. When modifying the interval-based feature
model, the feature must be removed from the parent’s set of child
features, which is why the parent group is included in the spatial
scope. Likewise, the feature’s ID must be removed from its name’s
mappings during the temporal scope, and so the name is also inside
the scope. If the name changes during the temporal scope, there
is a paradox, since a feature planned to be modified should not be
removed.

• removeGroup(groupID) at tn
This is similar to the scope for removeFeature, but without consid-
eration for names, as groups do not have names. Thus the temporal
scope is [tn, tk), where tk is the time at which the group was origi-
nally planned to be removed. The spatial scope includes the group
itself, its parent feature, and its child features. As with features, a
group cannot be removed if it has or will have child features during

32

the temporal scope.

• moveFeature(featureID, targetGroupID) at tn
If tm is the time at which the feature is next moved or removed in
the original plan, the temporal scope is [tn, tm), since this operation
only affects the plan within this interval. If the feature is not moved
or removed in the original plan, then tm = ∞.

Original plan

Root

B

1 32

C

...

Root

C

D

Root

B C

D

B

A A A

apply moveFeature(C, D) at 2

Modified plan

Root

B

1 32

C

...

Root

C

D

Root

B

A A A

C

D

B

Cycle

Feature

Group

Figure 3.5: Move operation causing cycle

The spatial scope is discussed in more detail in the algorithm for
moving features or groups presented in Section 4.5.1 on page 50.
This scope is the largest and hardest to define, because we have to
detect cycles. See Figure 3.5 for an example of a move which causes
a cycle. In the example, the original plan contains a move operation
in which group D is moved to feature C at time 3. In the modified

33

plan, feature C is moved to group D at time 2. Although this seems
problem-free at time 2, it causes a paradox in the shape of a cycle at
time 3, since D is then moved to a group in its subtree.

The scope is defined by the feature and its ancestors, as well as
the target group and its ancestors, which may change during the
intervals due to other move operations. It is not necessary to look at
all ancestors, only the ones which feature and targetGroup do not
have in common in the original plan, as well as the feature and the
group themselves. Conflicting types and removal of the new parent
must be considered in addition to cycles.

• moveGroup(groupID, targetFeatureID) at tn
This is similar to the scope for moveFeature, as cycles violate the tree
structure independently of whether the nodes are features or groups.
The difference in spatial scope concerns types, as type conflicts can
only arise between a parent group and its child feature. Since the
operation does not change the relation between a parent group and
its child features, and the original plan is assumed to be sound,
conflicting types are not considered for this operation.

• changeFeatureVariationType(featureID, newType) at tn
The temporal scope is [tn, tm) if tm is the next time point at which the
feature’s type changes next or when the feature is (next) removed,
since this is the only part of the plan which is changed by the
operation. Again, if no such change is planned, then the scope ends
at ∞.

The only possible conflict in the spatial scope is the parent group’s
type. At no point can the feature have type MANDATORY and the
parent group have type ALTERNATIVE or OR. Thus, the spatial scope
is the parent group and the feature itself.

• changeGroupVariationType(groupID, newType) at tn
The temporal scope is [tn, tm) if tm is the next time point at which
the group’s type changes next or when the group is (next) removed,
since this is the only part of the plan which is changed by the
operation.

The spatial scope includes the group’s child features; the possible
conflict is the same as with changeFeatureType, but between the
group and its child features. Consequently, this scope may encom-
pass several features.

• changeFeatureName(featureID, name) at tn
The temporal scope is [tn, tm) if tm is the next time point at which the
feature’s name changes next or when the feature is (next) removed,
since this is the only part of the plan which is changed by the

34

operation.

The spatial scope consists of the name, the feature, and its previous
name. If it already exists within the feature model during the
interval, or if the feature does not exist at time tn, then the change
is invalid.

When we present the analysis, the scope is used to decide which parts of
the plan need to be examined. For each operation, we analyse and modify
only the parts of the plan which are inside its scope.

35

36

Chapter 4

A Rule System for Analysis of
Plan Change

A software product line may grow very large, and the plans even larger.
Since different factors may influence the plan, it is necessary to be able
to change the plan accordingly. If the plan is indeed extremely large, and
since feature models have strict structure constraints, it is also necessary to
have tool support that can check that the changes do not compromise the
structure. Due to the size and complexity of the problem, it is impractical
to let a human verify a change.

To communicate our analysis method, we use rules similar to structural
operational semantics rules. The rules are on the form

(RULE-LABEL)

Premises

S −→ S′

where S is the initial state, and S′ is the new state after the rule is applied.
The rule can only be applied if all the premises hold. In the rules, the initial
state is always on the form operation . (NAMES, FEATURES, GROUPS),
where operation denotes the change we intend to make to the interval-
based feature model (NAMES, FEATURES, GROUPS). The new state is
always on the form (NAMES′, FEATURES′, GROUPS′), where the maps have
been updated according to the semantics of the operation. In all of the
rules, we assume that the initial plan (NAMES, FEATURES, GROUPS) is
sound, meaning that it contains no paradoxes. This lets us verify only
the parts of the plan that are affected by the change, as the only paradoxes
that can occur are the ones caused by the operation. The premises ensure
that an operation can only be applied if some conditions hold; for instance
the ADD-FEATURE rule in Figure 4.1 contains premises verifying that the
feature does not already exist when we wish to add it. The rules give us

37

(ADD-FEATURE)

[tn, tm) 6∈≤≥ Fe [tn, tm) ∈≤ Ge NAMES [name] [[tn, tm)] = ∅ tn < tm
FEATURES [featureID] =

(
Fe, Fn, Ft, Fp, Fc

)
GROUPS [parentGroupID] =

(
Ge, Gt, Gp, Gc

)
∀gt ∈ Gt [[tn, tm)] (compatibleTypes(gt, type))

addFeature(featureID, name, type, parentGroupID) from tn to tm .

(NAMES, FEATURES, GROUPS)

−→
(NAMES [name] [[tn, tm)]← featureID,

FEATURES [featureID]← setFeatureAttributes(FEATURES [featureID] , [tn, tm),
name, type, parentGroupID),

GROUPS [parentGroupID]← addChildFeature(GROUPS [parentGroupID] , [tn, tm), featureID))

Figure 4.1: The ADD-FEATURE rule

all the information we need to validate a modification, and to apply it.

4.1 Analysis Rule for Adding a Feature

Recall from Section 3.2 that the addFeature operation adds a feature to the
feature model evolution plan during a given interval. Figure 4.1 describes
the semantics of the addFeature operation.

When adding a feature during the interval [tn, tm), its ID cannot
be in use during the interval ([tn, tm) 6∈≤≥ Fe). The parent group
must exist ([tn, tm) ∈≤ Ge), and the types it has during the inter-
val must be compatible with the type of the added feature (∀gt ∈
Gt [[tn, tm)] (compatibleTypes(gt, type))). The name of the feature must
not be in use during the interval (NAMES [name] [[tn, tm)] = ∅), and the in-
terval must start before it ends (tn < tm). Notice that the default value in
the FEATURES map lets us treat a failed lookup as a feature, thus allowing
us to express the semantics of adding a feature using only one rule. When
adding a feature, it may already exist in the plan during a different inter-
val. In that case, we want to modify the existing feature entry. However,
a feature being added is often completely new, and in that case it is useful
that looking up the feature’s ID in the FEATURES map returns an empty
feature entry (∅, ∅, ∅, ∅, ∅) instead of some undefined value, for instance
⊥. This lets us treat both cases in the same way.

To make the rule tidier, we use three helper functions: compatibleTypes
(in Figure 4.2), setFeatureAttributes (in Figure 4.3), and addChildFeature

38

(in Figure 4.4). The compatibleTypes function takes a group type (AND,
OR or ALTERNATIVE) and a feature type (MANDATORY or OPTIONAL) and
checks whether they are compatible. The types should belong to a parent
group and its child feature. The only combination which is not allowed is
a MANDATORY feature with an ALTERNATIVE or OR parent group.

The setFeatureAttributes function takes a feature entry, an interval, a
name, a type, and a group ID, and returns the feature entry with the
information included. It modifies the existence set by adding the interval,
maps the interval to the name in the names map, to the type in the types
map, and to the parent group ID in the parent groups map.

The addChildFeature function takes a group entry, an interval, and a
feature ID, and adds the feature ID to the group’s child feature map during
the interval.

compatibleTypes(AND, _) = True

compatibleTypes(_, OPTIONAL) = False

compatibleTypes(_, _) = True

Figure 4.2: compatibleTypes

setFeatureAttributes(
(

Fe, Fn, Ft, Fp, Fc
)
, [tstart, tend), name, type

, parentGroupID)
= (Fe ∪ {[tstart, tend)}

, Fn [[tstart, tend)] ← name

, Ft [[tstart, tend)] ← type

, Fp [[tstart, tend)] ← parentGroupID

, Fc)

Figure 4.3: setFeatureAttributes

addChildFeature(
(
Ge, Gt, Gp, Gc

)
, [tstart, tend), fid)

=
(

Ge, Gt, Gp, Gc [[tstart, tend)]
∪←− fid

)
Figure 4.4: addChildFeature

4.1.1 Example — Application of the ADD-FEATURE Rule

We show how to use a rule by applying the ADD-FEATURE rule to a simple
example. Following is a simple interval-based feature model, containing
one feature and one group. The model is visualised in a simplified version
in Figure 4.5. The visualisation shows only the structure of the feature
model, not the feature or groups’ types or other attributes.

39

({[Root 7→ {[[1, ∞) 7→ feature:root]}]
}

, {[feature:root 7→(
{[1, ∞)}

, {[[1, ∞) 7→ Root]}
, {[[1, ∞) 7→ MANDATORY]}
, ∅

, {[[1, ∞) 7→ {group:A}]}
)
]

}
, {[group:A 7→ (

{[1, 5)}
, {[[1, 5) 7→ AND]}
, {[[1, 5) 7→ feature:Root]}
, ∅
)
]

})

Root

A

1

Root

5

Feature

Group

Figure 4.5: Add feature example — original plan

We apply the operation addFeature(feature:B, B, OPTIONAL, group:A)
from 3 to 5 using the ADD-FEATURE rule. This means that we want to add
a feature with ID feature:B, name B, and type OPTIONAL to the group with
ID group:A from time 3 until (but not including) 5. We must go through
all the premises and check that each of them holds for the original model.
First, we look up the new feature in the original model. Since the feature
does not exist, we get

FEATURES [feature:B] = (∅, ∅, ∅, ∅, ∅)

40

We further look up the parent group:

GROUPS [group:A] = ({[1, 5)}
, {[[1, 5) 7→ AND]}
, {[[1, 5) 7→ feature:Root]}
, ∅)

We see that the group exists from 1 to 5, that it has the type AND during its
lifespan, and that its parent feature has ID feature:Root. Now that we have
the information we require, we can check that the other premises hold.

In the premise [tn, tm) 6∈≤≥ Fe, we replace tn, tm and Fe by their concrete
values:

[3, 5) 6∈≤≥ ∅

Since no element is member of ∅, no element in ∅ overlaps [3, 5), so this
premise holds.

The premise [tn, tm) ∈≤ Ge asserts that an interval in Ge should contain the
interval [tn, tm). We instantiate the variables with our concrete values and
verify that this holds:

[3, 5) ∈≤ {[1, 5)}

Since [1, 5) does contain [3, 5), this premise also holds.

The premise NAMES [name] [[tn, tm)] = ∅ means that the name of the new
feature should be unique during the temporal scope. We verify:

NAMES [B] [[3, 5)] = ∅

The only key in the NAMES map is A, so this statement is true. The next
premise we check is tn < tm, which is true because 3 < 5.

Lastly, we check that the types of the new feature and its parent group are
compatible, the premise ∀gt ∈ Gt [[tn, tm)] (compatibleTypes(gt, type)).
We instantiate the variables:

∀gt ∈ {[[1, 5) 7→ AND]} [[3, 5)] (compatibleTypes(gt, OPTIONAL))

The only value in {[[1, 5) 7→ AND]} during the interval [3, 5) is AND, so
we instantiate gt with that value.

compatibleTypes(AND, OPTIONAL)

This matches the first case in the compatibleTypes function (Figure 4.2),
which evaluates to True. Thus the last premise holds, so we can apply the

41

transition. We go through each map individually, starting with NAMES.
The rule gives the modification

NAMES [name] [[tn, tm)]← featureID

which becomes

{[Root 7→ {[[1, ∞) 7→ feature:root]}]} [B] [[3, 5)]← feature:B

This gives us the map

{[Root 7→ {[[1, ∞) 7→ feature:root]}],
[B 7→ {[[3, 5) 7→ feature:B]}]}

According to the rule, the FEATURES map should be modified in the
following way:

FEATURES [featureID]← setFeatureAttributes(FEATURES [featureID] ,
[tn, tm),
name, type, parentGroupID)

We instantiate:

FEATURES [feature:B]← setFeatureAttributes((∅, ∅, ∅, ∅, ∅),
[3, 5),
A, OPTIONAL, group:A)

We apply setFeatureAttributes:

setFeatureAttributes((∅, ∅, ∅, ∅, ∅), [3, 5), B, OPTIONAL, group:A)
= (∅ ∪ {[3, 5)}

, ∅ [[3, 5)] ← B
, ∅ [[3, 5)] ← OPTIONAL
, ∅ [[3, 5)] ← group:A
, ∅)

This gives us the feature mapping

FEATURES [feature:B] 7→ ({[3, 5)}
, {[[3, 5) 7→ B]}
, {[[3, 5) 7→ OPTIONAL]}
, {[[3, 5) 7→ group:A]}
, ∅)

which is then mapped to FEATURES [feature:B].

42

The GROUPS map is modified by the rule in the following way:

GROUPS[parentGroupID]←
addChildFeature(GROUPS [parentGroupID] , [tn, tm), featureID)

We substitute with our values:

GROUPS[group:A]←
addChildFeature(({[1, 5)} , {[[1, 5) 7→ AND]} , {[[1, 5) 7→ feature:Root]} , ∅)

, [3, 5), feature:B)

We apply addChildFeature:

addChildFeature(({[1, 5)} , {[[1, 5) 7→ AND]} , {[[1, 5) 7→ feature:Root]} , ∅),
[3, 5), feature:B)

= ({[1, 5)} , {[[1, 5) 7→ AND]} , {[[1, 5) 7→ feature:Root]} ,
{[[3, 5) 7→ {feature:B}]})↪→

We then end up with the following interval-based feature model:

Root

A

1

Root

5

Root

A

3

B
Feature

Group

Figure 4.6: Add Feature — modified plan

43

({[Root 7→ {[[1, ∞) 7→ feature:root]}]
, [B 7→ {[[3, 5) 7→ feature:B]}]
}

, {[feature:root 7→(
{[1, ∞)}

, {[[1, ∞) 7→ Root]}
, {[[1, ∞) 7→ MANDATORY]}
, ∅

, {[[1, ∞) 7→ {group:A}]}
)
]

, [feature:B 7→ (
{[3, 5)}

, {[[3, 5) 7→ B]}
, {[[3, 5) 7→ OPTIONAL]}
, {[[3, 5) 7→ group:A]}
, ∅
)
]

}
, {[group:A 7→ (

{[1, 5)}
, {[[1, 5) 7→ AND]}
, {[[1, 5) 7→ feature:Root]}
, {[[3, 5) 7→ {feature:B}]}

)
]

})

This plan is visualised in Figure 4.6.

If we tried to add the feature from 3 to 6 instead, the premise [tn, tm) ∈≤ Fe
would fail, since the parent group only exists until 5. If a premise is false,
the rule cannot be applied.

44

(ADD-GROUP)

[tn, tm) /∈≤≥ Ge [tn, tm) ∈≤ Fe tn < tm
GROUPS [groupID] =

(
Ge, Gt, Gp, Gc

)
FEATURES [parentFeatureID] =

(
Fe, Fn, Ft, Fp, Fc

)
addGroup(groupID, type, parentFeatureID) from tn to tm .

(NAMES, FEATURES, GROUPS)

−→(
NAMES,

FEATURES [parentFeatureID]← addChildGroup(FEATURES [parentFeatureID] ,
[tn, tm), groupID),

GROUPS [groupID]← setGroupAttributes(GROUPS [groupID] , type,

parentFeatureID)
)

Figure 4.7: The ADD-GROUP rule

addChildGroup
((

Fe, Fn, Ft, Fp, Fc
)

, [tstart, tend), groupID
)

=
(

Fe, Fn, Ft, Fp, Fc [[tstart, tend)]
∪←− groupID

)
Figure 4.8: addChildGroup

setGroupAttributes
((

Ge, Gt, Gp, Gc
)

, [tstart, tend), type
, parentFeatureID

)
= (Ge ∪ {[tstart, tend)}

, Gt [[tstart, tend)] ← type

, Gp [[tstart, tend)] ← parentFeatureID

, Gc)

Figure 4.9: setGroupAttributes

45

4.2 Analysis Rule for Adding a Group

In Section 3.2 we have defined the addGroup operation, which adds a
group to a feature model evolution plan during a given interval. The rule
in Figure 4.7 describes the conditions which must be in place to add a
group to the FMEP during an interval ([tn, tm)), as well as how to update
the model if all the premises are true.

The group must not already exist in the plan during the interval
([tn, tm) /∈≤≥ Ge), and the parent feature must exist for the duration of
the interval ([tn, tm) ∈≤ Fe). Lastly, the interval must fulfil the condition
tn < tm, meaning that it starts strictly before it ends.

If all the premises hold, the model is updated according to the semantics
of the addGroup operation. The group ID is added to the parent feature’s
map of child groups with the interval as key, and the attributes specified
in the operation are added to the group entry in the GROUPS map. This
is achieved by using the addChildGroup function (in Figure 4.8), which
is extremely similar to addChildFeature, and adds the group to its new
parent feature, and the setGroupAttributes function (in Figure 4.9),
which is similar to setFeatureAttributes and updates the group entry
with the attributes given in the operation.

4.3 Analysis Rule for Removing a Feature

Recall that the removeFeature operation removes a feature at a given time,
as defined in Section 3.2. Figure 4.10 shows the semantics of removing a
feature with ID featureID at time tn. We find the time point when the
feature was to be removed in the original plan by looking up the interval
containing tn in the feature’s EXISTENCE set [te1 , te2). The interval in which
the new plan is different from the original is then [tn, te2). We verify that
the feature does not have any child groups during the affected interval
(Fc [[tn, te2)] = ∅). We furthermore check that the feature has only a single
name, type, and parent during the interval. This means that the original
plan did not change the feature’s name, type, or parent during this time.
If these conditions all hold, we update the interval-based feature model
by clamping all the relevant intervals to tn, i.e. shortening them to end at
tn. To achieve this, we use helper functions. The clampInterval function
(in Figure 4.11) takes an interval map and a time point tn, and shortens
the key containing tn to end at tn. Note that it assumes that the interval
map contains exactly one key containing the time point. The premises
in the rule ensure that this is true. We use the clampFeature function
(in Figure 4.14) to update the feature entry, ending all its interval map

46

(REMOVE-FEATURE)

Fe [tn]≤ = {[te1 , te2)} Fc [[tn, te2)] = ∅
Fn [[tn, te2)] = {name} Ft [[tn, te2)] = {type} Fp [[tn, te2)] = {parentGroupID}

FEATURES [featureID] =
(

Fe, Fn, Ft, Fp, Fc
)

GROUPS [parentGroupID] =
(
Ge, Gt, Gp, Gc

)
removeFeature (featureID) at tn .

(NAMES, FEATURES, GROUPS)

−→(
NAMES [name]← clampInterval(NAMES [name] , tn),

FEATURES [featureID]← clampFeature(FEATURES [featureID] , tn),
GROUPS [parentGroupID]← removeFeatureAt (GROUPS [parentGroupID] , featureID, tn)

)
Figure 4.10: The REMOVE-FEATURE rule

keys containing tn at tn by using clampInterval and clampSetInterval

(in Figure 4.13). The helper function clampSetInterval does the same as
clampInterval, but shortens a member of an interval set instead of a key
in an interval map. To remove the feature from its parent group’s child
feature map, we use the helper function removeFeatureAt (in Figure 4.16).
This function applies clampIntervalValue (in Figure 4.12) to the group’s
child feature map. The clampIntervalValue function removes the feature
from the mapping containing the time point given, and adds it to the set
at the key which ends at the same time point.

4.4 Analysis Rule for Removing a Group

We defined the operation removeGroup in Section 3.2. The operation
removes a group at a given time point, similarly to removeFeature.

The REMOVE-GROUP rule in Figure 4.18 describes the semantics of
removing a group in an interval-based feature model. The temporal scope
is identified as the existence interval containing the time point for removal.
In that interval, the group should not have any children, and there cannot
be plans to change the type or move the group within the interval. We
check the latter by looking up the type and parent feature during the
interval; if the set contains only one type/parent feature then the type and
parent feature do not change.

We use the helper functions removeGroupAt (in Figure 4.17) and
clampGroup (in Figure 4.15) to update the interval-based feature model.
The removeGroupAt function, similar to removeFeatureAt, takes the par-
ent feature entry, the group ID, and a time point tc, and applies

47

clampInterval(MAP, tc)
= MAP′ [[tstart, tc)]← v
where {[tstart, tend)} = MAP [tc]≤

{v} = MAP [tc]
MAP′ = MAP \ [tstart, tend)

Figure 4.11: clampInterval

clampIntervalValue(MAP, tc, v)
= MAP′ [[tstart, tc)]

∪←− v
where {[tstart, tend)} = MAP [tc]

v
≤

MAP′ = MAP \v [tstart, tend)

Figure 4.12: clampIntervalValue

clampSetInterval(IS, tc)
= IS′ ∪ {[tstart, tc)}
where {[tstart, tend)} = IS [tc]≤

IS′ = IS \ [tstart, tend)

Figure 4.13: clampSetInterval

clampFeature
((

Fe, Fn, Ft, Fp, Fc
)

, tc
)

= (clampSetInterval(Fe, tc)
, clampInterval(Fn, tc)
, clampInterval(Ft, tc)
, clampInterval(Fp, tc)
, Fc)

Figure 4.14: clampFeature

clampGroup
((

Ge, Gt, Gp, Gc
)

, tc
)

= (clampSetInterval(Ge)
, clampInterval(Gt, tc)
, clampInterval(Gp, tc)
, Gc)

Figure 4.15: clampGroup

removeFeatureAt
((

Ge, Gt, Gp, Gc
)

, featureID, tc
)

=
(
Ge, Gt, Gp

, clampIntervalValue (Gc, tc, featureID)
)

Figure 4.16: removeFeatureAt

removeGroupAt
((

Fe, Fn, Ft, Fp, Fc
)

, groupID, tc
)

=
(

Fe, Fn, Ft, Fp

, clampIntervalValue (Fc, tc, groupID)
)

Figure 4.17: removeGroupAt

48

(REMOVE-GROUP)

Ge [tn]≤ = {[te1 , te2)} Gc [[tn, te2)] = ∅
Gt [[tn, te2)] = {type} Gp [[tn, te2)] = {parentFeatureID}

GROUPS [groupID] =
(
Ge, Gt, Gp, Gc

)
FEATURES [parentFeatureID] =

(
Fe, Fn, Ft, Fp, Fc

)
removeGroup (groupID) at tn .

(NAMES, FEATURES, GROUPS)

−→(
NAMES,

FEATURES [parentFeatureID]← removeGroupAt (FEATURES [parentFeatureID] , groupID, tn) ,
GROUPS [groupID]← clampGroup (GROUPS [groupID] , tn)

)
Figure 4.18: The REMOVE-GROUP rule

clampIntervalValue to the parent feature’s child group map. The
clampGroup function does the same as clampFeature, but to a group en-
try. After applying these to the interval-based feature model, the group is
removed from the model during the temporal scope.

4.5 Analysis Rule for Moving a Feature

In Section 3.2, we defined the moveFeature operation to move a feature
from a group to a new group at a given time. See Figure 4.19 for the
semantics of the moveFeature operation. The premise ¬createsCycle
refers to the cycle detection algorithm described in Section 4.5.1 on the
following page. A concrete implementation of the algorithm can be found
on GitHub1.

The premise Fp [tn]≤ =
{
[tp1 , tp2)

}
locates the scope of the operation,

namely [tn, tp2). The ID of the feature’s former parent group is identified
in the premise Fp

[
[tn, tp2)

]
= {oldParentID} for the purpose of updating

the GROUPS map. The premise [tn, tp2) ∈≤ Ge ensures that the new parent
exists during the entire temporal scope.

As the plan may contain several type changes for both the feature being
moved and its new parent, we must check that the types they have at the
same time are compatible. This is achieved by the following premise:

∀[t f1 , t f2) ∈ Ft
[
[tn, tp2)

]
≤≥ ∀[tg1 , tg2) ∈ Gt

[〈
[t f1 , t f2)

〉tp2
tn

]
≤≥

∀ft ∈ Ft
[
[t f1 , t f2)

]
∀gt ∈ Gt

[
[tg1 , tg2)

]
(compatibleTypes(gt, ft))

1https://github.com/idamotz/Master/blob/master/soundness-checker/

49

https://github.com/idamotz/Master/blob/master/soundness-checker/

(MOVE-FEATURE)

¬createsCycle Fp [tn]≤ =
{
[tp1 , tp2)

}
Fp
[
[tn, tp2)

]
= {oldParentID} [tn, tp2) ∈≤ Ge

∀[t f1 , t f2) ∈ Ft
[
[tn, tp2)

]
≤≥ ∀[tg1 , tg2) ∈ Gt

[〈
[t f1 , t f2)

〉tp2

tn

]
≤≥

∀ft ∈ Ft

[
[t f1 , t f2)

]
∀gt ∈ Gt

[
[tg1 , tg2)

]
(compatibleTypes(gt, ft))

FEATURES [featureID] =
(

Fe, Fn, Ft, Fp, Fc
)

GROUPS [newParentID] =
(
Ge, Gt, Gp, Gc

)
moveFeature (featureID, newParentID) at tn .

(NAMES, FEATURES, GROUPS)

−→(
NAMES,

FEATURES [featureID]←
(

Fe, Fn, Ft, clampInterval(Fp, tn)
[
[tn, tp2)

]
← newParentID, Fc

)
,(

GROUPS [oldParentID]

← removeFeatureAt (GROUPS [oldParentID] , featureID, tn)
)
[newParentID]

← addChildFeature(GROUPS [newParentID] , [tn, tp2), featureID)

Figure 4.19: The MOVE-FEATURE rule

It says that for each interval key overlapping the temporal scope in
the feature’s type map, then for each interval in the group’s type map
overlapping the aforementioned key and restricted by the temporal
scope, then for all types mapped to by those keys, those types must be
compatible. This ensures that the rule is not too strict, because it check
only those combinations of types which the feature and its new parent
group have at the same time, further restricted by the temporal scope.

If all the premises hold, then the interval-based feature model is updated
to reflect it. The feature’s parent group map is updated by shortening the
interval mapped to the former parent’s ID to end at tn, and adding a new
mapping [[tn, tp2) 7→ newParentID].

The feature is removed from the previous parent’s (oldParentID) set of
child features during the temporal scope, and the feature is added to the
new parent’s set of child features during the same interval.

4.5.1 Algorithm for Detecting Cycles Resulting from Move
Operations

Compared with the other operations, moveFeature and moveGroup
require extensive verification, as moving a feature or a group may cause

50

cycles at the time of the move or at some later point. Since cycles violate
only the tree structure of the feature model evolution plan, we abstract
away from groups and features, viewing both as nodes.

In Figure 4.20, we show an example of a cycle arising from a move
operation. In the original plan, the marked node E is moved to C at time
2, and to some node in node D’s subtree s. In the modified plan, D (and
its subtree s) has been moved to node F. There is no cycle at time 1 or 2,
but at time 3, when E is moved to s, it causes a cycle. At time 1, the new
ancestors of D are F, G, and E. At time 2, the new ancestors are still F, G,
and E, but C is added to the list, since C was not an ancestor of D in the
original plan. When E is then moved to D’s subtree s, it causes a cycle,
since E now has F as an ancestor.

Following is a description of an algorithm intended to ensure that adding
a moveFeature or moveGroup operation does not cause a cycle.

Let n be the node to be moved and c1 the target node, i.e. n’s new parent
node. Furthermore, let t1 be the time point at which this operation is
inserted, and te the time point when n is moved next or removed, or ∞. We
use the function ancestors(IBFM, node, time) (see Figure 4.21), written in
Haskell-like syntax, which takes the interval-based feature model (IBFM),
a node, and a time point and returns a list of node’s ancestors at time point
tn. It does this by following the parent references upwards at the time
point tn, alternating between features and groups. It stops when it reaches
the root feature, which has no parent node.

First, check whether n ∈ ancestors(IBFM, c1, t1). If this is the case, report
that the move causes a cycle and terminate.

Next, find a list of critical nodes. These are the nodes which may
cause a cycle if they are moved. Let An = ancestors(IBFM, n, t1) =
[a1, a2, . . . , SN, . . . , r] and Ac1 = ancestors(IBFM, c1, t1) = [c2, c3, . . . , cn,
SN, . . . , r] with SN the first common ancestor of n and c1. The list of critical
nodes is then C = [c1, c2, . . . , cn], which is essentially the list of n’s new
ancestors after the move.

Repeat this step until the algorithm terminates:

Look for the first move of one of the critical nodes, following the order
of the list C. If no such moves occur until te, the operation creates no
cycles, and the algorithm terminates successfully. Suppose there is a move
operation scheduled for tk, with t1 ≤ tk < te, where ci is moved to k. There
are two possibilities:

1. k is in n’s subtree, which is equivalent to n ∈ ancestors(IBFM, k, tk).
Report that the move will cause a cycle and terminate.

2. k is not in n’s subtree, so this move is safe. Let Ak =

51

Original plan
1 32 ...

A

B C

E

F G

Subtree

Feature or group

Feature or group in focus

A

B C

D E

F G

A

B C

D

E

F G

Move operation

s s

Cycle

D

s

apply moveFeature(D, F) at 1

Modified plan

A

B C

D

E

F G

A

B C

D

E

F G

A

B C

1 32 ...

s s

D

E

F G

s

Figure 4.20: Illustration of move paradox

52

ancestors(IBFM, k, tk) = [k1, k2, . . . , kn, SN′, . . . , r], with SN’ the
first common element of Ak and An. Update the list of critical nodes
to [c1, . . . , ci, k1, . . . , kn].

ancestors((NAMES, FEATURES, GROUPS), featureID, tn)
= case parentGroup of

{ parentGroupID } →
parentGroupID : ancestors((NAMES, FEATURES, GROUPS),

parentGroupID, tn)
∅→ []

where
(

Fe, Fn, Ft, Fp, Fc
)
= FEATURES [featureID]

parentGroup = Fp [tn]

ancestors((NAMES, FEATURES, GROUPS), groupID, tn)
= parentFeatureID : ancestors((NAMES, FEATURES, GROUPS),

parentFeatureID, tn)
where

(
Ge, Gt, Gp, Gc

)
= GROUPS [groupID]

{ parentFeatureID } = Gp [tn]

Figure 4.21: ancestors

(MOVE-GROUP)

¬createsCycle Gp [tn]≤ =
{
[tp1 , tp2)

}
[tn, tp2) ∈≤ Fe Gp

[
[tn, tp2)

]
= {oldParentID}

GROUPS [groupID] =
(
Ge, Gt, Gp, Gc

)
FEATURES [newParentID] =

(
Fe, Fn, Ft, Fp, Fc

)
moveGroup (groupID, newParentID) at tn .

(NAMES, FEATURES, GROUPS)

−→(
NAMES,(

FEATURES [oldParentID]

← removeGroupAt(FEATURES [oldParentID] , [tn, tp2), groupID)
)
[newParentID]

← addChildGroup (FEATURES [newParentID] , groupID, tn) ,
GROUPS [groupID]←

(
Ge, Gn, Gt, clampInterval(Gp, tn)

[
[tn, tp2)

]
← newParentID, Gc

)
Figure 4.22: The MOVE-GROUP rule

4.6 Analysis Rule for Moving a Group

The moveGroup operation moves a group from its parent feature to a new
parent, as explained in Section 3.2.

53

See Figure 4.22 for the semantics of the moveGroup operation. The rule is
similar to the MOVE-FEATURE rule, but it differs in that it does not have a
check for types. This is because there can only be a type conflict between
a parent group and a child feature, not a parent feature and a child group.
Since only the latter relation changes in this rule, it is not necessary to
check that the types are compatible. The model is updated similarly to
the way it is done in the MOVE-FEATURE rule. Here as well, the premise
¬createsCycle refers to the algorithm in Section 4.5.1. The reason this
algorithm can be applied to both features and groups is that cycles break
the tree structure of the feature model, which consists of both feature and
group nodes. Hence, when checking for cycles, features and groups are
treated the same.

(CHANGE-FEATURE-VARIATION-TYPE)

featureID 6= RootID Ft [tn]≤ = {[tt1 , tt2)}

∀[tp1 , tp2) ∈ Fp [[tn, tt2)]≤≥
∀p ∈ Fp

[
[tp1 , tp2)

]
∀t ∈ getTypes

(
GROUPS [p] ,

〈
[tp1 , tp2)

〉tt2
tn

)
(
compatibleTypes(t, type)

)
FEATURES [featureID] =

(
Fe, Fn, Ft, Fp, Fc

)
changeFeatureVariationType (featureID, type) at tn .

(NAMES, FEATURES, GROUPS)

−→
(NAMES,

FEATURES [featureID]←
(

Fe, Fn, clampInterval(Ft, tn) [[tn, tt2)]← type, Fp, Fc
)

,
GROUPS)

Figure 4.23: The CHANGE-FEATURE-VARIATION-TYPE rule

getTypes
((

Ge, Gt, Gp, Gc
)

, [tn, tm)
)
= Gt [[tn, tm)]

getTypes
((

Fe, Fn, Ft, Fp, Fc
)

, [tn, tm)
)
= Gt [[tn, tm)]

Figure 4.24: getTypes

4.7 Analysis Rule for Changing the Variation
Type of a Feature

The operation changeFeatureVariationType is defined in Section 3.2 to
update a feature’s type at a given time point in the evolution plan.

54

The rule in Figure 4.23 shows the semantics of changing the feature
variation type of the feature with ID featureID at time tn. The first
premise featureID 6= RootID ensures that we are not attempting to
modify the type of the root feature, which should always be MANDATORY.
The second premise (Ft [tn]≤ = {[tt1 , tt2)}) identifies the upper bound
of the temporal scope, tt2 . This is when the feature type was originally
planned to change. If there is no such planned change, then tt2 = ∞. The
temporal scope is then [tn, tt2) as defined in Section 3.3. The next premise
is a little convoluted, but its intent is easier to understand:

∀[tp1 , tp2) ∈ Fp [[tn, tt2)]≤≥
∀p ∈ Fp

[
[tp1 , tp2)

]
∀t ∈ getTypes

(
GROUPS [p] ,

〈
[tp1 , tp2)

〉tt2
tn

)
(
compatibleTypes(t, type)

)
It checks that all the types a parent group has while it is the parent of the
feature, restricted by the temporal scope, has a type which is compatible
with the new type of the feature. This is necessary as the feature may
potentially move around several times during the temporal scope, and the
various parent groups could change their types often. It uses the helper
function getTypes (in Figure 4.24), which takes a group or feature entry
and an interval, and returns the types the feature or group has during the
interval.

If all the premises are true, then the FEATURES map is updated at
featureID by shortening the interval key for the original type at tn using
clampInterval, and assigning the new type to the temporal scope [tn, tt2).

4.8 Analysis Rule for Changing the Variation
Type of a Group

The operation changeGroupVariationType changes the type of a group
at a given time point, as defined in Section 3.2. The rule in Figure 4.25 is
similar to the changeFeatureVariationType rule in Figure 4.23, and shows
the semantics of changing the type of a group. In a similar way to the
CHANGE-FEATURE-VARIATION-TYPE rule, it verifies that the types of all the
child features during the affected interval are compatible with the new
group type. If they are compatible, the group entry is updated with the
new type during the temporal scope.

55

(CHANGE-GROUP-VARIATION-TYPE)

Gt [tn]≤ = {[tt1 , tt2)}

∀[tc1 , tc2) ∈ Gc [[tn, tt2)]≤≥

∀c ∈
⋃

Gc [[tc1 , tc2)]

∀t ∈ getTypes
(

FEATURES [c] , 〈[tc1 , tc2)〉
tt2
tn

)
(
compatibleTypes(type, t)

)
GROUPS [groupID] =

(
Ge, Gt, Gp, Gc

)
changeGroupVariationType (groupID, type) at tn .

(NAMES, FEATURES, GROUPS)

−→
(NAMES, FEATURES,

GROUPS [groupID]←
(
Ge, clampInterval(Gt, tn) [[tn, tt2)]← type, Gp, Gc

)
)

Figure 4.25: The CHANGE-GROUP-VARIATION-TYPE rule

(CHANGE-FEATURE-NAME)

Fn [tn] = {oldName} Fn [tn]≤ = {[tn1 , tn2)}
NAMES [name] [[tn, tn2)] = ∅

FEATURES [featureID] =
(

Fe, Fn, Ft, Fp, Fc
)

changeFeatureName (featureID, name) at tn .

(NAMES, FEATURES, GROUPS)

−→((
NAMES [oldName]← clampInterval (NAMES [oldName] , tn)

)
[name] [[tn, tn2)]← featureID,

FEATURES [featureID]←
(

Fe, clampInterval(Fn, tn) [[tn, tn2)]← name, Ft, Fp, Fc
)

,

GROUPS
)

Figure 4.26: The CHANGE-FEATURE-NAME rule

56

4.9 Analysis Rule for Changing the Name of a
Feature

As defined in Section 3.2, the changeFeatureName operation changes
the name of a feature at a given time point. The semantics of changing
the name of a feature are shown in the CHANGE-FEATURE-NAME rule
in Figure 4.26. The old name and the next planned name change are
identified on the first line (Fn [tn] = {oldName} and Fn [tn]≤ = {[tn1 , tn2)}
respectively). Since the name must not be in use during the temporal
scope, we verify that looking up the new name in the NAMES map returns
an empty set. The NAMES map is updated by shortening the interval for
the old name to end at tn, and assigning the feature ID to the new name
during the temporal scope. Furthermore, the FEATURES map is updated at
the feature ID, shortening the interval for the old name and assigning the
new name to the temporal scope.

57

58

Chapter 5

Soundness

In this chapter we prove soundness for the analysis rules (Section 4 on
page 37) by formalizing soundness for interval-based feature models and
examining the behaviour of each rule individually.

Our goal is to show that applying a rule will result in a sound plan, and
that the rules operate within the operation’s scope and updates the model
correctly. We first define formally what constitutes a well-formed interval-
based feature model. Next, we prove that each rule results in a sound
IBFM, given that the original IBFM is well-formed. Moreover, we show
that the rules do not violate the scopes defined in Section 3.3, and that
they update the model according to the semantics of each rule. We present
only two of the proofs in this chapter to show the structure of the proofs.
The rest of the proofs can be found in Appendix A on page 85.

5.1 Soundness for Interval-Based Feature
Models

The interval-based feature model can be viewed as a sequence of feature
models associated with time points. A feature model has strict structural
requirements, and the definition of a paradox is a feature model that
violates these requirements. In this context, soundness means that if a rule
accepts a modification, realising the modified plan results in a sequence
of feature models where each is well-formed. The soundness analysis in
this chapter assumes that the original plan is sound; i.e., containing no
paradoxes.

We must first define what it means for an interval-based feature model
to be sound. Essentially, it means that if we converted the interval-
based feature model into a sequence of time points associated with feature

59

models, each feature model would be well-formed.

The well-formedness requirements listed in Section 2.1.1 on page 11 can be
translated into rules for interval-based feature models (NAMES, FEATURES,
GROUPS). We assume that the first time point in the plan is t0.

IBFM1 An interval-based feature model has exactly one root feature. We as-
sume that the constant RootID refers to the root of the interval-based
feature model, and that FEATURES [RootID] =

(
Re, Rn, Rt, Rp, Rc

)
.

This also means that Re = {[t0, ∞)} — the root always exists, and
that Rp = ∅ — the root never has a parent group.

IBFM2 The root feature must be MANDATORY. This means that

Rt = {[[t0, ∞) 7→ MANDATORY]}

where Rt is the types map of the root feature.

IBFM3 At any time tn ≥ t0, each feature has exactly one unique name, vari-
ation type and (potentially empty) collection of child groups. Given
a feature ID featureID, this means that if FEATURES [featureID] =(

Fe, Fn, Ft, Fp, Fc
)

and tn ∈≤ Fe , then

(i) Fn [tn] = {name}— the feature has exactly one name,

(ii) NAMES [name] [tn] = {featureID} — the name is unique at the
time point tn,

(iii) Ft [tn] = {type} with type ∈ {MANDATORY, OPTIONAL}— the
feature has exactly one type, and

(iv) Fc [tn] = C, such that
⋃

C is a set of the group IDs, and if
groupID ∈ ⋃C and GROUPS [groupID] =

(
Ge, Gt, Gp, Gc

)
, then

Gp [tn] = {featureID}— if a group is listed as a child group of
a feature, then the feature is listed as the parent of the group at
the same time.

IBFM4 At any time tn ≥ t0, each group has exactly one variation type.
Given a group ID groupID, this means that if GROUPS [groupID] =(

Ge, Gt, Gp, Gc
)

and tn ∈≤ Ge, then Gt [tn] = {type} for type ∈
{AND, OR, ALTERNATIVE}.

IBFM5 At any time tn ≥ t0, each feature, except for the root feature,
must be part of exactly one group. Formally, given a feature ID
featureID 6= RootID, if FEATURES [featureID] =

(
Fe, Fn, Ft, Fp, Fc

)
,

and tn ∈≤ Fe, then Fp [tn] = {groupID} with GROUPS [groupID] =(
Ge, Gt, Gp, Gc

)
, tn ∈≤ Ge, and featureID ∈ ⋃Gc [tn]. Conversely, if

featureID ∈ ⋃Gc [tn], then Fp [tn] = groupID.

IBFM6 At any time tn ≥ t0, each group must have exactly one parent
feature. Formally, given a group ID groupID, if GROUPS [groupID] =

60

(
Ge, Gt, Gp, Gc

)
and tn ∈≤ Ge, then Gp [tn] = {featureID},

and FEATURES [featureID] =
(

Fe, Fn, Ft, Fp, Fc
)

with groupID ∈⋃
Fc [tn].

IBFM7 At any time tn, a group with types ALTERNATIVE or OR must not
contain MANDATORY features. Formally, given a group ID groupID

with GROUPS [groupID] =
(
Ge, Gt, Gp, Gc

)
, if Ft [tn] = {type}

with type ∈ {ALTERNATIVE, OR}, and if featureID ∈ ⋃
Fc [tn]

and FEATURES [featureID] =
(

Fe, Fn, Ft, Fp, Fc
)
, then Ft [tn] =

{OPTIONAL}.

Since our representation does not enforce structural requirements, we
must add two additional requirements:

IBFM8 For a feature with ID featureID such that FEATURES [featureID] =(
Fe, Fn, Ft, Fp, Fc

)
, if tn /∈≤ Fe, then Fn [tn] = Ft [tn] = Fp [tn] =

Fc [tn] = ∅, and for all keys name in NAMES, featureID /∈
NAMES [name] [tn] — no name belongs to the feature. Similarly,
for a group with ID groupID such that GROUPS [groupID] =(

Ge, Gt, Gp, Gc
)
, if tn /∈≤ Ge, then Gt [tn] = Gp [tn] = Gc [tn] = ∅. In

other words, a feature or a group which does not exist cannot have a
name, a type, a parent, or a child.

IBFM9 The interval-based feature model contains no cycles, which means
that at any time point tn ≥ t0, for any feature or group that exists at
tn, if we follow the parent chain upwards, we never encounter the
same feature or group twice. In other words, no feature or group is
its own ancestor.

Together, these requirements form the basis of the soundness proofs. We
assume that the original plan is sound, so each of these requirements
is assumed to be true for the original interval-based feature model.
Furthermore, we prove that the requirements must still hold for the
updated model if the rule can be applied.

5.2 Soundness of the Rules

In the following sections, we prove that each rule is sound, and conclude
that the system is sound. We rely upon the above defined well-formedness
requirements IBFM1–9 to show this.

For each rule, the proof for soundness includes three parts:

(i) Modularity — proving that the rule operates strictly within the
previously defined temporal and spatial scopes (see Section 3.3),

61

(ii) Preserving well-formedness — that the rule preserves well-
formedness, as defined in the above requirements IBFM1–9, and

(iii) Correctness of model modification — that the rule updates the
model correctly, preserving soundness as well as respecting the
semantics of the operation.

These parts are concluded with a lemma for each rule, and the lemmas are
finally used to show that the entire rule system is correct.

5.2.1 Soundness of the Add Feature Rule

See Figure 4.1 on page 38 for the ADD-FEATURE rule. Let

addFeature(featureID, name, type, parentGroupID) from tn to tm .

(NAMES, FEATURES, GROUPS)

be the initial state, and

(NAMES′, FEATURES′, GROUPS′)

the state after applying the ADD-FEATURE rule. Recall that this op-
eration adds the feature with ID featureID to the interval-based fea-
ture model (NAMES, FEATURES, GROUPS) from tn to tm. We assume that
(NAMES, FEATURES, GROUPS) is well-formed, as defined in IBFM1–9.

Modularity Recall from Section 3.3 on page 30 that the temporal scope
of this operation is [tn, tm), and the spatial scope is the feature itself, the
parent group and the name.

In the rule, we look up only the feature ID, the parent group ID, and the
name, and update only the name, feature, and parent group. Thus, the
rule operates within the spatial scope of the operation. Furthermore, the
only interval looked up or assigned to in the interval maps and sets of the
model is [tn, tm), which is exactly the temporal scope of the rule. Hence
the rule operates strictly within the temporal and spatial scopes of the
operation.

Based on the above proof, we conclude with the following lemma:

Lemma 5.1. The ADD-FEATURE rule operates strictly within the temporal
and spatial scopes of the addFeature operation.

62

Preserving well-formedness If the rule is applied, the well-formedness
requirements must hold for the updated feature model.

Since the rule checks that the feature does not already exist during the
temporal scope, it is impossible that featureID = RootID. Thus the
rule does not affect the root feature, and IBFM1 and IBFM2 hold for the
updated interval-based feature model.

Because we assume that IBFM8 holds for the original model, and the
feature does not exist during [tn, tm), the feature has no name, type, or
child groups in the original plan. When we add the feature to the feature
model using setFeatureAttributes, we give the feature exactly one name
and one type during the temporal scope, and the set of child groups
is empty. The temporal scope is also added to the feature’s existence
set, so only the new feature has the ID featureID during the temporal
scope. To link the feature ID to the name, the rule sets the feature ID
as the value at key name in the NAMES map during the temporal scope.
Because of this, and since no feature uses the name during the temporal
scope in the original plan, the name is unique during the temporal scope.
Consequently, IBFM3 holds.

The rule does not modify the parent group’s variation type, so IBFM4 is
preserved in the modified interval-based feature model.

Similarly to the argument for IBFM3, the parent group ID is uniquely
defined for the feature in setFeatureAttributes, and featureID is added
to the parent group’s set of child features, so the new feature is part of
exactly one group. Since we do not remove any other feature IDs from the
parent group’s set of features, and as we already established that the new
feature is not the root feature, IBFM5 is preserved.

The new feature does not have any child groups during the temporal
scope, and we do not modify the parent group’s parent feature. Under
the assumption that IBFM6 holds in the original model, it still holds after
applying the ADD-FEATURE rule.

The rule verifies that all of the parent group’s types are compatible with
the added feature’s type during the temporal scope, so IBFM7 holds after
applying the rule.

Since the rule adds the temporal scope to the new feature’s existence table,
and since the parent group exists in the original plan, IBFM8 is preserved
after the rule is applied.

It is furthermore impossible that adding this feature creates a cycle in the
modified model. The new feature has no child groups, so it cannot be part
of a cycle. Because of the assumption that IBFM9 holds in the original
plan, and applying the rule does not introduce a cycle, this requirement
still holds.

63

As the rule operates within the scope (Lemma 5.1 on page 62), it does not
affect any other part of the plan.

We conclude that the ADD-FEATURE rule preserves well-formedness for the
interval-based feature model, according to well-formedness rules IBFM1-
9.

Lemma 5.2. The ADD-FEATURE rule preserves well-formedness of the
interval-based feature model.

Correctness of model modification The operation is intended to add the
feature with ID featureID to the interval-based feature model during the
interval [tn, tm).

After adding the feature to the interval-based feature model, looking up
the name name in the NAMES map at any point tk during the temporal
scope should give the value featureID. Indeed, since the NAMES map is
updated thus:

NAMES [name] [[tn, tm)]← featureID

then due to the semantics of map assignment (Definition 3.1 on page 20),
and lookup in interval maps (Definition 3.3 on page 22), for all points tk
with tn ≤ tk < tm,

NAMES′ [name] [tk] = {featureID}

will hold.

Similarly, if we wish to lookup information about the feature during
the interval [tn, tm) in the modified model, the results should match the
information in the operation. The rule assigns

setFeatureAttributes(FEATURES [featureID] , [tn, tm), name, type,
parentGroupID)

to FEATURES [featureID].

According to the semantics of assignment (Section 3.1 on page 19)
and setFeatureAttributes (Figure 4.3 on page 39), and given that
FEATURES′ [featureID] =

(
F′e , F′n, F′t , F′p, F′c

)
, then for all time points tk

64

with tn ≤ tk < tm,

tk ∈≤ F′e the feature exists (1)

F′n [tk] = {name} the feature has the expected name (2)

F′t [tk] = {type} the feature has the expected type (3)

F′p [tk] = {parentGroupID} the feature has the expected parent group
(4)

F′c [tk] = ∅ the feature has no child groups (5)

Statement (1) holds due to the line Fe∪{[tn, tm)} in setFeatureAttributes.
The next four hold due to both premises in the rule and modifications in
the function. Due to the premise [tn, tm) 6∈≤≥ Fe, which means that the
feature does not previously exist at any point during the interval, and
since IBFM8 is assumed to hold for the original model, the original fea-
ture does not have a name, type, parent group or child groups during
the interval. In the function setFeatureAttributes, the name is added
(Fn [[tstart, tend)] ← name), and so is the type (Ft [[tstart, tend)] ← type) and
the parent group (Ft [[tstart, tend)] ← parentGroupID). The child groups
map is set to ∅ by setFeatureAttributes, and so (5) holds.

The child features of the group must also be updated according to
the semantics of the operation. After applying the rule, given that
GROUPS′ [parentGroupID] =

(
G′e, G′t, G′p, G′c

)
, then for all tk with tn ≤

tk < tm,

featureID ∈
⋃

G′c [tk]

meaning that the feature is in the parent group’s set of child features in
the updated model during the entire temporal scope. This holds because
GROUPS [parentGroupID] is assigned

addChildFeature(GROUPS [parentGroupID] , [tn, tm), featureID)

which modifies Gc by adding featureID to the set of child features at
interval key [tn, tm) 1.

The above proof shows the following lemma:

Lemma 5.3. The ADD-FEATURE rule updates the interval-based feature
model according to the semantics of the addFeature operation.

1See Figure 4.4 on page 39 for the definition of addChildFeature.

65

5.2.2 Soundness of the Move Feature Rule

See Figure 4.19 on page 50 for the MOVE-FEATURE rule. Let

moveFeature(featureID, newParentID) at tn .

(NAMES, FEATURES, GROUPS)

be the initial state, and

(NAMES′, FEATURES′, GROUPS′)

be the result state after applying the MOVE-FEATURE rule. Recall that
this operation moves the feature with ID featureID to the group with ID
newParentID.

Modularity Recall that the temporal scope of the move-feature rule is
[tn, tk) (Section 3.3 on page 30), where tk is the time point at which the
feature is originally planned to be moved or is removed. In the rule, this
scope is identified by

Fp [tn]≤ =
{
[tp1 , tp2)

}
Here, the time point tn for moving the feature is looked up in the feature’s
parent map’s set of interval keys, and the expected result is

{
[tp1 , tp2)

}
.

This means that there is a mapping [[tp1 , tp2) 7→ parentGroupID] in Fp,
with parentGroupID being the ID of the feature’s parent group at time tn,
and this group stops being the feature’s parent at tp2 . Thus the temporal
scope of this operation is [tn, tp2). The only interval looked up or assigned
to in the rule is [tn, tp2), but it is necessary to also look at the cycle detection
algorithm in Section 4.5.1 on page 50, since this is also referenced in the
rule by ¬createsCycle. Here, tp2 is called te, and the algorithm states
that it only looks at time points between tn and te. Thus the rule operates
strictly within the temporal scope of the moveFeature operation.

The spatial scope for this operation is defined as the ancestors which the
feature and the target group do not have in common. In other words, the
new ancestors of the feature after applying the rule. In the rule itself,
only the feature with ID featureID and its new parent group with ID
newParentID are looked up. However, the cycle detection algorithm must
also be considered. Here, the ancestors of both the feature and the group
at tn are looked up, the first ancestor they have in common identified, and
the new ancestors are collected into a list. If one of them is moved before
te, the list is updated. Hence the algorithm’s spatial scope is indeed the
feature’s ancestors and target group’s ancestors, as well as the feature and
the group themselves, and so the rule operates within the defined spatial
scope.

66

Based on the above proof, we conclude with the following lemma:

Lemma 5.4. The MOVE-FEATURE rule operates strictly within the spatial
and temporal scopes of the moveFeature operation.

Preserving well-formedness Since the rule verifies that the feature has
a parent group, the feature being moved is not the root. Thus IBFM1 and
IBFM2 hold. The rule does not update the name, type or child groups of
the feature, so IBFM3 is true for the updated model. Nor does it modify
the target group’s type or parent feature, so IBFM4, IBFM6, and IBFM7
also hold.

The modification made to FEATURES [featureID] is to the parent group
map Fp by

F′p = clampInterval(Fp, tn)
[
[tn, tp2)

]
← newParentID

As discussed in earlier sections (e.g. Section A.2 on page 87),
clampInterval replaces a mapping [[ti, tj) 7→ v] by [[ti, tn) 7→ v],
with tn ≤ tj. The feature has no parent group after the application of
clampInterval(Fp, tn). The subsequent assignment of newParentID to
[tn, tp2) ensures that the feature has exactly one parent group during the
temporal scope. This relation is reflected in the GROUPS′ map, with

GROUPS′ =(
GROUPS [oldParentID]

←removeFeatureAt (GROUPS [oldParentID] , featureID, tn)
)
[newParentID]

←addChildFeature(GROUPS [newParentID] , [tn, tp2), featureID)

The feature is added to the target group by addChildFeature (Figure 4.4)
during the interval [tn, tp2), and removed from the original parent group
by removeFeatureAt. Consequently IBFM5 holds for the updated model.

By the premise

∀[t f1 , t f2) ∈ Ft
[
[tn, tp2)

]
≤≥ ∀[tg1 , tg2) ∈ Gt

[〈
[t f1 , t f2)

〉tp2
tn

]
≤≥

∀ft ∈ Ft
[
[t f1 , t f2)

]
∀gt ∈ Gt

[
[tg1 , tg2)

]
(compatibleTypes(gt, ft))

in the rule, the types of the feature and its new parent group are
compatible. For each interval key in Ft overlapping the temporal scope,
and for each interval key in Gt overlapping both the aforementioned
interval and the temporal scope, it checks whether the types they map to
are compatible. To fulfil this, each type the feature has during the temporal
scope must be compatible with the type the parent group has at the same
time. Thus IBFM7 holds for the modified model.

67

Since the rule adds a child feature to the target group during the temporal
scope, the group must exist during the temporal scope for IBFM8 to hold.
The premise [tn, tp2) ∈≤ Ge along with the assumption that IBFM8 holds in
the origial plan ensure this. Moreover, the rule does not alter the feature’s
existence set, so IBFM8 is preserved.

The intention of the cycle detection algorithm in Section 4.5.1 on page 50 is
to uphold IBFM9. Given the assumption that the original interval-based
feature model contains no cycles, if the altered model contains a cycle then
the moveFeature operation introduced it, and the feature being moved
must be part of the cycle. This could only happen if the feature became
part of its own subtree during the temporal scope, which means that at
some point, the feature occurs in its own list of ancestors. The algorithm
looks at the feature’s new ancestors, meaning the ancestors that the feature
does not have in the original plan, but does in the new one. It then checks
that none of those ancestors are moved to the feature’s subtree. Thus the
rule preserves IBFM9.

We conclude that the MOVE-FEATURE rule preserves well-formedness
for the interval-based feature model, according to well-formedness rules
IBFM1-9.

Lemma 5.5. The MOVE-FEATURE rule preserves well-formedness of the
interval-based feature model.

Correctness of model modification The operation is intended to move
the feature with ID featureID to the group with ID newParentID during
the temporal scope [tn, tp2). After applying the MOVE-FEATURE rule, the
only differences between the original and modified interval-based feature
model should be

(i) The feature’s parent group should be newParentID during the
temporal scope

(ii) The feature should not appear in the original parent group’s set of
child features during the temporal scope

(iii) The feature should appear in the new parent group’s set of child
features

Given the modified map of parent groups F′p and the original map Fp, we
have that

F′p = clampInterval(Fp, tn)
[
[tn, tp2)

]
← newParentID

This statement assigns newParentID to the temporal scope [tn, tp2) after ap-
plying clampInterval(Fp, tn), meaning that the original parent mapping

68

is shortened to end at tn, and a new mapping [[tn, tp2) 7→ newParentID]
is inserted. By semantics of assignment, it is clear that for all ti with
tn ≤ ti < tp2 , F′p [ti] = {newParentID}, which is the desired result and
fulfils (i).

By Lemma 5.5 on the preceding page and IBFM5, (ii) and (iii) follow from
(i). In other words, since the updated interval-based feature model is
well-formed, and the feature’s parent group during the temporal scope
is newParentID, the feature is not in the original parent group’s set of child
features during the temporal scope, and is in the new parent group’s set
of child features.

The above proof shows the following lemma:

Lemma 5.6. The MOVE-FEATURE rule updates the interval-based feature
model according to the semantics of the moveFeature operation.

5.3 Soundness of the Rule System

In this section, we summarise the lemmas proven in Section 5.2 on page 61
and Appendix A on page 85 into three theorems that show that the rule
system is sound — given a sound plan and an operation, if the operation
is applied, then it causes no paradoxes, and the resulting model is well-
formed. We base this on the definition of well-formedness for interval-
based feature models listed in well-formedness requirements IBFM1–9.
Furthermore, the rules are modular, meaning that they operate within
limited scopes.

In Section 5.2 and Appendix A, we have shown that each of the analy-
sis rules operates within the temporal and spatial scopes of an operation.
Based on the lemmas2, we prove the following theorem.

Theorem 5.7. The rule system supports local modification and verification
of interval-based feature models.

We have shown that each of the analysis rules preserves well-formedness
of the interval-based feature model (Section 5.2 and Appendix A). The fol-
lowing theorem follows directly from lemmas3.

Theorem 5.8. The rule system for local modification of interval-based
feature models is well-formed.

2See lemmas 5.1, 5.4, A.1, A.4, A.7, A.10, A.13, A.16, A.19
3See lemmas 5.2, 5.5, A.2, A.5, A.8, A.11, A.14, A.17, A.20

69

In Section 5.2 on page 61 and Appendix A, we have shown that each of
the analysis rules behaves according to the semantics of the operation in
question.4 Using the lemmas proven there, we conclude that this holds for
the rule system.

Theorem 5.9. The rule system for local modification of interval-based
feature models modifies the model correctly.

Together, the three theorems show that the rule system is sound. If
applied to a sound interval-based feature model and an operation, they
will update the model correctly if the operation does not cause a paradox
(Theorem 5.9), and the resulting model will be well-formed (Theorem 5.8).
The rules will only check the parts of the plan that may be structurally
violated due to the change (Theorem 5.7).

4See lemmas 5.3, 5.6, A.3, A.6, A.9, A.12, A.15, A.18, A.21

70

Chapter 6

Implementation

In this chapter, we present our implementation of the data structures and
analysis rules. We first give an overview of the types to display the
structure of the implementation. An example is presented to show how
it looks in practice. We also briefly present the translation of the analysis
rules, and give an example of an application.

6.1 Overview

We have created a prototype for an implementation of the analysis rules.
The implementation can be found on GitHub1. The implementation is not
meant to be integrated directly into a tool, but serves as a proof of concept
that our analysis method is realisable in practice. It can also serve as a
guide for how to interpret the rules where they are unclear, if they are to
be realised as part of a SPL planning tool.

The prototype is implemented in Haskell2, which is a strongly typed,
purely functional programming language. We chose the language since
a functional language corresponds closely to the mathematical nature of
our analysis rules. Moreover, Haskell has an implementation of interval
maps3 which are easily adapted to our purposes.

The most important modules are Types, Validate, and Apply. We give
brief introductions to these modules in the following sections.

1https://github.com/idamotz/Master/tree/master/soundness-checker
2https://www.haskell.org/
3https://hackage.haskell.org/package/IntervalMap

71

https://github.com/idamotz/Master/tree/master/soundness-checker
https://www.haskell.org/
https://hackage.haskell.org/package/IntervalMap

6.1.1 Translation from Definitions to Types

In the Types module we define all the types used throughout the project,
corresponding closely with our definitions (see Chapter 3 on page 19).
Our time points are implemented as an abstract data type TimePoint. The
possible TimePoints are TP n, where n is an integer, or Forever, which
corresponds to ∞. For all integers n, we have that TP n < Forever. Our
notion of intervals are translated to an abstract data type Validity. Using

Validity (TP 3) (TP 5)

gives us the interval [3, 5). Similarly, Validity (TP 1) Forever corre-
sponds to the interval [1, ∞).

We base our implementation of the interval maps on the Haskell module
IntervalMap. To customise it to our needs, we name our representation
ValidityMap, specifying that the keys are Validitys. The IntervalMap

module provides several useful functions, such as containing, which
takes an IntervalMap and a TimePoint and returns all the keys containing
the given time point.

We further define the data type IntervalBasedFeatureModel, which
takes the root ID of the IBFM, a NameValidities map, a Feature-

Validities map, and a GroupValidities map. This corresponds closely
to our interval-based feature model (NAMES, FEATURES, GROUPS) (see
Definition 3.5 on page 23). The NameValidities map is a Haskell
Map4 from Name, which is a String, to ValidityMap FeatureID, where
FeatureID is a wrapper type for String. Recall from Section 3.1 that
our NAMES map is a map from names to interval maps with feature ID
values, which resembles our implementation. The FeatureValidities

map has FeatureID keys and FeatureValidity values. The Feature-

Validity resembles our feature entries
(

Fe, Fn, Ft, Fp, Fc
)

. The interval
set Fe is represented by a ValidityMap (). The special type () (unit) has
only one value, namely (). This lets us treat the ValidityMap () as an
interval map or an interval set (where the interval keys are the elements of
the set), depending on our needs. The names map Fn is represented by a
ValidityMap Name, the types map Ft by a ValidityMap FeatureType, the
parent group map Fp by a ValidityMap GroupID, and the child group map
Fc by a ValidityMap (Set5 GroupID).

A group
(
Ge, Gt, Gp, Gc

)
is defined in much the same way, with a

ValidityMap () for its existence interval set Ge, a ValidityMap GroupType

4https://hackage.haskell.org/package/containers-0.4.0.0/docs/Data-Map.

html
5https://hackage.haskell.org/package/containers-0.6.4.1/docs/Data-Set.

html

72

https://hackage.haskell.org/package/containers-0.4.0.0/docs/Data-Map.html
https://hackage.haskell.org/package/containers-0.4.0.0/docs/Data-Map.html
https://hackage.haskell.org/package/containers-0.6.4.1/docs/Data-Set.html
https://hackage.haskell.org/package/containers-0.6.4.1/docs/Data-Set.html

Root

A

1

Root

5...

Figure 6.1: Simple plan

for its types map Gt, a ValidityMap FeatureID for its parent feature map
Gp, and a ValidityMap (Set FeatureID) for its child feature map Gc.

6.1.2 Example — Encoding the Interval-Based Feature
Model

The example in Figure 6.1 is formalized below in our previously defined
representation, with only one feature (ID feature:root) and one group (ID
group:A).

({ [Root 7→ [[1, ∞) 7→ feature:root]]}

, {
[
feature:root 7→ (

{[1, ∞)},
{[[1, ∞) 7→ Root]},
{[[1, ∞) 7→ MANDATORY]},
∅,

{[[1, 5) 7→ group:A]}
)]

}

, {
[
group:A 7→ (

{[1, 5)},
{[[1, 5) 7→ AND]},
{[[1, 5) 7→ feature:root]},
∅
)]

})

73

Below, the above example is translated to our Haskell representation6.

im :: Validity -> a -> ValidityMap a

im = IM.singleton

simplePlan :: IntervalBasedFeatureModel

simplePlan =

IntervalBasedFeatureModel

(FeatureID "feature:root")

[

("Root"

, im (Validity (TP 1) Forever) (FeatureID "feature:root")

)

]

[

(FeatureID "feature:root"

, FeatureValidity

(im (Validity (TP 1) Forever) ())

(im (Validity (TP 1) Forever) "Root")

(im (Validity (TP 1) Forever) Mandatory)

mempty

(im (Validity (TP 1) (TP 5)) [GroupID "group:A"])

)

]

[

(GroupID "group:A"

, GroupValidity

(im (Validity (TP 1) (TP 5)) ())

(im (Validity (TP 1) (TP 5)) And)

(im (Validity (TP 1) (TP 5)) (FeatureID "feature:root"))

mempty

)

]

The operations are interpreted quite directly, in two categories: The
AddOperations, which take a Validity (interval) and an operation, and
the ChangeOperations, which take a TimePoint and an operation. An
update operation is simply called an UpdateOperation. To express
addFeature(feature:B, B, MANDATORY, group:A) from 3 to ∞, we write

op =

AddOperation (Validity (TP 3) Forever)

(AddFeature (FeatureID "feature:B") "B" Mandatory

(GroupID "group:A"))↪→

6This example can be found in the GitHub repository, in soundness-checker/src/

SimpleExample.hs

74

Root

A

1

Root

5...

B

Root

A

3 ...

B

Figure 6.2: Illustration of the paradox

6.1.3 Interpreting the Rules as Code

Each rule consists of a set of premises, and a conclusion which takes a
state and returns a new state. In the implementation, we have chosen to
split these up, with one function for verifying the premises, and one for
applying the operations.

The Validate module exports only the function validate, which takes
a UpdateOperation and an IntervalBasedFeatureModel. The most
important difference between this function and the rules is that the
function returns a list of errors if paradoxes occur. These errors belong to
the type ValidationError, and consists of errors like IncompatibleTypes,
to be returned if a feature and its parent group have incompatible types,
NameInUse, if a feature is trying to use a name which already belongs to
another feature, etc. This is done to show that the cause of a paradox can
be identified quite precisely.

To apply the operations, the Apply module exports the function apply,
which takes a UpdateOperation and an IntervalBasedFeatureModel and
applies the operation to the model. This function works similarly to how
it is defined in the rules.

The functions are combined in validateAndApply, which has the return
type Either [ValidationError] IntervalBasedFeatureModel. If valida-
tion fails, it returns a list of errors, and if it succeeds, it applies the op-
eration and returns the modified model. If we call validateAndApply op

simplePlan, where op and simplePlan are defined above, we get the fol-
lowing result:

Left [ParentNotExists]

:: Either [ValidationError] IntervalBasedFeatureModel

The list of errors, containing ParentNotExists, is wrapped in a Left to
show that the type is a ValidationError. If the operation does not result
in an error, we will get a result on the form Right ibfm, where ibfm is

75

an IntervalBasedFeatureModel. The error here means that we are trying
to add a feature, but the feature’s parent does not exist at some point
during the specified interval. In the example, the parent group group:A

is removed at 5, so the feature will be without a parent at that time. The
paradox is visualised in Figure 6.2.

76

Part III

Conclusion

77

Chapter 7

Conclusion and Future Work

In this chapter, we begin by reviewing the research questions, discussing
to which degree we met our goals. Moreover, we suggest further
improvements to our solution and future work. Lastly, we summarize
our contributions in the conclusion.

7.1 Addressing the Research Questions

We presented our research question in the introduction, Section 1.2 on
page 5. We now discuss how our solution addresses these questions.

RQ1 Which operations are necessary for modifying a feature model evolution
plan? We have chosen a set of update operations (i.e. addFeature(. . .)
from tn to tm) to update a feature model evolution plan (see
Section 3.2 on page 28). These operations allow us to add, remove,
and move features and groups, as well as change their types and
features’ names. In other words, they can be used to alter all aspects
of the features and groups, i.e., the spatial aspects of the feature
model evolution plan. However, some alterations concerning time
are not possible to achieve using these operations. For instance, if
a feature exists from time t1 to t3, it is impossible to directly change
the start of the feature’s existence to t0 without ending up with both
the interval [t0, t1) and [t1, t3). However, we feel that the operations
we have provided give a useful basis for a complete analysis tool for
feature model evolution planning.

RQ2 How can we capture and formalize a feature model evolution plan in such a
way that the scope of each operation can be captured? The representation
we have devised — the interval-based feature model, defined in
Section 3.1 on page 19 — aims to address this research question. The
interval-based feature model lets us look up the state of any feature

79

or group at any point in time given its ID, and the names used.
This can be done without traversing the entire plan due to its use
of maps, and the scope of each operation can be readily looked up.
However, this solution gives quite a lot of redundancy, as all parent-
child and feature-name relations are doubly present in the model.
The redundancy makes updating the model more cumbersome, but
it ensures that no operation requires a traversal of the entire plan.
Ultimately, we feel that the trade-off is worth it, as the aim is to make
sure that scopes can be isolated.

RQ3 How can we soundly analyse change? We have given rules for analysis
of change in Section 4 on page 37. The rules rely on the assumption
that the initial plan is sound, and as proven in Chapter 5 on page 59,
they do guarantee that the resulting plan is sound if a rule can be
applied. Furthermore, the prototype1 shows that the process can be
automated. However, there are cases for which the rules may be too
strict. Some sequences of operations may, applied in order, result
in a sound plan, even though the plan is unsound after applying just
one operation. For instance, suppose that a feature with ID featureA

has the name “FeatureName” from time t3 to t4, but we wish for the
feature with ID featureB to have the same name from t1 to t2. If we
attempt to apply changeFeatureName(featureB, “FeatureName”) at
t1, then the CHANGEFEATURENAME rule will not apply, as featureA

and featureB have the same name at time t3. However, after
applying changeFeatureName(featureB, “OldFeatureName”) at t2,
the resulting plan would be sound. Nevertheless, this case is
contrived and not likely to appear naturally.

7.2 Future Work

As mentioned in the previous section, there are aspects of our solution
that can be improved upon. For an engineer to have complete freedom
over her feature model evolution plan, one could create operations that let
us extend and restrict the intervals in the interval-based feature model in
all directions, not just for removal. A solution supporting batch operations
— sequences of operations treated as a single operation — could also be
useful in a complete implementation.

Hopefully, this analysis method can be applied in existing evolution
planning tools such as DarwinSPL. For the benefits of modularity to
shine, it should ideally be integrated tightly into the tool’s representation.
An implementation could also exploit the fact that this analysis has the

1https://github.com/idamotz/Master/tree/master/soundness-checker

80

https://github.com/idamotz/Master/tree/master/soundness-checker

potential for detailed error messages, since change is the subject of analysis,
and not the entire plan.

7.3 Conclusion

We have created a modular method for soundness analysis of change to
feature model evolution plans. The analysis leverages the assumption of
an initially sound evolution plan, and checks only those parts of the plan
that may be affected by change. The representation we have created, the
interval-based feature model, lets us isolate the scope of each operation,
thus contributing to the modularity of the solution. We have given proofs
of soundness and correctness for the analysis, and a prototype as proof of
concept.

This analysis method may be implemented in an evolution planning tool
and can help engineers to update evolution plans more securely and
confidently.

81

82

Bibliography

[1] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line
Engineering - Foundations, Principles, and Techniques. Springer, 2005,
ISBN: 978-3-540-24372-4. DOI: 10.1007/3-540-28901-1. [Online].
Available: https://doi.org/10.1007/3-540-28901-1.

[2] D. S. Batory, “Feature models, grammars, and propositional formu-
las”, in Software Product Lines, 9th International Conference, SPLC 2005,
Rennes, France, September 26-29, 2005, Proceedings, J. H. Obbink and
K. Pohl, Eds., ser. Lecture Notes in Computer Science, vol. 3714,
Springer, 2005, pp. 7–20. DOI: 10 . 1007 / 11554844 \ _3. [Online].
Available: https://doi.org/10.1007/11554844%5C_3.

[3] J. Mauro, M. Nieke, C. Seidl, and I. C. Yu, “Context-aware reconfig-
uration in evolving software product lines”, Sci. Comput. Program.,
vol. 163, pp. 139–159, 2018. DOI: 10.1016/j.scico.2018.05.002.
[Online]. Available: https://doi.org/10.1016/j.scico.2018.05.
002.

[4] M. Nieke, G. Engel, and C. Seidl, “Darwinspl: An integrated tool
suite for modeling evolving context-aware software product lines”,
in Proceedings of the Eleventh International Workshop on Variability Mod-
elling of Software-intensive Systems, VaMoS 2017, Eindhoven, Nether-
lands, February 1-3, 2017, M. H. ter Beek, N. Siegmund, and I. Schae-
fer, Eds., ACM, 2017, pp. 92–99. DOI: 10.1145/3023956.3023962.
[Online]. Available: https://doi.org/10.1145/3023956.3023962.

[5] G. Botterweck, A. Pleuss, D. Dhungana, A. Polzer, and S.
Kowalewski, “Evofm: Feature-driven planning of product-line evo-
lution”, in Proceedings of the 2010 ICSE Workshop on Product Line
Approaches in Software Engineering, PLEASE 2010, Cape Town, South
Africa, May 2, 2010, J. Rubin, G. Botterweck, M. Mezini, I. Maman,
and A. Pleuss, Eds., ACM, 2010, pp. 24–31. DOI: 10.1145/1808937.
1808941. [Online]. Available: https://doi.org/10.1145/1808937.
1808941.

[6] J. Mauro, M. Nieke, C. Seidl, and I. C. Yu, “Anomaly detection and
explanation in context-aware software product lines”, in Proceedings
of the 21st International Systems and Software Product Line Conference,
SPLC 2017, Volume B, Sevilla, Spain, September 25-29, 2017, M. H.
ter Beek, W. Cazzola, O. Dı́az, M. L. Rosa, R. E. Lopez-Herrejon, T.

83

https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/11554844_3
https://doi.org/10.1007/11554844%5C_3
https://doi.org/10.1016/j.scico.2018.05.002
https://doi.org/10.1016/j.scico.2018.05.002
https://doi.org/10.1016/j.scico.2018.05.002
https://doi.org/10.1145/3023956.3023962
https://doi.org/10.1145/3023956.3023962
https://doi.org/10.1145/1808937.1808941
https://doi.org/10.1145/1808937.1808941
https://doi.org/10.1145/1808937.1808941
https://doi.org/10.1145/1808937.1808941

Thüm, J. Troya, A. R. Cortés, and D. Benavides, Eds., ACM, 2017,
pp. 18–21. DOI: 10 . 1145 / 3109729 . 3109752. [Online]. Available:
https://doi.org/10.1145/3109729.3109752.

[7] A. Hoff, M. Nieke, C. Seidl, E. H. Sæther, I. S. Motzfeldt, C. C.
Din, I. C. Yu, and I. Schaefer, “Consistency-preserving evolution
planning on feature models”, in SPLC ’20: 24th ACM International
Systems and Software Product Line Conference, Montreal, Quebec,
Canada, October 19-23, 2020, Volume A, R. E. Lopez-Herrejon, Ed.,
ACM, 2020, 8:1–8:12. DOI: 10 . 1145 / 3382025 . 3414964. [Online].
Available: https://doi.org/10.1145/3382025.3414964.

[8] D. Beuche, H. Papajewski, and W. Schröder-Preikschat, “Variability
management with feature models”, Sci. Comput. Program., vol. 53,
no. 3, pp. 333–352, 2004. DOI: 10 . 1016 / j . scico . 2003 . 04 . 005.
[Online]. Available: https://doi.org/10.1016/j.scico.2003.04.
005.

[9] F. Nielson, H. R. Nielson, and C. Hankin, Principles of program
analysis. Springer, 1999, ISBN: 978-3-540-65410-0. DOI: 10.1007/978-
3-662-03811-6. [Online]. Available: https://doi.org/10.1007/
978-3-662-03811-6.

[10] I. Garcı́a-Ferreira, C. Laorden, I. Santos, and P. G. Bringas, “A
survey on static analysis and model checking”, in International Joint
Conference SOCO’14-CISIS’14-ICEUTE’14 - Bilbao, Spain, June 25th-
27th, 2014, Proceedings, J. G. de la Puerta, I. Garcı́a-Ferreira, P. G.
Bringas, F. Klett, A. Abraham, A. C. P. L. F. de Carvalho, Á. Herrero,
B. Baruque, H. Quintián, and E. Corchado, Eds., ser. Advances
in Intelligent Systems and Computing, vol. 299, Springer, 2014,
pp. 443–452. DOI: 10.1007/978- 3- 319- 07995- 0_44. [Online].
Available: https://doi.org/10.1007/978-3-319-07995-0%5C_44.

[11] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on
automated dynamic malware-analysis techniques and tools”, ACM
Comput. Surv., vol. 44, no. 2, 6:1–6:42, 2012. DOI: 10.1145/2089125.
2089126. [Online]. Available: https://doi.org/10.1145/2089125.
2089126.

[12] B. A. Wichmann, A. A. Canning, D. L. Clutterbuck, L. A. Winsbor-
row, N. J. Ward, and D. W. R. Marsh, “Industrial perspective on
static analysis”, Softw. Eng. J., vol. 10, no. 2, pp. 69–75, 1995. DOI:
10.1049/sej.1995.0010. [Online]. Available: https://doi.org/10.
1049/sej.1995.0010.

84

https://doi.org/10.1145/3109729.3109752
https://doi.org/10.1145/3109729.3109752
https://doi.org/10.1145/3382025.3414964
https://doi.org/10.1145/3382025.3414964
https://doi.org/10.1016/j.scico.2003.04.005
https://doi.org/10.1016/j.scico.2003.04.005
https://doi.org/10.1016/j.scico.2003.04.005
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/978-3-319-07995-0_44
https://doi.org/10.1007/978-3-319-07995-0%5C_44
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1049/sej.1995.0010
https://doi.org/10.1049/sej.1995.0010
https://doi.org/10.1049/sej.1995.0010

Appendix A

Remaining Soundness Proofs

A.1 Soundness of the Add Group Rule

See Figure 4.7 on page 45 for the ADD-GROUP rule. Let

addGroup(groupID, type, parentFeatureID) from tn to tm .

(NAMES, FEATURES, GROUPS)

be the initial state, and

(NAMES′, FEATURES′, GROUPS′)

be the state after the ADD-GROUP rule is applied. Recall that this operation
adds the group with ID groupID to the interval-based feature model
(NAMES, FEATURES, GROUPS) from tn to tm.

Modularity Recall from Section 3.3 on page 30 that the temporal scope
of this operation is [tn, tm), and the spatial scope is the group itself and the
parent feature.

In the premise of the rule, only groupID and parentFeatureID are looked
up in the interval-based feature model. Consequently, the premise stays
within the spatial scope of the rule. In the conclusion of the rule, FEATURES
are assigned to and looked up at parentFeatureID, and GROUPS at
groupID. The helper functions addChildGroup (see Figure 4.8 on page 45)
and setGroupAttributes (Figure 4.9 on page 45) do not take the interval-
based feature model as input, and so only affects the parent feature and
the group itself, respectively.

As for the temporal scope, the only interval looked up in the rule is [tn, tm).
Hence the rule operates only within the defined temporal scope.

85

Lemma A.1. The ADD-GROUP rule operates strictly within the temporal
and spatial scopes of the addGroup operation.

Preserving well-formedness If the ADD-GROUP rule is applied, the
resulting interval-based feature model must be well-formed according to
to the well-formedness rules IBFM1–9.

The rule does not change the root feature’s existence or type, so it does not
violate IBFM1 or IBFM2. The NAMES map is left unchanged, and the only
change made to a feature is to the parent feature, adding groupID to the set
of child groups at [tn, tm). The only feature modified is the parent feature,
and only in its child groups map Fc. Since parentFeatureID is assigned to
the group’s parent feature table Fp at the same key [tn, tm), IBFM3 holds.

Given that IBFM8 holds in the original model, and as the rule premise
makes certain that the group does not already exist during the interval
[tn, tm), the group does not have any types, parent features, or child
features during the interval. When the rule is applied, the group is given
exactly one type and parent feature, and [tn, tm) is added to its existence
set. Thus IBFM4, IBFM6, and IBFM8 hold.

As for IBFM5, this requirement holds trivially given that it holds in the
original model. No feature is added or removed from any group in the
ADD-GROUP rule, so this condition is not affected and thus still holds.

Similarly, IBFM7 will hold in the altered model given that it holds in the
original one, since the new group does not contain any features during the
temporal scope. For the same reason, the rule does not create a cycle, and
so IBFM9 is true for the altered model.

We conclude that the ADD-GROUP rule preserves well-formedness for the
interval-based feature model, according to well-formedness rules IBFM1-
9.

Lemma A.2. The ADD-GROUP rule preserves well-formedness of the
interval-based feature model.

Correctness of model modification The operation is intended to add the
group with ID groupID to the interval-based feature model during the
interval [tn, tm). Since groups have no names, this operation should not
affect the NAMES map. Indeed, the rule reflects this, as the map is not
changed in the transition.

However, the operation does naturally add information to the GROUPS
map, assigning

setGroupAttributes(GROUPS [groupID] , type, parentFeatureID)

86

to GROUPS [groupID].

Looking up the added group’s ID in the modified model during the
temporal scope should return the information we put in the operation.
Given GROUPS′ [groupID] =

(
G′e, G′t, G′p, G′c

)
, then for all time points tk

with tn ≤ tk < tm, the following statements hold:

tk ∈≤ G′e the group exists (1)

G′t [tk] = {type} the group has the expected type (2)

G′p [tk] = {parentFeatureID} the group has the expected parent feature
(3)

G′c [tk] = ∅ the group has no children (4)

Statement (1) holds due to the line Ge ∪ {[tn, tm)} in setGroupAttributes

(Figure 4.9 on page 45). Given the semantics of assignment, also statement
(2) and (3) hold, as the type and parent feature ID are assigned to
Gt [[tn, tm)] and Gp [[tn, tm)] respectively in setGroupAttributes. Given
that IBFM8 is true for the original model, and since setGroupAttributes

does not modify Gc, statement (4) is also true.

Furthermore, we would expect the group to be listed as a child
group of the parent feature in the modified model, so given that
FEATURES′ [parentFeatureID] =

(
F′e , F′n, F′t , F′p, F′c

)
, then

groupID ∈
⋃

F′p [tk]

for all tk with tn ≤ tk < tm. In the ADD-GROUP rule,

addChildGroup(FEATURES [parentFeatureID] , [tn, tm), groupID)

is assigned to FEATURES [parentFeatureID]. The function addChildGroup

(Figure 4.8 on page 45) adds groupID to the set of child features at key
[tn, tm), so according to the semantics of ∪←−, it is indeed true that the group
is in the parent feature’s set of child group during the temporal scope.

The above proof shows the following lemma:

Lemma A.3. The ADD-GROUP rule updates the interval-based feature
model according to the semantics of the addGroup operation.

A.2 Soundness of the Remove Feature Rule

See Figure 4.10 on page 47 for the REMOVE-FEATURE rule. Let

removeFeature(featureID) at tn .

(NAMES, FEATURES, GROUPS)

87

be the initial state, and

(NAMES′, FEATURES′, GROUPS′)

be the state after the REMOVE-FEATURE rule has been applied. Recall that
this operation removes the feature with ID featureID from the interval-
based feature model (NAMES, FEATURES, GROUPS) at tn. Furthermore,
let FEATURES [featureID] =

(
Fe, Fn, Ft, Fp, Fc

)
, and [ti, tj) ∈ Fe, with

ti ≤ tn < tj. This means that the original plan added the feature at time
ti and removed it at tj, with the possibility that tj = ∞. In the latter case,
there was no plan to remove the feature originally.

Modularity As defined in Section 3.3 on page 30, the removeFeature
operation’s temporal scope is [tn, tk), where tk is the time point in which
the feature was originally planned to be removed. We can see from the
description above that tk = tj; the end point in the feature’s existence set
containing tn. We then have that the scope is defined as [tn, tj). In the rule,
we find the interval [ti, tj) by looking up

Fe [tn]≤ = {[te1 , te2)}

According to the semantics of IS [tn]≤, it is true then that [ti, tj) =
[te1 , te2), and so the temporal scope of the rule is [tn, te2) = [tn, tj).
Clearly, all time points looked up in the premise of the rule are contained
within this interval, but the conclusion requires further examination. The
NAMES map is assigned clampInterval(NAMES [name] , tn) at key name. In
clampInterval (Figure 4.11 on page 48), the interval [tn1 , tn2) containing tn
in NAMES [name] is looked up and shortened to end at tn instead of tn2 . This
modification stays within the scope of the interval-based feature model,
since the interval affected here is [tn, tn2), and necessarily, tn2 ≤ tj, since
the feature cannot possibly have a name after it is removed according to
IBFM8.

The FEATURES map is modified at key featureID by assigning

clampFeature(FEATURES [featureID] , tn)

In clampFeature (Figure 4.14 on page 48), the intervals of the feature’s
name, type, and parent are clamped to end at tn. These modifications,
too, stay within the temporal scope, for the reason explained in the above
paragraph. The existence interval is clamped in a similar way, and so stays
within the temporal scope as well.

Also, the GROUPS map is assigned

removeFeatureAt(GROUPS [parentGroupID] , featureID, tn)

88

at key parentGroupID. This helper function (Figure 4.16 on page 48)
modifies the parent group’s set of child features by calling

clampIntervalValue(Gc, tc, featureID)

which behaves similarly to clampInterval by clamping the interval
containing tn. The difference is that it removes only featureID from the
set of child features, and adds the feature to the set of child features at
the shortened interval. We conclude that this modification, too, happens
within the temporal scope of the operation, as looking up any time point
outside of the temporal scope will return the same results as the original
plan.

Recall that the spatial scope of the rule is the feature itself, its parent group,
and its child groups. The premise

Fc [[tn, te2)] = ∅

ensures that the operation is not applied unless the feature’s set of child
groups is empty. The only features and groups looked up is the feature
itself and its parent group. Thus, the rule stays within the spatial scope.

Based on the above proof, we conclude with the following lemma:

Lemma A.4. The REMOVE-FEATURE rule operates strictly within the
temporal and spatial scopes of the removeFeature operation.

Preserving well-formedness Let

FEATURES′ [featureID] =
(

F′e , F′n, F′t , F′p, F′c
)

The REMOVE-FEATURE rule contains the premise

Fp [[tn, te2)] = {parentGroupID}

ensuring that the feature has exactly one parent group during the temporal
scope of the rule. Under the assumption that IBFM1 holds in the original
model, the feature being removed cannot be the root feature, since the
root has no parent group. Furthermore, it means that the feature does not
move during the temporal scope, which would be a conflict. Therefore,
both IBFM1 and IBFM2 hold in the modified model.

For any time point tn in the temporal scope of the rule, tn /∈≤ F′e due to
the semantics of clampFeature (Figure 4.14 on page 48), so IBFM3 holds
trivially for the updated model. The only change made to a group is by
the function removeFeatureAt (Figure 4.16 on page 48), which removes the

89

feature from the parent group’s map of child groups during [tn, tj). Hence
IBFM5 holds, and since that function does not modify the types map Gt of
the group, IBFM4 holds given that it is true for the original model.

The premise Fc [[tn, te2)] = ∅ ensures that the feature to be removed does
not have any child groups during the temporal scope, so no group is left
without a parent in the updated model. Thus IBFM6 holds.

Suppose that the parent group has the type ALTERNATIVE or OR at some
point during the temporal scope. In the original model, no child feature
of the group has type MANDATORY due to the assumption that IBFM7 is
true. The REMOVE-FEATURE rule does not add any features or change a
feature type, so this requirement still holds for the modified model.

After applying the rule, we have that [tn, tj) /∈≤≥ F′e , which means
that the feature does not exist during the temporal scope of the oper-
ation. To fulfil IBFM8, we must furthermore have that Fn

[
[tn, tj)

]
=

Ft
[
[tn, tj)

]
= Fp

[
[tn, tj)

]
= Fc

[
[tn, tj)

]
= ∅, and that featureID /∈

NAMES [name]
[
[tn, tj)

]
. The former statement holds due to the seman-

tics of clampFeature and clampInterval; the feature’s attributes are all
clamped to end at the time of removal, and the premises on the form
Fx [[tn, te2)] = {v} ensure that no changes are made to those attributes
during the temporal scope. Fc

[
[tn, tj)

]
= ∅ is a premise in the rule

(since tj = te2). As for the NAMES map, the mapping from name to
[[ti, tj) 7→ featureID] is replaced by [[ti, tn) 7→ featureID] in the func-
tion clampInterval(NAMES [name] , tn). Hence IBFM8 is true for the al-
tered interval-based feature model.

Under the assumption that no cycles exist in the original model, removing
a feature does not create a new one, so IBFM9 is holds for the modified
model as well.

We conclude that the REMOVE-FEATURE rule preserves well-formedness
for the interval-based feature model, according to well-formedness rules
IBFM1-9.

Lemma A.5. The REMOVE-FEATURE rule preserves well-formedness of the
interval-based feature model.

Correctness of model modification The semantics of the removeFeature
operation is that applying it should remove the feature from the plan from
tn until the point at which is was originally planned to be removed. Then

90

if FEATURES′ [featureID] =
(

e, n, t, p, c
)
, and Fe [tn]≤ = [ti, tj), then

[tn, tj) /∈≤≥ Fe the feature does not exist (1)

Fn
[
[tn, tj)

]
= ∅ the feature has no name (2)

Ft
[
[tn, tj)

]
= ∅ the feature has no type (3)

Fp
[
[tn, tj)

]
= ∅ the feature has no parent group (4)

Fc
[
[tn, tj)

]
= ∅ the feature has no child groups (5)

Since we established [tn, tj) /∈≤≥ Fe in the above paragraph, these
statements follow directly from Lemma A.5 on the preceding page and
IBFM8. It further follows that no name is associated with featureID in
the NAMES′ map, and that no group in the GROUPS′ map has the feature
listed as a child feature.

The above proof shows the following lemma:

Lemma A.6. The REMOVE-FEATURE rule updates the interval-based feature
model according to the semantics of the removeFeature operation.

A.3 Soundness of the Remove Group Rule

This proof is analogous to the one for the REMOVE-FEATURE rule. See
Figure 4.18 on page 49 for the REMOVE-GROUP rule. Let

removeGroup(groupID) at tn . (NAMES, FEATURES, GROUPS)

be the initial state, and

(NAMES′, FEATURES′, GROUPS′)

be the result state after applying the REMOVE-GROUP rule. Recall that
this operation removes the group with ID groupID from the interval-
based feature model (NAMES, FEATURES, GROUPS) at tn. Furthermore, let
GROUPS [groupID] =

(
Ge, Gt, Gp, Gc

)
, and [ti, tj) ∈ Ge, with ti ≤ tn < tj.

This means that the original plan added the group at time ti and removed
it at tj, with the possibility that tj = ∞. In the latter case, there was no plan
to remove the group originally.

Modularity As defined in Section 3.3 on page 30, the removeGroup
operation’s temporal scope is [tn, tk), where tk is the time point in which
the group was originally planned to be removed. We can see from the
description above that tk = tj; the end point in the group’s existence set

91

containing tn. We then have that the scope is defined as [tn, tj). In the rule,
we find the interval [ti, tj) by looking up

Ge [tn]≤ = {[te1 , te2)} .

According to the semantics of IS [tn]≤, it is true then that [ti, tj) = [te1 , te2),
and so the temporal scope of the rule is [tn, te2) = [tn, tj). Clearly, all
time points looked up in the premise of the rule are contained within this
interval, but the conclusion requires further examination. The NAMES map
is untouched and thus outside the scope.

The GROUPS map is modified at key groupID by assigning

clampGroup(GROUPS [groupID] , tn)

In clampGroup (Figure 4.15 on page 48), the intervals of the group’s
type and parent feature are clamped to end at tn. These modifications
stay within the temporal scope, as clampInterval(MAP, tc) clamps the
mapping with an interval key containing tc to end at tc. Due to IBFM8,
it is impossible that the group has a type or parent feature after tj, which
is the time point when the group was originally planned to be removed.
Furthermore, the premise of the rule requires that Gt

[
[tn, tj)

]
= {type}

and Gp
[
[tn, tj)

]
= {parentFeatureID}, meaning that the group does not

change its type or move during the temporal scope. Thus there is only
one key in each of the group’s type and parent feature maps containing tn,
and so the changed interval for these maps is [tn, tj); the temporal scope.
The existence interval is clamped in a similar way, and so stays within the
temporal scope as well.

Also, the FEATURES map is assigned

removeGroupAt(FEATURES [parentFeatureID] , groupID, tn)

at key parentFeatureID. This helper function (Figure 4.17 on page 48)
modifies the parent feature’s set of child groups by calling

clampIntervalValue(Fc, tc, groupID)

which behaves similarly to clampInterval by clamping the interval
containing tn. The difference is that it removes only groupID from the
set of child groups, and adds the group to the set of child groups at
the shortened interval. We conclude that this modification, too, happens
within the temporal scope of the operation, as looking up any time point
outside of the temporal scope will return the same results as the original
plan.

Recall that the spatial scope of the rule is the group itself, its parent feature,
and its child features. The premise

Gc [[tn, te2)] = ∅

92

ensures that the operation is not applied unless the group’s set of child
features is empty. The only features and groups looked up is the group
itself and its parent feature. Thus, the rule stays within the spatial scope.

Based on the above proof, we conclude with the following lemma:

Lemma A.7. The REMOVE-GROUP rule operates strictly within the tempo-
ral and spatial scopes of the removeGroup operation.

Preserving well-formedness Let

GROUPS [groupID] =
(
Ge, Gt, Gp, Gc

)
GROUPS′ [groupID] =

(
G′e, G′t, G′p, G′c

)
FEATURES [parentFeatureID] =

(
Fe, Fn, Ft, Fp, Fc

)
FEATURES′ [parentFeatureID] =

(
F′e , F′n, F′t , F′p, F′c

)
The REMOVE-GROUP rule does not alter any feature’s — in particular the
root feature’s — existence set or types map, and so IBFM1–2 hold for the
modified model. It does however modify the child group map Fc, applying
removeGroupAt to the parent feature, the group’s ID, and the removal time
point. As previously argued, this function makes sure that the group ID is
not in

⋃
F′c
[
[tn, tj)

]
— the parent feature’s modified set of child groups —

so IBFM3 holds.

Due to the semantics of clampGroup and clampIntervalSet, no time points
in the temporal scope are contained in an interval in the modified group’s
existence set ([tn, tj) /∈≤≥ G′e), so IBFM4, IBFM6 and IBFM7 hold trivially.

Since a premise of the rule is

Gc [[tn, te2)] = ∅

the group does not have any child features during the temporal scope
in the original interval-based feature model. Due to the assumption that
IBFM5 is true for the original model, no feature has groupID listed as its
parent group, so no feature is left without a parent group when the group
is removed from the temporal scope. It follows that IBFM5 holds for the
updated interval-based feature model as well.

As previously mentioned, [tn, tj) /∈≤≥ G′e, meaning that the group does
not exist during the temporal scope in the modified model. For IBFM8
to hold for the updated model, we must then also have G′t

[
[tn, tj)

]
=

G′p
[
[tn, tj)

]
= G′c

[
[tn, tj)

]
= ∅. Recalling that te2 = tj, then by definition

93

of clampGroup and the premise Gt [[tn, te2)] = {type} in ADD-GROUP, we
have that

G′t = clampInterval (Gt, tn)

= clampInterval
(
G′′t ∪ [[tt1 , tj) 7→ type], tn

)
= G′′t ∪ [[tt1 , tn) 7→ type]

Clearly, G′′t
[
[tn, tj)

]
= ∅. Furthermore, since [tt1 , tn) does not overlap

[tn, tj), G′t
[
[tn, tj)

]
= ∅. An analogous argument can be made for

G′p
[
[tn, tj)

]
= ∅. From the definition of clampGroup, Gc = G′c, so by

the premise Gc
[
[tn, tj)

]
= ∅ in the rule, G′c

[
[tn, tj)

]
= ∅. Consequently

IBFM8 holds for the altered interval-based feature model.

Given that no cycles exist in the original model, removing a group does
not create a new one, so IBFM9 holds.

We conclude that the REMOVE-GROUP rule preserves well-formedness
for the interval-based feature model, according to well-formedness rules
IBFM1-9.

Lemma A.8. The REMOVE-GROUP rule preserves well-formedness of the
interval-based feature model.

Correctness of model modification The semantics of the removeGroup
operation dictate that the group should not exist, have a type, a parent, or
child features after being removed. A proof for this can be found in the
previous paragraph. Moreover, the parent feature’s map of child features
should not contain groupID during the temporal scope. This is also proven
in the previous paragraph. The NAMES map should not be modified. It is
clear from the rule that NAMES = NAMES′, so this condition, too, is true.

The above proof shows the following lemma:

Lemma A.9. The REMOVE-GROUP rule updates the interval-based feature
model according to the semantics of the removeGroup operation.

A.4 Soundness of the Move Group Rule

See Figure 4.22 on page 53 for the MOVE-GROUP rule. Let

moveGroup(groupID, newParentID) at tn .

(NAMES, FEATURES, GROUPS)

94

be the initial state, and

(NAMES′, FEATURES′, GROUPS′)

be the result state after applying the MOVE-GROUP rule. Recall that
this operation moves the group with ID groupID to the feature with ID
newParentID.

Modularity Recall that the temporal scope of the MOVE-GROUP rule is
[tn, tk) (Section 3.3 on page 30), where tk is the time point at which the
group is originally planned to be moved or is removed. In the rule, this
scope is identified by

Gp [tn]≤ =
{
[tp1 , tp2)

}
Here, the time point tn for moving the group is looked up in the group’s
parent map’s set of interval keys, and the expected result is

{
[tp1 , tp2)

}
.

This means that there is a mapping [[tp1 , tp2) 7→ parentFeatureID] in Fp,
with parentFeatureID being the ID of the group’s parent feature at time
tn, and this feature stops being the group’s parent at tp2 . Thus the temporal
scope of this operation is [tn, tp2). The only interval looked up or assigned
to in the rule is [tn, tp2), but it is necessary to also look at the cycle detection
algorithm in Section 4.5.1 on page 50, since this is also referenced in the
rule by ¬createsCycle. Here, tp2 is called te, and the algorithm states
that it only looks at time points between tn and te. Thus the rule operates
strictly within the temporal scope of the moveGroup operation.

The spatial scope for this operation is defined as the ancestors which the
group and the target feature do not have in common. In other words, the new
ancestors of the group after applying the rule. In the rule itself, only the
group with ID groupID and its new parent feature with ID newParentID

are looked up. However, the cycle detection algorithm must also be
considered. Here, the ancestors of both the group and the feature at tn
are looked up, the first ancestor they have in common identified, and the
new ancestors are collected into a list. If one of them is moved before
te, the list is updated. Hence the algorithm’s spatial scope is indeed the
group ancestors and the target feature’s ancestors, as well as the group
and feature themselves, and so the rule operates within the defined spatial
scope.

Based on the above proof, we conclude with the following lemma:

Lemma A.10. The MOVE-GROUP rule operates strictly within the temporal
and spatial scopes of the moveGroup operation.

95

Preserving well-formedness Let oldParentID be the ID of the group’s
parent feature in the original plan, and let

FEATURES′ [oldParentID] =
(
OPe, OPn, OPt, OPp, OPc

)
FEATURES′ [newParentID] =

(
NPe, NPn, NPt, NPp, NPc

)
GROUPS′ [groupID] =

(
G′e, G′t, G′p, G′c

)
Since the MOVE-GROUP rule does not remove or change the type of a
feature, IBFM1 and IBFM2 hold. The modification made to the FEATURES
map is (

FEATURES [oldParentID]

← removeGroupAt(FEATURES [oldParentID] , [tn, tp2), groupID)
)
[newParentID]

← addChildGroup (FEATURES [newParentID] , groupID, tn)

This change modifies only the child group maps of the original and new
parent features of the group. In the modified model, for any time point
ti in the temporal scope, groupID /∈ OPc [ti], and groupID ∈ NP [ti].
Furthermore, the GROUPS map is changed by

GROUPS [groupID]←(Ge, Gn, Gt,

clampInterval(Gp, tn)
[
[tn, tp2)

]
← newParentID, Gc)

meaning that G′p [ti] = {newParentID}. Hence IBFM3 and IBFM6 hold.

As the group’s types and child features map are not modified, IBFM4–5
and IBFM7 are true for the modified model.

Since the rule adds a child group to the target feature during the temporal
scope, the feature must exist during the temporal scope for IBFM8 to hold.
The premise [tn, tp2) ∈≤ Fe along with the assumption that IBFM8 holds in
the origial plan ensure this. Moreover, the rule does not alter the group’s
existence set, IBFM8 is preserved.

The intention of the cycle detection algorithm in Section 4.5.1 on page 50 is
to uphold IBFM9. Given the assumption that the original interval-based
feature model contains no cycles, if the altered model contains a cycle then
the moveGroup operation introduced it, and the group being moved must
be part of the cycle. This could only happen if the group became part of its
own subtree during the temporal scope, which means that at some point,
the group occurs in its own list of ancestors. The algorithm looks at the
group’s new ancestors, meaning the ancestors that the group does not have
in the original plan, but does in the new one. It then checks that none of
those ancestors are moved to the group’s subtree. Thus the rule preserves
IBFM9.

96

We conclude that the MOVE-GROUP rule preserves well-formedness for the
interval-based feature model, according to well-formedness rules IBFM1-
9.

Lemma A.11. The MOVE-GROUP rule preserves well-formedness of the
interval-based feature model.

Correctness of model modification The operation is intended to move
the group with ID groupID to the feature with ID newParentID during
the temporal scope [tn, tp2). After applying the MOVE-GROUP rule, the
only differences between the original and modified interval-based feature
model should be

(i) The group’s parent feature should be newParentID during the
temporal scope

(ii) The group should not appear in the original parent feature’s set of
child groups during the temporal scope

(iii) The group should appear in the new parent feature’s set of child
groups

Given the modified map of parent features G′p and the original map Gp,
we have that

G′p = clampInterval(Gp, tn)
[
[tn, tp2)

]
← newParentID

This statement assigns newParentID to the temporal scope [tn, tp2) after ap-
plying clampInterval(Gp, tn), meaning that the original parent mapping
is shortened to end at tn, and a new mapping [[tn, tp2) 7→ newParentID] is
inserted. By semantics of assignment, it is clear that for ti with tn ≤ ti <
tp2 , G′p [ti] = {newParentID}, which is the desired result and fulfils (i).

By Lemma A.11 and IBFM5, (ii) and (iii) follow from (i). In other words,
since the updated interval-based feature model is well-formed, and the
group’s parent feature during the temporal scope is newParentID, the
group is not in the original parent feature’s set of child groups during the
temporal scope, and is in the new parent feature’s set of child groups.

The above proof shows the following lemma:

Lemma A.12. The MOVE-GROUP rule updates the interval-based feature
model according to the semantics of the moveGroup operation.

97

A.5 Soundness of the Change Feature Variation
Type Rule

See Figure 4.23 on page 54 for the CHANGE-FEATURE-VARIATION-TYPE rule.
Let

changeFeatureVariationType(featureID, type) at tn .

(NAMES, FEATURES, GROUPS)

be the initial state, and

(NAMES′, FEATURES′, GROUPS′)

be the result state after applying the CHANGE-FEATURE-VARIATION-TYPE

rule. Recall that this operation changes the type of the feature with ID
featureID to type.

Modularity Recall that the temporal scope of the CHANGE-FEATURE-
VARIATION-TYPE rule is [tn, tk) (Section 3.3 on page 30), where tk is the
time point at which the type is originally planned to be changed or the
feature is removed. In the rule, this scope is identified by

Ft [tn]≤ = {[tt1 , tt2)}

Here, the time point tn for changing the feature type is looked up in
the feature’s types map’s set of interval keys, and the expected result is
{[tt1 , tt2)}. This means that there is a mapping [[tt1 , tt2) 7→ oldType] in Ft,
with oldType being the type of the feature at time tn, and this stops being
the case at tt2 . Thus the temporal scope of this operation is [tn, tt2). The
only interval looked up or assigned to in the rule is [tn, tt2), so the rule
operates strictly within the temporal scope of the operation.

The spatial scope for this operation is the feature itself and its parent
group. Since the feature may move during the temporal scope, there may
be several parent groups to consider. These groups and their types are
looked up in the premise

∀[tp1 , tp2) ∈ Fp [[tn, tt2)]≤≥
∀p ∈ Fp

[
[tp1 , tp2)

]
∀t ∈ getTypes

(
GROUPS [p] ,

〈
[tp1 , tp2)

〉tt2
tn

)
(
compatibleTypes(t, type)

)
Otherwise, the only feature or group looked up or assigned to in the rule
is f eatures [featureID], so the rule stays within the spatial scope.

98

Based on the above proof, we conclude with the following lemma:

Lemma A.13. The CHANGE-FEATURE-VARIATION-TYPE rule operates strictly
within the temporal and spatial scopes of the changeFeatureVariation-
Type operation.

Preserving well-formedness Due to the premise featureID 6= RootID,
the feature is not the root, so IBFM1–2 hold trivially. The modification to
Ft

clampInterval(Ft, tn) [[tn, tt2)]← type

ensures that the feature’s original type stops at tn and the new one lasts for
the duration of the temporal scope [tn, tt2). Since the feature has exactly
one type during the temporal scope, and no other modifications are made
to the feature, IBFM3 is preserved. Because of this, and since the GROUPS
map is also left unchanged, IBFM4–6 and IBFM8–9 hold.

As discussed in the Scope paragraph, the premise

∀[tp1 , tp2) ∈ Fp [[tn, tt2)]≤≥
∀p ∈ Fp

[
[tp1 , tp2)

]
∀t ∈ getTypes

(
GROUPS [p] ,

〈
[tp1 , tp2)

〉tt2
tn

)
(
compatibleTypes(t, type)

)
looks up all parent mappings overlapping the temporal scope ([[tp1 , tp2) 7→
p]), finds the types each parent group has during the scope and while it is
the parent of the feature, and verifies that those types are compatible. Thus
IBFM7 is preserved.

We conclude that the CHANGE-FEATURE-VARIATION-TYPE rule preserves
well-formedness for the interval-based feature model, according to well-
formedness rules IBFM1-9.

Lemma A.14. The CHANGE-FEATURE-VARIATION-TYPE rule preserves well-
formedness of the interval-based feature model.

Correctness of model modification The expected result of applying the
rule is that FEATURES′ [featureID] =

(
F′e , F′n, F′t , F′p, F′c

)
has the type

type during the temporal scope [tn, tt2). Indeed, due to the semantics of
clampInterval and assignment, for any time point ti such that tn ≤ ti <
tt2 ,

F′t [ti] = {type}

99

Since no other part of the interval-based feature model is altered, the rule
performs as desired.

Lemma A.15. The CHANGE-FEATURE-VARIATION-TYPE rule updates the
interval-based feature model according to the semantics of the change-
FeatureVariationType operation.

A.6 Soundness of the Change Group Variation
Type Rule

See Figure 4.25 on page 56 for the CHANGE-GROUP-VARIATION-TYPE rule.
Let

changeGroupVariationType(groupID, type) at tn .

(NAMES, FEATURES, GROUPS)

be the initial state, and

(NAMES′, FEATURES′, GROUPS′)

be the result state after applying the CHANGE-GROUP-VARIATION-TYPE

rule. Recall that this operation changes the type of the group with ID
groupID to type.

Modularity Recall that the temporal scope of the CHANGE-GROUP-
VARIATION-TYPE rule is [tn, tk) (Section 3.3 on page 30), where tk is the
time point at which the type is originally planned to be changed or the
group is removed. In the rule, this scope is identified by

Gt [tn]≤ = {[tt1 , tt2)}

Here, the time point tn for changing the group type is looked up in
the group’s types map’s set of interval keys, and the expected result is
{[tt1 , tt2)}. This means that there is a mapping [[tt1 , tt2) 7→ oldType] in Gt,
with oldType being the type of the group at time tn, and this stops being
the case at tt2 . Thus the temporal scope of this operation is [tn, tt2). The
only interval looked up or assigned to in the rule is [tn, tt2), so the rule
operates strictly within the temporal scope of the operation.

The spatial scope for this operation is the group itself and its parent
feature. The group may have several child features during the temporal
scope, which may both move and change their types. These features and

100

their types are looked up in the premise

∀[tc1 , tc2) ∈ Gc [[tn, tt2)]≤≥

∀c ∈
⋃

Gc [[tc1 , tc2)]

∀t ∈ getTypes
(

FEATURES [c] , 〈[tc1 , tc2)〉
tt2
tn

)
(
compatibleTypes(type, t)

)
Otherwise, the only feature or group looked up or assigned to in the rule
is groups [groupID], so the rule stays within the spatial scope.

Lemma A.16. The CHANGE-GROUP-VARIATION-TYPE rule operates strictly
within the temporal and spatial scopes of the changeGroupVariationType
operation.

Preserving well-formedness The modification to Gt

clampInterval(Gt, tn) [[tn, tt2)]← type

ensures that the group’s original type stops at tn and the new one lasts for
the duration of the temporal scope [tn, tt2). Since the group has exactly one
type during the temporal scope, IBFM4 holds.

As discussed in the Scope paragraph, the premise

∀[tc1 , tc2) ∈ Gc [[tn, tt2)]≤≥

∀c ∈
⋃

Gc [[tc1 , tc2)]

∀t ∈ getTypes
(

FEATURES [c] , 〈[tc1 , tc2)〉
tt2
tn

)
(
compatibleTypes(type, t)

)
looks up all child feature mappings overlapping the temporal scope
([[tc1 , tc2) 7→ { f1, f2, . . .}]), finds the types each child feature has during
the scope and while it is the child feature of the group, and verifies that
those types are compatible. Thus IBFM7 is preserved. As no changes are
made to any other part of the interval-based feature model, the other re-
quirements IBFM1–3, IBFM5–6, and IBFM8–9 hold trivially.

Lemma A.17. The CHANGE-GROUP-VARIATION-TYPE rule preserves well-
formedness of the interval-based feature model.

Correctness of model modification The expected result of applying the
rule is that GROUPS′ [groupID] =

(
G′e, G′t, G′p, G′c

)
has the type type

101

during the temporal scope [tn, tt2). Indeed, due to the semantics of
clampInterval and assignment, for any time point ti such that tn ≤ ti <
tt2 ,

G′t [ti] = {type}

Since no other part of the interval-based feature model is altered, the rule
performs as desired.

Lemma A.18. The CHANGE-GROUP-VARIATION-TYPE rule updates the
interval-based feature model according to the semantics of the change-
GroupVariationType operation.

A.7 Soundness of the Change Feature Name
Rule

See Figure 4.26 on page 56 for the CHANGE-FEATURE-VARIATION-TYPE rule.
Let

changeFeatureName(featureID, name) at tn .

(NAMES, FEATURES, GROUPS)

be the initial state, and

(NAMES′, FEATURES′, GROUPS′)

be the result state after applying the CHANGE-FEATURE-NAME rule. Recall
that this operation changes the name of the feature with ID featureID to
name.

Modularity Recall that the temporal scope of the CHANGE-FEATURE-
NAME rule is [tn, tk) (Section 3.3 on page 30), where tk is the time point
at which the name is originally planned to be changed or the feature is
removed. In the rule, this scope is identified by

Fn [tn]≤ = {[tn1 , tn2)}

Here, the time point tn for changing the name is looked up in the feature’s
names map’s set of interval keys, and the expected result is {[tn1 , tn2)}.
This means that there is a mapping [[tn1 , tn2) 7→ oldName] in Fn, with
oldName being the name of the feature at time tn, and this stops being the
case at tn2 . Thus the temporal scope of this operation is [tn, tn2). The only
interval looked up or assigned to in the rule is [tn, tn2), so the rule operates
strictly within the temporal scope of the operation.

102

The spatial scope for this operation is the name, the feature, and its original
name. The only feature looked up or assigned to is FEATURES [featureID],
and the only names looked up or assigned to are oldName and name. The
GROUPS map is not modified or looked up in by the rule. Clearly, the rule
stays within the spatial scope.

Based on the above proof, we conclude with the following lemma:

Lemma A.19. The CHANGE-FEATURE-NAME rule operates strictly within
the temporal and spatial scopes of the changeFeatureName operation.

Preserving well-formedness The rule does not modify any feature’s
existence set or type, so IBFM1–2 holds. Since it does change a name,
we must look at that modification to make sure that IBFM3 is true for the
altered model. A requirement for IBFM3 is that a feature has exactly one
name. The feature is altered thus:

((NAMES [name] [[tn, tn2)]← featureID) [oldName]←
clampInterval(NAMES [oldName] , tn),

This ensures that the feature’s original name stops at tn and the new one
lasts for the duration of the temporal scope [tn, tn2), ensuring that the
feature has exactly one name during the temporal scope. Moreover IBFM3
requires that the name belongs to the same feature, and no other. This is
fulfilled by(

NAMES [oldName]← clampInterval (NAMES [oldName] , tn)
)
[name] [[tn, tn2)]

← featureID

Here, the interval containing tn in NAMES [oldName] is clamped to end
at tn, and the resulting map is assigned featureID at name during the
temporal scope, so the new name belongs to only the feature. This fulfils
IBFM3. As no other part of the interval-based feature model is modified,
IBFM4–9 hold.

We conclude that the CHANGE-FEATURE-NAME rule preserves well-
formedness for the interval-based feature model, according to well-
formedness rules IBFM1-9.

Lemma A.20. The CHANGE-FEATURE-NAME rule preserves well-formedness
of the interval-based feature model.

Correctness of model modification The expected result of applying the
rule is that FEATURES′ [featureID] =

(
F′e , F′n, F′t , F′p, F′c

)
has the name

103

name during the temporal scope [tn, tn2). Indeed, due to the semantics of
clampInterval and assignment, for any time point ti such that tn ≤ ti <
tn2 ,

F′n [ti] = {name}
Additionally, we should have NAMES′ [name] = featureID. This is shown
in the previous paragraph on well-formedness. Since no other part of the
interval-based feature model is altered, the rule performs as desired.

Lemma A.21. The CHANGE-FEATURE-NAME rule updates the interval-
based feature model according to the semantics of the changeFeature-
Name operation.

104

	I Introduction and Background
	Introduction
	The LTEP Project
	Research Questions
	Contributions
	Chapter Overview

	Background
	Software Product Lines
	Feature Models
	Feature Model Evolution Plans

	Static Analysis
	Soundness

	II Definitions, Analysis, and Soundness Proofs
	Formalizing the Feature Model Evolution Plan
	Interval-Based Feature Model
	Example — Application of Interval-Based Feature Model
	Example — Interval-Based Feature Model

	Operations
	Temporal and Spatial Scopes of Update Operations

	A Rule System for Analysis of Plan Change
	Analysis Rule for Adding a Feature
	Example — Application of the Add-Feature Rule

	Analysis Rule for Adding a Group
	Analysis Rule for Removing a Feature
	Analysis Rule for Removing a Group
	Analysis Rule for Moving a Feature
	Algorithm for Detecting Cycles Resulting from Move Operations

	Analysis Rule for Moving a Group
	Analysis Rule for Changing the Variation Type of a Feature
	Analysis Rule for Changing the Variation Type of a Group
	Analysis Rule for Changing the Name of a Feature

	Soundness
	Soundness for Interval-Based Feature Models
	Soundness of the Rules
	Soundness of the Add Feature Rule
	Soundness of the Move Feature Rule

	Soundness of the Rule System

	Implementation
	Overview
	Translation from Definitions to Types
	Example — Encoding the Interval-Based Feature Model
	Interpreting the Rules as Code

	III Conclusion
	Conclusion and Future Work
	Addressing the Research Questions
	Future Work
	Conclusion

	Remaining Soundness Proofs
	Soundness of the Add Group Rule
	Soundness of the Remove Feature Rule
	Soundness of the Remove Group Rule
	Soundness of the Move Group Rule
	Soundness of the Change Feature Variation Type Rule
	Soundness of the Change Group Variation Type Rule
	Soundness of the Change Feature Name Rule

