
UNIVERSITY OF OSLO
Department of Informatics

Ars flectandi
Automated
morphological analysis
of Latin

Master’s thesis

Arne Skjærholt

May 3, 2011

Ina, for not going insane when I did;

Jan Tore and Dag, for help with trees and forests;

Eman and Johan, everyone in the support group for frustrated students;

Thank you

Contents

Contents i

List of Tables ii

List of Figures iii

1 Introduction 1
1.1 What? . 2
1.2 Who? . 2
1.3 Overview . 3

2 Language & corpus 5
2.1 A brief history of Latin . 5
2.2 Latin morphology . 7
2.3 PROIEL . 9

2.3.1 Tagsets . 10
2.4 What makes Latin hard . 10

3 Graphical models 15
3.1 Graphs . 15
3.2 Graphical models . 16

3.2.1 Directed models . 16
3.2.2 Undirected models . 17

4 Hidden Markov models 19
4.1 Definition . 19

4.1.1 As graphical model . 20
4.2 Decoding . 21
4.3 Trigrams’n’Tags . 22

5 Conditional random fields 25
5.1 Definition . 25
5.2 Parameter estimation . 27
5.3 Decoding . 28

i

5.4 Practical matters . 30

6 Experiments & evaluation 33
6.1 HMM MSD tagging . 34
6.2 HMM PoS tagging . 37
6.3 CRF Feature selection . 39
6.4 CRF MSD tagging . 39
6.5 CRF PoS tagging . 42
6.6 Layered CRF . 44

7 Straitjacketed decoding 45
7.1 Theory . 45
7.2 Converting the Perseus data . 46
7.3 Implementation . 47
7.4 Experiments . 48

8 Conclusion 51
8.1 HMM or CRF? . 52
8.2 Future work . 52

A Multinomial MLE 55

B Morphemes 57
B.1 Nominal morphemes . 57
B.2 Verbal morphemes . 58

List of Tables

2.1 Noun paradigm: rosa . 8
2.2 Adjective comparison: longa . 8
2.3 Verbal paradigm: amare . 9
2.4 Corpus sizes . 10
2.5 Person . 11
2.6 Number . 11
2.7 Tense . 11
2.8 Mood . 11
2.9 Voice . 11
2.10 Gender . 11

ii

2.11 Case . 11
2.12 Degree . 11
2.13 Inflection . 11
2.14 PROIEL PoS tags . 12
2.15 Syncretic paradigm: fructus . 12

6.1 HMM MSD experiments, no capitalisation 35
6.2 HMM MSD experiments, with capitalisation 35
6.3 Small HMM Vulgata experiments 36
6.4 HMM full PoS tagger . 37
6.5 HMM major PoS tagger . 37
6.6 Small HMM Vulgata PoS experiments 38
6.7 CRF feature templates . 39
6.8 CRF MSD experiments, lexical features 40
6.9 CRF MSD experiments, PoS features 41
6.10 CRF MSD out-of-domain experiments 42
6.11 CRF full PoS tagger . 43
6.12 CRF major PoS tagger . 43
6.13 CRF PoS out-of-domain experiments 43
6.14 Layered CRF experiments . 44

7.1 Constrained CRF experiments . 48
7.2 Constrained CRF, out-of-domain 49
7.3 Constrained CRF, with PROIEL . 50

B.1 Nominal morphemes . 57
B.2 Verbal morphemes . 59

List of Figures

2.1 Dependencies in BG 1.1.1 . 6

3.1 A simple undirected graph . 16
3.2 A simple directed model . 17

4.1 HMM as graphical model . 21
4.2 Viterbi’s algorithm for HMMs . 22

iii

List of Figures

5.1 A chain-structured CRF . 27
5.2 Viterbi’s algorithm for CRFs . 29

7.1 Viterbi’s algorithm with constraints 46

iv

Chapter 1

Introduction

Latin is a dead language, but classics certainly aren’t dead. Representing an
almost unbroken tradition of research into Latin and Greek with a history
whose length is measured in millennia, it is not surprising that it’s a rather
conservative field. Modern techniques and approaches have started to make
their way into the field, however. New theories of grammar are applied to the
classical languages, and treebanks of various parts of the Greek and Latin
corpora are under construction. These treebanks are still small, however,
and development is relatively slow. Issues such as funding and access to
qualified labour are important factors in the development of these treebanks,
but another important factor is the fact that the annotation process is entirely
manual.

Computational linguistics on the other hand is a young field, not more
than a few decades old. It is a synthesis1 of ideas and approaches from a
variety of different fields. Originally a sub-discipline of the research into
artificial intelligence that started shortly after the second world war, it has
grown into a separate field of inquiry, incorporating ideas from theoretical
linguistics, machine learning and artificial intelligence research.

In the construction of a treebank of a classical language, the most time-
consuming (and tedious) part of the annotation process is morphological an-
notation. As one might expect from a classical language, Latin has a rich and
varied morphology, all aspects of which have to be recorded in the treebank.
Tagging isn’t glamorous work, but as long as the classical treebanks are so
small that things like learning parsers are still in the future, we would like
to develop tools that will accelerate the development of such corpora. This
of course so that we can get to the good stuff faster.

This leads us to certain questions that must be answered regarding the
automatic processing of Latin. What’s a good approach to automatic analysis
of Latin morphology, and what kind of performance can be considered good
enough for an automatic analysis component to be useful in corpus construc-

1Or hodgepodge or mish-mash, depending on who you ask.

1

1. Introduction

tion? And given that the data available for training statistical models is quite
small, how severe will the effects of the small corpus and considerable size
of the tagset be?

1.1 What?

We present here two different solutions to the two fundamental building
blocks of an analysis solution for Latin: morpho-syntactic tagging and part-
of-speech tagging. Both parts of the problem are solved as sequence classi-
fication problems, using both hidden Markov models and conditional ran-
dom fields. Hidden Markov models are a well-known approach to the prob-
lem of sequence classification, their theory is simple and easily understood,
and both parameter estimation and inference is simple and efficient. Con-
ditional random fields are a more recent innovation in the field, first pre-
sented in 2001. The corresponding theory is more complicated than for hid-
den Markov models (but perhaps not as complicated as one might think),
and they allow for models that exploit additional information that might be
available for each word. Unfortunately parameter estimation is very expen-
sive for conditional random fields.

Finally, we have evaluated an approach to make use of a large full-form
dictionary of morphological analyses that is available. We do this by con-
straining the decoding process of the conditional random fields to only con-
sider the tags licenced by the dictionary, rather than the several hundred tags
in the full tagset.

1.2 Who?

The primary intended audience of this thesis is computational linguists, but
in the hope that it may pique the interest of classicists of a modern bent
as well. Being first and foremost for computational linguists, we assume
a certain amount of prior knowledge. A certain insight into statistics and
probability theory is mandatory for understanding statistical language mod-
els in general, but not much more than the basics should be required for the
present work. Obviously a modicum of familiarity with the field of natu-
ral language processing is assumed, along with familiarity with the idea of
sequence classification.

Some of the derivations, in particular those for the equations used in pa-
rameter estimation of CRFs (section 5.2), require some (very) basic multi-
variate calculus in the form of partial derivatives and the gradient. Also,
the expressions involved are a bit hairy. Finally, a conversational knowledge
of Latin and the concepts involved is helpful, but not strictly necessary to
understand the meat of the matter.

2

1.3. Overview

1.3 Overview

Chapter 2 contains a brief overview of the history of Latin, its morphology
and challenges, and the corpus used for the experiments.

Chapter 3 gives an introduction to graphical models, an important prereq-
uisite for understanding conditional random fields as presented in chapter
5. Both directed and undirected models are presented.

Chapter 4 introduces hidden Markov models, both the general theory of
the models and the peculiarities of the implementation used for the experi-
ments.

Chapter 5 gives a quite thorough introduction to the theory of conditional
random fields and the derivation of the most important equations involved.

Chapter 6 details the experiments performed, the results obtained, and
presents a discussion of the results.

Chapter 7 explains the motivation for our experiments with constrained
decoding of CRFs, the theoretical justification of the approach and the im-
plementation, as well as an evaluation of the efficacy of the technique.

Chapter 8 sums up the results presented in the previous chapters, consid-
ers the question of whether HMMs or CRFs are to be preferred, and presents
some possible avenues for future research.

3

Chapter 2

Language & corpus

In order that our discussions on statistical techniques for analysing Latin
words don’t take place in a complete vacuum, we start out with a brief dis-
cussion of Latin. First, where it comes from, a few important milestones in
the history of the language, and a few examples before we take a closer look
at Latin morphology, the corpus used to train the models, and some of the
particular challenges of analysing Latin on the word level.

2.1 A brief history of Latin

The story of Latin begins in central Italy, some eight centuries BCE. The
Latins are not very different from their neighbours, the Oscans and Umbri-
ans, they even have similar languages. But through a combination of clever
politicking and agressive imperialism the Latins and their language become
dominant not only in Italy, but throughout Europe and the Mediterranean.
The story ends sometime between 800 and 1600 CE, or might even continue
today if we see the modern Romance languages as successors to Latin.

The earliest evidence of Latin as a written language dates to the sixth cen-
tury BCE, and the earliest surviving examples of literature are the comedies
of Plautus from around 200 BCE. The apex of Latin culture and literature
however, was the classical period, a period of about two centuries from the
first century BCE to the first century CE. This was the time of most Romans
still known today such as Caesar and Augustus, Cicero and Virgil. The Latin
of this period is a highly polished literary language, lush with stylistic sleight
of hand and complicated syntactic structures.

A relatively simple example of Classical Latin is Caesar’s Commentarii de
Bello Gallico or Bellum Gallicum (usually abbreviated as BG), which is Cae-
sar’s account of how Gaul was conquered through a decade-long military
campaign. Familiar to most who have studied Latin, it is written in a straight-
forward style, without many of the flourishes that complicate the reading of
authors such as Cicero. As an example, the opening sentences of Bellum Gal-

5

2. Language & corpus

est

Gallia

omnis

ATR

SUB

divisa

in

partes

tres

ATR

quarum unam incolunt. . .

APOS

OBL

OBL

XOBJ

PRED

XSUB

Figure 2.1: Dependencies in BG 1.1.1

licum are given with a translation below, with the syntactic relations of the
opening words (corresponding to the first English sentence) in figure 2.1.
The relations PRED and SUB identify the primary verb and its subject. ATR
and APOS are used for attributes and appositions (ie. restrictive and non-
restrictive noun qualifiers), respectively. Finally, the OBL relation is used for
oblique (non-object) arguments, and XOBJ marks a complement whose open
subject role is filled with the XSUB secondary dependency.

Gallia est omnis divisa in In all, Gaul is divided in three. Of
partes tres, quarum unam inco- these, the Belgians inhabit one, the
lunt Belgae, aliam Aquitani, ter- Aquitans another, and those who are
tiam qui ipsorum lingua Celtae, called Celts in their own language, or
nostra Galli appellantur. Hi Gauls in our own, inhabit the third. All
omnes lingua, institutis, legibus of them differ between each other in
inter se differunt. Gallos ab language, traditions and laws. The river
Aquitanis Garumna flumen, a Garonne separates Gauls from Aqui-
Belgis Matrona et Sequana di- tans, and the Seine and Marne from the
vidit. Belgians.

The language of the people was quite different, even in Caesar’s time,
showing the first signs of the changes that would transform Latin into the
Romance languages. This popular language is known as Vulgar Latin and

6

2.2. Latin morphology

developed in parallel with the literary language; by the fifth century CE, the
differences between literary Latin, which was still quite close to Classical
Latin, and Vulgar Latin were so great that it is not entirely wrong to consider
them different languages.

2.2 Latin morphology

Typologically, Latin is a highly inflecting language with a synthetic mor-
phology, that is a high ratio of morphological features per morpheme. At
the most abstract level, we can divide Latin morphology into two distinct
classes: nominal and verbal inflection. The verbal inflection contains all the
finite forms of the verb, while the nominal system handles nouns, adjectives,
pronouns, and the non-finite forms of the verb. All Latin inflection is funda-
mentally concatenative, or based on attaching suffixes to an inflectional stem.
In the most general case the construction of the stem is lexicalised, but most
words have “siblings” that form their stems in the same way; likewise, which
suffixes are used to form the various forms is a property of each individual
word.

Nominal inflection, called declension, is the simpler of the two systems.
Latin has three genders (masculine, feminine, neuter), two numbers (sin-
gular and plural) and six cases (nominative, vocative, accusative, genitive,
dative, ablative). Nouns have inherent gender and are inflected in case and
number, while adjectives and pronouns are inflected in all three dimensions.
Adjectives are also inflected in degree (positive, comparative, superlative),
and personal pronouns have an inherent number (first through third), just
like in English. Adjectives agree in number, case and gender with the nomi-
nal they qualify; pronouns agree in number and gender with their antecedent
and inflect in case according to their syntactic function.

There are five major classes, or declensions, of nominal inflection, each
with their own independent sets of morphemes. The first three are used for
both adjectives and nouns, while the fourth and fifth are minor classes only
used for nouns. Pronominal inflection is irregular, and to a certain extent
particular to each pronoun. A bird’s eye view of the whole mess is quite uni-
form however. To generate a given case/number combination for a lemma,
we first find the inflectional stem of the lemma and then append the mor-
pheme corresponding to the case and number desired. Comparison of ad-
jectives is marked with a separate morpheme sandwiched between the stem
and the case-number morpheme.

Table 2.1 shows the full paradigm of the word rosa (en. rose), illustrating
the declination of words according to the first declination. Hyphens separate
the two morphemes of the various forms, and the lack of distinct number
or case morphemes is apparent. An example adjective comparison is shown
in table 2.2, which shows the feminine singular forms of longus (en. long)

7

2. Language & corpus

Sg. Pl.

Nom. ros-a ros-ae
Voc. ros-a ros-ae
Acc. ros-am ros-as
Gen. ros-ae ros-arum
Dat. ros-ae ros-is
Abl. ros-a ros-is

Table 2.1: Noun paradigm: rosa

Pos. Comp. Super.

Nom. long-∅-a long-ior-∅ long-issim-a
Voc. long-∅-a long-ior-∅ long-issim-a
Acc. long-∅-am long-ior-em long-issim-am
Gen. long-∅-ae long-ior-is long-issim-ae
Dat. long-∅-ae long-ior-i long-issim-ae
Abl. long-∅-a long-ior-e long-issim-a

Table 2.2: Adjective comparison: longa

in all three degrees. The positive and superlative use the case endings of
the first declension, while the comparative uses the morphemes of the third
or consonantic declension. Again, number and case is expressed through a
single morpheme, while degree is expressed with a separate morpheme (the
∅ denotes a null morpheme).

While not as intimidating as Greek or Sanskrit, the Latin verbal system is
quite complex, especially when compared to Germanic languages like En-
glish or Norwegian. The finite verb has 5 parameters: mood (indicative,
subjunctive, imperative), tense (present, imperfect, future, perfect, pluper-
fect, future perfect), person (first to third), number (singular and plural), and
voice (active and passive). Not all permutations of features are valid forms
in Latin, but a regular verb has 98 possible forms out of the 216 possible.

Due to the complexity of the system, there is no neat classification of
the Latin verbs. The basic pattern of the verbal morphology is the same as
the nominal inflection: morphemes are appended to an inflectional stem.
But unlike the nominals, a verb has three distinct stems. The present, im-
perfect and future tenses (collectively referred to as the present system) are
formed using the present stem, while the perfect, pluperfect and future per-
fect tenses (the perfect system) are formed using the perfect stem. The final
stem, the supine, isn’t involved in the formation of finite forms, but is re-
quired to form various verbal nouns and participles.

The traditional classification of the verbs is into four conjugations, based

8

2.3. PROIEL

Act. Pass.

1st. sg. ama-re-m ama-re-r
2nd. sg. ama-re-s ama-re-ris
3rd. sg. ama-re-t ama-re-tur
1st. pl. ama-re-mus ama-re-mur
2nd. pl. ama-re-tis ama-re-mini
3rd. pl. ama-re-nt ama-re-rentur

Table 2.3: Verbal paradigm: amare

on a verb’s behaviour in the present system. This classification is nice and or-
derly in the present system, but tends to break down for other forms (Ernout
1953, §171). In the first, second and fourth conjugations the system is mostly
regular (with a certain number of exceptional verbs), but in the third conju-
gation the relationsip between between the three stems of a verb, present,
perfect and supine, is almost entirely lexicalised. Perhaps not surprisingly,
the morphemes involved in the verbal inflection are more overloaded than
the morphemes of the nominal system. As an example we have the imperfect
subjunctive forms of amare (en. to love), as shown in table 2.3. The morpheme
–re marks the forms as imperfect subjunctive, while the other morphemes
mark person, number and voice. This state of affairs is typical.

2.3 PROIEL

The Pragmatic Resources of Old Indo-European Languages (PROIEL) project
aims to do a thorough comparative study of how pragmatic information is
presented in old Indo-European languages. To this end, a parallel corpus
of several classical Indo-European languages (Ancient Greek, Old Church
Slavic, Classical Armenian, Gothic, and Latin) has been constructed. The
main part of the corpus is translations1 of the New Testament, but some some
other texts are included as well that have no parallels in other languages.

The corpus is morphologically and syntactically annotated. The syntactic
annotations are in the tradition of dependency grammar, extended with sec-
ondary dependencies similar to structure sharing in LFG and HPSG (Haug
et al. 2009). The guidelines for annotation2 are derived from the annota-
tion guidelines of the Perseus Latin Treebank3, themselves derived from the
Prague Czech treebank annotation guidelines4.

1Or original, in the case of Ancient Greek
2http://folk.uio.no/daghaug/syntactic_guidelines.pdf
3http://nlp.perseus.tufts.edu/syntax/treebank/latin.html
4http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/a-layer/html/index.html

9

http://folk.uio.no/daghaug/syntactic_guidelines.pdf
http://nlp.perseus.tufts.edu/syntax/treebank/latin.html
http://ufal.mff.cuni.cz/pdt2.0/doc/manuals/en/a-layer/html/index.html

2. Language & corpus

Corpus Sentences Tokens Avg. tok/sen

BG 1,296 25,167 19.4
Vulgata 12,435 113,079 9.1
Peregrinatio 921 18,351 19.9
Total 14,652 156,597 10.7

Table 2.4: Corpus sizes

The Latin part of the corpus is made up of three texts: the Vulgata transla-
tion of the New Testament, Caesar’s Bellum Gallicum, and Peregrinatio Aethe-
riae, a fifth century Vulgar Latin account of a pilgrimage to the Holy Land.
Of these, the Vulgata is by far the largest, while BG and Peregrinatio are sig-
nificantly smaller. See table 2.4 for detailed statistics. As mentioned above,
Vulgar Latin is very different from the Classical Latin of Caesar and the lit-
erary style of the Vulgata, and for this reason the Peregrinatio corpus is not
used for any of our experiments.

2.3.1 Tagsets

There are two tagsets in the corpus, a part-of-speech (PoS) tagset and a mor-
pho-syntactic descriptor (MSD) tagset, both with the same basic structure:
fixed width strings where each character encodes a field. The PoS tagset has
two fields, a major tag that places the word in one of eleven rough classes
(the 10 parts-of-speech of traditional grammar with an additional class for
foreign words), and a minor tag that further subdivides some of the classes.
See table 2.14 for a list of all the PoS tags used in the Latin part of PROIEL
and their meanings.

The MSD tagset is ten characters wide. The eight first fields encode
the various morphological parameters of Latin in the order person, num-
ber, tense, mood, voice, gender, case, and degree. The ninth field is unused
in the Latin part of the corpus5, and the final field encodes whether the form
is inflecting or not. Tables 2.5 to 2.13 give the values the various fields can
have. Null fields in both tagsets are represented using –. The ambiguous gen-
der tags o, p, q, and r are used to avoid making arbitrary choices regarding
congruence in the morphological annotation.

2.4 What makes Latin hard

There are two main challenges in the analysis of Latin morphology: syn-
cretism and clitics. Syncretism is the term used in linguistics to describe

5It encodes strong/weak inflection in the Gothic and Old Church Slavonic parts of the
corpus

10

2.4. What makes Latin hard

Person

1 1st person
2 2nd person
3 3rd person

Table 2.5: Person

Number

s singular
p plural

Table 2.6: Number

Tense

p present
i imperfect
f future
r perfect
l pluperfect
t future perfect

Table 2.7: Tense

Mood

i indicative
s subjunctive
m imperative
n infinitive
p participle
d gerund
g gerundive
u supine

Table 2.8: Mood

Voice

a active
p passive

Table 2.9: Voice

Gender

m masculine
f feminine
n neuter
o m/n
p m/f
q m/f/n
r f/n

Table 2.10: Gender

Case

n nominative
v vocative
a accusative
g genitive
d dative
b ablative

Table 2.11: Case

Degree

p positive
c comparative
s superlative

Table 2.12: Degree

Inflection

i Inflected
n Non-inflected

Table 2.13: Inflection

11

2. Language & corpus

Tag Meaning Tag Meaning

A– adjective Pc reciprocal pronoun
C– conjunction Pd demonstrative pronoun
Df adverb Pi interrogative pronoun
Dq relative adverb Pk personal reflexive pronoun
Du interrogative adverb Pp personal pronoun
F– foreign word Pr relative pronoun
G– subjunction Ps possessive pronoun
I– interjection Pt possessive reflexive pronoun
Ma cardinal numeral Px indefinite pronoun
Mo ordinal numeral R– preposition
Nb common noun V– verb
Ne proper noun

Table 2.14: PROIEL PoS tags

Sg. Pl.

Nom. fruct-us fruct-us
Voc. fruct-us fruct-us
Acc. fruct-um fruct-us
Gen. fruct-us fruct-uum
Dat. fruct-ui fruct-ibus
Abl. fruct-u fruct-ibus

Table 2.15: Syncretic paradigm:
fructus

the case where several morphological forms of a word are identical. This
phenomenon is commonly found in fusional languages like Latin, and it
is widespread in Latin. In the nominal system, words without ambiguous
forms in their paradigm are rare birds indeed. The most pronounced ex-
ample of this is the fourth declension paradigm fructus (en. fruit) shown in
table 2.15, where half the possible forms are identic. The verb paradigms are
also syncretic, but not quite to the extent of the nominal system. This is an
obvious (and classic) problem for tagging classifiers.

Clitics are unaccented words that share some features of morphemes, but
are syntactically independent. The abbreviated forms of the auxiliary verbs
in English (’ll, ’ve, etc.) are examples of this; they participate independently
in syntax, but have to be attached to another word because they aren’t phono-
logically independent. Latin has five such clitics: the conjunction que, the
disjunction ve, the interrogative ne, the emphatic met, and the preposition
cum which can also be used as a clitic. They don’t pose problems for tagging

12

2.4. What makes Latin hard

proper, but rather to tokenisation; they aren’t written separately in running
text, nor are there any distinguishing marks like the apostrophe in English
to guide tokenisation.

13

Chapter 3

Graphical models

Graphical models are a way of representing collections of random variables
and the relationships between them. Originally studied in the field of sta-
tistical mechanics (the Ising model of ferromagnetism is a notable example),
they have turned out to be a useful generalisation of many statistical models
used in machine learning and related disciplines.

Before moving on to the actual theory, a few matters of notation. As is
normal, random variables are set in capital letters (X,Y ,Z) and particular
instantiations of these in lower case (x,y,z). For sets of variables, we follow
the notation of Pearl (1988): variable sets are set in boldface capitals (X ,Y,Z)
and assignments of values to each of the variables in a set (configurations) in
the corresponding minuscule boldface letter (x,y,z).

3.1 Graphs

A graph is defined as a pair G = (V ,E), where V is the set of nodes (or ver-
tices) in the graph and E is the set of edges, which specify which nodes are
connected. Each edge is a pair (u,v) ∈ V 2, but the interpretation of an edge
depends on whether the graph is directed or undirected. In an undirected
graph, the edge (u,v) means that v is reachable from u and vice versa. In a
directed graph on the other hand, it only means that v is reachable from u; u
is reachable from v only if the edge (v,u) is also in E. (Diestel 1991, 2–4, 23)

A path through a graph is a sequence of nodes v1, . . . , vn such that each
node vi after the first is reachable from the previous one and all the nodes are
distinct, except v1 and vn which may be the same node. A path that starts and
ends in the same node is called a cycle. The special case of a directed graph
with no cycles is called a directed acyclic graph (DAG), and they are common
enough that they have their own terminology. In particular, the lack of cycles
makes it meaningful to talk about the parents of a node: the set of nodes such
that v is reachable from them, we denote this set vπ = {u|(u,v) ∈ E}. An
undirected graph with no cycles is called a tree. (Diestel 1991, 6–7, 12)

15

3. Graphical models

A

B C

D E

Figure 3.1: A simple undirected graph

A clique is a completely connected subgraph, that is, a subset C of the
nodes of a graph such that every node in the clique is adjacent to every other
node. A maximal clique is a clique that cannot be made larger by adding
another node, or equivalently a clique which isn’t a subset of any other clique
in the graph (Wallach 2002, 25). For example, in figure 3.1, {A,B,C} is a
clique, but not a maximal clique since it is contained in the larger clique
{A,B,C,D}. {C,D,E} is not a clique because C and E are not adjacent. We will
use the notation C(G) for the set of maximal cliques inG and Vc for the nodes
of a clique c.

3.2 Graphical models

Graphical models are a convenient tool for representing collections of ran-
dom variables and the dependencies between them. We do this by combining
a set of random variables X and a graph G = (V,E) such that there is a one-
to-one mapping between X and V , and the edges of the graph correspond
to the conditional dependencies between the variables. This mapping blurs
the line between the two, leading to an ambiguity we will happily exploit
to make notation simpler. For example, we will write C(X) to denote the
cliques in the graph backing the model of the variable set X , or use nodes in
the place of corresponding variable in probabilities.

An important concept when discussing graphical models is that of con-
ditional independence. Two variable sets X and Y are conditionally indepen-
dent, given a set Z iff p(X |Y,Z) = p(X |Z) (Pearl 1988). This is an extension of
the idea of marginal (or unconditional) independence, where two variables
X and Y are marginally independent if and only if p(X |Y) = p(X)1.

3.2.1 Directed models

In a directed graphical model, we use a DAG to represent the dependencies
between the variables in X . A simple example that can be represented as such

1Usually this is formulated as p(X,Y) = p(X)p(Y), but for the notion of conditional inde-
pendence, the equivalent p(X |Y) = p(X) is more illustrative.

16

3.2. Graphical models

S

A B

Figure 3.2: A simple directed model

a model is the sum of two dice, the model in figure 3.2: The sum S depends
on the outcomes of the dice A and B. As the figure shows, dependencies flow
in the direction of the edges in the graph.

In a directed model, for any variableX the parentsXπ of that node are the
minimal set of nodes required to make X conditionally independent of the
remaining nodes in G (Wallach 2002). The upshot of this is that computing
the probability of any given configuration is a quite straightforward affair.
For each variable, we compute the probability of its value, given the values
of its parents:

p(X) ,
∏
X∈X

p(X |Xπ) (3.1)

3.2.2 Undirected models

As the name implies, undirected models use undirected graphs to repre-
sent the dependencies between variables. In such a model, an edge between
two nodes means that two adjacent nodes influence the other, which in turn
means that undirected models can represent different classes of dependen-
cies than directed models.

Similar to the directed case, given its neighbouring nodes, any variable X
is conditionally independent of all the remaining nodes in the model. Taking
inspiration from equation (3.1) it would be tempting to define distributions
for each X given the variable’s neighbours δX: p(X |δX). However, since X
influences its neighbours as well, making sure that the graph structure and
the actual distributions are consistent is a non-trivial exercise in this scheme
(Pearl 1988, 105). A better approach is required.

The solution to the problem is to define a Gibbs’ potential Ψ over the
graph. This potential is the product of individual potential functions Ψc,
each defined over the variables of the maximal cliques c ∈ C(G) of the graph.

Ψ (X) ,
∏
c∈C(X)

Ψc(Xc) (3.2)

The only constraint on the potential functions is that their values be strictly
positive. But since the potential functions can have any value greater than
zero, Ψ will not in general be a valid probability, so the potential has to be
normalised to yield a probability. This normalisation factor Z is the sum of

17

3. Graphical models

the potentials of all x ∈ Ω(X), where Ω(X) is the set of all possible assign-
ments of values to the variables of X :

Z(X) ,
∑

x∈Ω(X)

Ψ (x) (3.3)

This gives us the complete expression for the probability of an undirected
graphical model:

p(X) ,
1

Z(X)
Ψ (X) (3.4)

18

Chapter 4

Hidden Markov models

Hidden Markov models (HMMs) are one of the simplest language model-
ing techniques, and commonly used for sequence classification problems. In
this model, the words of a sentence are seen as the outputs from a series
of random states. The word emitted from any given state depends only on
the current state, and likewise the probability of the next state depends only
on the current state. The problem is then to determine the most probable
sequence of states for a given sequence of observed emissions.

Before we formalise HMMs, we’ll get some notation out of the way. V =
{w1, . . . ,wn} denotes a finite alphabet; W = w1 · · ·wT denotes a sequence of
length T , Q = {q1, . . . , qn} is a finite set of states, and Q = q1 · · ·qT a sequence
of states. P = [0,1] is the set of valid probabilities.

4.1 Definition

We can then define a HMM as a four-tuple H = (Q∪ {qs,qe},V , t, e), where the
start and end states qs,qe <Q. t is the transition function t :Q∪{qs}×Q∪{qe} →
P, where t(q′ ,q) gives p(q|q′), the probability of moving from the state q′ to
q, and e the emission function e : Q×V → P for p(wi |qi), the probability that
the state q emits the word w (Brants 1999, 16). Finally, the transition and
emission functions have to sum to 1 in the appropriate way to make sure
they give proper probabilities (Jurafsky and Martin 2008, 211):

∑
q′∈Q∪{qe}

t(q,q′) = 1 For all q ∈ Q∪ {qs}∑
w∈V

e(q,w) = 1 For all q ∈ Q

19

4. Hidden Markov models

Using q0 as a synonym of qs for simplicity’s sake, the probability of a label
sequence-output pair is:

p(Q,W) = p(qe|qT)
T∏
t=1

p(qt |qt−1)p(wt |qt) (4.1)

We then need to estimate the various probabilities of our model, which
is usually done by simply counting occurrences in a training corpus. Using
p̂ to distinguish the estimate from the true probability, the transition proba-
bilities are estimated by p̂(q|q′) = c(q′ ,q)/c(q′) and the emission probabilities
by p̂(w|q) = c(w,q)/c(q). The function c counts the number of times various
configurations occur in the corpus: c(q′ ,q) the number of times the label q′ is
followed by q, c(q) the number of times the label q appears, and c(w,q) how
many times word w has the label q. These estimates are quite good, espe-
cially with a decent sized corpus, as well as very simple to compute. They
are Maximum Likelihood Estimates (MLEs) obtained by seeing the corpus
as being produced by a multinomial distribution; the full derivation of the
estimates is given in appendix A.

An important question in statistical language modeling is how to handle
unknown words. In the model above, an input string that contained a word
wu not encountered in training would have probability 0 for all possible label
sequences, since p(wu |q) = 0 for any state q. Usually, this problem is handled
by creating a special vocabulary item to handle such words and use a dis-
counting technique such as add-1 smoothing or Good-Turing discounting to
assign emission probabilities to unknown words for all the states. The simi-
lar problem of some state transitions being unobserved in training is handled
in an analog manner. (Jurafsky and Martin 2008, 131–137)

An HMM where the transition probabilities depend on the previous and
current states is called a first-order, or bigram, HMM. Higher order HMMs
use the n previous states to compute the transition probabilities. A second or-
der HMM has p(qi |qi−1,qt−2), and so on. These models are interesting for tag-
ging as they can capture longer range dependencies than the basic first-order
HMM. Conveniently, an nth-order HMM with k states can be represented as
a first-order HMM with kn states, where the different states encode differ-
ent histories. The higher-order notation is simpler to work with, however.
(Brants 1999, 18)

4.1.1 As graphical model

HMMs can also be defined as a directed graphical model (Wallach 2002, 11).
For each word i in the sequence to be tagged, there are two nodes qi and wi .
The node qi is the parent of wi , and qi , i < T is the parent of qi+1. The start
and end states are represented as the nodes qs and qe, where qs is the parent
of q1 and qT the parent of qe. Figure 4.1 show the graph for a four-word

20

4.2. Decoding

qs qeq1

w1

q2

w2

q3

w3

q4

w4

Figure 4.1: HMM as graphical model

sentence. The variables corresponding to the grey nodes are the variables
whose distributions are modeled, while the distributions of the unshaded
nodes aren’t.

We then apply equation (3.1) to this graph and get the probability of a
given tag sequence (again with q0 as a synonym of qs):

p(Q,W) = p(qe|qT)
T∏
i=1

p(qi |qi−1)p(wi |qi) (4.2)

which is exactly the same as (4.1).

4.2 Decoding

Now that we have the theoretical machinery in place, all that’s missing is a
concrete means to find the most probable tag sequence for a given sequence
of words, since simply enumerating all possible tag sequences (of which there
are |Q|T) is infeasible for all but the very shortest strings. The solution is to
use a dynamic programming approach called Viterbi’s algorithm.

The trick is the realisation that if we incrementally compute probabilities
for labelings of subsequences, we can compute the probability of a longer
sequence using the shorter ones. The probability of the first word having a
given tag is simply pq,1 = t(qs,q)e(q,w1), for any q. The probability of any tag
for the second word is then pq,2 = maxq′∈Qpq′ ,1t(q′ ,q)e(q,w2), and so on for
longer and longer subsequences until we have the probability of the entire
sequence. More formally, we define the probability δt(q) of token t in the in-
put having the label q as a recursive function: (Brants 1999, 18–20; Jurafsky
and Martin 2008, 218–220)

δt(q) =
{
t(qs,q)e(q,w1) t = 1
maxq′∈Q δt−1(q′)t(q′ ,q)e(q,wt) t > 1

(4.3)

and maxQ∈QT p(Q,W) = maxq′∈Q δT (q′)t(q′ ,qe) gives the optimal sequence of
states. Finally, we need to keep track of which states qt gave the best proba-
bilities:

qt =
{

argmaxq∈Q δT (q)t(q,qe) t = T
argmaxq∈Q δt(q)t(q,qt+1) t < T

(4.4)

21

4. Hidden Markov models

In implementation terms, this means that for all positions in the string,
we need to store the highest possible probability of that tag being output, and
coming from which previous state gives that probability. The natural way to
do this is as a |Q| × T matrix, usually referred to as the trellis. Each entry in
the trellis is a pair (q,p) which stores the highest probability p of being in a
particular state at a particular time, and the previous state q that gives that
probability. Since the algorithm requires looping over all possible previous
states for each possible current state at each point in the input, Viterbi’s al-
gorithm has an O(|Q|2T) asymptotic run-time. Figure 4.2 gives pseudo-code
for the algorithm, assuming states are consecutive integers, so that they can
be used to index the matrix.

Input: Input sequence w1 · · ·wT
Data: trellis, a |Q| × T matrix
Initialisation

for q ∈ Q do
trellisq,1 = (qs, e(q,w1) ∗ t(qs,q))

end
for 2 ≤ i ≤ T do

for q ∈ Q do
p = maxq′∈Qp(trellisq′ ,i−1) ∗ t(q′ ,q) ∗ e(q,wi)
q′ = argmaxq′∈Qp(trellisq′ ,i−1) ∗ t(q′ ,q)
trellisq,i = (q′ ,p)

end
end
q′ = argmaxq′∈Qp(trellisq′ ,T) ∗ t(q′ ,qe)
return The most likely path through the trellis by following the back
pointers, starting with q′

Figure 4.2: Viterbi’s algorithm for HMMs

4.3 Trigrams’n’Tags

Trigrams’n’Tags (TnT) is a sophisticated trigram (second-order) HMM tagger,
authored by Thorsten Brants, and described in depth in Brants (2000). TnT
is a relatively straightforward affair, but one particular part is of interest:
its handling of unknown words. Instead of simply creating an unknown
word vocabulary item and assigning it a probability based on discounting,
TnT estimates the probabilities based on the suffixes of the word, a highly
competitive strategy for suffix-inflecting languages like Latin.

TnT’s implementation of this strategy uses low-frequency (occurring not

22

4.3. Trigrams’n’Tags

more than 10 times) words to build a suffix-trie1 which is then used to com-
pute the probabilities for each suffix. The probability of a tag q given the n
last letters of a word, sn · · ·s1, is computed from the MLE for the suffix by lin-
ear abstraction (Samuelsson 1996) of the probabilities of the shorter suffixes
according to the recursive function:

p(q|sn · · ·s1) =
p̂(q|sn · · ·s1) +θp(q|sn−1 · · ·s1)

θ + 1
(4.5)

using p̂(q|sn · · ·s1) = c(q,sn···s1)/c(sn···s1), the number of times the suffix occurs with
the label divided by the number of times the suffix appears, to estimate the
probability of a tag given a suffix, and p(q|s0 · · ·s1) = p(q) = p̂(q), the unigram
tag MLE as the base case. The weight θ is given by:

θ =
1
s − 1

s∑
i=1

(p̂(qi)− p̄) (4.6)

p̄ =
1
s

s∑
i=1

p̂(qi) (4.7)

where s is the size of the tagset. TnT uses a maximum suffix length of 10, and
the emission probability of an unknown word is then the estimated proba-
bility of the longest suffix of the word which was observed in the corpus.

1A trie is a data-structure similar to a B-tree which provides efficient storage of strings
that have similar prefixes or suffixes

23

Chapter 5

Conditional random fields

Conditional random fields (CRFs) are a more recent innovation in the field of
statistical language modeling, and like HMMs they are most commonly used
for sequence labeling tasks. A CRF is a discriminative model, as opposed to
a HMM which is generative, which means that the joint distribution p(W,Q)
of observation and label sequence is not explicitly modeled, but rather the
distribution p(Q|W). This makes it possible for the discriminative model
to incorporate several kinds of features on each observation, something that
is not easily done in a generative model. In a generative model one would
either have to make unwarranted independence assumptions, or model in-
creasingly complicated (and sparse) joint distributions. On the other hand,
parameter estimation is correspondingly more expensive, which is a practical
cost that has to be justified.

5.1 Definition

CRFs are a class of undirected graphical model as presented in 3.2, but with
additional constraints on the structure of the underlying graph to make in-
ference and parameter estimation more tractable. They were first presented
in Lafferty, McCallum and Pereira (2001), with the motivation that they avoid
the label bias problem of MaxEnt Markov Models, where states with low en-
tropy in the transition distributions “take little notice of observations”. They
define a CRF as follows:

Definition 1 Let G = (V ,E) be a graph such that Y = (Yv)v∈V , so that Y is in-
dexed by the vertices of G. Then (X ,Y) is a conditional random field in case,
when conditioned on X , the random variables Yv obey the Markov property with
respect to the graph: p(Yv |X ,Yw,w , v) = p(Yv |X ,Yw,w ∼ v), where w ∼ v means
that w and v are neighbors in G.

While seemingly a forbidding definition, it turns out to be reasonably
simple when you get down to it. The first sentence simply means that a CRF

25

5. Conditional random fields

is a kind of graphical model. The second sentence then states the Markov
condition for CRFs: For any two output nodes v and w that are not neigh-
bours in the graph, there exists a single neighbour w′ of v such that v and w
are conditionally independent given w′ and X . This simply means that the
nodes of Y have to form a tree. A simpler definition is:

Definition 2 A CRF is an undirected graphical model, such that when condi-
tioned on X the following property holds for all nodes in Y : for a pair of vari-
ables (Yv ,Yw) there exists a single neighbour Yw′ of Yv such that p(Yv |X ,Yw) =
p(Yv |X ,Yw′); that is, the nodes of Y must form a tree.

Since we require Y to be tree-structured, the largest possible clique in
the output graph is a pair of adjacent nodes. According to the Clifford-
Hammersley theorem (Clifford 1990, 22) the probability p(Y |X) is then on
the form

p(Y |X) ∝ exp

∑
e∈E,k

λkfk(e,Y |e,X) +
∑
v∈V ,k

µkgk(v,Yv ,X)

 (5.1)

where Y |e is the two endpoints of the edge e, and the fk and gk are fixed fea-
ture functions. In HMM terms, the edge features fk can be seen as modulat-
ing the transition probabilities between neighbouring states, and the vertex
features gk as emission functions. The feature functions can be any strictly
positive, real-valued function, but in most applications they are binary; if
some configuration observed in the training data is seen in the input the
function returns 1, and 0 in any other case.

The simplest possible tree is a first-order chain as shown in figure 5.1,
where each node Yi is connected to the previous node. As in 4.1.1, the shaded
nodes are the ones whose distributions are modeled. In this case equation
(5.1) can be simplified to:

p(Y |X) ∝ exp

 T∑
i=1

∑
k

λkfk(Yi−1,Yi ,X , i) +
∑
k

µkgk(Yi ,X , i)

= exp

 T∑
i=1

∑
k

θkfk(Yi−1,Yi ,X , i)

 (5.2)

= exp

∑
k

θkFk(Y ,X)

 Fk(X ,Y) =
T∑
i=1

fk(Yi−1,Yi ,X , i)

with the additional simplification of writing the vertex features on the same
form as the edge features. The node vertex features will then obviously sim-
ply ignore the previous node argument, and this simplification is purely
notational to make the expressions shorter. Additionally, chain-structured
CRFs are augmented with start and end states, like HMMs. The rest of this

26

5.2. Parameter estimation

Y0 Y6Y1

X1

Y2

X2

Y3

X3

Y4

X4

Y5

X5

Figure 5.1: A chain-structured CRF

chapter will deal exclusively with such CRFs, augmented with a node Y0
whose label is always the start and Yn+1 whose label is stop. We assume
that the labels start and stop are not already in Q, and they serve the same
purpose as the special states qs and qe for HMMs.

To get probabilities from the previous expressions, the values have to be
normalised by the input-dependent normalisation factor Z(X). As can be
expected from (3.3), the value of this factor is obtained by summing the po-
tentials of all possible label assignments y for the input:

Z(x) =
∑
y∈QT

exp

∑
k

θkFk(x,y)

 (5.3)

5.2 Parameter estimation

Now that we know how to compute the probability of a tag sequence for a
given input, the next step is to estimate the values of the parameters θk of
the model. For CRFs we use maximum-likelihood estimation, which can be
shown to give the distribution with maximum entropy (Wallach 2004).

Likelihood is a measure of the probability of a set of parameter values
for a model with respect to some training data. Given a set of training data
D = {(x(k),y(k))}, and a fixed set of feature functions fk , the likelihood of a
parameter set is the product of the probabilities a model with those parame-
ters assigns to the training examples: L(θ) =

∏
k pθ(y(k)|x(k)), where pθ is the

probability according to the model with parameters θ.
Being a very large product, the likelihood is rather unwieldy to work with.

This problem, however, is easily remedied; applying the logarithm will con-
vert the product into a sum of logarithms. Additionally, the likelihood is of
little interest to us. We simply want to find the parameters that yield the
largest likelihood, and since the logarithm is strictly increasing, finding the
parameters that maximise the log-likelihood L(θ) = logL(θ) will yield the
same parameters as studying L directly.

The log-likelihood of a CRF parameter set is then:

L(θ) =
∑
k

∑
j

θjFj(x
(k),y(k))−

∑
k

logZ(x(k))

27

5. Conditional random fields

a continuous and concave function (Lafferty, McCallum and Pereira 2001).
Since the function is concave, finding the maximum is simply a matter of
solving the equation ∇L = 0, which is equivalent to solving ∂/∂θjL = 0 for all
the features fj . Before deriving ∂/∂θjL, we find ∂/∂θjZ:

∂

∂θj
Z(x(k)) =

∑
k′

∂

∂θj
exp

∑
j

θjFj(x
(k),y(k′))

=

∑
k′

Fj(x
(k),y(k′))exp

∑
j

θjFj(x
(k),y(k′))

Using this, we find the derivative of the log-likelihood function

∂

∂θj
L(θ) =

∂

∂θj

∑
k

∑
j

θjFj(x
(k),y(k))− ∂

∂θj

∑
k

logZ(x(k))

=
∑
k

Fj(x
(k),y(k))−

∑
k

∂/∂θjZ(x(k))

Z(x(k))

=
∑
k

Fj(x
(k),y(k))−

∑
k

∑
k′

Fj(x(k),y(k′))exp
(∑

j θjFj(x
(k),y(k′))

)
Z(x(k)

=
∑
k

Fj(x
(k),y(k))−

∑
k

∑
k′

Fj(x
(k),y(k′))pθ(y(k′)|x(k))

=
∑
k

Fj(x
(k),y(k))−

∑
k

Ep(Y |x(k))[Fj(x
(k),Y)]

where Ep[·] is the expected value of · with respect to the distribution p.
Unfortunately, ∇L = 0 is not analytically solvable in the general case.

Thus, we need to use numerical approximation techniques to find the best
parameter values; there are a variety of algorithms available, each with dif-
ferent strengths and weaknesses, but the most popular seem to be quasi-
Newton methods such as L-BFGS or hillclimbing methods such as variations
on gradient ascent.

5.3 Decoding

Despite the theory being more involved than for HMMs, chain-structured
CRFs can be decoded using essentially the same Viterbi algorithm as pre-
sented in figure 4.2. The principle remains the same: moving left to right
in the input, we find the best tag sequences for subsequences of increasing
length, until we’ve found the best sequence for the whole input.

We define Mi(x), a |Q| × |Q|matrix, for each word in the sentence. The in-
dividual elements of the Mi are given by Mi(q′ ,q|x) = exp(

∑
k θkfk(q

′ ,q,x, i)),
the potential of the assignment Yi−1 = q′ ,Yi = q. We can then decode the

28

5.3. Decoding

CRF in the normal Viterbi fashion, multiplying potentials as we go, which
gives us the algorithm in figure 5.2. The normalisation factor Zθ(x) is the
start,stop entry of the matrix product

∏T
i=1Mt(x). (Lafferty, McCallum and

Pereira 2001)

Input: Input sequence w1 · · ·wT
Data: trellis, a |Q| × T matrix
Initialisation

for q ∈ Q do
trellisq,1 = (qs,M1(start,q|x))

end
for 2 ≤ i ≤ T do

for q ∈ Q do
p = maxq′∈Qp(trellisq′ ,i−1) ∗Mi(q′ ,q|x)
q′ = argmaxq′∈Qp(trellisq′ ,i−1) ∗Mi(q′ ,q|x)
trellisq,i = (q′ ,p)

end
end
q′ = argmaxq′∈Qp(trellisq′ ,T) ∗MT+1(q′ ,stop|x)
return The most likely path through the trellis by following the back
pointers, starting with q′

Figure 5.2: Viterbi’s algorithm for CRFs

In addition to the decoding algorithm, there’s something we glossed over
in the previous section. The log-likelihood function that we optimise re-
quires us to compute Ep(Y |x(k))[Fj(x

(k),Y)] for all the training examples. Doing
this even once in the naïve way is intractable for the same reason the simple
approach to decoding doesn’t work: there’s an exponential number of label
sequences. Additionally, we have to do this several times, once for each iter-
ation of the numerical approximation algorithm used. We obviously need a
better way to do it.

Once again, we are saved by a dynamic programming solution. But first,
we rewrite Ep(Y |x(k))[Fj(x

(k),Y)] by moving the probability inside the implicit
sum of Fj :

Ep(Y |x(k))[Fj(x
(k),Y)] =

∑
y∈QT

p(Y = y|x(k))Fj(x
(k),y)

=
T∑
i=1

∑
q′ ,q∈Q2

p(Yi−1 = q′ ,Yi = q|x)fj(q
′ ,q,x, i)

This new expression is easier to live with, since p(Yi−1 = q′ ,Yi = q|x) can be
computed with a dynamic programming approach. We do this in the same

29

5. Conditional random fields

way as the Forward algorithm for HMMs, which computes the probability of
a given state at any point in the input, given the previous observations. But
since the dependencies of the CRF are undirected, we also need to find the
probability of the remaining words, given the state q at time t, known as the
backward.

We denote the forward probability of q at time t, given the input x as
αt(q|x) and the backward as βt(q|x), which gives the following expression for
pθ(Yi−1 = q′ ,Yi = q|x):

p(Yi−1 = q′ ,Yi = q|x) =
αi−1(q′ |x)Mi(q′ ,q|x)βi(q|x)

Z(x)
(5.4)

using the following expressions to calculate the forward and backward:

α0(q|x) =
{

1 if q = start
0 otherwise

αt(q|x) =
∑
q′∈Q

αt−1(q′ |x)Mt(q
′ ,q|x) 1 < t ≤ T + 1

βT+1(q|x) =
{

1 if q = stop
0 otherwise

βt(q
′ |x) =

∑
q∈Q

βt+1(q|x)Mt+1(q′ ,q|x) 1 ≤ t ≤ T

These relations give Viterbi-like algorithms using a trellis to store intermedi-
ary computations in the same way that equation (4.3) resulted in the Viterbi
algorithm. Lafferty, McCallum and Pereira (2001) formulate the forward
and backward recursive relations as (row) vector valued functions αt(x) =
αt−1(x)Mi(x) and βt(x)> = Mt+1(x)βt+1(x)>, but this is just a shorthand that
avoids the explicit sums in the expressions above.

5.4 Practical matters

As stated above in section 5.2, the feature weights θi have to be numerically
approximated. This is a quite costly operation, especially for large tagsets,
since for each feature we need to perform a O(|Q|2T) operation for each sen-
tence in the training set; this means that a doubling of the tagset size will
give a fourfold increase in training time. Most likely it will increase train-
ing time even further, since an additional number of tags will yield a larger
number of features as well.

We used wapiti, a linear-chain CRF toolkit described in Lavergne, Cappé
and Yvon (2010) to perform the experiments described in chapter 6, and it
supports a number of approximation algorithms and regularisation options.
The regularisation parameters are penalties applied to the likelihood func-
tion, and serve to mitigate the tendency of log-linear to overfit the training

30

5.4. Practical matters

data. We did not explore the possibilities of wapiti’s regularisation options.
However the choice of algorithms and how to combine them was explored to
some extent, since this can have a large impact on how long it takes to train
a model.

The algorithm that yields the best models is L-BFGS. But while it gives
good results when done, it can take a long time to get to that result. For this
reason, we had the best results with first running a fixed number of iterations
of the Rprop (Resilient backpropagation) algorithm first; 10 to 20 iterations
gave the best results, the more iterations the bigger the model. Rprop is
a purely first-order algorithm (in contrast with L-BFGS which incorporates
second-order information) which simply finds the direction of the maximum
using the gradient and takes a big step in that direction. This means that the
algorithm gets to the general neighbourhood of the maximum fairly quickly.
After the Rprop iterations were done, we then ran L-BFGS to convergence to
get as good a model as possible.

31

Chapter 6

Experiments & evaluation

With the underlying theory of HMMs and CRFs established, we can proceed
to evaluating them as models of Latin. As outlined in the introduction, there
are two distinct tagging tasks that have to be solved: MSD tagging and PoS
tagging. For this reason we will present four series of experiments: MSD
and PoS tagging using HMMs, and MSD and PoS tagging with CRFs. In each
series of experiments, the experiments can be put in one of two groups. The
first type of experiment serves to measure the performance of the models on
the same kind of data as they were trained on, the second to get a rough idea
of how different the two corpora available (BG and Vulgata) are. For all the
experiments we computed four different metrics: overall tagging error (TE),
the fraction of sentences with at least one mistagged token (SE), and tagging
error for out-of-vocabulary (OOV) and in-vocabulary (IV) tokens.

The first set of experiments are 10-fold cross validation experiments. We
split the corpus into 10 non-overlapping parts (the folds), and then run 10
experiments, each using a different fold for testing and the remaining nine
for training the model. The final score for the full experiment is the average
of the scores from the 10 sub-experiments. There are several ways to split
the corpus, but we have used a round-robin approach that places the first
sentence in the first fold, the second in the second fold, and so on up to
sentence ten (which is placed in the tenth fold, of course). Then we then
start over, placing sentence eleven in the first fold, number twelve in the
second, and so on1.

In the second set of experiments, we used either BG or Vulgata to train
a model and used the other corpus for testing. As mentioned above, the
purpose of these experiments is to get an idea of how different the BG and
Vulgata corpora are. The out-of-domain effect is well documented in the liter-
ature, both for tagging (Poudat and Longrée 2009) and parsing (Gildea 2001),
and we expect the difference between testing on in-domain data and out-of-

1For the mathematically inclined, sentence n is placed in fold k ≡ n(mod 10), or fold
Fi = {sn|n = i + k10, k ∈N}.

33

6. Experiments & evaluation

domain data to be large. The experiments are labeled “X on Y” where X is
the corpus used for training and Y the test corpus.

Finally, a note about hypothesis testing, a more rigorous way of compar-
ing experimental results than simply comparing averages. In the context of
our 10-fold experiments, this means that we see the results of the individ-
ual 10 experiments as drawn from some random distribution with certain
properties. We can then compute the probability that the results of two full
experiments are drawn from the same distribution. There are several ways
to do this, but we use Student’s t-test, a relatively simple and robust test.
(Woods, Fletcher and Hughes 1986, 176–181)

The underlying assumption of the t-test is that both populations (the re-
sults of the two experiments) are normally distributed and have the same
variance. We estimate the medians X̄1 and X̄2 of the populations as the aver-
age of the individual results, and the variances s2i =

∑ni
j=1(X̄i−xj)2/n−1. We com-

pute the test statistic

t =
X̄1 − X̄2√
s2/n1 + s2/n2

s2 =
(n1 − 1)s21 + (n2 − 1)s22

n1 +n2 − 2

and then compare t with a table or computer program and find the probabil-
ity that the two populations have the same mean; if this p is sufficiently small
(usually smaller than 0.05 or 0.01) we judge the difference to be significant.
(Woods, Fletcher and Hughes 1986, 176–181)

6.1 HMM MSD tagging

TnT can optionally encode capitalisation as part of the tagset, which is re-
ported to increase accuracy for English (Brants 2000). While not obviously
a useful feature for the Latin data, since proper names, the only words that
are capitalised, get the same MSD tags as common nouns, we ran two series
of experiments: with and without capitalisation. Table 6.1 gives the results
for the models without capitalisation and table 6.2 the results with capitali-
sation. The results do not appear significantly different from each other, an
impression that is upheld by the T-test (p > 0.05 for all the experiments and
error rates). For this reason we will use the data in table 6.1 in our discussion
of the results.

As the numbers make clear, the BG tagging task is quite a bit harder than
the Vulgata, with 57% increase in tagging error, 78% in sequence error and
39% increase in in-vocabulary error. Interestingly, the OOV error is only 10%
larger, probably because of TnT’s cap on the occurence counts of the suffixes
used to handle unknown words. Most of this difference is likely due to the
important differences in corpus between the two corpora: the Vulgata is four

34

6.1. HMM MSD tagging

Experiment TE SE OOV IV

10-fold joint 11.1 % 52.4% 36.0% 8.98%
10-fold BG 15.7 % 86.5% 39.3% 11.1 %
10-fold Vulgata 9.98% 48.6% 35.7% 7.97%
BG on Vulgataa 37.2 % 92.6% 66.7% 15.0 %
Vulgata on BGb 30.1 % 97.2% 51.6% 17.6 %
a 235 unobserved tags in test data
b 42 unobserved tags in test data

Table 6.1: HMM MSD experiments, no capitalisation

Experiment TE SE OOV IV

10-fold joint 11.1 % 52.3% 35.7% 8.99%
10-fold BG 15.6 % 85.7% 38.5% 11.1 %
10-fold Vulgata 9.98% 48.5% 35.7% 7.98%
BG on Vulgata 37.5 % 92.9% 67.1% 15.2 %
Vulgata on BG 30.3 % 96.9% 52.1% 17.6 %

Table 6.2: HMM MSD experiments, with capitalisation

and a half times the size of the BG corpus. The joint corpus, while bigger,
gives slightly worse results than using the Vulgata on its own. We attribute
this difference to this corpus being less uniform than the plain Vulgata cor-
pus, which still accounts for 82% of the combined corpus.

The overall error rates for the out-of-domain are not surprising, and BG
gives about 25% more errors on Vulgata than vice versa. We can point to
several reasons for this. Again, the BG corpus is vastly smaller than its Bib-
lical counterpart; also, the effect of 235 tags in the Vulgata not occuring in
BG should not be underestimated. But if we compare the tagging errors with
the results on in-domain data, a different picture emerges. The transition to
a new domain has tripled the error for the Vulgata-trained model, while the
BG model’s error has increased by a factor of 2.3. This could indicate that the
BG is a better model of Biblical Latin than the Vulgata is a model for Classical
Latin, but that the overall results are worse for the BG due to a lack of data.

To better judge the Vulgata as a model of BG, we decided to run some
additional experiments, using a subset of the Vulgata for training and testing
that on the BG. For our subset we decided to combine gospels so that their
size was roughly the same as the BG corpus. The combinations of gospels
that fit the size of the BG corpus best were Mark and John (24,595 tokens)
and Mark and Matthew (27,095 tokens). While Mark and John is a better fit in
terms of size, the combined corpus may be less uniform since the gospel of

35

6. Experiments & evaluation

Experiment TE SE OOV IV

Mark & Matthewa 39.1% 99.1% 58.4% 18.5%
Mark & Johnb 39.2% 98.9% 58.3% 17.9%
a 102 unobserved tags in test data
b 123 unobserved tags in test data

Table 6.3: Small HMM Vulgata experiments

John is the one non-synoptic2 gospel. Therefore we tested Mark and Matthew
as well as Mark and John in case the combination of synoptic gospels turns
out to be markedly different.

The results of the small Vulgata experiments are summarised in table
6.3. The two variants turned out to not give very different results, and as
hypothesised, a smaller section of the Vulgata performs worse than the BG
on out-of-domain data. The difference in overall and in-vocabulary error is
reasonably small at only two and three percentage points, respectively, but
sentence error goes up more than six points. On the other hand, OOV error
drops by almost eight and a half points; one possible explanation for this
is that the assumptions of TnT’s OOV model, using only the suffixes of rare
words to predict suffixes of unseen words, fits these experiments better than
the larger experiments. We will explore the possible issues with TnT’s OOV
model and Latin further in the following sections.

Poudat and Longrée (2009) report results of tagging Latin using models
trained with TnT on data from the Latin part of the LASLA corpus3. Un-
fortunately, the raw data of the corpus are not avilable (Haug et al. 2009),
which is why this corpus has not been discussed earlier. Using books 1–2
and 4–7 for training and book 3 for testing, a tagging accuracy of 84.26% is
reported, which is perfectly in line with the results from our 10-fold BG ex-
periment. The reported size of the tagset is 3732 tags, but it is unclear how
many distinct tags occur in the BG part of the corpus.

Another point of comparison is the learning curve reported in figure 3 of
Brants (2000), which gives an overall accuracy of about 95% by 10-fold cross
validation on 100,000 tokens of the German language NEGRA corpus, an
OOV accuracy of about 86%, and IV around 97%. The results on the PROIEL
corpus are not quite on par with this. Best was the 10-fold Vulgata experi-
ment, which gave an overall accuracy of 90.0%, OOV accuracy of 64.3%, and
IV accuracy of 92.0%. We attribute this difference in accuracy to the size of
the PROIEL tagset, with 544 distinct tags in the Vulgata part of the corpus,
compared to the more modest 57 tags of the NEGRA corpus.

2The synoptic gospels, Mark, Matthew and Luke, contain roughly the same stories in
roughly the same order, and to a large extent with the same wording. John is different in
structure and narrative.

3http://www.cipl.ulg.ac.be/Lasla/

36

http://www.cipl.ulg.ac.be/Lasla/

6.2. HMM PoS tagging

Experiment TE SE OOV IV

10-fold joint 3.91% 26.0% 19.2% 2.62%
10-fold BG 7.12% 63.7% 21.9% 4.21%
10-fold Vulgata 3.36% 22.8% 19.9% 2.08%
BG on Vulgata 23.8 % 81.2% 47.3% 6.09%
Vulgata on BG 16.6 % 88.2% 32.5% 7.33%

Table 6.4: HMM full PoS tagger

Experiment TE SE OOV IV

10-fold joint 3.13% 22.2% 16.9% 1.97%
10-fold BG 5.56% 56.8% 19.1% 2.89%
10-fold Vulgata 2.73% 19.5% 17.6% 1.57%
BG on Vulgata 19.6 % 76.2% 41.1% 3.53%
Vulgata on BG 13.7 % 84.3% 27.5% 5.58%

Table 6.5: HMM major PoS tagger

For the 10-fold BG experiment the results are even less cheerful. For
20,000 tokens of NEGRA, Brants (2000) gives an overall accuracy of about
93%, OOV accuracy a bit above 80%, and IV accuracy at about 96%; com-
pared to 84.3% overall, 60.7% OOV accuracy, and 88.9% IV accuracy on the
BG corpus. Again, this is likely due to the size of the tagset (344 tags in the
BG corpus) and the relatively free word-order of Classical Latin.

6.2 HMM PoS tagging

A complete tagging solution for Latin according to the PROIEL tagset should
also do PoS tagging. Again, we performed two sets of experiments; a first
series using the full PoS tagset (see table 2.14) and a second with only the
major field of the tag. In the full tagset the tag Ne is used on proper nouns;
as mentioned above, proper nouns are capitalised in the corpus, which might
mean that the capitalisation option of TnT will boost performance on the
full PoS task. However models trained with this option did not significantly
outperform those without it. Therefore, the numbers reported are for models
without the capitalisation option. Tables 6.4 and 6.5 give the results on the
full and major PoS tagsets, respectively.

Since the size of the tagset has been reduced by more than a full order of
magnitude compared to the MSD tagging experiments, it should come as no
surprise that the PoS tagging results are quite a bit better. But apart from the
fact that the numbers are better, the PoS and MSD experiments behave in a
similar way. The pure Vulgata corpus gives the best results, with the less uni-

37

6. Experiments & evaluation

Experiment TE SE OOV IV

Mark & Matthew, full PoS 24.1% 94.3% 38.4% 8.88%
Mark & John, full PoS 25.5% 94.8% 40.7% 8.49%

Mark & Matthew, major PoS 20.4% 92.5% 33.9% 5.98%
Mark & John, major PoS 22.7% 93.9% 37.5% 6.11%

Table 6.6: Small HMM Vulgata PoS experiments

form joint corpus lagging a bit, but not much. The BG lags behind the other
two, more than in the MSD experiments, with roughly twice the amount of
incorrect tokens and three times as many incorrect sentences. OOV error is
much less affected by the more limited training data, just like for the MSD
experiments, increasing just 10% in the BG experiments. Apart from a per-
formance boost due to the even smaller tagset, the major PoS tag experiments
give similar results as for the major tag.

An interesting detail is the OOV metric of the joint and Vulgata exper-
iments. Here, the joint corpus gives a better OOV error than the Vulgata
model by about three quarters of a percentage point. This difference is not
significant (p > 0.05) however.

Moving on to the out-of-domain experiments, the difference between the
two experiments looks more in line with the in-domain data. The model
trained on the BG gives almost twice the overall error rate as the one trained
on Vulgata; sentence and in-vocabulary error is quite a bit better with the BG
however, and it’s OOV error that gives the worse overall result. The smaller
Vulgata selections give much the same results as for the MSD experiments
though. Both in-vocabulary and sentence error increase by several percent-
age points, but the drop in OOV error makes the overall error rates differ
by only a few points. Again, this drop in OOV error is probably due to the
differences between Vulgata and BG being more in line with the assumptions
underlying TnT’s OOV model.

The tagsets in the PoS tagging experiments are more in line with the tag-
set used in the NEGRA experiments from Brants (2000), as are the results. In
fact, the overall and in-vocabulary errors of the Vulgata experiment with the
full PoS tag are comparable to the best values (2.3% and 3.3% error, respec-
tively) reported for 320,000 tokens. This is probably due to the smaller size
of the tagset, which is roughly half the size of the NEGRA tagset.

On the other hand, the OOV error is a lot worse. In fact, the learning
curve in Brants (2000) crosses the 80% accuracy line somewhere between 10
and 20 thousand training tokens. This is probably due to the mismatch be-
tween TnT’s OOV model and the facts of Latin. As stated in 4.3, only suffixes
of words occuring less than 10 times in the corpus are used, based on the
assumption that unseen words are probably rare words, and thus only in-

38

6.3. CRF Feature selection

No. Feature Description

1 wt = w∧ qt = q word surface form & label
2 qt = q unigram label
3 qt−1 = q′ ∧ qt = q bigram label pair
4 mt = i ∧ qt = q morphological suffix & label
5 mt = i ∧ qt−1 = q′ ∧ qt = q morphological suffix & label pair
6 sn,t ∧ qt = q n letter suffix & label
7 pt = p∧ qt = q PoS tag & label
8 pt = p∧ qt−1 = q′ ∧ qt = q PoS tag & label pair

Table 6.7: CRF feature templates

frequent words should be used to estimate the emission probabilities. Latin
however, is a richly inflecting language, and it’s entirely reasonable to think
that a new word is simply a form of a word that happened not to crop up in
training, rather than a word that is rare in and of itself.

6.3 CRF Feature selection

The possibilities for features are almost unbounded with CRFs, but for our
experiments we’ve kept it fairly simple. wapiti has a simple template system
that generates binary feature function from patterns observed in training. If
the pattern is seen in the sequence to be classified, the function’s value is 1,
and 0 in any other case.

Table 6.7 shows the templates used in our experiments. There are two
broad classes of feature used: lexical features, directly derivable from the
surface form of the word, and PoS tag based features. The PoS tag is obvi-
ously a valuable feature, but has the not insignificant drawback of not being
directly derivable from running text. Thus, running text will have to be PoS
tagged first and the output of that tagger fed to the MSD tagger as a feature.
We’ll explore this further in section 6.6, but not before we explore these tag-
ging problems without the additional complication of layered taggers. The
base model will be templates 1 through 3, and we’ll explore combinations
of the other features to gauge the potential of CRFs. We use template 6 as
a simple emulation of TnT’s OOV model but without the frequency cutoff,
using templates for suffixes of length 1 to 10.

6.4 CRF MSD tagging

The general structure of the CRF experiments is the same as for the HMMs,
but there are two differences: First, the number of possible experiments is
much greater, since we can vary the features more or less as we please. Sec-

39

6. Experiments & evaluation

Experiment TE SE OOV IV

HMM 10-fold BG 15.7 % 86.5% 39.3% 11.1 %

10-fold BGa 26.3 % 95.6% 93.3% 12.2 %
10-fold BGb 18.7 % 91.0% 44.5% 13.2 %
10-fold BGc 23.8 % 94.6% 62.7% 15.6 %
10-fold BGd 16.4 % 88.4% 37.2% 12.0 %

HMM 10-fold Vulgata 9.98% 48.6% 35.7% 7.97%

10-fold Vulgatab 11.5 % 53.0% 44.8% 8.72%
10-fold Vulgatac 13.4 % 57.8% 57.9% 9.69%
10-fold Vulgatad 10.3 % 49.5% 34.5% 8.22%
Feature sets:
a 1–3 (base model)
b 1–4
c 1–3, 5
d 1–3, 6 (1 ≤ n ≤ 10)

Table 6.8: CRF MSD experiments, lexical features

ond, training a model takes several orders of magnitude longer; with TnT,
training a model with the full Vulgata corpus takes about half a second.
Training a model on the BG corpus, using sixteen parallel threads of com-
putation, takes ten to fifteen minutes, depending on how quickly the ap-
proximation algorithms converge. For this reason, the majority of experi-
ments have been with the BG corpus, since this let us run several 10-fold
cross-validation experiments per day, as opposed to the full Vulgata or joint
experiments, where a full 10-fold run takes approximately five or six hours.

Finally, when training the CRF models, we use a development corpus in
addition to the test and training sets we used for HMM training. In this
scheme, the feature functions are generated from the training set, while the
feature weights θk are approximated so that they maximise the likelihood of
the development set, rather than the likelihood of the training set. This is
done because a model whose feature weights are optimised for the training
data will tend to overfit and generalise badly to new data. In our experi-
ments, we used the fold before the test fold as the development set.

We have divided our experiments into two batches. First, we have the
experiments using only the lexical features, summarised in table 6.8. Not
surprisingly, the base model has abysmal overall performance, almost twice
the error of the TnT model. Adding the morphological suffix (model b) gives
a nice boost in performance, and halves OOV error. Making the morphologi-
cal suffix feature a bigram rather than unigram (model c) results in the model
overfitting the training data. The best of the lexical-only models is model d,
the base model with the 10-letter suffix features, which is about as good as

40

6.4. CRF MSD tagging

Experiment TE SE OOV IV

HMM 10-fold BG 15.7 % 86.5% 39.3% 11.1 %

10-fold BGa 12.9 % 81.4% 26.3% 10.1 %
10-fold BGb 13.4 % 82.4% 27.1% 10.5 %
10-fold BGc 15.2 % 86.7% 33.2% 11.4 %
10-fold BGd 13.0 % 80.9% 26.4% 10.2 %

HMM 10-fold Vulgata 9.98% 48.6% 35.7% 7.97%

10-fold Vulgataa 8.73% 44.8% 24.8% 7.37%
10-fold Vulgatac 9.59% 47.6% 28.7% 7.98%
10-fold Vulgatad 8.73% 44.7% 24.4% 7.41%
Feature sets:
a 1–3, 6 (1 ≤ n ≤ 10), 7, full PoS
b 1–3, 6 (1 ≤ n ≤ 10), 7, major PoS
c 1–3, 6 (1 ≤ n ≤ 10), 8, full PoS
d 1–3, 6 (1 ≤ n ≤ 10), 7–8, full PoS

Table 6.9: CRF MSD experiments, PoS features

the TnT models. The OOV error in particular is a bit lower with this model,
but the only significantly different (p < 0.05) error rate is the in-vocabulary
error of the BG experiment.

Given that the Vulgata corpus is four and a half times as large as the
BG corpus, one might expect that the bigram morphological suffix feature
wouldn’t suffer from the overfitting we saw with the BG model, but that turns
out not to be the case. The reduction in performance is less severe with the
larger corpus, but the model still overfits.

Adding the PoS tag gives a very nice boost to performance, as summarised
in table 6.9, and the best CRF models now handily best the performance of
TnT, and all four error rates for both experiments with model d are signifi-
cantly different (p < 0.05) from the HMM models. Using the less fine-grained
major PoS tag instead of the full tag increases error somewhat; the reason
for this is not immediately obvious, but the fine-grained subdivision of pro-
nouns is the most likely candidate, and might help choosing between tags
with and without number. As with the purely lexical features, keeping it
simple is the best approach with the PoS-based features as well, and the Vul-
gata corpus is plagued by the same overfitting as the smaller BG, even though
the PoS features are even more compact than the inflectional suffixes.

To avoid an even further proliferation of experiments and numbers, we
ran the out-of-domain experiments using only the best performing feature set
(base model with suffix features and unigram feature on the full PoS tag); the
results are summarised in table 6.10. In relative terms, the two primary CRF
out-of-domain experiments perform about the same as their HMM cousins,

41

6. Experiments & evaluation

Experiment TE SE OOV IV

BG on Vulgata 30.2% 86.3% 50.6% 14.4%
Vulgata on BG 23.3% 94.4% 35.5% 15.9%
Mark & Matthew 30.6% 96.3% 42.9% 17.0%
Mark & John 30.9% 96.2% 42.3% 17.8%

Table 6.10: CRF MSD out-of-domain experiments

but since the best CRF models are better, the absolute difference between the
HMM and CRF out-of-domain experiments is quite large. The smaller Vul-
gata experiments seem to do a bit better than the smaller HMM experiments,
but the differences are small enough that we should be careful drawing defi-
nite conclusions based on this data alone.

6.5 CRF PoS tagging

The most important difference between MSD and PoS tagging with CRFs is
that training the models takes a lot less time. Apart from that, the results of
the experiments are in line with what can be expected, given the results of the
previous HMM and CRF experiments. For obvious reasons, we can only use
lexical features in our PoS models, and we used the same feature templates
as in the lexical-only MSD experiments in table 6.8. Results of the full and
major PoS tagger experiments are given in tables 6.11 and 6.12, respectively.

The CRF PoS taggers compare to their HMM cousins much in the same
way the CRF MSD models do to the HMM MSD models. The best model is the
base model augmented with the TnT-like suffix features, which is almost but
not quite as good as the corresponding TnT model; the relative performances
of the different CRF models is pretty much the same as the MSD experiments
as well. The TnT-like model d is clearly the best, with the morphological
unigram feature not quite as good, and the bigram version overtraining, both
for the smaller BG corpus and the big Vulgata corpus. For the PoS taggers,
most of the differences between the CRF and TnT models are significant, with
p < 0.05; only the OOV errors of the BG major PoS tagger and both full PoS
taggers are not significantly different.

The performance of the CRF models on out-of-domain data is given in
table 6.13. The full PoS tagger performs at about the same level as the cor-
responding TnT models on foreign data, but with slightly elevated errors.
The major PoS tagger scores slightly better in overall error rate, thanks to im-
proved OOV error rates which outweigh the slight increases in in-vocabulary
error. However, in all these experiments the differences between HMM and
TnT-like CRF are so small that it is hard to draw solid conclusions in the
question of whether HMMs or CRFs are the better models in this case.

42

6.5. CRF PoS tagging

Experiment TE SE OOV IV

HMM 10-fold BG 7.12% 63.7% 21.9% 4.21%

10-fold BGb 9.61% 73.4% 28.5% 5.64%
10-fold BGc 11.2 % 77.8% 32.3% 6.72%
10-fold BGd 8.03% 68.5% 23.0% 4.88%

HMM 10-fold Vulgata 3.36% 22.8% 19.9% 2.08%

10-fold Vulgatab 4.18% 27.2% 25.3% 2.40%
10-fold Vulgatac 4.29% 27.3% 25.4% 2.51%
10-fold Vulgatad 3.75% 24.9% 19.7% 2.41%

Features as in table 6.8.

Table 6.11: CRF full PoS tagger

Experiment TE SE OOV IV

HMM 10-fold BG 5.56% 56.8% 19.1% 2.89%

10-fold BGb 7.92% 68.0% 26.1% 4.11%
10-fold BGc 8.83% 70.8% 29.3% 4.53%
10-fold BGd 6.26% 61.9% 20.2% 3.33%

HMM 10-fold Vulgata 2.73% 19.5% 17.6% 1.57%

10-fold Vulgatab 4.85% 29.8% 33.6% 2.43%
10-fold Vulgatac 4.81% 29.8% 33.0% 2.44%
10-fold Vulgatad 3.73% 24.9% 19.7% 2.39%

Features as in table 6.8.

Table 6.12: CRF major PoS tagger

Experiment TE SE OOV IV

BG on Vulgataa 24.5% 83.0% 47.6% 6.53%
Vulgata on BGa 17.1% 88.3% 31.4% 8.37%
Mark & Matthewa 24.9% 93.8% 37.5% 11.0 %
Mark & Johna 26.3% 94.7% 39.4% 11.0 %

BG on Vulgatab 19.6% 75.9% 38.6% 4.82%
Vulgata on BGb 12.8% 81.4% 23.3% 6.36%
Mark & Matthewb 19.5% 89.7% 30.2% 7.76%
Mark & Johnb 21.3% 92.3% 33.2% 7.66%
a Full PoS tag
b Major PoS tag

Table 6.13: CRF PoS out-of-domain experiments

43

6. Experiments & evaluation

Experiment TE SE OOV IV

10-fold BG 16.4% 87.5% 37.1% 12.0 %
10-fold Vulgata 10.2% 49.3% 34.7% 8.12%

Table 6.14: Layered CRF experiments

6.6 Layered CRF

With the efficacy of the PoS tag as a CRF feature well established, we also
have to evaluate how well it will work in practice. Since the PoS tag is not
directly available from raw text, we first have to PoS tag the text before doing
the actual MSD tagging. This first tagging step will have a certain amount
of errors, which will have an impact on performance relative to the numbers
from section 6.4.

For the experiments reported in table 6.14 we reused the models from
the single CRF experiments, and since TnT gave superior PoS tagging results,
those models were reused for the PoS step. Unfortunately, the results aren’t
stellar. In both cases, the error rates drop below that of the TnT models,
and are indistinguishable from the lexical-only experiments, and it seems the
gold PoS-trained models are very sensitive indeed to incorrect PoS tags. The
BG error rates, with the exception of the sentence error, are all significantly
(p < 0.05) different from the TnT results, but none of the Vulgata results are
significant at the same p-level.

A better way to do this, in theory, is to first train the PoS model on one
part of the corpus and then use that model to tag another part of the corpus
that is used as training data for the MSD model. This way the MSD PoS
feature weights should be adjusted in training so that unreliable tags get
lower weights than when trained on gold tags. Unfortunately, this means that
the amount of training data is halved, not necessarily the best thing given the
scarcity of resources for Latin. Initial experiments with this approach did
not improve over the results appreciably from those already reported, and
the idea was not explored any further.

44

Chapter 7

Straitjacketed decoding

A large full-form dictionary of morphological analyses is available from the
Perseus project. It would be a shame to let this resource go to waste, so we
would like to see if we can use this resource to guide the decoding process of
our statistical models to boost performance a bit.

All that needs to be introduced before we present constrained decoding
is our representation of the constraints involved. In addition to an observed
sequence of words and the parameters of the model to be decoded, the decod-
ing process will now use an additional piece of information: the constraint
function c : W → Q∗ that returns a set of licenced tags for all words in the
vocabulary.

7.1 Theory

Before moving on to the actual implementation and experiments, we should
stop and make sure that our goals are well-defined and perhaps more impor-
tantly, that they don’t entail unintended consequences such as changing the
probabilities of the label sequences.

While our implementation of constrained decoding is for CRFs, the the-
ory is simpler and clearer if we consider it in the case of HMM decoding.
In essence, what we want is to find not the best-scoring label sequence, but
the best-scoring label sequence that conforms to the constraints given. The
naïve approach would be to walk the list of possible tag sequences for our
input, in decreasing order of probability, until we find one that conforms to
the constraints specified.

Of course, this approach is computationally undesirable, and a better ap-
proach is indeed available: We modify how we calculate the δt and corre-
sponding qt. Instead of considering all possible combinations states, we only
consider those licenced by the constraints specified. Adapted from equations

45

7. Straitjacketed decoding

(4.3) and (4.4) we get:

δt(q) =
{
t(qs,q)e(q,w1) t = 1,q ∈ c(w1)
maxq′∈c(wt−1) δt−1(q′)t(q′ ,q)e(q,wt) t > 1,q ∈ c(wt)

(7.1)

qt =
{

argmaxq∈c(wT) δT (q)t(q,qe) t = T
argmaxq∈c(wt) δt(q)t(q,qt+1) t < T

(7.2)

which in turn results in the pseudo-code in figure 7.1.

Input: Input sequence w1 · · ·wT
Input: Constraint function c :W →Q∗
Data: trellis, a |Q| × T matrix
Initialisation

for q ∈ c(w1) do
trellisq,1 = (qs, e(w1,q) ∗ t(qs,q))

end
for 2 ≤ i ≤ T do

for q ∈ c(wi) do
p = maxq′∈c(wi−1)p(trellisq′ ,i−1) ∗ t(q′ ,q) ∗ e(wi ,q)
q′ = argmaxq′∈c(wi−1)p(trellisq′ ,i−1) ∗ t(q′ ,q)
trellisq,i = (q′ ,p)

end
end
q′ = argmaxq′∈c(wT)p(trellisq′ ,T) ∗ t(q′ ,qe)
return The most likely path through the trellis by following the back
pointers, starting with q′

Figure 7.1: Viterbi’s algorithm with constraints

As we see, the method of computing the probabilities is unchanged from
the unconstrained algorithm; all that has changed is which sequences of out-
put nodes are considered. This means that the ordering of the label se-
quences and their probabilities are unchanged, and in turn that this ap-
proach is equivalent to walking a list of the n best sequences and selecting
the first sequence conforming to the constraints.

7.2 Converting the Perseus data

At the most superficial level, the Perseus morphological data agree with the
PROIEL tagset. They use the same morphological parameters, and the pa-
rameters have the same values, with the exception of the gender parameter,
where PROIEL has four extra tags to encode ambiguous gender. But going
into greater detail, the waters are muddied quite a bit. Even though they
agree on the fields and their values, the two sources don’t agree on which

46

7.3. Implementation

fields and values to use in various cases, which means that we have to con-
vert the Perseus database to the PROIEL annotation standard before we can
use it to constrain our language models.

There are 710,620 analyses in the Perseus database, so manually control-
ling and correcting the entire DB is completely out of the question. As a
measure of how well (or not) we have converted the data, we defined a sim-
ple metric. For each unique wordform in the corpus which is also given one
or more analyses in the Perseus data, we extract all the different MSD tags
that have been assigned to that word. Each of the MSD tags from the cor-
pus that is not in the list of tags for that word is considered to be missing.
The fewer missing tags, the better the data have been converted. Before any
changes are made, 3,588 out of 18,313 distinct analyses in the corpus are
missing.

The Perseus data are distributed as an XML file containing the analyses.
Since working with 140 MB of XML takes a long time, and is on the whole
unpleasant, the first step in the conversion process is inserting the whole
thing into a database. This also lets us use SQL for the conversion, which
simplifies certain transformations considerably. Some discrepancies are fixed
by simply updating the rows according to some criteria, while others are
fixed by creating additional database records from the ones already present.
After conversion, the number of missing tags is reduced to 2,019 and the
number of rows in the DB increased to 911,187.

7.3 Implementation

The CRF toolkit we used as a base for implementing constrained decoding,
wapiti, is implemented in C. Being written in C does not always mean that
modification will be easy or pleasant, but wapiti’s source code is clear and
well-documented, which facilitated hacking, and once armed with an under-
standing of the underlying theory of CRFs and the proper way to constrain
the decoding process, the actual implementation was relatively straightfor-
ward.

First we added awareness of constraints to the data model, by adding the
necessary field to the sequence data type. Then, we needed to get the appli-
cation to actually read a constrained corpus. The best way to represent the
constraints isn’t obvious, but in the end we decided on a simple, if inelegant,
approach. A special token (|) separates the “normal” input and constraints,
and a new post-processing step converts the raw input to the internal format.
Any constraints that are unknown labels are silently ignored. Finally the ac-
tual constrained decoding process was implemented, as outlined in figure
7.1 with the necessary modifications for CRF decoding.

Beyond making sure that there were no catastrophic failures during the

47

7. Straitjacketed decoding

Experiment TE SE OOV IV

10-fold BGa 21.6 % 93.2% 37.2% 18.3 %
10-fold BGb 20.0 % 92.2% 27.7% 18.4 %
10-fold BGc 18.0 % 89.7% 23.2% 16.9 %

10-fold Vulgatab 10.7 % 52.2% 20.6% 9.84%
10-fold Vulgatac 9.87% 49.9% 16.2% 9.33%
Feature sets:
a Table 6.8 a

b Table 6.8 d
c Table 6.9 a

Table 7.1: Constrained CRF experiments

constrained decoding experiments, we used valgrind1 to check for memory
leaks and other memory-related problems that can crop up when program-
ming in C. valgrind is an open-source toolkit (available for Linux and OS X
10.5 and 10.6) that intercepts all memory accesses and heap manipulations
(malloc/free) to make sure nothing unintended happens. Reading or jump-
ing based on data in an indeterminate state (typically an uninitialised vari-
able or array element) is reported, as is any unfreed heap memory remaining
at the end of the process, which means that a program that runs without val-
grind complaining is less likely to cause problems later. Thankfully, wapiti
did not trigger any of valgrind’s alarms before modification, so simply mak-
ing sure this property remained constant kept the constrained decoding code
clean as well.

7.4 Experiments

To evaluate the constrained decoding, we took some of the models trained in
section 6.4 and reran the experiments with constraints, giving the results in
table 7.1. As the numbers make clear, the results aren’t all good. The con-
strained decoding has a beneficial effect on OOV error, but IV error increases
by about 6 points in the BG case and almost two for the Vulgata, both with
and without the PoS tag feature. The base BG experiment is the only to have
an overall reduction in error, which is due to the 60% reduction in OOV er-
ror; in-vocabulary error increases by the same six points as the other models.
All the error metrics for all experiments are significantly different (p < 0.05)
from the corresponding HMM MSD results in table 6.1, except the BGa OOV
error and Vulgatac TE score. All the error rates in table 7.1 are significantly
different (p < 0.05) from the corresponding TnT scores, with the exception
of overall and sentence error for the Vulgatac experiment. The most likely

1http://valgrind.org

48

http://valgrind.org

7.4. Experiments

Experiment TE SE OOV IV

BG on Vulgata 25.8% 82.9% 39.5% 14.7%
Vulgata on BG 27.0% 96.6% 34.8% 26.7%
Mark & Matthew 28.9% 97.5% 37.0% 28.6%
Mark & John 30.0% 97.5% 39.1% 29.6%

Table 7.2: Constrained CRF, out-of-domain

cause for this unfortunate drop in performance is the imperfect conversion
of the Perseus data to the PROIEL conventions, in particular the ambiguous
gender tags, which have to be induced from the Perseus data. Due to these
imperfections, there is a lower bound on the error rates, 11.2% for the BG
corpus and 4.09% on Vulgata.

The out-of-domain experiments, on the other hand, did not suffer. We
used the best lexical-only CRF models (table 6.8 d) to test constrained decod-
ing on out-of-domain data, and as the numbers in table 7.2 show, constrained
decoding helps quite a bit. In-vocabulary error increases by 10 points for the
Vulgata-trained models, but the 20-point reduction in OOV error results in a
nice drop in overall error for the two smaller models, and a few for the full
model. The BG-trained model has more or less the same IV error as its HMM
cousin, but the reduction of OOV error from 67% to 40% results in the same
10-point reduction in overall error as the small Vulgata models.

To see how the constrained decoding procedure fares with better data for
the constraints, we ran the same experiments as outlined above, but with
data from the PROIEL corpus in addition to the converted Perseus data. For
each token that had constraints in the converted Perseus data set, we added
the possible analyses for that token that occur in the PROIEL corpus. While
this certainly is cheating, it might give a more accurate view of the poten-
tial of the constrained decoding procedure. The results of the constrained
decoding experiments with PROIEL data added are given in table 7.3; while
the error rates are most likely artificially low, since most of the constraint sets
that were missing the correct constraints with the PROIEL data are probably
a bit too small with the PROIEL data, this at least removes the problem of
many words missing the correct tag altogether.

Adding the PROIEL data definitely makes a difference for the in-domain
experiments, with error levels dropping to the levels of the CRFs with gold
PoS tags in table 6.9, but using only lexical features, and only the BG sentence
error and Vulgata IV error are not significantly different (p < 0.05) from the
HMM experiments. In-vocabulary error is a bit higher for the BG model,
but the OOV error is reduced by 15 points for both models, which gives a
nice improvement overall. For the out-of-domain experiments, the addition
of the PROIEL data turned out to have less of an impact, with a reduction
in error of only a few points in most cases. An interesting difference is the

49

7. Straitjacketed decoding

Experiment TE SE OOV IV

10-fold BG 13.7 % 84.4% 23.0% 11.7 %
10-fold Vulgata 8.81% 45.5% 19.7% 7.89%
BG on Vulgata 24.8 % 81.7% 35.3% 24.7 %
Vulgata on BG 24.2 % 95.5% 34.6% 17.6 %
Mark & Matthew 26.9 % 96.9% 36.8% 20.7 %
Mark & John 28.0 % 96.7% 37.0% 22.3 %

All models using table 6.8 d

Table 7.3: Constrained CRF, with PROIEL

in-vocabulary error of the BG on Vulgata experiment, which increased by a
full 10 points.

50

Chapter 8

Conclusion

We are now in a position to answer some of the more general problems posed
in the introduction. As should be obvious from the preceding chapters, au-
tomatic analysis of Latin morphology is very much possible. The results,
especially for Classical Latin, are still quite a distance from those reported
for other languages, but so is the amount of data available. Still, the results
are far from depressing, and should be useful for bootstrapping further re-
sources.

Sequence classification with statistical models is definitely a working ap-
proach for this task, both with HMM and CRF models, and the HMM models
perform on a level comparable with results reported previously in the liter-
ature, both directly comparable results on Latin (Poudat and Longrée 2009)
and indirectly on other languages (Brants 2000). Perhaps less cheerful, but
interesting nonetheless, is the fact that the CRF models for practical purposes
perform no better than the HMMs. There are two possible explanations for
this. Either the additional descriptive power of CRFs is simply not necessary
and the relatively simplistic HMM model is sufficient, or the CRF model is
suffering from a lack of data. A priori we lean toward the latter, as log-linear
models (which a CRF is) in general require more training data than HMMs.

Not surprisingly, the TnT-like OOV model of using suffixes to handle un-
known words is very useful for Latin. This is of course due to the suffix-
inflecting nature of Latin. More interesting is the somewhat erratic behaviour
of TnT’s OOV performance on out-of-domain data. Our interpretation of this
is that the underlying assumption of the frequency cutoff for words used to
build the suffix model is untenable for Latin, where an unknown word may
just as well be an unseen form of a common word as a rare word. This can
be tested using HunPos (Halácsy, Kornai and Oravecz 2007), an open-source
reimplementation of TnT, which allows greater access and control over the
internal parameters which are fixed in TnT. Unfortunately, technical issues
made it impossible to use HunPos.

51

8. Conclusion

8.1 HMM or CRF?

Given the results presented here, the choice between HMM and CRF is fairly
obvious. CRFs take a long time to train and require a certain amount of work
to find the best features; training HMMs is very fast, and no feature engineer-
ing is required: the corpus goes in and the model comes out. Combined with
the fact that they give the same results, HMMs have a lot going for them.

However, statistical language models are highly sensitive to data from
new domains, as is shown by the out-of-domain experiments in chapter 6.
Thus, if the corpus to be annotated is very different from the data the model
has been trained on, a CRF model with the constrained decoding process out-
lined in chapter 7 may very well be a better choice. Of course, this scenario is
not unlikely in the intended application of accelerating treebanking of new
Latin data.

The experiments performed in Poudat and Longrée (2009) can serve as an
indicator of how different certain combinations of texts are. For example, us-
ing Bellum Civile, the other surviving work of Caesar, an account of the civil
war following Caesar’s crossing of the Rubicon, to train a model and testing
on book 3 of the BG, gives an overall tagging error of 19.9%. Given that this
corpus is slightly smaller than the BG corpus at 33,221 tokens compared to
the 42,055 of books 1–2 and 4–7 of BG, this indicates that the two texts are
very similar indeed and a constrained CRF would probably not be useful. On
a text like Cicero’s first Catilinarian on the other hand, where the BG-trained
model has 39.1% error, a constrained CRF will probably be more useful.

8.2 Future work

There are a number of things that would be interesting to investigate further
in connection with automatic analysis of Latin. One is the internal structure
of the MSD tags. The individual tags are not atomic, they have a certain
amount of internal structure that it would be interesting to exploit further.
Unfortunately this is not easily done with the traditional approaches, short
of training models for each individual field. In the case of CRF models, this
also means we have to find the best ordering of models, since the output of
one model can be used as an input feature of the models later in the pipeline.
A more promising approach is Schmid and Laws’s (2008) RFtagger, which
trains higher order HMMs that model the fine-grained structure of this kind
of tag.

Also, for a truly complete end-to-end tagging solution for Latin, we need
to tackle the problem of clitics. As outlined in the end of section 2.4, clitics
are combined with the preceding word and written as a single unit. This
word-clitic unit can be confused with legitimate word forms in some cases,
for example the token oratione can be read as the ablative singular of oratio,

52

8.2. Future work

or as the nominative singular with the interrogative ne. This means that am-
biguous tokens have to be classified in some way. Initial experiments treat-
ing this problem as a sequence classification problem using CRFs have given
promising results, but time did not allow this to be fully explored for the
present work.

53

Appendix A

Multinomial MLE

When estimating the parameters of a HMM, we assume that our training
corpus is the result of a mutinomial experiment. Such an experiment is the
combined result of several trials, where each trial can result in one of several
outcomes, each of which have fixed probabilities (Walpole et al. 2007). A very
simple example of a multinomial experiment is drawing coloured balls from
an urn and putting the drawn ball back after each draw. In this case, a trial
is the drawing of a ball, and the possible outcomes are the different colours
of the balls in the urn.

The multinomial distribution has the parameters n, the number of trials,
and p1 · · ·pk , the probability of a trial resulting in each of the outcomes. To
ensure correct probabilities, the constraint

∑k
i=1pi = 1 is required. The prob-

ability of n trials resulting in the counts x1 · · ·xk for each of the k different
outcomes is then:

p(x1, . . . ,xk ;n,p1, . . . ,pk) =
n!

x1! · · ·xk!
p
x1
1 · · ·p

xk
k

when
∑k
i=1 xi = n. If the number of outcomes is different from the number of

trials, the probability is obviously 0.
As stated in 5.2, likelihood is a measure of the probability of a parameter

set given some data. Using the assumption that our corpus is the result of
a multinomial experiment, we use the probability of the training data given
the parameters as our likelihood function:

L(N,p(q1), . . . ,p(qk);c(q1), . . . , c(qk)) = p(c(q1), . . . , c(qk);N,p(q1), . . . ,p(qk))

Where c(qi) is the number of times the tag qi occurs, p(qi) is the correspond-
ing tag probability, and N is the number of words in the corpus. But just
like the CRF likelihood function, we choose to maximise L = logL instead;
the logarithm is a monotonically increasing function, which means that L
will have the same maxima as L, and the properties of the logarithm gives a

55

A. Multinomial MLE

function that is a lot easier to work with:

L = logL = logN ! +
k∑
i=1

c(qi) logp(qi)−
k∑
i=1

logc(qi)!

However L does not have a global maximum, since its value can always
be increased further by increasing the values of the p(qi). But they cannot
be increased freely; they are constrained to always sum to 1, which means
that our problem is a constrained optimisation problem, and we can apply
the technique known as Lagrange multipliers. Without going into the gory
details, this means that finding the maximal value of a function f (~x) with the
constraint g(~x) = 0 can be done by solving the equation ∇f (~x) = λ∇g(~x), or
equivalently ∂/∂xif = λ∂/∂xig for all the dimensions xi of the functions.

In our case of the multinomial distribution, the function to be maximised
is L and the constraint is g(p(q1), . . . ,p(qk)) =

∑k
i=1p(qi)−1 = 0. We then solve

∂/∂p(qi)L = λ∂/∂p(qi)g:

∂

∂p(qi)
L = λ

∂

∂p(qi)
g

⇔ ∂

∂p(qi)

k∑
i=1

c(qi) logp(qi) = λ
∂

∂p(qi)

k∑
i=1

p(qi)

⇔ ∂

∂p(qi)
c(qi) logp(qi) = λ

⇔
c(qi)
p(qi)

= λ

⇔ p(qi) =
c(qi)
λ

Now all that remains is to find the value of λ. Since we have p(qi) = c(qi)/λ
for all i, we can sum all the left-hand and right-hand sides and set them
equal:

k∑
i=1

p(qi) =
k∑
i=1

c(qi)
λ

⇔
∑k
i=1 c(qi)
λ

= 1

⇔ N

λ
= 1

⇔ λ =N

and we get the maximum-likelihood estimate p̂(qi) = c(qi)/N . We proceed in
the same way to get the estimates p̂(q′ ,q) = c(q′ ,q)/N and p̂(q,w) = c(q,w)/N , which
give the estimates p̂(w|q) = c(w,q)/c(q) and p̂(q|q′) = c(q′ ,q)/c(q′) from chapter 4
when combined when the relation p(x|y) = p(x,y)/p(y).

56

Appendix B

Morphemes

B.1 Nominal morphemes

The base nominal morphemes are those given in table B.1. Additionally,
the comparative adjective morphemes are created by appending the third
declension morphemes to the comparative morpheme –ior, and the superla-
tive morphemes with the first and second declension morphemes and the su-
perlative morph –issim. Finally –iter and –ius take care of adverb derivation
of third declension adjectives and the comparative of adverbs, respectively.

Nom. Voc. Acc. Gen. Dat. Abl. Description

a a am ae ae a 1st decl. sg.
ae ae as arum is is 1st decl. pl.
us e um i o o 2nd decl. sg.
i i os orum is is 2nd decl. pl.
a a a 2nd decl. n. pl.
– – em is i e 3rd decl. sg.
es es es us ibus ibus 3rd decl. pl.
a a a 3rd decl. n. pl.
us us um us ui u 4th decl. sg.
us us us uum ibus ibus 4th decl. pl.
ua ua ua 4th decl. n. pl.
s s m s i – 5th decl. sg.
s s s rum bus bus 5th decl. pl.

Table B.1: Nominal morphemes

57

B. Morphemes

B.2 Verbal morphemes

The morphemes of the finite verb forms are in table B.2. Apart from these,
the morphemes of the nominal forms of the verb are generated using the
nominal morphemes: –nt with the morphemes of the third declension and
–ns give the morphemes of the present participle; –t, –tur, and –nd combined
with those of the first and second declensions make the morphemes of the
perfect participle, future participle, and gerund/gerundive, respectively.

58

B.2. Verbal morphemes

1s
t.

sg
.

2n
d

.s
g.

3r
d

.s
g.

1s
t.

p
l.

2n
d

.p
l.

3r
d

.p
l.

D
es

cr
ip

ti
on

o
s

t
m

u
s

ti
s

nt
p

re
s.

in
d

.a
ct

.
or

ri
s

tu
r

m
u

s
m

in
i

nt
u

r
p

re
s.

in
d

.p
as

s.
ba

m
ba

s
ba

t
ba

m
u

s
ba

ti
s

ba
nt

im
p

f.
in

d
.a

ct
.

ba
r

ba
ri

s
ba

tu
r

ba
m

u
r

ba
m

in
i

ba
nt

u
r

im
p

f.
in

d
.p

as
s.

bo
bi

s
bi

t
bi

m
u

s
bi

ti
s

bu
nt

fu
t.

ac
t.

(1
st

co
nj

.)
bo

r
be

ri
s

bi
tu

r
bi

m
u

r
bi

m
in

i
bu

nt
u

r
fu

t.
p

as
s.

(1
st

co
nj

.)
em

es
et

em
u

s
et

is
en

t
fu

t.
ac

t.
(3

rd
,4

th
co

nj
.)/

p
re

s.
su

bj
.a

ct
.(

1s
t

co
nj

.)
er

er
is

et
u

r
em

u
r

em
in

i
en

tu
r

fu
t.

p
as

s.
(3

rd
,4

th
co

nj
.)/

p
re

s.
su

bj
.p

as
s.

(1
st

co
nj

.)
am

as
at

am
u

s
at

is
an

t
p

re
s.

su
bj

.a
ct

.(
2n

d
–4

th
co

nj
.)

ar
ar

is
at

u
r

am
u

r
am

in
i

an
tu

r
p

re
s.

su
bj

.p
as

s.
(2

nd
–4

th
co

nj
.)

re
m

re
s

re
t

re
m

u
s

re
ti

s
re

nt
im

p
f.

su
bj

.a
ct

.
re

r
re

ri
s

re
tu

r
re

m
u

r
re

m
in

i
re

nt
u

r
im

p
f.

su
bj

.p
as

s.
i

is
ti

it
im

u
s

is
ti

s
er

u
nt

p
er

f.
in

d
.

er
im

er
is

er
it

er
im

u
s

er
it

is
er

in
t

p
er

f.
su

bj
.

er
am

er
as

er
at

er
am

u
s

er
at

is
er

an
t

p
qp

.i
nd

.
is

se
m

is
se

s
is

se
t

is
se

m
u

s
is

se
ti

s
is

se
nt

p
qp

.s
u

bj
.

er
o

fu
te

x.
1s

t.
sg

.

Ta
bl

e
B

.2
:V

er
ba

lm
or

p
he

m
es

59

References

Brants, T. (1999). Tagging and Parsing with Cascaded Markov Models. Ph. D.
thesis, Universität des Saarlandes, Saarbrücken.

Brants, T. (2000). TnT - a statistical part-of-speech tagger. In Proceedings
of the Sixth Applied Natural Language Processing (ANLP-2000), Seattle,
WA, pp. 224–231. Association for Computational Linguistics.

Clifford, P. (1990). Markov random fields in statistics. In G. Grimmett and
D. Welsh (Eds.), Disorder in Physical Systems: A Volume in Honour of
John M. Hammersley, pp. 19–32. Oxford University Press.

Diestel, R. (1991). Graph Theory. Graduate texts in mathematics. New
York: Springer.

Ernout, A. (1953). Morphologie Historique du Latin (3rd ed.). Klincksieck.

Gildea, D. (2001). Corpus variation and parser performance. In L. Lee
and D. Harman (Eds.), Proceedings of the 2001 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 167–202.

Halácsy, P., A. Kornai, and C. Oravecz (2007). HunPos - an open source
trigram tagger. In ACL, pp. 209–212. Association for Computer Lin-
guistics.

Haug, D. T. T., M. L. Jøhndal, H. M. Eckhoff, E. Welo, M. J. B. Hertzenberg,
and A. Müth (2009). Computational and linguistic issues in designing
a syntactically annotated parallel corpus of indo-european languages.
Traitement Automatique des Langues 50(2), 17–45.

Jurafsky, D. and J. H. Martin (2008). Speech and Language Processing (2nd
ed.). Upper Saddle River, NJ: Prentice Hall.

Lafferty, J., A. McCallum, and F. Pereira (2001). Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In
Proceedings of the Eighteenth International Conference on Machine Learn-
ing, pp. 282–289.

Lavergne, T., O. Cappé, and F. Yvon (2010). Practical very large scale CRFs.
In Proceedings the 48th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 504–513. Association for Computational Linguis-
tics.

61

B. Morphemes

Pearl, J. (1988). Probabilitic Reasoning in Intelligent Systems: Networks of
Plausible Inference (2nd (revised) ed.). The Morgan Kaufmann Series in
Representation and Reasoning. Morgan Kaufmann.

Poudat, C. and D. Longrée (2009). Variation langagières et annotation
morphosyntaxique du latin classique. Traitement Automatique des
Langues 50(2), 129–148.

Samuelsson, C. (1996). Handling sparse data by successive abstraction. In
Proceedings of the 16th conference on Computational linguistics, Volume 2
of COLING ’96, pp. 895–900. Association for Computational Linguis-
tics. informal publication.

Schmid, H. and F. Laws (2008). Estimation of conditional probabilities
with decision trees and an application to fine-grained pos tagging. In
Proceedings of the 22nd International Conference on Computational Lin-
guistics, pp. 777–784. Association for Computational Linguistics.

Wallach, H. (2002). Efficient training of conditional random fields. Mas-
ter’s thesis, University of Edinburgh.

Wallach, H. M. (2004). Conditional random fields: An introduction. Tech-
nical Report MS-CIS-04-21, University of Pennsylvania.

Walpole, R. E., R. H. Myers, S. L. Myers, and K. Ye (2007). Probability &
statistics for engineers and scientists (8th ed.). Pearson Education.

Woods, A., P. Fletcher, and A. Hughes (1986). Statistics in language studies.
Cambridge textbooks in linguistics. Cambridge university press.

62

	Contents
	List of Tables
	List of Figures
	Introduction
	What?
	Who?
	Overview

	Language & corpus
	A brief history of Latin
	Latin morphology
	PROIEL
	Tagsets

	What makes Latin hard

	Graphical models
	Graphs
	Graphical models
	Directed models
	Undirected models

	Hidden Markov models
	Definition
	As graphical model

	Decoding
	Trigrams'n'Tags

	Conditional random fields
	Definition
	Parameter estimation
	Decoding
	Practical matters

	Experiments & evaluation
	HMM MSD tagging
	HMM PoS tagging
	CRF Feature selection
	CRF MSD tagging
	CRF PoS tagging
	Layered CRF

	Straitjacketed decoding
	Theory
	Converting the Perseus data
	Implementation
	Experiments

	Conclusion
	HMM or CRF?
	Future work

	Multinomial MLE
	Morphemes
	Nominal morphemes
	Verbal morphemes

