
Supplementary Information

Probabilistic nucleation governs time, amount, and location of

mineral precipitation and geometry evolution in the porous medium

Mohammad Nooraiepour*, Mohammad Masoudi and Helge Hellevang

CO2 Storage Research Group, Department of Geosciences, University of Oslo

P.O. Box 1047 Blindern, 316 Oslo, Norway

*Corresponding author: Mohammad Nooraiepour, mohammad.nooraiepour@geo.uio.no

Python script for probabilistic nucleation model

This section provides the Python script to implement the probabilistic nucleation model into reactive
transport models (RTM). Before incorporating the code, we advise carefully considering the mathe-
matical representation of the probabilistic nucleation model as presented and discussed in the Methods
Section of the paper.

Please do cite the main paper, as you utilize the model and the following script:

1 def Probabilistic_nucleation_Halite(Sigma_init ,SR ,elapsed_time ,S_A ,solid_mol ,S_init):

2 # Sigma_init = initial interfacial free energy between the nucleating phase and

the initial substrate in each grid (before precipitation)

3 # SR = saturation ratio

4 # elapsed_time = period during which the solution ’s saturation ratio remains

unchanged or increased in contact with the substrate

5 # S_A = surface area provided by the neighbouring grids

6 # solid_mol = mole of precipitated minerals in each grid

7 # S_init = initial surface area (the surface area of the initial substrate

in each grid)

8 # mvol = molar volume of the nucleating phase

9 # sigma1 = initial interfacial free energy between the nucleating phase and

the secondary substrate (nucleating phase itself)

10 # kN = nucleation rate constant

11 # T = absolute temperature (K)

12 # gamma_hat = a lumped parameter (refer to the paper , Equation 5)

13 # f = cumulative distribution function

14 # crystal = number of stable crystal in each grid

15 # P = a random number normally distributed between 0 and 1

16 # vol_nucleus = volume of one stable nucleus

17 # dC_ph = difference in concentration (physical unit)

18 # dC = difference in concentration (LB unit)

19 # dx3 = grid volume

20

21

22 S_crystal = (solid_mol*mvol)**(2/3) # S_crystal= dx_crystal **2, we assume that

crystals are cubic (m)

23

24 # nucleating surface area:

25 S_av = S_A + S_init + (4* S_crystal) #new surface provided by the neighbours (S_A)

+ initial surface of the substrates - surface of one side of the percipitant + 5

sides of the cube

26 # average interfacial free energy (Equation 17):

27 sigma_av = (sigma1*S_A + (5* S_crystal) * sigma1 + (S_init - S_crystal) *

Sigma_init)/S_av

28

29 # classical nucleation theory (Equation 4 in the paper):

30 sigma3=sigma_av **3

31 ln_SR=np.log(SR)

32 ln_SR2=ln_SR **2

33 ln_kN=np.log(kN)

34 ln_tau =((gamma_hat*sigma3)/(T3*ln_SR2))-ln_kN

35 tau=np.exp(ln_tau) # Classic Nucleation Theory (CNT)

36 # tau: induction time (m2.s/# nuclei) therefore we need to divide it to the

surface area:

37 tau=tau/S_av

38

39 # normal distribution parameters:

40 sig =1.0 # standard deviation

41 mu = 1.0 # mean

42 # calculates theoretical cumulative normal distribution:

43 x = np.arange(-3, 5, 0.005) # x-axis is transfered from (-3,5) to (0,2*tau)

44 # it is required to find an step size and step_tau_p , which satisfy:

45 # x = -3:0.005:5 is proportional to 0: step_tau_p :2*tau

46 step_tau_p= (2.*tau -0)/((5 -(-3))/0.005)

47 f = (1 /(np.sqrt (2*np.pi*sig **2))) * np.exp(-((x - mu)**2)/(sig **2))

48 f = f.cumsum ()

2

49 f /= f[-1]

50

51 crystal = np.zeros(S_A.shape)

52 t_p = np.zeros(S_A.shape)

53

54 while np.any (t_p < elapsed_time):

55 P=np.random.uniform (0,1,[S_A.size ,1])

56 tau_p_position = np.argmin(np.abs(f - P), axis =1) # to find the position of

tau_p so that f(x=tau_p)=P.

57 t_p += (0 + tau_p_position*step_tau_p)

58 # one stable nucleus forms for each t_p shorter than elapsed_time:

59 crystal[t_p < elapsed_time] = crystal[t_p < elapsed_time] + 1

60

61 # updates other parameters:

62 solid_mol += vol_nucleus*crystal /(mvol) # (mol)

63 dC_ph = (vol_nucleus*crystal /(mvol))/(dx3) # [mol/m3]

64 dC = dC_ph * (dx3)/Conv_mol # LB unit

65

66

67 return crystal , solid_mol ,dC

3

