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Abstract

To study polar amplification (PA), two idealized energy balance models
are constructed: a dry-diffusive down-gradient model (diffusion model)
and a model where horizontal heat fluxes are configured in such a way as
to maximize entropy production (MEP model). The effect of spherical
geometry and non-uniform tropopause height is investigated in both
models by comparing with a "cartesian model" with flat tropopause in
both frameworks, and the baseline temperature anomaly from a decrease
in planetary emissivity exhibits tropical amplification (TA). For the
diffusion model, spherical geometry has minimal effect on the temperature
anomaly, even though the resulting differences in volume is large between
the poles and tropics. Similarly, having a non-uniform tropopause height
has minimal effect on the temperature anomaly. A non-uniform diffusivity
increases contrasts between polar and tropical regions, and may contribute
either to PA or TA depending on which parameter is perturbed. All of
these aforementioned contributions to the temperature profile are shown
to be represented by "advection" velocities. In the MEP model, geometric
considerations are shown to be irrelevant for the calculated heat transport.

PA is found to be affected by polar albedo decrease, which is well known,
but also another hitherto unexplored mechanism, that of tropopause
height increase (THI). Increasing the tropopause height uniformly yields
a polar amplified temperature anomaly in all diffusion models. This
effect is dependent on the magnitude of the diffusivity in the models.
A comparison in Polar Amplification Factor (PAF) to albedo decrease
is made for realistic values, and in the diffusivity range 106 m2s−1 –
107 m2s−1 THI yields comparable magnitudes. A study in asymmetries
between the Arctic and Antarctica is also made, and it is found that while
the elevation of the Antarctic continent (H ≈ 2500m) should increase the
warming effect of THI, the assumed lower diffusivities there restricts this
heat transport. Finally, analytical results from the maximum entropy
production (MEP) model suggests that the effect produced by THI may
be counteracted. A suggested mechanism for this is that of simultaneous
diffusivity decrease.
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CHAPTER 1

Introduction

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

Figure 1.1: Historical near surface temperature anomaly in NorESM2-LM.
Projection: Mollweide.

Global observations of surface temperature shows larger anomalies in the
polar regions compared with lower latitudes. A phenomenon commonly called
polar amplification (PA), PA is complex and exhibits regionaltiy as well as
asymmetry between the south and north pole. Amplification in Antarctica is
almost exclusively constrained to West Antarctica, and the Arctic is heating
more than Antarctica; around twice as fast as lower latitudes (Bekryaev et al.,
2010). While PA is present in earth system models (ESMs) (see Figure 1.1 for
illustration), a complete understanding of the phenomenon is lacking. An area
under active research (Smith et al., 2019), understanding polar amplification
is important due to a myriad of factors. The enhanced warming in the arctic
may indicate the extent and consequences of warming before a similar level of
warming is achieved at lower latitudes. A rapidly changing polar climate may
exhibit feedback behaviour in permafrost (Schaefer et al., 2014) and glacier
melt which have global consequences (Overland et al., 2019). Understanding
PA may yield insight into a general circulation perspective of the climate if e.g.
oceanic and atmospheric heat transport are important contributors.
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1. Introduction

Different mechanisms for PA are proposed in the literature, such as the ice-
albedo feedback (Screen and Simmonds, 2010), the lapse rate feedback (Stuecker
et al., 2018), and general changes in the atmospheric (Armour et al., 2019) and
oceanic heat transport (Mahlstein and Knutti, 2011; Marshall et al., 2015). The
relative importance of these contributions are as of yet unknown, even though
a recent study by Dai et al., 2019 suggests that sea ice melt is necessary for
strong arctic amplification (AA). This would likewise explain the hemispheric
asymmetry due to less sea ice cover and subsequently less sea ice melt in
Antarctica, however, L. C. Hahn et al., 2020 argued that the lapse-rate feedback
is the dominant driver of PA, and that the elevation of the Antarctic continent
is what causes the asymmetry. The focus of this thesis, however, will be on
possible large-scale contributors to PA, such as volume differences between
lower and higher latitudes, changes in the tropopause height, and changes in
the diffusivity.

One way to explore possible large-scale mechanisms of PA is to construct
idealized models where we have control over model parameters and complexity. A
simple model can provide conceptual understanding of the underlying processes
that leads to PA. Budyko, 1969 introduced the concept of energy balance
models (EBMs), which are simple models where only the zonal mean energy
transfer between latitude bands is considered. The models are forced by incoming
solar radiation, and often the earth is modeled as a gray-body. EBMs have been
formally studied, and provides good representation of climate (North, 1975).
These are ideal models for our study due to their simplicity and versatility in
choice of model parameters. Recently, EBMs were used by Armour et al., 2019
to study the response of atmospheric meridional heat transport to greenhouse
gas (GHG) forcing.

Another type of EBM is that of maximum entropy production (MEP) models,
where the horizontal energy convergence is assumed to maximize entropy
production. These models were pioneered by Paltridge, 1975 who developed a
zonal mean climate model showing good agreement with observations. MEP
models have also been developed and used recently, by e.g. Gjermundsen et al.,
2014 who studied the shift of the mid-latitude storm tracks under GHG forcing.

Limiting the scope of the thesis, we will construct simple EBMs of the
troposphere with no surface interactions to study PA, and compare the
temperature and heat transport of these models with ESM NorESM2-LM.
In particular, a central question is:

• how does the spherical geometry of the Earth and troposphere affect
the profile of the global temperature anomaly under a global warming
scenario?

With decreasing surface area and tropopause height polewards, the tropospheric
volume decreases, which might influence the energy needed to heat the poles
compared with lower latitudes.

Vallis et al., 2015 studied how the tropopause height changes under global
warming. It is then natural to ask:

• does tropopause height increase (THI) contribute to PA?
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• does the elevation of Antarctica and the larger THI-trend there (Vallis
et al., 2015, Figure 7a) contribute to hemispherically asymmetric PA in
an meridional heat transport (MHT) perspective?

Additionally,

• how does the atmospheric diffusivity look in NorESM2-LM?

• does it change under global warming and does this change contribute to
PA?

These are the many questions to be addressed in this thesis.

The rest of the text is organized as follows:

Chapter 2 presents physical principles and a measure of PA used throughout
the thesis, as well as details regarding the usage of NorESM2-LM.

Chapter 3 develops idealized EBM models using two different horizontal flux
schemes, presents numerical methods for solving them, and investigates
their limit behaviour.

Chapter 4 presents central results of the thesis, such as comparisons with
NorESM2-LM, temperature anomalies under perturbation scenarios and
the comparisons of the Polar Amplification Factor between perturbation
scenarios.

Chapter 5 concludes the thesis by stating the main findings of the thesis, their
possible consequences, before discussing possible future work.

Appendix A shows figures that may be of interest to some readers, and which
are referred to but does not warrant their own presentation or discussion.

Appendix B features equations used in derivations for easy reference, as well
as a segment of algebra omitted in the full text.

Appendix C consists of python classes developed to solve the two different
model types.
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CHAPTER 2

Theory and methods

To construct energy balance models there are ingredients which are needed,
such as a vertical radiative flux model which simulates solar input and the
radiation from Earth. This is what drives the model, but central to EBMs is
horizontal heat transport which redistributes heat in the atmosphere. This
section will derive a simple vertical radiation model and two different types
of parameterizations of horizontal heat transport: a diffusion model and a
MEP model. Additionally, a central measure of PA is presented. Finally, the
data which was used from NorESM2-LM is presented in two tables alongside a
description of how calculations were made.

For derivaties, the following notation is used for partial derivatives

∂qi
f(q1, q2, . . . ) ≡

∂

∂qi
f(q1, q2, . . . ).

In equilibrium, the partial differential equations (PDEs) reduces to ordinary
differential equations (ODEs), and so technically the partial derivatives are
transformed to ordinary derivatives. We will keep the same notation for these
equations, but bear in mind that it represents slightly different concepts based
on the context.

2.1 Simple gray-body radiation model

Common for all of the following models is a very simple model for the net solar
radiative flux, which we will now construct.

Let us assume that the sun radiates as a black-body, while the atmosphere
radiates as a grey-body with emissivity ε and absorptivity µ = 1−α, where α is
the albedo. The outgoing radiative flux is then, from the Stefan-Boltzmann law

F↑ = εσT 4, (2.1)

where σ is the Stefan-Boltzmann constant, and T is the temperature of the
atmosphere.

To find the incoming radiative flux we make a few geometric considerations (see
Figure 2.1). The sun has a radius Rs and radiates in all directions in space
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2. Theory and methods

Rs

r

R

Figure 2.1: Sketch of the Sun-Earth system. The light-grey sphere illustrates
radiation from the sun in all directions.

from its surface, and so using the Stefan-Boltzmann law again, the luminosity
of the sun is

Ls = 4πR2
sσT

4
s . (2.2)

As the sun radiates, we can imagine a spherical shell with radius r which is
how far the radiation has reached in all directions. Reaching the atmosphere, r
is the distance between the atmosphere and the sun. The radiative flux that
interacts with the atmosphere is then given by the sun’s luminosity divided
equally throughout the spherical shell

Fr = 4πR2
sσT

4
s

4πr2 = R2
s

r2 σT
4
s . (2.3)

we assume that the Earth is far away, and small compared to the sun.
Consequently, the total energy absorption from the incoming radiative flux is
given by integrating over the area of Earth’s shadow, i.e. a circle with the
radius of the Earth with atmosphere R. The result is that the total energy
absorbed by the atmosphere is

E = µFrσT
4
s πR

2 = (1− α)R
2
s

r2 σT
4
s πR

2. (2.4)

In radiative balance, the incoming radiative flux must then be given by

F↓4πR2 = (1− α)R
2
s

r2 σT
4
s πR

2 ⇔ F↓ = s(1− α), (2.5)
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2.2. The Law of Heat Conduction

where s ≡ σT 4
sR

2
s/4r2 is the solar "constant", and is taken to be constant.

Subtracting eq. 2.1 from eq. 2.5 we get the net solar radiative flux:

FS = F↓ − F↑ = s(1− α)− εσT 4. (2.6)

From eq. (2.6) we can find the equilibrium temperature Te by assuming energy
balance

Te =
(
s(1− α)
εσ

) 1
4

, (2.7)

which tells us that a decrease of emissivity yields an increase in temperature.

2.2 The Law of Heat Conduction

S(θ) S(θ + δθ)

k

T (θ) T (θ + δθ)

θ θ + δθ

Q Q

Figure 2.2: Schematic of heat conduction through a material.

Colloquially known as Fourier’s law, the law of heat conduction states that
the heat transfer is negatively proportional to the temperature gradient in a
material. In integral form, the law takes the form

∂tQ = −k
‹
S

∇T · dS , (2.8)

where k is the thermal conductivity, and dS denotes an oriented surface element,
which is chosen parallel to the heat transfer ∂tQ. Figure 2.2 illustrates the
different components of eq. (2.8). Fourier’s law relates to gases from the
relationship between thermal conductivity and thermal diffusivity:

D = ρcpk. (2.9)

Here ρ is the density of the gas, and cp is the specific heat under constant
pressure.

Assuming no internal or external heat generation, the temporal change in heat
is proportional to the temporal change in temperature

∂tQ = ρcp

˚
V

∂tT dV . (2.10)
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2. Theory and methods

Employing eqs. (2.9) and (2.10), eq. (2.8) becomes
˚

V

∂tT dV = −D
‹
S

∇T · dS . (2.11)

In this form, Fourier’s law relates the temporal change in temperature with the
temperature distribution in the volume.

2.3 Diffusion Models

The annual and zonally averaged atmosphere can be conceptualised as a
set of latitudinally constrained air masses which exchange heat with each
other. Combined with some parameterisation of horizontal heat transfer,
this framework allows for the construction of climate models without explicit
dynamics. Such a EBM was first explored by Budyko, 1969 and have taken
on many forms since then. The key advantage of EBMs are that they are
simple compared with more advanced general circulation models (GCMs) or
ESMs. This makes them suitable for a study on the effect of the geometry of
the troposphere, as well as other model parameters.

Assuming the atmosphere obeys eq. (2.8) and radiates as a grey body (eq.
(2.6)), the heat evolution of the system is

∂tQ =
¨
A

[
s(1− α)− εσT 4] dA− k

‹
S

∇T · dS , (2.12)

where the first term on the right is integrated over the surface area dA, and
the second over the boundary between two latitudes dS. While it makes no
mathematical difference, the thermal diffusivity in a heat exchange model of
the atmosphere is replaced with the eddy diffusivity, which has significantly
greater magnitudes than e.g. the thermal diffusivity of air. In this conceptual
framework, macroscopic atmospheric eddies are modeled akin to air molecules
in a microscopic system.

2.4 Maximum Entropy Production models

The climate is a non-equilibrium non-linear thermodynamic system which is
assumed to be in steady state. Such non-linear systems can evolve into an
ensemble of different states depending on small perturbations in the initial
conditions.

An hypothesis of a principle of MEP was first explored for the climate system
by Paltridge, 1975 who argued that the climate state is that of a maximum
in entropy production (Ozawa et al., 2003). Paltridge’s model included the
ocean which he assumed to act similarly to the atmosphere, as well as clouds
and latent heat transport. The model compared favourably to observations
of the meridional temperature distribution, heat transport, and cloud cover,
however, the validity of such comparisons as confirmation of climate models has
been questioned by e.g. Stone, 1978. Central to his model were two hypotheses
(O’brien and Stephens, 1995):
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2.5. Polar Amplification Factor

1. Convection hypothesis - that the surface temperature and cloud fraction
adjust in such a way as to maximize meridional heat fluxes

2. Maximum entropy production hypothesis - that the meridional energy
convergence maximizes entropy production

While both of these assumptions were just as important (O’brien and Stephens,
1995), the maximum entropy production hypothesis as a physical principle
gained the most traction. The MEP principle has also been explored
observationally (Stephens and O’brien, 1993), but the principle remains an
hypothesis. In this thesis, MEP is taken as a postulate and serves to include
diffusion as an internal part of the model, rather than being prescribed as in a
diffusion model.

Mathematically, the MEP principle can be stated as follows. The
thermodynamic entropy of a system is

dS = ∆Q
T
, (2.13)

where ∆Q is the change in heat in the system, and T is the temperature of the
system. MEP is the statement that

∂tS = ∂tQ

T
(2.14)

is maximised.

2.5 Polar Amplification Factor

A useful measure of PA is the Polar Amplification Factor (PAF)

PAF ≡ ∆Tp
∆ 〈T 〉 , (2.15)

where ∆Tp denotes the temperature anomaly in a polar region (mean
temperature polewards of 80◦) and ∆ 〈T 〉 denotes the globally averaged
temperature anomaly.

If there is PA, then PAF > 1, while PAF < 1 implies tropical amplification (TA).

2.6 NorESM2-LM data and availability

For comparison we use data from a more complex ESM NorESM2-LM. Due to
the simplicity of the models developed in this thesis, a rigourous comparison
is not the aim, rather we would like to get a rough measure of how realistic
the models are by comparing atmosphere-dominated measures. The CMIP6
experiments used are detailed in Table 2.1 while the variables are listed in Table
2.2.

The historical scenario and the near-surface temperature were used to create
Figure 1.1. A climatology of pre-industrial and "present" values were calculated
before calculating the anomaly. To obtain a meridional profile of the other
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2. Theory and methods

Table 2.1: Description of NorESM2-LM experiments used.

Experiments Description
piControl climate state without anthropogenic CO2 emissions
historical climate state based on historical forcing

variables (or derived variables) in Table 2.2 a climatology is first calculated
before taking the longitudinal average. Air temperature is also a function of
pressure, and a mean atmospheric value is calculated by taking the density-
weighted mean using standard functions from the geonum.atmosphere-package.
The stratosphere is included in this calculation, however, the density-weighting
ensures that its contribution is much less compared with the troposphere.

Table 2.2: Description of NorESM2-LM variables used from each experiment.

Variables Description
ta air temperature
tas near-surface air temperature
rlut outgoing longwave radiation
rsut outgoing shortwave radiation
rsdt incoming shortwave radiation

10



CHAPTER 3

Model development

Using the theoretical foundations established in the previous section, we will
now construct the diffusion and MEP models, respectively. To begin, the
geometry of the troposphere will be presented, before constructing a simple
cartesian diffusion model to act as baseline for diffusion model experiments.
The full generalized diffusion model will then be developed and an analysis
of equilibrium perturbations conducted, before scaling the full equation and
presenting a discretisation scheme. The MEP model is then developed using
the method of Lagrange multipliers before we include a summary of parameters
used in the models.

3.1 Geometry of the troposphere

We will construct various EBMs throughout the thesis which all have the same
set-up. Figure 3.1a shows a schematical representation of a latitude band from
latitude θ to latitude θ + δθ as seen from space. A(θ) is the surface area of a
sphere and L is the cicle of latitude. The geometry in the vertical can be seen
in Figure 3.1b, where H is the tropopause height. Central to our calculations
will turn out to be the surface area A and the cross-sectional area S ≡ LH at
each latitude. Referred to henceforth as boxes, these latitude bands represent
zonal mean parameters and variables of the model.

Each box is connected to another through incoming and outgoing heat fluxes,
as shown in Figure 3.2. The vertical fluxes are common for all models, and are
illustrated in Figure 3.3. Additionally, the cartesian boxes are easily obtained
from the more general boxes, and so are not illustrated here.

3.2 Simple cartesian model

To act as a baseline a simple cartesian model will be developed. Assuming
cartesian coordinates (x, y, z) and

A(y) = const.
L(y) = const.
H(y) = const.
D(y) = const.,

11



3. Model development

L(θ) L(θ + δθ)

A(θ)

θ θ + δθ

(a) Sketch of a area element of
the surface of a sphere. Here A
denotes the surface area and L the
circumference of the latitude band.

H(θ)
H(θ + δθ)

θ θ + δθ

(b) Sketch of a vertical slice of the
troposphere on a sphere. Here H
denotes the tropopause height.

Figure 3.1: Geometrical set-up of the box models. Here θ denotes latitude.

θ θ + δθ θ + 2δθ θ + 3δθ

F (θ) F (θ + δθ) F (θ + 2δθ) F (θ + 3δθ)

Figure 3.2: Schematic of lateral heat flux interactions between latitude bands
from θ to θ + 3δθ.

εσT (θ)4

s(θ)(1− α(θ))

θ θ + δθ

Figure 3.3: Schematic of vertical heat fluxes on a latitude band.
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3.3. Generalized spherical model

as well as a single (mean) temperature in the volume, then Fourier’s law with
external heating yields (eqs. (2.8) and (2.6))

LδyHρcp∂tQ = LδyFs − kLH∂yT (y) + kLH∂yT (y + δy). (3.1)

Factoring and employing eqs. (2.9) and (2.10) reduces the equation to

∂tT = F̃s −
1
δy
D∂yT (y) + 1

δy
D∂yT (y + δy), (3.2)

where F̃s ≡ Fs/ρcpH. Taylor-expanding the last term, the equation becomes

∂tT = F̃s −
1
δy
D∂yT (y) + 1

δy

[
D∂yT + ∂y(D∂yT )δy +O

(
(δy)2

)]
. (3.3)

Canceling terms and neglecting O(δy)-terms gives

∂tT = D∂2
yT + F̃s, (3.4)

which is the inhomogeneous heat equation with constant diffusivity, D.

3.3 Generalized spherical model

Generalizing from the previous model, we will now take into account the
geometry of the troposphere, as well as a non-uniform diffusivity profile.

A spherical coordinate frame centered at the equator is chosen yielding
coordinates (r, θ, φ). Assuming the tropopause height H and diffusivity D are
non-uniform, Fourier’s law with external heating gives

∂tT = F̃s −
L(θ)H(θ)
A(θ)H(θ)RD(θ)∂θT

+ L(θ + δθ)H(θ + δθ)
A(θ)H(θ)R D(θ + δθ)∂θT (θ + δθ).

This expression can be simplified by canceling and Taylor-expanding while
neglecting all O(δθ)-terms (after division). Dropping explicit θ-dependence,
this is written out as

∂tT = F̃s −
L

A

D

R
∂θT

+ 1
AHR

[(L+ ∂θLδθ)(H + ∂θHδθ)](D + ∂θDδθ)
(
∂θT + ∂2

θTδθ
)
.

This reduces to

∂tT = F̃s −
L

A

D

R
∂θT

+ 1
AHR

[
LHD∂θT + δθ(LH∂θD + LD∂θHδθ +DH∂θL)∂θT + LHD∂2

θTδθ
]
,

where the second term cancels, yielding

∂tT = F̃s + δθ

[(
L

AR
∂θD + LD

ARH
∂θH + D

AR
∂θL

)
∂θT + LD

AR
∂2
θT

]
.
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3. Model development

A common factor can be extracted as follows

∂tT = F̃s + δθ
LD

AR

[
(∂θ lnD + ∂θ lnH + ∂θ lnL)∂θT + ∂2

θT
]
. (3.5)

Now it is beneficial to calculate the surface area A and the zonal circumference
L. With Jacobian-determinant J(r, θ, φ) = R2 cos θ, the surface area is

A =
ˆ 2π

0

ˆ θ+δθ

θ

R2 cos θ′ dθ′ dφ′

= 2πR2[sin (θ + δθ)− sin θ].

Using the trigonometric addition rule for sines (eq. (B.2))

A = 2πR2[sin θ cos δθ + cos θ sin δθ − sin θ]. (3.6)

This expression is simplified by assuming the angle δθ is small, which is consistent
with only keeping O(δθ)-terms previously. Using the trigonometric identities
eqs. B.3 and B.4 then gives a relatively simple expression for A

A = 2πR2[cos θδθ + sin θ − sin θ] = 2πR2δθ cos θ. (3.7)

L is similarly calculated as

L =
ˆ 2π

0
R cos θ dφ = 2πR cos θ,

and the gradient is
∂θL = −2πR sin θ. (3.8)

Inserting expressions for A and L and its gradient into eq. (3.5) yields

∂tT = F̃s + γ∂2
θT + γ(∂θ lnD + ∂θ lnH − tan θ)∂θT, (3.9)

where γ ≡ D/R2. The tangent term is a purely geometrical term, and the
above expression can be rewritten more suggestively

∂tT = F̃s + γ sec θ∂θ(cos θ∂θT ) + γ(∂θ lnD + ∂θ lnH)∂θT. (3.10)

Here the second term is the latitudinal component of the Laplacian in spherical
coordinates, and affirms the method used. Additionally, we can define an
"advection" velocity

v(θ) ≡ Rγ(tan θ − ∂θ lnD − ∂θ lnH), (3.11)

which serves to "advect" temperature, and is due to the variation in circle
of latitude, tropopause height, and diffusivity. This has not previously been
pointed out. Eq. (3.9) can then be rewritten in terms of the material derivative

(∂t + v

R
∂θ)T = γ∂2

θT + F̃s. (3.12)

For practical purposes eq. (3.9) is used due to its transparent form and ease of
discretization.
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3.3. Generalized spherical model

Discretisation

As the diffusion model is run forward in time to achieve equilibrium it is useful
to normalize eq. (3.12) to find characteristic time scales. Since the time and
spatial terms share a scale proportional to 1/t we get the relation

T

t
∝ DT

R2
εσT 4

ρcpH
. (3.13)

Eq. (3.13) yields two time scales

tdiff ∝
R2

D
=
(
6371 · 103)2

5 · 106 s ≈ 94days (3.14)

trad ∝
ρcpH

εσT 3 = 1(1004)(12.5 · 103)
0.8(5.67 · 10−8)2903 s ≈ 131days, (3.15)

a diffusive and radiative time scale, respectively. With this diffusivity (see eq.
(3.60)), which was chosen to achieve a realistic temperature profile, diffusion
acts significantly faster than radiative effects, and so the radiative time scale
will be used to ensure that the model has reached equilibrium. We discretise
eq. (3.9) using the Forward-Time-Centered-Space (FTCS) scheme, which is
sufficient in this case, as investigated by LaCasce, 2020. This gives

Tn+1
j = Tnj + F̃ns,j∆t+ Dj

R2
∆t

(∆θ)2
(
Tnj+1 − 2Tnj + Tnj−1

)
+ vj∆t
R∆θ

(
Tnj+1 − Tnj−1

)
,

(3.16)
where n and j are time and space indices, respectively. we can rewrite this
in terms of the (spatially-variant) Courant number C0 ≡ vj∆t(R∆θ)−1 and
stability parameter s ≡ Dj∆t(R∆θ)−2

Tn+1
j =

(
sj −

Cj
2

)
Tnj+1 + (1− 2sj)Tnj +

(
sj + Cj

2

)
Tnj−1 + F̃ns,j∆t. (3.17)

As diffusion acts to redistribute heat but is otherwise conservative, a reasonable
choice of boundary conditions are the Neumann boundary conditions, i.e. zero
lateral temperature flux at the poles:

Tn−1 = Tn1 TnJ+1 = TnJ−1, (3.18)

where Tn−1 and TnJ+1 are the temperatures at the boundaries. Inserting this into
the equations at the boundaries, we can rewrite eq. (3.17) as a matrix equation

Tn+1 = ATn + Fn
s (3.19)

where

A ≡



1− 2s 2s 0 . . . . . . 0
s+ C0

2 1− 2s s− C0
2 0 . . . 0

0 s+ C0
2 1− 2s s− C0

2 . . . 0
... . . . . . . . . . . . . ...

0 . . .
. . . s+ C0

2 1− 2s s− C0
2

0 . . . . . . 0 2s 1− 2s


, (3.20)
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3. Model development

and

Tn ≡


Tn0
Tn1
...
TnJ

 Fn
s ≡


F̃ns,0
F̃ns,1
...

F̃ns,J

∆t, (3.21)

The matrix product is inefficient to calculate as A is tridiagonal, however, due
to the addition of Fn

s we cannot solve it using a Gaussian elimination algorithm.
Another approach is to store the left, main, and right diagonals as vectors
C0, C1, C2 respectively, and write eq. (3.19) in terms of shifted temperature
vectors

Tn+1 = C0 ◦ T̃n
1 + C1 ◦Tn + C2 ◦ T̃n

2 + Fn
s , (3.22)

where ◦ is the elementwise multiplication operator, and the shifted temperature
vectors are defined as follows:

T̃n
1 ≡


0
Tn0
Tn1
...

TnJ−1

 T̃n
2 ≡


Tn1
Tn2
...
TnJ
0

. (3.23)

Note that the zero in each vector is to make the vectors equal length and satisfy
boundary conditions.

Equilibrium perturbations

To investigate qualitatively how the system might change under global warming
we will look at the steady-state of eq. (3.9) and perturb it in parameters that
are expected to change due to GHG emissions.

Assuming spherical geometry, varying tropopause height, and varying diffusivity
the equilibrium equation of the system becomes

s(1− α)− εσT 4 + ΓH∂2
θT + (H∂θΓ + Γ∂θH − ΓH tan θ)∂θT = 0 (3.24)

where Γ ≡ ρcpγ. The equation can be further simplified as

s(1− α)− εσT 4 + ΓH∂2
θT + (∂θ(ΓH)− ΓH tan θ)∂θT = 0. (3.25)

Defining a diffusion operator

∇̃2(AB) ≡ sec θ∂θ(ΓA cos θ∂θB), (3.26)

Eq. (3.25) can be re-written

s(1− α)− εσT 4 +∇2(HT ) = 0 (3.27)

Accounting for possible perturbations due to a GHG emissions (which we
represent by a emissivity perturbation), we let ε → ε + ∆ε, T → T + ∆T ,
α→ α+ ∆α, H → H + ∆H. Perturbing eq. (3.27) and assuming changes are
small (so that the base state is still satisfied) the equation becomes

∇̃2(H∆T )− 4εσT 3∆T = s∆α+ ∆εσT 4 − ∇̃2(∆HT ), (3.28)

which is a ODE for ∆T with forcing terms on the right-hand side (RHS).
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3.3. Generalized spherical model

Extreme diffusion limits

Letting γ = 0 (hence Γ = 0), so that the diffusion-terms vanish, eq. (3.28)
yields the following expression for the temperature anomaly

∆T = − s∆α
4εσT 3 −

∆ε
4ε T. (3.29)

Assuming there is no change in albedo, ∆α = 0, and a negative emissivity
change, ∆ε < 0, then ∆T ∝ T . The temperature anomaly mirrors the base
state temperature, which we know is tropically amplified, and so the response
is also tropically amplified.

A negative change in albedo ∆α < 0 and no emissivity change ∆ε = 0 leaves the
first term on the right where s favours TA, but T−3 favours PA. Which term
will dominate is non-trivial, and will be explored numerically. Additionally, a
local negative albedo change, such as is the case with sea-ice melt, will amplify
the warming there.

Conversely, in the limit where γ →∞ (Γ→∞), eq. (3.28) reduces to

∇̃2(H∆T ) = 0⇒ ∆T = const., (3.30)

which yields globally uniform warming, which is common for all diffusive systems
in this limit, as the gradients driving transport vanish.

Intermediate diffusion limit

In this case the analysis is restricted by assuming a constant tropopause height
and change in tropopause height. The last term on the right in eq. (3.28) can
then be written in terms of the base state diffusion term (see eq. (3.27))

− ∇̃2(∆HT ) = −∆H
H
∇̃2(HT ) = ∆H

H

[
s(1− α)− εσT 4]. (3.31)

To get at a qualitative temperature anomaly under intermediate diffusion we
will neglect the first term on the left-hand side (LHS) in eq. (3.28), and thereby
focus on the RHS, which yields an approximation for the temperature anomaly

∆T ≈ − s∆α
4εσT 3 −

∆ε
4ε T −

∆H
4εσT 3H

[
s(1− α)− εσT 4], (3.32)

where the two first terms are known from the no diffusion limit and the last
term is an addition from tropopause height perturbation. As can be seen from
eq. (3.32), THI ∆H > 0 will tend to favour polar enhancement due to its
dependency on the net radiation balance which has a deficit in the polar regions
and T−3. This term also exhibits tropical cooling due to the surplus in the net
radiation balance there, and is the only term to do so. THI acts to redistribute
heat from the base state, cooling the equator and warming the poles. Not
discussed elsewhere, this term is a potential contributor to PA.
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3. Model development

3.4 Perturbed two box model

As simplicity is also a goal of this thesis, we will demonstrate how the previous
perturbation behaviour is all present in a simple 2-box model. The reader may
skip ahead to Section 3.5 if they are eager to be introduced to the MEP model.

Assuming that we can divide the atmosphere into two volumes: lower and
higher latitudes. In equilibrium, the equations describing the heat transfer from
lower to higher latitudes are

s1(1− α1)− εσT 4
1 + ρcp

DH

A1R2 (T2 − T1) = 0 (3.33)

s2(1− α2)− εσT 4
2 − ρcp

DH

A2R2 (T2 − T1) = 0, (3.34)

where s1 > s2 and T1 > T2. Defining a parameter ζ ≡ ΓA−1
1 = ρcpDR

−2A−1
1 ,

and the area-ratio n ≡ A1/A2, the equations can be re-written

s1(1− α1)− εσT 4
1 + ζH(T2 − T1) = 0, (3.35)

s2(1− α2)− εσT 4
2 − nζH(T2 − T1) = 0. (3.36)

Using the following perturbations

ε→ ε+ ∆ε
Ti → Ti + ∆Ti
αi → αi + ∆αi
H → H + ∆H,

and assuming they are relatively small,

∆ε << +ε
∆Ti << Ti

∆αi << αi

∆H << H,

the equations become

−
(
4εσT 3

1 + ζH
)
∆T1 + ζH∆T2 = s1∆α1 + ∆εσT 4

1 − ζ∆H(T2 − T1) (3.37)
nζH∆T1 −

(
4εσT 3

2 + nζH
)
∆T2 = s2∆α2 + ∆εT 4

2 + nζ∆H(T2 − T1). (3.38)

This set of equations can be solved using Cramer’s rule (eq. (B.6)) and the
solutions share a common denominator

f =
(
4εσT 3

1 + ζH
)(

4εσT 3
2 + nζH

)
− nζ2H2

= 16ε2σ2T 3
1 T

3
2 + 4εσζH

(
nT 3

1 + T 3
2
)

+ nζ2H2 − nζ2H2

= 4εσ
[
4εσT 3

1 T
3
2 + ζH

(
nT 3

1 + T 3
2
)]
, (3.39)

which is positive, i.e. f > 0. The solutions can then be written out as

f∆T1 =−
(
4εσT 3

2 + nζH
)[
s1∆α1 + ∆εT 4

1 − ζ∆H(T2 − T1)
]

− ζH
[
s2∆α2 + ∆εT 4

2 + nζ∆H(T2 − T1)
]

(3.40)
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3.5. Maximum Entropy Production model

f∆T2 =−
(
4εσT 3

1 + ζH
)[
s2∆α2 + ∆εT 4

2 + nζ∆H(T2 − T1)
]

− nζH
[
s1∆α1 + ∆εT 4

1 − ζ∆H(T2 − T1)
]
. (3.41)

The difference between the temperature anomalies is then (see eq. (B.7) for
explicit calculation)

g(∆T2 −∆T1) =
(
T 3

2 s1∆α1 − T 3
1 s2∆α2

)
+ σ∆εT 3

1 T
3
2 (T1 − T2)

+ ζ∆H(T1 − T2)
(
nT 3

1 + T 3
2
)
, (3.42)

where g ≡ f/4εσ.

Looking at the effect of each term in eq. (3.42) in isolation we see that there
are local effects from albedo changes. A decrease in albedo in the tropics will
heat up the tropics, and a decrease in albedo at the pole will heat up the pole.
However, a decrease in emissivity ∆ε < 0 will cause tropical enhancement, while
an increase in tropopause height ∆H > 0 will cause polar enhancement.

Even in such an idealized 2-box model, much of the same structure can be
found as in the continuous case. Eq. (3.42) also implies that PA due to THI is
present even for cartesian geometry as then n = 1. Moreover, the n-dependency,
which is the effect of non-equal volumes, implies that depending on where the
boxes are defined the effect could be larger. Looking at the area ratio in Figure
3.4, we see that n > 1 after around 20◦.

0 20 40 60 80

Latitude [◦]

10−2

10−1

100

101

102

103

104

n

Figure 3.4: Area ratio of a sphere n = sin θ/(1− sin θ), logarithmic y-scale.

3.5 Maximum Entropy Production model

We will construct a similar model as done by Gjermundsen et al., 2014, which was
a surface-atmosphere model where the horizontal and vertical heat transports
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3. Model development

were parameterized by assuming the principle of MEP. Our model will be
simplified and not include surface processes, so as to make it comparable to the
diffusion model.

In our case, the energy balance equation in equilibrium for each box takes the
form

Fs,jAj + ∆∂tQj = 0, (3.43)
where Fs,j is the net vertical radiation in each box, and

∆∂tQj ≡ FjSj − Fj+1Sj+1 (3.44)

is the meridional heat transfer. Fj and Fj+1 are incoming and outgoing
horizontal heat fluxes, respectively. The cross-sectional area S is defined in
Figure 3.2. From eq. (3.43) we find the relation

∆∂tQj = −Fs,jAj . (3.45)

The meridional heat transfer only serve to redistribute heat, and so summing
over all boxes they should sum to zero. This gives us the energy conservation
constraint

g(∆∂tQ) ≡
J∑
j=0

∆∂tQj = −
J∑
j=0

Fs,jAj = 0. (3.46)

To maximise eq. (2.14) we use the method of Lagrange multipliers (Lindstrøm
and Hveberg, 2015, p. 528) to enforce energy conservation. This yields the
Lagrangian in each box

Lj = 1
Tj

∆∂tQj + βg(∆∂tQj), (3.47)

where β is a Lagrange multiplier.

The Lagrangian for the entire system is then just a sum over the entropy
production and constraint in each box

L =
J∑
j=0

(
∆∂tQj
Tj

− βFs,jAj
)
. (3.48)

Inserting eq. (3.45) into eq. (3.48) we get

L =
J∑
j=0

(
−Fs,j
Tj
− βFs,j

)
Aj . (3.49)

Maximising the Lagrangian with regards to the temperature in each box we get
the PDE

− Tj
∂Fs,j
∂Tj

(1 + βTj) + Fs,j = 0. (3.50)

Note that the geometrical contribution drops out of the equation. This is
in contrast to the diffusion model where the geometry clearly affects the
temperature distribution. Additionally, this means that the tropopause height
has no effect on the temperature distribution in the MEP model.
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3.6. Parameters and velocities

Inserting for Fs,j gives an algebraic equation

T 4
j (3 + 4βTj) + sj(1− αj)

εσ
= 0, (3.51)

Looking at eq. (3.51) we see that a β > 0 yields no solutions since Tj > 0 and
the constant term is positive and non-zero (see Figure 3.5a), and so β must be
negative for there to be solutions. Letting Cj ≡ sj(1− αj)/εσ we can rewrite
eq. (3.51) as

T 4
j (3 + 4βTj) = −Cj . (3.52)

This equation can only have real solutions if Tj > −3/4β. Differentiating it
yields

2T 3
j (6 + 10βTj) = 0, (3.53)

which is always negative and so by Rolle’s theorem there can only be one real
root.

This means that it’s trivial to solve eq. (3.51) using Newton’s method (Lindstrøm
and Hveberg, 2015, p. 462). A reasonable guess for the temperature in each
box is then

Tj,guess = − 3
4β . (3.54)

To find the maximum of the Lagrangian in eq. (3.48) we tune β so as to satisfy
the constraint in eq. (3.46). In practice we use Newton’s method twice: first
for finding all the temperatures in each box, second for finding the beta that
minimises eq. (3.46), ensuring energy conservation.

3.6 Parameters and velocities

While eq. (2.6) holds for a single-box atmosphere, the sun-atmosphere distance,
and therefore the solar constant, will vary latitudinally. To account for this
we parameterize the solar constant based on the climatology of the absorbed
shortwave radiation from Hartmann, 2015, FIGURE 2.12.

s(θ) = 325 cos θ + 50. (3.55)

The planetary albedo and emissivity are also non-trivial functions of latitude
and have to be parameterised. From Donohoe and Battisti, 2011, Fig. 3a we
parameterised the albedo

α(θ) = 0.7− 0.45 cos θ. (3.56)

For simplicity, the baseline planetary emissivity is taken to be constant for the
entire globe at a value

ε = 0.80. (3.57)

To simulate global warming, we will change the emissivity as a proxy for GHG
emissions.

The tropopause is not at a constant height at all latitudes, rather, it decreases
polewards. The height of the tropopause will be prescribed, and so we will
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3. Model development

use a parameterization as for the solar constant and albedo. Based on NCEP2
reanalysis data (Vallis et al., 2015, FIGURE 1a) the shape of the tropopause is
similar to a function cos 2θ. We will therefore use the parameterization

H(θ) = (Hmax − 〈H〉) cos 2θ + 〈H〉 = ∆H cos 2θ + 〈H〉 , (3.58)

where Hmax is the maximum height of the tropopause located in equatorial
regions, and 〈H〉 is the mean height of the tropopause. In constant tropopause
height runs a value

Hconst. = 12.5 km (3.59)

will be used.

The diffusivity profile was found by roughly tuning the model for NorESM2-LM
air temperature output. Additionally, a physical argument is made as to the
shape of the profile. From Hartmann, 2015, FIGURE 6.18 there should be
a storm track (zonally averaged) in each hemisphere at mid-latitudes. The
seasonal variation, however, suggests that there is a cyclical weakening of the
storm tracks. Due to seasonal anti-symmetry between hemispheres we therefore
assume that the annually mean, zonally averaged storm track is roughly centered
at the equator. As the storm tracks are localized over a relatively small range
of latitudes, we use a parameterization

D(θ) ≡
(
5 · 106) cos1.5 (θ)m2s−1, (3.60)

which yields a profile similar to that used in earlier papers (Sellers, 1969, TABLE
2). In constant diffusivity runs, the value

Dconst. = 2.5 · 106 m2s−1 (3.61)

is used, which is roughly the average of the above profile.

All of the parameters used in the models are shown in Figure 3.5 for reference.

The "advection" velocities for the diffusion models are shown in Figure 3.6. For
all cases, the velocity is poleward. In the constant diffusivity cases with constant
tropopause height (dotted) and non-uniform tropopause height (dashed) we see
two peaks at the poles. The tangent term seems to dominate as comparing the
two as there is almost no difference. When including a non-uniform diffusivity
profile (solid), the velocity changes having two small peaks at mid-latitudes
and vanishing at the poles.
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Figure 3.5: Shape of parameters used in the models: a. absorbed solar heat flux,
b. planetary albedo, c. tropopause height, and d. Diffusivity profile.
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Figure 3.6: "Advection velocities" for three different models: dotted - constant
tropopause height and diffusivity, dashed - non-uniform tropopause height and
constant diffusivity, and solid - non-uniform tropopause height and diffusivity.
The figure is cut off at ±5ms−1, but reaches upward of ±20ms−1 at the poles
for the dotted and dashed lines.
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CHAPTER 4

Results and discussion

As a baseline comparison between models, the temperature profiles of the
different models developed and used in this thesis are presented in Figure
4.1. The solid line shows the zonal mean temperature of the surface pressure
level of variable ta in NorESM2-LM, while the dashed and dotted lines shows
the temperature profile shifted up by 30◦ C in the diffusion and MEP model,
respectively. This was done as the temperature profiles in the idealized models
represent a mean tropospheric temperature, which is generally colder compared
with temperatures close to the surface. The incoming solar radiation is also less
compared with NorESM2-LM (see Figure A.1). As can be seen in the figure,
the idealized models generally exhibit similar temperature profiles as a fully-
coupled ESM despite having no surface interactions nor clouds. The diffusion
model underestimates tropical temperatures while overestimating temperatures
everywhere else, while the MEP model underestimates polar temperatures,
but shows high similarity everywhere else. Both of the idealized models have
symmetric model parameters, and so the asymmetry between the poles is not
present.

The diffusion model could potentially be tuned to fit the NorESM2-LM profile
better, however, the goal of this comparison was only to assess a qualitative
agreement, and so this was not done.

The total MHT was also calculated by integrating the net top of the atmosphere
(TOA) radiation, see Donohoe, Armour et al., 2020 for details. Figure 4.2 shows
the MHT in the different models. All of the models show a maximum in MHT
at around 45◦, which is what we would expect (Stone, 1978). The diffusion
model follows the NorESM2-LM closely in the southern hemisphere (SH), but
is generally slightly lower in the northern hemisphere (NH). As for the MEP
model it is underestimating the MHT by about half almost everywhere. It
is, however, important to consider that the TOA fluxes are lower for both
idealized models, and that choosing a greater solar constant increases the heat
transport in both models. The parameters were chosen before comparisons
with NorESM2-LM was made, and the discrepancy in solar constant was not
identified until the last stage of the writing process. In general, a comparison in
MHT may not be a measure of validity as a climate model (Stone, 1978), but
it is beneficial to confirm that they do agree in shape.

As a connection to our diffusion model, the diffusivity in NorESM2-LM
(piControl) and the MEP model was estimated from the equilibrium diffusion
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Figure 4.1: Meridional temperature profiles from: solid - NorESM2-LM, dashed
- full complexity diffusion model, and dotted - maximum entropy production
model. The NorESM2-LM-profile is of the highest pressure level (close to the
surface), and the temperatures in the semi-analytical models are shifted by a
constant 30◦ C to accommodate comparisons in shape.
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Figure 4.2: Meridional heat transports from: solid - NorESM2-LM, dashed - full
complexity diffusion model, and dotted - maximum entropy production model.
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model eq. (3.27). Due to the small values of heat flux and temperature gradient
close to the equator, the calculation is numerically unstable in this region, and
omitted. Following the same linestyle and colour scheme as earlier, Figure
4.3 shows the diffusivities for the different models. The diffusivity from the
diffusion model was also calculated using the same method, and comparing
the thin grey line and the dashed line, we can see that we get the expected
diffusivity. Looking now at the MEP diffusivity (dotted line), we see that it
is generally the lowest of the three, increasing equatorwards throughout most
of the hemisphere until after 25◦ latitude where there is a very slight decline
towards the equator.

The NorESM2-LM diffusivity profile is complex and exhibits hemispheric
asymmetry. The NH has generally higher diffusivities and the maximum
diffusivity of 107 m2s right next to the north pole. A curious feature which
may be due to numerical instability, but then we would also expect similar
behaviour at the south pole. Local maxima are present in the NH at around
50◦N, 75◦N, and equatorwards of 30◦N the diffusivity increases, reaching a value
of 3 · 106 m2s−1 at 10◦N. Similarly located maxima are present in the SH. This
indicates that the maxima may be connected with the atmospheric cells in some
way. The most interesting feature, however, is the pronounced minimum slightly
south of 60◦S which may be connected to the Antarctic Circumpolar Current
and the prevailing westerlies. The diffusivity also decreases equatorwards of
around 55◦S in the SH, reaching a value of circa 1.8 · 106 m2s−1 at 10◦S. While
the singularities near the equator might affect the values there, it is worthy to
note that this asymmetry between high values in the NH and low values in the
SH is present in the diffusivities used by Sellers, 1969.

Throughout the rest of this chapter we will focus on results from the idealized
models. A number of different diffusion model complexities will be studied,
all listed below, and will be referred to as "model number 1" etc. Higher
numbers represent higher model complexity, i.e. spherical geometry vs. cartesian
geometry, non-uniform tropopause height vs. constant tropopause height etc.
Additionally, while the effect of chosen geometry in a model with non-uniform
diffusivity could be studied, this was not done due to only keeping linear terms
in the model derivation, and so cross-effects are not expected.

1. dashdotted - cartesian geometry with constant tropopause height and
diffusivity

2. dotted - spherical geometry with constant tropopause height and diffusivity

3. dashed - spherical geometry with varying tropopause height and constant
diffusivity

4. solid green - spherical geometry with varying tropopause height and
diffusivity

Additionally, the MEP model only represents one model complexity with
linestyle and color solid blue.
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Figure 4.3: Estimate of diffusivity assuming a tropopause height as in Figure
3.5c derived from eq. (3.27) for linear scale (upper) cut-off at 6 · 106 m2s−1

and semi-logarithmic (lower). solid - NorESM2-LM, dashed - full complexity
diffusion model, and dotted - maximum entropy production model. The solid
grey line is the prescribed diffusivity (eq. (2.9)). Latitudes within ±10◦ are not
shown due to singularities close to the equator.
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4.1. Emissivity

4.1 Emissivity

Figure 4.4 shows the emissivity decrease equilibrium response of the models.
This was done to assess the baseline temperature response to GHG emissions
without any additional perturbations.

Temperature anomalies in models 1, 2, and 3 are similar in shape, exhibiting
slight TA , but model 1 generally shows lower magnitudes of around 0.05◦. This
is due to the difference in total volume between the cartesian and spherical
models. Spherical geometry slightly alleviates TA, reducing the poleward
gradient, but not enough to break even or produce PA. Accounting for a lower
tropopause in polar areas has a negligible effect on the temperature anomaly,
which might be expected when comparing horizontal and vertical scales. I.e.
we would expect that accounting for varying surface area has a larger impact
compared with accounting for a non-uniform tropopause, which looks to be
the case. Model 4 illustrates the effect of a latitudinally varying diffusivity
profile and the temperature anomaly is markedly different from all previous
models showing smaller gradients equatorward of 50◦ latitude and a sharp
decline poleward of 50◦, again showing TA (the largest, of around 0.10◦C).
This is consistent with the theoretical temperature anomaly from an emissivity
perturbation in the continuous and two box models (see Section 3) and the
effect of decreasing diffusivity polewards.

Similarly, the MEP model also exhibits TA, and the temperature anomaly is
comparable to the diffusion models in magnitude. However, the temperature
difference between tropical and polar areas is significantly larger (around 0.30◦C)
and there is a sharp gradient polewards of the tropics.

Additionally, the temperature anomaly relates to the temperature profile by eq.
(3.29). The smaller temperature contrasts in the constant diffusivity spherical
models may then be interpreted as being due to the monotonically increasing
"advection" velocities poleward, while in model 4 the "advection" velocities peak
in the mid-latitudes, decreasing polewards. This is reflected in model 4 by small
temperature contrasts between the tropics and mid-latitudes, but sharp decline
towards the arctic.

All of our models show TA under emissivity decrease which is also consistent
with another dry diffusive EBM by Armour et al., 2019. Introducing latent heat
exchanges in this model produced PA instead, and so the baseline response of
TA may simply be a case of missing physics in our models.

4.2 Albedo

Figure 4.5 shows the temperature response to a uniform decrease in albedo
by ∆α = −0.01. The responses of the diffusion models all exhibit TA with
the maximum tropical warming shown in the cartesian model 1, contrary to
the temperature anomaly for a emissivity decrease, where the spherical models
exhibited strongest TA. Model 4 shows the largest temperature difference
between the tropics and poles for all models, while models 2 and 3 have similar
polar warming to model 1, but decreased TA. Looking back at eq. (3.29) it
seems the solar constant dominates the albedo-term due to the model showing

29



4. Results and discussion

−75 −50 −25 0 25 50 75

Latitude [◦]

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

∆
T

[◦
C

]

Figure 4.4: Equilibrium temperature anomalies for a emissivity perturbation
∆ε = −0.02 for dashdotted - cartesian geometry and constant tropopause and
diffusivity, dotted - spherical geometry and constant tropopause height and
diffusivity, dashed - spherical geometry with non-uniform tropopause height
and constant emissivity, and solid green - spherical geometry with non-uniform
tropopause height and diffusivity, solid blue - maximum entropy production
model.

TA. This also makes sense physically, as the tropics is the region of most
incident solar radiation and largest surface area, and so a lowering of the albedo
traps more heat here than compared with the poles.

The MEP model shows non-trivial behaviour, maximizing the temperature
anomaly around 75◦ around 1◦ C before decreasing polewards. A minimum
is present in the tropics just above 0.9◦C, where the temperature anomaly is
comparable to that just at the poles. In general, the temperature differences
are not very large in the MEP model. A possible explanation may be that the
MEP model maximizes the heat transport, and so the excess heat in the tropics
is efficiently transported polewards.

Considering a more realistic scenario of albedo change, that of arctic sea ice
melt, the temperature response to a decrease in albedo northwards of 80◦ N
is shown in Figure 4.6 for the same models as earlier. All the models exhibit
PA. For the diffusion models, there is a decrease in PA when comparing the
cartesian model 1 with spherical models 2 and 3, which may be caused by
the decreased surface area in this region in the spherical models. Again a
non-uniform tropopause height has a negligible impact on the temperature
anomaly. Letting the diffusivity vary latitudinally in model 4, with decreasing
diffusivity polewards, increases polar temperatures significantly compared with
all earlier diffusion models, reaching a maximum of around 0.60 ◦ C at the north
pole. All diffusion models exhibit non-local effects due to local albedo decrease,
presumably due to diffusion, which spreads out the signal. This is especially
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4.3. Tropopause height
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Figure 4.5: Equilibrium temperature anomalies for a globally uniform albedo
decrease of ∆α = −0.01 for dashdotted - cartesian geometry and constant
tropopause and diffusivity, dotted - spherical geometry and constant tropopause
height and diffusivity, dashed - spherical geometry with varying tropopause
height and constant emissivity, and solid green - spherical geometry with varying
tropopause height and diffusivity, solid blue - maximum entropy production
model.

apparent in model 1 where the temperature anomaly is affected throughout the
entire NH and perhaps even slightly in the SH. In the spherical models 2, 3,
and 4 this effect is mostly contained to the NH mid-latitudes. For models 2
and 3 this may simply be due to the smaller maximum at the pole compared
to model 1, however, for model 4 this is not the case as the polar maximum
is larger. The significantly smaller diffusivities (Figure 3.5 d) throughout the
mid-latitudes may be the cause of the reduced non-locality of polar albedo
decrease. Albedo decrease in the arctic reduces the northward MHT (Figure
A.3), which is expected due to the reduced temperature gradient.

This is not at all the case for the MEP-model, where there is an abrupt increase
in temperature at 80◦N reaching a maximum of 1.75◦C there and decreasing
northwards. The last decrease may be due to the weakening solar constant
polewards. This may imply equatorward diffusion of heat. The MHT barely
changes for the MEP model in this scenario (Figure A.3).

4.3 Tropopause height

The tropopause has been observed to heighten in observations (Santer et al.,
2003), as well as ESMs (Vallis et al., 2015). Due to the relatively modest
volumetric effects from spherical geometry, it was then natural to investigate
the volumetric effects due to THI. As shown in Chapter 3, the MEP model
temperature anomaly is unaffected by the tropopause height, and so is not
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Figure 4.6: Equilibrium temperature anomalies for a local albedo perturbation
∆α = −0.04 northwards of 80◦ latitude for dashdotted - cartesian geometry and
constant tropopause and diffusivity, dotted - spherical geometry and constant
tropopause height and diffusivity, dashed - spherical geometry with varying
tropopause height and constant emissivity, and solid green - spherical geometry
with varying tropopause height and diffusivity, solid blue - MEP model.

included in the following figures. The temperature anomalies for models 1-4
due to THI are shown in Figure 4.7. There is a slight cooling in the tropical
region with significantly more heating at higher latitudes, peaking at the poles
in all models. The tropical cooling is largest in the cartesian model. While
the temperature anomalies in constant diffusivity models are similar, the non-
uniform diffusivity model shows a significantly larger and sharper temperature
increase in the polar regions.

The PA and tropical cooling seen here are consistent with the continuous and
two box models discussed previously. Diffusion is reducing the temperature
contrasts present in the TOA. Essentially, PA due to THI is only relevant as a
diffusion phenomenon. Eq. (3.32) shows that THI has a cooling effect wherever
there is radiative convergence and a heating effect wherever there is radiative
divergence. THI increases the poleward MHT, and so the excess heat in the
tropics is transferred towards the arctic (Figure A.2)

Figure 4.8 illustrates the diffusivity dependence of combined emissivity and
height perturbation in a constant diffusivity spherical model. For low diffusivities
the temperature anomaly is tropically amplified, and increasing the diffusivity,
the temperature anomaly shifts towards being amplified at the poles until a
point D = 108m2s−1 where the temperature anomaly flattens out. Thus, the
temperature anomaly is a non-monotonic function of diffusivity under emissivity
and height perturbations, which is consistent with the approximate temperature
anomaly in the intermediate diffusion case of the continuous model and the
exact expression in the two box model.
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Figure 4.7: Equilibrium temperature anomalies for a uniform tropopause height
perturbation ∆H = 300m for dashdotted - cartesian geometry and constant
tropopause and diffusivity, dotted - spherical geometry and constant tropopause
height and diffusivity, dashed - spherical geometry with varying tropopause height
and constant emissivity, and solid - spherical geometry with varying tropopause
height and diffusivity.
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Figure 4.8: Equilibrium temperature anomalies due to a emissivity perturbation
∆ε = −0.02 and height perturbation ∆H = 300 m for increasing diffusivity,
where lighter shades of grey denotes lower diffusivites in a range D ∈
[103, 108]m2s−1.
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4. Results and discussion

Exploration of Asymmetric Polar Amplification

PA is mostly observed in the Arctic, as noted previously. In the MEP model
this would realistically be due to an asymmetry in albedo decrease, while in
the diffusion models a THI may contribute. We therefore explore hemispheric
asymmetry in model 4 as seen in Figure 4.9 and can be summarized in the
following three scenarios:

• Scenario i: the tropopause height is reduced by 2500 m over the
Antarctic continent resulting in a temperature anomaly around 0.4◦C
larger compared with the Arctic.

• Scenario ii: in addition to tropopause height reduction as in scenario i,
THI is also larger in the Antarctic region, as suggested in Vallis et al.,
2015, Figure 7a, which causes a slight additional warming of 0.1◦ C.

• Scenario iii: including both previous changes, the diffusivity is set to
rapidly decay over the Antarctic continent, which results in significantly
reduced warming compared with previous scenarios and the Arctic, yet
still larger compared with lower latitudes. As any warming goes to zero
with diffusivity, any PA here reflects a non-zero diffusivity. The decaying
function used was the following:

f = 5 · 106 exp((θ + 70π/180)). (4.1)

The results from scenario i are expected due to the slight increase in PA from a
non-uniform tropopause height as seen in Figure 4.7 model 2 - 3. A physical
explanation can be that there is simply less air to heat up in this region, therefore
causing amplified warming. L. Hahn et al., 2019; L. C. Hahn et al., 2020 argues
that the elevation of the Antarctic continent is the cause of asymmetry in PA due
to its effect on the lapse-rate feedback in the region. Similarly, our model shows
that not considering the elevation difference results in symmetric PA, although
admittedly, the observed asymmetry is of lesser Antarctic Amplification, not
more as in our model. Our model does, however, not simulate the lapse-rate
feedback although the tropopause height is dependent on the lapse-rate (Hu
and Vallis, 2019).

Scenario ii illustrates the effectiveness of increased THI compared to a lower
tropopause height as the THI is only by 150m while the elevation difference is
2500m.

Another effect that might cause asymmetry in PA is reduced diffusivity in
the Antarctic region, which can, as demonstrated in scenario iii, have drastic
consequences for the temperature anomaly in the region. The rapidly decreasing
diffusivity in the Antarctic region also looks to have non-local effects on the
entire SH and even the NH, although miniscule, as seen from the generally
reduced temperature anomalies almost everywhere.

4.4 The relative importance of the different perturbations

As (e.g.) Figure 4.7 and 4.8 illustrates, perturbation effects are dependent on
the distribution and magnitude of diffusivity, and so a realistic diffusivity profile
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Figure 4.9: Different scenarios of tropopause height change accounting for
asymmetries at the Antarctic. blue - reduced tropopause height poleward of 80 ◦
S by 2500 m, orange - Increased tropopause height change by 50 m in the same
latitude range, green - Exponential decay of diffusivity in the Antarctic region.

is necessary to quantitatively compare the effects. A qualitative comparison can
however be made by calculating the PAF for different possible perturbations as
a function of diffusivity, which is shown in Figure 4.10. All perturbations
converge to uniform warming at higher diffusivities (107 - 108)m2s−1. A
decrease in emissivity causes slight TA for low and intermediate diffusivity,
while a negative albedo perturbation in the Arctic region causes significant
PA for low and intermediate diffusivities. Increasing the tropopause height
alongside decreasing emissivity causes more TA for an diffusivity D = 103 m2s−1

before contributing to PA with increasing magnitude after D = 104 m2s−1. In
the region D ∈ (105, 107)m2s−1 a THI contributes significantly to PA with
maximum effect around 106 m2s−1. Including all perturbations, the PAF is
dominated by the albedo perturbation for most diffusivities, except in the range
D ∈ (106, 107)m2s−1 where the tropopause height perturbation and albedo
perturbation contributes comparably. This region is close to observations of the
diffusivity as done by Thiebaux, 1976 who found a value D = 3 ·107m2s−1 based
on balloons. Important to note is that the magnitude of arctic albedo change
is based on observations by Pistone et al., 2014 over roughly three decades
(1979-2011), while the magnitude of THI is extrapolated from the National
Centers for Environmental Prediction (NCEP) data used in Santer et al., 2003
that showed a THI of roughly 190 m in the period 1979-1999.

As a comparison, the PAF for an identical albedo perturbation was calculated
for the MEP model. The mean MEP diffusivity was estimated by eq. (3.27)
using a weighted average, excluding latitudes within 15◦ in both hemispheres,
and the resulting PAF is significantly greater compared to that of the diffusion
model for the same diffusivity. This is consistent with the abrupt and significant
increase in temperature as seen in Figure 4.6.

35



4. Results and discussion

103 104 105 106 107 108

Diffusivity [m2s]

0.5

1.0

1.5

2.0

2.5

3.0

P
A

F
[

]

Figure 4.10: Polar Amplification Factor for different types of perturbations in
a constant diffusivity model. Down triangle - ∆ε = −0.02 everywhere, star
- ∆α = −0.04 polewards of 80◦ N and ∆ε = −0.02 everywhere, up triangle
- ∆H = 300 m and ∆ε = −0.02 everywhere, circle - all perturbations, and
square - maximum entropy production model ∆α = −0.04 polewards of 80◦ N
and ∆ε = −0.02.

4.5 Diffusivity

A major assumption in the diffusion model is that the form and magnitude
of diffusivity is specified. Fourier’s law (eq. (2.8)) implies that the diffusivity
of the troposphere may change due to changes in meridional heat flux and
temperature gradient. The diffusivity plays a similar role mathematically
as the tropopause height in the diffusion operator (eq. 3.26), and repeating
the perturbation analysis for the diffusivity in the intermediate diffusivity
case would yield a similar contribution to the temperature anomaly as for a
tropopause height perturbation. In light of the MEP model where THI has no
effect on the temperature anomaly, this might offer a plausible explanation in
form of a simultaneous diffusivity decrease (DD), which essentially mirrors the
temperature anomaly in Figure 4.7. This is illustrated in Figure 4.11 where a
DD of 1% was applied. In the non-uniform diffusivity case, this decrease was
proportional to the diffusivity distribution (Figure 3.5 d), which was done due
to the large magnitude difference between high and low latitudes. Figure 4.11
shows that increasing the complexity of the model tends to decrease tropical
heating, whereas in Figure 4.7 this tended to decrease the tropical cooling,
showing mirroring, as expected.

Figure 4.12 shows the PAF as a function of THI and DD in model 2 where
an emissivity decrease of ∆ε = −0.02 was applied to ensure the PAF is well-
defined. An essentially linear relationship between tropopause height and
diffusivity is found, implying that any potential non-linear terms (∆D∆H) have
little to no effect on the temperature anomaly. For larger perturbations than
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Figure 4.11: Equilibrium temperature anomalies due to a relative diffusivity
decrease of ∆D/D = −1% for dashdotted - cartesian geometry and constant
tropopause and diffusivity, dotted - spherical geometry and constant tropopause
height and diffusivity, dashed - spherical geometry with varying tropopause height
and constant emissivity, and solid - spherical geometry with varying tropopause
height and diffusivity.

are shown here, this may not hold as the non-linear terms could potentially
become significant. The gray area denotes the regime where THI induced PA is
essentially cancelled by TA due to DD. As the PAF does not show the actual
shape of the temperature anomaly, the temperature anomaly was plotted for a
select tropopause height and diffusivity perturbation (Figure A.4), and while
the figure does not show exact uniform warming, achieving this would require
significantly more model runs, and the discrepancy between the poles and the
tropics is on the order of O

(
10−3).

Additionally, Figure 4.12 lets us estimate the percentage diffusivity decrease
needed to counteract PA by a 2.4% THI, yielding a relative DD, ∆D/D ≈ −2%.

In the MEP model, the tropopause height has no effect on the temperature
anomaly, however, the heat fluxes are still affected due to their dependence
on the cross-sectional area S, thus the diffusivity is changed when changing
the tropopause height. Calculating the diffusivity, as done in Figure 4.3, for
two model runs, one with baseline height and one with increased tropopause
height, the diffusivity anomaly due to a THI of ∆H = 300m is shown in Figure
4.13. We can see a negative anomaly across the globe with the largest decrease
towards the tropics. The mean global decrease is of around ∆D/D ≈ −2.4%,
which is roughly consistent with the diffusivity decrease required to balance the
effect of THI in model 2. As the temperature distribution, and therefore the
MHT, is unaffected by the tropopause height in the MEP model, the heat fluxes
must necessarily decrease when the tropopause increases, which is how the
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Figure 4.12: Polar amplification factor as a function of tropopause height and
eddy diffusivity perturbations in a spherical model with constant tropopause
height and eddy diffusivity. Red shading indicates polar amplification while blue
shading indicates tropical amplification.

DD anomaly is calculated. In terms of Fourier’s law (eq. (2.8)) the diffusivity
perturbation as function of a tropopause height perturbation is

∆D
D

= −
∆H
H

1 + ∆H
H

, (4.2)

which lends further credency to DD as a compensating mechanism for THI.

Stone, 1978 argued that changes in incoming solar radiation and albedo are
the primary drivers of change to the MHT, which is consistent with the MEP
model, but not the diffusion models as tropopause height is clearly affecting
the MHT. Either Stone’s model is too simple (not accounting for tropospheric
geometry) or a mechanism such as DD acts against THI, essentially balancing
the effects.

As mentioned previously, the diffusivity might change under GHG-forcing.
Perturbing Fourier’s law (eq. (2.8)) in heat transport and tropopause height
yielded

∆D
D

=
∆Q
Q −

∆H
H

1 + ∆H
H

.. (4.3)

Using an available measure of the change in MHT in an ensemble of ESMs
provided by Donohoe, Armour et al., 2020 (∆Q = 0.1PW), as well as a measure
of THI found by Hardiman et al., 2019 (∆H ≈ 1500m) under the same 4xCO2-
scenario in HadGEM3-GC3.1 we can compare the relative contributions of the
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Figure 4.13: Diffusivity anomaly in a maximum entropy production model for a
tropopause height increase of ∆H = 300m.

two effects:

∆Q
Q

= 0.1
4 = 2 %

−∆H
H

= − 1500
12500 = −12 %.

The implied DD due to THI is a lot larger than the diffusivity increase du to
an increase in the MHT. However, the temperature gradient could also change,
contributing to a change in diffusivity. Gitelman et al., 1997 looked at trends in
the meridional temperature gradient, and found a steady decline, which would
contribute to diffusivity increase. A more careful study is needed to study the
mechanisms of THI and DD.
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CHAPTER 5

Conclusions

5.1 Main findings

Our work investigated the effect of geometry on the distribution of heating
in the atmosphere due to greenhouse gas emissions in two types of energy
balance models (EBMs): a dry diffusion model and a maximum entropy
production (MEP) model. In response to a decrease in planetary emissivity, the
baseline temperature response to greenhouse gas (GHG) emissions was found
to be that of tropical amplification (TA). In the diffusion model, accounting
for spherical geometry had a significant impact on the magnitude of warming
due to the overall smaller volume, however, while slightly more heat was
redistributed towards the poles due to "advection" of temperature, this effect
was not great enough to counteract TA. A further geometric consideration was
made, that of a non-uniform tropopause height. This had only an negligible
effect on the temperature anomaly which was consistent with an almost identical
temperature "advection" velocity as in the case for spherical geometry with a
constant tropopause height. Having a non-uniform diffusivity was also explored,
which caused the strongest TA of the diffusion models. The MEP model
produced the largest TA, however, and it was shown analytically that the
temperature anomaly in this model was independent of geometry.

Due to the modest polar amplification (PA) signal from accounting for the
geometry of the troposphere, more possible mechanisms were explored:

• Arctic sea-ice melt, represented by decreasing arctic albedo, caused PA
in all models with the largest magnitude of PA in the MEP model. The
response in the diffusion and MEP models were qualitatively different,
while the MEP model showed an abrupt temperature increase in the
arctic only, the diffusion models exhibited non-local effects, altering the
meridional heat transport (MHT) due to the change in the temperature
gradient and therefore the temperature anomaly throughout the entire
northern hemisphere (NH).

• Tropopause height increase (THI) yielded a PA response in all diffusion
models which strength was found to be dependent on the magnitude
of diffusivity in a uniform diffusivity model. For realistic values of the
diffusivity, the Polar Amplification Factor (PAF) was similar to that
of arctic albedo decrease using realistic estimates of THI and albedo
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decrease due to sea ice melt. In a non-uniform diffusivity model, a locally
reduced magnitude of diffusivity over Antarctica had drastic effects on
the temperature anomaly, reducing THI induced PA significantly and
reduced warming throughout most latitudes, exhibiting non-locality. This
effect was not present in the MEP model due to the aforementioned
non-dependence on geometry.

• A change in diffusivity was found to have a mathematically identical effect
as a change in tropopause height in the equilibrium diffusion model, and
so a possible mechanism contributing to PA. However, due to a opposite
sign relationship between a diffusivity perturbation and a tropopause
height perturbation in Fourier’s law, a possible compensating mechanism
reconciling the diffusion models and the MEP model was identified - that
of diffusivity decrease (DD). DD due to an increased tropopause height
but constant MHT in the MEP model was consistent with the DD needed
to counteract PA due to THI in the diffusion model. The MEP model
maximizes the heat transport, and any change in the cross-sectional area
S must then be balanced by the heat flux.

All of these mechanisms, including the effect of non-equal volumes, were also
represented in a continuous equilibrium model as well as an analytically solvable
two box model, which was the simplest possible representation.

The diffusivity in earth system models (ESMs) was also investigated. Estimating
the diffusivity using an equation derived from the equilibrium diffusion model
proved unfeasible in the tropics due to numerical singularities there, however, an
estimate was found for the extratropics which was similar in magnitude to that
of the diffusion and MEP models. An estimate of the change in diffusivity due
to quadrupling of CO2 was made using Fourier’s law yielding a large DD. The
estimate was dominated by THI, with only an increase in MHT contributing
positively. A potential change in the meridional temperature gradient may also
contribute positively.

5.2 Further research

Additional work can be done to investigate the validity of THI as a mechanism
for PA.

An ESM ensemble study could be conducted where the mechanism of heat
transport change was further explored. Does THI affect the MHT in an ESM,
or is Stone, 1978 correct that only albedo change significantly alters the MHT?
Additionally, a method of calculating diffusivities including the tropics could
be developed which would let us find the complete ensemble eddy diffusivity
profile of the atmosphere and the anomaly due to GHG emissions. From this we
could also calculate the correlation between DD and THI in the models, which
can potentially confirm if a increase in tropopause height is compensated by a
decrease in diffusivity. It could also be that there is an increase in diffusivity,
which the diffusion models suggests would yield PA. The magnitude of this
potential increase would let us compare PAF with albedo decrease and THI.
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5.2. Further research

Additionally, an idealized model with an active surface could be developed in
which the tropopause height is dependent on the surface interaction. This could
potentially investigate if the lapse-rate feedback is sufficient for PA or if THI is
required. Developing a most-static energy model to investigate the results from
this thesis could be another direction to go. These models yield a baseline PA
signal, and may be a better representation of the phenomenon in general.

More understanding could be extracted from the MEP model by applying the
equilibrium perturbation approach. Another natural direction of further study
is expanding on the MEP model. Simulating multiple interacting vertical layers
could open possibilities to explore the tropopause height in way of a thermal
tropopause akin to a model developed by Pujol and Fort, 2002.

All in all, the models in this thesis are highly idealized and there are many
avenues for further exploration of the mechanisms of PA identified and explored.
Especially the mechanism of THI induced PA could challenge the view that
only incoming solar radiation and albedo are the main contributors to the MHT
as argued by Stone, 1978.
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APPENDIX A

Additional figures
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Figure A.1: Incoming and outgoing radiative fluxes for solid - NorESM2-
LM, dashed - full complexity diffusion model, and dotted - maximum entropy
production model. The profiles from the idealized models are shifted by a constant
140Wm−2 for easy comparison.
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Figure A.2: Heat transport anomalies for a tropopause height increase of
∆H = 300m for dashdotted - cartesian geometry and constant tropopause
and diffusivity, dotted - spherical geometry and constant tropopause height and
diffusivity, dashed - spherical geometry with varying tropopause height and
constant emissivity, and solid green - spherical geometry with varying tropopause
height and diffusivity.
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Figure A.3: Heat transport anomalies for an albedo decrease of ∆α = −0.04
northwards of 80◦N for dashdotted - cartesian geometry and constant tropopause
and diffusivity, dotted - spherical geometry and constant tropopause height and
diffusivity, dashed - spherical geometry with varying tropopause height and
constant emissivity, and solid green - spherical geometry with varying tropopause
height and diffusivity, solid blue - maximum entropy production model.
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Figure A.4: Temperature anomaly for simultaneous tropopause height increase
of ∆H = 250m and diffusivity decrease of 4.16 · 104 m2s−1 for a spherical
diffusion model with constant tropopause height and diffusivity.
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APPENDIX B

Equations and derivations

B.1 Equations

Trigonometric equations

Trigonometric addition rule for cosines

cos (θ + φ) = sin θ sinφ− cos θ cosφ (B.1)

Trigonometric addition rule for sines

sin (θ + φ) = sin θ cosφ− cos θ sinφ (B.2)

Small angle approximation for sine

sin δθ ≈ δθ, δθ << 1 (B.3)

Small angle approximation for cosine

cos δθ ≈ 1, δθ << 1 (B.4)

Cramer’s rule

Assuming a system of equations

a1x+ b1y = c1

a2x+ b2y = c2,

Cramer’s rule yields the following solutions

x = c1b2 − b1c2
a1b2 − b1a2

(B.5)

y = a1c2 − c1a2

a1b2 − b1a2
(B.6)
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B. Equations and derivations

B.2 Derivations

Explicit calculation of 2-box model temperature difference

Writing out and canceling terms of the polar-tropics temperature anomaly
difference:

f(∆T2 −∆T1) =− 4εσT 3
1 s2∆α2 − 4εσT 3

1 ∆εT 4
2 − 4εσT 3

1 nγ∆H(T2 − T1)

−���
��γHs2∆α2 −���

��
γH∆εT 4

2 −(((((
((((nγ2H∆H(T2 − T1)

−(((((
(

nγHs1∆α1 −���
��nγH∆εT 4

1 +(((((
((((nγ2H∆H(T2 − T1)

+ 4εσT 3
2 s1∆α1 + 4εσT 3

2 ∆εT 4
1 − 4εσT 3

2 γ∆H(T2 − T1)

+((((((nγHs1∆α1 +���
��nγH∆εT 4

1 −(((((
((((nγ2H∆H(T2 − T1)

+���
��γHs2∆α2 +���

��
γH∆εT 4

2 +(((((
((((nγ2H∆H(T2 − T1), (B.7)
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APPENDIX C

Computer Code

The following python class is an implementation of the diffusion model employing
a finite difference scheme. This code was developed prior to the author having
a full understanding of the analytical expressions and so notation and logical
structure may be different of that presented in Section 3.
import sys

import numpy as np

class Diffusion: # 12.1e7
def __init__(self, dtheta, dt=0, endtime=1.21e8, diffusivity=1e7, height=1e4, spherical=True):

self.R = 6371e3
self.sigma = 5.67e-8
self.density = 1.3
self.specific_heat = 1004

self.dtheta = dtheta
self.endtime = endtime
self.spherical = spherical

self.nboxes = round(np.pi/dtheta) + 1
self.latitude = np.linspace(-89, 89, self.nboxes)*np.pi/180
self.incoming = np.zeros_like(self.latitude)
self.outgoing = np.zeros_like(self.latitude)
self.constraint = np.zeros_like(self.latitude)

if self.spherical:
geometricTerm = np.tan(self.latitude)

else:
geometricTerm = 0

if callable(diffusivity):
self.diffusivity = diffusivity(self.latitude)

else:
self.diffusivity = np.ones_like(self.latitude)*diffusivity

if callable(height):
self.height = height(self.latitude)

else:
self.height = np.ones_like(self.latitude)*height

if dt == 0:
self.dt = 0.4*(self.R*self.dtheta)**2/np.max(self.diffusivity)

else:
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C. Computer Code

self.dt = dt

self.timepoints = round(self.endtime/self.dt) + 1
self.s = self.diffusivity*self.dt/(self.R*self.dtheta)**2
self.temperature = np.zeros(self.nboxes)
self.velocity = self.diffusivity*(geometricTerm \

- np.gradient(self.diffusivity, self.latitude)\
/self.diffusivity \
- np.gradient(self.height, self.latitude)\
/self.height) \
/self.R

self.C0 = self.velocity*self.dt/(self.dtheta*self.R)

try:
assert(self.s[self.s >= 0.5].size == 0)

except AssertionError:
s = np.mean(self.s[self.s >= 0.5])
print(f"Numerical method is unstable, {s:.2f} > 0.5 please choose another dt.")
sys.exit(0)

return

def Fs(self, temperature, solarConstant, albedo, emissivity):
self.incoming = solarConstant*(1 - albedo)
self.outgoing = emissivity*self.sigma*temperature**4
if self.spherical:

self.constraint = np.sum((self.incoming - self.outgoing)*np.cos(self.latitude))
else:

self.constraint = np.sum(self.incoming - self.outgoing)
self.netSolarFlux = (self.incoming - self.outgoing)/(self.density*self.specific_heat*self.height)
return self.netSolarFlux

def run(self, solarConstant=350, albedo=0.3, emissivity=0.6):
if callable(solarConstant):

solarConstant = solarConstant(self.latitude)
if callable(albedo):

albedo = albedo(self.latitude)
if callable(emissivity):

emissivity = emissivity(self.latitude)

self.temperature = np.zeros_like(self.temperature)
self.incoming = np.zeros_like(self.latitude)
self.outgoing = np.zeros_like(self.latitude)
self.constraint = np.zeros_like(self.latitude)
# initialise matrix elements
c0 = (self.s + self.C0/2)
c0[-1] = 2*self.s[-1]
c1 = 1 - 2*self.s
c2 = (self.s - self.C0/2)
c2[0] = 2*self.s[0]
dummytemp0 = np.zeros_like(self.temperature)
dummytemp2 = np.zeros_like(self.temperature)
for n in range(self.timepoints - 1):

Fs = self.Fs(self.temperature, solarConstant, albedo, emissivity)
dummytemp0[1:] = self.temperature[:-1]
dummytemp2[:-1] = self.temperature[1:]
self.temperature = c0*dummytemp0 \

+ c1*self.temperature \
+ c2*dummytemp2 \
+ Fs*self.dt

self.diffusion_operator = np.gradient(1.3*1004*self.diffusivity \
/self.R**2*self.height*np.cos(self.latitude) \

*np.gradient(self.temperature, self.latitude),\

54



self.latitude) \
/np.cos(self.latitude)

return self.temperature

def calculate_heat_transport(self):
dtheta = abs(self.latitude[1] - self.latitude[0])
if self.spherical:

self.heat_transport = 2*np.pi*self.R**2*dtheta* \
np.cumsum((self.incoming - self.outgoing) \

*np.cos(self.latitude))
else:

self.heat_transport = 2*np.pi*self.R**2*dtheta* \
np.cumsum(self.incoming - self.outgoing)

return self.heat_transport

def calculate_heat_flux(self):
dtheta = abs(self.latitude[1] - self.latitude[0])
if self.spherical:

self.heat_flux = np.cumsum( (self.incoming - self.outgoing) \

*np.cos(self.latitude) )*self.R*dtheta/self.height
else:

self.heat_flux = np.cumsum( (self.incoming - self.outgoing) ) \

*self.R*dtheta/self.height
return

The next python class is an implementation of the MEP model, solved using
two iterations of Newton’s method, first for maximizing entropy production
and calculating a temperature profile, then for minimizing net energy (ensuring
energy conservation).

import numpy as np
from scipy.optimize import newton

class AMEP:
def __init__(self, nboxes=64, height=1e4, solarConstant=450, albedo=0.3, emissivity=0.60):

self.sigma = 5.67e-8
self.earth_radius = 6371e3
self.specific_heat = 1004
self.density = 1.3
self.nboxes = nboxes
self.latitude = np.linspace(-np.pi/2, np.pi/2, self.nboxes - 1)
self.temperature = np.ones(self.nboxes - 1)*273
self.heat_transport = None
self.heat_flux = np.zeros(self.nboxes - 1)
#self.height = (16e3 - 9e3)/2*np.cos(2*self.latitude) + (16e3 + 9e3)/2

if callable(height):
self.height = height(self.latitude)

else:
self.height = np.ones_like(self.latitude)*height

if callable(solarConstant):
self.solarConstant = solarConstant(self.latitude)

else:
self.solarConstant = np.ones_like(self.latitude)*solarConstant

if callable(albedo):
self.albedo = albedo(self.latitude)

else:
self.albedo = np.ones_like(self.latitude)*albedo

55



C. Computer Code

if callable(emissivity):
self.emissivity = emissivity(self.latitude)

else:
self.emissivity = np.ones_like(self.latitude)*emissivity

return

def f(self, temperature, beta):
func = temperature**4*(4*beta*temperature + 3) \

+ self.solarConstant*(1 - self.albedo) \
/(self.emissivity*self.sigma)

return func

def df(self, temperature, beta):
func = 2*temperature**3*(10*beta*temperature + 6)
return func

def _tune_temperature(self, beta):
temperature = newton(self.f, self.temperature - 3/(4*beta), args=(beta, ), fprime=self.df)
return temperature

def _calculate_constraint(self, beta):
temperature = self._tune_temperature(beta)
self.incoming = self.solarConstant*(1 - self.albedo)
self.outgoing = self.emissivity*self.sigma*temperature**4
constraint = np.sum((self.outgoing - self.incoming)*np.cos(self.latitude))
return constraint

def tune_beta(self, *args, show_constraint=False, **kwargs):
self.temperature = np.ones(self.nboxes - 1)*273
beta = newton(self._calculate_constraint, *args, **kwargs)
if show_constraint:

print(self._calculate_constraint(beta))
return beta

def compute_temperature(self, beta):
self.temperature = self._tune_temperature(beta)
self._calculate_heat_transport()
self._calculate_heat_flux()
return self.temperature

def _calculate_heat_transport(self):
dtheta = abs(self.latitude[1] - self.latitude[0])
self.heat_transport = 2*np.pi*self.earth_radius**2*dtheta* \

np.cumsum((self.incoming - self.outgoing) \

*np.cos(self.latitude))
return

def _calculate_heat_flux(self):
dtheta = abs(self.latitude[1] - self.latitude[0])
self.heat_flux = np.cumsum( (self.solarConstant*(1 - self.albedo) \

- self.emissivity*self.sigma*self.temperature**4) \

*np.cos(self.latitude) )*self.earth_radius*dtheta/self.height
return
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